AD80583QH046003 [INTEL]

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PPGA604;
AD80583QH046003
型号: AD80583QH046003
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PPGA604

外围集成电路
文件: 总136页 (文件大小:2839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Xeon® Processor 7400 Series  
Datasheet  
October 2008  
Order Number: 320335, Revision: -003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving,  
life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
The Intel® Xeon® Processor 7400 Series may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
2
2
I C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I C bus/protocol and was developed  
2
by Intel. Implementations of the I C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and  
North American Philips Corporation.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be  
obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Intel, Pentium, Intel Xeon, Enhanced Intel SpeedStep Technology, and Intel NetBurst are trademarks or registered trademarks of  
Intel Corporation or its subsidiaries in the United States and other countries.  
®
®
Intel 64 (Formerly called Intel EM64T) requires a computer system with a processor, chipset, BIOS, OS, device drivers and  
applications enabled for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS.  
Performance will vary depending on your hardware and software configurations. Intel 64-enabled OS, BIOS, device drivers and  
applications may not be available. Check with your vendor for more information.  
* Other names and brands may be claimed as the property of others.  
Copyright © 2008, Intel Corporation  
2
Intel® Xeon® Processor 7400 Series Datasheet  
Contents  
1
Introduction..............................................................................................................9  
1.1  
1.2  
1.3  
Terminology ..................................................................................................... 11  
State of Data.................................................................................................... 13  
References ....................................................................................................... 13  
2
Electrical Specifications........................................................................................... 15  
2.1  
2.2  
Front Side Bus and GTLREF ................................................................................ 15  
Decoupling Guidelines........................................................................................ 16  
2.2.1 VCC Decoupling...................................................................................... 16  
2.2.2 VTT Decoupling...................................................................................... 16  
2.2.3 Front Side Bus AGTL+ Decoupling ............................................................ 16  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking....................................... 16  
2.3.1 Front Side Bus Frequency Select Signals (BSEL[2:0]).................................. 17  
2.3.2 PLL Power Supply................................................................................... 18  
Voltage Identification (VID) ................................................................................ 18  
Reserved, Unused, or Test Signals....................................................................... 20  
Front Side Bus Signal Groups.............................................................................. 20  
CMOS Asynchronous and Open Drain Asynchronous Signals.................................... 22  
Test Access Port (TAP) Connection....................................................................... 22  
Mixing Processors.............................................................................................. 23  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10 Absolute Maximum and Minimum Ratings ............................................................. 23  
2.11 Processor DC Specifications ................................................................................ 24  
2.11.1 Flexible Motherboard Guidelines (FMB)...................................................... 24  
2.11.2 VCC Overshoot Specification..................................................................... 33  
2.11.3 Die Voltage Validation............................................................................. 33  
2.11.4 Platform Environmental Control Interface (PECI) DC Specifications................ 34  
2.11.4.1 DC Characteristics..................................................................... 34  
2.11.4.2 Input Device Hysteresis............................................................. 35  
2.12 AGTL+ FSB Specifications................................................................................... 35  
2.13 Front Side Bus AC Specifications ......................................................................... 37  
2.14 Processor AC Timing Waveforms ......................................................................... 41  
3
Mechanical Specifications........................................................................................ 51  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing............................................................................... 51  
Processor Component Keepout Zones................................................................... 54  
Package Loading Specifications ........................................................................... 60  
Package Handling Guidelines............................................................................... 61  
Package Insertion Specifications.......................................................................... 61  
Processor Mass Specifications ............................................................................. 61  
Processor Materials............................................................................................ 61  
Processor Markings............................................................................................ 62  
Processor Pin-Out Coordinates ............................................................................ 63  
4
Pin Listing ............................................................................................................... 65  
4.1  
Processor Pin Assignments ................................................................................. 65  
4.1.1 Pin Listing by Pin Name........................................................................... 65  
4.1.2 Pin Listing by Pin Number........................................................................ 73  
5
6
Signal Definitions .................................................................................................... 81  
5.1 Signal Definitions .............................................................................................. 81  
Thermal Specifications ............................................................................................ 89  
6.1  
Package Thermal Specifications........................................................................... 89  
6.1.1 Thermal Specifications ............................................................................ 89  
6.1.2 Thermal Metrology ................................................................................. 97  
Intel® Xeon® Processor 7400 Series Datasheet  
3
6.2  
6.3  
Processor Thermal Features ................................................................................97  
6.2.1 Intel® Thermal Monitor Features ..............................................................97  
6.2.2 Intel Thermal Monitor..............................................................................97  
6.2.3 Intel Thermal Monitor 2...........................................................................98  
6.2.4 On-Demand Mode...................................................................................99  
6.2.5 PROCHOT# Signal ................................................................................100  
6.2.6 FORCEPR# Signal .................................................................................100  
6.2.7 THERMTRIP# Signal..............................................................................100  
Platform Environment Control Interface (PECI) ....................................................101  
6.3.1 Introduction.........................................................................................101  
6.3.1.1 TCONTROL and Tcc Activation on PECI-Based Systems.................102  
6.3.1.2 Processor Thermal Data Sample Rate and Filtering.......................102  
6.3.2 PECI Specifications ...............................................................................103  
6.3.2.1 PECI Device Address................................................................103  
6.3.2.2 PECI Command Support...........................................................103  
6.3.2.3 PECI Fault Handling Requirements.............................................103  
6.3.2.4 PECI GetTemp0() and GetTemp1() Error Code Support.................104  
7
Features ................................................................................................................105  
7.1  
7.2  
Power-On Configuration Options ........................................................................105  
Clock Control and Low Power States...................................................................105  
7.2.1 Normal State .......................................................................................106  
7.2.2 HALT or Extended HALT State.................................................................106  
7.2.2.1 HALT State.............................................................................106  
7.2.2.2 Extended HALT State...............................................................106  
7.2.3 Stop-Grant State ..................................................................................108  
7.2.4 Extended HALT Snoop or HALT Snoop State, Stop Grant  
Snoop State.........................................................................................109  
7.2.4.1 HALT Snoop State, Stop Grant Snoop State ................................109  
7.2.4.2 Extended HALT Snoop State .....................................................109  
Enhanced Intel SpeedStep® Technology.............................................................109  
System Management Bus (SMBus) Interface .......................................................110  
7.4.1 SMBus Device Addressing ......................................................................111  
7.4.2 PIROM and Scratch EEPROM Supported SMBus Transactions.......................112  
7.4.3 Processor Information ROM (PIROM) .......................................................113  
7.4.3.1 Header ..................................................................................115  
7.4.3.2 Processor Data........................................................................119  
7.4.3.3 Processor Core Data ................................................................121  
7.4.3.4 Cache Data ............................................................................124  
7.4.3.5 Package Data .........................................................................126  
7.4.3.6 Part Number Data ...................................................................127  
7.4.3.7 Thermal Reference Data...........................................................129  
7.4.3.8 Feature Data ..........................................................................130  
7.4.3.9 OD: Other Data.......................................................................131  
7.4.4 Checksums ..........................................................................................132  
7.4.5 Scratch EEPROM...................................................................................132  
7.3  
7.4  
8
9
Debug Tools Specifications ....................................................................................133  
8.1  
8.2  
Debug Port System Requirements......................................................................133  
Logic Analyzer Interface (LAI) ...........................................................................133  
8.2.1 Mechanical Considerations .....................................................................133  
8.2.2 Electrical Considerations........................................................................134  
Boxed Processor Specifications..............................................................................135  
9.1  
9.2  
Introduction....................................................................................................135  
Thermal Specifications......................................................................................135  
9.2.1 Boxed Processor Cooling Requirements....................................................135  
4
Intel® Xeon® Processor 7400 Series Datasheet  
Figures  
2-1  
Intel® Xeon® X7460 Processor Load Current versus Time...................................... 28  
Intel® Xeon® Processor E7400 Series Load Current versus Time ............................ 28  
Intel® Xeon® Processor L7400 Series Load Current versus Time............................. 29  
VCC Static and Transient Tolerance Load Lines...................................................... 31  
VCC Overshoot Example Waveform...................................................................... 33  
Input Device Hysteresis ..................................................................................... 35  
Electrical Test Circuit ......................................................................................... 41  
TCK Clock Waveform ......................................................................................... 42  
Differential Clock Waveform................................................................................ 42  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 Differential Clock Crosspoint Specification............................................................. 42  
2-11 BCLK Waveform at Processor Pad and Pin............................................................. 43  
2-12 FSB Common Clock Valid Delay Timing Waveform ................................................. 43  
2-13 FSB Source Synchronous 2X (Address) Timing Waveform ....................................... 44  
2-14 FSB Source Synchronous 4X (Data) Timing Waveform............................................ 45  
2-15 TAP Valid Delay Timing Waveform ....................................................................... 46  
2-16 Test Reset (TRST#), Async GTL+ Input, and PROCHOT# Timing Waveform............... 46  
2-17 THERMTRIP# Power Down Sequence ................................................................... 46  
2-18 SMBus Timing Waveform.................................................................................... 47  
2-19 SMBus Valid Delay Timing Waveform ................................................................... 47  
2-20 Voltage Sequence Timing Requirements ............................................................... 48  
2-21 FERR#/PBE# Valid Delay Timing ......................................................................... 48  
2-22 VID Step Timings .............................................................................................. 49  
2-23 VID Step Times and Vcc Waveforms .................................................................... 49  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
Processor Package Assembly Sketch .................................................................... 51  
Intel® Xeon® Processor 7400 Series Package Drawing (Sheet 1 of 2)...................... 52  
Intel® Xeon® Processor 7400 Series Package Drawing (Sheet 2 of 2)...................... 53  
Top Side Board Keepout Zones (Part 1)................................................................ 55  
Top Side Board Keepout Zones (Part 2)................................................................ 56  
Bottom Side Board Keepout Zones....................................................................... 57  
Board Mounting-Hole Keepout Zones ................................................................... 58  
Volumetric Height Keep-Ins ................................................................................ 59  
Processor Topside Markings ................................................................................ 62  
3-10 Processor Bottom-Side Markings ......................................................................... 62  
3-11 Processor Pin-Out Coordinates, Top View.............................................................. 63  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
7-1  
7-2  
Intel® Xeon® X7460 Processor Thermal Profile..................................................... 91  
6-Core Intel® Xeon® Processor E7400 Series Thermal Profile................................. 93  
4-Core Intel® Xeon® Processor E7400 Series Thermal Profile................................. 94  
6-Core Intel® Xeon® Processor L7400 Series Thermal Profile ................................. 95  
4-Core Intel® Xeon® Processor L7400 Series Thermal Profile ................................. 96  
Case Temperature (TCASE) Measurement Location ................................................ 97  
Intel Thermal Monitor 2 Frequency and Voltage Ordering........................................ 99  
PECI Topology ................................................................................................ 101  
Conceptual Fan Control Diagram For a PECI-Based Platform.................................. 102  
Stop Clock State Machine ................................................................................. 108  
Logical Schematic of SMBus Circuitry ................................................................. 111  
Intel® Xeon® Processor 7400 Series Datasheet  
5
Tables  
1-1  
Processor Features.............................................................................................10  
Core Frequency to Multiplier Configuration ............................................................17  
BSEL[2:0] Frequency Table.................................................................................17  
Voltage Identification Definition ...........................................................................19  
FSB Signal Groups .............................................................................................21  
AGTL+ Signal Description Table...........................................................................22  
Non AGTL+ Signal Description Table.....................................................................22  
Signal Reference Voltages...................................................................................22  
Processor Absolute Maximum Ratings...................................................................23  
Voltage and Current Specifications.......................................................................24  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10 VCC Static and Transient Tolerance......................................................................30  
2-11 AGTL+ Signal Group DC Specifications..................................................................31  
2-12 CMOS Signal Input/Output Group DC Specifications................................................32  
2-13 Open Drain Signal Group DC Specifications ...........................................................32  
2-14 SMBus Signal Group DC Specifications..................................................................32  
2-15 VCC Overshoot Specifications..............................................................................33  
2-16 PECI DC Electrical Limits.....................................................................................34  
2-17 AGTL+ Bus Voltage Definitions ............................................................................36  
2-18 FSB Differential BCLK Specifications .....................................................................36  
2-19 Front Side Bus Differential Clock AC Specifications .................................................37  
2-20 Front Side Bus Common Clock AC Specifications ....................................................37  
2-21 FSB Source Synchronous AC Specifications............................................................38  
2-22 Miscellaneous GTL+ AC Specifications...................................................................39  
2-23 Front Side Bus AC Specifications (Reset Conditions) ...............................................39  
2-24 TAP Signal Group AC Specifications ......................................................................40  
2-25 VID Signal Group AC Specifications ......................................................................40  
2-26 SMBus Signal Group AC Specifications..................................................................40  
3-1  
3-2  
3-3  
4-1  
4-2  
5-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
Processor Loading Specifications..........................................................................60  
Package Handling Guidelines...............................................................................61  
Processor Materials ............................................................................................61  
Pin Listing by Pin Name ......................................................................................65  
Pin Listing by Pin Number ...................................................................................73  
Signal Definitions...............................................................................................81  
Processor Thermal Specifications .........................................................................91  
Intel® Xeon® X7460 Processor Thermal Profile Table.............................................92  
6-Core Intel® Xeon® Processor E7400 Series Thermal Profile Table.........................93  
4-Core Intel® Xeon® Processor E7400 Series Thermal Profile Table.........................94  
6-Core Intel® Xeon® Processor L7400 Series Thermal Profile Table .........................95  
4-Core Intel® Xeon® Processor L7400 Series Thermal Profile Table .........................96  
GetTemp0() and GetTemp1() Error Codes...........................................................104  
Power-On Configuration Option Pins...................................................................105  
Extended HALT Maximum Power........................................................................107  
Memory Device SMBus Addressing .....................................................................112  
Read Byte SMBus Packet ..................................................................................112  
Write Byte SMBus Packet..................................................................................112  
Processor Information ROM Data Sections...........................................................113  
128 Byte ROM Checksum Values........................................................................132  
6
Intel® Xeon® Processor 7400 Series Datasheet  
Revision History  
Document  
Revision  
Number  
Description  
Date  
320335  
320335  
320335  
001  
002  
003  
Initial Release  
September 2008  
September 2008  
October 2008  
Updated Power Information  
Add Boxed Processor Information  
§
Intel® Xeon® Processor 7400 Series Datasheet  
7
8
Intel® Xeon® Processor 7400 Series Datasheet  
Introduction  
1 Introduction  
ALL INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE.  
The Intel® Xeon® Processor 7400 Series is a four or six core product for multi-  
processor servers. The processor is a single die based on Intel’s 45 nanometer process  
technology combining high performance with the power efficiencies of a low-power  
microarchitecture. The processor maintains the tradition of compatibility with IA-32  
software. Some key features include on-die, 32 KB Level 1 instruction data cache per  
core and 3 MB of shared Level 2 cache per two processor cores with Advanced Transfer  
Cache Architecture. The Intel® Xeon® Processor 7400 Series will be available with  
12 MB or 16 MB of on-die level 3 (L3) cache. The processor’s Data Prefetch Logic  
speculatively fetches data to the L2 cache before an L1 cache requests occurs, resulting  
in reduced bus cycle penalties and improved performance. The 1066 MTS Front Side  
Bus (FSB) is a quad-pumped bus running off a 266 MHz system clock making  
8.5 GBytes per second data transfer rates possible.  
Enhanced thermal and power management capabilities are implemented including  
Intel® Thermal Monitor (TM1), Intel® Thermal Monitor 2 (TM2) and Enhanced Intel  
SpeedStep® Technology. TM1 and TM2 provide efficient and effective cooling in high  
temperature situations. Enhanced Intel SpeedStep Technology allows trade-offs to be  
made between performance and power consumption. This may lower average power  
consumption (in conjunction with OS support).  
Processor features include Advanced Dynamic Execution, enhanced floating point and  
multi-media units, Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3  
(SSE3) and Streaming SIMD Extensions 4 (SSE4). SSE4 extends the Intel® 64  
instruction set to accelerate applications that involve graphics, video, 3D imaging, and  
Web services. Advanced Dynamic Execution improves speculative execution and branch  
prediction internal to the processor. The floating point and multi-media units include  
128-bit wide registers and a separate register for data movement. SSE3 instructions  
provide highly efficient double-precision floating point, SIMD integer, and memory  
management operations.  
The Intel® Xeon® Processor 7400 Series supports Intel® 64 as an enhancement to  
Intel's IA-32 architecture. This enhancement allows the processor to execute operating  
systems and applications written to take advantage of the 64-bit extension technology.  
Further details on Intel 64 and its programming model can be found in the Intel® 64  
and IA-32 Intel® Architectures Software Developer's Manual.  
In addition, the Intel® Xeon® Processor 7400 Series supports the Execute Disable Bit  
functionality. When used in conjunction with a supporting operating system, Execute  
Disable allows memory to be marked as executable or non-executable. This feature can  
prevent some classes of viruses that exploit buffer overrun vulnerabilities and can thus  
help improve the overall security of the system. Further details on Execute Disable can  
be found at http://www.intel.com/cd/ids/developer/asmo-na/eng/149308.htm.  
The Intel® Xeon® Processor 7400 Series supports Intel® Virtualization Technology for  
hardware-assisted virtualization within the processor. Intel Virtualization Technology is  
a set of hardware enhancements that can improve virtualization solutions. Intel  
Virtualization Technology is used in conjunction with Virtual Machine Monitor software  
enabling multiple, independent software environments inside a single platform. Further  
details on Intel Virtualization Technology can be found at  
http://developer.intel.com/technology/vt.  
Intel® Xeon® Processor 7400 Series Datasheet  
9
Introduction  
Intel® Xeon® Processor 7400 Series are intended for high performance multi-  
processor server systems. The processors support a Multiple Independent Bus (MIB)  
architecture with one processor on each bus. The MIB architecture provides improved  
performance by allowing increased FSB speeds and bandwidth. All versions of the  
Intel® Xeon® Processor 7400 Series will include manageability features. Components  
of the manageability features include an OEM EEPROM and Processor Information ROM  
which are accessed through an SMBus interface and contain information relevant to the  
particular processor and system in which it is installed. The Intel® Xeon® Processor  
7400 Series is packaged in a 604-pin Flip Chip Micro Pin Grid Array (FC-mPGA8)  
package and utilizes a surface-mount Zero Insertion Force (ZIF) mPGA604 socket. The  
Intel® Xeon® Processor 7400 Series supports 40-bit addressing.  
Table 1-1.  
Processor Features  
# of Processor  
Cores  
L1 Cache per  
Core  
Total L2 Advanced Total L3 Shared  
1
Front Side Bus  
Transfer Rate  
Package  
Transfer Cache  
Cache  
4 or 6  
32 KB  
instruction  
32 KB data  
6M or 9M  
Shared L2 Cache  
12M or 16M  
1066 MTS  
FC-mPGA8  
Notes:  
1.  
Total accessible size of the L3 cache may vary by up to thirty-two (32) cache lines (64 bytes per line),  
depending on usage and operating environment.  
2.  
Total accessible size of L2 caches may vary by one cache line pair (128 bytes) per core, depending on  
usage and operating environment  
Intel® Xeon® Processor 7400 Series-based platforms implement independent core  
voltage (VCC) power planes for each processor. FSB termination voltage (VTT) is shared  
and must connect to all FSB agents. The processor core voltage utilizes power delivery  
guidelines specified by VRM/EVRD 11.0 and its associated load line (see Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines for further details). VRM/EVRD 11.0 will support the power requirements of  
all frequencies of the processors including Flexible Motherboard Guidelines (FMB) (see  
Section 2.11.1). Refer to the appropriate platform design guidelines for implementation  
details.  
The Intel® Xeon® Processor 7400 Series supports 1066 MTS (Mega Transfers per  
Second) Front Side Bus operation. The FSB utilizes a split-transaction, deferred reply  
protocol and Source-Synchronous Transfer (SST) of address and data to improve  
performance. The processor transfers data four times per bus clock (4X data transfer  
rate). Along with the 4X data bus, the address bus can deliver addresses two times per  
bus clock and is referred to as a ‘double-clocked’ or a 2X address bus. In addition, the  
Request Phase completes in one clock cycle. Working together, the 4X data bus and 2X  
address bus provide a data bus bandwidth of up to 8.5 GBytes per second. The FSB is  
also used to deliver interrupts.  
Signals on the FSB use Assisted Gunning Transceiver Logic (AGTL+) level voltages.  
Section 2.1 contains the electrical specifications of the FSB while implementation  
details are fully described in the appropriate platform design guidelines (refer to  
Section 1.3).  
The Intel® Xeon® Processor 7400 Series supports Intel® Cache Safe Technology on  
the L3 cache. This provides a threshold-based mechanism for cache error reporting.  
Intel recommends that fault prediction handlers rely on this mechanism to assess  
processor cache health. Please refer to the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual, Volume 3A for more detailed information.  
10  
Intel® Xeon® Processor 7400 Series Datasheet  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the asserted state when driven to a low level. For example, when RESET# is low, a  
reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
Commonly used terms are explained here for clarification:  
Intel® Xeon® Processor 7400 Series – Intel 64-bit microprocessor intended for  
multi processor servers. The Intel® Xeon® Processor 7400 Series is a single die  
implementation based on Intel’s 45 nanometer process, in the FC-mPGA8 package  
with four or six processor cores and L3 cache.  
Processor core – Processor core with integrated L1 cache. The L2 cache is shared  
between two cores on the die and interfaces to other processor pairs and the L3  
cache through a simplified direct interface. All AC timing and signal integrity  
specifications are at the pads of the processor die.  
FC-mPGA8 — The Intel® Xeon® Processor 7400 Series is available in a Flip-Chip  
Micro Pin Grid Array 8 package, consisting of a single processor die mounted on a  
pinned substrate with an integrated heat spreader (IHS). This packaging  
technology employs a 1.27 mm [0.05 in] pitch for the substrate pins.  
mPGA604 — The Intel® Xeon® Processor 7400 Series processor mates with the  
system board through this surface mount, 604-pin, zero insertion force (ZIF)  
socket.  
FSB (Front Side Bus) – The electrical interface that connects the processor to the  
chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Multi Independent Bus (MIB) – A front side bus architecture with one processor  
on each bus, rather than a FSB shared between multiple processor agents. The MIB  
architecture provides improved performance by allowing increased FSB speeds and  
bandwidth.  
MTS - Mega Transfers per Second.  
Flexible Motherboard Guidelines (FMB) – Are estimates of the maximum  
values the Intel® Xeon® Processor 7400 Series will have over certain time periods.  
The values are only estimates and actual specifications for future processors may  
differ.  
Functional Operation – Refers to the normal operating conditions in which all  
processor specifications, including DC, AC, FSB, signal quality, mechanical and  
thermal are satisfied.  
Storage Conditions – Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor pins should not be connected  
to any supply voltages, have any I/Os biased or receive any clocks. Upon exposure  
to “free air” (that is, unsealed packaging or a device removed from packaging  
material) the processor must be handled in accordance with moisture sensitivity  
labeling (MSL) as indicated on the packaging material.  
Priority Agent – The priority agent is the host bridge to the processor and is  
typically known as the chipset.  
Intel® Xeon® Processor 7400 Series Datasheet  
11  
Introduction  
Symmetric Agent – A symmetric agent is a processor which shares the same I/O  
subsystem and memory array, and runs the same operating system as another  
processor in a system. Systems using symmetric agents are known as Symmetric  
Multiprocessing (SMP) systems.  
Integrated Heat Spreader (IHS) – A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Thermal Design Power – Processor thermal solutions should be designed to meet  
this target. It is the highest expected sustainable power while running known  
power intensive real applications. TDP is not the maximum power that the  
processor can dissipate.  
Platform Environment Control Interface (PECI) – A proprietary one-wire bus  
interface that provides a communication channel between Intel processor and  
controller components to external thermal monitoring devices, for use in fan speed  
control. PECI communicates readings from the processor’s Digital Thermal Sensors  
(DTS). The DTS replaces the thermal diode available in previous processors.  
Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep®  
Technology is the next generation implementation of the Geyserville technology  
which extends power management capabilities of servers.  
Intel® 64 – An enhancement to Intel's IA-32 architecture that allows the  
processor to execute operating systems and applications written to take advantage  
of the 64-bit extension technology. Further details on can be found in the 64-bit  
Extension Technology Software Developer's Guide at  
http://developer.intel.com/technology/64bitextensions/.  
Intel® Virtualization Technology – Processor virtualization which when used in  
conjunction with Virtual Machine Monitor software enables multiple, robust  
independent software environments inside a single platform.  
VRM (Voltage Regulator Module) – DC-DC converter built onto a module that  
interfaces with a card edge socket and supplies the correct voltage and current to  
the processor based on the logic state of the processor VID bits.  
EVRD (Enterprise Voltage Regulator Down) – DC-DC converter integrated onto  
the system board that provides the correct voltage and current to the processor  
based on the logic state of the processor VID bits.  
VCC – The processor core power supply.  
VCCPLL – The processor Phase Lock Loop (PLL) power supply.  
VSS – The processor ground.  
VTT – FSB termination voltage. (Note: In some Intel processor EMTS documents,  
VTT is instead called VCCP.)  
Processor Information ROM (PIROM) — A memory device located on the  
processor and accessible via the System Management Bus (SMBus) which contains  
information regarding the processor’s features. This device is shared with the  
Scratch EEPROM, is programmed during manufacturing, and is write-protected.  
Scratch EEPROM (Electrically Erasable, Programmable Read-Only Memory)  
— A memory device located on the processor and addressable via the SMBus which  
can be used by the OEM to store information useful for system management.  
SMBus — System Management Bus. A two-wire interface through which simple  
system and power management related devices can communicate with the rest of  
the system. It is based on the principals of the operation of the I2C* two-wire serial  
bus from Phillips Semiconductor.  
12  
Intel® Xeon® Processor 7400 Series Datasheet  
Introduction  
Note:  
I2C is a two-wire communications bus/protocol developed by Phillips. SMBus is a subset  
of the I2C bus/protocol and was developed by Intel. Implementations of the I2C  
bus/protocol or the SMBus bus/protocol may require licenses from various entities,  
including Phillips Electronics N.V. and North American Phillips Corporation.  
1.2  
1.3  
State of Data  
The data contained within this document is subject to change.The specifications are  
subject to change without notice. Verify with your local Intel sales office that you have  
the latest datasheet before finalizing a design  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document:  
Document  
Document  
Notes  
1
Number  
®
AP-485, Intel Processor Identification and the CPUID Instruction  
241618  
1
1
®
Intel 64 and IA-32 Architectures Software Developer's Manual  
253665  
253666  
253667  
253668  
253669  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
®
Intel 64 and IA-32 Architectures Software Developer's Manual Documentation  
Changes  
1
252046  
248966  
®
Intel 64 and IA-32 Architectures Optimization Reference Manual  
1
1
64-bit Extension Technology Software Developer's Guide  
Volume 1  
Volume 2  
300834  
300835  
®
Intel Virtualization Technology for IA-32 Processors (VT-x) Preliminary  
Specification  
C97063  
1
1
1
2
Intel® Xeon® Processor 7400 Series Specification Update  
32033501  
315889  
Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD)  
11.0 Design Guidelines  
EPS12V Power Supply Design Guide: A Server system Infrastructure (SSI)  
Specification for Entry Chassis Power Supplies  
Intel® Xeon® Processor 7400 Series Thermal / Mechanical Design Guide  
32033701  
1
Notes:  
1.  
2.  
Document is available publicly at http://developer.intel.com.  
Document available on www.ssiforum.org.  
§
Intel® Xeon® Processor 7400 Series Datasheet  
13  
Introduction  
14  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
2 Electrical Specifications  
2.1  
Front Side Bus and GTLREF  
Most Intel® Xeon® Processor 7400 Series FSB signals use Assisted Gunning  
Transceiver Logic (AGTL+) signaling technology. This technology provides improved  
noise margins and reduced ringing through low voltage swings and controlled edge  
rates. AGTL+ buffers are open-drain and require pull-up resistors to provide the high  
logic level and termination. AGTL+ output buffers differ from GTL+ buffers with the  
addition of an active PMOS pull-up transistor to “assist” the pull-up resistors during the  
first clock of a low-to-high voltage transition. Platforms implement a termination  
voltage level for AGTL+ signals defined as VTT. Because platforms implement separate  
power planes for each processor (and chipset), VCC and VTT are supplied separately to  
the processor. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address buses have made  
signal integrity considerations and platform design methods even more critical than  
with previous processor families. Design guidelines for the processor FSB are detailed  
in the appropriate platform design guidelines (refer to Section 1.3).  
The AGTL+ inputs require reference voltages (GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID and GTLREF_ADD_END) which are used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF_DATA_MID and  
GTLREF_DATA_END are used for the 4X front side bus signaling group and  
GTLREF_ADD_MID and GTLREF_ADD_END are used for the 2X and common clock front  
side bus signaling groups. GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END must be generated on the baseboard (See  
Table 2-17 for GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID and  
GTLREF_ADD_END specifications). Refer to the applicable platform design guidelines  
for details. Termination resistors (RTT) for AGTL+ signals are provided on the processor  
silicon and are terminated to VTT. The on-die termination resistors are always enabled  
on the processor to control reflections on the transmission line. Intel chipsets also  
provide on-die termination, thus eliminating the need to terminate the bus on the  
baseboard for most AGTL+ signals.  
Some FSB signals do not include on-die termination (RTT) and must be terminated on  
the baseboard. See Table 2-4, Table 2-5 and Table 2-6 for details regarding these  
signals.  
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for  
AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog  
signal simulation of the FSB, including trace lengths, is highly recommended when  
designing a system. Contact your Intel Field Representative to obtain the processor  
signal integrity models, which includes buffer and package models.  
Intel® Xeon® Processor 7400 Series Datasheet  
15  
Electrical Specifications  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large average current swings between low and full power states.  
This may cause voltages on power planes to sag below their minimum values if bulk  
decoupling is not adequate. Larger bulk storage (CBULK), such as electrolytic capacitors,  
supply current during longer lasting changes in current demand by the component,  
such as coming out of an idle condition. Similarly, they act as a storage well for current  
when entering an idle condition from a running condition. Care must be taken in the  
baseboard design to ensure that the voltage provided to the processor remains within  
the specifications listed in Table 2-9. Failure to do so can result in timing violations or  
reduced lifetime of the component. For further information and guidelines, refer to the  
appropriate platform design guidelines.  
2.2.1  
2.2.2  
V Decoupling  
CC  
Vcc regulator solutions need to provide bulk capacitance with a low Effective Series  
Resistance (ESR). Bulk decoupling must be provided on the baseboard to handle large  
current swings. The power delivery solution must insure the voltage and current  
specifications are met (as defined in Table 2-9). For further information regarding  
power delivery, decoupling and layout guidelines, refer to the appropriate platform  
design guidelines.  
VTT Decoupling  
Bulk decoupling must be provided on the baseboard. Decoupling solutions must be  
sized to meet the expected load. To insure optimal performance, various factors  
associated with the power delivery solution must be considered including regulator  
type, power plane and trace sizing, and component placement. A conservative  
decoupling solution consists of a combination of low ESR bulk capacitors and high  
frequency ceramic capacitors. For further information regarding power delivery,  
decoupling and layout guidelines, refer to the appropriate platform design guidelines.  
2.2.3  
Front Side Bus AGTL+ Decoupling  
The processor integrates signal termination on the die, as well as a portion of the  
required high frequency decoupling capacitance on the processor package. However,  
additional high frequency capacitance must be added to the baseboard to properly  
decouple the return currents from the FSB. Bulk decoupling must also be provided by  
the baseboard for proper AGTL+ bus operation. Decoupling guidelines are described in  
the appropriate platform design guidelines.  
2.3  
Front Side Bus Clock (BCLK[1:0]) and Processor  
Clocking  
BCLK[1:0] inputs directly controls the FSB interface speed as well as the core  
frequency of the processor. As in previous processor generations, the processor core  
frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier is  
set during manufacturing. The default setting is for the maximum speed of the  
processor. It is possible to override this setting using software. This permits operation  
at lower frequencies than the processor’s tested frequency.  
16  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
The processor core frequency is configured during reset by using values stored  
internally during manufacturing. The stored value sets the highest bus fraction at which  
the particular processor can operate. If lower speeds are desired, the appropriate ratio  
can be configured via the CLOCK_FLEX_MAX Model Specific Register (MSR). For details  
of operation at core frequencies lower than the maximum rated processor speed.  
Clock multiplying within the processor is provided by the internal phase locked loop  
(PLL), which requires a constant frequency BCLK[1:0] input, with exceptions for spread  
spectrum clocking. Processor DC and AC specifications for the BCLK[1:0] inputs are  
provided in Table 2-18 and Table 2-19, respectively. These specifications must be met  
while also meeting signal integrity requirements as outlined in Table 2-18. The  
processor utilizes differential clocks. Details regarding BCLK[1:0] driver specifications  
are provided in the CK410B Clock Synthesizer/Driver Design Guidelines. Table 2-1  
contains processor core frequency to FSB multipliers and their corresponding core  
frequencies.  
Table 2-1.  
Core Frequency to Multiplier Configuration  
Core Frequency to FSB  
Multiplier  
Core Frequency with  
266 MHz FSB Clock  
Notes  
1/8  
1/9  
2.13 GHz  
2.40 GHz  
2.66 GHz  
1, 2.  
1, 2.  
1, 2.  
1/10  
Notes:  
1.  
2.  
Individual processors operate only at or below the frequency marked on the package.  
For valid processor core frequencies, refer to the Intel® Xeon® Processor 7400 Series Specification  
Update.  
2.3.1  
Front Side Bus Frequency Select Signals (BSEL[2:0])  
Upon power up, the FSB frequency is set to the maximum supported by the individual  
processor. BSEL[2:0] are CMOS outputs, and are used to select the FSB frequency.  
Please refer to Table 2-12 for DC specifications. Table 2-2 defines the possible  
combinations of the signals and the frequency associated with each combination. The  
frequency is determined by the processor(s), chipset, and clock synthesizer. All FSB  
agents must operate at the same core and FSB frequency. See the appropriate platform  
design guidelines for further details.  
Table 2-2.  
BSEL[2:0] Frequency Table  
BSEL2  
BSEL1  
BSEL0  
Bus Clock Frequency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
266.666 MHz  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Intel® Xeon® Processor 7400 Series Datasheet  
17  
Electrical Specifications  
2.3.2  
PLL Power Supply  
An on-die PLL filter solution is implemented on the processor. The VCCPLL input is used  
to provide power to the on chip PLL of the processor. Please refer to Table 2-9 for DC  
specifications. Refer to the appropriate platform design guidelines for decoupling and  
routing guidelines.  
2.4  
Voltage Identification (VID)  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines. The voltage set by the VID signals is the reference VR output voltage to be  
delivered to the processor Vcc pins. VID signals are CMOS outputs. Please refer to  
Table 2-11 for the DC specifications for these signals. A voltage range is provided in  
Table 2-9 and changes with frequency. The specifications have been set such that one  
voltage regulator can operate with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core frequency may have different default VID settings. This is  
reflected by the VID range values provided in Table 2-3.  
The processor uses six voltage identification signals, VID[6:1], to support automatic  
selection of power supply voltages. Table 2-3 specifies the voltage level corresponding  
to the state of VID[6:1]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers  
to a low voltage level. The definition provided in Table 2-3 is not related in any way to  
previous Intel® Xeon® processors or voltage regulator designs. If the processor socket  
is empty (VID[6:1] = 111111), or the voltage regulation circuit cannot supply the  
voltage that is requested, the voltage regulator must disable itself. See the Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines for further details.  
Although the Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down  
(EVRD) 11.0 Design Guidelines defines VID [7:0], VID 7 and VID 0 are not used on the  
Intel® Xeon® Processor 7400 Series.  
The Intel® Xeon® Processor 7400 Series provides the ability to operate while  
transitioning to an adjacent VID and its associated processor core voltage (VCC). This  
will represent a DC shift in the load line. It should be noted that a low-to-high or high-  
to-low voltage state change may result in as many VID transitions as necessary to  
reach the target core voltage. Transitions above the specified VID are not permitted.  
Table 2-9 includes VID step sizes and DC shift ranges. Minimum and maximum voltages  
must be maintained as shown in Table 2-10 and Table 2-2.  
The VRM or EVRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in Table 2-9  
and Table 2-10, while AC specifications are included in Table 2-25. Refer to the Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines for further details.  
Power source characteristics must be guaranteed to be stable whenever the supply to  
the voltage regulator is stable.  
18  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Table 2-3.  
Voltage Identification Definition  
VID6 VID5 VID4 VID3 VID2 VID1  
VID6 VID5 VID4 VID3 VID2 VID1  
HEX  
VCC_MAX  
HEX  
VCC_MAX  
400  
mV  
200  
mV  
100  
mV  
50  
25  
12.5  
mV  
400  
mV  
200  
mV  
100  
mV  
50  
25  
12.5  
mV  
mV  
mV  
mV  
mV  
7A  
78  
76  
74  
72  
70  
6E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
3C  
3A  
38  
36  
34  
32  
30  
2E  
2C  
2A  
28  
26  
24  
22  
20  
1E  
1C  
1A  
18  
16  
14  
12  
10  
0E  
0C  
0A  
08  
06  
04  
02  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
6C  
6A  
68  
66  
64  
62  
60  
5E  
5C  
5A  
58  
56  
54  
52  
50  
4E  
4C  
4A  
48  
46  
44  
42  
40  
3E  
1
OFF  
Notes:  
1.  
2.  
3.  
When this VID pattern is observed, the voltage regulator output should be disabled.  
Shading denotes the expected VID range of the Intel® Xeon® Processor 7400 Series.  
The VID range includes VID transitions that may be initiated by thermal events, assertion of the FORCEPR# signal (see  
®
Section 6.2.3), Extended HALT state transitions (see Section 7.2.2), or Enhanced Intel SpeedStep Technology transitions  
(see Section 7.3). The Extended HALT state must be enabled for the processor to remain within its specifications.  
Once the VRM/EVRD is operating after power-up, if either the Output Enable signal is de-asserted or a specific VID off code is  
received, the VRM/EVRD must turn off its output (the output should go to high impedance) within 500 ms and latch off until  
power is cycled. Refer to Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines.  
4.  
Intel® Xeon® Processor 7400 Series Datasheet  
19  
Electrical Specifications  
2.5  
Reserved, Unused, or Test Signals  
All Reserved signals must remain unconnected. Connection of these signals to VCC, VTT,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4 for a pin listing of the processor  
and the location of all Reserved signals.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active high inputs, should be connected through a  
resistor to ground (VSS). Unused outputs can be left unconnected; however, this may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing. A resistor must be used when tying bidirectional signals to power or  
ground. When tying any signal to power or ground, a resistor will also allow for system  
testability. Resistor values should be within ± 20% of the impedance of the baseboard  
trace for FSB signals, unless otherwise noticed in the appropriate platform design  
guidelines. For unused AGTL+ input or I/O signals, use pull-up resistors of the same  
value as the on-die termination resistors (RTT). For details see Table 2-20.  
TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and utilized outputs must be terminated on the baseboard. Unused  
outputs may be terminated on the baseboard or left unconnected. Note that leaving  
unused outputs unterminated may interfere with some TAP functions, complicate debug  
probing, and prevent boundary scan testing. Signal termination for these signal types  
is discussed in the appropriate platform design guidelines.  
For each processor socket, connect the TESTIN1 and TESTIN2 signals together, then  
terminate the net with a 51 Ω resistor to VTT.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below.  
• TESTHI[1:0] - can be grouped together with a single pull-up to VTT  
2.6  
Front Side Bus Signal Groups  
The FSB signals have been combined into groups by buffer type. AGTL+ input signals  
have differential input buffers, which use GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END as reference levels. In this document, the  
term “AGTL+ Input” refers to the AGTL+ input group as well as the AGTL+ I/O group  
when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group as well as  
the AGTL+ I/O group when driving. AGTL+ asynchronous outputs can become active  
anytime and include an active PMOS pull-up transistor to assist during the first clock of  
a low-to-high voltage transition.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals whose timings are  
specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the  
second set is for the source synchronous signals which are relative to their respective  
strobe lines (data and address) as well as rising edge of BCLK0. Asynchronous signals  
are still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 2-4 identifies which signals are common clock, source synchronous  
and asynchronous.  
20  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Table 2-4.  
FSB Signal Groups  
1
Signal Group  
Type  
Signals  
AGTL+ Common Clock Input  
Synchronous to BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#,  
TRDY#;  
AGTL+ Common Clock Output  
AGTL+ Common Clock I/O  
Synchronous to BCLK[1:0]  
Synchronous to BCLK[1:0]  
BPM4#, BPM[2:1]#, BPMb[2:1]#  
2
2
ADS#, AP[1:0]#, BINIT# , BNR# , BPM5#,  
BPM3#, BPM0#, BPMb3#, BPMb0#, BR[1:0]#,  
2
2
DBSY#, DP[3:0]#, DRDY#, HIT# , HITM# ,  
2
LOCK#, MCERR#  
AGTL+ Source Synchronous I/O Synchronous to assoc.  
strobe  
Signals  
Associated Strobe  
REQ[4:0]#  
A[37:36,16:3]#  
ADSTB0#  
A[39:38, 35:17]#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
ADSTB1#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Strobes I/O  
Open Drain Output  
Synchronous to BCLK[1:0]  
Asynchronous  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
FERR#/PBE#, IERR#, PROCHOT#,  
THERMTRIP#, TDO  
CMOS Asynchronous Input  
Asynchronous  
A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, PWRGOOD, SMI#, STPCLK#,  
TCK, TDI, TMS TRST#  
CMOS Asynchronous Output  
FSB Clock  
Asynchronous  
Clock  
BSEL[2:0], VID[6:1]  
BCLK[1:0]  
SMBus  
Synchronous to SM_CLK  
Power/Other  
SM_CLK, SM_DAT, SM_EP_A[2:0], SM_WP  
Power/Other  
COMP[3:0], GTLREF_ADD_MID,  
GTLREF_ADD_END, GTLREF_DATA_MID,  
GTLREF_DATA_END, LL_ID[1:0],  
PROC_ID[1:0], PECI, RESERVED,  
SKTOCC#,SM_VCC, TESTHI[1:0], TESTIN1,  
TESTIN2, VCC, VCC_SENSE, VCC_SENSE2,  
VCCPLL, VID[0], VSS_SENSE, VSS_SENSE2,  
VSS, VTT, VTT_SEL  
Notes:  
1.  
2.  
Refer to Section 4 for signal descriptions.  
These signals may be driven simultaneously by multiple agents (Wired-OR).  
Intel® Xeon® Processor 7400 Series Datasheet  
21  
Electrical Specifications  
Table 2-6 outlines AGTL+ signals which include on-die termination (RTT) and those that  
require external termination. Table 2-6 outlines non AGTL+ signals including open drain  
signals. Table 2-7 provides signal reference voltages.  
Table 2-5.  
AGTL+ Signal Description Table  
AGTL+ signals with R  
AGTL+ signals with no R  
TT  
TT  
A[39:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BPM[5:0]#, BPMb[3:0]#, RESET#, BR[1:0]#  
BNR#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#,  
DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#,  
REQ[4:0]#, RS[2:0]#, RSP#, TRDY#  
Note:  
1.  
Signals that have RTT in the package with 50 Ω pullup to V .  
TT  
Table 2-6.  
Non AGTL+ Signal Description Table  
Signals with R  
Signals with no R  
TT  
TT  
A20M#, BCLK[1:0], BSEL[2:0], COMP[3:0], FERR#/  
PBE#, FORCEPR#, GTLREF_ADD_MID,  
GTLREF_ADD_END, GTLREF_DATA_MID,  
GTLREF_DATA_END, IERR#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, LL_ID[1:0], PROC_ID[1:0], PECI,  
PROCHOT#, PWRGOOD, SKTOCC#, SMI#, STPCLK#,  
TCK, TDI, TDO, TESTHI[1:0], TESTIN1, TESTIN2,  
THERMTRIP#, TMS, TRST#, VCC_SENSE, VCC_SENSE2,  
VID[6:1], VSS_SENSE, VSS_SENSE2, VTT_SEL  
Table 2-7.  
Signal Reference Voltages  
GTLREF  
CMOS  
A[39:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, A20M#, FORCEPR#, LINT0/INTR, LINT1/NMI, IGNNE#,  
BNR#, BPM[5:0]#, BPMb[3:0]#, BPRI#, BR[1:0]#, INIT#, PWRGOOD, SMI#, STPCLK#, TCK, TDI, TMS,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, TRST#  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,  
HITM#, LOCK#, MCERR#, RESET#, REQ[4:0]#,  
RS[2:0]#, RSP#, TRDY#  
2.7  
CMOS Asynchronous and Open Drain  
Asynchronous Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# utilize  
CMOS input buffers. Legacy output signals such as FERR#/PBE#, IERR#, PROCHOT#,  
THERMTRIP#, and TDO utilize open drain output buffers. All of the CMOS and Open  
Drain signals are required to be asserted/deasserted for at least eight BCLKs in order  
for the processor to recognize the proper signal state. See Section 2.11 and  
Section 2.13 for the DC and AC specifications. See Section 7.2 for additional timing  
requirements for entering and leaving the low power states.  
2.8  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, it is recommended that the processor(s) be first in the TAP chain and followed by  
any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of  
accepting an input of the appropriate voltage. Similar considerations must be made for  
TCK, TMS, and TRST#. Two copies of each signal may be required with each driving a  
different voltage level.  
22  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
2.9  
Mixing Processors  
Intel supports and validates multi-processor configurations only in which all processors  
operate with the same FSB frequency, core frequency, number of cores, and have the  
same internal cache sizes. Mixing components operating at different internal clock  
frequencies or number of cores is not supported and will not be validated by Intel.  
Note:  
Processors within a system must operate at the same frequency per bits [12:8] of the  
CLOCK_FLEX_MAX MSR; however this does not apply to frequency transitions initiated  
due to thermal events, Extended HALT, Enhanced Intel SpeedStep® technology  
transitions, or assertion of the FORCEPR# signal (See Section 6).  
Mixing processors of different steppings but the same model (as per CPUID instruction)  
is supported. Details regarding the CPUID instruction are provided in the AP-485 Intel®  
Processor Identification and the CPUID Instruction application note.  
2.10  
Absolute Maximum and Minimum Ratings  
Table 2-8 specifies absolute maximum and minimum ratings only, which lie outside the  
functional limits of the processor. Only within specified operation limits, can  
functionality and long-term reliability be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
.
Table 2-8.  
Processor Absolute Maximum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
Core voltage with respect to VSS  
-0.30  
-0.30  
1.45  
1.45  
V
V
CC  
FSB termination voltage with respect to  
TT  
V
SS  
T
Processor case temperature  
Storage temperature  
See  
See  
°C  
°C  
CASE  
Section 6  
Section 6  
T
-40  
85  
3, 4, 5  
STORAGE  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no pins can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
3.  
4.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
Intel® Xeon® Processor 7400 Series Datasheet  
23  
Electrical Specifications  
2.11  
Processor DC Specifications  
The following notes apply:  
• The processor DC specifications in this section are defined at the processor die and  
not at the package pins unless noted otherwise.  
• The notes associated with each parameter are part of the specification for that  
parameter.  
• Unless otherwise noted, all specifications in the tables apply to all frequencies and  
cache sizes.  
See Section 5 for the pin signal definitions. Most of the signals on the processor FSB  
are in the AGTL+ signal group. The DC specifications for these signals are listed in  
Table 2-11.  
Table 2-9 through Table 2-17 list the DC specifications and are valid only while meeting  
specifications for case temperature (Tcase as specified in Section 6), clock frequency,  
and input voltages.  
2.11.1  
Flexible Motherboard Guidelines (FMB)  
The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the  
Intel® Xeon® Processor 7400 Series will have over certain time periods. The values  
are only estimates and actual specifications for future processors may differ. Processors  
may or may not have specifications equal to the FMB value in the foreseeable future.  
System designers should meet the FMB values to ensure their systems will be  
compatible with future processors.  
Table 2-9.  
Voltage and Current Specifications (Sheet 1 of 3)  
1
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VID range  
for All processors  
0.9000  
1.4500  
V
V
10  
V
V
V
V
V
V
V
See Table 2-10 and Figure 2-4  
2, 3, 5, 8  
CC  
CC  
Launch - FMB  
Default V Voltage for initial  
CC  
power up  
1.1  
V
mV  
mV  
V
CC_BOOT  
VID_STEP  
VID_SHIFT  
TT  
VID step size during a  
transition  
12.5  
450  
Total allowable DC load line  
shift from VID steps  
9
FSB termination voltage  
(DC + AC specification)  
1.045  
1.425  
3.135  
1.100  
1.50  
1.155  
1.605  
7, 12  
PLL supply voltage (DC + AC  
specification)  
V
CCPLL  
SM_V  
SMBus supply voltage  
3.300  
3.465  
150  
V
A
CC  
I
I
I
I
for a 6-Core Intel®  
CC  
Xeon® X7460 Processor  
Launch - FMB  
3, 4, 5, 8  
3, 4, 5, 8  
3, 4, 5, 8  
CC  
CC  
CC  
I
for a Intel® Xeon®  
Processor E7400 Series  
Launch - FMB  
130  
130  
A
A
CC  
I
for a 4-Core Intel®  
CC  
Xeon® Processor E7400  
Series  
Launch - FMB  
24  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Table 2-9.  
Voltage and Current Specifications (Sheet 2 of 3)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
I
I
for an 6-Core Intel®  
CC  
85  
A
3, 4, 5, 8  
CC  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
for an 4-Core Intel®  
CC  
65  
A
3, 4, 5, 8  
CC  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
I
I
for a Intel®  
CC_RESET  
150  
130  
A
A
15  
15  
CC_RESET  
CC_RESET  
Xeon® X7460 Processor  
Launch - FMB  
I
for a Intel®  
CC_RESET  
Xeon® Processor E7400  
Series  
Launch - FMB  
I
I
I
I
I
for a 6-Core  
CC_RESET  
85  
65  
A
A
A
A
15  
15  
CC_RESET  
CC_RESET  
CC_TDC  
Intel® Xeon® Processor  
L7400 Series  
Launch - FMB  
I
for a 4-Core  
CC_RESET  
Intel® Xeon® Processor  
L7400 Series  
Launch - FMB  
Thermal Design Current  
(TDC) for a Intel® Xeon®  
X7460 Processor  
125  
95  
5,13  
5,13  
Launch - FMB  
Thermal Design Current  
(TDC) for a 6-core Intel®  
Xeon® Processor E7400  
Series  
CC_TDC  
Launch - FMB  
I
I
I
Thermal Design Current  
(TDC) for a 4-core Intel®  
Xeon® Processor E7400  
Series  
95  
70  
55  
A
A
A
5,13  
5,13  
5,13  
CC_TDC  
CC_TDC  
CC_TDC  
Launch - FMB  
Thermal Design Current  
(TDC) for a 6-Core Intel®  
Xeon® Processor L7400  
Series  
Launch - FMB  
Thermal Design Current  
(TDC) for a 4-Core Intel®  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
I
Icc for SMBus supply  
100  
122.5  
8.0  
mA  
A
SM_VCC  
TT  
I
for V supply before V  
CC  
14  
6
CC  
TT  
stable  
for V supply after V  
CC  
I
7.0  
CC  
TT  
stable  
I
I
I
for  
200  
µA  
CC_GTLREF  
CC_VCCPLL  
CC  
GTLREF_DATA_MID,  
GTLREF_DATA_END,  
GTLREF_ADD_MID, and  
GTLREF_ADD_END  
I
for PLL supply  
520  
mA  
11  
CC  
Intel® Xeon® Processor 7400 Series Datasheet  
25  
Electrical Specifications  
Table 2-9.  
Voltage and Current Specifications (Sheet 2 of 3)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
I
I
for an 6-Core Intel®  
CC  
85  
A
3, 4, 5, 8  
CC  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
for an 4-Core Intel®  
CC  
65  
A
3, 4, 5, 8  
CC  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
I
I
for a Intel®  
CC_RESET  
150  
130  
A
A
15  
15  
CC_RESET  
CC_RESET  
Xeon® X7460 Processor  
Launch - FMB  
I
for a Intel®  
CC_RESET  
Xeon® Processor E7400  
Series  
Launch - FMB  
I
I
I
I
I
for a 6-Core  
CC_RESET  
85  
65  
A
A
A
A
15  
15  
CC_RESET  
CC_RESET  
CC_TDC  
Intel® Xeon® Processor  
L7400 Series  
Launch - FMB  
I
for a 4-Core  
CC_RESET  
Intel® Xeon® Processor  
L7400 Series  
Launch - FMB  
Thermal Design Current  
(TDC) for a Intel® Xeon®  
X7460 Processor  
125  
95  
5,13  
5,13  
Launch - FMB  
Thermal Design Current  
(TDC) for a 6-core Intel®  
Xeon® Processor E7400  
Series  
CC_TDC  
Launch - FMB  
I
I
I
Thermal Design Current  
(TDC) for a 4-core Intel®  
Xeon® Processor E7400  
Series  
95  
70  
55  
A
A
A
5,13  
5,13  
5,13  
CC_TDC  
CC_TDC  
CC_TDC  
Launch - FMB  
Thermal Design Current  
(TDC) for a 6-Core Intel®  
Xeon® Processor L7400  
Series  
Launch - FMB  
Thermal Design Current  
(TDC) for a 4-Core Intel®  
Xeon® Processor L7400  
Series  
Launch - FMB  
I
I
Icc for SMBus supply  
100  
122.5  
8.0  
mA  
A
SM_VCC  
TT  
I
for V supply before V  
CC  
14  
6
CC  
TT  
stable  
for V supply after V  
CC  
I
7.0  
CC  
TT  
stable  
I
I
I
for  
200  
µA  
CC_GTLREF  
CC_VCCPLL  
CC  
GTLREF_DATA_MID,  
GTLREF_DATA_END,  
GTLREF_ADD_MID, and  
GTLREF_ADD_END  
I
for PLL supply  
520  
mA  
11  
CC  
26  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Table 2-9.  
Voltage and Current Specifications (Sheet 3 of 3)  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
I
I
I
I
for a Intel® Xeon®  
CC  
150  
A
TCC  
X7460 Processor during  
active thermal control circuit  
(TCC)  
I
for a Intel® Xeon®  
CC  
130  
85  
A
A
A
TCC  
TCC  
TCC  
Processor E7400 Series  
during active thermal control  
circuit (TCC)  
I
for an 6-core Intel®  
CC  
Xeon® Processor L7400  
Series during active thermal  
control circuit (TCC)  
I
for an 4-core Intel®  
65  
CC  
Xeon® Processor L7400  
Series during active thermal  
control circuit (TCC)  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processors.  
The voltage specification requirements are measured across the VCC_SENSE and VSS_SENSE pins and  
with an oscilloscope set to 100 MHz bandwidth, 1.5 pF maximum probe capacitance, and 1 MΩ minimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled in the scope probe.  
3.  
4.  
The processor must not be subjected to any static V level that exceeds the V  
associated with any  
CC  
CC_MAX  
particular current. Failure to adhere to this specification can shorten processor lifetime.  
specification is based on maximum V loadline Refer to Figure 2-4 for details. The processor is  
I
CC_MAX  
CC  
capable of drawing I  
for up to 10 ms. Refer to Figure 2-1, Figure 2-2 or Figure 2-3for further details  
CC_MAX  
on the average processor current draw over various time durations.  
FMB is the flexible motherboard guideline. These guidelines are for estimation purposes only. See  
Section 2.11.1 for further details on FMB guidelines.  
This specification represents the total current for GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END.  
5.  
6.  
7.  
8.  
9.  
V
must be provided via a separate voltage source and must not be connected to V . This specification is  
TT  
CC  
measured at the pin.  
Minimum VCC and maximum ICC are specified at the maximum processor case temperature (TCASE)  
shown in Figure 6-1.  
This specification refers to the total reduction of the load line due to VID transitions below the specified  
VID.  
10. Individual processor VID values may be calibrated during manufacturing such that two devices at the same  
frequency may have different VID settings.  
11. This specification applies to the VCCPLL pin.  
12. Baseboard bandwidth is limited to 20 MHz.  
13.  
I
is the sustained (DC equivalent) current that the processor is capable of drawing indefinitely and  
CC_TDC  
should be used for the voltage regulator temperature assessment. The voltage regulator is responsible for  
monitoring its temperature and asserting the necessary signal to inform the processor of a thermal  
excursion. Please see the applicable design guidelines for further details. The processor is capable of  
drawing I  
indefinitely. Refer to Figure 2-6 for further details on the average processor current draw  
CC_TDC  
over various time durations. This parameter is based on design characterization and is not tested.  
14. This is the maximum total current drawn from the V plane by the processor with R enabled. This  
TT  
TT  
specification does not include the current coming from on-board termination (R ), through the signal line.  
TT  
Refer to the appropriate platform design guide and the Voltage Regulator Design Guidelines to determine  
the total I drawn by the system. This parameter is based on design characterization and is not tested.  
TT  
15.  
I
is specified while PWRGOOD and RESET# are asserted. Refer to Table 2-22 for the PWRGOOD to  
CC_RESET  
RESET# de-assertion time specification and Table 2-23 for the RESET# Pulse Width specification.  
Intel® Xeon® Processor 7400 Series Datasheet  
27  
Electrical Specifications  
Figure 2-1. Intel® Xeon® X7460 Processor Load Current versus Time  
15 5  
15 0  
14 5  
14 0  
13 5  
13 0  
12 5  
12 0  
0.01  
0.1  
1
10  
100  
1000  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Figure 2-2. Intel® Xeon® Processor E7400 Series Load Current versus Time  
135  
130  
125  
120  
115  
110  
105  
100  
95  
90  
0.01  
0.1  
1
10  
100  
1000  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
28  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Figure 2-3. Intel® Xeon® Processor L7400 Series Load Current versus Time  
10 0  
95  
90  
85  
80  
75  
70  
65  
60  
0.01  
0.1  
1
10  
100  
1000  
Time Duration (s)  
Notes:  
1.  
Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than  
I
.
CC_TDC  
2.  
Not 100% tested. Specified by design characterization.  
Intel® Xeon® Processor 7400 Series Datasheet  
29  
Electrical Specifications  
Table 2-10. VCC Static and Transient Tolerance  
I
(A)  
V
(V)  
V
(V)  
V (V)  
CC_Min  
Notes  
CC  
CC_Max  
CC_Typ  
0
VID - 0.000  
VID - 0.006  
VID - 0.013  
VID - 0.019  
VID - 0.025  
VID - 0.031  
VID - 0.038  
VID - 0.044  
VID - 0.050  
VID - 0.056  
VID - 0.063  
VID - 0.069  
VID - 0.075  
VID - 0.081  
VID - 0.088  
VID - 0.094  
VID - 0.100  
VID - 0.106  
VID - 0.113  
VID - 0.119  
VID - 0.125  
VID - 0.131  
VID - 0.138  
VID - 0.144  
VID - 0.150  
VID - 0.156  
VID - 0.163  
VID - 0.169  
VID - 0.175  
VID - 0.181  
VID - 0.188  
VID - 0.015  
VID - 0.021  
VID - 0.028  
VID - 0.034  
VID - 0.040  
VID - 0.046  
VID - 0.053  
VID - 0.059  
VID - 0.065  
VID - 0.071  
VID - 0.078  
VID - 0.084  
VID - 0.090  
VID - 0.096  
VID - 0.103  
VID - 0.109  
VID - 0.115  
VID - 0.121  
VID - 0.128  
VID - 0.134  
VID - 0.140  
VID - 0.146  
VID - 0.153  
VID - 0.159  
VID - 0.165  
VID - 0.171  
VID - 0.178  
VID - 0.184  
VID - 0.190  
VID - 0.201  
VID - 0.208  
VID - 0.030  
VID - 0.036  
VID - 0.043  
VID - 0.049  
VID - 0.055  
VID - 0.061  
VID - 0.068  
VID - 0.074  
VID - 0.080  
VID - 0.086  
VID - 0.093  
VID - 0.099  
VID - 0.105  
VID - 0.111  
VID - 0.118  
VID - 0.124  
VID - 0.130  
VID - 0.136  
VID - 0.143  
VID - 0.149  
VID - 0.155  
VID - 0.161  
VID - 0.168  
VID - 0.174  
VID - 0.180  
VID - 0.186  
VID - 0.193  
VID - 0.199  
VID - 0.205  
VID - 0.221  
VID - 0.228  
1, 2, 3  
1, 2, 3  
5
10  
1, 2, 3  
15  
1, 2, 3  
20  
1, 2, 3  
25  
1, 2, 3  
30  
1, 2, 3  
35  
1, 2, 3  
40  
1, 2, 3  
45  
1, 2, 3  
50  
1, 2, 3  
55  
1, 2, 3  
60  
1, 2, 3  
65  
1, 2, 3  
70  
1, 2, 3  
75  
1, 2, 3  
80  
1, 2, 3  
85  
1, 2, 3  
90  
1, 2, 3  
95  
1, 2, 3  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
Notes:  
1.  
2.  
3.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.11.2 for  
CC_MAX  
CC_MIN  
V
overshoot specifications.  
CC  
This table is intended to aid in reading discrete points on Figure 2-4 for Intel® Xeon® Processor 7400  
Series.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE pins and  
across the VCC_SENSE2 and VSS_SENSE2 pins. Voltage regulation feedback for voltage regulator circuits  
must also be taken from the processor VCC_SENSE2 and VSS_SENSE2 pins. Refer to the Voltage  
Regulator Module (VRM) and Enterprise Voltage Regulator Down (EVRD) 11.0 Design Guidelines for  
socket load line guidelines and VR implementation. Please refer to the appropriate platform design guide  
for details on VR implementation.  
4.  
5.  
Icc values greater than 95 A are not applicable for the Ultra Dense Intel® Xeon® Processor 7400 Series.  
Icc values greater than 130 A are not applicable for the Rack Optimized Intel® Xeon® Processor 7400  
Series.  
30  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Figure 2-4. VCC Static and Transient Tolerance Load Lines  
Icc [A]  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150  
VID - 0.000  
VID - 0.050  
VID - 0.100  
VID - 0.150  
VID - 0.200  
VID - 0.250  
VC C  
M axim um  
VC C  
Typical  
VC C  
M inim um  
Notes:  
1.  
The V  
and V  
loadlines represent static and transient limits. Please see Section 2.11.2 for VCC  
CC_MAX  
CC_MIN  
overshoot specifications.  
2.  
3.  
4.  
Refer to Table 2-9 for processor VID information.  
Refer to Table 2-10 for V Static and Transient Tolerance.  
CC  
The load lines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE pins and the  
VCC_SENSE2 and VSS_SENSE2 pins. Voltage regulation feedback for voltage regulator circuits must also  
be taken from the processor VCC_SENSE2 and VSS_SENSE2 pins. Refer to the Voltage Regulator Module  
(VRM) and Enterprise Voltage Regulator Down (EVRD) 11.0 Design Guidelines for socket load line  
guidelines and VR implementation. Please refer to the appropriate platform design guide for details on VR  
implementation.  
5.  
6.  
Icc values greater than 95 A are not applicable for the Ultra Dense Intel® Xeon® Processor 7400 Series.  
Icc values greater than 130 A are not applicable for the Rack Optimized Intel® Xeon® Processor 7400  
Series.  
Table 2-11. AGTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Buffer On Resistance  
Input Leakage Current  
-0.10  
0
GTLREF-0.10  
V
V
2, 4, 6  
3, 6  
4, 6  
5
IL  
V
GTLREF+0.10  
V
V +0.10  
TT  
IH  
TT  
V
R
V
- 0.10  
7
N/A  
9
V
TT  
V
OH  
ON  
TT  
11  
+/-100  
Ω
I
N/A  
N/A  
μA  
7, 8  
LI  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
V
IL  
value.  
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
3.  
4.  
V
IH  
value.  
This is the pull down driver resistance. Measured at 0.33*V . Refer to processor I/O Buffer Models for I/V  
TT  
characteristics  
5.  
GTLREF should be generated from V with a 1% tolerance resistor divider. The V referred to in these  
T
T
T
T
specifications is the instantaneous V .  
TT  
6.  
7.  
Specified when on-die R and R  
are turned off. V between 0 and V .  
TT  
ON IN TT  
This is the measurement at the pin.  
Intel® Xeon® Processor 7400 Series Datasheet  
31  
Electrical Specifications  
Table 2-12. CMOS Signal Input/Output Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
0.3*V  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
-0.10  
0.00  
V
V
2
2
IL  
TT  
V
0.7*V  
V
V +0.1  
TT  
IH  
TT  
TT  
V
-0.10  
0.9*V  
0
0.1*V  
V
2
OL  
OH  
OL  
OH  
TT  
V
V
V
+0.1  
TT  
V
2
TT  
TT  
I
1.70  
1.70  
N/A  
N/A  
N/A  
N/A  
4.70  
4.70  
mA  
mA  
μA  
3
I
4
I
± 100  
5, 6  
LI  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V .  
TT  
TT  
Measured at 0.1*V .  
TT  
TT  
Measured at 0.9*V .  
For Vin between 0 V and V . Measured when the driver is tristated.  
TT  
This is the measurement at the pin.  
Table 2-13. Open Drain Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Output Low Voltage  
Output High Voltage  
Output Low Current  
Leakage Current  
N/A  
0.20  
V
V
OL  
OH  
OL  
LO  
V
V
-5%  
V
V +5%  
TT  
3
2
TT  
TT  
I
I
16  
N/A  
N/A  
50  
mA  
μA  
N/A  
± 200  
4, 5  
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2*V .  
OH  
TT  
V
is determined by value of the external pullup resistor to V . Please refer to platform design guide for  
TT  
details.  
For V between 0 V and V  
4.  
5.  
.
OH  
IN  
This is the measurement at the pin.  
Table 2-14. SMBus Signal Group DC Specifications  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
V
Input Low Voltage  
-0.30  
0.30 * SM_VCC  
3.465  
0.400  
3.0  
V
V
IL  
IH  
OL  
OL  
LI  
Input High Voltage  
0.70 * SM_VCC  
Output Low Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
SMBus Pin Capacitance  
0
V
I
I
I
N/A  
N/A  
N/A  
mA  
µA  
µA  
pF  
±10  
± 10  
LO  
C
15.0  
3
SMB  
Notes:  
1. These parameters are based on design characterization and are not tested.  
2. All DC specifications for the SMBus signal group are measured at the processor pins.  
3. Platform designers may need this value to calculate the maximum loading of the SMBus and  
to determine maximum rise and fall times for SMBus signals.  
32  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
2.11.2  
V
Overshoot Specification  
CC  
Processors can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high-to-low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot above  
VID). These specifications apply to the processor die voltage as measured across the  
VCC_SENSE and VSS_SENSE pins and across the VCC_SENSE2 and VSS_SENSE2 pins.  
Table 2-15. VCC Overshoot Specifications  
Symbol  
Parameter  
Magnitude of V overshoot above VID  
Min  
Max  
Units  
Figure  
Notes  
V
50  
25  
mV  
µs  
2-5  
2-5  
OS_MAX  
CC  
T
Time duration of V overshoot above VID  
CC  
OS_MAX  
Figure 2-5. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
Notes:  
1.  
2.  
VOS is the measured overshoot voltage.  
TOS is the measured time duration above VID.  
2.11.3  
Die Voltage Validation  
Core voltage (VCC) overshoot events at the processor must meet the specifications in  
Table 2-15 when measured across the VCC_SENSE and VSS_SENSE pins and across  
the VCC_SENSE2 and VSS_SENSE2 pins. Overshoot events that are < 10 ns in duration  
may be ignored. These measurements of processor die level overshoot should be taken  
with a 100 MHz bandwidth limited oscilloscope.  
Intel® Xeon® Processor 7400 Series Datasheet  
33  
Electrical Specifications  
2.11.4  
Platform Environmental Control Interface (PECI) DC  
Specifications  
PECI is an Intel proprietary one-wire bus interface that provides a communication  
channel between Intel processor and external thermal monitoring devices. The Intel®  
Xeon® Processor 7400 Series contains Digital Thermal Sensors (DTS) distributed  
throughout the die. These sensors are implemented as analog-to-digital converters  
calibrated at the factory for reasonable accuracy to provide a digital representation of  
relative processor temperature. PECI provides an interface to relay the highest DTS  
temperature within a die to external management devices for thermal/fan speed  
control. More detailed information may be found in Section 6.3, “Platform Environment  
Control Interface (PECI)” and the RS - Platform Environment Control Interface (PECI)  
Specification.  
2.11.4.1  
DC Characteristics  
A PECI device interface operates at a nominal voltage set by VTT. The set of DC  
electrical specifications shown in Table 2-16 is used with devices normally operating  
from a VTT interface supply. VTT nominal levels will vary between processor families. All  
PECI devices will operate at the VTT level determined by the processor installed in the  
system. For specific nominal VTT levels, refer to Table 2-11.  
Table 2-16. PECI DC Electrical Limits  
Definition and  
Conditions  
1
Symbol  
Min  
Max  
Units  
Notes  
Vin  
Input Voltage Range  
Hysteresis  
-0.150  
VTT  
V
V
Vhysteresis  
0.1 * VTT  
N/A  
Negative-edge  
Vn  
Vp  
0.275 * VTT  
0.550 * VTT  
0.500 * VTT  
0.725 * VTT  
V
V
threshold voltage  
Positive-edgethreshold  
voltage  
High level output  
source  
Isource  
-6.0  
0.5  
N/A  
1.0  
50  
mA  
mA  
µA  
(VOH = 0.75 * VTT)  
Low level output sink  
(VOL = 0.25 * VTT)  
Isink  
High impedance state  
leakage to VTT  
Ileak+  
N/A  
2
(Vleak = VOL  
)
High impedance  
leakage to GND  
Ileak-  
N/A  
10  
µA  
2
3
(Vleak = VOH  
)
Cbus  
Bus capacitance  
N/A  
10  
pF  
Signal noise immunity  
above 300 MHz  
Vnoise  
0.1 * VTT  
N/A  
Vp-p  
Note:  
1.  
2.  
3.  
V
supplies the PECI interface. PECI behavior does not affect V min/max specifications.  
TT TT  
The leakage specification applies to powered devices on the PECI bus.  
One node is counted for each client and one node for the system host. Extended trace lengths might appear  
as additional nodes.  
34  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
2.11.4.2  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use Figure 2-6 as a guide for input buffer design.  
Figure 2-6. Input Device Hysteresis  
VTT  
Maximum VP  
PECI High Range  
Minimum VP  
Maximum VN  
Minimum  
Hysteresis Signal Range  
Valid Input  
Minimum VN  
PECI Ground  
PECI Low Range  
2.12  
AGTL+ FSB Specifications  
Routing topologies are dependent on the processors supported and the chipset used in  
the design. Please refer to the appropriate platform design guidelines for specific  
implementation details. In most cases, termination resistors are not required as these  
are integrated into the processor silicon. See Table 2-6 for details on which signals do  
not include on-die termination. Please refer to Table 2-17 for RTT values.  
Valid high and low levels are determined by the input buffers via comparing with a  
reference voltage called GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID,  
and GTLREF_ADD_END. GTLREF_DATA_MID and GTLREF_DATA_END are the reference  
voltage for the FSB 4X data signals, GTLREF_ADD_MID and GTLREF_ADD_END are the  
reference voltage for the FSB 2X address signals and common clock signals. Table 2-17  
lists the GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and  
GTLREF_ADD_END specifications.  
The AGTL+ reference voltages (GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END) must be generated on the baseboard  
using high precision voltage divider circuits. Refer to the appropriate platform design  
guidelines for implementation details.  
Intel® Xeon® Processor 7400 Series Datasheet  
35  
Electrical Specifications  
Table 2-17. AGTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
GTLREF_DATA_MID  
GTLREF_DATA_END  
Data Bus Reference  
Voltage  
0.98 * 0.67 * V  
0.67 * V  
1.02 * 0.67 * V  
V
2, 3  
TT  
TT  
TT  
TT  
TT  
GTLREF_ADD_MID  
GTLREF_ADD_END  
Address Bus  
Reference Voltage  
0.98 * 0.67 * V  
0.67 * V  
1.02 * 0.67 * V  
V
2, 3  
TT  
R
Termination  
Resistance (pull up)  
45  
50  
55  
4
5
TT  
Ω
Ω
COMP  
COMP Resistance  
49.4  
49.9  
50.4  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The tolerances for this specification have been stated generically to enable system designer to calculate the minimum values  
across the range of V .  
TT  
3.  
GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END is generated from V on the baseboard  
TT  
by a voltage divider of 1% resistors. The minimum and maximum specifications account for this resistor tolerance. Refer to  
the appropriate platform design guidelines for implementation details. The V referred to in these specifications is the  
TT  
instantaneous V  
TT  
4.  
5.  
R
is the on-die termination resistance measured at V of the AGTL+ output driver. Measured at 0.33*V . R is connected  
TT OL TT TT  
to V on die.  
TT  
COMP resistance must be provided on the system board with +/- 1% resistors. See the applicable platform design guide for  
implementation details  
Table 2-18. FSB Differential BCLK Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
V
V
V
Input Low Voltage  
Input High Voltage  
-0.150  
0.660  
0.250  
0.0  
.15  
V
V
V
2-9  
2-9  
L
0.710  
0.350  
0.850  
0.550  
H
Absolute Crossing  
Point  
2-9, 2-10  
2,8  
CROSS(abs)  
V
Relative Crossing  
Point  
0.250 +  
Havg  
N/A  
N/A  
0.550 +  
Havg  
V
V
2-9, 2-10  
2-9, 2-10  
3,8,9,11  
CROSS(rel)  
0.5 * (V  
- 0.700)  
0.5 * (V  
- 0.700)  
Δ V  
Range of Crossing  
Points  
N/A  
0.140  
CROSS  
V
V
V
V
I
Overshoot  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
V
+ 0.300  
N/A  
V
V
2-9  
2-9  
2-9  
2-9  
4
5
OS  
H
Undershoot  
-0.300  
0.200  
US  
Ringback Margin  
Threshold Region  
N/A  
V
6
RBM  
TR  
V
- 0.100  
V
+ 0.100  
V
7
CROSS  
CROSS  
Input Leakage  
Current  
N/A  
+/- 100  
μA  
10  
LI  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 is equal to the falling edge of  
BCLK1.  
3.  
4.  
5.  
6.  
V
is the statistical average of the V measured by the oscilloscope.  
Havg H  
Overshoot is defined as the absolute value of the maximum voltage.  
Undershoot is defined as the absolute value of the minimum voltage.  
Ringback Margin is defined as the absolute voltage difference between the maximum Rising Edge Ringback and the maximum  
Falling Edge Ringback.  
Threshold Region is defined as a region entered around the crossing point voltage in which the differential receiver switches.  
It includes input threshold hysteresis.  
The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
V
7.  
8.  
9.  
can be measured directly using “Vtop” on Agilent* and “High” on Tektronix* oscilloscopes.  
Havg  
10. For VIN between 0 V and VH,  
11. VCROSS is defined as the total variation of all crossing voltages as defined in note 3.  
36  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
2.13  
Front Side Bus AC Specifications  
The processor FSB timings specified in this section are defined at the  
processor core (pads). Therefore, proper simulation of the FSB is the only  
means to verify proper timing and signal quality.  
See Table 4-1 for the pin listing and Table 5-1 for signal definitions. Table 2-19 through  
Table 2-24 list the AC specifications associated with the processor FSB.  
All AGTL+ timings are referenced to GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END for both ‘0’ and ‘1’ logic levels unless  
otherwise specified.  
The timings specified in this section should be used in conjunction with the processor  
signal integrity models provided by Intel. AGTL+ layout guidelines are also available in  
the appropriate platform design guidelines.  
Note:  
Care should be taken to read all notes associated with a particular timing parameter.  
Table 2-19. Front Side Bus Differential Clock AC Specifications  
1
T# Parameter  
FSB Clock Frequency  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
265.247  
3.7489  
266.666  
3.7500  
266.745  
3.7700  
150  
MHz  
ns  
2
3
T1: BCLK[1:0] Period  
2-9  
T2: BCLK[1:0] Period Stability  
T3: BCLK[1:0] Rise Time  
T4: BCLK[1:0] Fall Time  
ps  
4, 5  
6
700  
ps  
700  
ps  
6
Differential Rising and Falling Edge  
Rates  
0.6  
4
V/ns  
7
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The processor core clock frequency is derived from BCLK. The bus clock to processor core clock ratio is  
determined during initialization as described in Section 2.3. Table 2-1 includes core frequency to FSB  
multipliers.  
The period specified here is the average period. A given period may vary from this specification as  
governed by the period stability specification (T2).  
For the clock jitter specification, refer to the CK410B Clock Synthesize/Driver Design Guidelines.  
3.  
4.  
5.  
In this context, period stability is defined as the worst case timing difference between successive crossover  
voltages. In other words, the largest absolute difference between adjacent clock periods must be less than  
the period stability.  
6.  
7.  
Rise and fall times are measured single ended between 245 mV and 455 mV of the clock swing.  
Measured from -200 mV to +200 mV. The signal must be monotonic through the measurement region for  
rise and fall time. The 400 mV measurement window is centered on the differential zero. See Figure 2-11.  
.
Table 2-20. Front Side Bus Common Clock AC Specifications  
1, 2, 3  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T10: Common Clock Output Valid Delay  
T11: Common Clock Input Setup Time  
T12: Common Clock Input Hold Time  
T13: RESET# Pulse Width  
0.22  
0.650  
0.150  
1
1.10  
N/A  
N/A  
10  
ns  
ns  
2-12  
2-12  
2-12  
2-20  
4
5
5
ns  
ms  
6, 7, 8  
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Not 100% tested. Specified by design characterization.  
All common clock AC timings for AGTL+ signals are referenced to the Crossing Voltage (V  
) of the  
CROSS  
BCLK[1:0] at rising edge of BCLK0. All common clock AGTL+ signal timings are referenced at nominal  
GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END at the processor  
(pads).  
Intel® Xeon® Processor 7400 Series Datasheet  
37  
Electrical Specifications  
4.  
5.  
Valid delay timings for these signals are specified into the test circuit described in Figure 2-7 and with  
GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END at 0.67 * V .  
TT  
Specification is for a minimum swing is specified into the test circuit described in Figure 2-7 and defined  
between AGTL+ V  
to V  
. This assumes an edge rate of 2.0 V/ns to 3.0 V/ns.  
IL_MAX  
IH_MIN  
6.  
7.  
8.  
RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.  
This should be measured after V and BCLK[1:0] become stable.  
TT  
Maximum specification applies only while PWRGOOD is asserted.  
Table 2-21. FSB Source Synchronous AC Specifications  
1, 2, 3, 4  
T# Parameter  
Min  
Max  
Unit  
Figure Notes  
T20: Source Sync. Output Valid Delay  
(first data/address only)  
0.00  
1.10  
ns  
2-13,  
2-14  
5
T21: T  
Before Data Strobe  
Source Sync. Data Output Valid  
0.27  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2-14  
2-14  
2-13  
2-13  
5,8  
5,9  
VBD  
T22: T Source Sync. Data Output Valid  
After Data Strobe  
0.27  
VAD  
T23: T Source Sync. Address Output  
Valid Before Address Strobe  
0.66  
5,8  
VBA  
T24: T Source Sync. Address Output  
Valid After Address Strobe  
0.66  
5,9  
VAA  
T25: T  
T25: T  
T26: T  
T26: T  
Data Input Setup Time  
0.19  
2-13,  
2-14  
6
SUSS  
SUSS  
Address Input Setup Time  
0.3  
0.19  
2-13,  
2-14  
6
Data Input Hold Time  
2-13,  
2-14  
6
HSS  
HSS  
Address Input Hold Time  
0.300  
2-13,  
2-14  
6
12, 14, 15,10  
11, 14  
T27: Source Synchronous Address Strobe  
Setup Time to BCLK[1:0]  
3.5 - (1.875 * n)  
4.15 - (0.9375 * n)  
3.28  
2-13,  
2-14  
T28: Source Synchronous Data Strobe  
Setup Time to BCLK[1:0]  
2-14  
2-14  
2-13  
T30: Data Strobe ‘n’ (DSTBN#) Output  
Valid Delay  
4.38  
3.91  
13  
T31: Address Strobe Output Valid Delay  
2.81  
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Not 100% tested. Specified by design characterization.  
All source synchronous AC timings are referenced to their associated strobe at nominal GTLREF_DATA_MID,  
GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END. Source synchronous data signals are  
referenced to the falling edge of their associated data strobe. Source synchronous address signals are  
referenced to the rising and falling edge of their associated address strobe. All source synchronous AGTL+  
signal timings are referenced at nominal GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and  
GTLREF_ADD_END at the processor pads.  
4.  
5.  
Unless otherwise noted, these specifications apply to both data and address timings.  
Valid delay timings for these signals are specified into the test circuit described in Figure 2-7 and with  
GTLREF_DATA_MID, GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END at 0.67 * V .  
TT  
6.  
7.  
8.  
Specification is for a minimum swing into the test circuit described in Figure 2-7 and defined between  
AGTL+ V  
to V  
. This assumes an edge rate of 3.0 V/ns to 5.5 V/ns.  
IL_MAX  
IH_MIN  
All source synchronous signals must meet the specified setup time to BCLK as well as the setup time to  
each respective strobe.  
This specification represents the minimum time the data or address will be valid before its strobe. Refer to  
the appropriate platform design guidelines for more information on the definitions and use of these  
specifications.  
9.  
This specification represents the minimum time the data or address will be valid after its strobe. Refer to  
the appropriate platform design guidelines for more information on the definitions and use of these  
specifications.  
10. The rising edge of ADSTB# must come approximately 1/2 BCLK period after the falling edge of ADSTB#.  
11. For this timing parameter, n = 1, 2, and 3 for the second, third, and last data strobes respectively.  
12. The address strobe setup time is measured with respect to T2. Calculation of the setup time is as follows:  
a.  
If T27 > BCLK period, then the setup time calculated is positive. The value calculated indicates  
setup time before T1.  
b.  
If T27 < BCLK period, then the setup time calculated is positive. The value calculated indicates  
setup time after T1.  
38  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
13. This specification applies only to DSTBN[3:0]# and is measured to the second falling edge of the strobe.  
14. This specification reflects a typical value, not a minimum or maximum.  
15. For this timing parameter, n = 0 to 1.  
Table 2-22. Miscellaneous GTL+ AC Specifications  
Notes  
1, 2, 3, 4  
T# Parameter  
Min  
Max  
Unit  
Figure  
T35: Asynchronous GTL+ input pulse width  
T36: PWRGOOD assertion to RESET# de-assertion  
T37: BCLK stable to PWRGOOD assertion  
T38: PROCHOT# pulse width  
8
1
BCLKs  
ms  
5
10  
2-20  
2-20  
2-16  
2-17  
2-21  
2-20  
10  
500  
BCLKs  
µs  
6,12  
7
8
T39: THERMTRIP# assertion until V removed  
CC  
500  
5
ms  
T40: FERR# valid delay from STPCLK# deassertion  
0
BCLKs  
ms  
T41: V stable to PWRGOOD assertion  
CC  
0.05  
500  
20  
10  
11  
T42: PWRGOOD rise time  
ns  
T43: V  
stable to VID / BSEL valid  
10  
100  
10  
1
µs  
2-20  
2-20  
2-20  
2-20  
9,10  
10  
CC_BOOT  
T44: VID / BSEL valid to V stable  
µs  
CC  
T48: V stable to VID / BSEL valid  
µs  
10  
TT  
T49: V  
stable to PWRGOOD assertion  
ms  
10  
CCPLL  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All AC timings for the Asynchronous GTL+ signals are referenced to the BCLK0 rising edge at Crossing  
Voltage (V  
). PWRGOOD is referenced to BCLK0 rising edge at 0.5 * V .  
CROSS  
TT  
3.  
4.  
5.  
6.  
7.  
These signals may be driven asynchronously.  
Refer to Section 7.2 for additional timing requirements for entering and leaving low power states.  
A minimum pulse width of 500 µs is recommended when FORCEPR# is asserted by the system.  
Refer to the PWRGOOD signal definition in Section 5 for more details information on behavior of the signal.  
Length of assertion for PROCHOT# does not equal TCC activation time. Time is required after the assertion  
and before the deassertion of PROCHOT# for the processor to enable or disable the TCC.  
8.  
9.  
Intel recommends the V power supply also be removed upon assertion of THERMTRIP#.  
TT  
This specification requires that the VID and BSEL signals be sampled no earlier than 10 μs after V (at  
CC  
V
voltage) and V are stable.  
CC_BOOT  
TT  
10. Parameter must be measured after applicable voltage level is stable. “Stable” means that the power supply  
is in regulation as defined by the minimum and maximum DC/AC specifications for all components being  
powered by it.  
11. The maximum PWRGOOD rise time specification denotes the slowest allowable rise time for the processor.  
Measured between (0.3* V ) and (0.7*V ).  
TT  
TT  
12. See Table 2-19 for BCLK specifications.  
Table 2-23. Front Side Bus AC Specifications (Reset Conditions)  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T45: Reset Configuration Signals  
(A[39:3]#, BR[1:0]#, INIT#, SMI#) Setup Time  
480  
µs  
2-20  
1
T46: Reset Configuration Signals  
(A[39:3]#, INIT#, SMI#) Hold Time  
2
2
20  
2
BCLKs  
BCLKs  
2-20  
2-20  
2
2
T47: Reset Configuration Signals  
BR[1:0]# Hold Time  
Notes:  
1.  
2.  
Before the clock that de-asserts RESET#.  
After the clock that de-asserts RESET#.  
Intel® Xeon® Processor 7400 Series Datasheet  
39  
Electrical Specifications  
Table 2-24. TAP Signal Group AC Specifications  
Notes  
Figure  
T# Parameter  
Min  
Max  
Unit  
1, 2, 8  
T55: TCK Period  
30  
7.5  
7.5  
0
ns  
ns  
ns  
ns  
2-8  
3
4,7  
4,7  
5
T56: TDI, TMS Setup Time  
T57: TDI, TMS Hold Time  
T58: TDO Clock to Output Delay  
T59: TRST# Assert Time  
2-15  
2-15  
2-15  
2-16  
7.5  
2
T
6
TCK  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Not 100% tested. Specified by design characterization.  
This specification is based on the capabilities of the ITP debug port, not on processor silicon.  
Referenced to the rising edge of TCK.  
Referenced to the falling edge of TCK.  
TRST# must be held asserted for 2 TCK periods to be guaranteed that it is recognized by the processor.  
Specification for a minimum swing defined between TAP V to V . This assumes a minimum edge rate of  
t-  
t+  
0.5 V/ns.  
It is recommended that TMS be asserted while TRST# is being deasserted.  
8.  
.
Table 2-25. VID Signal Group AC Specifications  
1, 2  
T # Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T80: VID Step Time  
T81: VID Dwell Time  
5
µs  
µs  
µs  
µs  
µs  
µs  
2-23  
50  
2-23  
T82: VID Down Transition to Valid V (min)  
0
50  
50  
0
2-22,2-23  
2-22,2-23  
2-22,2-23  
2-22,2-23  
CC  
T83: VID Up Transition to Valid V (min)  
CC  
T84: VID Down Transition to Valid V (max)  
CC  
T85: VID Up Transition to Valid V (max)  
CC  
Notes:  
1.  
See Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design  
Guidelines for addition information.  
2.  
Platform support for VID transitions is required for the processor to operate within specifications.  
Table 2-26. SMBus Signal Group AC Specifications  
1, 2  
T# Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T90: SM_CLK Frequency  
10  
10  
100  
100  
N/A  
N/A  
1.0  
KHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
T91: SM_CLK Period  
T92: SM_CLK High Time  
4.0  
4.7  
0.02  
0.02  
0.1  
250  
300  
4.7  
4.0  
4.7  
4.0  
2-18  
2-18  
2-18  
2-18  
2-19  
2-18  
2-18  
2-18  
2-18  
2-18  
2-18  
T93: SM_CLK Low Time  
3
3
T94: SMBus Rise Time  
T95: SMBus Fall Time  
0.3  
T96: SMBus Output Valid Delay  
T97: SMBus Input Setup Time  
T98: SMBus Input Hold Time  
T99: Bus Free Time  
4.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
4,  
5
T100: Hold Time after Repeated Start Condition  
T101: Repeated Start Condition Setup Time  
T102: Stop Condition Setup Time  
Notes:  
1.  
2.  
These parameters are based on design characterization and are not tested.  
All AC timings for the SMBus signals are referenced at V  
pins. Refer to Figure 2-19.  
or V  
and measured at the processor  
IL_MAX  
IL_MIN  
40  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
3.  
Rise time is measured from (V  
- 0.15V) to (V  
+ 0.15V). Fall time is measured from  
IL_MAX  
IH_MIN  
(0.9 * SM_VCC) to (V  
- 0.15V). DC parameters are specified in Table 2-26.  
IL_MAX  
4.  
5.  
Minimum time allowed between request cycles.  
Following a write transaction, an internal write cycle time of 10ms must be allowed before starting the next  
transaction.  
2.14  
Processor AC Timing Waveforms  
The following figures are used in conjunction with the AC timing tables, Table 2-19  
through Table 2-25.  
Note:  
For Figure 2-8 through Figure 2-21, the following apply:  
1. All common clock AC timings for AGTL+ signals are referenced to the Crossing  
Voltage (VCROSS) of the BCLK[1:0] at rising edge of BCLK0. All common clock  
AGTL+ signal timings are referenced at nominal GTLREF_DATA_MID,  
GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END at the processor  
pads.  
2. All source synchronous AC timings for AGTL+ signals are referenced to their  
associated strobe (address or data) at nominal GTLREF_DATA_MID,  
GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END. Source  
synchronous data signals are referenced to the falling edge of their associated data  
strobe. Source synchronous address signals are referenced to the rising and falling  
edge of their associated address strobe. All source synchronous AGTL+ signal  
timings are referenced at nominal GTLREF_DATA_MID, GTLREF_DATA_END,  
GTLREF_ADD_MID, and GTLREF_ADD_END at the processor pads.  
3. All AC timings for AGTL+ strobe signals are referenced to BCLK[1:0] at VCROSS. All  
AGTL+ strobe signal timings are referenced at nominal GTLREF_DATA_MID,  
GTLREF_DATA_END, GTLREF_ADD_MID, and GTLREF_ADD_END at the processor  
pads.  
4. All AC timings for the TAP signals are referenced to the TCK at 0.5 * VTT at the  
processor pins. All TAP signal timings (TMS, TDI, etc...) are referenced at 0.5 * VTT  
at the processor pads.  
5. All CMOS signal timings are referenced at 0.5 * VTT at the processor pins.  
6. All AC timings for the SMBus signals are referenced to the SM_CLK at 0.5 *  
SM_VCC at the processor pins. All SMBus signal timings (SM_DAT, SM_CLK, etc.)  
are referenced at  
The circuit used to test the AC specification is shown in Figure 2-7.  
Figure 2-7. Electrical Test Circuit  
VTT  
VTT  
RLOAD  
Buffer  
48 ohms, 169 ps/in, 1200 mils  
L = 1.475 nH  
C = 0.85 pF  
AC Timings specified at this  
point  
Intel® Xeon® Processor 7400 Series Datasheet  
41  
Electrical Specifications  
Figure 2-8. TCK Clock Waveform  
V2  
TCK  
V3  
V1  
T
p
Tp = T55: Period  
V1, V2: For rise and fall times, TCK is measured between 20% and 80% points on the waveform.  
V3: TCK is referenced to 0.5 * VTT  
Figure 2-9. Differential Clock Waveform  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Crossing  
Voltage  
Crossing  
Voltage  
Ringback  
Margin  
Threshold  
Region  
Falling Edge  
Ringback,  
BCLK0  
VL  
Undershoot  
Tp  
Tp = T1: BCLK[1:0] period  
Figure 2-10. Differential Clock Crosspoint Specification  
650  
600  
550  
500  
550 mV  
550 + 0.5 (VHavg - 700)  
450  
400  
250 + 0.5 (VHavg - 700)  
350  
300  
250  
200  
250 mV  
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850  
VHavg (mV)  
42  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Figure 2-11. BCLK Waveform at Processor Pad and Pin  
SKT  
PAD  
Notes:  
1.  
2.  
3.  
4.  
Waveform at pin is non-monotonic. Waveform at pad is monotonic.  
Differential Edge Rate (DER) measured zero +/- 200mv.  
g indicates V/ns units and meg indicates mv/ns units.  
Waveform at pad has faster edge rate than at pin.  
Figure 2-12. FSB Common Clock Valid Delay Timing Waveform  
T0  
T1  
T2  
BCLK1  
BCLK0  
TP  
Common Clock  
Signal (@ driver)  
valid  
valid  
TQ  
TR  
Common Clock  
Signal (@ receiver)  
valid  
TP = T10: Common Clock Output Valid Delay  
TQ = T11: Common Clock Input Setup  
TR = T12: Common Clock Input Hold Time  
Intel® Xeon® Processor 7400 Series Datasheet  
43  
Electrical Specifications  
Figure 2-13. FSB Source Synchronous 2X (Address) Timing Waveform  
T0  
T1  
T2  
Tp/4  
Tp/2  
3Tp/4  
BCLK1  
BCLK0  
TR  
ADSTB# (@ driver)  
A# (@ driver)  
TJ  
TH  
TJ  
TH  
valid  
valid  
TK  
TS  
ADSTB# (@ receiver)  
A# (@  
valid  
TM  
receiver)  
valid  
TN  
T
P = T1: BCLK[1:0] Period  
TH = T23: Source Sync. Address Output Valid Before Address Strobe  
TJ = T24: Source Sync. Address Output Valid After Address Strobe  
K = T27: Source Sync. Address Strobe Setup Time to BCLK  
M = T25: Source Sync. Input Setup Time  
T
T
TN = T26: Source Sync. Input Hold Time  
TS = T20: Source Sync. Output Valid Delay  
TR = T31: Address Strobe Output Valid Delay  
44  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Figure 2-14. FSB Source Synchronous 4X (Data) Timing Waveform  
T0  
Tp/4  
T1  
T2  
Tp/2  
3Tp/4  
BCLK1  
BCLK0  
TD  
DSTBp# (@ driver)  
DSTBn# (@ driver)  
TA  
TB  
TB  
TA  
D# (@ driver)  
TC  
TJ  
DSTBp# (@ receiver)  
DSTBn# (@ receiver)  
D# (@ receiver)  
TG  
TE  
TG  
TE  
TP = T1: BCLK[1:0] Period  
TA = T21: Source Sync. Data Output Valid Delay Before Data Strobe  
TB = T22: Source Sync. Data Output Valid Delay After Data Strobe  
TC = T28: Source Sync. Data Strobe Setup Time to BCLK  
TD = T30: Data Strobe ‘n’ (DSTBN#) Output Valid Delay  
TE = T25: Source Sync. Input Setup Time  
TG = T26: Source Sync. Input Hold Time  
TJ = T20: Source Sync. Data Output Valid Delay  
Intel® Xeon® Processor 7400 Series Datasheet  
45  
Electrical Specifications  
Figure 2-15. TAP Valid Delay Timing Waveform  
V
TCK  
Tx Ts  
Th  
V
Valid  
Signal  
Tx = T58: TDO Clock to Output Delay  
Ts = T56: TDI, TMS Setup Time  
Th = T57: TDI, TMS Hold Time  
V = 0.5 * VTT  
Note: Please refer to Table 2-12 for TAP Signal Group DC specifications and Table 2-24 for TAP Signal Group  
AC specifications.  
Figure 2-16. Test Reset (TRST#), Async GTL+ Input, and PROCHOT# Timing Waveform  
V
T
q
T59 (TRST# Pulse Width), V = 0.5 * VTT  
T38 (PROCHOT# Pulse Width), V = GTLREF  
T
=
q
Figure 2-17. THERMTRIP# Power Down Sequence  
TA  
THERMTRIP#  
Vcc  
VTT  
TA = T39 (THERMTRIP# to removal of power)  
46  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Figure 2-18. SMBus Timing Waveform  
t
t
F
t
HD;STA  
R
t
LOW  
Clk  
t
t
SU;STO  
t
t
t
HIGH  
t
HD;STA  
SU;STA  
HD;DAT  
SU;DAT  
Data  
t
BUF  
S
S
P
P
STOP  
START  
START  
STOP  
t
t
t
t
t
t
t
t
t
=
=
=
=
T100  
T98  
T99  
T97  
=
T93  
T92  
T94  
T95  
=
T101  
LOW  
HD;STA  
HD;DAT  
BUF  
SU;STA  
SU;STD  
t
= T102  
HIGH =  
R
F
=
=
SU;DAT  
Figure 2-19. SMBus Valid Delay Timing Waveform  
SM_CLK  
TAA  
DATA VALID  
SM_DAT  
DATA OUTPUT  
TAA = T96  
Intel® Xeon® Processor 7400 Series Datasheet  
47  
Electrical Specifications  
Figure 2-20. Voltage Sequence Timing Requirements  
VID[6:1] / BSEL[2:0]  
Tc  
VTT  
Tg  
VCCPLL  
VCC_BOOT  
Ta  
Vcc  
Tb  
Te  
PWRGOOD  
BCLK  
Tf  
Td  
Th  
Ti  
Reset Configuration  
Signals(A[35:3]#,  
INIT#, SMI#)  
Tj  
Reset Configuration  
Signals BR[1:0]#  
RESET#  
Ta= T43 (VCC_BOOT stable to VID[6:1] / BSEL[2:0] valid)  
Tb= T44 (VID[6:1] / BSEL[2:0] valid to Vcc stable)  
Tc= T48 (VTT stable to VID[6:1] / BSEL[2:0] valid)  
Td= T36 (PWRGOOD assertion to RESET# de-assertion)  
Te= T41 (VCC stable to PWRGOOD assertion)  
Tf = T37 (BCLK stable to PWRGOOD assertion)  
Tg = T49 (VCCPLL stable to PWRGOOD assertion)  
Th = T45 Reset Configuration Signals (A[35:3]#, BR[1:0]#, INIT#, SMI#) Setup Time  
Ti= T46 Reset Configuration Signals (A[35:3]#, INIT#, SMI#) Hold Time  
Tj= T47 Reset Configuration Signals (BR[1:0]#) Hold Time  
Figure 2-21. FERR#/PBE# Valid Delay Timing  
BCLK  
System bus  
STPCLK#  
SG  
Ack  
Ta  
undefined  
FERR#  
undefined  
PBE#  
FERR#  
FERR#/PBE#  
48  
Intel® Xeon® Processor 7400 Series Datasheet  
Electrical Specifications  
Notes:  
1.  
2.  
Ta = T40 (FERR# Valid Delay from STPCLK# Deassertion).  
FERR# / PBE# is undefined from STPCLK# assertion until the Stop-Grant acknowledge is driven on the  
FSB. FERR# / PBE# is also undefined for a period of Ta from STPCLK# deassertion. Inside these undefined  
regions, the PBE# signal is driven. FERR# is driven at all other times.  
Figure 2-22. VID Step Timings  
n
n-1  
m
m+1  
VID  
...  
Tc  
VCC(max)  
Ta  
Tb  
Td  
VCC(min)  
Ta = T84: VID Down to Valid VCC(max)  
Tb = T82: VID Down to Valid VCC(min)  
Tc = T85: VID Up to Valid VCC(max)  
Td = T83: VID Up to Valid VCC(min)  
Figure 2-23. VID Step Times and Vcc Waveforms  
Ta  
Tb  
n
n-6 = VIDTM2  
n
VID  
V
CC(max)  
VCC(max,n-3)  
Te  
Tc  
Td  
VCC(max,n-4)  
VCC(min)  
VCC(min,n-3)  
Tf  
VCC(min,n-4)  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
= T80: VID Step Time  
=
=
=
=
=
T81: Thermal Monitor 2 Dwell Time  
T84: VID Down to Valid VCC(max)  
T82: VID Down to Valid VCC(min)  
T85: VID Up to Valid VCC(max)  
T83: VID Up to Valid VCC(min)  
Note: This waveform illustrates an example of an Intel Thermal  
Monitor 2 transition or an Intel Enhanced SpeedStep  
Technology transition that is six VID steps down from the  
current state and six steps back up. Any arbitrary up or down  
transition can be generalized from this waveform.  
§
Intel® Xeon® Processor 7400 Series Datasheet  
49  
Electrical Specifications  
50  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
3 Mechanical Specifications  
The Intel® Xeon® Processor 7400 Series is packaged in a lead free FC-mPGA8 package  
that interfaces with the motherboard via a mPGA604 socket. The package consists of  
the processor die mounted on a substrate pin-carrier. An IHS is attached to the  
package substrate and die and serves as the mating surface for processor component  
thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor  
package components and how they are assembled together.  
The package components shown in Figure 3-1 include the following:  
1. IHS  
2. Processor die  
3. FC-mPGA8 package  
4. Pin-side capacitors  
5. Package pin  
Figure 3-1. Processor Package Assembly Sketch  
Note:  
Figure 3-1 is not to scale and is for reference only. The mPGA604 socket is not shown.  
3.1  
Package Mechanical Drawing  
The drawings include dimensions necessary to design a thermal solution for the  
processor. These dimensions include:  
1. Package reference with tolerances (total height, length, width, etc.)  
2. IHS parallelism and tilt  
3. Pin dimensions  
4. Top-side and back-side component keepout dimensions  
5. Reference datums  
All drawing dimensions are in mm [in].  
Intel® Xeon® Processor 7400 Series Datasheet  
51  
Mechanical Specifications  
Figure 3-2. Intel® Xeon® Processor 7400 Series Package Drawing (Sheet 1 of 2)  
52  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
Figure 3-3. Intel® Xeon® Processor 7400 Series Package Drawing (Sheet 2 of 2)  
Intel® Xeon® Processor 7400 Series Datasheet  
53  
Mechanical Specifications  
3.2  
Processor Component Keepout Zones  
The processor may contain components on the substrate that define component  
keepout zone requirements. A thermal and mechanical solution design must not intrude  
into the required keepout zones. Decoupling capacitors are typically mounted to either  
the topside or pin-side of the package substrate. All drawing dimension are in mm [in].  
54  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
Figure 3-4. Top Side Board Keepout Zones (Part 1)  
Intel® Xeon® Processor 7400 Series Datasheet  
55  
Mechanical Specifications  
Figure 3-5. Top Side Board Keepout Zones (Part 2)  
56  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
Figure 3-6. Bottom Side Board Keepout Zones  
Intel® Xeon® Processor 7400 Series Datasheet  
57  
Mechanical Specifications  
Figure 3-7. Board Mounting-Hole Keepout Zones  
58  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
Figure 3-8. Volumetric Height Keep-Ins  
Intel® Xeon® Processor 7400 Series Datasheet  
59  
Mechanical Specifications  
3.3  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical load limits should not be exceeded during heatsink assembly,  
shipping conditions, or standard use condition. Also, any mechanical system or  
component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solutions. The minimum loading specification must be  
maintained by any thermal and mechanical solution.  
Table 3-1.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Unit  
Notes  
1, 2, 3,  
4
Static Compressive  
Load  
44  
10  
222  
50  
N
lbf  
1, 2, 3, 5  
1, 3, 4, 6, 7  
1, 3, 5, 6, 7  
1, 3, 8  
44  
10  
288  
65  
N
lbf  
Dynamic  
Compressive Load  
222 N + 0.45 kg * 100 G  
50 lbf (static) + 1 lbm * 100 G  
N
lbf  
288 N + 0.45 kg * 100 G  
65 lbf (static) + 1 lbm * 100 G  
N
lbf  
Transient  
445  
100  
N
lbf  
Notes:  
1. These specifications apply to uniform compressive loading in a direction perpendicular to the IHS top surface.  
2. This is the minimum and maximum static force that can be applied by the heatsink and retention solution to  
maintain the heatsink and processor interface.  
3. These parameters are based on limited testing for design characterization. Loading limits are for the package  
only and do not include the limits of the processor socket.  
4. This specification applies for thermal retention solutions that allow baseboard deflection.  
5. This specification applies either for thermal retention solutions that prevent baseboard deflection or for the  
Intel enabled reference solution (CEK).  
6. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.  
7. Experimentally validated test condition used a heatsink mass of 1 lbm (~0.45 kg) with 100 G acceleration  
measured at heatsink mass. The dynamic portion of this specification in the product application can have  
flexibility in specific values, but the ultimate product of mass times acceleration should not exceed this  
validated dynamic load (1 lbm x 100 G = 100 lb).  
8. Transient loading is defined as a 2 second duration peak load superimposed on the static load requirement,  
representative of loads experienced by the package during heatsink installation.  
60  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1,  
3,  
4,  
2
2
2
Shear  
Tensile  
Torque  
356 N [80 lbf]  
156 N [35 lbf]  
8 N-m [70 lbf-in]  
Notes:  
1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
2. These guidelines are based on limited testing for design characterization.  
3. A tensile load is defined as a pulling load applied to the IHS in the direction normal to the IHS surface.  
4. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top  
surface.  
3.5  
3.6  
Package Insertion Specifications  
The Intel® Xeon® Processor 7400 Series can be inserted into and removed from a  
mPGA604 socket 15 times. The socket should meet the mPGA604 requirements  
detailed in the mPGA604 Socket Design Guidelines.  
Processor Mass Specifications  
The typical mass of the Intel® Xeon® Processor 7400 Series is 37.6 g (1.5oz). This  
mass [weight] includes all the components that are included in the package.  
3.7  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber-Reinforced Resin  
Gold Plated Copper  
Substrate Pins  
Intel® Xeon® Processor 7400 Series Datasheet  
61  
Mechanical Specifications  
3.8  
Processor Markings  
Figure 3-9 shows the topside markings and Figure 3-10 shows the bottom-side  
markings on the processor. These diagrams are to aid in the identification of the Intel®  
Xeon® Processor 7400 Series. Please note that the figures in this section are not to  
scale.  
Figure 3-9. Processor Topside Markings  
2D Matrix
IncludesATPOandSerial
Number(frontendmark)
Processor Name  
i(m) ©’05
Pin 1 Indicator  
Notes:  
1.  
2.  
Character size for laser markings is: 17 Point, height 1.27 mm (50 mils), width 0.81 mm (32 mils)  
All characters will be in upper case.  
Figure 3-10. Processor Bottom-Side Markings  
Pin 1 Indicator  
2D Matrix  
Includes ATPO and Serial  
Number (front end mark)  
Pin Field  
Processor/Speed/Cache/Bus  
Number  
Cavity  
with  
Components  
7xxx 2933/16M/1066  
SL9HA COSTA RICA  
C0096109-0021  
S-Spec  
Country of Assy  
Text Line1  
Text Line2  
Text Line3  
FPO – Serial #  
(13 Characters)  
62  
Intel® Xeon® Processor 7400 Series Datasheet  
Mechanical Specifications  
3.9  
Processor Pin-Out Coordinates  
Figure 3-11 shows the top view of the processor pin coordinates. The coordinates are  
referred to throughout the document to identify processor pins.  
Figure 3-11. Processor Pin-Out Coordinates, Top View  
COMMON  
ADDRESS  
COMMON  
CLOCK  
Async/  
JTAG  
CLOCK  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
A
B
A
B
C
D
C
D
E
E
F
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
Processor  
Top View  
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AA  
AB  
AC  
AD  
AB  
AC  
AD  
AE  
AE  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
CLOCKS  
DATA  
= Signal  
= VCC  
= Ground  
= VTT  
= Reserved/ No Connect  
§
Intel® Xeon® Processor 7400 Series Datasheet  
63  
Mechanical Specifications  
64  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
4 Pin Listing  
4.1  
Processor Pin Assignments  
Section 2.6 contains the front side bus signal groups for the Intel® Xeon® Processor  
7400 Series (see Table 2-4). This section provides a sorted pin list in Table 4-1 and  
Table 4-2. Table 4-1 is a listing of all processor pins ordered alphabetically by pin name.  
Table 4-2 is a listing of all processor pins ordered by pin number.  
4.1.1  
Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
(Sheet 2 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 1 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
A32#  
A33#  
A34#  
A35#  
A36#  
A37#  
A38#  
A39#  
A6  
A7  
C9  
C8  
Source Sync  
Source Sync  
Source Sync  
Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
A3#  
A22 Source Sync  
A20 Source Sync  
B18 Source Sync  
C18 Source Sync  
A19 Source Sync  
C17 Source Sync  
D17 Source Sync  
A13 Source Sync  
B16 Source Sync  
B14 Source Sync  
B13 Source Sync  
A12 Source Sync  
C15 Source Sync  
C14 Source Sync  
D16 Source Sync  
D15 Source Sync  
F15 Source Sync  
A10 Source Sync  
B10 Source Sync  
B11 Source Sync  
C12 Source Sync  
E14 Source Sync  
D13 Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
A4#  
A5#  
A6#  
F16 Source Sync  
F22 Source Sync  
A7#  
A8#  
B6  
Source Sync  
A9#  
C16 Source Sync  
F27 Async GTL+  
D19 Common Clk  
F17 Source Sync  
F14 Source Sync  
E10 Common Clk  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A20M#  
ADS#  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
D9  
Y4  
Common Clk  
FSB Clk  
BCLK0  
BCLK1  
W5  
FSB Clk  
Input  
BINIT#  
BNR#  
F11 Common Clk  
F20 Common Clk  
Input/Output  
Input/Output  
Input/Output  
Output  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPMb0#  
BPMb1#  
BPMb2#  
BPMb3#  
BPRI#  
F6  
F8  
E7  
F5  
E8  
E4  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Common Clk  
Output  
Input/Output  
Output  
Input/Output  
Input/Output  
Output  
A9  
B8  
Source Sync  
Source Sync  
AA4 Common Clk  
AC1 Common Clk  
AE2 Common Clk  
AE3 Common Clk  
D23 Common Clk  
E13 Source Sync  
D12 Source Sync  
C11 Source Sync  
Output  
Input/Output  
Input  
B7  
Source Sync  
Intel® Xeon® Processor 7400 Series Datasheet  
65  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 3 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 4 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
BR0#  
BR1#  
D20 Common Clk  
F12 Common Clk  
AA3 Power/Other  
AB3 Power/Other  
Y31 Power/Other  
D25 Power/Other  
E16 Power/Other  
AE15 Power/Other  
AE16 Power/Other  
Y26 Source Sync  
AA27 Source Sync  
Y24 Source Sync  
AA25 Source Sync  
AD27 Source Sync  
Y23 Source Sync  
AA24 Source Sync  
AB26 Source Sync  
AB25 Source Sync  
AB23 Source Sync  
AA22 Source Sync  
AA21 Source Sync  
AB20 Source Sync  
AB22 Source Sync  
AB19 Source Sync  
AA19 Source Sync  
AE26 Source Sync  
AC26 Source Sync  
AD25 Source Sync  
AE25 Source Sync  
AC24 Source Sync  
AD24 Source Sync  
AE23 Source Sync  
AC23 Source Sync  
AA18 Source Sync  
AC20 Source Sync  
AC21 Source Sync  
AE22 Source Sync  
AE20 Source Sync  
AD21 Source Sync  
AD19 Source Sync  
Input/Output  
Input/Output  
Output  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
AB17 Source Sync  
AB16 Source Sync  
AA16 Source Sync  
AC17 Source Sync  
AE13 Source Sync  
AD18 Source Sync  
AB15 Source Sync  
AD13 Source Sync  
AD14 Source Sync  
AD11 Source Sync  
AC12 Source Sync  
AE10 Source Sync  
AC11 Source Sync  
AE9 Source Sync  
AD10 Source Sync  
AD8 Source Sync  
AC9 Source Sync  
AA13 Source Sync  
AA14 Source Sync  
AC14 Source Sync  
AB12 Source Sync  
AB13 Source Sync  
AA11 Source Sync  
AA10 Source Sync  
AB10 Source Sync  
AC8 Source Sync  
AD7 Source Sync  
AE7 Source Sync  
AC6 Source Sync  
AC5 Source Sync  
AA8 Source Sync  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
D0#  
Output  
Output  
Input  
Input  
Input  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D1#  
D2#  
D3#  
D4#  
D5#  
D6#  
D7#  
D8#  
D9#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
Y9  
Source Sync  
AB6 Source Sync  
AC27 Source Sync  
AD22 Source Sync  
AE12 Source Sync  
AB9 Source Sync  
F18 Common Clk  
C23 Common Clk  
AC18 Common Clk  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBSY#  
DEFER#  
DP0#  
Input/Output  
66  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 5 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 6 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
DP1#  
DP2#  
DP3#  
AE19 Common Clk  
AC15 Common Clk  
AE17 Common Clk  
E18 Common Clk  
Y21 Source Sync  
Y18 Source Sync  
Y15 Source Sync  
Y12 Source Sync  
Y20 Source Sync  
Y17 Source Sync  
Y14 Source Sync  
Y11 Source Sync  
E27 Async GTL+  
A15 Async GTL+  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
Reserved  
A31  
B1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESET#  
RS0#  
B4  
DRDY#  
B30  
C31  
D27  
D29  
E2  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
FORCEPR#  
GTLREF_ADD_END  
GTLREF_ADD_MID  
GTLREF_DATA_END  
GTLREF_DATA_MID  
HIT#  
Y27  
Y28  
Y29  
AA5  
AA28  
AB4  
AC30  
AD4  
AD6  
AD16  
AD28  
AD30  
AD31  
AE8  
AE30  
Y8  
Input  
F9  
F23 Power/Other  
W9 Power/Other  
Power/Other  
Input  
Input  
Input  
W23 Power/Other  
E22 Common Clk  
A23 Common Clk  
Input  
Input/Output  
Input/Output  
Output  
HITM#  
IERR#  
E5  
C26 Async GTL+  
D6 Async GTL+  
Async GTL+  
IGNNE#  
Input  
INIT#  
Input  
LINT0  
B24 Async GTL+  
G23 Async GTL+  
B31 Power/Other  
B28 Power/Other  
A17 Common Clk  
Input  
Common Clk  
Input  
LINT1  
Input  
E21 Common Clk  
D22 Common Clk  
F21 Common Clk  
Input  
LL_IDO  
Output  
RS1#  
Input  
LL_ID1  
Output  
RS2#  
Input  
LOCK#  
Input/Output  
Input/Output  
Input/Output  
Output  
RSP#  
C6  
A3  
Common Clk  
Power/Other  
Input  
MCERR#  
PECI  
D7  
Common Clk  
SKTOCC#  
SM_CLK  
SM_DAT  
SM_EP_A0  
SM_EP_A1  
SM_EP_A2  
SM_VCC  
SM_VCC  
SM_WP  
Output  
Input  
C28 Power/Other  
AC28 SMBus  
PROC_ID0  
PROC_ID1  
PROCHOT#  
PWRGOOD  
REQ0#  
A30  
B29  
Power/Other  
Power/Other  
AC29 SMBus  
Input/Output  
Input  
Output  
AA29 SMBus  
B25 Async GTL+  
AB7 Async GTL+  
B19 Source Sync  
B21 Source Sync  
C21 Source Sync  
C20 Source Sync  
B22 Source Sync  
A28  
Output  
AB29 SMBus  
Input  
Input  
AB28 SMBus  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
AE28 Power/Other  
AE29 Power/Other  
AD29 SMBus  
REQ1#  
REQ2#  
Input  
Input  
Input  
Input  
REQ3#  
SMI#  
C27 Async GTL+  
REQ4#  
STPCLK#  
TCK  
D4  
Async GTL+  
Reserved  
E24 TAP  
Intel® Xeon® Processor 7400 Series Datasheet  
67  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 7 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 8 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
TDI  
C24 TAP  
Input  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
H1  
H3  
H5  
H7  
H9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
TDO  
E25 TAP  
Output  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
TESTHI0  
TESTHI1  
TESTIN1  
TESTIN2  
THERMTRIP#  
TMS  
A16 Power/Other  
W3  
D1  
C2  
Power/Other  
Power/Other  
Power/Other  
H23 Power/Other  
H25 Power/Other  
H27 Power/Other  
H29 Power/Other  
H31 Power/Other  
F26 Async GTL+  
A25 TAP  
TRDY#  
E19 Common Clk  
F24 TAP  
TRST#  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A8  
Power/Other  
J2  
J4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A14 Power/Other  
A18 Power/Other  
A24 Power/Other  
B20 Power/Other  
J6  
J8  
J24  
J26  
J28  
J30  
K1  
K3  
K5  
K7  
K9  
C4  
Power/Other  
C22 Power/Other  
C30 Power/Other  
D8  
Power/Other  
D14 Power/Other  
D18 Power/Other  
D24 Power/Other  
D31 Power/Other  
E6  
Power/Other  
K23 Power/Other  
K25 Power/Other  
K27 Power/Other  
K29 Power/Other  
K31 Power/Other  
E20 Power/Other  
E26 Power/Other  
E28 Power/Other  
E30 Power/Other  
F1  
F4  
Power/Other  
Power/Other  
L2  
L4  
L6  
L8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F29 Power/Other  
F31 Power/Other  
G2  
G4  
G6  
G8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L24 Power/Other  
L26 Power/Other  
L28 Power/Other  
L30 Power/Other  
G24 Power/Other  
G26 Power/Other  
G28 Power/Other  
G30 Power/Other  
M1  
M3  
M5  
M7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
68  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 9 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 10 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
M9  
Power/Other  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
T28 Power/Other  
T30 Power/Other  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
M23 Power/Other  
M25 Power/Other  
M27 Power/Other  
M29 Power/Other  
M31 Power/Other  
U1  
U3  
U5  
U7  
U9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N1  
N3  
N5  
N7  
N9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
U23 Power/Other  
U25 Power/Other  
U27 Power/Other  
U29 Power/Other  
U31 Power/Other  
N23 Power/Other  
N25 Power/Other  
N27 Power/Other  
N29 Power/Other  
N31 Power/Other  
V2  
V4  
V6  
V8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P2  
P4  
P6  
P8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V24 Power/Other  
V26 Power/Other  
V28 Power/Other  
V30 Power/Other  
P24 Power/Other  
P26 Power/Other  
P28 Power/Other  
P30 Power/Other  
W1  
Power/Other  
W25 Power/Other  
W27 Power/Other  
W29 Power/Other  
W31 Power/Other  
R1  
R3  
R5  
R7  
R9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Y2  
Power/Other  
Y16 Power/Other  
Y22 Power/Other  
Y30 Power/Other  
AA1 Power/Other  
AA6 Power/Other  
AA20 Power/Other  
AA26 Power/Other  
AA31 Power/Other  
AB2 Power/Other  
AB8 Power/Other  
AB14 Power/Other  
AB18 Power/Other  
AB24 Power/Other  
AB30 Power/Other  
R23 Power/Other  
R25 Power/Other  
R27 Power/Other  
R29 Power/Other  
R31 Power/Other  
T2  
T4  
T6  
T8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T24 Power/Other  
T26 Power/Other  
Intel® Xeon® Processor 7400 Series Datasheet  
69  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 11 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 12 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
V
V
V
V
V
V
V
V
V
V
V
V
V
AC3 Power/Other  
AC16 Power/Other  
AC22 Power/Other  
AC31 Power/Other  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
E1  
E9  
Power/Other  
Power/Other  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
E15 Power/Other  
E17 Power/Other  
E23 Power/Other  
E29 Power/Other  
E31 Power/Other  
AD2  
Power/Other  
AD20 Power/Other  
AD26 Power/Other  
AE14 Power/Other  
AE18 Power/Other  
AE24 Power/Other  
AD1 Power/Other  
B27 Power/Other  
A26 Power/Other  
CC  
CC  
CC  
CC  
CC  
F2  
F3  
F7  
Power/Other  
Power/Other  
Power/Other  
F13 Power/Other  
F19 Power/Other  
F25 Power/Other  
F28 Power/Other  
F30 Power/Other  
Input  
CCPLL  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CC_SENSE  
CC_SENSE2  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
E3  
D3  
C3  
B3  
A1  
C1  
A5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
G1  
G3  
G5  
G7  
G9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V
SS  
G25 Power/Other  
G27 Power/Other  
G29 Power/Other  
G31 Power/Other  
V
A11 Power/Other  
A21 Power/Other  
A27 Power/Other  
A29 Power/Other  
SS  
V
SS  
V
SS  
V
SS  
H2  
H4  
H6  
H8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V
B2  
B9  
Power/Other  
Power/Other  
SS  
V
SS  
V
B15 Power/Other  
B17 Power/Other  
B23 Power/Other  
SS  
V
SS  
H24 Power/Other  
H26 Power/Other  
H28 Power/Other  
H30 Power/Other  
V
SS  
V
C7  
Power/Other  
SS  
V
C13 Power/Other  
C19 Power/Other  
C25 Power/Other  
C29 Power/Other  
SS  
V
SS  
J1  
J3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V
SS  
V
SS  
J5  
V
D2  
D5  
Power/Other  
Power/Other  
SS  
J7  
V
SS  
J9  
V
D11 Power/Other  
D21 Power/Other  
D28 Power/Other  
D30 Power/Other  
SS  
J23  
J25  
J27  
V
SS  
V
SS  
V
SS  
70  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 13 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 14 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
J29  
J31  
K2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
P9  
Power/Other  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
P23 Power/Other  
P25 Power/Other  
P27 Power/Other  
P29 Power/Other  
P31 Power/Other  
K4  
K6  
K8  
K24 Power/Other  
K26 Power/Other  
K28 Power/Other  
K30 Power/Other  
R2  
R4  
R6  
R8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L1  
L3  
L5  
L7  
L9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R24 Power/Other  
R26 Power/Other  
R28 Power/Other  
R30 Power/Other  
T1  
T3  
T5  
T7  
T9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L23 Power/Other  
L25 Power/Other  
L27 Power/Other  
L29 Power/Other  
L31 Power/Other  
T23 Power/Other  
T25 Power/Other  
T27 Power/Other  
T29 Power/Other  
T31 Power/Other  
M2  
M4  
M6  
M8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M24 Power/Other  
M26 Power/Other  
M28 Power/Other  
M30 Power/Other  
U2  
U4  
U6  
U8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N2  
N4  
N6  
N8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
U24 Power/Other  
U26 Power/Other  
U28 Power/Other  
U30 Power/Other  
N24 Power/Other  
N26 Power/Other  
N28 Power/Other  
N30 Power/Other  
V1  
V3  
V5  
V7  
V9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P1  
P3  
P5  
P7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V23 Power/Other  
V25 Power/Other  
V27 Power/Other  
Intel® Xeon® Processor 7400 Series Datasheet  
71  
Pin Listing  
Table 4-1. Pin Listing by Pin Name  
(Sheet 15 of 16)  
Table 4-1. Pin Listing by Pin Name  
(Sheet 16 of 16)  
Pin  
No.  
Signal Buffer  
Type  
Pin  
No.  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V29 Power/Other  
V31 Power/Other  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
AD3 Power/Other  
AD9 Power/Other  
AD15 Power/Other  
AD17 Power/Other  
AD23 Power/Other  
AE6 Power/Other  
AE11 Power/Other  
AE21 Power/Other  
AE27 Power/Other  
D26 Power/Other  
B26 Power/Other  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
ss  
W2  
W4  
Power/Other  
Power/Other  
W24 Power/Other  
W26 Power/Other  
W28 Power/Other  
W30 Power/Other  
SS  
SS  
SS  
Y1  
Y3  
Y5  
Y7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
SS_SENSE  
SS_SENSE2  
A4  
B5  
Power/Other  
Power/Other  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
TT  
Y13 Power/Other  
Y19 Power/Other  
Y25 Power/Other  
B12 Power/Other  
C5 Power/Other  
AA2  
Power/Other  
C10 Power/Other  
D10 Power/Other  
E11 Power/Other  
E12 Power/Other  
F10 Power/Other  
AA9 Power/Other  
AA15 Power/Other  
AA17 Power/Other  
AA23 Power/Other  
AA30 Power/Other  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
W6  
W7  
W8  
Y6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB1  
Power/Other  
AB5 Power/Other  
AB11 Power/Other  
AB21 Power/Other  
AB27 Power/Other  
AB31 Power/Other  
AC2 Power/Other  
AC7 Power/Other  
AC13 Power/Other  
AC19 Power/Other  
AC25 Power/Other  
Y10 Power/Other  
AA7 Power/Other  
AA12 Power/Other  
AC4 Power/Other  
AC10 Power/Other  
AD5 Power/Other  
AD12 Power/Other  
AE4 Power/Other  
AE5 Power/Other  
VTT_SEL  
A2  
Power/Other  
Output  
72  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
4.1.2  
Pin Listing by Pin Number  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 2 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 1 of 14)  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
C1  
V
Power/Other  
TT  
A1  
A2  
VID5  
VTT_SEL  
SKTOCC#  
Power/Other Output  
Power/Other Output  
Power/Other Output  
Power/Other  
A13#  
A12#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A3  
V
SS  
A4  
V
TT  
A11#  
Source Sync Input/Output  
Power/Other  
A5  
V
Power/Other  
SS  
V
SS  
A6  
A32#  
A33#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A5#  
Source Sync Input/Output  
Common Clk Input/Output  
Power/Other  
A7  
REQ0#  
A8  
V
CC  
V
CC  
A9  
A26#  
A20#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
REQ1#  
REQ4#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
B1  
V
SS  
V
SS  
A14#  
A10#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
LINT0  
Async GTL+  
Async GTL+  
Input  
PROCHOT#  
Output  
V
CC  
V
V
Power/Other Output  
Power/Other Output  
Power/Other Output  
Power/Other Output  
SS_SENSE2  
CC_SENSE  
FORCEPR#  
TESTHI0  
LOCK#  
Async GTL+  
Input  
Power/Other Input  
Common Clk Input/Output  
Power/Other  
LL_ID1  
PROC_ID1  
Reserved  
LL_ID0  
VID6  
V
CC  
A7#  
A4#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Power/Other Output  
Power/Other Output  
Power/Other Input  
Power/Other Output  
Power/Other  
V
SS  
C2  
TESTIN2  
VID3  
A3#  
Source Sync Input/Output  
Common Clk Input/Output  
Power/Other  
C3  
HITM#  
C4  
V
V
CC  
TT  
V
CC  
C5  
Power/Other  
TMS  
TAP  
Input  
C6  
RSP#  
Common Clk Input  
Power/Other  
V
V
Power/Other Output  
Power/Other  
CC_SENSE2  
SS  
C7  
V
SS  
C8  
A35#  
A34#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Reserved  
C9  
V
Power/Other  
SS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
V
TT  
PROC_ID0  
Reserved  
Reserved  
Power/Other Output  
A30#  
A23#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
SS  
B2  
V
Power/Other  
SS  
A16#  
A15#  
A39#  
A8#  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
B3  
VID4  
Power/Other Output  
B4  
Reserved  
B5  
V
Power/Other  
TT  
B6  
A38#  
A31#  
A27#  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
A6#  
B7  
V
SS  
B8  
REQ3#  
REQ2#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
B9  
V
SS  
B10  
B11  
A21#  
A22#  
Source Sync Input/Output  
Source Sync Input/Output  
V
CC  
Intel® Xeon® Processor 7400 Series Datasheet  
73  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 3 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 4 of 14)  
Signal  
Signal  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
Output  
Buffer Type  
Buffer Type  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
D1  
DEFER#  
TDI  
Common Clk Input  
E5  
E6  
IERR#  
Async GTL+  
Power/Other  
TAP  
Input  
V
CC  
V
Power/Other Input  
E7  
BPM2#  
BPM4#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
SS  
IGNNE#  
SMI#  
Async GTL+  
Async GTL+  
Input  
Input  
E8  
E9  
V
SS  
PECI  
Power/Other Input/Output  
Power/Other  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
F1  
AP0#  
Common Clk Input/Output  
Power/Other  
V
V
V
V
SS  
CC  
TT  
TT  
Power/Other  
Power/Other  
Reserved  
TESTIN1  
A28#  
A24#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Power/Other Input  
Power/Other  
D2  
V
V
SS  
SS  
D3  
VID2  
Power/Other Output  
COMP1  
Power/Other Input  
Power/Other  
D4  
STPCLK#  
Async GTL+  
Power/Other  
Async GTL+  
Input  
V
SS  
D5  
V
DRDY#  
TRDY#  
Common Clk Input/Output  
Common Clk Input  
Power/Other  
SS  
D6  
INIT#  
Input  
D7  
MCERR#  
Common Clk Input/Output  
Power/Other  
V
CC  
D8  
V
RS0#  
HIT#  
Common Clk Input  
Common Clk Input/Output  
Power/Other  
CC  
D9  
AP1#  
Common Clk Input/Output  
Power/Other  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
E1  
V
V
V
SS  
TT  
Power/Other  
TCK  
TDO  
TAP  
Input  
SS  
A29#  
A25#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
TAP  
Output  
V
Power/Other  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CC  
V
FERR#/PBE#  
Output  
CC  
A18#  
A17#  
A9#  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
V
V
V
V
V
V
V
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
V
CC  
ADS#  
BR0#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
F2  
V
F3  
SS  
RS1#  
Common Clk Input  
Common Clk Input  
Power/Other  
F4  
BPRI#  
F5  
BPM3#  
BPM0#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
V
F6  
CC  
COMP0  
Power/Other Input  
Power/Other Output  
F7  
V
SS  
V
F8  
BPM1#  
Common Clk Input/Output  
SS_SENSE  
Reserved  
F9  
GTLREF_ADD_END Power/Other Input  
V
Power/Other  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
V
Power/Other  
SS  
TT  
Reserved  
BINIT#  
BR1#  
Common Clk Input/Output  
Common Clk Input/Output  
Power/Other  
V
V
V
Power/Other  
Power/Other  
Power/Other  
SS  
CC  
SS  
V
SS  
ADSTB1#  
A19#  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
E2  
Reserved  
VID1  
E3  
Power/Other Output  
A36#  
E4  
BPM5#  
Common Clk Input/Output  
ADSTB0#  
74  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 5 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 6 of 14)  
Signal  
Signal  
Pin No.  
Pin Name  
DBSY#  
Direction  
Pin No.  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
F31  
G1  
Common Clk Input/Output  
Power/Other  
H26  
H27  
H28  
H29  
H30  
H31  
J1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
V
SS  
BNR#  
RS2#  
A37#  
Common Clk Input/Output  
Common Clk Input  
Source Sync Input/Output  
GTLREF_ADD_MID Power/Other Input  
TRST#  
TAP  
Input  
V
Power/Other  
Async GTL+  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Async GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J2  
SS  
THERMTRIP#  
A20M#  
Output  
Input  
J3  
J4  
V
V
V
V
V
V
V
V
V
V
V
V
V
J5  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
J6  
J7  
J8  
J9  
G2  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
K1  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
H1  
LINT1  
Input  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
H2  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K31  
L1  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H23  
H24  
H25  
L2  
Intel® Xeon® Processor 7400 Series Datasheet  
75  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 7 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 8 of 14)  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
L3  
L4  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
P1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
L5  
L6  
L7  
L8  
L9  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
M1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
M2  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
R1  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M31  
N1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
N2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
N23  
76  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 9 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 10 of 14)  
Signal  
Buffer Type  
Signal  
Buffer Type  
Pin No.  
Pin Name  
Direction  
Pin No.  
Pin Name  
Direction  
T1  
T2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V9  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
V31  
W1  
V
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other Input  
Power/Other  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
U1  
W2  
W3  
TESTHI1  
W4  
V
SS  
W5  
BCLK1  
FSB Clk  
Input  
W6  
V
V
V
Power/Other  
Power/Other  
Power/Other  
TT  
TT  
TT  
W7  
W8  
W9  
GTLREF_DATA_END Power/Other Input  
GTLREF_DATA_MID Power/Other Input  
U2  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
Y1  
U3  
V
V
V
V
V
V
V
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
FSB Clk  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
SS  
U4  
U5  
U6  
U7  
U8  
U9  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
V1  
Y2  
Y3  
Y4  
BCLK0  
Input  
Y5  
V
V
V
Power/Other  
Power/Other  
Power/Other  
SS  
TT  
SS  
Y6  
Y7  
Y8  
RESET#  
D62#  
Common Clk Input  
Source Sync Input/Output  
Power/Other  
Y9  
V2  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
V
TT  
V3  
DSTBP3#  
DSTBN3#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V4  
V5  
V
SS  
V6  
DSTBP2#  
DSTBN2#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V7  
V8  
V
CC  
Intel® Xeon® Processor 7400 Series Datasheet  
77  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 11 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 12 of 14)  
Signal  
Buffer Type  
Signal  
Pin Name  
Pin No.  
Pin Name  
Direction  
Pin No.  
Direction  
Buffer Type  
Y17  
Y18  
DSTBP1#  
DSTBN1#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AA30  
AA31  
AB1  
V
V
V
V
Power/Other  
Power/Other  
Power/Other  
Power/Other  
SS  
CC  
SS  
CC  
Y19  
V
SS  
Y20  
DSTBP0#  
DSTBN0#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AB2  
Y21  
AB3  
BSEL1  
Power/Other Output  
Y22  
V
AB4  
Reserved  
CC  
Y23  
D5#  
D2#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AB5  
V
Power/Other  
SS  
Y24  
AB6  
D63#  
Source Sync Input/Output  
Y25  
V
AB7  
PWRGOOD  
Async GTL+  
Power/Other  
Input  
SS  
Y26  
D0#  
Source Sync Input/Output  
AB8  
V
CC  
Y27  
Reserved  
Reserved  
Reserved  
AB9  
DBI3#  
D55#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Y28  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AC1  
Y29  
V
SS  
Y30  
V
Power/Other  
D51#  
D52#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
CC  
Y31  
BSEL2  
Power/Other Output  
Power/Other  
AA1  
V
V
V
CC  
CC  
SS  
AA2  
Power/Other  
D37#  
D32#  
D31#  
Source Sync Input/Output  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AA3  
BSEL0  
Power/Other Output  
Common Clk Input/Output  
AA4  
BPMb0#  
Reserved  
AA5  
V
CC  
AA6  
V
V
Power/Other  
D14#  
D12#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
CC  
TT  
AA7  
Power/Other  
AA8  
D61#  
Source Sync Input/Output  
Power/Other  
V
SS  
AA9  
V
D13#  
D9#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
SS  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
D54#  
D53#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
CC  
V
D8#  
D7#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
TT  
D48#  
D49#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
SS  
V
SM_EP_A2  
SM_EP_A1  
SMBus  
Input  
Input  
SS  
D33#  
Source Sync Input/Output  
Power/Other  
SMBus  
V
V
V
Power/Other  
Power/Other  
SS  
CC  
SS  
D24#  
D15#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
BPMb1#  
Common Clk Output  
Power/Other  
V
AC2  
V
V
V
CC  
SS  
CC  
TT  
D11#  
D10#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AC3  
Power/Other  
AC4  
Power/Other  
V
AC5  
D60#  
D59#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
SS  
D6#  
D3#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AC6  
AC7  
V
SS  
V
AC8  
D56#  
D47#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
CC  
D1#  
Source Sync Input/Output  
AC9  
Reserved  
SM_EP_A0  
AC10  
AC11  
V
TT  
SMBus  
Input  
D43#  
Source Sync Input/Output  
78  
Intel® Xeon® Processor 7400 Series Datasheet  
Pin Listing  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 13 of 14)  
Table 4-2.  
Pin Listing by Pin Number  
(Sheet 14 of 14)  
Signal  
Signal  
Pin No.  
Pin Name  
D41#  
Direction  
Pin No.  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AD1  
Source Sync Input/Output  
Power/Other  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AE2  
DBI1#  
Source Sync Input/Output  
Power/Other  
V
V
SS  
SS  
D50#  
DP2#  
Source Sync Input/Output  
Common Clk Input/Output  
Power/Other  
D21#  
D18#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
V
CC  
CC  
D34#  
DP0#  
Source Sync Input/Output  
Common Clk Input/Output  
Power/Other  
D4#  
Source Sync Input/Output  
Reserved  
SM_WP  
Reserved  
Reserved  
BPMb2#  
BPMb3#  
V
SMBus  
Input  
SS  
D25#  
D26#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
Common Clk Output  
Common Clk Input/Output  
Power/Other  
CC  
D23#  
D20#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AE3  
AE4  
V
V
V
TT  
TT  
SS  
V
AE5  
Power/Other  
SS  
D17#  
Source Sync Input/Output  
Source Sync Input/Output  
AE6  
Power/Other Input  
Source Sync Input/Output  
DBI0#  
AE7  
D58#  
SM_CLK  
SM_DAT  
Reserved  
SMBus  
SMBus  
Input  
AE8  
Reserved  
D44#  
Output  
AE9  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
D42#  
V
V
V
V
Power/Other  
V
SS  
CC  
Power/Other Input  
Power/Other  
DBI2#  
D35#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
CCPLL  
CC  
AD2  
AD3  
Power/Other  
V
CC  
SS  
AD4  
Reserved  
COMP2  
COMP3  
DP3#  
Power/Other Input  
Power/Other Input  
Common Clk Input/Output  
Power/Other  
AD5  
V
Power/Other  
TT  
AD6  
Reserved  
D57#  
AD7  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
CC  
AD8  
D46#  
DP1#  
D28#  
Common Clk Input/Output  
Source Sync Input/Output  
Power/Other  
AD9  
V
SS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
D45#  
D40#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
SS  
D27#  
D22#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
TT  
D38#  
D39#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
CC  
D19#  
D16#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
V
SS  
Reserved  
V
SS  
V
Power/Other  
SM_VCC  
SM_VCC  
Reserved  
Power/Other  
SS  
D36#  
D30#  
Source Sync Input/Output  
Source Sync Input/Output  
Power/Other  
Power/Other  
V
CC  
D29#  
Source Sync Input/Output  
§
Intel® Xeon® Processor 7400 Series Datasheet  
79  
Pin Listing  
80  
Intel® Xeon® Processor 7400 Series Datasheet  
Signal Definitions  
5 Signal Definitions  
5.1  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 1 of 8)  
Name  
A[39:3]#  
Type  
Description  
Notes  
40  
I/O  
A[39:3]# (Address) define a 2 -byte physical memory address space. In sub-  
phase 1 of the address phase, these pins transmit the address of a transaction. In  
sub-phase 2, these pins transmit transaction type information. These signals must  
connect the appropriate pins of all agents on the processor FSB. A[39:3]# are  
protected by parity signals AP[1:0]#. A[39:3]# are source synchronous signals  
and are latched into the receiving buffers by ADSTB[1:0]#.  
On the active-to-inactive transition of RESET#, the processors sample a subset of  
the A[39:3]# pins to determine their power-on configuration. See Section 7.1.  
A20M#  
I
If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/  
write transaction on the bus. Asserting A20M# emulates the 8086 processor's  
address wrap-around at the 1 MB boundary. Assertion of A20M# is only supported  
in real mode.  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion  
of the corresponding I/O write bus transaction.  
ADS#  
I/O  
I/O  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[39:3]# pins. All bus agents observe the ADS# activation to begin  
parity checking, protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction. This signal must be  
connected to the appropriate pins on all Intel® Xeon® Processor 7400 Series FSB  
agents.  
ADSTB[1:0]#  
Address strobes are used to latch A[39:3]# and REQ[4:0]# on their rising and  
falling edge. Strobes are associated with signals as shown below.  
Signals  
Associated Strobes  
REQ[4:0],  
ADSTB0#  
A[37:36,16:3]#  
A[39:38, 35:17]#  
ADSTB1#  
AP[1:0]#  
I/O  
AP[1:0]# (Address Parity) are driven by the requestor one common clock after  
ADS#, A[39:3]#, REQ[4:0]# are driven. A correct parity signal is electrically high  
if an even number of covered signals are electrically low and electrically low if an  
odd number of covered signals are electrically low. This allows parity to be  
electrically high when all the covered signals are electrically high. AP[1:0]# should  
connect the appropriate pins of all processor FSB agents. The following table  
defines the coverage for these signals.  
Request Signals  
Subphase 1  
Subphase 2  
A[39:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
BCLK[1:0]  
I
The differential bus clock pair BCLK[1:0] (Bus Clock) determines the FSB  
frequency. All processor FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing V  
.
CROSS  
Intel® Xeon® Processor 7400 Series Datasheet  
81  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 2 of 8)  
Name  
Type  
Description  
Notes  
BINIT#  
I/O  
BINIT# (Bus Initialization) may be observed and driven by all processor FSB  
agents and if used, must connect the appropriate pins of all such agents. If the  
BINIT# driver is enabled during power on configuration, BINIT# is asserted to  
signal any bus condition that prevents reliable future operation.  
If BINIT# observation is enabled during power-on configuration (see Section 7.1)  
and BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity  
and bus request arbitration state machines. The bus agents do not reset their I/O  
Queue (IOQ) and transaction tracking state machines upon observation of BINIT#  
assertion. Once the BINIT# assertion has been observed, the bus agents will re-  
arbitrate for the FSB and attempt completion of their bus queue and IOQ entries.  
If BINIT# observation is disabled during power-on configuration, a priority agent  
may handle an assertion of BINIT# as appropriate to the error handling  
architecture of the system.  
BNR#  
I/O  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Since multiple agents might need to request a bus stall at the same time, BNR# is  
a wired-OR signal which must connect the appropriate pins of all processor FSB  
agents. In order to avoid wired-OR glitches associated with simultaneous edge  
transitions driven by multiple drivers, BNR# is activated on specific clock edges  
and sampled on specific clock edges.  
BPM5#  
BPM4#  
BPM3#  
BPM[2:1]#  
BPM0#  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[5:0]#  
should connect the appropriate pins of all FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a  
processor output used by debug tools to determine processor debug readiness.  
I/O  
O
I/O  
O
I/O  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is  
used by debug tools to request debug operation of the processors.  
BPM[5:4]# must be bussed to all bus agents. Please refer to the appropriate  
platform design guidelines for more detailed information.  
BPMb3#  
BPMb[2:1]#  
BPMb0#  
I/O  
O
I/O  
BPMb[3:0]# (Breakpoint Monitor) are a second set of breakpoint and performance  
monitor signals. They are additional outputs from the processor which indicate the  
status of breakpoints and programmable counters used for monitoring processor  
performance. BPMb[3:0]# should connect the appropriate pins of all FSB agents.  
BPRI#  
I
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
FSB. It must connect the appropriate pins of all processor FSB agents. Observing  
BPRI# active (as asserted by the priority agent) causes all other agents to stop  
issuing new requests, unless such requests are part of an ongoing locked  
operation. The priority agent keeps BPRI# asserted until all of its requests are  
completed, then releases the bus by deasserting BPRI#.  
BR[1:0]#  
BSEL[2:0]  
I/O  
O
The BR[1:0]# signals are sampled on the active-to-inactive transition of RESET#.  
The signal which the agent samples asserted determines its agent ID. BR0# drives  
the BREQ0# signal in the system and is used by the processor to request the bus.  
These signals do not have on-die termination and must be terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the processor  
input clock frequency. Table 2-2 defines the possible combinations of the signals  
and the frequency associated with each combination. The required frequency is  
determined by the processors, chipset, and clock synthesizer. All FSB agents must  
operate at the same frequency. For more information about these signals,  
including termination recommendations, refer to the appropriate platform design  
guideline.  
COMP[3:0]  
I
COMP[3:0] must be terminated to VSS on the baseboard using precision resistors.  
These inputs configure the AGTL+ drivers of the processor. Refer to the  
appropriate platform design guidelines for implementation details.  
82  
Intel® Xeon® Processor 7400 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 3 of 8)  
Name  
D[63:0]#  
Type  
Description  
Notes  
I/O  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor FSB agents, and must connect the appropriate pins on all  
such agents. The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals, and will thus be driven four times  
in a common clock period. D[63:0]# are latched off the falling edge of  
both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals  
correspond to a pair of one DSTBP# and one DSTBN#. The following  
table shows the grouping of data signals to strobes and DBI#.  
DSTBN#/  
DSTBP#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI# signal.  
When the DBI# signal is active, the corresponding data group is  
inverted and therefore sampled active high.  
DBI[3:0]#  
I/O  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity  
of the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the  
data bus is inverted. If more than half the data bits, within, within a 16-bit group,  
would have been asserted electronically low, the bus agent may invert the data  
bus signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment to Data Bus  
Bus Signal  
Data Bus Signals  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
DBSY#  
I/O  
I
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
the processor FSB to indicate that the data bus is in use. The data bus is released  
after DBSY# is deasserted. This signal must connect the appropriate pins on all  
processor FSB agents.  
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility  
of the addressed memory or I/O agent. This signal must connect the appropriate  
pins of all processor FSB agents.  
DP[3:0]#  
DRDY#  
I/O  
I/O  
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals. They  
are driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins of all processor FSB agents.  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
indicating valid data on the data bus. In a multi-common clock data transfer,  
DRDY# may be deasserted to insert idle clocks. This signal must connect the  
appropriate pins of all processor FSB agents.  
Intel® Xeon® Processor 7400 Series Datasheet  
83  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 4 of 8)  
Name  
DSTBN[3:0]#  
Type  
Description  
Notes  
I/O  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP[3:0]#  
I/O  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobes  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
O
FERR#/PBE# (floating-point error/pending break event) is a multiplexed signal  
and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/  
PBE# indicates a floating-point error and will be asserted when the processor  
detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/  
PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included  
for compatibility with systems using MS-DOS*-type floating-point error reporting.  
When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the  
processor has a pending break event waiting for service. The assertion of FERR#/  
PBE# indicates that the processor should be returned to the Normal state. For  
additional information on the pending break event functionality, including the  
identification of support of the feature and enable/disable information, refer to Vol.  
®
3 of the Intel 64 and IA-32 Architectures Software Developer’s Manual and the  
®
AP-485 Intel Processor Identification and the CPUID Instruction application note.  
FORCEPR#  
I
I
The FORCEPR# (force power reduction) input can be used by the platform to cause  
the Intel® Xeon® Processor 7400 Series to activate the Thermal Control Circuit  
(TCC).  
GTLREF_ADD_MID  
GTLREF_ADD_END  
GTLREF_ADD determines the signal reference level for AGTL+ address and  
common clock input pins. GTLREF_ADD is used by the AGTL+ receivers to  
determine if a signal is a logical 0 or a logical 1. Please refer to Table 2-17 and the  
appropriate platform design guidelines for additional details.  
GTLREF_DATA_MID  
GTLREF_DATA_END  
I
GTLREF_DATA determines the signal reference level for AGTL+ data input pins.  
GTLREF_DATA is used by the AGTL+ receivers to determine if a signal is a logical 0  
or a logical 1. Please refer to Table 2-17 and the appropriate platform design  
guidelines for additional details.  
HIT#  
HITM#  
I/O  
I/O  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any FSB agent may assert both HIT# and HITM# together to indicate that  
it requires a snoop stall, which can be continued by reasserting HIT# and HITM#  
together.  
IERR#  
O
IERR# (Internal Error) is asserted by a processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the  
processor FSB. This transaction may optionally be converted to an external error  
signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted  
until the assertion of RESET#.  
This signal does not have on-die termination.  
84  
Intel® Xeon® Processor 7400 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 5 of 8)  
Name  
Type  
Description  
Notes  
IGNNE#  
I
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an I/O write instruction, it must be valid along with the TRDY# assertion  
of the corresponding I/O write bus transaction.  
INIT#  
I
I
INIT# (Initialization), when asserted, resets integer registers inside all processors  
without affecting their internal caches or floating-point registers. Each processor  
then begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate pins  
of all processor FSB agents.  
LINT[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all FSB  
agents. When the APIC functionality is disabled, the LINT0/INTR signal becomes  
INTR, a maskable interrupt request signal, and LINT1/NMI becomes NMI, a  
nonmaskable interrupt. INTR and NMI are backward compatible with the signals of  
®
those names on the Pentium processor. Both signals are asynchronous.  
These signals must be software configured via BIOS programming of the APIC  
register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is  
enabled by default after Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LL_ID[1:0]  
O
The LL_ID[1:0] signals are used to select the correct loadline slope for the  
processor. These signals are not connected to the processor die. A logic 0 is pulled  
to ground and a logic 1 is a no-connect on the Intel® Xeon® Processor 7400  
Series package.  
00: Reserved  
01: 1.25 mΩ Load Line  
10: Reserved  
11: Reserved  
LOCK#  
I/O  
I/O  
LOCK# indicates to the system that a transaction must occur atomically. This  
signal must connect the appropriate pins of all processor FSB agents. For a locked  
sequence of transactions, LOCK# is asserted from the beginning of the first  
transaction to the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
FSB, it will wait until it observes LOCK# deasserted. This enables symmetric  
agents to retain ownership of the processor FSB throughout the bus locked  
operation and ensure the atomicity of lock.  
MCERR#  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable  
error without a bus protocol violation. It may be driven by all processor  
FSB agents.  
MCERR# assertion conditions are configurable at a system level.  
Assertion options are defined by the following options:  
Enabled or disabled.  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
Asserted by any bus agent when it observes an error in a bus transaction.  
®
For more details regarding machine check architecture, refer to the Intel 64 and  
IA-32 Architectures Software Developer’s Manual, Volume 3: System Programming  
Guide.  
PECI  
I/O  
O
PECI is a proprietary one-wire bus interface that provides a communication  
channel between Intel processor and chipset components to external thermal  
monitoring devices. See Section 6.3, “Platform Environment Control Interface  
(PECI)” for more on the PECI interface.  
PROC_ID[1:0]  
PROC_ID signals are used to identify which processor is installed.  
00: Intel® Xeon® Processor 7400 Series  
01: Intel® Xeon® Processor 7300 and 7200 Series  
10: Reserved  
11: Reserved  
Intel® Xeon® Processor 7400 Series Datasheet  
85  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 6 of 8)  
Name  
Type  
Description  
Notes  
PROCHOT#  
O
PROCHOT# (Processor Hot) will go active when the processor’s temperature  
monitoring sensor detects that the processor has reached its maximum safe  
operating temperature. This indicates that the Thermal Control Circuit (TCC) has  
been activated, if enabled. The TCC will remain active until shortly after the  
processor deasserts PROCHOT#. See Section 6.2.5 for more details.  
PWRGOOD  
I
PWRGOOD (Power Good) is an input. The processor requires this signal to be a  
clean indication that all processor clocks and power supplies are stable and within  
their specifications. “Clean” implies that the signal will remain low (capable of  
sinking leakage current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must then transition  
monotonically to a high state. Figure 2-20 illustrates the relationship of PWRGOOD  
to the RESET# signal. PWRGOOD can be driven inactive at any time, but clocks  
and power must again be stable before a subsequent rising edge of PWRGOOD. It  
must also meet the minimum pulse width specification in Table 2-15, and be  
followed by a 1-10 ms RESET# pulse.  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
REQ[4:0]#  
RESET#  
I/O  
REQ[4:0]# (Request Command) must connect the appropriate pins of all processor  
FSB agents. They are asserted by the current bus owner to define the currently  
active transaction type. These signals are source synchronous to ADSTB[1:0]#.  
Refer to the AP[1:0]# signal description for details on parity checking of these  
signals.  
I
Asserting the RESET# signal resets all processors to known states and invalidates  
their internal caches without writing back any of their contents. For a power-on  
Reset, RESET# must stay active for at least 1 ms after VCC and BCLK have reached  
their proper specifications. On observing active RESET#, all FSB agents will  
deassert their outputs within two clocks. RESET# must not be kept asserted for  
more than 10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive transition of RESET#  
for power-on configuration. These configuration options are described in the  
Section 7.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]#  
RSP#  
I
I
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of all processor FSB agents.  
RSP# (Response Parity) is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#, the signals for  
which RSP# provides parity protection. It must connect to the appropriate pins of  
all processor FSB agents.  
A correct parity signal is high if an even number of covered signals are low and low  
if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also  
high, since this indicates it is not being driven by any agent guaranteeing correct  
parity.  
SKTOCC#  
SM_CLK  
O
SKTOCC# (Socket occupied) will be pulled to ground by the processor to indicate  
that the processor is present. There is no connection to the processor silicon for  
this signal.  
I/O  
The SM_CLK (SMBus Clock) signal is an input clock to the system management  
logic which is required for operation of the system management features of the  
processor. This clock is driven by the SMBus controller and is asynchronous to  
other clocks in the processor. The processor includes a 10 kΩ pull-up resistor to  
SM_VCC for this signal.  
SM_DAT  
I/O  
I
The SM_DAT (SMBus Data) signal is the data signal for the SMBus. This signal  
provides the single-bit mechanism for transferring data between SMBus devices.  
The processor includes a 10 kΩ pull-up resistor to SM_VCC for this signal.  
SM_EP_A[2:0]  
The SM_EP_A (EEPROM Select Address) pins are decoded on the SMBus in  
conjunction with the upper address bits in order to maintain unique addresses on  
the SMBus in a system with multiple processors. To set an SM_EP_A line high, a  
pull-up resistor should be used that is no larger than 1 kΩ. The processor includes  
a 10 kΩ pull-down resistor to V for each of these signals.  
SS  
SM_VCC  
I
SM_VCC provides power to the SMBus components on the processor package.  
86  
Intel® Xeon® Processor 7400 Series Datasheet  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 7 of 8)  
Name  
Type  
Description  
Notes  
SM_WP  
SMI#  
I
WP (Write Protect) can be used to write protect the Scratch EEPROM. The Scratch  
EEPROM is write-protected when this input is pulled high to SM_VCC. The  
processor includes a 10 kΩ pull-down resistor to V for this signal.  
SS  
I
I
SMI# (System Management Interrupt) is asserted asynchronously by system logic.  
On accepting a System Management Interrupt, processors save the current state  
and enter System Management Mode (SMM). An SMI Acknowledge transaction is  
issued, and the processor begins program execution from the SMM handler.  
If SMI# is asserted during the deassertion of RESET# the processor will tri-state  
its outputs. See Section 7.1.  
STPCLK#  
STPCLK# (Stop Clock), when asserted, causes processors to enter a low power  
Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and  
stops providing internal clock signals to all processor core units except the FSB and  
APIC units. The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor  
restarts its internal clock to all units and resumes execution. The assertion of  
STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.  
TCK  
I
I
TCK (Test Clock) provides the clock input for the processor Test Bus (also known as  
the Test Access Port).  
TDI  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO  
O
I
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
TESTHI[1:0]  
TESTHI[1:0] must be connected to a VTT power source through a resistor for  
proper processor operation. Refer to Section 2.5 for TESTHI grouping restrictions.  
TESTIN1  
TESTIN2  
I
I
TESTIN1 must be connected to a VTT power source through a resistor as well as to  
the TESTIN2 pin of the same socket for proper processor operation.  
TESTIN2 must be connected to a VTT power source through a resistor as well as to  
the TESTIN1 pin of the same socket for proper processor operation.  
Refer to Section 2.5 for TESTIN restrictions.  
THERMTRIP#  
O
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a temperature beyond which permanent silicon damage  
may occur. Measurement of the temperature is accomplished through an internal  
thermal sensor. Upon assertion of THERMTRIP#, the processor will shut off its  
internal clocks (thus halting program execution) in an attempt to reduce the  
processor junction temperature. To protect the processor, its core voltage (V  
)
CC  
must be removed following the assertion of THERMTRIP#. See Figure 2-17 and  
Table 2-22 for the appropriate power down sequence and timing requirements.  
Intel is currently evaluating whether V must also be removed.  
TT  
Driving of the THERMTRIP# signals is enabled within 10 ms of the assertion of  
PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated,  
THERMTRIP# remains latched until PWRGOOD is de-asserted. While the de-  
assertion of the PWRGOOD signal will de-assert THERMTRIP#, if the processor’s  
junction temperature remains at or above the trip level, THERMTRIP# will again be  
asserted within 10 ms of the assertion of PWRGOOD.  
TMS  
I
I
TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.  
TRDY#  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins of all FSB agents.  
TRST#  
I
I
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven  
low during power on Reset.  
V
The Intel® Xeon® Processor 7400 Series implement an on-die PLL filter solution.  
CCPLL  
The V  
input is used as a PLL supply voltage.  
CCPLL  
VCC_SENSE  
VCC_SENSE2  
O
VCC_SENSE and VCC_SENSE2 provides an isolated, low impedance connection to  
the processor core power and ground. This signal should be connected to the  
voltage regulator feedback signal, which insures the output voltage (that is,  
processor voltage) remains within specification. Please see the applicable platform  
design guide for implementation details.  
Intel® Xeon® Processor 7400 Series Datasheet  
87  
Signal Definitions  
Table 5-1.  
Signal Definitions (Sheet 8 of 8)  
Name  
Type  
Description  
Notes  
VID[6:1]  
O
VID[6:1] (Voltage ID) pins are used to support automatic selection of power  
supply voltages (V ). These are CMOS signals that are driven by the processor  
CC  
and must be pulled up through a resistor. Conversely, the voltage regulator output  
must be disabled prior to the voltage supply for these pins becomes invalid. The  
VID pins are needed to support processor voltage specification variations. See  
Table 2-3 for definitions of these pins. The VR must supply the voltage that is  
requested by these pins, or disable itself.  
VSS_SENSE  
VSS_SENSE2  
O
VSS_SENSE and VSS_SENSE2 provides an isolated, low impedance connection to  
the processor core power and ground. This signal should be connected to the  
voltage regulator feedback signal, which insures the output voltage (that is,  
processor voltage) remains within specification. Please see the applicable platform  
design guide for implementation details.  
VTT  
P
The FSB termination voltage input pins. Refer to Table 2-9 for further details.  
VTT_SEL  
O
The VTT_SEL signal is used to select the correct VTT voltage level for the processor.  
VTT_SEL is connected to ground on the Intel® Xeon® Processor 7400 Series  
package.  
§
88  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
6 Thermal Specifications  
6.1  
Package Thermal Specifications  
The Intel® Xeon® Processor 7400 Series require a thermal solution to maintain  
temperatures within its operating limits. Any attempt to operate the processor outside  
these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks  
attached to the processor integrated heat spreader (IHS). Typical system level thermal  
solutions may consist of system fans combined with ducting and venting.  
This section provides data necessary for developing a complete thermal solution. For  
more information on designing a component level thermal solution, refer to the Intel®  
Xeon® Processor 7400 Series Thermal Mechanical Design Guide.  
6.1.1  
Thermal Specifications  
To allow the optimal operation and long-term reliability of Intel processor-based  
systems, the processor must remain within the minimum and maximum case  
temperature (TCASE) specifications as defined by the applicable thermal profile (see  
Table 6-2 and Figure 6-1 for the Intel® Xeon® X7460 Processor, Table 6-3 and  
Figure 6-2 for the 6-core Intel® Xeon® Processor E7400 Series, Figure 6-3 and  
Table 6-4 for the 4-core Intel® Xeon® Processor E7400 Series, and Table 6-5 and  
Figure 6-4 for the 6-core Intel® Xeon® Processor L7400 Series and Table 6-6 and  
Figure 6-5 for the 4-core Intel® Xeon® Processor L7400 Series). Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability  
of the processor and system. For more details on thermal solution design, please refer  
to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide.  
The Intel® Xeon® Processor 7400 Series implement a methodology for managing  
processor temperatures which is intended to support acoustic noise reduction through  
fan speed control and to assure processor reliability. Selection of the appropriate fan  
speed is based on the relative temperature data reported by the processor’s Platform  
Environment Control Interface (PECI) bus as described in Section 6.3. If the value  
reported via PECI is less than TCONTROL, then the case temperature is permitted to  
exceed the Thermal Profile. If the value reported via PECI is greater than or equal to  
TCONTROL, then the processor case temperature must remain at or below the  
temperature as specified by the thermal profile. The temperature reported over PECI is  
always a negative value and represents a delta below the onset of thermal control  
circuit (TCC) activation, as indicated by PROCHOT# (see Section 6.2, Processor  
Thermal Features). Systems that implement fan speed control must be designed to use  
this data. Systems that do not alter the fan speed only need to guarantee the case  
temperature meets the thermal profile specifications.  
Intel has developed a thermal profile of which can be implemented with the Intel®  
Xeon® X7460 Processor to ensure adherence to Intel reliability requirements. The  
Intel® Xeon® X7460 Processor Thermal Profile (see Figure 6-1; Table 6-2) is  
representative of a volumetrically unconstrained thermal solution (that is, industry  
Intel® Xeon® Processor 7400 Series Datasheet  
89  
Thermal Specifications  
enabled 2U heatsink). In this scenario, it is expected that the Thermal Control Circuit  
(TCC) would only be activated for very brief periods of time when running the most  
power intensive applications. Intel has developed the thermal profile to allow  
customers to choose the thermal solution and environmental parameters that best suit  
their platform implementation. Refer to the Intel® Xeon® Processor 7400 Series  
Thermal Mechanical Design Guide for details on system thermal solution design,  
thermal profiles and environmental considerations.  
The Intel® Xeon® Processor E7400 Series (see Figure 6-2; Table 6-3) and Intel®  
Xeon® Processor L7400 Series (see Figure 6-4; Table 6-5) supports a single Thermal  
Profile. The Thermal Profiles are indicative of a constrained thermal environment  
(Ex: 1U form factor). Because of the reduced cooling capability represented by this  
solution, the probability of TCC activation and performance loss is increased.  
Additionally, utilization of a thermal solution that does not meet the Thermal Profile will  
violate the thermal specifications and may result in permanent damage to the  
processor. Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical  
Design Guide for details on system thermal solution design, thermal profiles and  
environmental considerations.  
The upper point of the thermal profile consists of the Thermal Design Power (TDP) and  
the associated TCASE value. It should be noted that the upper point associated with  
Intel® Xeon® X7460 Processor Thermal Profile (x = TDP and y = TCASE_MAX P @ TDP)  
represents a thermal solution design point. In actuality the processor case temperature  
will not reach this value due to TCC activation (see Figure 6-1 for the Intel® Xeon®  
X7460 Processor).  
Analysis indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) instead of  
the maximum processor power consumption. The Intel Thermal Monitor feature is  
intended to help protect the processor in the event that an application exceeds the TDP  
recommendation for a sustained time period. For more details on this feature, refer to  
Section 6.2. To ensure maximum flexibility for future requirements, systems should be  
designed to the Flexible Motherboard (FMB) guidelines, even if a processor with lower  
power dissipation is currently planned. Intel Thermal Monitor or Intel Thermal  
Monitor 2 feature must be enabled for the processor to remain within its  
specifications.  
90  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
Table 6-1.  
Processor Thermal Specifications  
Thermal Design  
Power  
Core  
Frequency  
Minimum  
TCASE (°C)  
Maximum  
TCASE (°C)  
Notes  
(W)  
Intel® Xeon® X7460  
130  
90  
5
5
See Figure 6-1,Figure 6-3;  
Table 6-2,Table 6-4;  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
Processor Launch to FMB  
Intel® Xeon® Processor  
E7400 Series Launch to  
FMB  
See Figure 6-2; Table 6-3;  
See Figure 6-4; Table 6-5;  
See Figure 6-5; Table 6-6  
6-core Intel® Xeon®  
Processor L7400 Series  
Launch to FMB  
65  
50  
5
5
1, 2, 3, 4, 5  
1, 2, 3, 4, 5  
4-core Intel® Xeon®  
Processor L7400 Series  
Launch to FMB  
Notes:  
1.  
These values are specified at V  
for all processor frequencies. Systems must be designed to ensure  
CC_MAX  
the processor is not to be subjected to any static V and I combination wherein V exceeds V at  
specified I . Please refer to the loadline specifications in Section 2.11.  
CC  
CC  
CC  
CC_MAX  
CC  
2.  
3.  
4.  
5.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the  
maximum power that the processor can dissipate. TDP is measured at maximum T  
These specifications are based pre-silicon estimates and simulations. These specifications will be updated  
with characterized data from silicon measurements in a future release of this document.  
Power specifications are defined at all VIDs found in Table 2-3. The Intel® Xeon® Processor 7400 Series  
may be shipped under multiple VIDs for each frequency.  
.
CASE  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor  
frequency requirements.  
Figure 6-1. Intel® Xeon® X7460 Processor Thermal Profile  
70  
65  
60  
55  
50  
T
CASE  
=0.146 x Power +45 oC  
45  
40  
35  
30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Power (W)  
Notes:  
1.  
Thermal Profile is representative of a volumetrically unconstrained platform. Please refer to Table 6-2 for  
discrete points that constitute the thermal profile.  
Intel® Xeon® Processor 7400 Series Datasheet  
91  
Thermal Specifications  
2.  
3.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
Table 6-2.  
Intel® Xeon® X7460 Processor Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
45  
0
10  
46.5  
47.9  
49.4  
50.8  
52.3  
53.8  
55.2  
56.7  
58.2  
59.6  
61.1  
62.5  
64  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Notes:  
1.  
2.  
Thermal Profile is representative of a volumetrically unconstrained platform.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
3.  
92  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
Figure 6-2. 6-Core Intel® Xeon® Processor E7400 Series Thermal Profile  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
T
CASE=0.256 x Power +45 oC  
45.0  
40.0  
35.0  
30.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Power (W)  
Notes:  
1.  
Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-3 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
Table 6-3.  
6-Core Intel® Xeon® Processor E7400 Series Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
0
45.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
47.6  
50.1  
52.7  
55.2  
57.8  
60.3  
62.9  
65.4  
68.0  
Notes:  
1.  
2.  
Thermal Profile is representative of a volumetrically unconstrained platform.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
3.  
Intel® Xeon® Processor 7400 Series Datasheet  
93  
Thermal Specifications  
Figure 6-3. 4-Core Intel® Xeon® Processor E7400 Series Thermal Profile  
70.0  
65.0  
60.0  
55.0  
50.0  
T
CASE = 0.222 x Power + 45 oC  
45.0  
40.0  
35.0  
30.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Power (W)  
Notes:  
1.  
Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-4 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
Table 6-4.  
4-Core Intel® Xeon® Processor E7400 Series Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
45.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
47.2  
49.4  
51.7  
53.9  
56.1  
58.3  
60.6  
62.8  
65.0  
Notes:  
1.  
2.  
Thermal Profile is representative of a volumetrically constrained platform.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
3.  
94  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
Figure 6-4. 6-Core Intel® Xeon® Processor L7400 Series Thermal Profile  
60.0  
55.0  
50.0  
T
CASE = 0.431 x Power + 45 oC  
45.0  
40.0  
35.0  
0
10  
20  
30  
40  
50  
60  
Power (W)  
Notes:  
1.  
Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-5 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
Table 6-5.  
6-Core Intel® Xeon® Processor L7400 Series Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
0
45  
10  
20  
30  
40  
50  
60  
65  
49.3  
53.6  
57.9  
62.2  
66.5  
70.8  
73  
Notes:  
1.  
2.  
Thermal Profile is representative of a volumetrically unconstrained platform.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
3.  
Intel® Xeon® Processor 7400 Series Datasheet  
95  
Thermal Specifications  
Figure 6-5. 4-Core Intel® Xeon® Processor L7400 Series Thermal Profile  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
35.0  
TCASE = 0.400 x Power + 45 oC  
0
10  
20  
30  
40  
50  
Power (W)  
Notes:  
1.  
Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-6 for  
discrete points that constitute the thermal profile.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
2.  
3.  
Table 6-6.  
4-Core Intel® Xeon® Processor L7400 Series Thermal Profile Table  
Power (W)  
T
(°C)  
CASE_MAX  
0
45  
49  
53  
57  
61  
65  
10  
20  
30  
40  
50  
Notes:  
1.  
2.  
Thermal Profile is representative of a volumetrically unconstrained platform.  
Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of  
thermal solutions that do not meet processor Thermal Profile will result in increased probability of TCC  
activation and may incur measurable performance loss. (See Section 6.2 for details on TCC activation).  
Refer to the Intel® Xeon® Processor 7400 Series Thermal Mechanical Design Guide for system and  
environmental implementation details.  
3.  
96  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
6.1.2  
Thermal Metrology  
The minimum and maximum case temperatures (TCASE) are specified in Table 6-2  
through Table 6-5, and are measured at the geometric top center of the processor  
integrated heat spreader (IHS). Figure 6-6 illustrates the location where TCASE  
temperature measurements should be made. For detailed guidelines on temperature  
measurement methodology, refer to the Intel® Xeon® Processor 7400 Series Thermal  
Mechanical Design Guide.  
Figure 6-6. Case Temperature (TCASE) Measurement Location  
Measure from edge of IHS  
19.25 mm [0.76 in]  
Measure T  
at this point  
(geometricCcAeSnEter of IHS)  
19.25 mm [0.76 in]  
53.34 mm FC-mPGA8 Package  
Thermal grease should cover  
entire area of IHS  
Note: Figure is not to scale and is for reference only.  
6.2  
Processor Thermal Features  
6.2.1  
Intel® Thermal Monitor Features  
Intel® Xeon® Processor 7400 Series provide two thermal monitor features, Intel®  
Thermal Monitor (TM1) and Enhanced Thermal Monitor (TM2). The TM1 and TM2 must  
both be enabled in BIOS for the processor to be operating within specifications. When  
both are enabled, TM2 will be activated first and TM1 will be added if TM2 is not  
effective.  
6.2.2  
Intel Thermal Monitor  
The Intel Thermal Monitor (TM1) feature helps control the processor temperature by  
activating the Thermal Control Circuit (TCC) when the processor silicon reaches its  
maximum operating temperature. The TCC reduces processor power consumption as  
needed by modulating (starting and stopping) the internal processor core clocks. The  
Intel Thermal Monitor or Enhanced Thermal Monitor (Thermal Monitor 2) must be  
enabled for the processor to be operating within specifications. The temperature at  
which Thermal Monitor activates the thermal control circuit is not user configurable and  
Intel® Xeon® Processor 7400 Series Datasheet  
97  
Thermal Specifications  
is not software visible. Bus traffic is snooped in the normal manner, and interrupt  
requests are latched (and serviced during the time that the clocks are on) while the  
TCC is active.  
When the Intel Thermal Monitor is enabled, and a high temperature situation exists  
(that is, TCC is active), the clocks will be modulated by alternately turning the clocks  
off and on at a duty cycle specific to the processor (typically 30 - 50%). Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a thermal solution designed to meet the Intel® Xeon® Processor 7400 Series  
Thermal Profiles, it is anticipated that the TCC would only be activated for very short  
periods of time when running the most power intensive applications. The processor  
performance impact due to these brief periods of TCC activation is expected to be so  
minor that it would be immeasurable. In addition, a thermal solution that is  
significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously. Refer to the Intel® Xeon® Processor 7400 Series  
Thermal Mechanical Design Guide or information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Intel Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
6.2.3  
Intel Thermal Monitor 2  
The Intel® Xeon® Processor 7400 Series adds supports for an Enhanced Thermal  
Monitor capability known as Intel Thermal Monitor 2 (TM2). This mechanism provides  
an efficient means for limiting the processor temperature by reducing the power  
consumption within the processor. The Intel Thermal Monitor or Enhanced Thermal  
Monitor must be enabled for the processor to be operating within specifications. TM2  
requires support for dynamic VID transitions in the platform.  
Note:  
Not all Intel® Xeon® Processor 7400 Series are capable of supporting TM2. More detail  
on which processor frequencies will support TM2 will be provided in future releases of  
the Intel® Xeon® Processor 7400 Series Specification Update when available.  
When Intel Thermal Monitor 2 is enabled, and a high temperature situation is detected,  
the Thermal Control Circuit (TCC) will be activated for all processor cores. The TCC  
causes the processor to adjust its operating frequency (via the bus multiplier) and  
input voltage (via the VID signals). This combination of reduced frequency and VID  
results in a reduction to the processor power consumption.  
A processor enabled for Intel Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage, which is identical for both  
processor dies. The first operating point represents the normal operating condition for  
the processor. Under this condition, the core-frequency-to-system-bus multiplier  
utilized by the processor is that contained in the CLOCK_FLEX_MAX MSR and the VID  
that is specified in Table 2-3.  
The second operating point consists of both a lower operating frequency and voltage.  
The lowest operating frequency is determined by the lowest supported bus ratio (1/8  
for the Intel® Xeon® Processor 7400 Series). When the TCC is activated, the processor  
automatically transitions to the new frequency. This transition occurs rapidly, on the  
98  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
order of 5 µs. During the frequency transition, the processor is unable to service any  
bus requests, and consequently, all bus traffic is blocked. Edge-triggered interrupts will  
be latched and kept pending until the processor resumes operation at the new  
frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Intel Thermal Monitor 2.  
During the voltage change, it will be necessary to transition through multiple VID codes  
to reach the target operating voltage. Each step will be one VID table entry (see  
Table 2-3). The processor continues to execute instructions during the voltage  
transition. Operation at the lower voltage reduces the power consumption of the  
processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to ensure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 6-7 for an illustration of this ordering.  
Figure 6-7. Intel Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
fMAX  
fTM2  
Frequency  
VNOM  
VTM2  
Vcc  
Time  
T(hysterisis)  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Intel Thermal Monitor or Intel Thermal Monitor 2 is enabled.  
6.2.4  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as  
“On-Demand” mode and is distinct from the Intel Thermal Monitor and Intel Thermal  
Monitor 2 features. On-Demand mode is intended as a means to reduce system level  
power consumption. Systems utilizing the Intel® Xeon® Processor 7400 Series must  
not rely on software usage of this mechanism to limit the processor temperature. If bit  
4 of the IA32_CLOCK_MODULATION MSR is set to a ‘1, the processor will immediately  
reduce its power consumption via modulation (starting and stopping) of the internal  
core clock, independent of the processor temperature. When using On-Demand mode,  
the duty cycle of the clock modulation is programmable via bits 3:1 of the same  
Intel® Xeon® Processor 7400 Series Datasheet  
99  
Thermal Specifications  
IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off to 87.5% on/12.5% off in 12.5% increments.  
On-Demand mode may be used in conjunction with the Intel Thermal Monitor;  
however, if the system tries to enable On-Demand mode at the same time the TCC is  
engaged, the factory configured duty cycle of the TCC will override the duty cycle  
selected by the On-Demand mode.  
6.2.5  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot) is asserted when the temperature of  
either processor die has reached its factory configured trip point. If the Intel Thermal  
Monitor is enabled (note that the Intel Thermal Monitor must be enabled for the  
processor to be operating within specification), the TCC will be active when PROCHOT#  
is asserted. The processor can be configured to generate an interrupt upon the  
assertion or de-assertion of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures  
Software Developer’s Manual.  
PROCHOT# is designed to assert at or a few degrees higher than maximum TCASE (as  
specified by Thermal Profile) when dissipating TDP power, and cannot be interpreted as  
an indication of processor case temperature. This temperature delta accounts for  
processor package, lifetime and manufacturing variations and attempts to ensure the  
Thermal Control Circuit is not activated below maximum TCASE when dissipating TDP  
power. There is no defined or fixed correlation between the PROCHOT# trip  
temperature, or the case temperature. Thermal solutions must be designed to the  
processor specifications and cannot be adjusted based on experimental measurements  
of TCASE, or PROCHOT#.  
6.2.6  
FORCEPR# Signal  
The FORCEPR# (force power reduction) input can be used by the platform to cause the  
Intel® Xeon® Processor 7400 Series to activate the TCC. If the Intel Thermal Monitor  
is enabled, the TCC will be activated upon the assertion of the FORCEPR# signal.  
Assertion of the FORCEPR# signal will activate TCC for all processor cores. The TCC will  
remain active until the system deasserts FORCEPR#. FORCEPR# is an asynchronous  
input. FORCEPR# can be used to thermally protect other system components. To use  
the VR as an example, when FORCEPR# is asserted, the TCC circuit in the processor  
will activate, reducing the current consumption of the processor and the corresponding  
temperature of the VR.  
It should be noted that assertion of FORCEPR# does not automatically assert  
PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high  
temperature situation is detected. A minimum pulse width of 500 µs is recommended  
when FORCEPR# is asserted by the system. Sustained activation of the FORCEPR#  
signal may cause noticeable platform performance degradation.  
Refer to the Caneland Platform Design Guide for details on implementing the  
FORCEPR# signal feature.  
6.2.7  
THERMTRIP# Signal  
Regardless of whether or not the Intel Thermal Monitor or Intel Thermal Monitor 2 is  
enabled, in the event of a catastrophic cooling failure, the processor will automatically  
shut down when either die has reached an elevated temperature (refer to the  
THERMTRIP# definition in Table 5-1). At this point, the FSB signal THERMTRIP# will go  
active and stay active as described in Table 5-1. THERMTRIP# activation is independent  
100  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
of processor activity and does not generate any bus cycles. If THERMTRIP# is asserted,  
processor core voltage (VCC) must be removed within the time frame defined in  
Table 2-22 and Figure 2-17. Intel also recommends the removal of VTT.  
6.3  
Platform Environment Control Interface (PECI)  
6.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues.  
Figure 6-8 shows an example of the PECI topology in a system with Intel® Xeon®  
Processor 7400 Series. PECI uses CRC checking on the host side to ensure reliable  
transfers between the host and client devices. Also, data transfer speeds across the  
PECI interface are negotiable within a wide range (2 Kbps to 2 Mbps). The PECI  
interface on Intel® Xeon® Processor 7400 Series is disabled by default and must be  
enabled through BIOS.  
Figure 6-8. PECI Topology  
0
x
3
0
Domain0  
Domain1  
C28  
Socket  
Cluster ID[1:0] = 0  
0
0
x
3
0
0
x
3
2
Domain0  
Domain1  
C28  
Socket  
Cluster ID[1:0] = 1  
1
0
x
3
2
PECI Host  
Controller  
0
x
3
1
Domain0  
Domain1  
C28  
Socket  
Cluster ID[1:0] = 2  
2
0
x
3
1
0
x
3
3
Domain0  
Domain1  
C28  
Socket  
Cluster ID[1:0] = 3  
3
0
x
3
3
Note:  
1.  
Note: The power-on configuration (POC) settings of third party chipsets may produce different PECI  
addresses than those shown in Figure 6-8. Thermal designers should consult their third party chipset  
designers for the configured PECI addresses.  
Intel® Xeon® Processor 7400 Series Datasheet  
101  
Thermal Specifications  
6.3.1.1  
T
and Tcc Activation on PECI-Based Systems  
CONTROL  
Fan speed control solutions based on PECI utilize a TCONTROL (Temperature Control  
Offset) value stored in the processor IA32_TEMPERATURE_TARGET MSR. This MSR uses  
the same offset temperature format as PECI, though it contains no sign bit. Thermal  
management devices should infer the TCONTROL value as negative. Thermal  
management algorithms should utilize the relative temperature value delivered over  
PECI in conjunction with the MSR value to control or optimize fan speeds. Figure 7-8  
shows a conceptual fan control diagram using PECI temperatures.  
Figure 6-9. Conceptual Fan Control Diagram For a PECI-Based Platform  
TCONTROL  
Setting  
TCC Activation  
Temperature  
Max  
PECI = 0  
Fan Speed  
(RPM)  
PECI = -10  
Min  
PECI = -20  
Temperature  
(not intended to depict actual implementation)  
6.3.1.2  
Processor Thermal Data Sample Rate and Filtering  
The DTS (Digital Thermal Sensors) provide an improved capability to monitor device  
hot spots, which inherently leads to more varying temperature readings over short time  
intervals. The DTS sample interval range can be modified, and a data filtering algorithm  
can be activated to help moderate this. The DTS sample interval range is 82 us  
(default) to 20 ms (max). This value can be set in BIOS.  
To reduce the sample rate requirements on PECI and improve thermal data stability vs.  
time the processor DTS also implements an averaging algorithm that filters the  
incoming data. This is an alpha-beta filter with coefficients of 0.5, and is expressed  
mathematically as: Current_filtered_temp = (Previous_filtered_temp / 2) +  
(new_sensor_temp / 2). This filtering algorithm is fixed and cannot be changed. It is on  
by default and can be turned off in BIOS.  
Host controllers should utilize the min/max sample times to determine the appropriate  
sample rate based on the controller's fan control algorithm and targeted response rate.  
The key items to take into account when settling on a fan control algorithm are the DTS  
sample rate, whether the temperature filter is enabled, how often the PECI host will  
poll the processor for temperature data, and the rate at which fan speed is changed.  
Depending on the designer’s specific requirements the DTS sample rate and alpha-beta  
filter may have no effect on the fan control algorithm.  
102  
Intel® Xeon® Processor 7400 Series Datasheet  
Thermal Specifications  
6.3.2  
PECI Specifications  
6.3.2.1  
PECI Device Address  
The Intel® Xeon® Processor 7400 Series obtains its PECI address based on the  
processors APIC ID[4:3] at power on. APIC ID[4:3] is also known as the Cluster  
ID[1:0]. The Cluster ID[1:0] is set, by the chipset, by asserting the power-on  
configuration (POC) signals A[12:11]# at the deassertion of RESET#.  
The PECI address for the Intel® Xeon® Processor 7400 Series = 0x30 + Cluster  
ID[0:1] 1.  
.
The initial Cluster ID assigned to each socket must be unique to ensure a unique PECI  
address is assigned to each socket. The Cluster ID may be changed via the XAPIC ID  
register.  
The default PECI device address for the Intel® 7300 chipset FSB0 is 0x30.  
The default PECI device address for the Intel 7300 chipset FSB1 is 0x32.  
The default PECI device address for the Intel 7300 chipset FSB2 is 0x31.  
The default PECI device address for the Intel 7300 chipset FSB3 is 0x33.  
The power-on-configuration (POC) settings of third-party chipsets may produce  
different PECI addresses than those shown above. Thermal designers should consult  
their third party chipset designers for the default configured PECI addresses or power-  
on configuration method.  
Please note that each address also supports two domains (Domain 0 and Domain 1).  
For more information on PECI domains, please refer to the Platform Environment  
Control Interface Specification.  
Note:  
1.  
The Cluster ID bit order is reversed [0:1] for the PECI address calculation.  
6.3.2.2  
6.3.2.3  
PECI Command Support  
PECI command support is covered in detail in RS - Platform Environment Control  
Interface (PECI) Specification. Please refer to this document for details on supported  
PECI command function and codes  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is known to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not guaranteed to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damaging states. If the Host controller cannot complete a valid PECI  
transactions of GetTemp0() with a given PECI device over 3 consecutive failed  
transactions or a one second max specified interval, then it should take appropriate  
Intel® Xeon® Processor 7400 Series Datasheet  
103  
Thermal Specifications  
actions to protect the corresponding device and/or other system components from  
overheating. The host controller may also implement an alert to software in the event  
of a critical or continuous fault condition.  
6.3.2.4  
PECI GetTemp0() and GetTemp1() Error Code Support  
The error codes supported for the processor GetTemp0() and GetTemp1() commands  
are listed inTable 6-7 below:  
Table 6-7.  
GetTemp0() and GetTemp1() Error Codes  
Error Code  
0x8000  
0x8002  
Description  
General sensor error  
Sensor is operational, but has detected a temperature below its operational range  
(underflow), currently 30 C absolute temperature.  
o
§
104  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7 Features  
7.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Intel® Xeon®  
Processor 7400 Series samples its hardware configuration at reset, on the active-to-  
inactive transition of RESET#. For specifics on these options, please refer to Table 7-1.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor, for reset purposes, the processor does not distinguish between a “warm”  
reset (PWRGOOD signal remains asserted) and a “power-on” reset.  
Table 7-1.  
Power-On Configuration Option Pins  
Configuration Option  
Output tri state  
Pin Name  
Notes  
SMI#  
A3#  
1,2,3  
1,2  
Execute BIST (Built-In Self Test)  
Disable MCERR# observation  
Disable BINIT# observation  
Cluster ID  
A9#  
1,2  
A10#  
1,2  
A[12:11]#  
A15#  
1,2  
Disable bus parking  
1,2  
Notes:  
1.  
2.  
3.  
Asserting this signal during RESET# will select the corresponding option.  
Address pins not identified in this table as configuration options should not be asserted during RESET#.  
Requires de-assertion of PWRGOOD.  
Disabling of any of the cores within the Intel® Xeon® Processor 7400 Series must be  
handled by configuring the EXT_CONFIG Model Specific Register (MSR). This MSR will  
allow for the disabling of a single core per core pair within the Intel® Xeon® Processor  
7400 Series package.  
7.2  
Clock Control and Low Power States  
The Intel® Xeon® Processor 7400 Series supports the Extended HALT state (also  
referred to as C1E) in addition to the HALT state and Stop-Grant state to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 7-1 for a visual representation of the processor low  
power states. The Extended HALT state is a lower power state than the HALT state or  
Stop Grant state.  
The Extended HALT state must be enabled via the BIOS for the processor to  
remain within its specifications. For processors that are already running at the  
lowest bus to core frequency ratio for its nominal operating point, the processor will  
transition to the HALT state instead of the Extended HALT state.  
The Stop Grant state requires chipset and BIOS support on multiprocessor systems. In  
a multiprocessor system, all the STPCLK# signals are bussed together, thus all  
processors are affected in unison. When the STPCLK# signal is asserted, the processor  
enters the Stop Grant state, issuing a Stop Grant Special Bus Cycle (SBC) for each  
processor. The chipset needs to account for a variable number of processors asserting  
the Stop Grant SBC on the bus before allowing the processor to be transitioned into one  
of the lower processor power states. Refer to the applicable chipset specification.  
Intel® Xeon® Processor 7400 Series Datasheet  
105  
Features  
7.2.1  
7.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT or Extended HALT State  
The Extended HALT state (C1E) is enabled via the BIOS. The Extended HALT state  
must be enabled for the processor to remain within its specifications. The  
Extended HALT state requires support for dynamic VID transitions in the platform.  
7.2.2.1  
HALT State  
HALT is a low power state entered when the processor has executed the HALT or  
MWAIT instruction. When one of the processor cores executes the HALT or MWAIT  
instruction, that processor core is halted; however, the other processor cores continue  
normal operation. The processor will transition to the Normal state upon the occurrence  
of SMI#, BINIT#, INIT#, LINT[1:0] (NMI, INTR), or an interrupt delivered over the  
front side bus. RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT state. See the Intel® 64 and IA-32 Architectures Software  
Developer's Manual, Volume III: System Programming Guide for more information.  
The system can generate a STPCLK# while the processor is in the HALT state. When the  
system deasserts STPCLK#, the processor will return execution to the HALT state.  
While in HALT state, the processor will process front side bus snoops and interrupts.  
7.2.2.2  
Extended HALT State  
Extended HALT state is a low power state entered when all processor cores have  
executed the HALT or MWAIT instructions and Extended HALT state has been enabled  
via the BIOS. When one of the processor cores executes the HALT instruction, that  
processor core is halted; however, the other processor cores continue normal  
operation. The Extended HALT state is a lower power state than the HALT state or Stop  
Grant state. The Extended HALT state must be enabled for the processor to remain  
within its specifications.  
The processor will automatically transition to a lower core frequency and voltage  
operating point before entering the Extended HALT state. Note that the processor FSB  
frequency is not altered; only the internal core frequency is changed. When entering  
the low power state, the processor will first switch to the lower bus to core frequency  
ratio and then transition to the lower voltage (VID).  
While in the Extended HALT state, the processor will process bus snoops.  
106  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
E
Table 7-2.  
Extended HALT Maximum Power  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
P
Extended HALT State Power  
42  
W
1, 2  
EXTENDED_HALT  
Intel® Xeon®  
X7460 Processor  
P
Extended HALT State Power  
Extended HALT State Power  
C1 Idle Power  
32  
36  
42  
20  
W
W
W
W
1, 2  
EXTENDED_HALT  
6-Core Intel®  
Xeon® Processor  
E7400 Series  
P
1, 2, 3  
1, 2, 3  
1, 2, 3  
EXTENDED_HALT  
4-Core Intel®  
Xeon® Processor  
E7400 Series  
P
_HALT  
4-core Intel®  
Xeon® E7420,  
E7430 Processor  
P
C1 Idle Power  
_HALT  
6-Core Intel®  
Xeon® Processor  
L7455 Series  
P
C1 Idle Power  
15  
W
1, 2, 3  
_HALT  
4-Core Intel®  
Xeon® Processor  
L7445 Series  
Notes:  
1.  
The specification is at T  
= 50°C and nominal V . The VID setting represents the maximum expected  
CASE CC  
VID while running in HALT state.  
2.  
3.  
This specification is characterized by design.  
Processors running in the lowest bus ratio will enter the HALT state when the processor has executed the  
HALT and MWAIT instruction since the processor is already in the lowest core frequency and voltage  
operating point.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will first transition the VID to the original  
value and then change the bus to core frequency ratio back to the original value.  
Intel® Xeon® Processor 7400 Series Datasheet  
107  
Features  
Figure 7-1. Stop Clock State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT State  
Normal State  
INIT#, BINIT#, INTR, NMI, SMI#,  
RESET#, FSB interrupts  
BCLK running  
Snoops and interrupts allowed  
Normal execution  
Snoop  
Event  
Occurs Serviced  
Snoop  
Event  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or HALT  
Snoop State  
BCLK running  
Service snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
Stop Grant State  
Stop Grant Snoop State  
BCLK running  
BCLK running  
Snoops and interrupts allowed  
Service snoops to caches  
7.2.3  
Stop-Grant State  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20  
bus clocks after the response phase of the processor issued Stop Grant Acknowledge  
special bus cycle. Once the STPCLK# pin has been asserted, it may only be deasserted  
once the processor is in the Stop Grant state. All processor cores will enter the Stop-  
Grant state once the STPCLK# pin is asserted. Additionally, all processor cores must be  
in the Stop Grant state before the deassertion of STPCLK#.  
Since the AGTL+ signal pins receive power from the front side bus, these pins should  
not be driven (allowing the level to return to VTT) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the front side bus  
should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be  
latched and can be serviced by software upon exit from the Stop Grant state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the front side bus (see Section 7.2.4.1).  
108  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by  
the processor, and only serviced when the processor returns to the Normal state. Only  
one occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process snoops on the front side bus and it  
will latch interrupts delivered on the front side bus.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt latched within the processor. Pending  
interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of  
PBE#. Assertion of PBE# indicates to system logic that it should return the processor to  
the Normal state.  
7.2.4  
Extended HALT Snoop or HALT Snoop State, Stop Grant  
Snoop State  
The Extended HALT Snoop state is used in conjunction with the Extended HALT state. If  
the Extended HALT state is not enabled in the BIOS, the default Snoop state entered  
will be the HALT Snoop state. Refer to the sections below for details on HALT Snoop  
state, Stop Grant Snoop state and Extended HALT Snoop state.  
7.2.4.1  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop or interrupt transactions on the front side bus  
while in Stop-Grant state or in HALT state. During a snoop or interrupt transaction, the  
processor enters the HALT/Grant Snoop state. The processor will stay in this state until  
the snoop on the front side bus has been serviced (whether by the processor or another  
agent on the front side bus) or the interrupt has been latched. After the snoop is  
serviced or the interrupt is latched, the processor will return to the Stop-Grant state or  
HALT state, as appropriate.  
7.2.4.2  
Extended HALT Snoop State  
The Extended HALT Snoop state is the default Snoop state when the Extended HALT  
state is enabled via the BIOS. The processor will remain in the lower bus to core  
frequency ratio and VID operating point of the Extended HALT state.  
While in the Extended HALT Snoop state, snoops and interrupt transactions are handled  
the same way as in the HALT Snoop state. After the snoop is serviced or the interrupt is  
latched, the processor will return to the Extended HALT state.  
7.3  
Enhanced Intel SpeedStep® Technology  
Intel® Xeon® Processor 7400 Series support Enhanced Intel SpeedStep® Technology.  
This technology enables the processor to switch between multiple frequency and  
voltage points, which results in platform power savings. Enhanced Intel SpeedStep  
Technology requires support for dynamic VID transitions in the platform. Switching  
between voltage/frequency states is software controlled.  
Note:  
Not all Intel® Xeon® Processor 7400 Series may be capable of supporting Enhanced  
Intel SpeedStep Technology. More details on which processor frequencies will support  
this feature will be provided in future releases of the Intel® Xeon® Processor 7400  
Series Specification Update when available.  
Intel® Xeon® Processor 7400 Series Datasheet  
109  
Features  
Enhanced Intel SpeedStep Technology creates processor performance states (P-states)  
or voltage/frequency operating points. P-states are lower power capability states within  
the Normal state as shown in Figure 7-1. Enhanced Intel SpeedStep Technology  
enables real-time dynamic switching between frequency and voltage points. It alters  
the performance of the processor by changing the bus to core frequency ratio and  
voltage. This allows the processor to run at different core frequencies and voltages to  
best serve the performance and power requirements of the processor and system. The  
Intel® Xeon® Processor 7400 Series have hardware logic that coordinates the  
requested voltage (VID) between the processor cores. The highest voltage requested  
from the four processor cores is selected for that processor package. Note that the  
front side bus is not altered; only the internal core frequency is changed. In order to  
run at reduced power consumption, the voltage is altered in step with the bus ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage/frequency operating points provide optimal performance at  
reduced power consumption.  
• Voltage/frequency selection is software controlled by writing to processor MSR’s  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, VCC is incremented  
in steps (+12.5 mV) by placing a new value on the VID signals and the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and VCC is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
7.4  
System Management Bus (SMBus) Interface  
The Intel® Xeon® Processor 7400 Series package includes an SMBus interface which  
allows access to a memory component with two sections (referred to as the Processor  
Information ROM and the Scratch EEPROM). These devices and their features are  
described below.  
Note:  
The SMBus on-package thermal sensor has been removed and is no longer used. Refer  
to Section 6.3 for details about the new digital thermometer and PECI interface.  
The processor SMBus implementation uses the clock and data signals of the System  
Management Bus (SMBus) Specification. It does not implement the SMBSUS# signal.  
Layout and routing guidelines are available in the Caneland Platform Design Guide  
document.  
For platforms which do not implement any of the SMBus features found on the  
processor, all of the SMBus connections, except SM_VCC, to the socket pins may be left  
unconnected (SM_CLK, SM_DAT, SM_EP_A[2:0], SM_WP).  
110  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
Figure 7-2. Logical Schematic of SMBus Circuitry  
SM_VCC  
VCC  
SM_EP_A0  
SM_EP_A1  
SM_EP_A2  
SM_WP  
DATA  
CLK  
Processor  
Information  
ROM  
and Scratch  
EEPROM  
(1Kbit each)  
VSS  
SM_CLK  
SM_DAT  
Note: Actual implementation may vary. This figure is provided to offer a general understanding of the  
architecture. All SMBus pull-up and pull-down resistors are 10 kΩ and located on the processor.  
7.4.1  
SMBus Device Addressing  
Of the addresses broadcast across the SMBus, the memory component claims those of  
the form “1010XXXZb. The “XXX” bits are defined by pull-up and pull-down resistors  
on the system baseboard. These address pins are pulled down weakly (10 kΩ) on the  
processor substrate to ensure that the memory components are in a known state in  
systems which do not support the SMBus (or only support a partial implementation).  
The “Z” bit is the read/write bit for the serial bus transaction.  
Note that addresses of the form “0000XXXXb” are Reserved and should not be  
generated by an SMBus master. The system designer must also ensure that their  
particular implementation does not add excessive capacitance to the address inputs.  
Excess capacitance at the address inputs may cause address recognition problems.  
Refer to the appropriate platform design guide document.  
Figure 7-2 shows a logical diagram of the pin connections. Table 7-3 describe the  
address pin connections and how they affect the addressing of the devices.  
Intel® Xeon® Processor 7400 Series Datasheet  
111  
Features  
Table 7-3.  
Memory Device SMBus Addressing  
Address  
(Hex)  
Upper  
Address  
Device Select  
R/W  
1
SM_EP_A2  
bit 3  
SM_EP_A1  
bit 2  
SM_EP_A0  
bit 1  
bits 7-4  
bit 0  
A0h/A1h  
A2h/A3h  
A4h/A5h  
A6h/A7h  
A8h/A9h  
AAh/ABh  
ACh/ADh  
AEh/AFh  
1010  
1010  
1010  
1010  
1010  
1010  
1010  
1010  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
Note:  
1. This addressing scheme will support up to 8 processors on a single SMBus.  
7.4.2  
PIROM and Scratch EEPROM Supported SMBus  
Transactions  
The Processor Information ROM (PIROM) responds to two SMBus packet types: Read  
Byte and Write Byte. However, since the PIROM is write-protected, it will acknowledge a  
Write Byte command but ignore the data. The Scratch EEPROM responds to Read Byte  
and Write Byte commands. Table 7-4 diagrams the Read Byte command. Table 7-5  
diagrams the Write Byte command. Following a write cycle to the scratch ROM,  
software must allow a minimum of 10 ms before accessing either ROM of the processor.  
In the tables, ‘S’ represents the SMBus start bit, ‘P’ represents a stop bit, ‘R’ represents  
a read bit, ‘W’ represents a write bit, ‘A’ represents an acknowledge (ACK), and ‘///’  
represents a negative acknowledge (NACK). The shaded bits are transmitted by the  
Processor Information ROM or Scratch EEPROM, and the bits that aren’t shaded are  
transmitted by the SMBus host controller. In the tables, the data addresses indicate 8  
bits. The SMBus host controller should transmit 8 bits with the most significant bit  
indicating which section of the EEPROM is to be addressed: the Processor Information  
ROM (MSB = 0) or the Scratch EEPROM (MSB = 1).  
Table 7-4.  
Table 7-5.  
Read Byte SMBus Packet  
Slave  
Addres  
s
Comman  
d Code  
Slave  
Address  
S
Write  
A
A
S
Read  
A
Data  
///  
P
1
7-bits  
1
1
8-bits  
1
1
7-bits  
1
1
8-bits  
1
1
Write Byte SMBus Packet  
S
Slave Address  
Write  
A
Command Code  
A
Data  
A
P
1
7-bits  
1
1
8-bits  
1
8-bits  
1
1
112  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3  
Processor Information ROM (PIROM)  
The lower half (128 bytes) of the SMBus memory component is an electrically  
programmed read-only memory with information about the processor. This information  
is permanently write-protected. Table 7-6 shows the data fields and Section 7.4.3  
provides the formats of the data fields included in the Processor Information ROM  
(PIROM).  
The PIROM consists of the following sections:  
• Header  
• Processor Data  
• Processor Core Data  
• Cache Data  
• Package Data  
• Part Number Data  
• Thermal Reference Data  
• Feature Data  
• Other Data  
Table 7-6.  
Processor Information ROM Data Sections (Sheet 1 of 3)  
# of  
Bits  
Offset/Section  
Function  
Notes  
Header:  
00h  
01 - 02h  
03h  
8
16  
8
Data Format Revision  
PIROM Size  
Two 4-bit hex digits  
Size in bytes (MSB first)  
Processor Data Address  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
04h  
8
Processor Core Data  
Address  
05h  
06h  
07h  
08h  
8
8
8
8
L3 Cache Data Address  
Package Data Address  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Part Number Data Address  
Thermal Reference Data  
Address  
09h  
0Ah  
8
8
Feature Data Address  
Other Data Address  
Reserved  
Byte pointer, 00h if not present  
Byte pointer, 00h if not present  
Reserved  
0B - 0Ch  
0Dh  
16  
8
Checksum  
1 byte checksum  
Processor Data:  
0E - 13h  
14h  
48  
S-spec Number  
Six 8-bit ASCII characters  
6
2
Reserved  
Sample/Production  
Reserved (most significant bits)  
00b = Sample, 01b = Production  
15h  
8
Checksum  
1 byte checksum  
Processor Core  
Data:  
16 - 19h  
2
8
4
Reserved  
Reserved for future use  
From CPUID  
Extended Family  
Extended Model  
From CPUID  
Intel® Xeon® Processor 7400 Series Datasheet  
113  
Features  
Table 7-6.  
Processor Information ROM Data Sections (Sheet 2 of 3)  
# of  
Bits  
Offset/Section  
Function  
Notes  
2
2
Reserved  
Reserved for future use  
From CPUID  
Processor Core Type  
Processor Core Family  
Processor Core Model  
Processor Core Stepping  
Reserved  
4
From CPUID  
4
From CPUID  
4
From CPUID  
2
Reserved for future use  
1A - 1Bh  
16  
Front Side Bus Speed  
16-bit binary number (in MTS)  
1Ch  
2
6
Multiprocessor Support  
Reserved  
00b = UP,01b = DP,10b = RSVD,11b = MP  
Reserved  
1D - 1Eh  
1F - 20h  
16  
16  
Maximum Core Frequency  
Maximum Core VID  
16-bit binary number (in MHz)  
Maximum V requested by VID outputs in  
CC  
mV  
21 - 22h  
23h  
16  
8
Minimum Core Voltage  
Minimum processor DC V in mV  
CC  
T
Maximum  
Maximum case temperature spec in °C  
1 byte checksum  
CASE  
24h  
8
Checksum  
Cache Data:  
25 - 26h  
27 - 28h  
29 - 2Ah  
2B - 2Ch  
16  
16  
16  
16  
Reserved  
Reserved for future use  
16-bit binary number (in KB)  
16-bit binary number (in KB)  
L2 Cache Size  
L3 Cache Size  
Maximum Cache CVID  
Maximum V  
requested by CVID  
CACHE  
outputs in mV  
2D - 2Eh  
2F - 30h  
16  
16  
8
Minimum Cache Voltage  
Reserved  
Minimum processor DC V  
in mV  
CACHE  
Reserved  
31h  
Checksum  
1 byte checksum  
Package Data:  
32 - 35h  
32  
8
Package Revision  
Reserved  
Four 8-bit ASCII characters  
Reserved for future use  
1 byte checksum  
36h  
37h  
8
Checksum  
Part Number Data:  
38 - 3Eh  
56  
112  
64  
Processor Part Number  
Reserved  
Seven 8-bit ASCII characters  
Reserved  
3F - 4Ch  
4D - 54h  
Processor Electronic  
Signature  
64-bit identification number  
55 - 6Eh  
6Fh  
208  
8
Reserved  
Reserved  
Checksum  
1 byte checksum  
114  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
Table 7-6.  
Processor Information ROM Data Sections (Sheet 3 of 3)  
# of  
Bits  
Offset/Section  
Function  
Notes  
Thermal Ref. Data:  
70h  
8
16  
8
Reserved  
Reserved  
Checksum  
Reserved  
Reserved  
71 - 72h  
73h  
1 byte checksum  
Feature Data:  
74 - 77h  
32  
8
Processor Core Feature  
Flags  
From CPUID function 1, EDX contents  
78h  
Processor Feature Flags  
[7] = Multi-Core  
[6] = Serial Signature  
[5] = Electronic Signature Present  
[4] = Thermal Sense Device Present  
[3] = Reserved  
[2] = OEM EEPROM Present  
[1] = Core VID Present  
[0] = L3 Cache Present  
79h  
7Ah  
8
8
Processor Thread and Core  
Information  
[7:2] = Number of cores  
[1:0] = Number of threads per core  
Additional Processor Feature [7] = Reserved  
®
Flags  
[6] = Intel Cache Safe Technology  
[5] = Extended Halt State (C1E)  
®
[4] = Intel Virtualization Technology  
[3] = Execute Disable  
®
[2] = Intel 64  
[1] = Thermal Monitor TM2  
[0] = Enhanced Intel SpeedStep  
Technology  
®
7B-7Ch  
16  
Thermal Adjustment Factors [15:8] = Measurement Correction Factor  
(Pending)  
Reserved  
Checksum  
[7:0] = Temperature Target  
7D-7Eh  
7Fh  
16  
8
Reserved  
1 byte checksum  
Details on each of these sections are described below.  
Note:  
Reserved fields or bits SHOULD be programmed to zeros. However, OEMs should not  
rely on this model.  
7.4.3.1  
Header  
To maintain backward compatibility, the Header defines the starting address for each  
subsequent section of the PIROM. Software should check for the offset before reading  
data from a particular section of the ROM.  
Example: Code looking for the cache data of a processor would read offset 05h to find  
a value of 25h. 25h is the first address within the 'Cache Data' section of the PIROM.  
Intel® Xeon® Processor 7400 Series Datasheet  
115  
Features  
7.4.3.1.1  
DFR: Data Format Revision  
This location identifies the data format revision of the PIROM data structure. Writes to  
this register have no effect.  
Offset:  
00h  
Bit  
Description  
7:0  
Data Format Revision  
The data format revision is used whenever fields within the PIROM are  
redefined. The initial definition will begin at a value of 1. If a field, or bit  
assignment within a field, is changed such that software needs to discern  
between the old and new definition, then the data format revision field will be  
incremented.  
00h: Reserved  
01h: Initial definition  
02h: Second revision  
03h: Third revision  
04h: Fourth revision (Defined by this EMTS)  
05h-FFh: Reserved  
Example: The Intel® Xeon® Processor 7400 Series will use 04h at offset 00h.  
Note:  
Changes from Third Revision:  
1. The Number of cores field in PTCI: Processor Thread and Core Information at offset  
79h was extended to six bits. It now defined as Number of Core = Bits [7:2]. It  
previously was defined as Bits [3:2]  
7.4.3.1.2  
PISIZE: PIROM Size  
This location identifies the PIROM size. Writes to this register have no effect.  
Offset:  
01h-02h  
Bit  
Description  
15:0  
PIROM Size  
The PIROM size provides the size of the device in hex bytes. The MSB is at  
location 01h, the LSB is at location 02h.  
0000h - 007Fh: Reserved  
0080h: 128 byte PIROM size  
0081- FFFFh: Reserved  
7.4.3.1.3  
PDA: Processor Data Address  
This location provides the offset to the Processor Data Section. Writes to this register  
have no effect.  
Offset:  
03h  
Bit  
Description  
7:0  
Processor Data Address  
Byte pointer to the Processor Data section  
00h: Processor Data section not present  
01h - 0Dh: Reserved  
0Eh: Processor Data section pointer value  
0Fh-FFh: Reserved  
116  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.1.4  
PCDA: Processor Core Data Address  
This location provides the offset to the Processor Core Data Section. Writes to this  
register have no effect.  
Offset:  
04h  
Bit  
Description  
7:0  
Processor Core Data Address  
Byte pointer to the Processor Data section  
00h: Processor Core Data section not present  
01h - 15h: Reserved  
16h: Processor Core Data section pointer value  
17h-FFh: Reserved  
7.4.3.1.5  
L3CDA: L3 Cache Data Address  
This location provides the offset to the L3 Cache Data Section. Writes to this register  
have no effect.  
Offset:  
05h  
Bit  
Description  
7:0  
L3 Cache Data Address  
Byte pointer to the L3 Cache Data section  
00h: L3 Cache Data section not present  
01h - 24h: Reserved  
25h: L3 Cache Data section pointer value  
26h-FFh: Reserved  
7.4.3.1.6  
PDA: Package Data Address  
This location provides the offset to the Package Data Section. Writes to this register  
have no effect.  
Offset:  
06h  
Bit  
Description  
7:0  
Package Data Address  
Byte pointer to the Package Data section  
00h: Package Data section not present  
01h - 31h: Reserved  
32h: Package Data section pointer value  
33h-FFh: Reserved  
Intel® Xeon® Processor 7400 Series Datasheet  
117  
Features  
7.4.3.1.7  
7.4.3.1.8  
7.4.3.1.9  
PNDA: Part Number Data Address  
This location provides the offset to the Part Number Data Section. Writes to this  
register have no effect.  
Offset:  
07h  
Bit  
Description  
7:0  
Part Number Data Address  
Byte pointer to the Part Number Data section  
00h: Part Number Data section not present  
01h - 37h: Reserved  
38h: Part Number Data section pointer value  
39h-FFh: Reserved  
TRDA: Thermal Reference Data Address  
This location provides the offset to the Thermal Reference Data Section. Writes to this  
register have no effect.  
Offset:  
08h  
Bit  
Description  
7:0  
Thermal Reference Data Address  
Byte pointer to the Thermal Reference Data section  
00h: Thermal Reference Data section not present  
01h - 6Fh: Reserved  
70h: Thermal Reference Data section pointer value  
71h-FFh: Reserved  
FDA: Feature Data Address  
This location provides the offset to the Feature Data Section. Writes to this register  
have no effect.  
Offset:  
09h  
Bit  
Description  
7:0  
Feature Data Address  
Byte pointer to the Feature Data section  
00h: Feature Data section not present  
01h - 73h: Reserved  
74h: Feature Data section pointer value  
75h-FFh: Reserved  
118  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.1.10  
ODA: Other Data Address  
This location provides the offset to the Other Data Section. Writes to this register have  
no effect.  
Offset:  
0Ah  
Bit  
Description  
7:0  
Other Data Address  
Byte pointer to the Other Data section  
00h: Other Data section not present  
01h - 7Dh: Reserved  
7Eh: Other Data section pointer value  
7Fh- FFh: Reserved  
7.4.3.1.11  
RES1: Reserved 1  
This locations are reserved. Writes to this register have no effect.  
Offset:  
0Bh-0Ch  
Bit  
Description  
15:0  
RESERVED  
0000h-FFFFh: Reserved  
7.4.3.1.12  
HCKS: Header Checksum  
This location provides the checksum of the Header Section. Writes to this register have  
no effect.  
Offset:  
0Dh  
Bit  
Description  
7:0  
Header Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.2  
Processor Data  
This section contains two pieces of data:  
• The S-spec of the part in ASCII format  
• (1) 2-bit field to declare if the part is a pre-production sample or a production unit  
7.4.3.2.1  
SQNUM: S-Spec Number  
This location provides the S-SPec number of the processor. The S-spec field is six ASCII  
characters wide and is programmed with the same S-spec value as marked on the  
processor. If the value is less than six characters in length, leading spaces (20h) are  
programmed in this field. Writes to this register have no effect.  
Example: A processor with a S-Spec mark of SLA67 contains the following in field 0E-  
13h: 20h, 53h, 4Ch, 41h, 36h, 37h. This data consists of one blank at 0Eh followed by  
the ASCII codes for SLA67 in locations 10 - 13h.  
Intel® Xeon® Processor 7400 Series Datasheet  
119  
Features  
Offset:  
0Eh-13h  
Bit  
Description  
47:40  
Character 6  
S-SPEC character or 20h  
00h-0FFh: ASCII character  
39:32  
31:24  
23:16  
15:8  
Character 5  
S-SPEC character or 20h  
00h-0FFh: ASCII character  
Character 4  
S-SPEC character  
00h-0FFh: ASCII character  
Character 3  
S-SPEC character  
00h-0FFh: ASCII character  
Character 2  
S-SPEC character  
00h-0FFh: ASCII character  
7:0  
Character 1  
S-SPEC character  
00h-0FFh: ASCII character  
7.4.3.2.2  
SAMPROD: Sample/Production  
This location contains the sample/production field, which is a two-bit field and is LSB  
aligned. All Q-spec material will use a value of 00b. All S-spec material will use a value  
of 01b. All other values are reserved. Writes to this register have no effect.  
Example: A processor with a Qxxx mark (engineering sample) will have offset 14h set  
to 00h. A processor with an Sxxxx mark (production unit) will use 01h at offset 14h.  
Offset:  
14h  
Bit  
Description  
7:2  
RESERVED  
000000b-111111b: Reserved  
1:0  
Sample/Production  
Sample or Production indictor  
00b: Sample  
01b: Production  
10b-11b: Reserved  
120  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.2.3  
PDCKS: Processor Data Checksum  
This location provides the checksum of the Processor Data Section. Writes to this  
register have no effect.  
Offset:  
15h  
Bit  
Description  
7:0  
Processor Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.3  
Processor Core Data  
This section contains core silicon-related data.  
7.4.3.3.1  
CPUID: Processor CPUID Signature  
This location contains the CPUID, Processor Type, Family, Model and Stepping. The  
CPUID field is a copy of the results in EAX[27:0] from Function 1 of the CPUID  
instruction. The MSB is at location 16h, the LSB is at location 19h. Writes to this  
register have no effect.  
Example: If the CPUID of a processor is 000106D0h (A-0 stepping), then the value  
programmed into offset 16 - 19h of the PIROM is 00041980h.  
Note:  
The field is not aligned on a byte boundary since the first two bits of the offset are  
reserved. Thus, the data must be shifted right by two in order to obtain the same  
results as the CPUID instruction.  
Offset:  
16h-19h  
Bit  
Description  
31:30  
Reserved  
00b-11b: Reserved  
29:21  
21:18  
Extended Family  
00h-0Fh: Extended Family  
Extended Model  
0h-Fh: Extended Model  
17:16  
15:14  
Reserved  
00b-11b: Reserved  
Processor Type  
00b-11b: Processor Type  
13:10  
9:6  
Processor Family  
0h-Fh: Processor Family  
Processor Model  
0h-Fh: Processor Model  
5:2  
Processor Stepping  
0h-Fh: Processor Stepping  
1:0  
Reserved  
00b-11b: Reserved  
Intel® Xeon® Processor 7400 Series Datasheet  
121  
Features  
7.4.3.3.2  
FSB: Front Side Bus Speed  
This location contains the front side bus transaction rate information. Systems may  
need to read this offset to decide if all installed processors support the same front side  
bus speed. Because FSB is described as a 4X data bus, the transaction rate given in this  
field is currently 1066 MTS. The data provided is the speed, rounded to a whole  
number, and reflected in hex. Writes to this register have no effect.  
Example: The Intel® Xeon® Processor 7400 Series supports a 1066 MTS front side  
bus. Therefore, offset 1A - 1Bh has a value of 042Ah.  
Offset:  
1Ah-1Bh  
Bit  
Description  
15:0  
Front Side Bus Speed  
0000h-FFFFh: MTS  
7.4.3.3.3  
MPSUP: Multiprocessor Support  
This location contains 2 bits for representing the supported number of physical  
processors on the bus. These two bits are MSB aligned where 00b equates to single-  
processor operation, 01b is a dual-processor operation, and 11b represents multi-  
processor operation. The Intel® Xeon® Processor 7400 Series is an MP processor. The  
remaining six bits in this field are reserved for the future use. Writes to this register  
have no effect.  
Example: The Intel® Xeon® Processor 7400 Series will use C0h at offset 1Ch.  
Offset:  
1Ch  
Bit  
Description  
7:6  
Multiprocessor Support  
UP, DP or MP indictor  
00b: UP  
01b: DP  
10b: Reserved  
11b: MP  
5:0  
RESERVED  
000000b-111111b: Reserved  
7.4.3.3.4  
MCF: Maximum Core Frequency  
This location contains the maximum core frequency for the processor. The frequency  
should equate to the markings on the processor and/or the S-spec speed even if the  
parts are not limited or locked to the intended speed. Format of this field is in MHz,  
rounded to a whole number, and encoded in hex format. Writes to this register have no  
effect.  
Example: A 2.93 GHz processor will have a value of 0675h, which equates to 2933  
decimal. Therefore, offset 1D - 1Eh has a value of 0765h.  
122  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
Offset:  
1Dh-1Eh  
Bit  
Description  
15:0  
Maximum Core Frequency  
0000h-FFFFh: MHz  
7.4.3.3.5  
MAXVID: Maximum Core VID  
This location contains the maximum Core VID (Voltage Identification) voltage that may  
be requested via the VID pins. This field, rounded to the next thousandth, is in mV and  
is reflected in hex. Writes to this register have no effect.  
Example: From Table 2-9the maximum VID is 1.450 V maximum voltage. Offset 1F -  
20h would contain 05AAh (1450 decimal).  
Offset:  
1Fh-20h  
Bit  
Description  
15:0  
Maximum Core VID  
0000h-FFFFh: mV  
7.4.3.3.6  
MINV: Minimum Core Voltage  
This location contains the minimum Processor Core voltage. This field, rounded to the  
next thousandth, is in mV and is reflected in hex. The minimum VCC reflected in this  
field is the minimum allowable voltage assuming the FMB maximum current draw.  
Writes to this register have no effect.  
Note:  
The minimum core voltage value in offset 21 - 22h is a single value that assumes the  
FMB maximum current draw. Refer to Table 2-9and Table 2-10 for the minimum core  
voltage specifications based on actual real-time current draw.  
Example: For an Intel® Xeon® Processor 7400 Series the minimum voltage is 0.695 V  
= 0.900 V (Min VID) - 0.205 V (Voltage Offset at maximum current). Offset 21 - 22h  
would contain 0267Fh (0695 decimal).  
Offset:  
21h-22h  
Bit  
Description  
15:0  
Minimum Core Voltage  
0000h-FFFFh: mV  
7.4.3.3.7  
TCASE: TCASE Maximum  
This location provides the maximum TCASE for the processor. The field reflects  
temperature in degrees Celsius in hex format. This data can be found in the Table 6-1.  
The thermal specifications are specified at the case Integrated Heat Spreader  
(IHS).Writes to this register have no effect.  
Intel® Xeon® Processor 7400 Series Datasheet  
123  
Features  
Offset:  
23h  
Bit  
Description  
7:0  
T
Maximum  
CASE  
00h-FFh: Degrees Celsius  
7.4.3.3.8  
PCDCKS: Processor Core Data Checksum  
This location provides the checksum of the Processor Core Data Section. Writes to this  
register have no effect.  
Offset:  
24h  
Bit  
Description  
7:0  
Processor Core Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.4  
Cache Data  
This section contains cache-related data.  
7.4.3.4.1  
RES3: Reserved 3  
These locations are reserved. Writes to this register have no effect.  
Offset:  
25h-26h  
Bit  
Description  
15:0  
RESERVED 3  
0000h-FFFFh: Reserved  
7.4.3.4.2  
L2SIZE: L2 Cache Size  
This location contains the size of the level two cache in kilobytes. Writes to this register  
have no effect.  
Example: The Intel® Xeon® Processor 7400 Series processor has a 6 MB (6144 KB)  
or a 9 MB (9216 KB) L2 cache total (3 MB L2 cache per two processor cores). Thus,  
offset 27 - 28h will contain 1800h (for 6 MB) or 2400h (for 9 MB).  
Offset:  
27h-28h  
Bit  
Description  
15:0  
L2 Cache Size  
0000h-FFFFh: KB  
124  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.4.3  
L3SIZE: L3 Cache Size  
This location contains the size of the level three cache in kilobytes. Writes to this  
register have no effect.  
Example: The Intel® Xeon® Processor 7400 Series has either a 12 MB (12288 KB) ,  
16 MB (16384 KB) or 8 MB ((8192 KB))L3 cache. Thus, offset 29 - 2Ah will contain  
3000h (for 12 MB) ,4000h (for 16 MB) or 2000h(for 8 MB).  
Offset:  
29h-2Ah  
Bit  
Description  
15:0  
L3 Cache Size  
0000h-FFFFh: KB  
7.4.3.4.4  
MAXCVID: Maximum Cache VID  
This location contains the maximum Cache VID (Voltage Identification) voltage that  
may be requested via the CVID pins. This field, rounded to the next thousandth, is in  
mV and is reflected in hex. Writes to this register have no effect.  
Example: The Intel® Xeon® Processor 7400 Series does not utilize a Cache VID.  
Offset 2B - 2Ch will contain 0000h (0 decimal).  
Offset:  
2Bh-2Ch  
Bit  
Description  
15:0  
Maximum Cache VID  
0000h-FFFFh: mV  
7.4.3.4.5  
MINCV: Minimum Cache Voltage  
This location contains the minimum Cache voltage. This field, rounded to the next  
thousandth, is in mV and is reflected in hex. The minimum VCACHE reflected in this field  
is the minimum allowable voltage assuming the FMB maximum current draw for two  
processors. Writes to this register have no effect.  
Example: The Intel® Xeon® Processor 7400 Series does not utilize a Cache VID.  
Offset 2D - 2Eh will contain 0000h (0 decimal).  
Offset:  
2Dh-2Eh  
Bit  
Description  
15:0  
Minimum Cache Voltage  
0000h-FFFFh: mV  
Intel® Xeon® Processor 7400 Series Datasheet  
125  
Features  
7.4.3.4.6  
RES4: Reserved 4  
These locations are reserved. Writes to this register have no effect.  
Offset:  
2Fh-30h  
Bit  
Description  
15:0  
RESERVED 4  
0000h-FFFFh: Reserved  
7.4.3.4.7  
CDCKS: Cache Data Checksum  
This location provides the checksum of the Cache Data Section. Writes to this register  
have no effect.  
Offset:  
31h  
Bit  
Description  
7:0  
Cache Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.5  
Package Data  
This section provides package revision information.  
7.4.3.5.1  
PREV: Package Revision  
This location tracks the highest level package revision. It is provided in ASCII format of  
four characters (8 bits x 4 characters = 32 bits). The package is documented as 1.0,  
2.0, etc. If this only consumes three ASCII characters, a leading space is provided in  
the data field.  
Example: The Intel® Xeon® Processor 7400 Series utilizes the first revision of the FC-  
mPGA8 package. Thus, at offset 32-35h, the data is a space followed by 1.0. In hex,  
this would be 20h, 31h, 2Eh, 30h.  
Offset:  
32h-35h  
Bit  
Description  
31:24  
Character 4  
ASCII character or 20h  
00h-0FFh: ASCII character  
23:16  
15:8  
7:0  
Character 3  
ASCII character  
00h-0FFh: ASCII character  
Character 2  
ASCII character  
00h-0FFh: ASCII character  
Character 1  
ASCII character  
00h-0FFh: ASCII character  
126  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.5.2  
RES5: Reserved 5  
This location is reserved. Writes to this register have no effect.  
Offset:  
36h  
Bit  
Description  
7:0  
RESERVED 5  
00h-FFh: Reserved  
7.4.3.5.3  
PDCKS: Package Data Checksum  
This location provides the checksum of the Package Data Section. Writes to this register  
have no effect.  
Offset:  
37h  
Bit  
Description  
7:0  
Package Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.6  
Part Number Data  
This section provides traceability. There are 208 available bytes in this section for  
future use.  
7.4.3.6.1  
PPN: Processor Part Number  
This location contains seven ASCII characters reflecting the Intel part number for the  
processor. This information is typically marked on the outside of the processor. If the  
part number is less than 7 characters, a leading space is inserted into the value. The  
part number should match the information found in the marking specification found in  
Section 3. Writes to this register have no effect.  
Example: A processor with a part number of 80546KF will have data found at offset  
38 - 3Eh is 38h, 30h, 35h, 34h, 36h, 4Bh, 46h.  
Offset:  
38h-3Eh  
Bit  
Description  
4F:48  
Character 7  
ASCII character or 20h  
00h-0FFh: ASCII character  
47:40  
39:32  
31:24  
Character 6  
ASCII character or 20h  
00h-0FFh: ASCII character  
Character 5  
ASCII character or 20h  
00h-0FFh: ASCII character  
Character 4  
ASCII character  
00h-0FFh: ASCII character  
Intel® Xeon® Processor 7400 Series Datasheet  
127  
Features  
Offset:  
38h-3Eh  
Bit  
Description  
23:16  
Character 3  
ASCII character  
00h-0FFh: ASCII character  
15:8  
7:0  
Character 2  
ASCII character  
00h-0FFh: ASCII character  
Character 1  
ASCII character  
00h-0FFh: ASCII character  
7.4.3.6.2  
RES6: Reserved 6  
This location is reserved. Writes to this register have no effect.  
Offset:  
3Fh-4Ch  
Bit  
Description  
111:0  
RESERVED 6  
7.4.3.6.3  
PS/ESIG: Processor Serial/Electronic Signature  
This location contains a 64-bit identification number. The value in this field is either a  
serial signature or an electronic signature. Bits 5 & 6 of the Processor Feature Flags  
(Offset 78h) indicates which signature is present. Intel does not guarantee that each  
processor will have a unique value in this field. Writes to this register have no effect.  
Offset:  
4Dh=54h  
Bit  
Description  
63:0  
Processor Serial/Electronic Signature  
00000000h-FFFFFFFFh: Electronic Signature  
7.4.3.6.4  
RES7: Reserved 7  
This location is reserved. Writes to this register have no effect.  
Offset:  
55h-6Eh  
Bit  
Description  
207:0  
RESERVED 7  
128  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
7.4.3.6.5  
PNDCKS: Part Number Data Checksum  
This location provides the checksum of the Part Number Data Section. Writes to this  
register have no effect.  
Offset:  
6F  
Bit  
Description  
7:0  
Part Number Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.3.7  
Thermal Reference Data  
This section is reserved for future use.  
7.4.3.7.1  
RES8: Reserved 8  
This location is reserved. Writes to this register have no effect.  
Offset:  
70h  
Bit  
Description  
7:0  
RESERVED 8  
7.4.3.7.2  
RES9: Reserved 9  
This location is reserved. Writes to this register have no effect.  
Offset:  
71h-72h  
Bit  
Description  
15:0  
RESERVED 9  
7.4.3.7.3  
TRDCKS: Thermal Reference Data Checksum  
This location provides the checksum of the Thermal Reference Data Section. Writes to  
this register have no effect.  
Offset:  
73h  
Bit  
Description  
7:0  
Thermal Reference Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
Intel® Xeon® Processor 7400 Series Datasheet  
129  
Features  
7.4.3.8  
Feature Data  
This section provides information on key features that the platform may need to  
understand without powering on the processor.  
7.4.3.8.1  
PCFF: Processor Core Feature Flags  
This location contains a copy of results in EDX[31:0] from Function 1 of the CPUID  
instruction. These details provide instruction and feature support by product family. A  
decode of these bits is found in the AP-485 Intel® Processor Identification and CPUID  
Instruction application note. Writes to this register have no effect.  
Offset:  
74h-77h  
Bit  
Description  
31:0  
Processor Core Feature Flags  
0000h-FFFFF: Feature Flags  
7.4.3.8.2  
PFF: Processor Feature Flags  
This location contains additional feature information from the processor. Writes to this  
register have no effect.  
Note:  
Bit 5 and Bit 6 are mutually exclusive (only one bit will be set).  
Offset:  
Bit  
78h  
Description  
7
6
5
4
3
2
1
0
Multi-Core (set if the processor is a multi core processor)  
Serial signature (set if there is a serial signature at offset 4D - 54h)  
Electronic signature present (set if there is a electronic signature at 4D - 54h)  
Thermal Sense Device present (set if an SMBus thermal sensor on package)  
Reserved  
OEM EEPROM present (set if there is a scratch ROM at offset 80 - FFh)  
Core VID present (set if there is a VID provided by the processor)  
L3 Cache present (set if there is a level 3 cache on the processor)  
Bits are set when a feature is present, and cleared when they are not.  
Example: The Intel® Xeon® Processor 7400 Series does not support a SMBus  
Thermal Sense Device, supports either a Serial Signature or Electronic signature,  
supports an OEM EEPROM, supports Core VID and supports an L3 Cache. Offset 78h  
will contain A7h or C7h (167 or 199 decimal).  
7.4.3.8.3  
PTCI: Processor Thread and Core Information  
This location contains information regarding the number of cores and threads on the  
processor. Writes to this register have no effect.  
Example: The Intel® Xeon® Processor 7400 Series has two, four or six cores and one  
thread per core. Therefore, this register will have a value of 9h, 11h or 19h.  
130  
Intel® Xeon® Processor 7400 Series Datasheet  
Features  
Offset:  
Bit  
79h  
Description  
7:2  
1:0  
Number of cores  
Number of threads per cores  
7.4.3.8.4  
AFF: Additional Processor Feature Flags  
This location contains additional feature information for the processor. This field is  
defined as follows: Writes to this register have no effect.  
Offset:  
Bit  
7Ah  
Description  
7
6
5
4
3
2
1
0
Reserved  
®
Intel Cache Safe Technology  
Extended Halt State (C1E)  
®
Intel Virtualization Technology  
Execute Disable  
®
Intel 64  
Thermal Monitor 2  
®
Enhanced Intel SpeedStep Technology  
Bits are set when a feature is present, and cleared when they are not.  
Example: The Intel® Xeon® Processor 7400 Series may or may not have Enhanced  
Intel SpeedStep® Technology present and supports all the other available features.  
Offset 7Ah will contain 7Eh or 7Fh (126 or 127 decimal).  
7.4.3.8.5  
TAF: Thermal Adjustment Factors  
This location contains information on thermal adjustment factors for the processor. This  
field and it’s details are pending and will be updated in a future revision. Writes to this  
register have no effect.  
Offset:  
Bit  
7Bh-7Ch  
Description  
15:8  
7:0  
Measurement Correction Factor  
Temperature Target  
7.4.3.9  
OD: Other Data  
These locations are reserved. Writes to this register have no effect.  
Offset:  
7Dh-7Eh  
Bit  
Description  
15:0  
RESERVED  
Intel® Xeon® Processor 7400 Series Datasheet  
131  
Features  
7.4.3.9.1  
FDCKS: Feature Data Checksum  
This location provides the checksum of the Feature Data Section. Writes to this register  
have no effect.  
Offset:  
7Fh  
Bit  
Description  
7:0  
Feature Data Checksum  
One Byte Checksum of the Header Section  
00h- FFh: See Section 7.4.4 for calculation of the value  
7.4.4  
Checksums  
The PIROM includes multiple checksums. Table 7-7 includes the checksum values for  
each section defined in the 128 byte ROM.  
Table 7-7.  
128 Byte ROM Checksum Values  
Section  
Checksum Address  
Header  
0Dh  
15h  
24h  
31h  
37h  
6Fh  
73h  
7Fh  
Processor Data  
Processor Core Data  
Cache Data  
Package Data  
Part Number Data  
Thermal Ref. Data  
Feature Data  
Checksums are automatically calculated and programmed by Intel. The first step in  
calculating the checksum is to add each byte from the field to the next subsequent  
byte. This result is then negated to provide the checksum.  
Example: For a byte string of AA445Ch, the resulting checksum will be B6h.  
AA = 10101010  
44 = 01000100  
5C = 0101100  
AA + 44 + 5C = 01001010  
Negate the sum: 10110101 +1 = 101101 (B6h)  
7.4.5  
Scratch EEPROM  
Also available in the memory component on the processor SMBus is an EEPROM which  
may be used for other data at the system or processor vendor’s discretion. The data in  
this EEPROM, once programmed, can be write-protected by asserting the active-high  
SM_WP signal. This signal has a weak pull-down (10 kΩ) to allow the EEPROM to be  
programmed in systems with no implementation of this signal. The Scratch EEPROM  
resides in the upper half of the memory component (addresses 80 - FFh). The lower  
half comprises the Processor Information ROM (addresses 00 - 7Fh), which is  
permanently write-protected by Intel.  
§
132  
Intel® Xeon® Processor 7400 Series Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
Please refer to the appropriate platform design guidelines for information regarding  
debug tool specifications. Section 1.3 provides collateral details.  
8.1  
Debug Port System Requirements  
The Intel® Xeon® Processor 7400 Series debug port is the command and control  
interface for the In-Target Probe (ITP) debugger. The ITP enables run-time control of  
the processors for system debug. The debug port, which is connected to the FSB, is a  
combination of the system JTAG and execution signals. There are several mechanical,  
electrical and functional constraints on the debug port that must be followed. The  
mechanical constraint requires the debug port connector to be installed in the system  
with adequate physical clearance. Electrical constraints exist due to the mixed high and  
low speed signals of the debug port for the processor. While the JTAG signals operate at  
a maximum of 75 MHz, the execution signals operate at the common clock FSB  
frequency. The functional constraint requires the debug port to use the JTAG system via  
a handshake and multiplexing scheme.  
In general, the information in this chapter may be used as a basis for including all run-  
control tools in Intel® Xeon® Processor 7400 Series-based systems designs including  
tools from vendors other than Intel.  
Note:  
The debug port and JTAG signal chain must be designed into the processor board to  
utilize the XDP for debug purposes except for interposer solutions.  
8.2  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging Intel® Xeon® Processor 7400 Series systems. Tektronix  
and Agilent should be contacted to obtain specific information about their logic analyzer  
interfaces. The following information is general in nature. Specific information must be  
obtained from the logic analyzer vendor.  
Due to the complexity of Intel® Xeon® Processor 7400 Series-based multiprocessor  
systems, the LAI is critical in providing the ability to probe and capture FSB signals.  
There are two sets of considerations to keep in mind when designing a Intel® Xeon®  
Processor 7400 Series-based system that can make use of an LAI: mechanical and  
electrical.  
8.2.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI plugs into  
the socket, while the processor plugs into a socket on the LAI. Cabling that is part of  
the LAI egresses the system to allow an electrical connection between the processor  
and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout  
volume, as well as the cable egress restrictions, should be obtained from the logic  
analyzer vendor. System designers must make sure that the keepout volume remains  
unobstructed inside the system. In some cases, it is known that some of the electrolytic  
capacitors fall inside of the keepout volume for the LAI. In this case, it is necessary to  
move these capacitors to the backside of the board before using the LAI. Additionally,  
note that it is possible that the keepout volume reserved for the LAI may include  
Intel® Xeon® Processor 7400 Series Datasheet  
133  
Debug Tools Specifications  
different requirements from the space normally occupied by the heatsink. If this is the  
case, the logic analyzer vendor will provide either a cooling solution as part of the LAI  
or additional hardware to mount the existing cooling solution.  
8.2.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB, therefore it is critical to  
obtain electrical load models from each of the logic analyzer vendors to be able to run  
system level simulations to prove that their tool will work in the system. Contact the  
logic analyzer vendor for electrical specifications and load models for the LAI solution  
they provide.  
§
134  
Intel® Xeon® Processor 7400 Series Datasheet  
Boxed Processor Specifications  
9 Boxed Processor Specifications  
9.1  
Introduction  
The Intel® Xeon® Processor 7400 Series is also offered as an Intel boxed processor.  
Intel boxed processors are intended for system integrators who build systems from  
baseboards and standard components. The boxed processor will not be supplied with a  
cooling solution. Future revisions may have solutions that differ from those discussed  
here.  
9.2  
Thermal Specifications  
Please see Chapter 6 for the the cooling requirements of the boxed processor.  
9.2.1  
Boxed Processor Cooling Requirements  
A suitable heatsink is required to properly cool the boxed processor. However, meeting  
the processor’s temperature specifications is also a function of the thermal design of  
the entire system, and ultimately the responsibility of the system integrator. The  
processor temperature specification is found in Section 6.2.1 of this document.  
§
Intel® Xeon® Processor 7400 Series Datasheet  
135  
Boxed Processor Specifications  
136  
Intel® Xeon® Processor 7400 Series Datasheet  

相关型号:

AD80583QH046003/SLG9H

RISC Microprocessor, 64-Bit, 2130MHz, CMOS, PPGA604
INTEL

AD80583QH0468M/SLG9G

Microprocessor
INTEL
INTEL

AD8058ACHIPS

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058AR

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058AR-EBZ

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058AR-REEL

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058AR-REEL7

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058ARM

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058ARM-EBZ

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifier
ADI

AD8058ARM-REEL

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI

AD8058ARM-REEL7

Low Cost, High Performance Voltage Feedback, 325 MHz Amplifiers
ADI