A80960JD-66 [INTEL]

3.3 V EMBEDDED 32-BIT MICROPROCESSOR; 3.3 V嵌入式32位微处理器
A80960JD-66
型号: A80960JD-66
厂家: INTEL    INTEL
描述:

3.3 V EMBEDDED 32-BIT MICROPROCESSOR
3.3 V嵌入式32位微处理器

微处理器
文件: 总59页 (文件大小:736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT PREVIEW  
80960JD  
3.3 V EMBEDDED 32-BIT MICROPROCESSOR  
• 3.3 V, 5 V Tolerant, Version of the 80960JD Processor  
Pin/Code Compatible with all 80960Jx  
3.3 V Supply Voltage  
— 5 V Tolerant Inputs  
Processors  
— TTL Compatible Outputs  
High-Performance Embedded Architecture  
— One Instruction/Clock Execution  
— Core Clock Rate is 2x the Bus Clock  
— Load/Store Programming Model  
— Sixteen 32-Bit Global Registers  
— Sixteen 32-Bit Local Registers (8 sets)  
— Nine Addressing Modes  
High Bandwidth Burst Bus  
— 32-Bit Multiplexed Address/Data  
— Programmable Memory Configuration  
— Selectable 8-, 16-, 32-Bit Bus Widths  
— Supports Unaligned Accesses  
— Big or Little Endian Byte Ordering  
— User/Supervisor Protection Model  
High-Speed Interrupt Controller  
— 31 Programmable Priorities  
Two-Way Set Associative Instruction Cache  
— 80960JD - 4 Kbyte  
— Eight Maskable Pins plus NMI  
— Up to 240 Vectors in Expanded Mode  
— Programmable Cache Locking  
Mechanism  
Two On-Chip Timers  
Direct Mapped Data Cache  
— 80960JD - 2 Kbyte  
— Independent 32-Bit Counting  
— Clock Prescaling by 1, 2, 4 or 8  
— lnternal Interrupt Sources  
— Write Through Operation  
Halt Mode for Low Power  
On-Chip Stack Frame Cache  
— Seven Register Sets Can Be Saved  
— Automatic Allocation on Call/Return  
— 0-7 Frames Reserved for High-Priority  
Interrupts  
IEEE 1149.1 (JTAG) Boundary Scan  
Compatibility  
Packages  
— 132-Lead Pin Grid Array (PGA)  
— 132-Lead Plastic Quad Flat Pack (PQFP)  
On-Chip Data RAM  
— 1 Kbyte Critical Variable Storage  
— Single-Cycle Access  
132  
PIN 1  
99  
A80960JD  
®
XXXXXXXXC0  
i960  
M
©
19xx  
i
NG80960JD  
XXXXXXXXC0S  
M
©
19xx  
i
33  
66  
Figure 1. 80960JD Microprocessor  
November 1996  
© INTEL CORPORATION, 1996  
Order Number: 272971-001  
Information in this document is provided in connection with Intel products. No license, express or implied, by  
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in  
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel  
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or  
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright  
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life  
sustaining applications.  
Intel retains the right to make changes to specifications and product descriptions at any time, without notice.  
*Third-party brands and names are the property of their respective owners.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel  
literature, may be obtained from:  
Intel Corporation  
P.O. Box 7641  
Mt. Prospect IL 60056-764  
or call 1-800-548-4725  
©INTEL CORPORATION, 1996  
Contents  
80960JD  
3.3 V EMBEDDED 32-BIT MICROPROCESSOR  
1.0 PURPOSE .................................................................................................................................................. 1  
2.0 80960JD OVERVIEW ................................................................................................................................ 1  
2.1 80960 Processor Core ........................................................................................................................ 2  
2.2 Burst Bus ............................................................................................................................................ 2  
2.3 Timer Unit ........................................................................................................................................... 3  
2.4 Priority Interrupt Controller ................................................................................................................. 3  
2.5 Instruction Set Summary .................................................................................................................... 3  
2.6 Faults and Debugging ........................................................................................................................ 3  
2.7 Low Power Operation ......................................................................................................................... 3  
2.8 Test Features ..................................................................................................................................... 4  
2.9 Memory-Mapped Control Registers .................................................................................................... 4  
2.10 Data Types and Memory Addressing Modes ................................................................................... 4  
3.0 PACKAGE INFORMATION ....................................................................................................................... 6  
3.1 Pin Descriptions .................................................................................................................................. 6  
3.1.1 Functional Pin Definitions ........................................................................................................ 6  
3.1.2 80960Jx 132-Lead PGA Pinout ............................................................................................. 12  
3.1.3 80960Jx PQFP Pinout ........................................................................................................... 16  
3.2 Package Thermal Specifications ...................................................................................................... 19  
3.3 Thermal Management Accessories .................................................................................................. 21  
4.0 ELECTRICAL SPECIFICATIONS ........................................................................................................... 22  
4.1 Absolute Maximum Ratings .............................................................................................................. 22  
4.2 Operating Conditions ........................................................................................................................ 22  
4.3 Connection Recommendations ........................................................................................................ 22  
4.4 VCC5 Pin Requirements (VDIFF) ........................................................................................................ 23  
4.5 VCCPLL Pin Requirements .............................................................................................................. 23  
4.6 DC Specifications ............................................................................................................................. 24  
4.7 AC Specifications ............................................................................................................................. 26  
4.7.1 AC Test Conditions and Derating Curves .............................................................................. 29  
4.7.2 AC Timing Waveforms ........................................................................................................... 30  
5.0 BUS FUNCTIONAL WAVEFORMS ........................................................................................................ 37  
6.0 DEVICE IDENTIFICATION ...................................................................................................................... 51  
7.0 REVISION HISTORY ............................................................................................................................... 53  
iii  
Contents  
FIGURES  
Figure 1. 80960JD Microprocessor ................................................................................................................ i  
Figure 2. 80960JD Block Diagram ................................................................................................................2  
Figure 3. 132-Lead Pin Grid Array Bottom View - Pins Facing Up .............................................................12  
Figure 4. 132-Lead Pin Grid Array Top View - Pins Facing Down ..............................................................13  
Figure 5. 132-Lead PQFP - Top View .........................................................................................................16  
Figure 6. VCC5 Current-Limiting Resistor ...................................................................................................23  
Figure 7. VCCPLL Lowpass Filter ...............................................................................................................23  
Figure 8. AC Test Load ...............................................................................................................................29  
Figure 9. Output Delay or Hold vs. Load Capacitance ................................................................................29  
Figure 10. CLKIN Waveform .........................................................................................................................30  
Figure 11. Output Delay Waveform for TOV1 ................................................................................................30  
Figure 12. Output Float Waveform for TOF ...................................................................................................31  
Figure 13. Input Setup and Hold Waveform for TIS1 and TIH1 ......................................................................31  
Figure 14. Input Setup and Hold Waveform for TIS2 and TIH2 ......................................................................32  
Figure 15. Input Setup and Hold Waveform for TIS3 and TIH3 ......................................................................32  
Figure 16. Input Setup and Hold Waveform for TIS4 and TIH4 ......................................................................33  
Figure 17. Relative Timings Waveform for TLX, TLXL and TLXA ....................................................................33  
Figure 18. DT/R and DEN Timings Waveform ..............................................................................................34  
Figure 19. TCK Waveform ............................................................................................................................34  
Figure 20. Input Setup and Hold Waveforms for TBSIS1 and TBSIH1 .............................................................35  
Figure 21. Output Delay and Output Float Waveform for TBSOV1 AND TBSOF1 ............................................35  
Figure 22. Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 .............................................36  
Figure 23. Input Setup and Hold Waveform for TBSIS2 and TBSIH2 ...............................................................36  
Figure 24. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus ..................................37  
Figure 25. Burst Read and Write Transactions Without Wait States, 32-Bit Bus ..........................................38  
Figure 26. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus ...................................................39  
Figure 27. Burst Read and Write Transactions Without Wait States, 8-Bit Bus ............................................40  
Figure 28. Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus .......................................................................................41  
Figure 29. Bus Transactions Generated by Double Word Read Bus Request,  
Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian ..............................42  
Figure 30. HOLD/HOLDA Waveform For Bus Arbitration .............................................................................43  
Figure 31. Cold Reset Waveform ..................................................................................................................44  
Figure 32. Warm Reset Waveform ................................................................................................................45  
Figure 33. Entering the ONCE State .............................................................................................................46  
Figure 34. Summary of Aligned and Unaligned Accesses (32-Bit Bus) ........................................................49  
Figure 35. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) ....................................50  
Figure 36. 80960JD Device Identification Register .......................................................................................51  
iv  
Contents  
TABLES  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
80960Jx Instruction Set ................................................................................................................. 5  
Pin Description Nomenclature ....................................................................................................... 6  
Pin Description — External Bus Signals ........................................................................................ 7  
Pin Description — Processor Control Signals, Test Signals and Power ..................................... 10  
Pin Description — Interrupt Unit Signals ..................................................................................... 11  
132-Lead PGA Pinout — In Signal Order .................................................................................... 14  
132-Lead PGA Pinout — In Pin Order ......................................................................................... 15  
132-Lead PQFP Pinout — In Signal Order .................................................................................. 17  
132-Lead PQFP Pinout — In Pin Order ....................................................................................... 18  
Table 10. 132-Lead PGA Package Thermal Characteristics ....................................................................... 19  
Table 11. 132-Lead PQFP Package Thermal Characteristics ..................................................................... 20  
Table 12. Maximum TA at Various Airflows in °C ......................................................................................... 21  
Table 13. 80960JD Operating Conditions .................................................................................................... 22  
Table 14. 80960JD DC Characteristics ....................................................................................................... 24  
Table 15. 80960JD ICC Characteristics ...................................................................................................... 25  
Table 16. 80960JD AC Characteristics ........................................................................................................ 26  
Table 17. Note Definitions for Table 16, 80960JD AC Characteristics (pg. 26) ........................................... 28  
Table 18. Natural Boundaries for Load and Store Accesses ....................................................................... 47  
Table 19. Summary of Byte Load and Store Accesses ............................................................................... 47  
Table 20. Summary of Short Word Load and Store Accesses .................................................................... 47  
Table 21. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) ................................................... 48  
Table 22. 80960JD66 Die and Stepping Reference .................................................................................... 51  
Table 23. Fields of 80960JD Device ID ....................................................................................................... 52  
Table 24. 80960JD Device ID Model Types ................................................................................................ 52  
Table 25. Device ID Version Numbers for Different Steppings .................................................................... 52  
v
80960JD  
(MMRs) — an extension not found on the i960 Kx,  
Sx or Cx processors. Physical and logical configu-  
ration registers enable the processor to operate with  
all combinations of bus width and data object  
alignment. The processor supports a homogeneous  
byte ordering model.  
1.0 PURPOSE  
This document contains preview information for the  
80960JD microprocessor, including electrical  
characteristics and package pinout information.  
Detailed functional descriptions  
— other than  
parametric performance — are published in the  
i960® Jx Microprocessor User’s Guide (272483).  
This processor integrates two important peripherals:  
a timer unit and an interrupt controller. These and  
other hardware resources are programmed through  
memory-mapped control registers, an extension to  
the familiar 80960 architecture.  
Throughout this data sheet, references to “80960Jx”  
indicate features which apply to all of the following:  
• 80960JA — 5V, 2 Kbyte instruction cache, 1 Kbyte  
data cache  
The timer unit (TU) offers two independent 32-bit  
timers for use as real-time system clocks and  
general-purpose system timing. These operate in  
either single-shot or auto-reload mode and can  
generate interrupts.  
• 80L960JA — 3.3 V version of the 80960JA  
• 80960JD — 5V, 4 Kbyte instruction cache, 2 Kbyte  
data cache and clock doubling  
• 80960JD — 3.3V, 5V Tolerant version of the  
80960JD  
The interrupt controller unit (ICU) provides a flexible  
means for requesting interrupts. The ICU provides  
full programmability of up to 240 interrupt sources  
into 31 priority levels. The ICU takes advantage of a  
cached priority table and optional routine caching to  
minimize interrupt latency. Clock doubling reduces  
interrupt latency by 40% compared to the  
80960JA/JF. Local registers may be dedicated to  
high-priority interrupts to further reduce latency.  
Acting independently from the core, the ICU  
compares the priorities of posted interrupts with the  
current process priority, off-loading this task from the  
core. The ICU also supports the integrated timer  
interrupts.  
• 80960JF — 5V, 4 Kbyte instruction cache, 2 Kbyte  
data cache  
• 80L960JF — 3.3 V version of the 80960JF  
2.0 80960JD OVERVIEW  
The 80960JD offers high performance to cost-  
sensitive 32-bit embedded applications. The  
80960JD is object code compatible with the 80960  
Core Architecture and is capable of sustained  
execution at the rate of one instruction per clock.  
This processor’s features include generous  
instruction cache, data cache and data RAM. It also  
boasts a fast interrupt mechanism, dual program-  
mable timer units and new instructions.  
The 80960JD features a Halt mode designed to  
support applications where low power consumption  
is critical. The halt instruction shuts down instruction  
execution, resulting in a power savings of up to 90  
percent.  
The 80960JD’s clock doubler operates the processor  
core at twice the bus clock rate to improve execution  
performance without increasing the complexity of  
board designs.  
The 80960JD’s testability features, including ONCE  
(On-Circuit Emulation) mode and Boundary Scan  
(JTAG), provide a powerful environment for design  
debug and fault diagnosis.  
Memory subsystems for cost-sensitive embedded  
applications often impose substantial wait state  
penalties. The 80960JD integrates considerable  
storage resources on-chip to decouple CPU  
execution from the external bus.  
The  
Solutions960® program features a wide variety  
of development tools which support the i960  
processor family. Many of these tools are developed  
by partner companies; some are developed by Intel,  
such as profile-driven optimizing compilers. For  
more information on these products, contact your  
local Intel representative.  
The 80960JD rapidly allocates and deallocates local  
register sets during context switches. The processor  
needs to flush a register set to the stack only when it  
saves more than seven sets to its local register cache.  
A 32-bit multiplexed burst bus provides a high-speed  
interface to system memory and I/O.  
A full  
complement of control signals simplifies the  
connection of the 80960JD to external components.  
The user programs physical and logical memory  
attributes through memory-mapped control registers  
PRODUCT PREVIEW  
1
80960JD  
Control  
21  
Physical Region  
Configuration  
32-bit buses  
address / data  
CLKIN  
PLL, Clocks,  
Power Mgmt  
Bus  
4 KByte Instruction Cache  
Two-Way Set Associative  
Control Unit  
Address/  
Data Bus  
Bus Request  
Queues  
TAP  
5
Boundary Scan  
Controller  
32  
Instruction Sequencer  
Two 32-Bit  
Timers  
Constants  
Control  
Interrupt  
Port  
Programmable  
Interrupt Controller  
9
8-Set  
Local Register Cache  
Execution  
and  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
Address  
Generation  
128  
Unit  
1 Kbyte  
32-bit Address  
32-bit Data  
Global / Local  
Register File  
effective  
address  
Data RAM  
SRC1 SRC2 DEST  
2 Kbyte Direct  
Mapped Data  
Cache  
3 Independent 32-Bit SRC1, SRC2, and DEST Buses  
Figure 2. 80960JD Block Diagram  
• 2 Kbyte direct-mapped, integrated data cache  
2.1 80960 Processor Core  
• 1 Kbyte integrated data RAM delivers zero wait  
state program data  
The 80960Jx family is a scalar implementation of the  
80960 Core Architecture. Intel designed this  
processor core as a very high performance device  
that is also cost-effective. Factors that contribute to  
the core’s performance include:  
2.2 Burst Bus  
• Core operates at twice the bus speed (80960JD  
only)  
A 32-bit high-performance bus controller interfaces  
the 80960JD to external memory and peripherals.  
The BCU fetches instructions and transfers data at  
the rate of up to four 32-bit words per six clock  
cycles. The external address/data bus is multi-  
plexed.  
• Single-clock execution of most instructions  
• Independent Multiply/Divide Unit  
• Efficient instruction pipeline minimizes pipeline  
break latency  
Users may configure the 80960JD’s bus controller to  
match an application’s fundamental memory organi-  
zation. Physical bus width is register-programmed  
for up to eight regions. Byte ordering and data  
caching are programmed through a group of logical  
memory templates and a defaults register.  
• Register and resource scoreboarding allow  
overlapped instruction execution  
• 128-bit register bus speeds local register caching  
• 4 Kbyte two-way set associative, integrated  
instruction cache  
2
PRODUCT PREVIEW  
80960JD  
The BCU’s features include:  
• Interrupt vectors and interrupt handler routines can  
be reserved on-chip  
• Multiplexed external bus to minimize pin count  
• Register frames for high-priority interrupt handlers  
can be cached on-chip  
• 32-, 16- and 8-bit bus widths to simplify I/O  
interfaces  
• The interrupt stack can be placed in cacheable  
memory space  
• External ready control for address-to-data, data-to-  
data and data-to-next-address wait state types  
• Interrupt microcode executes at twice the bus  
frequency  
• Support for big or little endian byte ordering to  
facilitate the porting of existing program code  
• Unaligned bus accesses performed transparently  
• Three-deep load/store queue to decouple the bus  
from the core  
2.5 Instruction Set Summary  
The 80960Jx adds several new instructions to the  
i960 core architecture. The new instructions are:  
Upon reset, the 80960JD conducts an internal self  
test. Then, before executing its first instruction, it  
performs an external bus confidence test by  
performing a checksum on the first words of the  
initialization boot record (IBR).  
• Conditional Move  
• Conditional Add  
• Conditional Subtract  
• Byte Swap  
The user may examine the contents of the caches at  
any time by executing special cache control instruc-  
tions.  
• Halt  
• Cache Control  
• Interrupt Control  
2.3 Timer Unit  
Table 1 identifies the instructions that the 80960Jx  
supports. Refer to i960® Jx Microprocessor User’s  
Guide (272483) for a detailed description of each  
instruction.  
The timer unit (TU) contains two independent 32-bit  
timers which are capable of counting at several clock  
rates and generating interrupts. Each is programmed  
by use of the TU registers. These memory-mapped  
registers are addressable on 32-bit boundaries. The  
timers have a single-shot mode and auto-reload  
capabilities for continuous operation. Each timer has  
an independent interrupt request to the 80960JD’s  
interrupt controller. The TU can generate a fault  
when unauthorized writes from user mode are  
detected. Clock prescaling is supported.  
2.6 Faults and Debugging  
The 80960Jx employs a comprehensive fault model.  
The processor responds to faults by making implicit  
calls to a fault handling routine. Specific information  
collected for each fault allows the fault handler to  
diagnose exceptions and recover appropriately.  
The processor also has built-in debug capabilities. In  
software, the 80960Jx may be configured to detect  
as many as seven different trace event types. Alter-  
natively, mark and fmark instructions can generate  
trace events explicitly in the instruction stream.  
Hardware breakpoint registers are also available to  
trap on execution and data addresses.  
2.4 Priority Interrupt Controller  
A programmable interrupt controller manages up to  
240 external sources through an 8-bit external  
interrupt port. Alternatively, the interrupt inputs may  
be configured for individual edge- or level-triggered  
inputs. The interrupt unit (IU) also accepts interrupts  
from the two on-chip timer channels and a single  
Non-Maskable Interrupt (NMI) pin. Interrupts are  
serviced according to their priority levels relative to  
the current process priority.  
2.7 Low Power Operation  
Intel fabricates the 80960Jx using an advanced sub-  
micron manufacturing process. The processor’s sub-  
micron topology provides the circuit density for  
optimal cache size and high operating speeds while  
Low interrupt latency is critical to many embedded  
applications. As part of its highly flexible interrupt  
mechanism, the 80960JD exploits several  
techniques to minimize latency:  
PRODUCT PREVIEW  
3
80960JD  
dissipating modest power. The processor also uses  
dynamic power management to turn off clocks to  
unused circuits.  
2.9 Memory-Mapped Control  
Registers  
The 80960JD, though compliant with i960 series  
processor core, has the added advantage of  
memory-mapped, internal control registers not found  
on the i960 Kx, Sx or Cx processors. These give  
software the interface to easily read and modify  
internal control registers.  
Users may program the 80960Jx to enter Halt mode  
for maximum power savings. In Halt mode, the  
processor core stops completely while the integrated  
peripherals continue to function, reducing overall  
power requirements up to 90 percent. Processor  
execution resumes from internally or externally  
generated interrupts.  
Each of these registers is accessed as a memory-  
mapped, 32-bit register. Access is accomplished  
through regular memory-format instructions. The  
processor ensures that these accesses do not  
generate external bus cycles.  
2.8 Test Features  
The 80960Jx incorporates numerous features which  
enhance the user’s ability to test both the processor  
and the system to which it is attached. These  
features include ONCE (On-Circuit Emulation) mode  
and Boundary Scan (JTAG).  
2.10 Data Types and Memory  
Addressing Modes  
As with all i960 family processors, the 80960Jx  
instruction set supports several data types and  
formats:  
The 80960Jx provides testability features compatible  
with IEEE Standard Test Access Port and Boundary  
Scan Architecture (IEEE Std. 1149.1).  
• Bit  
One of the boundary scan instructions, HIGHZ,  
forces the processor to float all its output pins  
(ONCE mode). ONCE mode can also be initiated at  
reset without using the boundary scan mechanism.  
• Bit fields  
• Integer (8-, 16-, 32-, 64-bit)  
• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
• Triple word (96 bits)  
• Quad word (128 bits)  
ONCE mode is useful for board-level testing. This  
feature allows a mounted 80960JD to electrically  
“remove” itself from a circuit board. This allows for  
system-level testing where a remote tester — such  
The 80960Jx provides a full set of addressing modes  
for C and assembly programming:  
as an in-circuit emulator  
processor system.  
— can exercise the  
• Two Absolute modes  
• Five Register Indirect modes  
• Index with displacement  
• IP with displacement  
The provided test logic does not interfere with  
component or circuit board behavior and ensures  
that components function correctly, connections  
between various components are correct, and  
various components interact correctly on the printed  
circuit board.  
The JTAG Boundary Scan feature is an attractive  
alternative to conventional “bed-of-nails” testing. It  
can examine connections which might otherwise be  
inaccessible to a test system.  
4
PRODUCT PREVIEW  
80960JD  
Table 1. 80960Jx Instruction Set  
Arithmetic Logical  
Data Movement  
Load  
Bit, Bit Field and Byte  
Add  
And  
Set Bit  
Store  
Subtract  
Not And  
And Not  
Or  
Clear Bit  
Move  
Multiply  
Not Bit  
*Conditional Select  
Load Address  
Divide  
Alter Bit  
Remainder  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Modulo  
Shift  
Or Not  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
*Conditional Add  
*Conditional Subtract  
Rotate  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
*Byte Swap  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call  
Conditional Fault  
Conditional Compare  
Call Extended  
Call System  
Return  
Synchronize Faults  
Compare and  
Increment  
Compare and  
Decrement  
Branch and Link  
Test Condition Code  
Check Bit  
Processor  
Management  
Debug  
Atomic  
Modify Trace Controls  
Mark  
Flush Local Registers  
Atomic Add  
Modify Arithmetic  
Controls  
Atomic Modify  
Force Mark  
Modify Process  
Controls  
*Halt  
System Control  
*Cache Control  
*Interrupt Control  
NOTES: Asterisk (*) denotes new 80960Jx instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB  
implementations.  
PRODUCT PREVIEW  
5
80960JD  
3.0 PACKAGE INFORMATION  
Table 2. Pin Description Nomenclature  
The 80960JD is offered with three speeds and two  
package types. The 132-pin Pin Grid Array (PGA)  
device is specified for operation at VCC = 3.3 V ± 5%  
over a case temperature range of 0° to 100°C:  
Symbol  
Description  
Input pin only.  
I
O
I/O  
Output pin only.  
• A80960JD-66 (66 MHz core, 33 MHz bus)  
• A80960JD-50 (50 MHz core, 25 MHz bus)  
• A80960JD-40 (40 MHz core, 20 MHz bus)  
Pin can be either an input or output.  
Pin must be connected as described.  
S
Synchronous. Inputs must meet setup  
and hold times relative to CLKIN for  
proper operation.  
The 132-pin Plastic Quad Flatpack (PQFP) devices  
will be specified for operation at VCC = 3.3 V ± 5%  
over a case temperature range of 0° to 100°C:  
S(E) Edge sensitive input  
S(L) Level sensitive input  
• NG80960JD-66 (66 MHz core, 33 MHz bus)  
• NG80960JD-50 (50 MHz core, 25 MHz bus)  
• NG80960JD-40 (40 MHz core, 20 MHz bus)  
A (...)  
R (...)  
Asynchronous. Inputs may be  
asynchronous relative to CLKIN.  
A(E) Edge sensitive input  
A(L) Level sensitive input  
For complete package specifications and infor-  
mation, refer to Intel’s Packaging Handbook  
(240800).  
While the processor’s RESET pin is  
asserted, the pin:  
3.1 Pin Descriptions  
R(1) is driven to VCC  
R(0) is driven to VSS  
This section describes the pins for the 80960JD in  
the 132-pin ceramic Pin Grid Array (PGA) package  
and 132-lead Plastic Quad Flatpack Package  
(PQFP).  
R(Q) is a valid output  
R(X) is driven to unknown state  
R(H) is pulled up to VCC  
H (...)  
While the processor is in the hold state,  
the pin:  
Section 3.1.1, Functional Pin Definitions  
describes pin function; Section 3.1.2, 80960Jx 132-  
Lead PGA Pinout and Section 3.1.3, 80960Jx  
PQFP Pinout define the signal and pin locations for  
the supported package types.  
H(1) is driven to VCC  
H(0) is driven to VSS  
H(Q) Maintains previous state or  
continues to be a valid output  
H(Z) Floats  
3.1.1 Functional Pin Definitions  
P (...)  
While the processor is halted, the pin:  
P(1) is driven to VCC  
P(0) is driven to VSS  
P(Q) Maintains previous state or  
continues to be a valid output  
Table 2 presents the legend for interpreting the pin  
descriptions which follow. Pins associated with the  
bus interface are described in Table 3. Pins  
associated with basic control and test functions are  
described in Table 4. Pins associated with the  
Interrupt Unit are described in Table 5.  
6
PRODUCT PREVIEW  
 
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 1 of 4)  
NAME  
TYPE  
DESCRIPTION  
AD31:0  
I/O  
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data  
S(L)  
R(X)  
H(Z)  
P(Q)  
to and from memory. During an address (T ) cycle, bits 31:2 contain a physical word  
a
address (bits 0-1 indicate SIZE; see below). During a data (T ) cycle, read or write  
d
data is present on one or more contiguous bytes, comprising AD31:24, AD23:16,  
AD15:8 and AD7:0. During write operations, unused pins are driven to determinate  
values.  
SIZE, which comprises bits 0-1 of the AD lines during a T cycle, specifies the  
a
number of data transfers during the bus transaction.  
AD1  
AD0  
Bus Transfers  
0
0
1
1
0
1
0
1
1 Transfer  
2 Transfers  
3 Transfers  
4 Transfers  
When the processor enters Halt mode, if the previous bus operation was a:  
• write — AD31:2 are driven with the last data value on the AD bus.  
• read — AD31:4 are driven with the last address value on the AD bus; AD3:2 are  
driven with the value of A3:2 from the last data cycle.  
Typically, AD1:0 reflect the SIZE information of the last bus transaction (either  
instruction fetch or load/store) that was executed before entering Halt mode.  
ALE  
ALE  
ADS  
A3:2  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
asserted during a T cycle and deasserted before the beginning of the T state. It is  
R(0)  
H(Z)  
P(0)  
a
d
active HIGH and floats to a high impedance state during a hold cycle (T ).  
h
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is the  
inverted version of ALE. This signal gives the 80960JD a high degree of compatibility  
with existing 80960Kx systems.  
R(1)  
H(Z)  
P(1)  
O
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
R(1)  
H(Z)  
P(1)  
The processor asserts ADS for the entire T cycle. External bus control logic typically  
a
samples ADS at the end of the cycle.  
O
ADDRESS3:2 comprise a partial demultiplexed address bus.  
R(X)  
H(Z)  
P(Q)  
32-bit memory accesses: the processor asserts address bits A3:2 during T . The  
partial word address increments with each assertion of RDYRCV during a burst.  
a
16-bit memory accesses: the processor asserts address bits A3:1 during T with A1  
a
driven on the BE1 pin. The partial short word address increments with each assertion  
of RDYRCV during a burst.  
8-bit memory accesses: the processor asserts address bits A3:0 during T , with A1:0  
a
driven on BE1:0. The partial byte address increments with each assertion of  
RDYRCV during a burst.  
PRODUCT PREVIEW  
7
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 2 of 4)  
NAME  
TYPE  
DESCRIPTION  
BE3:0  
O
BYTE ENABLES select which of up to four data bytes on the bus participate in the  
current bus access. Byte enable encoding is dependent on the bus width of the  
memory region accessed:  
R(1)  
H(Z)  
P(1)  
32-bit bus:  
BE3 enables data on AD31:24  
BE2 enables data on AD23:16  
BE1 enables data on AD15:8  
BE0 enables data on AD7:0  
16-bit bus:  
BE3 becomes Byte High Enable (enables data on AD15:8)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Byte Low Enable (enables data on AD7:0)  
8-bit bus:  
BE3 is not used (state is high)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Address Bit 0 (A0)  
The processor asserts byte enables, byte high enable and byte low enable during T .  
a
Since unaligned bus requests are split into separate bus transactions, these signals  
do not toggle during a burst. They remain active through the last Td cycle.  
For accesses to 8- and 16-bit memory, the processor asserts the address bits in  
conjunction with A3:2 described above.  
WIDTH/  
O
WIDTH/HALTED signals denote the physical memory attributes for a bus trans-  
HLTD1:0  
R(0)  
H(Z)  
P(1)  
action:  
WIDTH/HLTD1  
WIDTH/HLTD0  
0
0
1
1
0
1
0
1
8 Bits Wide  
16 Bits Wide  
32 Bits Wide  
Processor Halted  
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in  
response to a HOLD request, regardless of prior operating state.  
D/C  
O
DATA/CODE indicates that a bus access is a data access (1) or an instruction  
R(X)  
H(Z)  
P(Q)  
access (0). D/C has the same timing as W/R.  
0 = instruction access  
1 = data access  
W/R  
DT/R  
O
WRITE/READ specifies, during a T cycle, whether the operation is a write (1) or  
a
R(0)  
H(Z)  
P(Q)  
read (0). It is latched on-chip and remains valid during T cycles.  
d
0 = read  
1 = write  
O
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the  
R(0)  
H(Z)  
P(Q)  
address/data bus. It is low during Ta and T /T cycles for a read; it is high during T  
a
w
d
and Tw/T cycles for a write. DT/R never changes state when DEN is asserted.  
d
0 = receive  
1 = transmit  
8
PRODUCT PREVIEW  
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 3 of 4)  
NAME  
DEN  
TYPE  
DESCRIPTION  
O
DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted  
at the start of the first data cycle in a bus access and deasserted at the end of the  
last data cycle. DEN is used with DT/R to provide control for data transceivers  
connected to the data bus.  
R(1)  
H(Z)  
P(1)  
0 = data cycle  
1 = not data cycle  
BLAST  
O
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses. BLAST remains active as long as  
wait states are inserted via the RDYRCV pin. BLAST becomes inactive after the final  
data transfer in a bus cycle.  
R(1)  
H(Z)  
P(1)  
0 = last data transfer  
1 = not last data transfer  
RDYRCV  
I
READY/RECOVER indicates that data on AD lines can be sampled or removed. If  
S(L)  
RDYRCV is not asserted during a T cycle, the Td cycle is extended to the next cycle  
by inserting a wait state (T ).  
w
d
0 = sample data  
1 = don’t sample data  
The RDYRCV pin has another function during the recovery (Tr) state. The processor  
continues to insert additional recovery states until it samples the pin HIGH. This  
function gives slow external devices more time to float their buffers before the  
processor begins to drive address again.  
0 = insert wait states  
1 = recovery complete  
LOCK/  
ONCE  
I/O  
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The  
LOCK output is asserted in the first clock of an atomic operation and deasserted in  
the last data transfer of the sequence. The processor does not grant HOLDA while it  
is asserting LOCK. This prevents external agents from accessing memory involved  
in semaphore operations.  
S(L)  
R(H)  
H(Z)  
P(1)  
0 = Atomic read-modify-write in progress  
1 = Atomic read-modify-write not in progress  
ONCE MODE: The processor samples the ONCE input during reset. If it is asserted  
LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the  
processor stops all clocks and floats all output pins. The pin has a weak internal  
pullup which is active during reset to ensure normal operation when the pin is left  
unconnected.  
0 = ONCE mode enabled  
1 = ONCE mode not enabled  
HOLD  
I
HOLD: A request from an external bus master to acquire the bus. When the  
S(L)  
processor receives HOLD and grants bus control to another master, it asserts  
HOLDA, floats the address/data and control lines and enters the T state. When  
h
HOLD is deasserted, the processor deasserts HOLDA and enters either the T or T  
state, resuming control of the address/data and control lines.  
a
i
0 = no hold request  
1 = hold request  
PRODUCT PREVIEW  
9
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 4 of 4)  
NAME  
TYPE  
DESCRIPTION  
HOLDA  
O
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has  
relinquished control of the bus. The processor can grant HOLD requests and enter  
the Th state during reset and while halted as well as during regular operation.  
R(Q)  
H(1)  
P(Q)  
0 = hold not acknowledged  
1 = hold acknowledged  
BSTAT  
O
BUS STATUS indicates that the processor may soon stall unless it has sufficient  
access to the bus; see i960® Jx Microprocessor User’s Guide (272483). Arbitration  
logic can examine this signal to determine when an external bus master should  
acquire/relinquish the bus.  
R(0)  
H(Q)  
P(0)  
0 = no potential stall  
1 = potential stall  
Table 4. Pin Description — Processor Control Signals, Test Signals and Power (Sheet 1 of 2)  
NAME  
CLKIN  
TYPE  
I
DESCRIPTION  
CLOCK INPUT provides the processor’s fundamental time base; both the processor  
core and the external bus run at the CLKIN rate. All input and output timings are  
specified relative to a rising CLKIN edge.  
RESET  
I
RESET initializes the processor and clears its internal logic. During reset, the  
processor places the address/data bus and control output pins in their idle (inactive)  
states.  
A(L)  
During reset, the input pins are ignored with the exception of LOCK/ONCE, STEST  
and HOLD.  
The RESET pin has an internal synchronizer. To ensure predictable processor initial-  
ization during power up, RESET must be asserted a minimum of 10,000 CLKIN  
cycles with VCC and CLKIN stable. On a warm reset, RESET should be asserted for  
a minimum of 15 cycles.  
STEST  
FAIL  
I
SELF TEST enables or disables the processor’s internal self-test feature at initial-  
ization. STEST is examined at the end of reset. When STEST is asserted, the  
processor performs its internal self-test and the external bus confidence test. When  
STEST is deasserted, the processor performs only the external bus confidence test.  
S(L)  
0 = self test disabled  
1 = self test enabled  
O
FAIL indicates a failure of the processor’s built-in self-test performed during initial-  
ization. FAIL is asserted immediately upon reset and toggles during self-test to  
indicate the status of individual tests:  
R(0)  
H(Q)  
P(1)  
• When self-test passes, the processor deasserts FAIL and begins operation from  
user code.  
• When self-test fails, the processor asserts FAIL and then stops executing.  
0 = self test failed  
1 = self test passed  
TCK  
TDI  
I
TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1  
Boundary Scan Testing (JTAG). State information and data are clocked into the  
processor on the rising edge; data is clocked out of the processor on the falling edge.  
I
TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising  
S(L)  
edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.  
10  
PRODUCT PREVIEW  
80960JD  
Table 4. Pin Description — Processor Control Signals, Test Signals and Power (Sheet 2 of 2)  
NAME  
TDO  
TYPE  
DESCRIPTION  
O
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling  
edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At  
other times, TDO floats. TDO does not float during ONCE mode.  
R(Q)  
HQ)  
P(Q)  
TRST  
I
TEST RESET asynchronously resets the Test Access Port (TAP) controller function  
of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan  
feature, connect a pulldown resistor between this pin and VSS. If TAP is not used,  
this pin must be connected to VSS; however, no resistor is required. See Section 4.3,  
Connection Recommendations (pg. 22).  
A(L)  
TMS  
I
TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of  
S(L)  
the test logic for IEEE 1149.1 Boundary Scan testing.  
VCC  
POWER pins intended for external connection to a VCC board plane.  
VCCPLL  
PLL POWER is a separate VCC supply pin for the phase lock loop clock generator. It  
is intended for external connection to the VCC board plane. In noisy environments,  
add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects  
on timing relationships.  
VCC5  
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O  
buffers. This signal should be connected to +5 V for use with inputs which exceed  
3.3 V. If all inputs are from 3.3 V components, this pin should be connected to 3.3 V.  
VSS  
NC  
GROUND pins intended for external connection to a VSS board plane.  
NO CONNECT pins. Do not make any system connections to these pins.  
Table 5. Pin Description — Interrupt Unit Signals  
NAME  
TYPE  
I
DESCRIPTION  
XINT7:0  
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT7:0  
A(E/L) pins can be configured in three modes:  
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs  
can be programmed to be level (low) or edge (falling) sensitive.  
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins  
are level sensitive in this mode.  
Mixed Mode:  
The XINT7:5 pins act as dedicated sources and the XINT4:0 pins  
act as the five most significant bits of a vectored source. The least  
significant bits of the vectored source are set to 0102 internally.  
Unused external interrupt pins should be connected to VCC  
.
NMI  
I
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
A(E)  
NMI is the highest priority interrupt source and is falling edge-triggered. If NMI is  
unused, it should be connected to VCC  
.
PRODUCT PREVIEW  
11  
80960JD  
3.1.2 80960Jx 132-Lead PGA Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
AD22 AD19 AD18 VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC AD13  
AD11 AD6  
AD25  
N
N
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD27 AD26 AD24 AD20  
AD10 AD7  
AD3  
M
M
AD23 AD21  
AD12  
AD9  
AD17  
AD16 AD15 AD14  
AD8  
AD5  
AD0  
VCC  
AD4  
AD1  
AD30 AD29 NC  
L
K
J
L
K
J
BE2  
VCC  
BE3  
VSS  
AD28  
AD31  
AD2 VSS  
VCC  
NC  
VSS  
VCC  
VCC  
VSS  
BE1  
BE0  
H
G
F
H
G
F
VCCPLL VSS CLKIN  
VCC  
VSS  
VCC  
VSS ALE  
NC  
VSS  
VCC  
BSTAT  
DEN  
VCC  
VSS  
RDYRCV VSS  
RESET VSS  
VCC  
VCC  
VCC  
E
D
E
D
VCC  
VSS  
VCC  
VSS DT/R  
VSS  
TDI  
C
B
A
C
B
A
LOCK/  
ONCE  
HOLDA BLAST  
A3  
A2  
FAIL  
VSS  
VCC  
VCC5  
NC HOLD XINT1 XINT0 TRST STEST NC  
W/R  
D/C WIDTH/ TDO NC  
HLTD0  
VSS  
VSS  
VSS XINT6 XINT4 XINT3 TCK  
NC  
ALE  
NC  
NC  
ADS WIDTH/  
HLTD1  
VCC  
VCC VCC  
NMI XINT7 XINT5 XINT2 TMS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 3. 132-Lead Pin Grid Array Bottom View - Pins Facing Up  
12  
PRODUCT PREVIEW  
80960JD  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
14  
14  
TMS  
NC  
NC  
CLKIN  
VSS  
AD0  
AD4  
AD3  
AD7  
AD6  
VCC  
VSS  
TDI  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
AD2  
VCC  
AD1  
13  
12  
13  
12  
XINT2 TCK STEST  
AD11  
VSS  
VSS  
VSS  
VSS  
AD5  
RESET  
XINT5 XINT3 TRST  
XINT7 XINT4 XINT0  
RDYRCV NC  
VCCPLL NC  
AD8  
AD9  
AD10 AD13  
11  
10  
9
11  
10  
9
VSS  
VCC  
AD12 VSS  
VCC  
NMI  
VCC  
XINT6 XINT1  
VSS HOLD  
AD14  
VSS  
VCC  
A80960JD  
8
8
AD15 VSS  
VCC  
VCC  
VSS  
NC  
7
7
M
© 19xx  
AD16  
VSS  
VCC  
VCC  
VSS  
VCC5  
i
6
5
6
5
VCC  
NC  
NC  
VSS  
NC  
FAIL  
A2  
AD17 VSS  
AD21 VSS  
XXXXXXXX C0  
VCC  
VCC  
4
4
A3  
TDO  
AD23 AD20 AD18  
AD19  
3
2
1
3
2
1
BE1  
VSS  
VCC  
BSTAT ALE  
BE0  
VSS  
VCC  
AD31 AD28  
NC  
AD24  
WIDTH/  
HLTD0  
BLAST  
ALE  
DT/R  
VSS  
DEN  
WIDTH/  
HLTD1  
D/C HOLDA  
VSS  
VSS  
VSS  
VSS  
BE3  
BE2  
AD29  
AD22  
AD26  
ADS  
VCC  
VCC  
VCC  
VCC  
VCC  
AD30 AD27 AD25  
W/R LOCK/  
ONCE  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 4. 132-Lead Pin Grid Array Top View - Pins Facing Down  
PRODUCT PREVIEW  
13  
80960JD  
Table 6. 132-Lead PGA Pinout — In Signal Order  
Signal  
Pin  
C5  
Signal  
AD31  
ADS  
Pin  
K3  
Signal  
TDO  
TMS  
TRST  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCPLL  
VCC5  
VSS  
Pin  
B4  
Signal  
VSS  
Pin  
B9  
A2  
A3  
C4  
A1  
A14  
C12  
A6  
VSS  
D2  
AD0  
M14  
L13  
K12  
N14  
M13  
L12  
P14  
N13  
M12  
M11  
N12  
P13  
M10  
P12  
M9  
ALE  
G3  
A3  
VSS  
D13  
E2  
AD1  
ALE  
VSS  
AD2  
BE0  
H3  
A7  
VSS  
E13  
F2  
AD3  
BE1  
J3  
A8  
VSS  
AD4  
BE2  
L1  
A9  
VSS  
F13  
G2  
AD5  
BE3  
L2  
D1  
VSS  
AD6  
BLAST  
BSTAT  
CLKIN  
D/C  
C3  
D14  
E1  
VSS  
G13  
H2  
AD7  
F3  
VSS  
AD8  
H14  
B2  
E14  
F1  
VSS  
H13  
J2  
AD9  
VSS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
DEN  
E3  
F14  
G1  
G14  
H1  
VSS  
J13  
K2  
DT/R  
FAIL  
D3  
VSS  
C6  
VSS  
K13  
N5  
HOLD  
HOLDA  
LOCK/ONCE  
NC  
C9  
VSS  
C2  
J1  
VSS  
N6  
M8  
C1  
J14  
K1  
VSS  
N7  
M7  
A4  
VSS  
N8  
M6  
NC  
A5  
K14  
L14  
P5  
VSS  
N9  
P4  
NC  
B5  
VSS  
N10  
N11  
B1  
P3  
NC  
B14  
C8  
VSS  
N4  
NC  
P6  
W/R  
M5  
NC  
C14  
G12  
J12  
M3  
A10  
F12  
E12  
C13  
B13  
D12  
P7  
WIDTH/HLTD0  
WIDTH/HLTD1  
XINT0  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
XINT6  
XINT7  
B3  
P2  
NC  
P8  
A2  
M4  
NC  
P9  
C11  
C10  
A13  
B12  
B11  
A12  
B10  
A11  
N3  
NC  
P10  
P11  
H12  
C7  
P1  
NMI  
N2  
RDYRCV  
RESET  
STEST  
TCK  
N1  
L3  
B6  
M2  
VSS  
B7  
M1  
TDI  
VSS  
B8  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
14  
PRODUCT PREVIEW  
80960JD  
Table 7. 132-Lead PGA Pinout — In Pin Order  
Pin  
A1  
Signal  
ADS  
Pin  
C6  
Signal  
FAIL  
VCC5  
NC  
Pin  
H1  
Signal  
VCC  
Pin  
M10  
M11  
M12  
M13  
M14  
N1  
Signal  
AD12  
AD9  
AD8  
AD4  
AD0  
AD27  
AD26  
AD24  
AD20  
VSS  
A2  
WIDTH/HLTD1  
ALE  
C7  
H2  
VSS  
A3  
C8  
H3  
BE0  
A4  
NC  
C9  
HOLD  
XINT1  
XINT0  
TRST  
STEST  
NC  
H12  
H13  
H14  
J1  
VCCPLL  
VSS  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
A6  
VCC  
CLKIN  
VCC  
A7  
VCC  
N2  
A8  
VCC  
J2  
VSS  
N3  
A9  
VCC  
J3  
BE1  
N4  
A10  
A11  
A12  
A13  
A14  
B1  
NMI  
VCC  
J12  
J13  
J14  
K1  
NC  
N5  
XINT7  
XINT5  
XINT2  
TMS  
D2  
VSS  
VSS  
N6  
VSS  
D3  
DT/R  
TDI  
VCC  
N7  
VSS  
D12  
D13  
D14  
E1  
VCC  
N8  
VSS  
VSS  
K2  
VSS  
N9  
VSS  
W/R  
VCC  
K3  
AD31  
AD2  
N10  
N11  
N12  
N13  
N14  
P1  
VSS  
B2  
D/C  
VCC  
K12  
K13  
K14  
L1  
VSS  
B3  
WIDTH/HLTD0  
TDO  
E2  
VSS  
VSS  
AD10  
AD7  
AD3  
AD25  
AD22  
AD19  
AD18  
VCC  
B4  
E3  
DEN  
RESET  
VSS  
VCC  
B5  
NC  
E12  
E13  
E14  
F1  
BE2  
B6  
VSS  
L2  
BE3  
B7  
VSS  
VCC  
L3  
AD28  
AD5  
P2  
B8  
VSS  
VCC  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P3  
B9  
VSS  
F2  
VSS  
AD1  
P4  
B10  
B11  
B12  
B13  
B14  
C1  
XINT6  
XINT4  
XINT3  
TCK  
F3  
BSTAT  
RDYRCV  
VSS  
VCC  
P5  
F12  
F13  
F14  
G1  
AD30  
AD29  
NC  
P6  
VCC  
P7  
VCC  
VCC  
P8  
VCC  
NC  
VCC  
AD23  
AD21  
AD17  
AD16  
AD15  
AD14  
P9  
VCC  
LOCK/ONCE  
HOLDA  
BLAST  
A3  
G2  
VSS  
P10  
P11  
P12  
P13  
P14  
VCC  
C2  
G3  
ALE  
VCC  
C3  
G12  
G13  
G14  
NC  
AD13  
AD11  
AD6  
C4  
VSS  
C5  
A2  
VCC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
PRODUCT PREVIEW  
15  
80960JD  
3.1.3 80960Jx PQFP Pinout  
AD9  
TRST  
TCK  
TMS  
HOLD  
XINT0  
XINT1  
XINT2  
1
99  
98  
VCC (I/O)  
2
3
4
5
6
7
VSS (I/O)  
AD10  
AD11  
97  
96  
95  
94  
93  
V
V
CC (I/O)  
SS (I/O)  
VCC (Core)  
XINT3  
VCC (I/O)  
SS (I/O)  
XINT4  
XINT5  
XINT6  
92  
91  
90  
8
9
10  
VSS (Core)  
AD12  
V
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AD13  
AD14  
AD15  
VCC (I/O)  
XINT7  
NMI  
V
SS (I/O)  
AD16  
AD17  
AD18  
AD19  
VCC (Core)  
SS (Core)  
V
®
NC  
NC  
i960  
VCC (I/O)  
VCC5  
NC  
NC  
FAIL  
ALE  
TDO  
VSS (I/O)  
AD20  
AD21  
AD22  
NG80960JX  
23  
24  
25  
26  
27  
28  
29  
77  
76  
75  
74  
73  
72  
71  
XXXXXXXX C0  
AD23  
VCC (Core)  
V
V
CC (I/O)  
SS(I/O)  
WIDTH/HLTD1  
CC(Core)  
SS (Core)  
M
© 19xx  
VSS (Core)  
i
V
V
CC (I/O)  
SS (I/O)  
V
AD24  
70  
69  
68  
67  
30  
31  
32  
33  
V
WIDTH/HLTD0  
A2  
AD25  
AD26  
NC  
A3  
Figure 5. 132-Lead PQFP - Top View  
16  
PRODUCT PREVIEW  
80960JD  
Table 8. 132-Lead PQFP Pinout — In Signal Order  
Signal  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
Pin  
60  
Signal  
ALE  
Pin  
24  
36  
33  
32  
55  
54  
53  
52  
28  
31  
35  
37  
42  
43  
34  
132  
50  
4
Signal  
Pin  
47  
Signal  
VSS (Core)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
NC  
Pin  
124  
10  
27  
40  
48  
56  
64  
71  
79  
85  
93  
97  
106  
112  
131  
18  
19  
21  
22  
67  
121  
122  
126  
127  
14  
13  
12  
11  
8
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (I/O)  
61  
ADS  
59  
62  
A3  
74  
63  
A2  
92  
66  
BE3  
113  
115  
123  
9
68  
BE2  
69  
BE1  
70  
BE0  
75  
WIDTH/HLTD1  
WIDTH/HLTD0  
D/C  
VCC (I/O)  
26  
76  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
41  
77  
49  
78  
W/R  
57  
81  
DT/R  
65  
82  
DEN  
72  
83  
BLAST  
RDYRCV  
LOCK/ONCE  
HOLD  
HOLDA  
BSTAT  
CLKIN  
RESET  
STEST  
FAIL  
80  
84  
86  
87  
94  
NC  
88  
V
CC (I/O)  
98  
NC  
89  
44  
51  
117  
125  
128  
23  
2
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCCPLL  
105  
111  
129  
119  
20  
NC  
90  
NC  
95  
NC  
96  
NC  
99  
VCC5  
NC  
AD8  
100  
101  
102  
103  
104  
107  
108  
109  
110  
45  
VSS (CLK)  
VSS (Core)  
VSS (Core)  
118  
17  
NC  
AD7  
TCK  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
NMI  
AD6  
TDI  
130  
25  
1
30  
AD5  
TDO  
V
SS (Core)  
38  
AD4  
TRST  
VSS (Core)  
VSS (Core)  
VSS (Core)  
VSS (Core)  
VSS (Core)  
VSS (Core)  
46  
AD3  
TMS  
3
58  
AD2  
VCC (CLK)  
120  
16  
29  
39  
73  
7
AD1  
V
CC (Core)  
91  
6
AD0  
VCC (Core)  
VCC (Core)  
114  
116  
5
ALE  
15  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
PRODUCT PREVIEW  
17  
80960JD  
Table 9. 132-Lead PQFP Pinout — In Pin Order  
Pin  
1
Signal  
TRST  
TCK  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Signal  
BLAST  
D/C  
Pin  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
Signal  
NC  
Pin  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
Signal  
AD8  
2
AD26  
AD7  
3
TMS  
ADS  
AD25  
AD6  
4
HOLD  
XINT0  
XINT1  
XINT2  
XINT3  
W/R  
AD24  
AD5  
5
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
DT/R  
VSS (I/O)  
VCC (I/O)  
VSS (Core)  
VCC (Core)  
AD23  
AD4  
6
VCC (I/O)  
VSS (I/O)  
AD3  
7
8
9
V
CC (I/O)  
VSS (I/O)  
XINT4  
AD2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
DEN  
AD22  
AD1  
HOLDA  
ALE  
AD21  
AD0  
XINT5  
AD20  
VCC (I/O)  
VSS (I/O)  
VCC (Core)  
VSS (Core)  
VCC (Core)  
VSS (Core)  
CLKIN  
VSS (CLK)  
VCCPLL  
VCC (CLK)  
NC  
XINT6  
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
LOCK/ONCE  
BSTAT  
BE0  
VSS (I/O)  
VCC (I/O)  
AD19  
XINT7  
NMI  
VCC (Core)  
VSS (Core)  
NC  
AD18  
AD17  
AD16  
NC  
VSS (I/O)  
VCC (I/O)  
AD15  
VCC5  
BE1  
NC  
BE2  
NC  
BE3  
AD14  
FAIL  
VSS (I/O)  
VCC (I/O)  
VSS (Core)  
VCC (Core)  
AD31  
AD13  
NC  
ALE  
AD12  
VCC (Core)  
VSS (Core)  
RESET  
NC  
TDO  
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
AD11  
VCC (I/O)  
VSS (I/O)  
WIDTH/HLTD1  
VCC (Core)  
VSS (Core)  
WIDTH/HLTD0  
A2  
AD30  
NC  
AD29  
STEST  
VCC (I/O)  
TDI  
AD28  
AD10  
V
SS (I/O)  
VSS (I/O)  
VCC (I/O)  
AD9  
VCC (I/O)  
AD27  
VSS (I/O)  
RDYRCV  
A3  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
18  
PRODUCT PREVIEW  
80960JD  
Similarly, if TA is known, the corresponding case  
temperature (TC) can be calculated as follows:  
3.2 Package Thermal Specifications  
The 80960JD is specified for operation when TC  
(case temperature) is within the range of 0°C to  
100°C for both PGA and PQFP packages. Case  
temperature may be measured in any environment  
to determine whether the 80960JD is within its  
specified operating range. The case temperature  
should be measured at the center of the top surface,  
opposite the pins.  
TC = TA + P (θCA  
Compute P by multiplying ICC from Table 14 and  
CC. Values for θJC and θCA are given in Table 10  
)
V
for the PGA package and Table 11 for the PQFP  
package. For high speed operation, the processor’s  
θJA may be significantly reduced by adding  
a
heatsink and/or by increasing airflow.  
θCA is the thermal resistance from case to ambient.  
Use the following equation to calculate TA, the  
maximum ambient temperature to conform to a  
particular case temperature:  
Table 12 shows the maximum ambient temperature  
(TA) permitted without exceeding TC for both PGA  
and PQFP packages. The values are based on  
typical ICC and VCC of +3.3 V, with a TCASE of  
+100°C.  
T
A = TC - P (θCA)  
Junction temperature (TJ) is commonly used in  
reliability calculations. TJ can be calculated from θJC  
(thermal resistance from junction to case) using the  
following equation:  
TJ = TC + P (θJC  
)
Table 10. 132-Lead PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
200 400 600 800  
(1.01) (2.03) (3.04) (4.06) (5.08)  
Parameter  
0
1000  
(0)  
θJC (Junction-to-Case)  
0.7  
25  
15  
16  
0.7  
19  
9
0.7  
14  
6
0.7  
12  
5
0.7  
11  
4
0.7  
10  
4
θCA (Case-to-Ambient) (No Heatsink)  
θCA (Case-to-Ambient) (Omnidirectional Heatsink)  
θCA (Case-to-Ambient) (Unidirectional Heatsink)  
8
6
5
4
4
θJA  
θCA  
θJC  
θJ-PIN  
θJ-CAP  
NOTES:  
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
θ
θ
θ
θ
θ
θ
θ
= θ + θ  
JC  
JA  
CA  
= 5.6°C/W (approx.) (no heatsink)  
J-CAP  
J-PIN  
J-PIN  
J-CAP  
J-PIN  
J-PIN  
= 6.4°C/W (inner pins) (approx.) (no heatsink)  
= 6.2°C/W (outer pins) (approx.) (no heatsink)  
= 3°C/W (approx.) (with heatsink)  
= 3.3°C/W (inner pins) (approx.) (with heatsink)  
= 3.3°C/W (outer pins) (approx.) (with heatsink)  
PRODUCT PREVIEW  
19  
80960JD  
Table 11. 132-Lead PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
1000  
(0)  
(0.25) (0.50) (1.01) (2.03) (3.04) (4.06) (5.08)  
θJC (Junction-to-Case)  
4.1  
23  
4.3  
19  
4.3  
18  
4.3  
16  
4.3  
14  
4.7  
11  
4.9  
9
5.3  
8
θCA (Case-to-Ambient -No Heatsink)  
θCA  
θJA  
θJC  
θJB  
θJL  
NOTES:  
1. This table applies to a PQFP device soldered directly into board.  
2.  
3.  
4.  
θ
θ
θ
= θ  
+ θ  
JA  
JL  
JB  
JC CA  
= 13°C/W (approx.)  
= 13.5°C/W (approx.)  
20  
PRODUCT PREVIEW  
80960JD  
Table 12. Maximum TA at Various Airflows in °C  
Airflow-ft/min (m/sec)  
400 600  
0
200  
800  
1000  
fCLKIN (MHz)  
(0)  
(1.01) (2.03) (3.04) (4.06) (5.07)  
T
T
A without Heatsink  
A without Heatsink  
66  
50  
40  
61  
70  
77  
73  
79  
84  
76  
82  
86  
81  
86  
89  
85  
88  
91  
86  
90  
92  
PQFP  
Package  
66  
50  
40  
58  
68  
75  
68  
75  
81  
76  
82  
86  
80  
84  
88  
81  
86  
89  
83  
87  
90  
TA with Omni Heatsink1  
66  
50  
40  
75  
81  
85  
85  
88  
91  
90  
92  
94  
92  
94  
95  
93  
95  
96  
93  
95  
96  
PGA  
Package  
TA with Uni-directional  
Heatsink2  
66  
50  
40  
73  
79  
84  
86  
90  
92  
90  
92  
94  
92  
94  
95  
93  
95  
96  
93  
95  
96  
1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41mil fin width, 124 mil center-to-center fin spacing)  
2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing)  
3.3 Thermal Management Accessories  
The following is a list of suggested sources for 80960JD thermal solutions. This is neither an endorsement or a  
warranty of the performance of any of the listed products and/or companies.  
Heatsinks  
1. Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(214) 243-4321 FAX: (214) 241-4656  
2. Wakefield Engineering  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
3. Aavid Thermal Technologies, Inc.  
One Kool Path  
Laconia, NH 03247-0400  
(603) 528-3400  
PRODUCT PREVIEW  
21  
80960JD  
4.0 ELECTRICAL SPECIFICATIONS  
4.1 Absolute Maximum Ratings  
NOTICE: This document contains information on  
products in the design phase of development. Do  
not finalize a design with this information. Revised  
information will be published when the product  
becomes available. Verify with your local Intel  
sales office that you have the latest datasheet  
before finalizing a design.  
Parameter  
Maximum Rating  
o
o
Storage Temperature  
–65 C to +150 C  
WARNING: Stressing the device beyond the  
“Absolute Maximum Ratings” may cause perma-  
nent damage. These are stress ratings only. Oper-  
ation beyond the “Operating Conditions” is not  
recommended and extended exposure beyond the  
“Operating Conditions” may affect device reli-  
ability.  
o
o
Case Temperature Under Bias  
Supply Voltage wrt. VSS  
Voltage on VCC5 wrt. VSS  
Voltage on Other Pins wrt. VSS  
–65 C to +110 C  
–0.5 V to + 4.6 V  
–0.5 V to + 6.5 V  
–0.5 V to V + 0.5 V  
CC  
4.2 Operating Conditions  
Table 13. 80960JD Operating Conditions  
Symbol  
VCC  
Parameter  
Supply Voltage  
Min  
3.15  
3.15  
Max  
3.45  
5.5  
Units  
Notes  
V
V
VCC5  
Input Protection Bias  
Input Clock Frequency  
(1)  
f
CLKIN  
80960JD-66  
80960JD-50  
80960JD-40  
12  
12  
12  
33.3  
25  
20  
MHz  
TC  
Operating Case Temperature (PGA  
and PQFP)  
0
100  
°C  
NOTES:  
1. See Section 4.4, VCC5 Pin Requirements (VDIFF) (pg. 23)  
Pay special attention to the Test Reset (TRST) pin. It  
is essential that the JTAG Boundary Scan Test  
Access Port (TAP) controller initializes to a known  
state whether it will be used or not. If the JTAG  
Boundary Scan function will be used, connect a  
pulldown resistor between the TRST pin and VSS. If  
the JTAG Boundary Scan function will not be used  
(even for board-level testing), connect the TRST pin  
to VSS. Also, do not connect the TDI, TDO, and TCK  
pins if the TAP Controller will not be used.  
4.3 Connection Recommendations  
For clean on-chip power distribution, VCC and VSS  
pins separately feed the device’s functional units.  
Power and ground connections must be made to all  
80960JD power and ground pins. On the circuit  
board, every VCC pin should connect to a power  
plane and every VSS pin should connect to a ground  
plane. Place liberal decoupling capacitance near the  
80960JD, since the processor can cause transient  
power surges.  
Pins identified as NC must not be connected in  
the system.  
22  
PRODUCT PREVIEW  
80960JD  
As shown in Figure 6, place a 100resistor in series  
4.4 VCC5 Pin Requirements (VDIFF  
)
with the VCC5 pin to limit the current through VCC5  
.
In mixed voltage systems where the processor is  
powered by 3.3 volts and interfaces with 5 volt  
components, VCC5 must be connected to 5 volts.  
This allows proper 5 volt tolerant buffer operation,  
and prevents damage to the input pins. The voltage  
differential between the 80960Jx VCC5 pin and its 3.3  
volt VCC pins must not exceed 2.25 volts. If this  
requirement is not met, current flow through the pin  
may exceed the value at which the processor is  
damaged. Instances when the voltage can exceed  
2.25 volts is during power up or power down, where  
one source reaches its level faster than the other,  
briefly causing an excess voltage differential.  
Another instance is during steady-state operation,  
where the differential voltage of the regulator  
(provided a regulator is used) cannot be maintained  
within 2.25 volts. Two methods are possible to  
prevent this from happening:  
V
CC5 Pin  
+5 V (±0.25 V)  
100 Ω  
(±5%, 0.5 W)  
Figure 6. VCC5 Current-Limiting Resistor  
• If the regulator cannot prevent the 2.25 volt differ-  
ential, the addition of the resistor is a simple and  
reliable method for limiting current. The resistor  
can also prevent damage in the case of a power  
failure, where the 5 volt supply remains on and the  
3.3 volt supply goes to zero.  
• Use a regulator that is designed to prevent the  
voltage differential from exceeding 2.25 volts, or,  
In 3.3 volt only systems where the 80960Jx input  
pins are driven from 3.3 volt logic, connect the VCC5  
pin directly to the 3.3 volt VCC plane.  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
VDIFF  
VCC5-VCC  
Difference  
2.25  
V
VCC5 input should not exceed VCC by more than 2.25 V  
during power-up and power-down, or during steady-state  
operation.  
tantalum), the 0.01 µF capacitor must be of the type  
X7R and the node connecting VCCPLL must be as  
short as possible.  
4.5 VCCPLL Pin Requirements  
To reduce clock jitter on the i960 Jx processor, the  
VCCPLL pin for the Phase Lock Loop (PLL) circuit is  
isolated on the pinout. The lowpass filter, as shown  
in Figure 7, reduces noise induced clock jitter and its  
effects on timing relationships in system designs.  
The 4.7 µF capacitor must be (low ESR solid  
100  
(±5%, 1/8 W)  
VCCPLL  
(On i960 Jx processors)  
+
VCC  
(Board Plane)  
4.7µF  
0.01µF  
F_CA078A  
Figure 7. VCCPLL Lowpass Filter  
PRODUCT PREVIEW  
23  
 
80960JD  
4.6 DC Specifications  
Table 14. 80960JD DC Characteristics  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Min  
-0.3  
2.0  
Typ  
Max  
0.8  
Units  
Notes  
V
V
V
V
V
VIH  
VCC5 + 0.3  
0.4  
VOL  
IOL = 3 mA  
OL = 100 µA  
IOH = -1 mA  
OH = -200 µA  
0.2  
I
VOH  
Output High Voltage  
2.4  
V
CC - 0.2  
I
VOLP  
CIN  
Output Ground Bounce  
TBD  
V
(1,2)  
Input Capacitance  
PGA  
PQFP  
f
= fMIN (2)  
= fMIN (2)  
CLKIN  
15  
15  
pF  
COUT  
I/O or Output Capacitance  
PGA  
PQFP  
f
CLKIN  
15  
15  
pF  
pF  
CCLK  
CLKIN Capacitance  
PGA  
PQFP  
15  
15  
f
= fMIN (2)  
CLKIN  
NOTES:  
1. Typical is measured with VCC = 3.3 V and temperature = 25 °C.  
2. Not tested.  
24  
PRODUCT PREVIEW  
80960JD  
Table 15. 80960JD ICC Characteristics  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
0 VIN VCC  
ILI1  
Input Leakage Current for  
each pin except TCK, TDI,  
TRST and TMS  
± 1  
µA  
ILI2  
Input Leakage Current for  
TCK, TDI, TRST and TMS  
-140  
20  
-250  
µA  
VIN = 0.45V (1)  
ILO  
Output Leakage Current  
± 1  
30  
µA  
kΩ  
0.4 VOUT VCC  
Rpu  
Internal Pull-UP  
Resistance for ONCE,  
TMS, TDI and TRST  
ICC Active  
(Power Supply)  
80960JD-66  
80960JD-50  
80960JD-40  
790  
600  
500  
mA  
mA  
(2,3)  
(2,3)  
(2,3)  
ICC Active  
(Thermal)  
80960JD-66  
80960JD-50  
80960JD-40  
720  
540  
435  
(2,4)  
(2,4)  
(2,4)  
ICC Test  
(Power modes)  
Reset mode  
80960JD-66  
80960JD-50  
80960JD-40  
Halt mode  
703  
535  
430  
(5)  
(5)  
(5)  
mA  
80960JD-66  
80960JD-50  
80960JD-40  
ONCE mode  
61  
49  
41  
10  
(5)  
(5)  
(5)  
(5)  
ICC 5 Current on the  
80960JD-66  
80960JD-50  
80960JD-40  
200  
200  
200  
µA  
(6)  
V
CC5 Pin  
PRODUCT PREVIEW  
25  
80960JD  
4.7 AC Specifications  
The 80960JD AC timings are based upon device characterization.  
Table 16. 80960JD AC Characteristics (Sheet 1 of 2)  
Symbol  
TF  
Parameter  
Min  
Max  
Units  
Notes  
INPUT CLOCK TIMINGS  
CLKIN Frequency  
80960JD-66  
80960JD-50  
80960JD-40  
12  
12  
12  
33.3  
25  
MHz  
20  
Tc  
CLKIN Period  
80960JD-66  
80960JD-50  
30  
40  
12  
83.3  
83.3  
ns  
80960JD-40  
83.3  
TCS  
TCH  
TCL  
TCR  
TCF  
CLKIN Period Stability  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
± 250  
ps  
ns  
ns  
ns  
ns  
(1, 2)  
8
8
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
4
4
2.0 V to 0.8 V (1)  
SYNCHRONOUS OUTPUT TIMINGS  
TOV1  
Output Valid Delay, Except ALE/ALE  
Inactive and DT/R for 3.3V input sig-  
nals.  
2.5  
13.5  
ns  
(3)  
Same as above, but for 5.5V input  
signals.  
2.5  
16.5  
TOV2  
TOF  
Output Valid Delay, DT/R  
0.5TC + 7  
0.5TC  
9
+
ns  
ns  
Output Float Delay  
2.5  
13.5  
(4)  
SYNCHRONOUS INPUT TIMINGS  
TIS1  
TIH1  
TIS2  
TIH2  
Input Setup to CLKIN — AD31:0,  
NMI, XINT7:0  
6
ns  
ns  
ns  
ns  
(5)  
(5)  
(6)  
(6)  
Input Hold from CLKIN — AD31:0,  
NMI, XINT7:0  
1.5  
6.5  
1
Input Setup to CLKIN — RDYRCV  
and HOLD  
Input Hold from CLKIN — RDYRCV  
and HOLD  
TIS3  
TIH3  
TIS4  
Input Setup to CLKIN — RESET  
Input Hold from CLKIN — RESET  
7
2
7
ns  
ns  
ns  
(7)  
(7)  
(8)  
Input Setup to RESET — ONCE,  
STEST  
TIH4  
Input Hold from RESET — ONCE,  
STEST  
2
ns  
(8)  
NOTES: See Table 17 on page 28 for note definitions for this table.  
26  
PRODUCT PREVIEW  
80960JD  
Table 16. 80960JD AC Characteristics (Sheet 2 of 2)  
Symbol  
TLX  
Parameter  
Min  
Max  
Units  
Notes  
RELATIVE OUTPUT TIMINGS  
Address Valid to ALE/ALE Inactive  
ALE/ALE Width  
0.5TC - 5  
0.5TC - 7  
TLXL  
TLXA  
TDXD  
(9)  
Address Hold from ALE/ALE Inactive  
DT/R Valid to DEN Active  
Equal Loading (9)  
Equal Loading (9)  
ns  
BOUNDARY SCAN TEST SIGNAL TIMINGS  
TBSF  
TCK Frequency  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
0.5TF  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TBSCH  
TBSCL  
TBSCR  
TBSCF  
TBSIS1  
TBSIH1  
TBSOV1  
TBSOF1  
TBSOV2  
TBSOF2  
TBSIS2  
15  
15  
5
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
5
2.0 V to 0.8 V (1)  
Input Setup to TCK — TDI, TMS  
Input Hold from TCK — TDI, TMS  
TDO Valid Delay  
4
6
3
3
3
3
4
30  
30  
30  
30  
(1,10)  
(1,10)  
(1,10)  
(1,10)  
TDO Float Delay  
All Outputs (Non-Test) Valid Delay  
All Outputs (Non-Test) Float Delay  
Input Setup to TCK — All Inputs  
(Non-Test)  
TBSIH2  
Input Hold from TCK — All Inputs  
(Non-Test)  
6
ns  
NOTES: See Table 17 on page 28 for note definitions for this table.  
PRODUCT PREVIEW  
27  
80960JD  
NOTES:  
Table 17. Note Definitions for Table 16, 80960JD AC Characteristics (pg. 26)  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
LO  
designed to be no longer than the valid delay.  
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI  
and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recog-  
nition at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a  
minimum of two CLKIN periods to guarantee recognition.  
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a  
particular clock edge.  
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10. Relative to falling edge of TCK.  
11. Worst-case TOV condition occurs on I/O pins when pins transition from a floating high input to driving a  
low output state. The Address/Data Bus pins encounter this condition between the last access of a read,  
and the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at  
50 pF loads.  
28  
PRODUCT PREVIEW  
80960JD  
4.7.1 AC Test Conditions and Derating Curves  
The AC Specifications in Section 4.7, AC Specifi-  
cations are tested with the 50 pF load indicated in  
Figure 8. Figure 9 shows how timings vary with load  
capacitance; Figure 11 shows how output rise and  
fall times vary with load capacitance.  
Output Pin  
C
= 50 pF for all signals  
L
C
L
Figure 8. AC Test Load  
Capacitance  
AC timings vs. load
nom + 25  
nom + 20  
nom + 15  
nom + 10  
nom + 5  
Rising  
Falling  
nom + 0  
50  
100  
150  
200  
250  
300  
CL (pF)  
Figure 9. Output Delay or Hold vs. Load Capacitance  
PRODUCT PREVIEW  
29  
80960JD  
4.7.2 AC Timing Waveforms  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
Figure 10. CLKIN Waveform  
1.5V  
OV1  
1.5V  
CLKIN  
T
AD31:0,  
ALE (active),  
ALE (active),  
1.5V  
ADS, A3:2,  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DEN,  
BLAST, LOCK,  
HOLDA, BSTAT, FAIL  
Figure 11. Output Delay Waveform for TOV1  
30  
PRODUCT PREVIEW  
80960JD  
1.5V  
1.5V  
CLKIN  
T
OF  
AD31:0,  
ALE, ALE  
ADS, A3:2,  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DT/R,  
DEN, BLAST, LOCK  
Figure 12. Output Float Waveform for TOF  
1.5V  
1.5V  
IH1  
1.5V  
CLKIN  
T
T
IS1  
AD31:0  
NMI  
Valid  
1.5V  
XINT7:0  
Figure 13. Input Setup and Hold Waveform for T  
and T  
IH1  
IS1  
PRODUCT PREVIEW  
31  
80960JD  
1.5V  
1.5V  
1.5V  
CLKIN  
T
IH2  
T
IS2  
HOLD,  
1.5V  
Valid  
1.5V  
RDYRCV  
Figure 14. Input Setup and Hold Waveform for T  
and T  
IH2  
IS2  
1.5V  
1.5V  
CLKIN  
T
T
IS3  
IH3  
RESET  
Figure 15. Input Setup and Hold Waveform for T  
and T  
IH3  
IS3  
32  
PRODUCT PREVIEW  
80960JD  
RESET  
T
IH4  
T
IS4  
ONCE,  
STEST  
Valid  
Figure 16. Input Setup and Hold Waveform for T  
and T  
IH4  
IS4  
T
T /T  
w
a
d
1.5V  
1.5V  
1.5V  
CLKIN  
T
LXL  
ALE  
ALE  
1.5V  
Valid  
1.5V  
1.5V  
T
LX  
T
LXA  
1.5V  
AD31:0  
Valid  
Figure 17. Relative Timings Waveform for T , T  
LX LXL  
and T  
LXA  
PRODUCT PREVIEW  
33  
80960JD  
T
T /T  
w d  
a
CLKIN  
1.5V  
1.5V  
1.5V  
T
OV2  
Valid  
DT/R  
DEN  
T
DXD  
T
OV1  
Figure 18. DT/R and DEN Timings Waveform  
T
T
BSCR  
BSCF  
2.0V  
1.5V  
0.8V  
T
BSCH  
T
BSCL  
Figure 19. TCK Waveform  
34  
PRODUCT PREVIEW  
80960JD  
1.5V  
1.5V  
1.5V  
TCK  
T
T
BSIH1  
BSIS1  
TMS  
TDI  
1.5V  
Valid  
1.5V  
Figure 20. Input Setup and Hold Waveforms for T  
and T  
BSIS1  
BSIH1  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOV1  
BSOF1  
Valid  
1.5V  
TDO  
Figure 21. Output Delay and Output Float Waveform for T  
BSOV1  
AND T  
BSOF1  
PRODUCT PREVIEW  
35  
80960JD  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOF2  
BSOV2  
Non-Test  
Outputs  
Valid  
1.5V  
Figure 22. Output Delay and Output Float Waveform for T  
and T  
BSOF2  
BSOV2  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSIH2  
BSIS2  
Non-Test  
Inputs  
1.5V  
Valid  
1.5V  
Figure 23. Input Setup and Hold Waveform for T  
and T  
BSIS2  
BSIH2  
36  
PRODUCT PREVIEW  
80960JD  
33 illustrates the processor ONCE sequence from  
the time power is applied to the device. Figures 34  
and 35 also show accesses on 32-bit buses. Tables  
18 through 21 summarize all possible combinations  
of bus accesses across 8-, 16-, and 32-bit buses  
according to data alignment.  
5.0 BUS FUNCTIONAL WAVEFORMS  
Figures 24 through 29 illustrate typical 80960JD bus  
transactions. Figure 30 depicts the bus arbitration  
sequence. Figure 31 illustrates the processor reset  
sequence from the time power is applied to the  
device. Figure 32 illustrates the processor reset  
sequence when the processor is in operation. Figure  
T
T
T
T
T
T
T
T
T
T
i
a
d
r
i
i
a
d
r
i
CLKIN  
D
In  
ADDR  
ADDR  
DATA Out  
Invalid  
AD31:0  
ALE  
ADS  
A3:2  
BE3:0  
WIDTH1:0  
10  
10  
D/C  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF030A  
Figure 24. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
PRODUCT PREVIEW  
37  
80960JD  
T
T
T
T
T
T
T
T
T
T
a
d
d
r
a
d
d
d
d
r
CLKIN  
DATA  
Out  
D
In  
DATA  
Out  
DATA  
Out  
D
In  
DATA  
Out  
ADDR  
ADDR  
AD31:0  
ALE  
ADS  
00 or 10  
01 or 11  
00  
01  
10  
11  
A3:2  
BE3:0  
1 0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Figure 25. Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
38  
PRODUCT PREVIEW  
80960JD  
T
T
T
T
T
T
T
T
T
T
T
r
a
w
w
d
w
d
w
d
w
d
CLKIN  
AD31:0  
ALE  
DATA  
Out  
DATA  
Out  
DATA  
Out  
DATA  
Out  
ADDR  
ADS  
A3:2  
0 0  
0 1  
1 0  
1 1  
BE3:0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF032A  
Figure 26. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus  
PRODUCT PREVIEW  
39  
80960JD  
T
T
T
T
T
T
T
T
T
T
r
a
d
d
r
a
d
d
d
d
CLKIN  
DATA  
Out  
DATA  
Out  
D
In  
DATA DATA  
D
In  
ADDR  
ADDR  
AD31:0  
Out  
Out  
ALE  
ADS  
A3:2  
00,01,10 or 11  
00,01,10 or 11  
01 or  
BE1/A1  
BE0/A0  
00  
01  
10  
11  
00 or 10  
11  
WIDTH1:0  
D/C  
00  
00  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF033A  
Figure 27. Burst Read and Write Transactions Without Wait States, 8-Bit Bus  
40  
PRODUCT PREVIEW  
80960JD  
T
T
T
T
T
T
T
T
T
T
r
T
w
d
d
r
r
a
w
d
d
a
CLKIN  
AD31:0  
ALE  
D
In  
D
In  
DATA  
Out  
DATA  
Out  
ADDR  
ADDR  
ADS  
00,01,10, or 11  
00,01,10, or 11  
A3:2  
0
0
1
BE1/A1  
1
BE3/BHE  
BE0/BLE  
01  
01  
WIDTH1:0  
D/C  
W/R  
BLAST  
DT/R  
DEN  
F_JF034A  
RDYRCV  
Figure 28. Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus  
PRODUCT PREVIEW  
41  
80960JD  
T
T
T
T
T
T
T
T
T
T
T
T
r
a
d
r
a
d
r
a
d
r
a
d
CLKIN  
D
In  
D
In  
D
In  
D
In  
AD31:0  
ALE  
A
A
A
A
ADS  
A3:2  
00  
00  
01  
10  
BE3:0  
WIDTH1:0  
D/C  
0 0 0 0  
1 1 1 0  
0 0 1 1  
1 1 0 1  
1 0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Figure 29. Bus Transactions Generated by Double Word Read Bus Request,  
Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian  
42  
PRODUCT PREVIEW  
80960JD  
T or T  
T
T
T or T  
i a  
i
r
h
h
CLKIN  
Outputs:  
AD31:0,  
ALE, ALE,  
ADS, A3:2,  
BE3:0,  
Valid  
Valid  
WIDTH/HLTD1:0,  
D/C, W/R,  
DT/R, DEN,  
BLAST, LOCK  
HOLD  
HOLDA  
(Note)  
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the  
same edge in which it recognizes HOLD if the last state was T or the last T of a bus transaction. Similarly,  
i
r
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.  
Figure 30. HOLD/HOLDA Waveform For Bus Arbitration  
PRODUCT PREVIEW  
43  
80960JD  
Figure 31. Cold Reset Waveform  
44  
PRODUCT PREVIEW  
80960JD  
Figure 32. Warm Reset Waveform  
PRODUCT PREVIEW  
45  
80960JD  
Figure 33. Entering the ONCE State  
46  
PRODUCT PREVIEW  
80960JD  
Table 18. Natural Boundaries for Load and Store Accesses  
Data Width  
Byte  
Natural Boundary (Bytes)  
1
2
Short Word  
Word  
4
Double Word  
Triple Word  
Quad Word  
8
16  
16  
Table 19. Summary of Byte Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Bus (WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
+0 (aligned)  
• byte access  
• byte access  
• byte access  
Table 20. Summary of Short Word Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Bus (WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
+0 (aligned)  
+1  
• burst of 2 bytes  
• 2 byte accesses  
• short-word access  
• 2 byte accesses  
• short-word access  
• 2 byte accesses  
PRODUCT PREVIEW  
47  
80960JD  
Table 21. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)  
Address Offset  
from Natural  
Boundary in Bytes  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit Bus  
(WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
+0 (aligned)  
n burst(s) of 4 bytes  
case n=1:  
burst of n word(s)  
(n =1, 2, 3, 4)  
burst of 2 short words  
case n=2:  
burst of 4 short words  
case n=3:  
burst of 4 short words  
burst of 2 short words  
case n=4:  
2 bursts of 4 short words  
+1 (n =1, 2, 3, 4)  
+5 (n = 2, 3, 4)  
+9 (n = 3, 4)  
• byte access  
• byte access  
• short-word access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• byte access  
• byte access  
• short-word access  
• burst of 2 bytes  
n-1 burst(s) of 4 bytes  
• byte access  
+13 (n = 3, 4)  
• byte access  
+2 (n =1, 2, 3, 4)  
+6 (n = 2, 3, 4)  
+10 (n = 3, 4)  
+14 (n = 3, 4)  
• burst of 2 bytes  
n-1 burst(s) of 4 bytes  
• burst of 2 bytes  
• short-word access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• short-word access  
• short-word access  
• short-word access  
+3 (n =1, 2, 3, 4)  
+7 (n = 2, 3, 4)  
+11 (n = 3, 4)  
+15 (n = 3, 4)  
• byte access  
• byte access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• short-word access  
• byte access  
• byte access  
n-1 burst(s) of 4 bytes  
• burst of 2 bytes  
• byte access  
• short-word access  
• byte access  
+4 (n = 2, 3, 4)  
+8 (n = 3, 4)  
n burst(s) of 4 bytes  
n burst(s) of 2 short words  
n word access(es)  
+12 (n = 3, 4)  
48  
PRODUCT PREVIEW  
80960JD  
0
0
4
1
8
2
12  
3
16  
4
20  
5
24  
Byte Offset  
Word Offset  
6
Short Access (Aligned)  
Byte, Byte Accesses  
Short-Word  
Load/Store  
Short Access (Aligned)  
Byte, Byte Accesses  
Word Access (Aligned)  
Byte, Short, Byte, Accesses  
Short, Short Accesses  
Word  
Load/Store  
Byte, Short, Byte Accesses  
One Double-Word Burst (Aligned)  
Byte, Short, Word, Byte Accesses  
Short, Word, Short Accesses  
Double-Word  
Load/Store  
Byte, Word, Short, Byte Accesses  
Word, Word Accesses  
One Double-Word  
Burst (Aligned)  
Figure 34. Summary of Aligned and Unaligned Accesses (32-Bit Bus)  
PRODUCT PREVIEW  
49  
80960JD  
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
0
Word Offset  
One Three-Word  
Burst (Aligned)  
Byte, Short, Word,  
Word, Byte Accesses  
Short, Word, Word,  
Short Accesses  
Triple-Word  
Load/Store  
Byte, Word, Word,  
Short, Byte Accesses  
Word, Word,  
Word Accesses  
Word, Word,  
Word Accesses  
Word,  
Word,  
Word  
Accesses  
One Four-Word  
Burst (Aligned)  
Byte, Short, Word, Word,  
Word, Byte Accesses  
Short, Word, Word, Word,  
Short Accesses  
Quad-Word  
Load/Store  
Byte, Word, Word, Word,  
Short, Byte Accesses  
Word, Word, Word,  
Word Accesses  
Word,  
Word,  
Word,  
Word,  
Accesses  
Figure 35. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)  
50  
PRODUCT PREVIEW  
80960JD  
• Upon reset, the identifier is placed into the g0  
register.  
6.0 DEVICE IDENTIFICATION  
80960JD processors may be identified electrically,  
according to device type and stepping (see Figure  
36, and Table 22 through Table 25). Table 22  
identifies the device ID for all 3.3 V and 5 V,  
80960JD processors. Figure 36, and Table 23  
through Table 25 identify all 3.3 V, 5 V-tolerant,  
80960JD processors. The device ID for the C0  
stepping is enhanced to differentiate between 3.3 V  
and 5 V supply voltages, and between non-clock-  
doubled and clock-doubled cores when stepping  
from the A2 stepping to the C0 stepping. The 32-bit  
identifier is accessible in three ways:  
• The identifier may be accessed from supervisor  
mode at any time by reading the DEVICE ID  
register at address FF008710H.  
• The IEEE Standard 1149.1 Test Access Port may  
select the DEVICE ID register through the  
IDCODE instruction.  
• The device and stepping letter is also printed on  
the top side of the product package.  
Table 22. 80960JD Die and Stepping Reference  
Device and  
Stepping  
Version  
Number  
Complete ID  
(Hex)  
Part Number  
Manufacturer  
X
80960JD A, A2  
80960JD C0  
0000  
0011  
1000 1000 0010 0000  
0000 1000 0011 0000  
0000 0001 001  
0000 0001 001  
1
1
08820013  
30830013  
Part Number  
Product  
Type  
VCC  
Version  
Gen  
Model  
Manufacturer ID  
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
Figure 36. 80960JD Device Identification Register  
PRODUCT PREVIEW  
51  
80960JD  
Table 23. Fields of 80960JD Device ID  
Value  
Field  
Definition  
Version  
VCC  
See Table 25  
Indicates major stepping changes.  
0 = 3.3 V device  
1 = 5V device  
Indicates that a device is 3.3 V or 5.0 V.  
Product Type  
00 0100  
Designates type of product.  
(Indicates i960 CPU)  
Generation Type 0001 = J-series  
Indicates the generation (or series) of product.  
Model  
D000C  
Indicates member within a series and specific model  
information.  
D = Clock Doubled  
(0) Not Clock-Doubled  
(1) Clock Doubled  
C = Cache Size  
(0) 4K I-cache, 2K D-cache  
(1) 2K I-cache, 1K D-cache  
Manufacturer ID 000 0000 1001  
(Indicates Intel)  
Manufacturer ID assigned by IEEE.  
Table 24. 80960JD Device ID Model Types  
Device  
Version VCC  
Product  
000100  
000100  
Gen.  
0001  
0001  
Model  
00000  
10000  
Manufacturer ID  
00000001001  
00000001001  
‘1’  
1
80960JD A, A2  
80960JD C0  
See  
1
0
Table 25  
1
Table 25. Device ID Version Numbers for Different Steppings  
Stepping  
Version  
0000  
A0  
A2  
C0  
0000  
0011  
NOTE: This data sheet applies to the 80960JD C0 stepping.  
52  
PRODUCT PREVIEW  
80960JD  
7.0 REVISION HISTORY  
This is the first revision of the 3.3 V device.  
PRODUCT PREVIEW  
53  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY