AT80570JJ0806M/SLGP9 [INTEL]

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775;
AT80570JJ0806M/SLGP9
型号: AT80570JJ0806M/SLGP9
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775

外围集成电路
文件: 总106页 (文件大小:1503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Core Intel® Xeon® Processor  
3100 Series  
Datasheet  
February 2009  
Document Number: 319004-002  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY  
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH  
MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel  
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future  
changes to them.  
®
®
The Dual-Core Intel Xeon Processor 3100 Series may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications.  
Φ
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled  
for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary  
depending on your hardware and software configurations. See http://developer.intel.com/technology/intel64/ for more information  
including details on which processors support Intel 64 or consult with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting  
operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
®
Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and  
for some uses, certain platform software enabled for it. Functionality, performance or other benefit will vary depending on  
hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all  
operating systems. Please check with your application vendor.  
Not all specified units of this processor support Thermal Monitor 2, Enhanced HALT State and Enhanced Intel SpeedStep®  
Technology. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more  
information.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Xeon, Pentium, Intel Core, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other  
countries.  
* Other names and brands may be claimed as the property of others.  
Copyright © 2009, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction .......................................................................................................9  
1.1  
Terminology .......................................................................................................9  
1.1.1 Processor Terminology Definitions ............................................................ 10  
References ....................................................................................................... 11  
1.2  
2
Electrical Specifications............................................................................... 13  
2.1  
2.2  
Power and Ground Lands.................................................................................... 13  
Decoupling Guidelines........................................................................................ 13  
2.2.1 Vcc Decoupling ...................................................................................... 13  
2.2.2 Vtt Decoupling....................................................................................... 13  
2.2.3 FSB Decoupling...................................................................................... 14  
Voltage Identification......................................................................................... 14  
Reserved, Unused, and TESTHI Signals ................................................................ 16  
Flexible Motherboard Guidelines (FMB)................................................................. 17  
Power Segment Identifier (PSID)......................................................................... 17  
2.6.1 Absolute Maximum and Minimum Ratings .................................................. 17  
2.6.2 DC Voltage and Current Specification........................................................ 18  
2.6.3 VCC Overshoot ...................................................................................... 20  
2.6.4 Die Voltage Validation............................................................................. 21  
Signaling Specifications...................................................................................... 21  
2.7.1 FSB Signal Groups.................................................................................. 22  
2.7.2 CMOS and Open Drain Signals ................................................................. 23  
2.7.3 Processor DC Specifications ..................................................................... 23  
2.7.3.1 Platform Environment Control Interface (PECI) DC Specifications..... 24  
2.7.3.2 GTL+ Front Side Bus Specifications ............................................. 25  
Clock Specifications........................................................................................... 26  
2.8.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking............................ 26  
2.8.2 FSB Frequency Select Signals (BSEL[2:0])................................................. 27  
2.8.3 Phase Lock Loop (PLL) and Filter .............................................................. 27  
2.8.4 BCLK[1:0] Specifications......................................................................... 28  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
3
Package Mechanical Specifications.................................................................. 31  
3.1  
Package Mechanical Specifications....................................................................... 31  
3.1.1 Package Mechanical Drawing.................................................................... 31  
3.1.2 Processor Component Keep-Out Zones...................................................... 35  
3.1.3 Package Loading Specifications ................................................................ 36  
3.1.4 Package Handling Guidelines.................................................................... 36  
3.1.5 Package Insertion Specifications............................................................... 36  
3.1.6 Processor Mass Specification.................................................................... 37  
3.1.7 Processor Materials................................................................................. 37  
3.1.8 Processor Markings................................................................................. 37  
3.1.9 Processor Land Coordinates..................................................................... 37  
4
5
Land Listing and Signal Descriptions............................................................... 39  
4.1  
4.2  
Processor Land Assignments............................................................................... 39  
Alphabetical Signals Reference............................................................................ 70  
Thermal Specifications and Design Considerations....................................... 77  
5.1  
Processor Thermal Specifications......................................................................... 77  
5.1.1 Thermal Specifications ............................................................................ 77  
5.1.2 Thermal Metrology ................................................................................. 81  
Processor Thermal Features................................................................................ 81  
5.2.1 Thermal Monitor..................................................................................... 81  
5.2.2 Thermal Monitor 2.................................................................................. 82  
5.2  
Datasheet  
3
5.2.3 On-Demand Mode...................................................................................83  
5.2.4 PROCHOT# Signal ..................................................................................84  
5.2.5 THERMTRIP# Signal................................................................................84  
Platform Environment Control Interface (PECI) ......................................................84  
5.3.1 Introduction...........................................................................................84  
5.3.1.1 TCONTROL and TCC activation on PECI-Based Systems ..................85  
5.3.2 PECI Specifications .................................................................................85  
5.3.2.1 PECI Device Address..................................................................85  
5.3.2.2 PECI Command Support.............................................................85  
5.3.2.3 PECI Fault Handling Requirements...............................................86  
5.3.2.4 PECI GetTemp0() Error Code Support ..........................................86  
5.3  
6
Features..............................................................................................................87  
6.1  
6.2  
Power-On Configuration Options ..........................................................................87  
Clock Control and Low Power States.....................................................................87  
6.2.1 Normal State .........................................................................................88  
6.2.2 HALT and Extended HALT Powerdown States ..............................................88  
6.2.2.1 HALT Powerdown State ..............................................................88  
6.2.2.2 Extended HALT Powerdown State ................................................89  
6.2.3 Stop Grant and Extended Stop Grant States...............................................89  
6.2.3.1 Stop-Grant State.......................................................................89  
6.2.3.2 Extended Stop Grant State.........................................................90  
6.2.4 Extended HALT Snoop State, HALT Snoop State, Extended Stop Grant Snoop  
State, and Stop Grant Snoop State90  
6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................90  
6.2.4.2 Extended HALT Snoop State, Extended Stop Grant Snoop State.......90  
6.2.5 Enhanced Intel SpeedStep® Technology ....................................................90  
6.2.6 Processor Power Status Indicator (PSI) Signal ............................................91  
7
Boxed Processor Specifications........................................................................93  
7.1  
7.2  
Introduction......................................................................................................93  
Mechanical Specifications....................................................................................94  
7.2.1 Boxed Processor Cooling Solution Dimensions.............................................94  
7.2.2 Boxed Processor Fan Heatsink Weight .......................................................95  
7.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....96  
Electrical Requirements ......................................................................................96  
7.3.1 Fan Heatsink Power Supply ......................................................................96  
Thermal Specifications........................................................................................97  
7.4.1 Boxed Processor Cooling Requirements......................................................97  
7.4.2 Variable Speed Fan.................................................................................99  
7.3  
7.4  
8
Debug Tools Specifications..............................................................................103  
8.1  
Logic Analyzer Interface (LAI) ...........................................................................103  
8.1.1 Mechanical Considerations .....................................................................103  
8.1.2 Electrical Considerations........................................................................103  
Figures  
2-1 Processor VCC Static and Transient Tolerance ...............................................................20  
2-2 VCC Overshoot Example Waveform..............................................................................21  
2-3 Differential Clock Waveform.......................................................................................29  
2-4 Measurement Points for Differential Clock Waveforms....................................................29  
3-1 Processor Package Assembly Sketch ...........................................................................31  
3-2 Processor Package Drawing Sheet 1 of 3......................................................................33  
3-3 Processor Package Drawing Sheet 2 of 3......................................................................34  
3-4 Processor Package Drawing Sheet 3 of 3......................................................................35  
3-5 Processor Top-Side Markings Example.........................................................................37  
3-6 Processor Land Coordinates and Quadrants, Top View ...................................................38  
4-1 land-out Diagram (Top View – Left Side) .....................................................................40  
4-2 land-out Diagram (Top View – Right Side) ...................................................................41  
4
Datasheet  
5-1 Processor Thermal Profile (65 W) ............................................................................... 80  
5-2 Processor Thermal Profile (45 W) ............................................................................... 80  
5-3 Case Temperature (TC) Measurement Location ............................................................ 81  
5-4 Thermal Monitor 2 Frequency and Voltage Ordering...................................................... 83  
5-5 Conceptual Fan Control Diagram on PECI-Based Platforms............................................. 85  
6-1 Processor Low Power State Machine ........................................................................... 88  
7-1 Mechanical Representation of the Boxed Processor ....................................................... 93  
7-2 Side View Space Requirements for the Boxed Processor ................................................ 94  
7-3 Top View Space Requirements for the Boxed Processor ................................................. 95  
7-4 Overall View Space Requirements for the Boxed Processor............................................. 95  
7-5 Boxed Processor Fan Heatsink Power Cable Connector Description.................................. 96  
7-6 Baseboard Power Header Placement Relative to Processor Socket................................... 97  
7-7 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ................... 98  
7-8 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view) ................... 99  
7-9 Boxed Processor Fan Heatsink Set Points................................................................... 100  
Datasheet  
5
Tables  
1-1 References ..............................................................................................................11  
2-1 Voltage Identification Definition .................................................................................15  
2-2 Absolute Maximum and Minimum Ratings ....................................................................17  
2-3 Voltage and Current Specifications..............................................................................18  
2-4 Processor VCC Static and Transient Tolerance ...............................................................19  
2-5 VCC Overshoot Specifications......................................................................................20  
2-6 FSB Signal Groups....................................................................................................22  
2-7 Signal Characteristics................................................................................................23  
2-8 Signal Reference Voltages .........................................................................................23  
2-9 GTL+ Signal Group DC Specifications ..........................................................................23  
2-10Open Drain and TAP Output Signal Group DC Specifications ...........................................24  
2-11CMOS Signal Group DC Specifications .........................................................................24  
2-12PECI DC Electrical Limits ...........................................................................................25  
2-13GTL+ Bus Voltage Definitions.....................................................................................25  
2-14Core Frequency to FSB Multiplier Configuration.............................................................26  
2-15BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................27  
2-16Front Side Bus Differential BCLK Specifications.............................................................28  
2-17FSB Differential Clock Specifications (1333 MHz FSB) ....................................................28  
3-1 Processor Loading Specifications.................................................................................36  
3-2 Package Handling Guidelines......................................................................................36  
3-3 Processor Materials...................................................................................................37  
4-1 Alphabetical Land Assignments...................................................................................42  
4-2 Numerical Land Assignment.......................................................................................58  
4-3 Signal Description.....................................................................................................70  
5-1 Processor Thermal Specifications................................................................................78  
5-2 Processor Thermal Profile (65 W)................................................................................79  
5-3 Processor Thermal Profile (45W).................................................................................79  
5-4 GetTemp0() Error Codes ...........................................................................................86  
6-1 Power-On Configuration Option Signals .......................................................................87  
7-1 Fan Heatsink Power and Signal Specifications...............................................................97  
7-2 Fan Heatsink Power and Signal Specifications.............................................................100  
6
Datasheet  
Revision History  
Document  
Number  
Version  
Number  
Revision  
Date  
Revision  
Description  
January 2008  
319004  
1.0  
-001  
• Initial release  
®
®
• Added Dual-Core Intel Xeon Processor L3110  
• Added PSI# signal  
February  
2009  
-002  
• Updated VID information  
Datasheet  
7
8
Datasheet  
Introduction  
1 Introduction  
The Dual-Core Intel® Xeon® Processor 3100 Series, like the previous Dual-Core Intel®  
Xeon® Processor 3000 Series, are based on the Intel® CoreTM microarchitecture. The  
Intel Core microarchitecture combines the performance of previous generation  
products with the power efficiencies of a low-power microarchitecture to enable  
smaller, quieter systems. The Dual-Core Intel® Xeon® Processor 3100 Series is a 64-  
bit processor that maintain compatibility with IA-32 software.  
In this document, the Dual-Core Intel® Xeon® Processor 3100 Series may be referred  
to simply as “the processor.”  
The processors utilize Flip-Chip Land Grid Array (FC-LGA8) package technology, and  
plugs into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the  
LGA775 socket.  
The processor is a dual-core processor, based on 45 nm process technology. The  
processor features the Intel® Advanced Smart Cache, a shared multi-core optimized  
cache that significantly reduces latency to frequently used data. The processor features  
a 1333 MHz front side bus (FSB) and 6 MB of L2 cache. The processor supports all the  
existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3),  
Supplemental Streaming SIMD Extension 3 (SSSE3), and the Streaming SIMD  
Extensions 4.1 (SSE4.1). The processor supports several Advanced Technologies:  
Execute Disable Bit, Intel® 64 architecture, Enhanced Intel SpeedStep® Technology,  
Intel® Virtualization Technology (Intel® VT), and Intel® Trusted Execution Technology  
(Intel® TXT).  
The processor's front side bus (FSB) utilizes a split-transaction, deferred reply protocol.  
The FSB uses Source-Synchronous Transfer of address and data to improve  
performance by transferring data four times per bus clock (4X data transfer rate).  
Along with the 4X data bus, the address bus can deliver addresses two times per bus  
clock and is referred to as a "double-clocked" or 2X address bus. Working together, the  
4X data bus and 2X address bus provide a data bus bandwidth of up to 10.7 GB/s.  
Intel has enabled support components for the processor including heatsink, heatsink  
retention mechanism, and socket. Manufacturability is a high priority; hence,  
mechanical assembly may be completed from the top of the baseboard and should not  
require any special tooling.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
“Front Side Bus” refers to the interface between the processor and system core logic  
(a.k.a. the chipset components). The FSB is a multiprocessing interface to processors,  
memory, and I/O.  
Datasheet  
9
Introduction  
1.1.1  
Processor Terminology Definitions  
Commonly used terms are explained here for clarification:  
Dual-Core Intel® Xeon® Processor 3100 Series — Dual core processor in the  
FC-LGA8 package with a 6 MB L2 cache.  
Processor — For this document, the term processor is the generic form of the  
Dual-Core Intel® Xeon® Processor 3100 Series.  
Intel® CoreTM microarchitecture — A new foundation for Intel® architecture-  
based desktop, mobile and mainstream server multi-core processors. For additional  
information refer to: http://www.intel.com/technology/architecture/coremicro/  
Keep-out zone — The area on or near the processor that system design can not  
utilize.  
Processor core — Processor die with integrated L2 cache.  
LGA775 socket — The Dual-Core Intel® Xeon® Processor 3100 Series mate with  
the system board through a surface mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Retention mechanism (RM) — Since the LGA775 socket does not include any  
mechanical features for heatsink attach, a retention mechanism is required.  
Component thermal solutions should attach to the processor via a retention  
mechanism that is independent of the socket.  
FSB (Front Side Bus) — The electrical interface that connects the processor to  
the chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Storage conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Upon exposure to “free air”(i.e., unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation — Refers to normal operating conditions in which all  
processor specifications, including DC, AC, system bus, signal quality, mechanical  
and thermal are satisfied.  
Execute Disable Bit — Execute Disable Bit allows memory to be marked as  
executable or non-executable, when combined with a supporting operating system.  
If code attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer over run vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® Architecture Software Developer's Manual  
for more detailed information.  
Intel® 64 Architecture— An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of the Intel 64 architecture. Further details on Intel 64 architecture and  
programming model can be found in the Intel Extended Memory 64 Technology  
Software Developer Guide at http://developer.intel.com/technology/  
64bitextensions/.  
10  
Datasheet  
Introduction  
Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep  
Technology allows trade-offs to be made between performance and power  
consumptions, based on processor utilization. This may lower average power  
consumption (in conjunction with OS support).  
Intel® Virtualization Technology (Intel® VT) — A set of hardware  
enhancements to Intel server and client platforms that can improve virtualization  
solutions. Intel VT will provide a foundation for widely-deployed virtualization  
solutions and enables more robust hardware assisted virtualization solutions. More  
information can be found at: http://www.intel.com/technology/virtualization/  
Intel® Trusted Execution Technology (Intel® TXT) — A key element in Intel's  
safer computing initiative which defines a set of hardware enhancements that  
interoperate with an Intel TXT enabled OS to help protect against software-based  
attacks. Intel TXT creates a hardware foundation that builds on Intel's  
Virtualization Technology (Intel VT) to help protect the confidentiality and integrity  
of data stored/created on the client PC.  
Platform Environment Control Interface (PECI) — A proprietary one-wire bus  
interface that provides a communication channel between the processor and  
chipset components to external monitoring devices.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document:  
Table 1-1.  
References  
Document  
Location  
http://www.intel.com/  
products/processor/  
xeon3000/  
Wolfdale Processors Thermal and Mechanical Design  
Guidelines Addendum  
documentation.htm#therma  
l_models  
http://download.intel.com/  
design/intarch/specupdt/  
319006.pdf  
Dual-Core Intel® Xeon® Processor 3100 Series  
Specification Update  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket  
http://www.intel.com/design/  
processor/applnots/313214.htm  
LGA775 Socket Mechanical Design Guide  
http://intel.com/design/  
Pentium4/guides/  
302666.htm  
IA-32 Intel Architecture Software Developer's Manual  
Volume 1: Basic Architecture  
http://www.intel.com/  
design/products/processor/  
manuals/  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide, Part 1  
Volume 3B: System Programming Guide, Part 2  
§
Datasheet  
11  
Introduction  
12  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
2.1  
Power and Ground Lands  
The processor has VCC (power), VTT, and VSS (ground) inputs for on-chip power  
distribution. All power lands must be connected to VCC, while all VSS lands must be  
connected to a system ground plane. The processor VCC lands must be supplied the  
voltage determined by the Voltage IDentification (VID) lands.  
The signals denoted as VTT provide termination for the front side bus and power to the  
I/O buffers. A separate supply must be implemented for these lands, that meets the  
VTT specifications outlined in Table 2-3.  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings. This may cause voltages on power planes  
to sag below their minimum specified values if bulk decoupling is not adequate. Larger  
bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. The motherboard must be designed  
to ensure that the voltage provided to the processor remains within the specifications  
listed in Table 2-3. Failure to do so can result in timing violations or reduced lifetime of  
the component. For further information and guidelines, refer to the appropriate  
platform design guidelines.  
2.2.1  
2.2.2  
VCC Decoupling  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the  
processor voltage specifications. This includes bulk capacitance with low effective series  
resistance (ESR) to keep the voltage rail within specifications during large swings in  
load current. In addition, ceramic decoupling capacitors are required to filter high  
frequency content generated by the front side bus and processor activity. Consult the  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket and appropriate platform design guidelines for further  
information.  
VTT Decoupling  
Decoupling must be provided on the motherboard. Decoupling solutions must be sized  
to meet the expected load. To ensure compliance with the specifications, various  
factors associated with the power delivery solution must be considered including  
regulator type, power plane and trace sizing, and component placement. A  
conservative decoupling solution would consist of a combination of low ESR bulk  
capacitors and high frequency ceramic capacitors. For further information regarding  
power delivery, decoupling and layout guidelines, refer to the appropriate platform  
design guidelines.  
Datasheet  
13  
Electrical Specifications  
2.2.3  
FSB Decoupling  
The processor integrates signal termination on the die. In addition, some of the high  
frequency capacitance required for the FSB is included on the processor package.  
However, additional high frequency capacitance must be added to the motherboard to  
properly decouple the return currents from the front side bus. Bulk decoupling must  
also be provided by the motherboard for proper [A]GTL+ bus operation. Decoupling  
guidelines are described in the appropriate platform design guidelines.  
2.3  
Voltage Identification  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage  
to be delivered to the processor VCC lands (see Chapter 2.6.3 for VCC overshoot  
specifications). Refer to Table 2-11 for the DC specifications for these signals. Voltages  
for each processor frequency is provided in Table 2-3.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core speed may have different default VID settings. This is  
reflected by the VID Range values provided in Table 2-3. Refer to the Processor  
Specification Update for further details on specific valid core frequency and VID values  
of the processor. Note that this differs from the VID employed by the processor during  
a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep®  
technology, or Extended HALT State).  
The processor uses eight voltage identification signals, VID[7:0], to support automatic  
selection of power supply voltages. Table 2-1 specifies the voltage level corresponding  
to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers  
to a low voltage level. If the processor socket is empty (VID[7:0] = 11111110), or the  
voltage regulation circuit cannot supply the voltage that is requested, it must disable  
itself. The Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket defines VID [7:0], VID7 and VID0 are not  
outputs of the processor but are strapped to VSS on the processor package. VID0 and  
VID7 must be connected to the VR controller for compatibility with future processors.  
The processor provides the ability to operate while transitioning to an adjacent VID and  
its associated processor core voltage (VCC). This will represent a DC shift in the load  
line. It should be noted that a low-to-high or high-to-low voltage state change may  
result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the specified VID are not permitted. Table 2-3 includes VID step sizes  
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in  
Table 2-4 and Figure 2-1 as measured across the VCC_SENSE and VSS_SENSE lands.  
The VRM or VRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in Table 2-3  
and Table 2-4. Refer to the Voltage Regulator Design Guide for further details.  
14  
Datasheet  
Electrical Specifications  
Table 2-1.  
Voltage Identification Definition  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
Voltage  
Voltage  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFF  
1.6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0375  
1.025  
1.0125  
1
1.5875  
1.575  
1.5625  
1.55  
0.9875  
0.975  
0.9625  
0.95  
1.5375  
1.525  
1.5125  
1.5  
0.9375  
0.925  
0.9125  
0.9  
1.4875  
1.475  
1.4625  
1.45  
0.8875  
0.875  
0.8625  
0.85  
1.4375  
1.425  
1.4125  
1.4  
0.8375  
0.825  
0.8125  
0.8  
1.3875  
1.375  
1.3625  
1.35  
0.7875  
0.775  
0.7625  
0.75  
1.3375  
1.325  
1.3125  
1.3  
0.7375  
0.725  
0.7125  
0.7  
1.2875  
1.275  
1.2625  
1.25  
0.6875  
0.675  
0.6625  
0.65  
1.2375  
1.225  
1.2125  
1.2  
0.6375  
0.625  
0.6125  
0.6  
1.1875  
1.175  
1.1625  
1.15  
0.5875  
0.575  
0.5625  
0.55  
1.1375  
1.125  
1.1125  
1.1  
0.5375  
0.525  
0.5125  
0.5  
1.0875  
1.075  
1.0625  
1.05  
OFF  
Datasheet  
15  
Electrical Specifications  
2.4  
Reserved, Unused, and TESTHI Signals  
All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS,  
VTT, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all RESERVED lands.  
In a system level design, on-die termination has been included by the processor to  
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects as GTL+ termination is provided on the processor silicon.  
However, see Table 2-6 for details on GTL+ signals that do not include on-die  
termination.  
Unused active high inputs, should be connected through a resistor to ground (VSS).  
Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, a resistor will also allow for system testability. Resistor  
values should be within ± 20% of the impedance of the motherboard trace for front  
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). For details see Table 2-13.  
TAP and CMOS signals do not include on-die termination. Inputs and utilized outputs  
must be terminated on the motherboard. Unused outputs may be terminated on the  
motherboard or left unconnected. Note that leaving unused outputs unterminated may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing.  
All TESTHI[13:0] lands should be individually connected to VTT via a pull-up resistor  
which matches the nominal trace impedance.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0]  
• TESTHI[7:2]  
• TESTHI8/FC42 – cannot be grouped with other TESTHI signals  
• TESTHI9/FC43 – cannot be grouped with other TESTHI signals  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI11 – cannot be grouped with other TESTHI signals  
• TESTHI12/FC44 – cannot be grouped with other TESTHI signals  
• TESTHI13 – cannot be grouped with other TESTHI signals  
Terminating multiple TESTHI pins together with a single pull-up resistor is not  
recommended for designs supporting boundary scan for proper Boundary Scan testing  
of the TESTHI signals. For optimum noise margin, all pull-up resistor values used for  
TESTHI[13:0] lands should have a resistance value within ± 20% of the impedance of  
the board transmission line traces. For example, if the nominal trace impedance is 50  
, then a value between 40 and 60 should be used.  
16  
Datasheet  
Electrical Specifications  
2.5  
Flexible Motherboard Guidelines (FMB)  
The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the  
processor will have over certain time periods. The values are only estimates and actual  
specifications for future processors may differ. Processors may or may not have  
specifications equal to the FMB value in the foreseeable future. System designers  
should meet the FMB values to ensure their systems will be compatible with future  
processors. The FMB values are shown in Table 2-3 and Table 5-1.  
2.6  
Power Segment Identifier (PSID)  
Power Segment Identifier (PSID) is a mechanism to prevent booting under mismatched  
power requirement situations. The PSID mechanism enables BIOS to detect if the  
processor in use requires more power than the platform voltage regulator (VR) is  
capable of supplying. For example, a 130W TDP processor installed in a board with a  
65W or 95W TDP capable VR may draw too much power and cause a potential VR issue.  
2.6.1  
Absolute Maximum and Minimum Ratings  
Table 2-2 specifies absolute maximum and minimum ratings only and lie outside the  
functional limits of the processor. Within functional operation limits, functionality and  
long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 2-2.  
Absolute Maximum and Minimum Ratings  
1, 2  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
Core voltage with respect to V  
FSB termination voltage with  
–0.3  
–0.3  
1.45  
1.45  
V
V
-
CC  
TT  
SS  
-
respect to V  
SS  
TCASE  
Processor case temperature  
Processor storage temperature  
See Section 5  
–40  
See Section 5  
85  
°C  
°C  
-
T
3, 4, 5  
STORAGE  
Notes:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2.  
3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
Datasheet  
17  
Electrical Specifications  
the long-term reliability of the device. For functional operation, refer to the processor case temperature  
specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
4.  
5.  
2.6.2  
DC Voltage and Current Specification  
Table 2-3.  
Voltage and Current Specifications  
2,  
Notes  
Symbol  
VID Range  
Parameter  
Min  
Typ  
Max  
Unit  
11  
VID  
0.8500  
-
1.3625  
V
1
Core V  
Processor Numbers  
(6MB Cache):  
V
for  
CC  
CC  
775_VR_CONFIG_06A  
Refer to Table 2-4,  
Figure 2-1  
V
3, 4, 5  
E3110  
E3120  
L3110  
3.00 GHz  
3.16 GHz  
775_VR_CONFIG_06  
3.00 GHz  
V
V
Default V voltage for initial power up  
-
1.10  
-
V
CC_BOOT  
CCPLL  
CC  
CC  
PLL V  
- 5%  
-
1.50  
-
+ 5%  
75  
CC  
I
2006 FMB  
A
V
6
V
FSB termination voltage  
(DC + AC specifications)  
1.045  
1.10  
1.155  
7, 8  
TT  
VTT_OUT_LEFT and  
VTT_OUT_RIGHT I  
DC Current that may be drawn from  
VTT_OUT_LEFT and VTT_OUT_RIGHT per land  
-
-
-
-
580  
mA  
A
CC  
I
I
I
for V supply before V stable  
4.5  
4.6  
9
TT  
CC  
CC  
TT  
CC  
for V supply after V stable  
TT  
CC  
I
I
I
I
CC for PLL land  
130  
200  
mA  
µA  
CC_VCCPLL  
CC_GTLREF  
for GTLREF  
-
-
CC  
Notes:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Thermal  
®
Monitor 2, Enhanced Intel SpeedStep technology, or Extended HALT State).  
2.  
Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical  
data. These specifications will be updated with characterized data from silicon measurements at a later  
date.  
3.  
4.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Section 2.3 and Table 2-1 for more information.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the  
socket with a 100MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled into the oscilloscope probe.  
5.  
Refer to Table 2-4 and Figure 2-1for the minimum, typical, and maximum VCC allowed for a given current.  
The processor should not be subjected to any V and I  
combination wherein V exceeds V  
for a  
CC  
CC  
CC_MAX  
CC  
given current.  
6.  
7.  
I
specification is based on V  
loadline. Refer to Figure 2-1 for details.  
CC_MAX  
TT  
CC_MAX  
V
must be provided via a separate voltage source and not be connected to V . This specification is  
CC  
measured at the land.  
8.  
9.  
Baseboard bandwidth is limited to 20 MHz.  
This is the maximum total current drawn from the V plane by only the processor. This specification does  
TT  
not include the current coming from on-board termination (R ), through the signal line. Refer to the  
TT  
appropriate platform design guide and the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket to determine the total I drawn by the system. This  
TT  
parameter is based on design characterization and is not tested.  
10. Adherence to the voltage specifications for the processor are required to ensure reliable processor  
operation.  
18  
Datasheet  
Electrical Specifications  
Table 2-4.  
Processor VCC Static and Transient Tolerance  
1, 2, 3, 4  
Voltage Deviation from VID Setting (V)  
I
(A)  
CC  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.40 mΩ  
1.48 mΩ  
1.55 mΩ  
0
0.000  
-0.007  
-0.014  
-0.021  
-0.028  
-0.035  
-0.042  
-0.049  
-0.056  
-0.063  
-0.070  
-0.077  
-0.084  
-0.091  
-0.098  
-0.105  
-0.019  
-0.026  
-0.034  
-0.041  
-0.049  
-0.056  
-0.063  
-0.071  
-0.078  
-0.085  
-0.093  
-0.100  
-0.108  
-0.115  
-0.122  
-0.130  
-0.038  
-0.046  
-0.054  
-0.061  
-0.069  
-0.077  
-0.085  
-0.092  
-0.100  
-0.108  
-0.116  
-0.123  
-0.131  
-0.139  
-0.147  
-0.154  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Notes:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.6.3.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-1.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer  
to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket for socket loadline guidelines and VR implementation details.  
Adherence to this loadline specification is required to ensure reliable processor operation.  
4.  
Datasheet  
19  
Electrical Specifications  
Figure 2-1. Processor VCC Static and Transient Tolerance  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
Notes:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.6.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer  
to the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket for socket loadline guidelines and VR implementation details.  
2.6.3  
V
Overshoot  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).  
The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the  
processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 2-5.  
VCC Overshoot Specifications  
Symbol  
Parameter  
Magnitude of V overshoot above VID  
Min  
Max  
Unit  
Figure  
Notes  
1
1
V
-
-
50  
25  
mV  
µs  
2-2  
2-2  
OS_MAX  
CC  
T
Time duration of V overshoot above VID  
CC  
OS_MAX  
Notes:  
1. Adherence to these specifications is required to ensure reliable processor operation.  
20  
Datasheet  
Electrical Specifications  
Figure 2-2.  
VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
Notes:  
1.  
2.  
V
is measured overshoot voltage.  
is measured time duration above VID.  
OS  
OS  
T
2.6.4  
Die Voltage Validation  
Overshoot events on processor must meet the specifications in Table 2-5 when  
measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are <  
10 ns in duration may be ignored. These measurements of processor die level  
overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or  
equal to 100 MHz bandwidth limit.  
2.7  
Signaling Specifications  
Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling  
technology. This technology provides improved noise margins and reduced ringing  
through low voltage swings and controlled edge rates. Platforms implement a  
termination voltage level for GTL+ signals defined as VTT. Because platforms implement  
separate power planes for each processor (and chipset), separate VCC and VTT supplies  
are necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address busses have caused  
signal integrity considerations and platform design methods to become even more  
critical than with previous processor families. Design guidelines for the processor front  
side bus are detailed in the appropriate platform design guides (refer to Section 1.2).  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the  
motherboard (see Table 2-13 for GTLREF specifications). Refer to the applicable  
platform design guidelines for details. Termination resistors (RTT) for GTL+ signals are  
Datasheet  
21  
Electrical Specifications  
provided on the processor silicon and are terminated to VTT. Intel chipsets will also  
provide on-die termination, thus eliminating the need to terminate the bus on the  
motherboard for most GTL+ signals.  
2.7.1  
FSB Signal Groups  
The front side bus signals have been combined into groups by buffer type. GTL+ input  
signals have differential input buffers, which use GTLREF[1:0] as a reference level. In  
this document, the term “GTL+ Input” refers to the GTL+ input group as well as the  
GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output  
group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 2-6 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 2-6.  
FSB Signal Groups  
1
Signal Group  
Type  
Signals  
GTL+ Common  
Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#  
3
GTL+ Common  
Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[5:0]#, BR0# , DBSY#, DRDY#, HIT#,  
HITM#, LOCK#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
assoc. strobe  
Signals  
Associated Strobe  
3
REQ[4:0]#, A[16:3]#  
ADSTB0#  
3
A[35:17]#  
ADSTB1#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
GTL+ Strobes  
CMOS  
Synchronous to  
BCLK[1:0]  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#. DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/  
3
NMI, SMI# , STPCLK#, PWRGOOD, SLP#, TCK, TDI, TMS,  
TRST#, BSEL[2:0], VID[7:0], PSI#  
Open Drain Output  
FERR#/PBE#, IERR#, THERMTRIP#, TDO  
4
Open Drain Input/  
Output  
PROCHOT#  
2
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]  
Power/Other  
VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA, GTLREF[1:0],  
COMP[8,3:0], RESERVED, TESTHI[13:0], VCC_SENSE,  
VCC_MB_REGULATION, VSS_SENSE, VSS_MB_REGULATION,  
2
DBR# , VTT_OUT_LEFT, VTT_OUT_RIGHT, VTT_SEL, FCx, PECI,  
MSID[1:0]  
Notes:  
22  
Datasheet  
Electrical Specifications  
1.  
2.  
Refer to Section 4.2 for signal descriptions.  
In processor systems where no debug port is implemented on the system board, these signals are used to  
support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
3.  
4.  
The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 6.1 for details.  
PROCHOT# signal type is open drain output and CMOS input.  
.
Table 2-7.  
Signal Characteristics  
Signals with R  
Signals with No R  
TT  
TT  
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DRDY#,  
DSTBN[3:0]#, DSTBP[3:0]#, HIT#, HITM#, LOCK#,  
PROCHOT#, REQ[4:0]#, RS[2:0]#, TRDY#  
A20M#, BCLK[1:0], BPM[5:0]#, BSEL[2:0],  
COMP[8,3:0], FERR#/PBE#, IERR#, IGNNE#,  
INIT#, ITP_CLK[1:0], LINT0/INTR, LINT1/NMI,  
MSID[1:0], PWRGOOD, RESET#, SMI#, STPCLK#,  
TDO, TESTHI[13:0], THERMTRIP#, VID[7:0],  
GTLREF[1:0], TCK, TDI, TMS, TRST#, VTT_SEL  
1
Open Drain Signals  
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#, BR0#,  
TDO, FCx  
Notes:  
1.  
Signals that do not have R , nor are actively driven to their high-voltage level.  
TT  
Table 2-8.  
Signal Reference Voltages  
GTLREF  
V
/2  
TT  
BPM[5:0]#, RESET#, BNR#, HIT#, HITM#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#, TRDY#  
A20M#, LINT0/INTR, LINT1/NMI, IGNNE#,  
1
INIT#, PROCHOT#, PWRGOOD , SMI#,  
1
1
1
1
STPCLK#, TCK , TDI , TMS , TRST#  
Note:  
1.  
See Table 2-10 for more information.  
2.7.2  
CMOS and Open Drain Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS  
input buffers. All of the CMOS and Open Drain signals are required to be asserted/  
deasserted for at least eight BCLKs in order for the processor to recognize the proper  
signal state. See Section 2.7.3 and DC specifications. See Section 6.2 for additional  
timing requirements for entering and leaving the low power states.  
2.7.3  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads)  
unless otherwise stated. All specifications apply to all frequencies and cache sizes  
unless otherwise stated.  
Table 2-9.  
GTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
V
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Output Low Current  
-0.10  
GTLREF - 0.10  
V
V
V
A
2, 6  
3, 4, 6  
4, 6  
-
IL  
V
GTLREF + 0.10  
V
+ 0.10  
TT  
IH  
V
V
- 0.10  
V
OH  
OL  
TT  
TT  
/
TT_MAX  
I
N/A  
V
[(R  
) + (2 * R  
)]  
ON_MIN  
TT_MIN  
Datasheet  
23  
Electrical Specifications  
Table 2-9.  
GTL+ Signal Group DC Specifications  
I
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
N/A  
± 100  
± 100  
9.16  
µA  
µA  
W
7
8
5
LI  
I
LO  
R
7.49  
ON  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
V
V
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IL  
IH  
IH  
and V  
may experience excursions above V ..  
OH  
TT  
Refer to processor I/O Buffer Models for I/V characteristics.  
The V referred to in these specifications is the instantaneous V .  
Leakage to V with land held at V .  
Leakage to V with land held at 300mV.  
TT  
TT  
SS  
TT  
TT  
Table 2-10. Open Drain and TAP Output Signal Group DC Specifications  
Uni  
t
1
Symbol  
Parameter  
Min  
Max  
Notes  
V
Output Low Voltage  
Output Low Current  
0
0.20  
50  
V
-
OL  
I
16  
mA  
µA  
2
3
OL  
I
Output Leakage Current  
N/A  
± 200  
LO  
Notes:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at V * 0.2V.  
For Vin between 0 and V  
TT  
.
OH  
Table 2-11. CMOS Signal Group DC Specifications  
Uni  
t
1
Symbol  
Parameter  
Min  
Max  
Notes  
V
Input Low Voltage  
-0.10  
V
* 0.30  
+ 0.10  
* 0.10  
+ 0.10  
V
V
3, 6  
IL  
TT  
V
Input High Voltage  
V
* 0.70  
V
4, 5, 6  
6
IH  
TT  
TT  
V
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
-0.10  
0.90 * V  
V
V
OL  
OH  
OL  
OH  
TT  
V
V
V
2, 5, 6  
6, 7  
6, 7  
8
TT  
TT  
I
V
V
* 0.10 / 67  
* 0.10 / 67  
N/A  
V
V
* 0.10 / 27  
* 0.10 / 27  
± 100  
A
TT  
TT  
TT  
TT  
I
I
A
I
µA  
µA  
LI  
N/A  
± 100  
9
LO  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
V
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IL  
IH  
IH  
and V  
may experience excursions above V ..  
OH  
TT  
The V referred to in these specifications refers to instantaneous V .  
TT  
TT  
I
is measured at 0.10 * V  
I
is measured at 0.90 * V  
OL  
TT. OH TT.  
Leakage to V with land held at V .  
Leakage to V with land held at 300 mV.  
SS  
TT  
TT  
2.7.3.1  
Platform Environment Control Interface (PECI) DC Specifications  
PECI is an Intel proprietary one-wire interface that provides a communication channel  
between Intel processors, chipsets, and external thermal monitoring devices. The  
processor contains Digital Thermal Sensors (DTS) distributed throughout die. These  
sensors are implemented as analog-to-digital converters calibrated at the factory for  
reasonable accuracy to provide a digital representation of relative processor  
temperature. PECI provides an interface to relay the highest DTS temperature within a  
24  
Datasheet  
Electrical Specifications  
die to external management devices for thermal/fan speed control. More detailed  
information may be found in the Platform Environment Control Interface (PECI)  
Specification.  
Table 2-12. PECI DC Electrical Limits  
1
Symbol  
Definition and Conditions  
Min  
Max  
Units  
Notes  
Input Voltage Range  
Hysteresis  
Vin  
-0.15  
VTT  
-
V
V
2
Vhysteresis  
0.1 * VTT  
Negative-edge threshold voltage  
0.275 *  
VTT  
0.500 *  
VTT  
Vn  
Vp  
V
Positive-edge threshold voltage  
0.550 *  
VTT  
0.725 *  
VTT  
V
High level output source  
Isource  
Isink  
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
(V  
= 0.75 * V  
TT)  
OH  
Low level output sink  
(V = 0.25 * V  
)
TT  
OL  
3
High impedance state leakage to V  
High impedance leakage to GND  
Bus capacitance per node  
Ileak+  
Ileak-  
N/A  
N/A  
50  
10  
10  
-
µA  
µA  
TT  
3
4
Cbus  
N/A  
pF  
Signal noise immunity above 300 MHz  
Vnoise  
Notes:  
0.1 * VTT  
Vp-p  
1. V supplies the PECI interface. PECI behavior does not affect V min/max specifications. Please refer to  
TT  
TT  
Table 2-3 for V specifications.  
TT  
2. The leakage specification applies to powered devices on the PECI bus.  
3. The input buffers use a Schmitt-triggered input design for improved noise immunity.  
4. One node is counted for each client and one node for the system host. Extended trace lengths might appear  
as additional nodes.  
.
2.7.3.2  
GTL+ Front Side Bus Specifications  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon. See Table 2-7 for details on which GTL+ signals do not include on-die  
termination. Refer to the appropriate platform design guidelines for specific  
implementation details.  
Valid high and low levels are determined by the input buffers by comparing with a  
reference voltage called GTLREF. Table 2-13 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high  
precision voltage divider circuits. For more details on platform design, see the  
applicable platform design guide.  
Table 2-13. GTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes  
GTLREF_PU  
GTLREF_PD  
GTLREF pull up resistor  
GTLREF pull down resistor  
Termination Resistance  
COMP Resistance  
57.6 * 0.99  
100 * 0.99  
45  
57.6  
100  
57.6 * 1.01  
100 * 1.01  
55  
2
2
3
4
4
R
50  
TT  
COMP[3:0]  
COMP8  
49.40  
49.90  
24.90  
50.40  
COMP Resistance  
24.65  
25.15  
Notes:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Datasheet  
25  
Electrical Specifications  
2.  
GTLREF is to be generated from V by a voltage divider of 1% resistors. If a Varibale GTLREF circuit is  
TT  
used on the board (for Quad-Core processors compatibility) the GTLREF lands connected to the Variable  
GTLREF circuit may require different resistor values. Each GTLREF land must be connected, refer to the  
platform design guide for implementation details.  
3.  
4.  
R
is the on-die termination resistance measured at V /3 of the GTL+ output driver. Refer to the  
T
T
T
T
appropriate platform design guide for the board impedance. Refer to processor I/O buffer models for I/V  
characteristics.  
COMP resistance must be provided on the system board with 1% resistors. See the applicable platform  
design guide for implementation details. COMP[3:0] and COMP8 resistors are to V  
.
SS  
2.8  
Clock Specifications  
2.8.1  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor’s core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio during manufacturing. The processor supports Half Ratios between 7.5  
and 13.5, refer to Table 2-14 for the processor supported ratios.  
The processor uses a differential clocking implementation. For more information on the  
processor clocking, contact your Intel field representative.  
Table 2-14. Core Frequency to FSB Multiplier Configuration  
Multiplication of System  
Core Frequency to FSB  
Frequency  
Core Frequency  
(333 MHz BCLK/1333 MHz  
FSB)  
1, 2  
Notes  
1/6  
1/7  
2 GHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.33 GHz  
2.50 GHz  
2.66 GHz  
2.83 GHz  
3 GHz  
1/7.5  
1/8  
1/8.5  
1/9  
1/9.5  
1/10  
1/10.5  
1/11  
1/11.5  
1/12  
1/12.5  
1/13  
1/13.5  
1/14  
1/15  
3.16 GHz  
3.33 GHz  
3.50 GHz  
3.66 GHz  
3.83 GHz  
4 GHz  
4.16 GHz  
4.33 GHz  
4.50 GHz  
4.66 GHz  
5 GHz  
Notes:  
1.  
2.  
Individual processors operate only at or below the rated frequency.  
Listed frequencies are not necessarily committed production frequencies.  
26  
Datasheet  
Electrical Specifications  
2.8.2  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 2-15 defines the possible combinations of the signals and the  
frequency associated with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must operate at the same  
frequency.  
The processor will operate at a 1333 MHz FSB frequency (selected by a 333 MHz  
BCLK[1:0] frequency). Individual processors will only operate at their specified FSB  
frequency.  
For more information about these signals, refer to Section 4.2 and the appropriate  
platform design guidelines.  
Table 2-15. BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
333 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
H
H
L
L
2.8.3  
2.8.4  
Phase Lock Loop (PLL) and Filter  
An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is  
used for the PLL. Refer to Table 2-3 for DC specifications. Refer to the appropriate  
platform design guidelines for decoupling and routing guidelines.  
BCLK[1:0] Specifications  
Table 2-16. Front Side Bus Differential BCLK Specifications  
Notes  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure  
V
Input Low Voltage  
Input High Voltage  
-0.30  
N/A  
N/A  
N/A  
N/A  
N/A  
1.15  
V
V
V
2-3  
2-3  
2-3  
3
3
2
L
V
H
V
Absolute Crossing  
Point  
0.300  
0.550  
CROSS(abs)  
V  
CROSS  
Range of Crossing  
Points  
N/A  
N/A  
0.140  
V
2-3  
-
V
Overshoot  
N/A  
N/A  
N/A  
N/A  
1.4  
N/A  
N/A  
V
V
V
2-3  
2-3  
2-4  
4
4
5
OS  
US  
V
Undershoot  
-0.300  
0.300  
V
DifferentialOutput  
Swing  
SWING  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing voltage is defined as the instantaneous voltage value when the rising edge of BCLK0 equals the  
falling edge of BCLK1.  
Datasheet  
27  
Electrical Specifications  
3.  
4.  
“Steady state” voltage, not including overshoot or undershoot.  
Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined as the absolute  
value of the minimum voltage.  
5.  
Measurement taken from differential waveform.  
Table 2-17. FSB Differential Clock Specifications (1333 MHz FSB)  
1
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure  
Notes  
331.633  
2.99970  
-
-
-
333.367  
3.01538  
150  
MHz  
ns  
-
7
T1: BCLK[1:0] Period  
2-3  
2-3  
2-4  
2
T2: BCLK[1:0] Period Stability  
T5: BCLK[1:0] Rise and Fall Slew Rate  
Slew Rate Matching  
-
ps  
3
4
2.5  
-
8
V/ns  
%
5
N/A  
N/A  
20  
Notes:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor core frequencies based on a  
333 MHz BCLK[1:0].  
2.  
The period specified here is the average period. A given period may vary from this specification as  
governed by the period stability specification (T2). Min period specification is based on -300 PPM deviation  
from a 3 ns period. Max period specification is based on the summation of +300 PPM deviation from a 3 ns  
period and a +0.5% maximum variance due to spread spectrum clocking.  
In this context, period stability is defined as the worst case timing difference between successive crossover  
voltages. In other words, the largest absolute difference between adjacent clock periods must be less than  
the period stability.  
Slew rate is measured through the VSWING voltage range centered about differential zero. Measurement  
taken from differential waveform.  
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a  
±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median  
cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate  
calculations.  
3.  
4.  
5.  
6.  
Duty Cycle (High time/Period) must be between 40 and 60%  
Figure 2-3. Differential Clock Waveform  
Tph  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Ringback  
Margin  
VCROSS (ABS  
)
VCROSS (ABS)  
Threshold  
Region  
Falling Edge  
Ringback  
BCLK0  
VL  
Undershoot  
Tpl  
Tp  
Tp = T1: BCLK[1:0] period  
T2: BCLK[1:0] period stability (not shown)  
Tph = T3: BCLK[1:0] pulse high time  
Tpl = T4: BCLK[1:0] pulse low time  
T5: BCLK[1:0] rise time through the threshold region  
T6: BCLK[1:0] fall time through the threshold region  
28  
Datasheet  
Electrical Specifications  
Figure 2-4. Measurement Points for Differential Clock Waveforms  
Slew_rise  
Slew _fall  
+150 mV  
+150mV  
0.0V  
0.0V  
V_swing  
-150 mV  
-150mV  
Diff  
T5 = BCLK[1:0] rise and fall time through the swing region  
§ §  
Datasheet  
29  
Electrical Specifications  
30  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
3.1  
Package Mechanical Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA8) package that  
interfaces with the motherboard via an LGA775 socket. The package consists of a  
processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch  
of the processor package components and how they are assembled together. Refer to  
the LGA775 Socket Mechanical Design Guide for complete details on the LGA775  
socket.  
The package components shown in Figure 3-1 include the following:  
1. Integrated Heat Spreader (IHS)  
2. Thermal Interface Material (TIM)  
3. Processor core (die)  
4. Package substrate  
5. Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
TIM  
Core (die)  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
Note:  
1.  
Socket and motherboard are included for reference and are not part of processor package.  
3.1.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The  
drawings include dimensions necessary to design a thermal solution for the processor.  
These dimensions include:  
1. Package reference with tolerances (total height, length, width, etc.)  
2. IHS parallelism and tilt  
3. Land dimensions  
4. Top-side and back-side component keep-out dimensions  
Datasheet  
31  
Package Mechanical Specifications  
5. Reference datums  
6. All drawing dimensions are in mm [in].  
7. Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the processor Thermal/Mechanical  
Design Guidelines.  
32  
Datasheet  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing Sheet 1 of 3  
Datasheet  
33  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing Sheet 2 of 3  
34  
Datasheet  
Package Mechanical Specifications  
Figure 3-4. Processor Package Drawing Sheet 3 of 3  
3.1.2  
Processor Component Keep-Out Zones  
Datasheet  
35  
Package Mechanical Specifications  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
topside or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-  
out zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
3.1.3  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution. The minimum loading specification must be  
maintained by any thermal and mechanical solutions.  
.
Table 3-1.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
Static  
80 N [17 lbf]  
-
311 N [70 lbf]  
756 N [170 lbf]  
1, 2, 3  
1, 3, 4  
Dynamic  
Notes:  
1.  
2.  
These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the  
minimum specified load on the processor package.  
3.  
4.  
These specifications are based on limited testing for design characterization. Loading limits are for the  
package only and do not include the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static load  
requirement.  
3.1.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
311 N [70 lbf]  
111 N [25 lbf]  
1, 4  
2, 4  
3, 4  
3.95 N-m [35 lbf-in]  
Notes:  
1.  
2.  
3.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top  
surface.  
4.  
These guidelines are based on limited testing for design characterization.  
3.1.5  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA775 socket 15 times. The  
socket should meet the LGA775 requirements detailed in the LGA775 Socket  
Mechanical Design Guide.  
36  
Datasheet  
Package Mechanical Specifications  
3.1.6  
Processor Mass Specification  
The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all  
the components that are included in the package.  
3.1.7  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.1.8  
Processor Markings  
Figure 3-5 shows the topside markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 3-5. Processor Top-Side Markings Example  
M
INTEL ©'06 3110  
INTEL® XEON®  
SLxxx [COO]  
3.00GHZ/6M/1333/06  
e4  
[FPO]  
ATPO  
S/N  
3.1.9  
Processor Land Coordinates  
Figure 3-6 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
Datasheet  
37  
Package Mechanical Specifications  
.
Figure 3-6. Processor Land Coordinates and Quadrants, Top View  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
W
V
Address/  
Common Clock/  
Async  
Socket 775  
Quadrants  
Top View  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
VTT / Clocks  
Data  
§
38  
Datasheet  
Land Listing and Signal Descriptions  
4 Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the processor. The land-out footprint is shown  
in Figure 4-1 and Figure 4-2. These figures represent the land-out arranged by land  
number and they show the physical location of each signal on the package land array  
(top view). Table 4-1 is a listing of all processor lands ordered alphabetically by land  
(signal) name. Table 4-2 is also a listing of all processor lands; the ordering is by land  
number.  
Datasheet  
39  
Land Listing and Signal Descriptions  
Figure 4-1. land-out Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W
V
U
T
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
R
P
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
N
M
L
K
J
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
FC34  
VSS  
FC31  
FC33  
VCC  
H
BSEL1  
BSEL2  
FC15  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC32  
G
F
BSEL0 BCLK1  
TESTHI4  
VTT_SEL  
TESTH  
I5  
TESTH  
I3  
TESTH  
I6  
RESET D47# D44#  
#
DSTBN2 DSTBP  
#
D35#  
D38#  
D36#  
D37#  
D32#  
VSS  
D31#  
D30#  
2#  
RSVD  
BCLK0  
TESTH  
I0  
TESTH  
I2  
TESTH  
I7  
RSVD  
VSS  
D43#  
D41#  
VSS  
E
FC26  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
FC10  
VSS  
RSVD  
D45# D42#  
VSS  
D40#  
D39#  
VSS  
VSS  
D34#  
RSVD  
D33#  
VSS  
D
VTT  
VTT  
VCCPL D46# VSS  
L
D48#  
DBI2#  
D49#  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VCCIO VSS  
PLL  
D58#  
DBI3#  
VSS  
D54#  
DSTBP  
3#  
VSS  
D51#  
B
A
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSSA  
VCCA  
D63# D59#  
D62# VSS  
VSS  
D60#  
D61#  
D57#  
VSS  
VSS  
D55#  
D53#  
FC23  
RSVD  
D56#  
DSTBN VSS  
3#  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
40  
Datasheet  
Land Listing and Signal Descriptions  
Figure 4-2. land-out Diagram (Top View – Right Side)  
14  
13  
VSS  
12  
VCC  
11  
10  
9
8
7
6
5
4
3
2
1
VSS_MB_  
REGULATION  
VCC_MB_  
REGULATION  
VCC  
VCC  
VSS  
VCC  
VCC  
VID_S  
ELECT  
VSS_  
SENSE  
VCC_  
SENSE  
VSS  
VSS  
AN  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC40  
VID3  
FC8  
VID6  
VSS  
VID2  
VID0  
VSS  
AM  
AL  
AK  
AJ  
VID1  
VID5  
VID4  
VSS  
VRDSEL  
ITP_CLK0  
ITP_CLK1  
VSS  
PROCHOT#  
VSS  
FC25  
FC24  
VSS  
A35#  
VSS  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM1#  
VSS  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
A29#  
VSS  
BPM5#  
VSS  
BPM3#  
BPM4#  
VSS  
TRST#  
TDO  
SKTOCC#  
VCC  
RSVD  
A22#  
VSS  
FC18  
TCK  
ADSTB1#  
A25#  
A24#  
A23#  
FC36  
BPM2#  
DBR#  
IERR#  
FC39  
TDI  
VCC  
RSVD  
A26#  
A21#  
VSS  
TMS  
VCC  
A17#  
VSS  
FC37  
VSS  
VCC  
VSS  
VTT_OUT_  
RIGHT  
FC0/  
BOOTSELECT  
VCC  
VCC  
VSS  
VSS  
A19#  
A18#  
VSS  
A20#  
VSS  
PSI#  
VSS  
Y
A16#  
TESTHI1  
TESTHI12/  
FC44  
MSID0  
W
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
A14#  
A12#  
A9#  
A15#  
A13#  
A11#  
A8#  
VSS  
FC30  
VSS  
RSVD  
FC29  
FC4  
MSID1  
FC28  
V
U
T
A10#  
VSS  
COMP1  
COMP3  
ADSTB0  
#
VSS  
FERR#/  
PBE#  
VSS  
R
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
A4#  
RSVD  
RSVD  
A5#  
VSS  
INIT#  
VSS  
SMI#  
TESTHI11  
PWRGOOD  
VSS  
P
VSS  
RSVD  
A7#  
IGNNE#  
N
M
REQ2#  
STPCLK#  
THERMTRIP  
#
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A3#  
A6#  
VSS  
TESTHI13  
VSS  
LINT1  
LINT0  
L
K
J
REQ3#  
REQ4#  
VSS  
REQ0#  
VSS  
A20M#  
FC22  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
REQ1#  
FC3  
VTT_OUT_  
LEFT  
VSS  
VSS  
VSS  
TESTHI10  
FC35  
VSS  
GTLREF1  
GTLREF0  
FC27  
H
D29# D27#  
D28# VSS  
DSTBN1# DBI1  
#
FC38  
VSS  
D16#  
D18#  
BPRI#  
D17#  
DEFER  
#
RSVD  
FC21  
PECI  
TESTHI  
9/FC43  
TESTHI8/  
FC42  
COMP2  
FC5  
G
F
D24#  
D23#  
VSS  
RS1#  
VSS  
BR0#  
VSS  
D26#  
D25#  
DSTBP1#  
VSS  
VSS  
D21#  
D22#  
D19#  
VSS  
VSS  
RSVD  
D20#  
RSVD  
VSS  
FC20  
VSS  
HITM#  
HIT#  
TRDY#  
VSS  
VSS  
E
RSVD  
D15#  
D12#  
ADS#  
RSVD  
D
D52# VSS  
D14#  
D11#  
VSS  
FC41  
DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
DRDY#  
C
VSS  
COMP8 D13#  
VSS  
D9#  
D10#  
D8#  
DSTBP0# VSS  
D6#  
D7#  
D5#  
VSS  
VSS  
D4#  
D0#  
D2#  
RS0#  
RS2#  
DBSY#  
VSS  
VSS  
1
B
A
D50# COMP0 VSS  
VSS  
DBI0#  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
Datasheet  
41  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
A32#  
A33#  
A34#  
A35#  
A4#  
AH4  
AH5  
AJ5  
AJ6  
P6  
Source  
Synch  
Input/  
Output  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A20M#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A3#  
U6  
T4  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U5  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U4  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
V5  
Source  
Synch  
Input/  
Output  
A5#  
M5  
L4  
Source  
Synch  
Input/  
Output  
V4  
Source  
Synch  
Input/  
Output  
A6#  
Source  
Synch  
Input/  
Output  
W5  
AB6  
W6  
Y6  
Source  
Synch  
Input/  
Output  
A7#  
M4  
R4  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A8#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A9#  
T5  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
ADS#  
ADSTB0#  
ADSTB1#  
D2  
Common  
Clock  
Input/  
Output  
Y4  
Source  
Synch  
Input/  
Output  
R6  
Source  
Synch  
Input/  
Output  
K3  
Asynch  
CMOS  
Input  
AD5  
Source  
Synch  
Input/  
Output  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
L5  
Source  
Synch  
Input/  
Output  
BCLK0  
BCLK1  
BNR#  
F28  
G28  
C2  
Clock  
Clock  
Input  
Input  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
AJ2  
AJ1  
AD2  
AG2  
AF2  
AG3  
G8  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input  
Source  
Synch  
Input/  
Output  
F3  
Common  
Clock  
Input/  
Output  
A30#  
A31#  
AG4  
AG5  
Source  
Synch  
Input/  
Output  
BSEL0  
G29  
Asynch  
CMOS  
Output  
Source  
Synch  
Input/  
Output  
42  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP8  
D0#  
H30  
G30  
A13  
T1  
Asynch  
CMOS  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D3#  
F12  
D13  
E13  
G13  
F14  
G14  
C6  
Source  
Synch  
Input/  
Output  
Asynch  
CMOS  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
G2  
Power/  
Other  
Source  
Synch  
Input/  
Output  
R1  
Power/  
Other  
Source  
Synch  
Input/  
Output  
B13  
B4  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D4#  
F15  
G15  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
A5  
Source  
Synch  
Input/  
Output  
D1#  
C5  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D2#  
B10  
C11  
D8  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
B12  
C12  
D11  
G9  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
F8  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
F9  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E9  
Source  
Synch  
Input/  
Output  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
E19  
F20  
E21  
F21  
G21  
E22  
Source  
Synch  
Input/  
Output  
A4  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D20#  
D21#  
D22#  
D23#  
D7  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E10  
D10  
F11  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Datasheet  
43  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
D46#  
D47#  
D48#  
D49#  
D5#  
D22  
G22  
D20  
D17  
B6  
Source  
Synch  
Input/  
Output  
DBI1#  
DBI2#  
G11  
D19  
C20  
AC2  
B2  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DBI3#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DBR#  
Power/  
Other  
Output  
Source  
Synch  
Input/  
Output  
DBSY#  
Common  
Clock  
Input/  
Output  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D6#  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B7  
Source  
Synch  
Input/  
Output  
DEFER#  
DRDY#  
G7  
Common  
Clock  
Input  
Source  
Synch  
Input/  
Output  
C1  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
C8  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
G12  
G20  
A16  
B9  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E12  
G19  
C17  
Y1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
FC0/  
BOOTSELECT  
Power/  
Other  
D60#  
D61#  
D62#  
D63#  
D7#  
B19  
A19  
A22  
B22  
A7  
Source  
Synch  
Input/  
Output  
FC10  
FC15  
FC17  
FC18  
FC20  
FC21  
FC22  
FC23  
E24  
H29  
Y3  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
AE3  
E5  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
D8#  
A10  
A11  
A8  
Source  
Synch  
Input/  
Output  
F6  
Power/  
Other  
D9#  
Source  
Synch  
Input/  
Output  
J3  
Power/  
Other  
DBI0#  
Source  
Synch  
Input/  
Output  
A24  
Power/  
Other  
44  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
FC24  
FC25  
FC26  
FC27  
FC28  
FC29  
FC3  
AK1  
AL1  
E29  
G1  
Power/  
Other  
GTLREF1  
HIT#  
H2  
D4  
E4  
Power/  
Other  
Input  
Power/  
Other  
Common  
Clock  
Input/  
Output  
Power/  
Other  
HITM#  
IERR#  
IGNNE#  
INIT#  
Common  
Clock  
Input/  
Output  
Power/  
Other  
AB2  
N2  
P3  
Asynch  
CMOS  
Output  
Input  
Input  
U1  
Power/  
Other  
Asynch  
CMOS  
U2  
Power/  
Other  
Asynch  
CMOS  
J2  
Power/  
Other  
ITP_CLK0  
ITP_CLK1  
LINT0  
AK3  
AJ3  
K1  
TAP  
TAP  
Input  
Input  
Input  
FC30  
FC31  
FC32  
FC33  
FC34  
FC35  
FC36  
FC37  
FC38  
FC39  
FC4  
U3  
Power/  
Other  
Asynch  
CMOS  
J16  
H15  
H16  
J17  
H4  
Power/  
Other  
LINT1  
LOCK#  
MSID0  
L1  
C3  
W1  
V1  
G5  
AL2  
N1  
K4  
J5  
Asynch  
CMOS  
Input  
Power/  
Other  
Common  
Clock  
Input/  
Output  
Power/  
Other  
Power/  
Other  
Output  
Power/  
Other  
MSID1  
Power/  
Other  
Output  
Power/  
Other  
PECI  
Power/  
Other  
Input/  
Output  
AD3  
AB3  
G10  
AA2  
T2  
Power/  
Other  
PROCHOT#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
Asynch  
CMOS  
Input/  
Output  
Power/  
Other  
Power/  
Other  
Input  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
M6  
K6  
J6  
Source  
Synch  
Input/  
Output  
FC40  
FC41  
FC5  
AM6  
C9  
Power/  
Other  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Source  
Synch  
Input/  
Output  
F2  
Power/  
Other  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
V2  
A20  
AC4  
AE4  
AE6  
AH2  
D1  
FC8  
AK6  
R3  
Power/  
Other  
FERR#/PBE#  
GTLREF0  
Asynch  
CMOS  
Output  
Input  
H1  
Power/  
Other  
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
D14  
D16  
E23  
E6  
TESTHI5  
TESTHI6  
G26  
G24  
F24  
G3  
Power/  
Other  
Input  
Input  
Input  
Input  
Input  
Output  
Power/  
Other  
TESTHI7  
Power/  
Other  
E7  
TESTHI8/FC42  
TESTHI9/FC43  
THERMTRIP#  
Power/  
Other  
F23  
F29  
G6  
G4  
Power/  
Other  
M2  
Asynch  
CMOS  
N4  
N5  
TMS  
AC1  
E3  
TAP  
Input  
Input  
P5  
TRDY#  
Common  
Clock  
G23  
Common  
Clock  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
TRST#  
VCC  
AG1  
AA8  
TAP  
Input  
RS0#  
RS1#  
B3  
F5  
Common  
Clock  
Power/  
Other  
Common  
Clock  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB8  
Power/  
Other  
RS2#  
A3  
Common  
Clock  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC8  
Power/  
Other  
SKTOCC#  
SMI#  
AE8  
P2  
Power/  
Other  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
STPCLK#  
M3  
Asynch  
CMOS  
Power/  
Other  
TCK  
TDI  
AE1  
AD1  
AF1  
F26  
TAP  
TAP  
TAP  
Input  
Input  
Power/  
Other  
TDO  
Output  
Input  
Power/  
Other  
TESTHI0  
Power/  
Other  
Power/  
Other  
TESTHI1  
TESTHI10  
TESTHI11  
TESTHI12/FC44  
TESTHI13  
TESTHI2  
W3  
H5  
Power/  
Other  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Power/  
Other  
Power/  
Other  
Power/  
Other  
P1  
Power/  
Other  
AD23  
AD24  
AD25  
AD26  
AD27  
Power/  
Other  
W2  
L2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
F25  
G25  
G27  
Power/  
Other  
Power/  
Other  
TESTHI3  
Power/  
Other  
Power/  
Other  
TESTHI4  
Power/  
Other  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD28  
AD29  
AD30  
AD8  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG11  
AG12  
AG14  
AG15  
AG18  
AG19  
AG21  
AG22  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AF11  
AF12  
AF14  
AF15  
AF18  
AF19  
AF21  
AF22  
AF8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AG9  
Power/  
Other  
Power/  
Other  
AH11  
AH12  
AH14  
AH15  
AH18  
AH19  
AH21  
AH22  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AF9  
Power/  
Other  
Power/  
Other  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH8  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AK18  
AK19  
AK21  
AK22  
AK25  
AK26  
AK8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AH9  
Power/  
Other  
AK9  
Power/  
Other  
AJ11  
AJ12  
AJ14  
AJ15  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
Power/  
Other  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AJ9  
Power/  
Other  
Power/  
Other  
AK11  
AK12  
AK14  
AK15  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AL9  
Power/  
Other  
Power/  
Other  
AM11  
AM12  
Power/  
Other  
Power/  
Other  
Power/  
Other  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM14  
AM15  
AM18  
AM19  
AM21  
AM22  
AM25  
AM26  
AM29  
AM30  
AM8  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AN8  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AM9  
Power/  
Other  
Power/  
Other  
AN11  
AN12  
AN14  
AN15  
AN18  
AN19  
AN21  
AN22  
AN25  
AN26  
AN29  
AN30  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
J9  
Power/  
Other  
Power/  
Other  
K23  
Power/  
Other  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
N29  
N30  
N8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
P8  
Power/  
Other  
Power/  
Other  
R8  
Power/  
Other  
Power/  
Other  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
L8  
Power/  
Other  
Power/  
Other  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
N23  
N24  
N25  
N26  
N27  
N28  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
V8  
Power/  
Other  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
Power/  
Other  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VRDSEL  
VSS  
AM2  
AL5  
AM3  
AL6  
AK4  
AL4  
AM5  
AM7  
AL3  
B1  
Asynch  
CMOS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Asynch  
CMOS  
Power/  
Other  
Power/  
Other  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
VSS  
B11  
B14  
B17  
B20  
B24  
B5  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
B8  
Power/  
Other  
Power/  
Other  
VSS  
A12  
A15  
A18  
A2  
Power/  
Other  
VCC_MB_  
REGULATION  
AN5  
AN3  
A23  
C23  
D23  
AN7  
Power/  
Other  
Output  
Output  
VSS  
Power/  
Other  
VCC_SENSE  
Power/  
Other  
VSS  
Power/  
Other  
VCCA  
Power/  
Other  
VSS  
Power/  
Other  
VCCIOPLL  
VCCPLL  
Power/  
Other  
VSS  
A21  
A6  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
VID_SELECT  
Power/  
Other  
Output  
VSS  
A9  
Power/  
Other  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD4  
AD7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE10  
AE13  
AE16  
AE17  
AE2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
Power/  
Other  
AA30  
AA6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AA7  
Power/  
Other  
Power/  
Other  
AB1  
Power/  
Other  
Power/  
Other  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE7  
Power/  
Other  
Power/  
Other  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AC3  
Power/  
Other  
Power/  
Other  
AC6  
Power/  
Other  
Power/  
Other  
AC7  
Power/  
Other  
Power/  
Other  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH24  
AH3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AH6  
Power/  
Other  
Power/  
Other  
AH7  
Power/  
Other  
Power/  
Other  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AF30  
AF6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AF7  
Power/  
Other  
Power/  
Other  
AG10  
AG13  
AG16  
AG17  
AG20  
AG23  
AG24  
AG7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AJ7  
Power/  
Other  
AH1  
Power/  
Other  
AK10  
AK13  
AK16  
AK17  
AK2  
Power/  
Other  
AH10  
AH13  
AH16  
AH17  
AH20  
AH23  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AK20  
AK23  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK24  
AK27  
AK28  
AK29  
AK30  
AK5  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM24  
AM27  
AM28  
AM4  
AN1  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AN10  
AN13  
AN16  
AN17  
AN2  
Power/  
Other  
AK7  
Power/  
Other  
Power/  
Other  
AL10  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AN20  
AN23  
AN24  
AN27  
AN28  
C10  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
C13  
Power/  
Other  
AM1  
Power/  
Other  
C16  
Power/  
Other  
AM10  
AM13  
AM16  
AM17  
AM20  
AM23  
Power/  
Other  
C19  
Power/  
Other  
Power/  
Other  
C22  
Power/  
Other  
Power/  
Other  
C24  
Power/  
Other  
Power/  
Other  
C4  
Power/  
Other  
Power/  
Other  
C7  
Power/  
Other  
Power/  
Other  
D12  
Power/  
Other  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D15  
D18  
D21  
D24  
D3  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F7  
Power/  
Other  
Power/  
Other  
H10  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
D5  
Power/  
Other  
Power/  
Other  
D6  
Power/  
Other  
Power/  
Other  
D9  
Power/  
Other  
Power/  
Other  
E11  
E14  
E17  
E2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
E20  
E25  
E26  
E27  
E28  
E8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
F10  
F13  
F16  
F19  
F22  
F4  
Power/  
Other  
Power/  
Other  
Power/  
Other  
H6  
Power/  
Other  
Power/  
Other  
H7  
Power/  
Other  
Power/  
Other  
H8  
Power/  
Other  
Power/  
Other  
H9  
Power/  
Other  
Power/  
Other  
J4  
Power/  
Other  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J7  
K2  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P27  
P28  
P29  
P30  
P4  
Power/  
Other  
Power/  
Other  
Power/  
Other  
K5  
Power/  
Other  
Power/  
Other  
K7  
Power/  
Other  
Power/  
Other  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
P7  
Power/  
Other  
Power/  
Other  
R2  
Power/  
Other  
Power/  
Other  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
L30  
L6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
L7  
Power/  
Other  
Power/  
Other  
M1  
M7  
N3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
R7  
Power/  
Other  
Power/  
Other  
T3  
Power/  
Other  
N6  
Power/  
Other  
T6  
Power/  
Other  
N7  
Power/  
Other  
T7  
Power/  
Other  
P23  
P24  
P25  
P26  
Power/  
Other  
U7  
Power/  
Other  
Power/  
Other  
V23  
V24  
V25  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Land Name  
Land #  
Direction  
Land Name  
Land #  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V26  
V27  
V28  
V29  
V3  
Power/  
Other  
VTT  
A27  
A28  
A29  
A30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
J1  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
V30  
V6  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
V7  
Power/  
Other  
VTT  
Power/  
Other  
W4  
W7  
Y2  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Y5  
Power/  
Other  
VTT  
VTT  
Power/  
Other  
Y7  
Power/  
Other  
Power/  
Other  
VSS_MB_  
REGULATION  
AN6  
AN4  
B23  
B25  
B26  
B27  
B28  
B29  
B30  
A25  
A26  
Power/  
Other  
Output  
Output  
VTT  
Power/  
Other  
VSS_SENSE  
VSSA  
VTT  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT_OUT_LEFT  
VTT_OUT_RIGHT  
VTT_SEL  
Power/  
Other  
Output  
Output  
Output  
VTT  
Power/  
Other  
AA1  
F27  
Power/  
Other  
VTT  
Power/  
Other  
Power/  
Other  
VTT  
Power/  
Other  
VTT  
Power/  
Other  
VTT  
Power/  
Other  
VTT  
Power/  
Other  
VTT  
Power/  
Other  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land  
Signal  
Land #  
Direction  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A21#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Name  
Buffer Type  
A10  
D08#  
Source  
Synch  
Input/  
Output  
A11  
D09#  
Source  
Synch  
Input/  
Output  
A12  
VSS  
Power/Other  
Power/Other  
A13  
A14  
COMP0  
D50#  
Input  
Source  
Synch  
Input/  
Output  
AA30  
AA4  
A15  
A16  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
DSTBN3#  
Source  
Synch  
Input/  
Output  
AA5  
A23#  
Source  
Synch  
Input/  
Output  
A17  
D56#  
Source  
Synch  
Input/  
Output  
AA6  
AA7  
AA8  
AB1  
AB2  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A18  
A19  
VSS  
Power/Other  
D61#  
Source  
Synch  
Input/  
Output  
VCC  
A2  
VSS  
RESERVED  
VSS  
Power/Other  
VSS  
A20  
A21  
A22  
IERR#  
Asynch  
CMOS  
Output  
Power/Other  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC37  
VSS  
A26#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D62#  
Source  
Synch  
Input/  
Output  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A3  
VCCA  
FC23  
VTT  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
VTT  
AB30  
AB4  
RS2#  
Common  
Clock  
Input  
Source  
Synch  
Input/  
Output  
A30  
A4  
VTT  
Power/Other  
AB5  
AB6  
A24#  
A17#  
Source  
Synch  
Input/  
Output  
D02#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A5  
D04#  
Source  
Synch  
Input/  
Output  
AB7  
AB8  
VSS  
VCC  
TMS  
DBR#  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
TAP  
A6  
A7  
VSS  
Power/Other  
D07#  
Source  
Synch  
Input/  
Output  
AC1  
Input  
AC2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
A8  
DBI0#  
VSS  
Source  
Synch  
Input/  
Output  
AC23  
AC24  
AC25  
AC26  
A9  
Power/Other  
Power/Other  
AA1  
VTT_OUT_  
RIGHT  
Output  
AA2  
FC39  
Power/Other  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
AC27  
AC28  
AC29  
AC3  
VCC  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE2  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC18  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE3  
AC30  
AC4  
AC5  
RESERVED  
A25#  
Source  
Synch  
Input/  
Output  
AC6  
AC7  
AC8  
AD1  
AD2  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
TAP  
VCC  
TDI  
Input  
BPM2#  
Common  
Clock  
Input/  
Output  
AE30  
AE4  
AE5  
RESERVED  
VSS  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD3  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE6  
RESERVED  
VSS  
VCC  
AE7  
Power/Other  
Power/Other  
Power/Other  
TAP  
VCC  
AE8  
SKTOCC#  
VCC  
Output  
Output  
VCC  
AE9  
VCC  
AF1  
TDO  
VCC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF2  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
FC36  
VCC  
VCC  
AD30  
AD4  
VCC  
VSS  
VSS  
AD5  
ADSTB1#  
Source  
Synch  
Input/  
Output  
VCC  
AD6  
A22#  
Source  
Synch  
Input/  
Output  
VCC  
VSS  
AD7  
AD8  
VSS  
VCC  
TCK  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
TAP  
VSS  
VCC  
AE1  
Input  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
BPM4#  
Common  
Clock  
Input/  
Output  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
AF28  
AF29  
AF3  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG6  
A29#  
Source  
Synch  
Input/  
Output  
AG7  
AG8  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AF30  
AF4  
VSS  
AG9  
A28#  
Source  
Synch  
Input/  
Output  
AH1  
AF5  
A27#  
Source  
Synch  
Input/  
Output  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH2  
VSS  
VCC  
VCC  
VSS  
AF6  
AF7  
VSS  
VSS  
VCC  
VCC  
TRST#  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AF8  
VCC  
VCC  
VSS  
AF9  
AG1  
Input  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCC  
VCC  
RESERVED  
VSS  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
AG2  
BPM3#  
Common  
Clock  
Input/  
Output  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG3  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH30  
AH4  
VCC  
A32#  
VSS  
Source  
Synch  
Input/  
Output  
VCC  
VCC  
VCC  
VCC  
VCC  
BPM5#  
AH5  
A33#  
Source  
Synch  
Input/  
Output  
AH6  
AH7  
AH8  
AH9  
AJ1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common  
Clock  
Input/  
Output  
VCC  
VCC  
AG30  
AG4  
VCC  
Power/Other  
BPM1#  
Common  
Clock  
Input/  
Output  
A30#  
Source  
Synch  
Input/  
Output  
AJ10  
AJ11  
VSS  
VCC  
Power/Other  
Power/Other  
AG5  
A31#  
Source  
Synch  
Input/  
Output  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AK19  
AK2  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AJ2  
BPM0#  
Common  
Clock  
Input/  
Output  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ3  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
VCC  
AK3  
AK30  
AK4  
ITP_CLK0  
VSS  
Input  
VSS  
Power/Other  
VSS  
VID4  
Asynch  
CMOS  
Output  
VCC  
VCC  
AK5  
AK6  
VSS  
FC8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
AK7  
VSS  
VSS  
AK8  
VCC  
ITP_CLK1  
VSS  
Input  
AK9  
VCC  
AJ30  
AJ4  
Power/Other  
Power/Other  
AL1  
FC25  
VSS  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL2  
AJ5  
A34#  
Source  
Synch  
Input/  
Output  
VCC  
VCC  
AJ6  
A35#  
Source  
Synch  
Input/  
Output  
VSS  
VCC  
AJ7  
AJ8  
VSS  
VCC  
VCC  
FC24  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VSS  
AJ9  
VSS  
AK1  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
VCC  
PROCHOT#  
Asynch  
CMOS  
Input/  
Output  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Datasheet  
61  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
AL26  
AL27  
AL28  
AL29  
VCC  
VSS  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM4  
AM5  
VSS  
Power/Other  
VID6  
Asynch  
CMOS  
Output  
AM6  
AM7  
FC40  
VID7  
Power/Other  
Asynch  
CMOS  
Output  
AL3  
AL30  
AL4  
VRDSEL  
VCC  
AM8  
AM9  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VID5  
Asynch  
CMOS  
Output  
Output  
Output  
AN1  
AL5  
AL6  
VID1  
VID3  
Asynch  
CMOS  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN2  
Asynch  
CMOS  
AL7  
AL8  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VID0  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL9  
AM1  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM2  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN3  
Asynch  
CMOS  
Output  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM3  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VID2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC_SENS Power/Other  
E
Output  
AN30  
AN4  
VCC  
Power/Other  
VSS_SENS Power/Other  
E
Output  
Output  
AN5  
AN6  
AN7  
VCC_MB_  
REGULATI  
ON  
Power/Other  
VSS_MB_  
REGULATI  
ON  
Power/Other  
Output  
Output  
Asynch  
CMOS  
Output  
VID_SELEC Power/Other  
T
AM30  
VCC  
Power/Other  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
AN8  
AN9  
B1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
B9  
C1  
DSTBP0#  
DRDY#  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
VSS  
B10  
D10#  
Source  
Synch  
Input/  
Output  
C10  
C11  
VSS  
Power/Other  
D11#  
Source  
Synch  
Input/  
Output  
B11  
B12  
VSS  
Power/Other  
D13#  
Source  
Synch  
Input/  
Output  
C12  
D14#  
Source  
Synch  
Input/  
Output  
B13  
COMP8  
Power/  
Other  
Input  
C13  
C14  
VSS  
Power/Other  
D52#  
Source  
Synch  
Input/  
Output  
B14  
B15  
VSS  
Power/Other  
D53#  
Source  
Synch  
Input/  
Output  
C15  
D51#  
Source  
Synch  
Input/  
Output  
B16  
D55#  
Source  
Synch  
Input/  
Output  
C16  
C17  
VSS  
Power/Other  
DSTBP3#  
Source  
Synch  
Input/  
Output  
B17  
B18  
VSS  
Power/Other  
D57#  
Source  
Synch  
Input/  
Output  
C18  
D54#  
Source  
Synch  
Input/  
Output  
B19  
B2  
D60#  
Source  
Synch  
Input/  
Output  
C19  
C2  
VSS  
Power/Other  
BNR#  
Common  
Clock  
Input/  
Output  
DBSY#  
Common  
Clock  
Input/  
Output  
C20  
C21  
DBI3#  
D58#  
Source  
Synch  
Input/  
Output  
B20  
B21  
VSS  
Power/Other  
D59#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
B22  
D63#  
Source  
Synch  
Input/  
Output  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C3  
VSS  
VCCIOPLL  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B3  
VSSA  
VSS  
VTT  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
LOCK#  
Common  
Clock  
Input/  
Output  
RS0#  
Common  
Clock  
Input  
C30  
C4  
VTT  
VSS  
Power/Other  
Power/Other  
B30  
B4  
VTT  
Power/Other  
D00#  
Source  
Synch  
Input/  
Output  
C5  
D01#  
Source  
Synch  
Input/  
Output  
B5  
B6  
VSS  
Power/Other  
C6  
D03#  
Source  
Synch  
Input/  
Output  
D05#  
Source  
Synch  
Input/  
Output  
C7  
C8  
VSS  
Power/Other  
B7  
B8  
D06#  
VSS  
Source  
Synch  
Input/  
Output  
DSTBN0#  
Source  
Synch  
Input/  
Output  
Power/Other  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
C9  
FC41  
Power/  
Other  
E11  
E12  
VSS  
Power/Other  
DSTBP1#  
Source  
Synch  
Input/  
Output  
D1  
RESERVED  
D22#  
D10  
Source  
Synch  
Input/  
Output  
E13  
D26#  
Source  
Synch  
Input/  
Output  
D11  
D15#  
Source  
Synch  
Input/  
Output  
E14  
E15  
VSS  
Power/Other  
D33#  
Source  
Synch  
Input/  
Output  
D12  
D13  
VSS  
Power/Other  
D25#  
Source  
Synch  
Input/  
Output  
E16  
D34#  
Source  
Synch  
Input/  
Output  
D14  
D15  
D16  
D17  
RESERVED  
VSS  
E17  
E18  
VSS  
Power/Other  
Power/Other  
D39#  
Source  
Synch  
Input/  
Output  
RESERVED  
D49#  
E19  
D40#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E2  
VSS  
VSS  
Power/Other  
Power/Other  
D18  
D19  
VSS  
Power/Other  
E20  
E21  
DBI2#  
Source  
Synch  
Input/  
Output  
D42#  
Source  
Synch  
Input/  
Output  
D2  
ADS#  
D48#  
Common  
Clock  
Input/  
Output  
E22  
D45#  
Source  
Synch  
Input/  
Output  
D20  
Source  
Synch  
Input/  
Output  
E23  
E24  
RESERVED  
FC10  
D21  
D22  
VSS  
Power/Other  
Power/  
Other  
D46#  
Source  
Synch  
Input/  
Output  
E25  
E26  
E27  
E28  
E29  
E3  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D3  
VCCPLL  
VSS  
VTT  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VTT  
FC26  
TRDY#  
VTT  
Common  
Clock  
Input  
VTT  
E4  
HITM#  
Common  
Clock  
Input/  
Output  
VTT  
VSS  
VTT  
E5  
E6  
E7  
E8  
E9  
FC20  
RESERVED  
RESERVED  
VSS  
Power/Other  
D30  
D4  
HIT#  
Common  
Clock  
Input/  
Output  
Power/Other  
D5  
D6  
D7  
VSS  
VSS  
Power/Other  
Power/Other  
D19#  
Source  
Synch  
Input/  
Output  
D20#  
Source  
Synch  
Input/  
Output  
F10  
F11  
VSS  
Power/Other  
D23#  
Source  
Synch  
Input/  
Output  
D8  
D12#  
Source  
Synch  
Input/  
Output  
F12  
F13  
D24#  
VSS  
Source  
Synch  
Input/  
Output  
D9  
VSS  
Power/Other  
E10  
D21#  
Source  
Synch  
Input/  
Output  
Power/Other  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
F14  
D28#  
Source  
Synch  
Input/  
Output  
G15  
D31#  
Source  
Synch  
Input/  
Output  
F15  
D30#  
Source  
Synch  
Input/  
Output  
G16  
G17  
G18  
D32#  
D36#  
D35#  
Source  
Synch  
Input/  
Output  
F16  
F17  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
D37#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
F18  
D38#  
Source  
Synch  
Input/  
Output  
G19  
DSTBP2#  
Source  
Synch  
Input/  
Output  
F19  
F2  
VSS  
FC5  
Power/Other  
Power/Other  
G2  
COMP2  
Power/Other  
Input  
G20  
DSTBN2#  
Source  
Synch  
Input/  
Output  
F20  
D41#  
Source  
Synch  
Input/  
Output  
G21  
G22  
G23  
D44#  
D47#  
Source  
Synch  
Input/  
Output  
F21  
F22  
D43#  
VSS  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Power/Other  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F3  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
RESET#  
Common  
Clock  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Output  
Input  
G24  
G25  
G26  
G27  
G28  
G29  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Output  
RESERVED  
BR0#  
BSEL0  
Asynch  
CMOS  
Common  
Clock  
Input/  
Output  
G3  
G30  
G4  
TESTHI8/  
FC42  
Power/Other  
Input  
Output  
Input  
F4  
F5  
VSS  
Power/Other  
RS1#  
Common  
Clock  
Input  
BSEL2  
Asynch  
CMOS  
F6  
F7  
F8  
FC21  
VSS  
Power/Other  
Power/Other  
TESTHI9/  
FC43  
Power/Other  
G5  
PECI  
Power/Other  
Input/  
Output  
D17#  
Source  
Synch  
Input/  
Output  
G6  
G7  
RESERVED  
DEFER#  
F9  
D18#  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input  
Input  
G1  
FC27  
FC38  
Power/Other  
G8  
G9  
BPRI#  
D16#  
Common  
Clock  
G10  
Power/  
Other  
Source  
Synch  
Input/  
Output  
G11  
G12  
G13  
G14  
DBI1#  
DSTBN1#  
D27#  
Source  
Synch  
Input/  
Output  
H1  
GTLREF0  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
Source  
Synch  
Input/  
Output  
H10  
H11  
H12  
H13  
Source  
Synch  
Input/  
Output  
VSS  
VSS  
D29#  
Source  
Synch  
Input/  
Output  
VSS  
Datasheet  
65  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
H14  
H15  
H16  
H17  
H18  
H19  
VSS  
FC32  
FC33  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC22  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
H2  
GTLREF1  
VSS  
Input  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H3  
VSS  
VSS  
VSS  
J30  
J4  
VSS  
VSS  
J5  
REQ1#  
Source  
Synch  
Input/  
Output  
VSS  
J6  
REQ4#  
Source  
Synch  
Input/  
Output  
VSS  
VSS  
J7  
J8  
J9  
K1  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
FC15  
VSS  
VCC  
H30  
BSEL1  
Asynch  
CMOS  
Output  
Input  
LINT0  
Asynch  
CMOS  
Input  
H4  
H5  
H6  
H7  
H8  
H9  
J1  
FC35  
TESTHI10  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
K2  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K3  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VTT_OUT_  
LEFT  
Output  
VCC  
VCC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC31  
FC34  
VCC  
VCC  
FC3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A20M#  
Asynch  
CMOS  
Input  
K30  
K4  
VCC  
Power/Other  
REQ0#  
Source  
Synch  
Input/  
Output  
K5  
K6  
VSS  
Power/Other  
REQ3#  
Source  
Synch  
Input/  
Output  
K7  
K8  
L1  
VSS  
VCC  
Power/Other  
Power/Other  
LINT1  
Asynch  
CMOS  
Input  
Input  
L2  
TESTHI13  
Power/Other  
J20  
VCC  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A06#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N26  
N27  
N28  
N29  
N3  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N30  
N4  
N5  
N6  
N7  
N8  
P1  
P2  
RESERVED  
RESERVED  
VSS  
L30  
L4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
VSS  
VCC  
L5  
A03#  
Source  
Synch  
Input/  
Output  
TESTHI11  
SMI#  
Input  
Input  
Asynch  
CMOS  
L6  
L7  
L8  
M1  
VSS  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
INIT#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M2  
THERMTRI  
P#  
Asynch  
CMOS  
Output  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M3  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
Asynch  
CMOS  
Input  
VCC  
VCC  
P30  
P4  
VSS  
VSS  
Power/Other  
Power/Other  
VCC  
VCC  
P5  
RESERVED  
A04#  
STPCLK#  
Asynch  
CMOS  
Input  
P6  
Source  
Synch  
Input/  
Output  
M30  
M4  
VCC  
Power/Other  
P7  
P8  
VSS  
VCC  
COMP3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A07#  
Source  
Synch  
Input/  
Output  
R1  
Input  
M5  
M6  
A05#  
Source  
Synch  
Input/  
Output  
R2  
REQ2#  
Source  
Synch  
Input/  
Output  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R3  
VSS  
VSS  
M7  
M8  
N1  
N2  
VSS  
VCC  
Power/Other  
Power/Other  
VSS  
VSS  
PWRGOOD Power/Other  
Input  
Input  
VSS  
IGNNE#  
Asynch  
CMOS  
VSS  
N23  
N24  
N25  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
VSS  
FERR#/  
PBE#  
Asynch  
CMOS  
Output  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
R30  
R4  
VSS  
Power/Other  
U6  
A10#  
Source  
Synch  
Input/  
Output  
A08#  
Source  
Synch  
Input/  
Output  
U7  
U8  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
R5  
VSS  
Power/Other  
R6  
ADSTB0#  
Source  
Synch  
Input/  
Output  
V1  
MSID1  
RESERVED  
VSS  
Output  
V2  
R7  
R8  
T1  
T2  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
COMP1  
FC4  
Input  
VSS  
Power/  
Other  
VSS  
VSS  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
A11#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
V30  
V4  
VSS  
A15#  
Source  
Synch  
Input/  
Output  
V5  
A14#  
Source  
Synch  
Input/  
Output  
T30  
T4  
V6  
V7  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
V8  
VCC  
T5  
A09#  
Source  
Synch  
Input/  
Output  
W1  
W2  
MSID0  
Output  
Input  
TESTHI12/ Power/Other  
FC44  
T6  
T7  
VSS  
VSS  
VCC  
FC28  
FC29  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC30  
VCC  
A13#  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W3  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T8  
U1  
VCC  
U2  
VCC  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U3  
VCC  
VCC  
VCC  
TESTHI1  
VCC  
Input  
W30  
W4  
VSS  
W5  
A16#  
Source  
Synch  
Input/  
Output  
U30  
U4  
W6  
A18#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W7  
W8  
VSS  
VCC  
Power/Other  
Power/Other  
U5  
A12#  
Source  
Synch  
Input/  
Output  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
Name  
Signal  
Buffer Type  
Land  
Name  
Signal  
Buffer Type  
Land #  
Direction  
Land #  
Direction  
Y1  
FC0/  
BOOTSELE  
CT  
Power/Other  
Y30  
Y4  
VCC  
Power/Other  
A20#  
Source  
Synch  
Input/  
Output  
Y2  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC17  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Y5  
Y6  
VSS  
Power/Other  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y3  
A19#  
Source  
Synch  
Input/  
Output  
Y7  
Y8  
VSS  
VCC  
Power/Other  
Power/Other  
Datasheet  
69  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 4-3.  
Signal Description (Sheet 1 of 8)  
Name  
A[35:3]#  
Type  
Description  
36  
Input/ A[35:3]# (Address) define a 2 -byte physical memory address space. In  
Output sub-phase 1 of the address phase, these signals transmit the address of a  
transaction. In sub-phase 2, these signals transmit transaction type  
information. These signals must connect the appropriate pins/lands of all  
agents on the processor FSB. A[35:3]# are source synchronous signals and  
are latched into the receiving buffers by ADSTB[1:0]#.  
On the active-to-inactive transition of RESET#, the processor samples a  
subset of the A[35:3]# signals to determine power-on configuration. See  
Section 6.1 for more details.  
A20M#  
Input  
If A20M# (Address-20 Mask) is asserted, the processor masks physical  
address bit 20 (A20#) before looking up a line in any internal cache and  
before driving a read/write transaction on the bus. Asserting A20M#  
emulates the 8086 processor's address wrap-around at the 1-MB boundary.  
Assertion of A20M# is only supported in real mode.  
A20M# is an asynchronous signal. However, to ensure recognition of this  
signal following an Input/Output write instruction, it must be valid along with  
the TRDY# assertion of the corresponding Input/Output Write bus  
transaction.  
ADS#  
Input/ ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
Output address on the A[35:3]# and REQ[4:0]# signals. All bus agents observe the  
ADS# activation to begin protocol checking, address decode, internal snoop,  
or deferred reply ID match operations associated with the new transaction.  
ADSTB[1:0]#  
Input/ Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising  
Output and falling edges. Strobes are associated with signals as shown below.  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
BCLK[1:0]  
Input  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All  
processor FSB agents must receive these signals to drive their outputs and  
latch their inputs.  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing V  
.
CROSS  
BNR#  
Input/ BNR# (Block Next Request) is used to assert a bus stall by any bus agent  
Output unable to accept new bus transactions. During a bus stall, the current bus  
owner cannot issue any new transactions.  
BPM[5:0]#  
Input/ BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor  
Output signals. They are outputs from the processor which indicate the status of  
breakpoints and programmable counters used for monitoring processor  
performance. BPM[5:0]# should connect the appropriate pins/lands of all  
processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY#  
is a processor output used by debug tools to determine processor debug  
readiness.  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port.  
PREQ# is used by debug tools to request debug operation of the processor.  
Refer to the appropriate platform design guide for more detailed information.  
These signals do not have on-die termination. Refer to Section 2.7.2, and  
appropriate platform design guide for termination requirements.  
70  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BPRI#  
Input  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the  
processor FSB. It must connect the appropriate pins/lands of all processor  
FSB agents. Observing BPRI# active (as asserted by the priority agent)  
causes all other agents to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps BPRI#  
asserted until all of its requests are completed, then releases the bus by de-  
asserting BPRI#.  
BR0#  
Input/ BR0# drives the BREQ0# signal in the system and is used by the processor  
Output to request the bus. During power-on configuration this signal is sampled to  
determine the agent ID = 0.  
This signal does not have on-die termination and must be terminated.  
BSEL[2:0]  
Output The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the  
processor input clock frequency. Table 2-15 defines the possible  
combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the processor, chipset  
and clock synthesizer. All agents must operate at the same frequency. For  
more information about these signals, including termination  
recommendations refer to Section 2.9.2 and the appropriate platform design  
guidelines.  
COMP[3:0], COMP8  
D[63:0]#  
Analog COMP[3:0] and COMP8 must be terminated to V on the system board using  
SS  
precision resistors. Refer to the appropriate platform design guide for details  
on implementation.  
Input/ D[63:0]# (Data) are the data signals. These signals provide a 64-bit data  
Output path between the processor FSB agents, and must connect the appropriate  
pins/lands on all such agents. The data driver asserts DRDY# to indicate a  
valid data transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond  
to a pair of one DSTBP# and one DSTBN#. The following table shows the  
grouping of data signals to data strobes and DBI#.  
Quad-Pumped Signal Groups  
DSTBN#/  
DSTBP#  
Data Group  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data signals.  
Each group of 16 data signals corresponds to one DBI# signal. When the  
DBI# signal is active, the corresponding data group is inverted and therefore  
sampled active high.  
DBI[3:0]#  
Input/ DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the  
Output polarity of the D[63:0]# signals.The DBI[3:0]# signals are activated when  
the data on the data bus is inverted. If more than half the data bits, within a  
16-bit group, would have been asserted electrically low, the bus agent may  
invert the data bus signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
Datasheet  
71  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
DBR#  
Output DBR# (Debug Reset) is used only in processor systems where no debug port  
is implemented on the system board. DBR# is used by a debug port  
interposer so that an in-target probe can drive system reset. If a debug port  
is implemented in the system, DBR# is a no connect in the system. DBR# is  
not a processor signal.  
DBSY#  
Input/ DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data  
Output on the processor FSB to indicate that the data bus is in use. The data bus is  
released after DBSY# is de-asserted. This signal must connect the  
appropriate pins/lands on all processor FSB agents.  
DEFER#  
Input  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
ensured in-order completion. Assertion of DEFER# is normally the  
responsibility of the addressed memory or input/output agent. This signal  
must connect the appropriate pins/lands of all processor FSB agents.  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state. To  
return to the Deep Sleep State, DPRSTP# must be deasserted. Use  
of the DPRSTP# pin, and corresponding low power state, requires  
chipset support and may not be available on all platforms. Refer to  
the appropriate platform design guide for implementation details.  
DPRSTP#  
Input  
NOTE: Some processors may not have the Deeper Sleep State  
enabled, refer to the Specification Update for specific sku  
and stepping guidance.  
DPSLP#, when asserted on the platform, causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return  
to the Sleep State, DPSLP# must be deasserted. Use of the  
DPSLP# pin, and corresponding low power state, requires chipset  
support and may not be available on all platforms. Refer to the  
appropriate platform design guide for implementation details.  
DPSLP#  
Input  
NOTE: Some processors may not have the Deep Sleep State  
enabled, refer to the Specification Update for specific sku  
and stepping guidance.  
DRDY#  
Input/ DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Output indicating valid data on the data bus. In a multi-common clock data transfer,  
DRDY# may be de-asserted to insert idle clocks. This signal must connect the  
appropriate pins/lands of all processor FSB agents.  
DSTBN[3:0]#  
Input/ DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Output  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
72  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
DSTBP[3:0]#  
Input/ DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Output  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FC0/BOOTSELECT  
Other  
Other  
FC0/BOOTSELECT is not used by the processor. When this land is tied to Vss  
previous processors based on the Intel NetBurst® microarchitecture should  
be disabled and prevented from booting. Refer to appropriate platform  
design guide for termination guidance.  
FCx  
FC signals are signals that are available for compatibility with other  
processors. Refer to the appropriate platform design guide for more  
information on how these are connected on the motherboard.  
FERR#/PBE#  
Output FERR#/PBE# (floating point error/pending break event) is a multiplexed  
signal and its meaning is qualified by STPCLK#. When STPCLK# is not  
asserted, FERR#/PBE# indicates a floating-point error and will be asserted  
when the processor detects an unmasked floating-point error. When  
STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal on  
the Intel 387 coprocessor, and is included for compatibility with systems  
using MS-DOS*-type floating-point error reporting. When STPCLK# is  
asserted, an assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/PBE#  
indicates that the processor should be returned to the Normal state. For  
additional information on the pending break event functionality, including the  
identification of support of the feature and enable/disable information, refer  
to volume 3 of the Intel Architecture Software Developer's Manual and the  
Intel Processor Identification and the CPUID Instruction application note.  
GTLREF[1:0]  
Input  
GTLREF[1:0] determine the signal reference level for GTL+ input signals.  
GTLREF is used by the GTL+ receivers to determine if a signal is a logical 0 or  
logical 1. Refer to the applicable platform design guide for more information.  
HIT#  
Input/ HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop  
Output operation results. Any FSB agent may assert both HIT# and HITM# together  
to indicate that it requires a snoop stall, which can be continued by  
HITM#  
reasserting HIT# and HITM# together.  
Input/  
Output  
IERR#  
Output IERR# (Internal Error) is asserted by a processor as the result of an internal  
error. Assertion of IERR# is usually accompanied by a SHUTDOWN  
transaction on the processor FSB. This transaction may optionally be  
converted to an external error signal (e.g., NMI) by system core logic. The  
processor will keep IERR# asserted until the assertion of RESET#.  
This signal does not have on-die termination. Refer to Section 2.7.2 for  
termination requirements.  
IGNNE#  
Input  
IGNNE# (Ignore Numeric Error) is asserted to the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions.  
If IGNNE# is de-asserted, the processor generates an exception on a  
noncontrol floating-point instruction if a previous floating-point instruction  
caused an error. IGNNE# has no effect when the NE bit in control register 0  
(CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition of this  
signal following an Input/Output write instruction, it must be valid along with  
the TRDY# assertion of the corresponding Input/Output Write bus  
transaction.  
Datasheet  
73  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
INIT#  
Input  
INIT# (Initialization), when asserted, resets integer registers inside the  
processor without affecting its internal caches or floating-point registers. The  
processor then begins execution at the power-on Reset vector configured  
during power-on configuration. The processor continues to handle snoop  
requests during INIT# assertion. INIT# is an asynchronous signal and must  
connect the appropriate pins/lands of all processor FSB agents.  
If INIT# is sampled active on the active to inactive transition of RESET#,  
then the processor executes its Built-in Self-Test (BIST).  
ITP_CLK[1:0]  
LINT[1:0]  
Input  
Input  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems  
where no debug port is implemented on the system board. ITP_CLK[1:0] are  
used as BCLK[1:0] references for a debug port implemented on an  
interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are  
no connects in the system. These are not processor signals.  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of  
all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes  
INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a  
nonmaskable interrupt. INTR and NMI are backward compatible with the  
signals of those names on the Pentium processor. Both signals are  
asynchronous.  
Both of these signals must be software configured via BIOS programming of  
the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because  
the APIC is enabled by default after Reset, operation of these signals as  
LINT[1:0] is the default configuration.  
LOCK#  
Input/ LOCK# indicates to the system that a transaction must occur atomically. This  
Output signal must connect the appropriate pins/lands of all processor FSB agents.  
For a locked sequence of transactions, LOCK# is asserted from the beginning  
of the first transaction to the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for ownership of the  
processor FSB, it will wait until it observes LOCK# de-asserted. This enables  
symmetric agents to retain ownership of the processor FSB throughout the  
bus locked operation and ensure the atomicity of lock.  
MSID[1:0]  
Output On a processor these signals are connected on the package to Vss. As an  
alternative to MSID, Intel has implemented the Power Segment Identifier  
(PSID) to report the maximum Thermal Design Power of the processor. Refer  
to the Platform Design Guide for additional information regarding PSID.  
PECI  
Input/ PECI is a proprietary one-wire bus interface. See Chapter 5.3 for details.  
Output  
PROCHOT#  
Input/ As an output, PROCHOT# (Processor Hot) will go active when the processor  
Output temperature monitoring sensor detects that the processor has reached its  
maximum safe operating temperature. This indicates that the processor  
Thermal Control Circuit (TCC) has been activated, if enabled. As an input,  
assertion of PROCHOT# by the system will activate the TCC, if enabled. The  
TCC will remain active until the system de-asserts PROCHOT#. See  
Section 5.2.4 for more details.  
PSI#  
Output Processor Power Status Indicator Signal. This signal may be asserted when  
the processor is in the Deeper Sleep State. PSI# can be used to improve load  
efficiency of the voltage regulator, resulting in platfrom power savings. Refer  
to the Voltage Regulator-Down (VRD) 11.1 Processor Power Delivery Design  
Guidelines for details on the PSI# signal.  
PWRGOOD  
Input  
PWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that the clocks and power supplies are stable  
and within their specifications. ‘Clean’ implies that the signal will remain low  
(capable of sinking leakage current), without glitches, from the time that the  
power supplies are turned on until they come within specification. The signal  
must then transition monotonically to a high state. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable before a  
subsequent rising edge of PWRGOOD.  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
74  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 6 of 8)  
Name  
REQ[4:0]#  
Type  
Description  
Input/ REQ[4:0]# (Request Command) must connect the appropriate pins/lands of  
Output all processor FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are source  
synchronous to ADSTB0#.  
RESET#  
Input  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For  
a power-on Reset, RESET# must stay active for at least one millisecond after  
V
and BCLK have reached their proper specifications. On observing active  
CC  
RESET#, all FSB agents will de-assert their outputs within two clocks.  
RESET# must not be kept asserted for more than 10 ms while PWRGOOD is  
asserted.  
A number of bus signals are sampled at the active-to-inactive transition of  
RESET# for power-on configuration. These configuration options are  
described in the Section 6.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RESERVED  
RS[2:0]#  
SKTOCC#  
SMI#  
All RESERVED lands must remain unconnected. Connection of these lands to  
V
, V , V , or to any other signal (including each other) can result in  
CC  
SS TT  
component malfunction or incompatibility with future processors.  
Input  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins/lands of all processor FSB agents.  
Output SKTOCC# (Socket Occupied) will be pulled to ground by the processor.  
System board designers may use this signal to determine if the processor is  
present.  
Input  
Input  
SMI# (System Management Interrupt) is asserted asynchronously by system  
logic. On accepting a System Management Interrupt, the processor saves the  
current state and enter System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the processor begins program  
execution from the SMM handler.  
If SMI# is asserted during the de-assertion of RESET#, the processor will tri-  
state its outputs.  
STPCLK#  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low  
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge  
transaction, and stops providing internal clock signals to all processor core  
units except the FSB and APIC units. The processor continues to snoop bus  
transactions and service interrupts while in Stop-Grant state. When STPCLK#  
is de-asserted, the processor restarts its internal clock to all units and  
resumes execution. The assertion of STPCLK# has no effect on the bus clock;  
STPCLK# is an asynchronous input.  
TCK  
Input  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus (also  
known as the Test Access Port).  
TDI  
TDI (Test Data In) transfers serial test data into the processor. TDI provides  
the serial input needed for JTAG specification support.  
TDO  
Output TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
TESTHI[13:0]  
Input  
TESTHI[13:0] must be connected to the processor’s appropriate power  
source (refer to VTT_OUT_LEFT and VTT_OUT_RIGHT signal description)  
through a resistor for proper processor operation. See Section 2.4 for more  
details.  
Datasheet  
75  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
THERMTRIP#  
Output In the event of a catastrophic cooling failure, the processor will automatically  
shut down when the silicon has reached a temperature approximately 20 °C  
above the maximum TC. Assertion of THERMTRIP# (Thermal Trip) indicates  
the processor junction temperature has reached a level beyond where  
permanent silicon damage may occur. Upon assertion of THERMTRIP#, the  
processor will shut off its internal clocks (thus, halting program execution) in  
an attempt to reduce the processor junction temperature. To protect the  
processor, its core voltage (V ) must be removed following the assertion of  
CC  
THERMTRIP#. Driving of the THERMTRIP# signal is enabled within 10 µs of  
the assertion of PWRGOOD (provided V and V are asserted) and is  
TT  
CC  
disabled on de-assertion of PWRGOOD (if V or V are not valid,  
TT  
CC  
THERMTRIP# may also be disabled). Once activated, THERMTRIP# remains  
latched until PWRGOOD, V or V is de-asserted. While the de-assertion of  
TT  
CC  
the PWRGOOD, V or V signal will de-assert THERMTRIP#, if the  
TT  
CC  
processor’s junction temperature remains at or above the trip level,  
THERMTRIP# will again be asserted within 10 µs of the assertion of  
PWRGOOD (provided V and V are valid).  
TT  
CC  
TMS  
Input  
Input  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
TRDY#  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins/lands of all FSB agents.  
TRST#  
Input  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset. Refer to the eXtended Debug Port: Debug  
Port Design Guide for UP and DP Platforms for complete implementation  
details.  
VCC  
Input  
Input  
VCC are the power pins for the processor. The voltage supplied to these pins  
is determined by the VID[7:0] pins.  
VCCA  
VCCA provides isolated power for internal PLLs on previous generation  
processors. It may be left as a No-Connect on boards supporting the Wolfdale  
processor.  
VCCIOPLL  
Input  
Input  
VCCIOPLL provides isolated power for internal processor FSB PLLs on  
previous generation processors. It may be left as a No-Connect on boards  
supporting the Wolfdale processor.  
VCCPLL  
VCCPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE  
Output VCC_SENSE is an isolated low impedance connection to processor core power  
(V ). It can be used to sense or measure voltage near the silicon with little  
CC  
noise.  
VCC_MB_  
REGULATION  
Output This land is provided as a voltage regulator feedback sense point for V . It is  
CC  
connected internally in the processor package to the sense point land U27 as  
described in the Voltage Regulator-Down (VRD) 11.0 Processor Power  
Delivery Design Guidelines For Desktop LGA775 Socket.  
VID[7:0]  
Output The VID (Voltage ID) signals are used to support automatic selection of  
power supply voltages (V ). Refer to the appropriate platform design guide  
CC  
or the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket for more information. The voltage  
supply for these signals must be valid before the VR can supply V to the  
CC  
processor. Conversely, the VR output must be disabled until the voltage  
supply for the VID signals becomes valid. The VID signals are needed to  
support the processor voltage specification variations. See Table 2-1 for  
definitions of these signals. The VR must supply the voltage that is requested  
by the signals, or disable itself.  
VID_SELECT  
Output This land is tied high on the processor package and is used by the VR to  
choose the proper VID table. Refer to the appropriate platform design guide  
or the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket for more information.  
VRDSEL  
VSS  
Input  
This input should be left as a no connect in order for the processor to boot.  
The processor will not boot on legacy platforms where this land is connected  
to V  
.
SS  
Input  
VSS are the ground pins for the processor and should be connected to the  
system ground plane.  
76  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 8 of 8)  
Name  
Type  
Description  
VSSA  
Input  
VSSA provides isolated ground for internal PLLs on previous generation  
processors. It may be left as a No-Connect on boards supporting the  
processor.  
VSS_SENSE  
Output VSS_SENSE is an isolated low impedance connection to processor core V  
.
SS  
It can be used to sense or measure ground near the silicon with little noise.  
VSS_MB_  
REGULATION  
Output This land is provided as a voltage regulator feedback sense point for V . It is  
SS  
connected internally in the processor package to the sense point land V27 as  
described in the Voltage Regulator-Down (VRD) 11.0 Processor Power  
Delivery Design Guidelines For Desktop LGA775 Socket.  
VTT  
Miscellaneous voltage supply.  
VTT_OUT_LEFT  
Output The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to provide a  
voltage supply for some signals that require termination to V on the  
TT  
motherboard. Refer to the appropriate platform design guide for details on  
implementation.  
VTT_OUT_RIGHT  
VTT_SEL  
Output The VTT_SEL signal is used to select the correct V voltage level for the  
TT  
processor. This land is connected internally in the package to V  
.
SS  
§ §§  
Datasheet  
77  
Land Listing and Signal Descriptions  
78  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within the  
operating limits as set forth in Section 5.1.1. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete thermal solution includes both component and system level thermal  
management features. Component level thermal solutions can include active or passive  
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system  
level thermal solutions may consist of system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the  
appropiate Thermal and Mechanical Design Guidelines (see Section 1.2).  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum case temperature (TC)  
specifications when operating at or below the Thermal Design Power (TDP) value listed  
per frequency in Table 5-1. Thermal solutions not designed to provide this level of  
thermal capability may affect the long-term reliability of the processor and system.  
The processor uses a methodology for managing processor temperatures which is  
intended to support acoustic noise reduction through fan speed control. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 5.3. If the value reported via PECI is less than TCONTROL, then the case  
temperature is permitted to exceed the Thermal Profile. If the value reported via PECI  
is greater than or equal to TCONTROL, then the processor case temperature must remain  
at or below the temperature as specified by the thermal profile. The temperature  
reported over PECI is always a negative value and represents a delta below the onset of  
thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 5.2).  
Systems that implement fan speed control must be designed to take these conditions in  
to account. Systems that do not alter the fan speed only need to ensure the case  
temperature meets the thermal profile specifications.  
In order to determine a processor's case temperature specification based on the  
thermal profile, it is necessary to accurately measure processor power dissipation. Intel  
has developed a methodology for accurate power measurement that correlates to Intel  
test temperature and voltage conditions. Refer to the Wolfdale Processors Thermal and  
Mechanical Design Guidelines Addendum and the Live Die System Thermal Testing  
Basics for the details of this methodology.  
Datasheet  
77  
Thermal Specifications and Design Considerations  
The case temperature is defined at the geometric top center of the processor. Analysis  
indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 5-1 instead of the maximum processor power consumption. The Thermal Monitor  
feature is designed to protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained periods of time. For more details on  
the usage of this feature, refer to Section 5.2. To ensure maximum flexibility for future  
requirements, systems should be designed to the Flexible Motherboard (FMB)  
guidelines, even if a processor with a lower thermal dissipation is currently planned. In  
all cases the Thermal Monitor or Thermal Monitor 2 feature must be enabled  
for the processor to remain within specification.  
Table 5-1.  
Processor Thermal Specifications  
Thermal  
Design  
Power  
Extended  
HALT  
Core  
Frequency  
(GHz)  
Minimu  
Processor  
Number  
Maximum T  
(°C)  
4
C
FMB Guidance  
m T  
Notes  
C
Power  
(°C)  
2,3  
1
(W)  
(W)  
See Table 5-2  
and  
Figure 5-1  
E3110  
E3120  
L3110  
3.00  
3.16  
3.00  
65.0  
65.0  
45.0  
8
8
6
775_VR_CONFIG_06A  
(65 W)  
775_VR_CONFIG_06  
5
(45 W)  
Notes:  
1.  
2.  
3.  
Specification is at 36°C Tc and minimum voltage loadline. Specification is guaranteed by design  
characterization and not 100% tested.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not  
the maximum power that the processor can dissipate.  
This table shows the maximum TDP for a given frequency range. Individual processors may have a lower  
TDP. Therefore, the maximum T will vary depending on the TDP of the individual processor. Refer to  
C
thermal profile figure and associated table for the allowed combinations of power and T .  
C
4.  
FMB, or Flexible Motherboard, guidelines provide a design target for meeting future thermal requirements.  
78  
Datasheet  
Thermal Specifications and Design Considerations  
Table 5-2.  
Processor Thermal Profile (65 W)  
Maximum Tc  
Maximum Tc  
(°C)  
Power (W)  
Power  
(°C)  
0
45.1  
45.9  
46.8  
47.6  
48.5  
49.3  
50.1  
51.0  
51.8  
52.7  
53.5  
54.3  
55.2  
56.0  
56.9  
57.7  
58.5  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
59.4  
60.2  
61.1  
61.9  
62.7  
63.6  
64.4  
65.3  
66.1  
66.9  
67.8  
68.6  
69.5  
70.3  
71.1  
72.0  
72.4  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Table 5-3.  
Processor Thermal Profile (45W)  
Maximum Tc  
Power (W)  
(°C)  
0
45.8  
47.26  
48.72  
50.18  
51.64  
53.1  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
54.56  
56.02  
57.48  
58.94  
60.4  
61.86  
63.32  
64.78  
66.24  
67.7  
69.16  
70.62  
72.08  
Datasheet  
79  
Thermal Specifications and Design Considerations  
38  
40  
42  
44  
45  
73.54  
75  
76.46  
77.92  
78.65  
Figure 5-1. Processor Thermal Profile (65 W)  
72.0  
68.0  
64.0  
60.0  
56.0  
52.0  
48.0  
44.0  
y = 0.42x + 45.1  
0
10  
20  
30  
Power (W)  
40  
50  
60  
Figure 5-2. Processor Thermal Profile (45 W)  
Thermal Profile  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
y = 0 .7 3 x + 4 5 .8  
0
10  
20  
30  
Power (W)  
40  
50  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) for the processor is specified in  
Table 5-1. This temperature specification is meant to help ensure proper operation of  
the processor. Figure 5-3 illustrates where Intel recommends TC thermal  
measurements should be made. For detailed guidelines on temperature measurement  
methodology, refer to the appropiate Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
Figure 5-3. Case Temperature (TC) Measurement Location  
Measure TC at this point  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the  
thermal control circuit (TCC) when the processor silicon reaches its maximum operating  
temperature. The TCC reduces processor power consumption by modulating (starting  
and stopping) the internal processor core clocks. The Thermal Monitor feature must  
be enabled for the processor to be operating within specifications. The  
temperature at which Thermal Monitor activates the thermal control circuit is not user  
configurable and is not software visible. Bus traffic is snooped in the normal manner,  
and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists  
(i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off  
and on at a duty cycle specific to the processor (typically 30-50%). Clocks often will not  
be off for more than 3.0 microseconds when the TCC is active. Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TC that exceeds the specified maximum temperature  
and may affect the long-term reliability of the processor. In addition, a thermal solution  
that is significantly under-designed may not be capable of cooling the processor even  
when the TCC is active continuously. Refer to the Wolfdale Processors Thermal and  
Mechanical Design Guidelines Addendum for information on designing a thermal  
solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The processor also supports an additional power reduction capability known as Thermal  
Monitor 2. This mechanism provides an efficient means for limiting the processor  
temperature by reducing the power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the  
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust  
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).  
This combination of reduced frequency and VID results in a reduction to the processor  
power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage. The first operating point  
represents the normal operating condition for the processor. Under this condition, the  
core-frequency-to-FSB multiple utilized by the processor is that contained in the  
CLK_GEYSIII_STAT MSR and the VID is that specified in Table 2-3. These parameters  
represent normal system operation.  
The second operating point consists of both a lower operating frequency and voltage.  
When the TCC is activated, the processor automatically transitions to the new  
frequency. This transition occurs very rapidly (on the order of 5 µs). During the  
frequency transition, the processor is unable to service any bus requests, and  
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and  
kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Thermal Monitor 2.  
During the voltage change, it will be necessary to transition through multiple VID codes  
to reach the target operating voltage. Each step will likely be one VID table entry (see  
Table 2-3). The processor continues to execute instructions during the voltage  
transition. Operation at the lower voltage reduces the power consumption of the  
processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
82  
Datasheet  
Thermal Specifications and Design Considerations  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to ensure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 5-4 for an illustration of this ordering.  
Figure 5-4. Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
fMAX  
fTM2  
Frequency  
VID  
VIDTM2  
VID  
PROCHOT#  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on  
demand mode. The Thermal Monitor TCC, however, can be activated through the use of  
the on demand mode.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems using the  
processor must not rely on software usage of this mechanism to limit the processor  
temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor  
IA32_THERM_CONTROL MSR) is written to a '1', the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT  
Control Register. In On-Demand mode, the duty cycle can be programmed from 12.5%  
on/87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be  
used in conjunction with the Thermal Monitor. If the system tries to enable On-Demand  
mode at the same time the TCC is engaged, the factory configured duty cycle of the  
TCC will override the duty cycle selected by the On-Demand mode.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If the Thermal Monitor  
is enabled (note that the Thermal Monitor must be enabled for the processor to be  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
PROCHOT# is a bi-directional signal. As an output, PROCHOT# (Processor Hot) will go  
active when the processor temperature monitoring sensor detects that one or both  
cores has reached its maximum safe operating temperature. This indicates that the  
processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input,  
assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores.  
The TCC will remain active until the system de-asserts PROCHOT#.  
PROCHOT# allows for some protection of various components from over-temperature  
situations. The PROCHOT# signal is bi-directional in that it can either signal when the  
processor (either core) has reached its maximum operating temperature or be driven  
from an external source to activate the TCC. The ability to activate the TCC via  
PROCHOT# can provide a means for thermal protection of system components.  
Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained  
current instead of maximum current. Systems should still provide proper cooling for the  
VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling  
failure. The system thermal design should allow the power delivery circuitry to operate  
within its temperature specification even while the processor is operating at its Thermal  
Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss. Refer to  
the Voltage Regulator Design Guide for details on implementing the bi-directional  
PROCHOT# feature.  
5.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 4-3). At this point, the FSB signal THERMTRIP# will go active and stay active as  
described in Table 4-3. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage  
(VCC) must be removed within the timeframe defined in Table 2-9.  
5.3  
Platform Environment Control Interface (PECI)  
5.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues. PECI uses  
CRC checking on the host side to ensure reliable transfers between the host and client  
devices. Also, data transfer speeds across the PECI interface are negotiable within a  
84  
Datasheet  
Thermal Specifications and Design Considerations  
wide range (2Kbps to 2Mbps). The PECI interface on the processor is disabled by  
default and must be enabled through BIOS. More information can be found in the  
Platform Environment Control Interface (PECI) Specification.  
5.3.1.1  
T
and TCC activation on PECI-Based Systems  
CONTROL  
Fan speed control solutions based on PECI utilize a TCONTROL value stored in the  
processor IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
should utilize the relative temperature value delivered over PECI in conjunction with the  
TCONTROL MSR value to control or optimize fan speeds. Figure 5-5 shows a conceptual  
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the delta below the onset  
of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
Figure 5-5. Conceptual Fan Control Diagram on PECI-Based Platforms  
5.3.2  
PECI Specifications  
5.3.2.1  
PECI Device Address  
The PECI register resides at address 0x30.  
5.3.2.2  
PECI Command Support  
PECI command support is covered in detail in the Platform Environment Control  
Interface Specification. Please refer to this document for details on supported PECI  
command function and codes.  
Datasheet  
85  
Thermal Specifications and Design Considerations  
5.3.2.3  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is know to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not assured to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damage. It is recommended that the PECI host controller take appropriate  
action to protect the client processor device if valid temperature readings have not  
been obtained in response to three consecutive GetTemp()s or for a one second time  
interval. The host controller may also implement an alert to software in the event of a  
critical or continuous fault condition.  
5.3.2.4  
PECI GetTemp0() Error Code Support  
The error codes supported for the processor GetTemp() command are listed in  
Table 5-4:  
Table 5-4.  
GetTemp0() Error Codes  
Error Code  
Description  
0x8000  
0x8002  
General sensor error  
Sensor is operational, but has detected a temperature below its operational range  
(underflow)  
§ §  
86  
Datasheet  
Features  
6 Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for configuration purposes, the processor does not distinguish between  
a "warm" reset and a "power-on" reset.  
Table 6-1.  
Power-On Configuration Option Signals  
Configuration Option  
Output tristate  
Signal1,2  
SMI#  
Execute BIST  
A3#  
A25#  
Disable dynamic bus parking  
Symmetric agent arbitration ID  
RESERVED  
BR0#  
A[24:4]#, A[35:26]#  
Note:  
1.  
2.  
3.  
Asserting this signal during RESET# will select the corresponding option.  
Address signals not identified in this table as configuration options should not be asserted during RESET#.  
Disabling of any of the cores within the processors must be handled by configuring the EXT_CONFIG Model  
Specific Register (MSR). This MSR will allow for the disabling of a single core per die within the package.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop-Grant states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 6-1 for a visual representation of the processor low  
power states.  
Datasheet  
87  
Features  
Figure 6-1. Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT  
State  
- BCLK running  
- Snoops and interrupts  
allowed  
Normal State  
INIT#, INTR, NMI, SMI#, RESET#,  
FSB interrupts  
- Normal Execution  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or  
HALT Snoop State  
- BCLK running  
- Service Snoops to caches  
Extended Stop Grant  
State or Stop Grant State  
- BCLK running  
- Snoops and interrupts  
allowed  
Extended Stop Grant  
Snoop or Stop Grant  
Snoop State  
- BCLK running  
- Service Snoops to caches  
Snoop Event Occurs  
Snoop Event Serviced  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT and Extended HALT Powerdown States  
The processor supports the HALT or Extended HALT powerdown state. The Extended  
HALT powerdown state must be configured and enabled via the BIOS for the processor  
to remain within specification.  
The Extended HALT state is a lower power state as compared to the Stop Grant State.  
If Extended HALT is not enabled, the default powerdown state entered will be HALT.  
Refer to the sections below for details about the HALT and Extended HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the processor cores have executed the HALT  
or MWAIT instructions. When one of the processor cores executes the HALT instruction,  
that processor core is halted, however, the other processor continues normal operation.  
The halted core will transition to the Normal state upon the occurrence of SMI#, INIT#,  
or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize  
itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT powerdown state. See the Intel Architecture Software  
Developer's Manual, Volume 3B: System Programming Guide, Part 2 for more  
information.  
88  
Datasheet  
Features  
The system can generate a STPCLK# while the processor is in the HALT powerdown  
state. When the system deasserts the STPCLK# interrupt, the processor will return  
execution to the HALT state.  
While in HALT powerdown state, the processor will process bus snoops.  
6.2.2.2  
Extended HALT Powerdown State  
Extended HALT is a low power state entered when all processor cores have executed  
the HALT or MWAIT instructions and Extended HALT has been enabled via the BIOS.  
When one of the processor cores executes the HALT instruction, that logical processor  
is halted; however, the other processor continues normal operation. The Extended  
HALT powerdown state must be enabled via the BIOS for the processor to remain  
within its specification.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended HALT state. Note that the processor FSB frequency  
is not altered; only the internal core frequency is changed. When entering the low  
power state, the processor will first switch to the lower bus ratio and then transition to  
the lower VID.  
While in Extended HALT state, the processor will process bus snoops.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.3  
Stop Grant and Extended Stop Grant States  
The processor supports the Stop Grant and Extended Stop Grant states. The Extended  
Stop Grant state is a feature that must be configured and enabled via the BIOS. Refer  
to the BIOS Writer's Guide for Extended Stop Grant configuration information. Refer to  
the sections below for details about the Stop Grant and Extended Stop Grant states.  
6.2.3.1  
Stop-Grant State  
When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered  
20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven  
(allowing the level to return to VTT) for minimum power drawn by the termination  
resistors in this state. In addition, all other input signals on the FSB should be driven to  
the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the FSB (see Section 6.2.4).  
While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one  
occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a FSB snoop.  
Datasheet  
89  
Features  
6.2.3.2  
Extended Stop Grant State  
Extended Stop Grant is a low power state entered when the STPCLK# signal is asserted  
and Extended Stop Grant has been enabled via the BIOS.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended Stop Grant state. When entering the low power  
state, the processor will first switch to the lower bus ratio and then transition to the  
lower VID.  
The processor exits the Extended Stop Grant state when a break event occurs. When  
the processor exits the Extended Stop Grant state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.4  
Extended HALT Snoop State, HALT Snoop State, Extended  
Stop Grant Snoop State, and Stop Grant Snoop State  
The Extended HALT Snoop State is used in conjunction with the Extended HALT state. If  
Extended HALT state is not enabled in the BIOS, the default Snoop State entered will  
be the HALT Snoop State. Refer to the sections below for details on HALT Snoop State,  
Stop Grant Snoop State, Extended HALT Snoop State, Extended Stop Grant Snoop  
State.  
6.2.4.1  
6.2.4.2  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop-Grant state  
or in HALT powerdown state. During a snoop transaction, the processor enters the HALT  
Snoop State:Stop Grant Snoop state. The processor will stay in this state until the  
snoop on the FSB has been serviced (whether by the processor or another agent on the  
FSB). After the snoop is serviced, the processor will return to the Stop Grant state or  
HALT powerdown state, as appropriate.  
Extended HALT Snoop State, Extended Stop Grant Snoop State  
The processor will remain in the lower bus ratio and VID operating point of the  
Extended HALT state or Extended Stop Grant state.  
While in the Extended HALT Snoop State or Extended Stop Grant Snoop State, snoops  
are handled the same way as in the HALT Snoop State or Stop Grant Snoop State. After  
the snoop is serviced the processor will return to the Extended HALT state or Extended  
Stop Grant state.  
®
6.2.5  
Enhanced Intel SpeedStep Technology  
The processor supports Enhanced Intel SpeedStep Technology. This technology enables  
the processor to switch between frequency and voltage points, which may result in  
platform power savings. In order to support this technology, the system must support  
dynamic VID transitions. Switching between voltage/frequency states is software  
controlled.  
Enhanced Intel SpeedStep Technology is a technology that creates processor  
performance states (P states). P states are power consumption and capability states  
within the Normal state as shown in Figure 6-1. Enhanced Intel SpeedStep Technology  
enables real-time dynamic switching between frequency and voltage points. It alters  
the performance of the processor by changing the bus to core frequency ratio and  
voltage. This allows the processor to run at different core frequencies and voltages to  
90  
Datasheet  
Features  
best serve the performance and power requirements of the processor and system. Note  
that the front side bus is not altered; only the internal core frequency is changed. In  
order to run at reduced power consumption, the voltage is altered in step with the bus  
ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Voltage/Frequency selection is software controlled by writing to processor MSR's  
(Model Specific Registers), thus eliminating chipset dependency.  
- If the target frequency is higher than the current frequency, Vcc is incremented in  
steps (+12.5 mV) by placing a new value on the VID signals after which the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
- If the target frequency is lower than the current frequency, the processor shifts to  
the new frequency and Vcc is then decremented in steps (-12.5 mV) by changing  
the target VID through the VID signals.  
6.2.6  
Processor Power Status Indicator (PSI) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve efficiency of the  
voltage regulator, resulting in platform power savings. For details, refer to the  
compatible chipset Platform Design Guide and Voltage Regulator-Down (VRD) 11.1  
Processor Power Delivery Design Guidelines.  
PSI# may be asserted only when the processor is in the Deeper Sleep state.  
Datasheet  
91  
Features  
92  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
7.1  
Introduction  
The processor will also be offered as an Intel boxed processor. Intel boxed processors  
are intended for system integrators who build systems from baseboards and standard  
components. The boxed processor will be supplied with a cooling solution. This chapter  
documents baseboard and system requirements for the cooling solution that will be  
supplied with the boxed processor. This chapter is particularly important for OEMs that  
manufacture baseboards for system integrators.  
Note:  
Note:  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed  
processor.  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the Wolfdale Processors Thermal and Mechanical Design  
Guidelines Addendum for further guidance. Contact your local Intel Sales  
Representative for this document.  
Figure 7-1. Mechanical Representation of the Boxed Processor  
Note: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
93  
Boxed Processor Specifications  
7.2  
Mechanical Specifications  
7.2.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 7-1 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 7-2 (Side View), and Figure 7-3 (Top  
View). The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 7-7 and Figure 7-8. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Side View Space Requirements for the Boxed Processor  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
[0.39]  
25.0  
[0.98]  
Boxed_Proc_SideView  
94  
Datasheet  
Boxed Processor Specifications  
Figure 7-3. Top View Space Requirements for the Boxed Processor  
95.0  
[3.74]  
95.0  
[3.74]  
Boxed_Proc_TopView  
Notes:  
1. Diagram does not show the attached hardware for the clip design and is provided only as a mechanical  
representation.  
Figure 7-4. Overall View Space Requirements for the Boxed Processor  
7.2.2  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5  
and the Wolfdale Processors Thermal and Mechanical Design Guidelines Addendum for  
details on the processor weight and heatsink requirements.  
Datasheet  
95  
Boxed Processor Specifications  
7.2.3  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
7.3  
Electrical Requirements  
7.3.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 7-5. Baseboards  
must provide a matched power header to support the boxed processor. Table 7-1  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses  
at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 7-6 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
96  
Datasheet  
Boxed Processor Specifications  
Table 7-1.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12V: 12 volt fan power supply  
11.4  
12  
12.6  
V
-
IC:  
- Maximum fan steady-state current draw  
- Average fan steady-state current draw  
- Maximum fan start-up current draw  
1.2  
0.5  
2.2  
1.0  
A
A
A
-
- Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2, 3  
CONTROL  
21  
25  
28  
kHz  
Notes:  
1. Baseboard should pull this pin up to 5V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.  
Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
Boxed_Proc_PwrHeaderPlacement  
7.4  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution utilized by  
the boxed processor.  
7.4.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
Datasheet  
97  
Boxed Processor Specifications  
temperature specification is found in Chapter 5 of this document. The boxed processor  
fan heatsink is able to keep the processor temperature within the specifications (see  
Table 5-1) in chassis that provide good thermal management. For the boxed processor  
fan heatsink to operate properly, it is critical that the airflow provided to the fan  
heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the  
sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow  
through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink  
reduces the cooling efficiency and decreases fan life. Figure 7-7 and Figure 7-8  
illustrate an acceptable airspace clearance for the fan heatsink. The air temperature  
entering the fan should be kept below 38 ºC. Again, meeting the processor's  
temperature specification is the responsibility of the system integrator.  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)  
98  
Datasheet  
Boxed Processor Specifications  
Figure 7-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)  
7.4.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of internal  
chassis temperatures. This allows the processor fan to operate at a lower speed and  
noise level, while internal chassis temperatures are low. If internal chassis temperature  
increases beyond a lower set point, the fan speed will rise linearly with the internal  
temperature until the higher set point is reached. At that point, the fan speed is at its  
maximum. As fan speed increases, so does fan noise levels. Systems should be  
designed to provide adequate air around the boxed processor fan heatsink that remains  
cooler then lower set point. These set points, represented in Figure 7-9 and Table 7-2,  
can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis  
temperature should be kept below 38 ºC. Meeting the processor's temperature  
specification (see Chapter 5) is the responsibility of the system integrator.  
The motherboard must supply a constant +12V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 7-1 for the specific requirements.  
Datasheet  
99  
Boxed Processor Specifications  
Figure 7-9. Boxed Processor Fan Heatsink Set Points  
Table 7-2.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor Fan  
Heatsink Set Point (ºC)  
Boxed Processor Fan Speed  
Notes  
1
When the internal chassis temperature is below or equal to this set  
point, the fan operates at its lowest speed. Recommended maximum  
internal chassis temperature for nominal operating environment.  
X 30  
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum  
internal chassis temperature for worst-case operating environment.  
-
-
Y = 35  
Z 38  
When the internal chassis temperature is above or equal to this set  
point, the fan operates at its highest speed.  
Notes:  
1. Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 7-1) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the  
use of an ASIC located on the motherboard that sends out a PWM control signal to the  
4th pin of the connector labeled as CONTROL. The fan speed is based on actual  
processor temperature instead of internal ambient chassis temperatures.  
100  
Datasheet  
Boxed Processor Specifications  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard  
CPU fan header it will default back to a thermistor controlled mode, allowing  
compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode,  
the fan RPM is automatically varied based on the Tinlet temperature measured by a  
thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control see the Wolfdale Processors Thermal and Mechanical Design Guidelines  
Addendum.  
§
Datasheet  
101  
Boxed Processor Specifications  
102  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging the processor systems. Tektronix and Agilent should be  
contacted to get specific information about their logic analyzer interfaces. The following  
information is general in nature. Specific information must be obtained from the logic  
analyzer vendor.  
Due to the complexity of Dual-Core Intel® Xeon® Processor 3100 Series systems, the  
LAI is critical in providing the ability to probe and capture FSB signals. There are two  
sets of considerations to keep in mind when designing a Dual-Core Intel® Xeon®  
Processor 3100 Series system that can make use of an LAI: mechanical and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processors. The LAI lands  
plug into the processor socket, while the processors lands plug into a socket on the LAI.  
Cabling that is part of the LAI egresses the system to allow an electrical connection  
between the processors and a logic analyzer. The maximum volume occupied by the  
LAI, known as the keepout volume, as well as the cable egress restrictions, should be  
obtained from the logic analyzer vendor. System designers must make sure that the  
keepout volume remains unobstructed inside the system. Note that it is possible that  
the keepout volume reserved for the LAI may differ from the space normally occupied  
by the processor heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system  
level simulations to prove that their tool will work in the system. Contact the logic  
analyzer vendor for electrical specifications and load models for the LAI solution it  
provides.  
Datasheet  
103  
Debug Tools Specifications  
104  
Datasheet  

相关型号:

AT80570KJ0806M

Microprocessor, 32-Bit, 3000MHz, CMOS, PBGA775, LGA-775
INTEL

AT80570KJ0806M/SLB9C

RISC Microprocessor, 32-Bit, 3000MHz, CMOS, PBGA775
INTEL

AT80570KJ0876M/SLB9D

RISC Microprocessor, 64-Bit, 3160MHz, CMOS, PBGA775
INTEL

AT80570PJ0806M

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775,
INTEL

AT80570PJ0806MSLB9J

Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775, 37.50 X 37.50 MM, HALOGEN FREE, LGA-775
INTEL

AT80570PJ0876M

Microprocessor, 64-Bit, 3160MHz, CMOS, PBGA775, 37.50 X 37.50 MM, HALOGEN FREE, LGA-775
INTEL

AT80570PJ0936M

Microprocessor, 64-Bit, 3330MHz, CMOS, PBGA775, 37.50 X 37.50 MM, HALOGEN FREE, LGA-775
INTEL

AT80570PJ0936M/SLB9L

RISC Microprocessor, 64-Bit, 3330MHz, CMOS, PBGA775
INTEL

AT80571PG0642M

Microprocessor, 64-Bit, 2500MHz, CMOS, PBGA775, 37.50 X 37.50 MM, HALOGEN FREE, LGA-775
INTEL

AT80571PG0642ML

Microprocessor, 2500MHz, CMOS, PBGA775, 37.50 X 37.50 MM, HALOGEN FREE, LGA-775
INTEL

AT80571PG0682M

RISC Microprocessor, 64-Bit, 2700MHz, CMOS, PBGA775
INTEL

AT80571PG0682M/SLB9V

RISC Microprocessor, 64-Bit, 2700MHz, CMOS, PBGA775
INTEL