AT80571PH0773M/SLB9Z [INTEL]

RISC Microprocessor, 64-Bit, 2930MHz, CMOS, PBGA775;
AT80571PH0773M/SLB9Z
型号: AT80571PH0773M/SLB9Z
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 2930MHz, CMOS, PBGA775

文件: 总102页 (文件大小:1407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Δ
Intel Core™2 Duo Processor E8000  
Δ
and E7000 Series  
Datasheet  
January 2009  
Document Number: 318732-005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel Core™2 Duo processor E8000 and E7000 series may contain design defects or errors known as errata which may cause the product to deviate  
from published specifications.  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in  
clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular  
feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/  
processor_number for details.  
Φ
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel 64. Processor  
will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software  
configurations. See http://developer.intel.com/technology/intel64/ for more information including details on which processors support Intel 64 or consult  
with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
®
Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some uses, certain  
platform software enabled for it. Functionality, performance or other benefit will vary depending on hardware and software configurations and may  
require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
See the Processor Spec Finder or contact your Intel representative for more information.  
No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer system  
with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible  
measured launched environment (MLE). The MLE could consist of a virtual machine monitor, an OS or an application. In addition, Intel TXT requires the  
system to contain a TPM v1.2, as defined by the Trusted Computing Group and specific software for some uses. For more information, see here  
®
Not all specified units of this processor support Thermal Monitor 2, Enhanced HALT State and Enhanced Intel SpeedStep Technology. See the Processor  
Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Intel Core, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
* Other names and brands may be claimed as the property of others.  
Copyright © 2008–2009, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................9  
1.1  
Terminology ..................................................................................................... 10  
1.1.1 Processor Terminology Definitions ............................................................ 10  
References ....................................................................................................... 12  
1.2  
2
Electrical Specifications........................................................................................... 13  
2.1  
2.2  
Power and Ground Lands.................................................................................... 13  
Decoupling Guidelines........................................................................................ 13  
2.2.1 VCC Decoupling ..................................................................................... 13  
2.2.2 VTT Decoupling...................................................................................... 13  
2.2.3 FSB Decoupling...................................................................................... 14  
Voltage Identification......................................................................................... 14  
Reserved, Unused, and TESTHI Signals ................................................................ 16  
Power Segment Identifier (PSID)......................................................................... 16  
Voltage and Current Specification........................................................................ 17  
2.6.1 Absolute Maximum and Minimum Ratings .................................................. 17  
2.6.2 DC Voltage and Current Specification........................................................ 18  
2.6.3 VCC Overshoot ...................................................................................... 22  
2.6.4 Die Voltage Validation............................................................................. 23  
Signaling Specifications...................................................................................... 23  
2.7.1 FSB Signal Groups.................................................................................. 24  
2.7.2 CMOS and Open Drain Signals ................................................................. 25  
2.7.3 Processor DC Specifications ..................................................................... 26  
2.7.3.1 Platform Environment Control Interface (PECI)  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
DC Specifications...................................................................... 27  
2.7.3.2 GTL+ Front Side Bus Specifications ............................................. 28  
Clock Specifications........................................................................................... 29  
2.8.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking............................ 29  
2.8.2 FSB Frequency Select Signals (BSEL[2:0])................................................. 30  
2.8.3 Phase Lock Loop (PLL) and Filter .............................................................. 31  
2.8.4 BCLK[1:0] Specifications......................................................................... 31  
3
Package Mechanical Specifications ................................................................................. 35  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing............................................................................... 35  
Processor Component Keep-Out Zones................................................................. 39  
Package Loading Specifications ........................................................................... 39  
Package Handling Guidelines............................................................................... 39  
Package Insertion Specifications.......................................................................... 40  
Processor Mass Specification............................................................................... 40  
Processor Materials............................................................................................ 40  
Processor Markings............................................................................................ 40  
Processor Land Coordinates................................................................................ 41  
4
5
Land Listing and Signal Descriptions ............................................................................... 43  
4.1  
4.2  
Processor Land Assignments............................................................................... 43  
Alphabetical Signals Reference............................................................................ 66  
Thermal Specifications and Design Considerations ............................................................. 77  
5.1  
Processor Thermal Specifications......................................................................... 77  
5.1.1 Thermal Specifications ............................................................................ 77  
5.1.2 Thermal Metrology ................................................................................. 81  
Processor Thermal Features................................................................................ 81  
5.2  
Datasheet  
3
5.2.1 Thermal Monitor .....................................................................................81  
5.2.2 Thermal Monitor 2 ..................................................................................82  
5.2.3 On-Demand Mode...................................................................................83  
5.2.4 PROCHOT# Signal ..................................................................................83  
5.2.5 THERMTRIP# Signal................................................................................84  
Platform Environment Control Interface (PECI) ......................................................85  
5.3.1 Introduction...........................................................................................85  
5.3.1.1 TCONTROL and TCC activation on PECI-Based Systems ..................85  
5.3.2 PECI Specifications .................................................................................86  
5.3.2.1 PECI Device Address..................................................................86  
5.3.2.2 PECI Command Support.............................................................86  
5.3.2.3 PECI Fault Handling Requirements...............................................86  
5.3.2.4 PECI GetTemp0() Error Code Support ..........................................86  
5.3  
6
Features ..................................................................................................................87  
6.1  
6.2  
Power-On Configuration Options ..........................................................................87  
Clock Control and Low Power States.....................................................................87  
6.2.1 Normal State .........................................................................................88  
6.2.2 HALT and Extended HALT Powerdown States ..............................................88  
6.2.2.1 HALT Powerdown State ..............................................................88  
6.2.2.2 Extended HALT Powerdown State ................................................89  
6.2.3 Stop Grant and Extended Stop Grant States...............................................89  
6.2.3.1 Stop-Grant State.......................................................................89  
6.2.3.2 Extended Stop Grant State.........................................................90  
6.2.4 Extended HALT Snoop State, HALT Snoop State, Extended  
Stop Grant Snoop State, and Stop Grant Snoop State..................................90  
6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................90  
6.2.4.2 Extended HALT Snoop State, Extended Stop Grant  
Snoop State .............................................................................90  
6.2.5 Sleep State............................................................................................90  
6.2.6 Deep Sleep State....................................................................................91  
6.2.7 Deeper Sleep State.................................................................................91  
6.2.8 Enhanced Intel SpeedStep® Technology ....................................................92  
Processor Power Status Indicator (PSI) Signal .......................................................92  
6.3  
7
Boxed Processor Specifications......................................................................................93  
7.1  
7.2  
Introduction......................................................................................................93  
Mechanical Specifications....................................................................................94  
7.2.1 Boxed Processor Cooling Solution Dimensions.............................................94  
7.2.2 Boxed Processor Fan Heatsink Weight .......................................................95  
7.2.3 Boxed Processor Retention Mechanism and Heatsink Attach  
Clip Assembly.........................................................................................95  
Electrical Requirements ......................................................................................95  
7.3.1 Fan Heatsink Power Supply ......................................................................95  
Thermal Specifications........................................................................................97  
7.4.1 Boxed Processor Cooling Requirements......................................................97  
7.4.2 Variable Speed Fan.................................................................................99  
7.3  
7.4  
8
Debug Tools Specifications..........................................................................................101  
8.1  
Logic Analyzer Interface (LAI) ...........................................................................101  
8.1.1 Mechanical Considerations .....................................................................101  
8.1.2 Electrical Considerations........................................................................101  
4
Datasheet  
Figures  
1
2
3
4
5
6
7
8
9
Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient Tolerance................ 20  
Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient Tolerance................ 22  
VCC Overshoot Example Waveform ............................................................................. 23  
Differential Clock Waveform ...................................................................................... 33  
Measurement Points for Differential Clock Waveforms ................................................... 33  
Processor Package Assembly Sketch........................................................................... 35  
Processor Package Drawing Sheet 1 of 3 ..................................................................... 36  
Processor Package Drawing Sheet 2 of 3 ..................................................................... 37  
Processor Package Drawing Sheet 3 of 3 ..................................................................... 38  
10 Processor Top-Side Markings Example ........................................................................ 40  
11 Processor Land Coordinates and Quadrants, Top View................................................... 41  
12 land-out Diagram (Top View – Left Side)..................................................................... 44  
13 land-out Diagram (Top View – Right Side)................................................................... 45  
14 Intel® Core™2 Duo Processor E8000 Series Thermal Profile........................................... 79  
15 Intel® Core™2 Duo Processor E7000 Series Thermal Profile........................................... 80  
16 Case Temperature (TC) Measurement Location ............................................................ 81  
17 Thermal Monitor 2 Frequency and Voltage Ordering...................................................... 83  
18 Conceptual Fan Control Diagram on PECI-Based Platforms............................................. 85  
19 Processor Low Power State Machine ........................................................................... 88  
20 Mechanical Representation of the Boxed Processor ....................................................... 93  
21 Space Requirements for the Boxed Processor (Side View).............................................. 94  
22 Space Requirements for the Boxed Processor (Top View)............................................... 94  
23 Overall View Space Requirements for the Boxed Processor............................................. 95  
24 Boxed Processor Fan Heatsink Power Cable Connector Description.................................. 96  
25 Baseboard Power Header Placement Relative to Processor Socket................................... 97  
26 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ................... 98  
27 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view) ................... 98  
28 Boxed Processor Fan Heatsink Set Points..................................................................... 99  
Datasheet  
5
Tables  
1
2
3
4
5
6
7
8
9
References ..............................................................................................................12  
Voltage Identification Definition..................................................................................15  
Absolute Maximum and Minimum Ratings ....................................................................17  
Voltage and Current Specifications..............................................................................18  
Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient Tolerance ................19  
Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient Tolerance ................21  
VCC Overshoot Specifications......................................................................................22  
FSB Signal Groups....................................................................................................24  
Signal Characteristics................................................................................................25  
10 Signal Reference Voltages .........................................................................................25  
11 GTL+ Signal Group DC Specifications ..........................................................................26  
12 Open Drain and TAP Output Signal Group DC Specifications ...........................................26  
13 CMOS Signal Group DC Specifications..........................................................................27  
14 PECI DC Electrical Limits ...........................................................................................28  
15 GTL+ Bus Voltage Definitions.....................................................................................29  
16 Core Frequency to FSB Multiplier Configuration.............................................................30  
17 BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................31  
18 Front Side Bus Differential BCLK Specifications.............................................................31  
19 FSB Differential Clock Specifications (1333 MHz FSB) ....................................................32  
20 FSB Differential Clock Specifications (1066 MHz FSB) ....................................................32  
21 Processor Loading Specifications.................................................................................39  
22 Package Handling Guidelines......................................................................................39  
23 Processor Materials...................................................................................................40  
24 Alphabetical Land Assignments...................................................................................46  
25 Numerical Land Assignment.......................................................................................56  
26 Signal Description.....................................................................................................66  
27 Processor Thermal Specifications................................................................................78  
28 Intel® Core™2 Duo Processor E8000 Series Thermal Profile ...........................................79  
29 Intel® Core™2 Duo Processor E7000 Series Thermal Profile ...........................................80  
30 GetTemp0() Error Codes ...........................................................................................86  
31 Power-On Configuration Option Signals .......................................................................87  
32 Fan Heatsink Power and Signal Specifications...............................................................96  
33 Fan Heatsink Power and Signal Specifications.............................................................100  
6
Datasheet  
®
Intel Core™2 Duo Processor E8000  
and E7000 Series Features  
• Available at 3.33 GHz, 3.16 GHz, 3.00 GHz,  
2.83 GHz, and 2.66 GHz for the Intel  
Core™2 Duo processor E8000 series  
• Advance Dynamic Execution  
• Very deep out-of-order execution  
• Enhanced branch prediction  
• Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
• Available at 2.93 GHz, 2.80 GHz, 2.66 GHz  
and 2.53 GHz for the Intel Core™2 Duo  
processor E7000 series  
• Enhanced Intel Speedstep® Technology  
• Supports Intel® 64Φ architecture  
• Supports Intel® Virtualization Technology  
(Intel® VT) (Intel Core™2 Duo processors  
E8600, E8500, E8400, E8300, and E8200  
only)  
• Intel® Advanced Smart Cache  
• 6 MB Level 2 cache (Intel Core™2 Duo  
processor E8000 series only)  
• 3 MB Level 2 cache (Intel Core™2 Duo  
processor E7000 series only)  
• Intel® Advanced Digital Media Boost  
• Enhanced floating point and multimedia unit  
for enhanced video, audio, encryption, and  
3D performance  
• Power Management capabilities  
• System Management mode  
• Multiple low-power states  
• 8-way cache associativity provides improved  
cache hit rate on load/store operations  
• 775-land Package  
• Supports Intel® Trusted Execution  
Technology (Intel® TXT) (Intel Core™2 Duo  
processors E8600, E8500, E8400, E8300,  
and E8200 only)  
• Supports Execute Disable Bit capability  
• FSB frequency at 1333 MHz  
• FSB frequency at 1066 MHz (Intel Core™2  
Duo processor E7000 series only)  
• Binary compatible with applications running  
on previous members of the Intel  
microprocessor line  
The Intel® Core™2 Duo processor E8000 and E7000 series are based on the Enhanced Intel® Core™  
microarchitecture. The Enhanced Intel® Core™ microarchitecture combines the performance across  
applications and usages where end-users can truly appreciate and experience the performance. These  
applications include Internet audio and streaming video, image processing, video content creation,  
speech, 3D, CAD, games, multimedia, and multitasking user environments.  
Intel® 64Φ architecture enables the processor to execute operating systems and applications written  
to take advantage of the Intel 64 architecture. The processor, supporting Enhanced Intel Speedstep®  
technology, allows tradeoffs to be made between performance and power consumption.  
The Intel Core™2 Duo processor E8000 and E7000 series also includes the Execute Disable Bit  
capability. This feature, combined with a supported operating system, allows memory to be marked  
as executable or non-executable.  
Virtualization Technology provides silicon-based functionality that works together with compatible  
Virtual Machine Monitor (VMM) software to improve on software-only solutions.  
The Intel® Trusted Execution Technology (Intel TXT) is a key element in Intel's safer computing  
initiative that defines a set of hardware enhancements that interoperate with an Intel TXT enabled  
operating system to help protect against software-based attacks. It creates a hardware foundation  
that builds on Intel's Virtualization Technology to help protect the confidentiality and integrity of data  
stored/created on the client PC.  
Datasheet  
7
Revision History  
Revision  
Number  
Description  
Revision Date  
January 2008  
-001  
• Initial release  
• Added Intel® Core™2 Duo processor E8300 and E7200  
• Updated VID information. Updated Table 2-1.  
• Added the PSI# signal  
April 2008  
-002  
• Added Intel® Core™2 Duo processor E8600 and E7300  
-003  
August 2008  
• Updated FSB termination voltage in Table 2-3.  
• Added Intel® Core™2 Duo processor E7400  
• Added Intel® Core™2 Duo processor E7500  
October 2008  
January 2009  
-004  
-005  
§ §  
8
Datasheet  
Introduction  
1 Introduction  
The Intel® Core™2 Duo processor E8000 and E7000 series is based on the Enhanced  
Intel® Coremicroarchitecture. The Intel Enhanced Coremicroarchitecture combines  
the performance of previous generation Desktop products with the power efficiencies of  
a low-power microarchitecture to enable smaller, quieter systems. The Intel® Core™2  
Duo processor E8000 and E7000 series are 64-bit processors that maintain  
compatibility with IA-32 software.  
Note:  
Note:  
In this document, the Intel® Core™2 Duo processor E8000 and E7000 series may be  
referred to as "the processor."  
In this document, unless otherwise specified, the Intel® Core™2 Duo processor E8000  
series refers to the Intel® Core™2 Duo processors E8600, E8500, E8400, E8300,  
E8200, and E8190.  
Note:  
In this document, unless otherwise specified, the Intel® Core™2 Duo processor E7000  
series refers to the Intel® Core™2 Duo processors E7500, E7400, E7300 and E7200.  
The processors use Flip-Chip Land Grid Array (FC-LGA8) package technology, and plugs  
into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the  
LGA775 socket.  
The processors are based on 45 nm process technology. The processors feature the  
Intel® Advanced Smart Cache, a shared multi-core optimized cache that significantly  
reduces latency to frequently used data. The Intel® Core™2 Duo processor E8000  
series features a 1333 MHz front side bus (FSB) and 6 MB of L2 cache. The Intel®  
Core™2 Duo processor E7000 series features a 1333 MHz and 1066 MHz front side bus  
(FSB) and 3 MB of L2 cache. The processors support all the existing Streaming SIMD  
Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming  
SIMD Extension 3 (SSSE3), and the Streaming SIMD Extensions 4.1 (SSE4.1). The  
processors support several Advanced Technologies: Execute Disable Bit, Intel® 64  
architecture, and Enhanced Intel SpeedStep® Technology. The Intel® Core™2 Duo  
processor E8600, E8500, E8400, E8300, and E8200 support Intel® Trusted Execution  
Technology (Intel® TXT) and Intel® Virtualization Technology (Intel® VT).  
The processor's front side bus (FSB) use a split-transaction, deferred reply protocol.  
The FSB uses Source-Synchronous Transfer of address and data to improve  
performance by transferring data four times per bus clock (4X data transfer rate).  
Along with the 4X data bus, the address bus can deliver addresses two times per bus  
clock and is referred to as a "double-clocked" or 2X address bus. Working together, the  
4X data bus and 2X address bus provide a data bus bandwidth of up to 10.7 GB/s.  
Intel has enabled support components for the processor including heatsink, heatsink  
retention mechanism, and socket. Manufacturability is a high priority; hence,  
mechanical assembly may be completed from the top of the baseboard and should not  
require any special tooling.  
Datasheet  
9
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
“Front Side Bus” refers to the interface between the processor and system core logic  
(a.k.a. the chipset components). The FSB is a multiprocessing interface to processors,  
memory, and I/O.  
1.1.1  
Processor Terminology Definitions  
Commonly used terms are explained here for clarification:  
Intel® Core™2 Duo processor E8000 series — Dual core processor in the FC-  
LGA8 package with a 6 MB L2 cache.  
Intel® Core™2 Duo processor E7000 series — Dual core processor in the FC-  
LGA8 package with a 3 MB L2 cache.  
Processor — For this document, the term processor is the generic form of the  
Intel® Core™2 Duo processor E8000 series and Intel® Core™2 Duo processor  
E7000 series.  
Voltage Regulator Design Guide — For this document “Voltage Regulator Design  
Guide” may be used in place of:  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket  
Enhanced Intel® Coremicroarchitecture — A new foundation for Intel®  
architecture-based desktop, mobile and mainstream server multi-core processors.  
For additional information refer to: http://www.intel.com/technology/architecture/  
coremicro/  
Keep-out zone — The area on or near the processor that system design can not  
use.  
Processor core — Processor die with integrated L2 cache.  
LGA775 socket — The processors mate with the system board through a surface  
mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Retention mechanism (RM) — Since the LGA775 socket does not include any  
mechanical features for heatsink attach, a retention mechanism is required.  
Component thermal solutions should attach to the processor via a retention  
mechanism that is independent of the socket.  
FSB (Front Side Bus) — The electrical interface that connects the processor to  
the chipset. Also referred to as the processor system bus or the system bus. All  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
10  
Datasheet  
Introduction  
Storage conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Upon exposure to “free air”(i.e., unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation — Refers to normal operating conditions in which all  
processor specifications, including DC, AC, system bus, signal quality, mechanical  
and thermal are satisfied.  
Execute Disable Bit — Execute Disable Bit allows memory to be marked as  
executable or non-executable, when combined with a supporting operating system.  
If code attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer over run vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® Architecture Software Developer's Manual  
for more detailed information.  
Intel® 64 Architecture— An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of the Intel 64 architecture. Further details on Intel 64 architecture and  
programming model can be found in the Intel Extended Memory 64 Technology  
Software Developer Guide at http://developer.intel.com/technology/  
64bitextensions/.  
Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep  
Technology allows trade-offs to be made between performance and power  
consumptions, based on processor utilization. This may lower average power  
consumption (in conjunction with OS support).  
Intel® Virtualization Technology (Intel® VT) — A set of hardware  
enhancements to Intel server and client platforms that can improve virtualization  
solutions. Intel VT will provide a foundation for widely-deployed virtualization  
solutions and enables more robust hardware assisted virtualization solutions. More  
information can be found at: http://www.intel.com/technology/virtualization/  
Intel® Trusted Execution Technology (Intel® TXT) — A key element in Intel's  
safer computing initiative which defines a set of hardware enhancements that  
interoperate with an Intel TXT enabled OS to help protect against software-based  
attacks. Intel TXT creates a hardware foundation that builds on Intel's  
Virtualization Technology (Intel VT) to help protect the confidentiality and integrity  
of data stored/created on the client PC.  
Platform Environment Control Interface (PECI) — A proprietary one-wire bus  
interface that provides a communication channel between the processor and  
chipset components to external monitoring devices.  
Datasheet  
11  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1.  
References  
Document  
Location  
www.intel.com/design/  
processor/specupdt/  
318733.htm  
Intel® Core™2 Duo Processor E8000 and E7000 Series Specification  
Update  
Intel® Core™2 Duo Processor E8000 and E7000 Series and Intel®  
Pentium Dual-Core Processor E5000 Series Thermal and Mechanical  
Design Guidelines  
www.intel.com/design/  
processor/designex/  
318734.htm  
http://www.intel.com/  
design/processor/  
applnots/313214.htm  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design  
Guidelines For Desktop LGA775 Socket  
http://intel.com/design/  
Pentium4/guides/  
302666.htm  
LGA775 Socket Mechanical Design Guide  
Intel® 64 and IA-32 Intel Architecture Software Developer's Manuals  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide, Part 1  
Volume 3B: System Programming Guide, Part 2  
http://www.intel.com/  
products/processor/  
manuals/  
§
12  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and  
signals. DC electrical characteristics are provided.  
2.1  
Power and Ground Lands  
The processor has VCC (power), VTT, and VSS (ground) inputs for on-chip power  
distribution. All power lands must be connected to VCC, while all VSS lands must be  
connected to a system ground plane. The processor VCC lands must be supplied the  
voltage determined by the Voltage IDentification (VID) lands.  
The signals denoted as VTT provide termination for the front side bus and power to the  
I/O buffers. A separate supply must be implemented for these lands, that meets the  
VTT specifications outlined in Table 4.  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings. This may cause voltages on power planes  
to sag below their minimum specified values if bulk decoupling is not adequate. Larger  
bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. The motherboard must be designed  
to ensure that the voltage provided to the processor remains within the specifications  
listed in Table 4. Failure to do so can result in timing violations or reduced lifetime of  
the component.  
2.2.1  
2.2.2  
V
Decoupling  
CC  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the  
processor voltage specifications. This includes bulk capacitance with low effective series  
resistance (ESR) to keep the voltage rail within specifications during large swings in  
load current. In addition, ceramic decoupling capacitors are required to filter high  
frequency content generated by the front side bus and processor activity. Consult the  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket for further information. Contact your Intel field representative  
for additional information.  
V Decoupling  
TT  
Decoupling must be provided on the motherboard. Decoupling solutions must be sized  
to meet the expected load. To ensure compliance with the specifications, various  
factors associated with the power delivery solution must be considered including  
regulator type, power plane and trace sizing, and component placement. A  
conservative decoupling solution would consist of a combination of low ESR bulk  
capacitors and high frequency ceramic capacitors.  
Datasheet  
13  
Electrical Specifications  
2.2.3  
FSB Decoupling  
The processor integrates signal termination on the die. In addition, some of the high  
frequency capacitance required for the FSB is included on the processor package.  
However, additional high frequency capacitance must be added to the motherboard to  
properly decouple the return currents from the front side bus. Bulk decoupling must  
also be provided by the motherboard for proper [A]GTL+ bus operation.  
2.3  
Voltage Identification  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage  
to be delivered to the processor VCC lands (see Chapter 2.6.3 for VCC overshoot  
specifications). Refer to Table 13 for the DC specifications for these signals. Voltages  
for each processor frequency is provided in Table 4.  
Note:  
To support the Deeper Sleep State the platform must use a VRD 11.1 compliant  
solution. The Deeper Sleep State also requires additional platform support.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core speed may have different default VID settings. This is  
reflected by the VID Range values provided in Table 4. Refer to the Intel® Core™2 Duo  
Processor E8000 and E7000 Series Specification Update for further details on specific  
valid core frequency and VID values of the processor. Note that this differs from the  
VID employed by the processor during a power management event (Thermal Monitor 2,  
Enhanced Intel SpeedStep® technology, or Extended HALT State).  
The processor uses eight voltage identification signals, VID[7:0], to support automatic  
selection of power supply voltages. Table 2 specifies the voltage level corresponding to  
the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to  
a low voltage level. If the processor socket is empty (VID[7:0] = 11111110), or the  
voltage regulation circuit cannot supply the voltage that is requested, it must disable  
itself.  
The processor provides the ability to operate while transitioning to an adjacent VID and  
its associated processor core voltage (VCC). This will represent a DC shift in the load  
line. It should be noted that a low-to-high or high-to-low voltage state change may  
result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the specified VID are not permitted. Table 4 includes VID step sizes  
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in  
Table 5, Figure 1, Table 6, and Figure 2, as measured across the VCC_SENSE and  
VSS_SENSE lands.  
The VRM or VRD utilized must be capable of regulating its output to the value defined  
by the new VID. DC specifications for dynamic VID transitions are included in Table 4  
and Table 5. Refer to the Voltage Regulator Design Guide for further details.  
14  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
Voltage  
Voltage  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFF  
1.6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0375  
1.025  
1.0125  
1
1.5875  
1.575  
1.5625  
1.55  
0.9875  
0.975  
0.9625  
0.95  
1.5375  
1.525  
1.5125  
1.5  
0.9375  
0.925  
0.9125  
0.9  
1.4875  
1.475  
1.4625  
1.45  
0.8875  
0.875  
0.8625  
0.85  
1.4375  
1.425  
1.4125  
1.4  
0.8375  
0.825  
0.8125  
0.8  
1.3875  
1.375  
1.3625  
1.35  
0.7875  
0.775  
0.7625  
0.75  
1.3375  
1.325  
1.3125  
1.3  
0.7375  
0.725  
0.7125  
0.7  
1.2875  
1.275  
1.2625  
1.25  
0.6875  
0.675  
0.6625  
0.65  
1.2375  
1.225  
1.2125  
1.2  
0.6375  
0.625  
0.6125  
0.6  
1.1875  
1.175  
1.1625  
1.15  
0.5875  
0.575  
0.5625  
0.55  
1.1375  
1.125  
1.1125  
1.1  
0.5375  
0.525  
0.5125  
0.5  
1.0875  
1.075  
1.0625  
1.05  
OFF  
Datasheet  
15  
Electrical Specifications  
2.4  
Reserved, Unused, and TESTHI Signals  
All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS,  
VTT, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all RESERVED lands.  
In a system level design, on-die termination has been included by the processor to  
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects as GTL+ termination is provided on the processor silicon.  
However, see Table 8 for details on GTL+ signals that do not include on-die termination.  
Unused active high inputs, should be connected through a resistor to ground (VSS).  
Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, a resistor will also allow for system testability. Resistor  
values should be within ± 20% of the impedance of the motherboard trace for front  
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). For details see Table 15.  
TAP and CMOS signals do not include on-die termination. Inputs and utilized outputs  
must be terminated on the motherboard. Unused outputs may be terminated on the  
motherboard or left unconnected. Note that leaving unused outputs unterminated may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing.  
All TESTHI[12,10:0] lands should be individually connected to VTT via a pull-up resistor  
which matches the nominal trace impedance.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0]  
• TESTHI[7:2]  
• TESTHI8/FC42 – cannot be grouped with other TESTHI signals  
• TESTHI9/FC43 – cannot be grouped with other TESTHI signals  
• TESTHI10 – cannot be grouped with other TESTHI signals  
• TESTHI12/FC44 – cannot be grouped with other TESTHI signals  
Terminating multiple TESTHI pins together with a single pull-up resistor is not  
recommended for designs supporting boundary scan for proper Boundary Scan testing  
of the TESTHI signals. For optimum noise margin, all pull-up resistor values used for  
TESTHI[12,10:0] lands should have a resistance value within ± 20% of the impedance  
of the board transmission line traces. For example, if the nominal trace impedance is  
50 Ω, then a value between 40 Ω and 60 Ω should be used.  
2.5  
Power Segment Identifier (PSID)  
Power Segment Identifier (PSID) is a mechanism to prevent booting under mismatched  
power requirement situations. The PSID mechanism enables BIOS to detect if the  
processor in use requires more power than the platform voltage regulator (VR) is  
capable of supplying. For example, a 130 W TDP processor installed in a board with a  
65 W or 95 W TDP capable VR may draw too much power and cause a potential VR  
issue.  
16  
Datasheet  
Electrical Specifications  
2.6  
Voltage and Current Specification  
2.6.1  
Absolute Maximum and Minimum Ratings  
Table 3 specifies absolute maximum and minimum ratings only and lie outside the  
functional limits of the processor. Within functional operation limits, functionality and  
long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 3.  
Absolute Maximum and Minimum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit Notes1, 2  
Core voltage with respect to VSS  
–0.3  
1.45  
V
V
-
-
FSB termination voltage with  
respect to VSS  
VTT  
–0.3  
1.45  
See  
Section 5  
See  
Section 5  
TCASE  
Processor case temperature  
°C  
°C  
-
TSTORAGE  
Processor storage temperature  
–40  
85  
3, 4, 5  
NOTES:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to  
the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits will not affect the long-term reliability of the device. For  
functional operation, refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
4.  
5.  
Datasheet  
17  
Electrical Specifications  
2.6.2  
DC Voltage and Current Specification  
Table 4.  
Voltage and Current Specifications  
Symbol  
VID Range  
Parameter  
Min  
Typ  
Max  
1.3625  
Unit Notes2, 10  
VID  
0.8500  
V
1
Processor Number  
(6 MB Cache):  
VCC for  
775_VR_CONFIG_06:  
E8600  
E8500  
E8400  
E8300  
E8200  
E8190  
3.33 GHz  
3.16 GHz  
3 GHz  
Refer to Table 5, Figure 1  
2.83 GHz  
2.66 GHz  
2.66 GHz  
Core VCC  
V
3, 4, 5  
Processor Number  
(3 MB Cache):  
VCC for  
775_VR_CONFIG_06:  
E7500  
E7400  
E7300  
E7200  
2.93 GHz  
2.80 GHz  
2.66 GHz  
2.53 GHz  
Refer to Table 6, Figure 2  
VCC_BOOT  
VCCPLL  
Default VCC voltage for initial power up  
PLL VCC  
1.10  
1.50  
V
V
- 5%  
+ 5%  
Product Number  
(6 MB Cache):  
ICC for  
775_VR_CONFIG_06:  
E8600  
E8500  
E8400  
E8300  
E8200  
E8190  
3.33 GHz  
3.16 GHz  
3 GHz  
75  
75  
75  
75  
75  
75  
A
6
2.83 GHz  
2.66 GHz  
2.66 GHz  
ICC  
Processor Number  
(3 MB Cache):  
VCC for  
775_VR_CONFIG_06:  
E7500  
E7400  
E7300  
E7200  
2.93 GHz  
2.80 GHz  
2.66 GHz  
2.53 GHz  
75  
75  
75  
75  
A
V
on Intel 3 series  
Chipset family boards  
FSB termination  
voltage  
1.045  
1.14  
1.1  
1.2  
1.155  
1.26  
VTT  
7, 8  
(DC + AC  
specifications)  
on Intel 4 series  
Chipset family boards  
VTT_OUT_LEFT  
and  
VTT_OUT_RIGHT  
ICC  
DC Current that may be drawn from  
VTT_OUT_LEFT and VTT_OUT_RIGHT per  
land  
580  
mA  
A
ICC for VTT supply before VCC stable  
ICC for VTT supply after VCC stable  
4.5  
4.6  
ITT  
9
ICC_VCCPLL  
ICC_GTLREF  
I
CC for PLL land  
130  
200  
mA  
µA  
ICC for GTLREF  
18  
Datasheet  
Electrical Specifications  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID),  
which is set at manufacturing and can not be altered. Individual maximum VID values are  
calibrated during manufacturing such that two processors at the same frequency may have  
different settings within the VID range. Note that this differs from the VID employed by the  
processor during a power management event (Thermal Monitor 2, Enhanced Intel  
SpeedStep® technology, or Extended HALT State).  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table are based on estimates and  
simulations or empirical data. These specifications will be updated with characterized data  
from silicon measurements at a later date.  
These voltages are targets only. A variable voltage source should exist on systems in the  
event that a different voltage is required. See Section 2.3 and Table 2 for more  
information.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE  
lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe  
capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the  
probe should be less than 5 mm. Ensure external noise from the system is not coupled into  
the oscilloscope probe.  
5.  
Refer to Table 5, Figure 1, Table 6, and Figure 2 for the minimum, typical, and maximum  
V
CC allowed for a given current. The processor should not be subjected to any VCC and ICC  
combination wherein VCC exceeds VCC_MAX for a given current.  
CC_MAX specification is based on VCC_MAX loadline. Refer to Figure 1 for details.  
6.  
7.  
I
V
TT must be provided via a separate voltage source and not be connected to VCC. This  
specification is measured at the land.  
8.  
9.  
Baseboard bandwidth is limited to 20 MHz.  
This is the maximum total current drawn from the VTT plane by only the processor. This  
specification does not include the current coming from on-board termination (RTT),  
through the signal line. Refer to the Voltage Regulator Design Guide to determine the total  
I
TT drawn by the system. This parameter is based on design characterization and is not  
tested.  
10.  
Adherence to the voltage specifications for the processor are required to ensure reliable  
processor operation.  
Table 5.  
Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient  
Tolerance  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.40 mΩ  
1.48 mΩ  
1.55 mΩ  
0
0.000  
-0.007  
-0.014  
-0.021  
-0.028  
-0.035  
-0.042  
-0.049  
-0.056  
-0.063  
-0.070  
-0.077  
-0.084  
-0.019  
-0.026  
-0.034  
-0.041  
-0.049  
-0.056  
-0.063  
-0.071  
-0.078  
-0.085  
-0.093  
-0.100  
-0.108  
-0.038  
-0.046  
-0.054  
-0.061  
-0.069  
-0.077  
-0.085  
-0.092  
-0.100  
-0.108  
-0.116  
-0.123  
-0.131  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Datasheet  
19  
Electrical Specifications  
Table 5.  
Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient Tolerance  
(Continued)  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.40 mΩ  
1.48 mΩ  
1.55 mΩ  
65  
70  
75  
-0.091  
-0.098  
-0.105  
-0.115  
-0.122  
-0.130  
-0.139  
-0.147  
-0.154  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.6.3.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 1.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket  
loadline guidelines and VR implementation details.  
4.  
Adherence to this loadline specification is required to ensure reliable processor operation.  
Figure 1.  
Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient  
Tolerance  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.6.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket  
loadline guidelines and VR implementation details.  
20  
Datasheet  
Electrical Specifications  
Table 6.  
Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient  
Tolerance  
1, 2, 3, 4  
Voltage Deviation from VID Setting (V)  
I
(A)  
CC  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.65 mΩ  
1.73 mΩ  
1.80 mΩ  
0
0.000  
-0.008  
-0.017  
-0.025  
-0.033  
-0.041  
-0.050  
-0.058  
-0.066  
-0.074  
-0.083  
-0.091  
-0.099  
-0.107  
-0.116  
-0.124  
-0.019  
-0.028  
-0.036  
-0.045  
-0.054  
-0.062  
-0.071  
-0.079  
-0.088  
-0.097  
-0.105  
-0.114  
-0.123  
-0.131  
-0.140  
-0.148  
-0.038  
-0.047  
-0.056  
-0.065  
-0.074  
-0.083  
-0.092  
-0.101  
-0.110  
-0.119  
-0.128  
-0.137  
-0.146  
-0.155  
-0.164  
-0.173  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.6.3.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 1.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer  
to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.  
Adherence to this loadline specification is required to ensure reliable processor operation.  
4.  
Datasheet  
21  
Electrical Specifications  
Figure 2.  
Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient  
Tolerance  
Icc [A]  
35 40  
0
5
10  
15  
20  
25  
30  
45  
50  
55  
60  
65  
70  
75  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
VID - 0.175  
VID - 0.188  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.6.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer  
to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.  
2.6.3  
V
Overshoot  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).  
The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the  
processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 7.  
VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure Notes  
Magnitude of VCC overshoot above  
VID  
1
VOS_MAX  
50  
mV  
3
Time duration of VCC overshoot above  
VID  
1
TOS_MAX  
25  
µs  
3
NOTES:  
1.  
Adherence to these specifications is required to ensure reliable processor operation.  
22  
Datasheet  
Electrical Specifications  
Figure 3.  
VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
NOTES:  
1.  
2.  
V
OS is measured overshoot voltage.  
TOS is measured time duration above VID.  
2.6.4  
Die Voltage Validation  
Overshoot events on processor must meet the specifications in Table 7 when measured  
across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in  
duration may be ignored. These measurements of processor die level overshoot must  
be taken with a bandwidth limited oscilloscope set to a greater than or equal to 100  
MHz bandwidth limit.  
2.7  
Signaling Specifications  
Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling  
technology. This technology provides improved noise margins and reduced ringing  
through low voltage swings and controlled edge rates. Platforms implement a  
termination voltage level for GTL+ signals defined as VTT. Because platforms implement  
separate power planes for each processor (and chipset), separate VCC and VTT supplies  
are necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address busses have caused  
signal integrity considerations and platform design methods to become even more  
critical than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the  
motherboard (see Table 15 for GTLREF specifications). Termination resistors (RTT) for  
GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel  
chipsets will also provide on-die termination, thus eliminating the need to terminate the  
bus on the motherboard for most GTL+ signals.  
Datasheet  
23  
Electrical Specifications  
2.7.1  
FSB Signal Groups  
The front side bus signals have been combined into groups by buffer type. GTL+ input  
signals have differential input buffers, which use GTLREF[1:0] as a reference level. In  
this document, the term “GTL+ Input” refers to the GTL+ input group as well as the  
GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output  
group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 8 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 8.  
FSB Signal Groups  
Signal Group  
Type  
Signals1  
GTL+ Common  
Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#  
GTL+ Common  
Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[5:0]#, BR0#3, DBSY#, DRDY#,  
HIT#, HITM#, LOCK#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3 ADSTB0#  
A[35:17]#3  
ADSTB1#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
assoc. strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#. DPSLP#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, SMI#3, STPCLK#, PWRGOOD, SLP#,  
TCK, TDI, TMS, TRST#, BSEL[2:0], VID[7:0], PSI#  
CMOS  
Open Drain Output  
FERR#/PBE#, IERR#, THERMTRIP#, TDO  
PROCHOT#4  
Open Drain Input/  
Output  
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]2  
VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,  
GTLREF[1:0], COMP[8,3:0], RESERVED,  
TESTHI[12,10:0], VCC_SENSE,  
Power/Other  
VCC_MB_REGULATION, VSS_SENSE,  
VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,  
VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]  
NOTES:  
1.  
2.  
Refer to Section 4.2 for signal descriptions.  
In processor systems where no debug port is implemented on the system board, these  
signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
24  
Datasheet  
Electrical Specifications  
3.  
The value of these signals during the active-to-inactive edge of RESET# defines the  
processor configuration options. See Section 6.1 for details.  
4.  
PROCHOT# signal type is open drain output and CMOS input.  
.
Table 9.  
Signal Characteristics  
Signals with RTT  
Signals with No RTT  
A20M#, BCLK[1:0], BPM[5:0]#, BSEL[2:0],  
COMP[8,3:0], FERR#/PBE#, IERR#, IGNNE#,  
INIT#, ITP_CLK[1:0], LINT0/INTR, LINT1/  
NMI, MSID[1:0], PWRGOOD, RESET#, SMI#,  
STPCLK#, TDO, TESTHI[12,10:0],  
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,  
HITM#, LOCK#, PROCHOT#, REQ[4:0]#,  
RS[2:0]#, TRDY#  
THERMTRIP#, VID[7:0], GTLREF[1:0], TCK,  
TDI, TMS, TRST#, VTT_SEL  
Open Drain Signals1  
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,  
BR0#, TDO, FCx  
NOTES:  
1.  
Signals that do not have RTT, nor are actively driven to their high-voltage level.  
Table 10.  
Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, RESET#, BNR#, HIT#, HITM#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,  
TRDY#  
A20M#, LINT0/INTR, LINT1/NMI,  
IGNNE#, INIT#, PROCHOT#,  
PWRGOOD1, SMI#, STPCLK#, TCK1,  
TDI1, TMS1, TRST#1  
NOTE:  
1.  
See Table 12 for more information.  
2.7.2  
CMOS and Open Drain Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS  
input buffers. All of the CMOS and Open Drain signals are required to be asserted/de-  
asserted for at least eight BCLKs in order for the processor to recognize the proper  
signal state. See Section 2.7.3 for the DC specifications. See Section 6.2 for additional  
timing requirements for entering and leaving the low power states.  
Datasheet  
25  
Electrical Specifications  
2.7.3  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads)  
unless otherwise stated. All specifications apply to all frequencies and cache sizes  
unless otherwise stated.  
Table 11.  
GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
VIL  
VIH  
VOH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
-0.10  
GTLREF – 0.10  
VTT + 0.10  
VTT  
V
V
V
2, 5  
3, 4, 5  
4, 5  
GTLREF + 0.10  
VTT – 0.10  
VTT_MAX  
[(RTT_MIN) + (2 * RON_MIN)]  
/
IOL  
ILI  
ILO  
RON  
Output Low Current  
N/A  
N/A  
A
-
Input Leakage  
Current  
± 100  
µA  
6
7
Output Leakage  
Current  
N/A  
± 100  
9.16  
µA  
Buffer On Resistance  
7.49  
Ω
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the voltage range at a receiving agent that will be interpreted as a logical  
low value.  
IH is defined as the voltage range at a receiving agent that will be interpreted as a logical  
high value.  
IH and VOH may experience excursions above VTT.  
The VTT referred to in these specifications is the instantaneous VTT.  
Leakage to VSS with land held at VTT.  
Leakage to VTT with land held at 300 mV.  
V
3.  
V
4.  
5.  
6.  
7.  
V
Table 12.  
Open Drain and TAP Output Signal Group DC Specifications  
Symbol  
Parameter  
Output Low Voltage  
Min  
Max  
Unit Notes1  
VOL  
IOL  
ILO  
0
0.20  
50  
V
-
Output Low Current  
16  
mA  
µA  
2
3
Output Leakage Current  
N/A  
± 200  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at VTT * 0.2 V.  
For Vin between 0 and VOH  
.
26  
Datasheet  
Electrical Specifications  
Table 13.  
CMOS Signal Group DC Specifications  
Symb  
ol  
Parameter  
Min  
Max  
Unit Notes1  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
ILI  
Input Low Voltage  
-0.10  
VTT * 0.70  
-0.10  
VTT * 0.30  
VTT + 0.10  
VTT * 0.10  
VTT + 0.10  
V
V
3, 6  
4, 5, 6  
6
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
V
0.90 * VTT  
V
2, 5, 6  
6, 7  
6, 7  
8
VTT * 0.10 / 67 VTT * 0.10 / 27  
VTT * 0.10 / 67 VTT * 0.10 / 27  
A
A
N/A  
N/A  
± 100  
± 100  
µA  
µA  
ILO  
9
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
IL is defined as the voltage range at a receiving agent that will be interpreted as a logical  
low value.  
IH is defined as the voltage range at a receiving agent that will be interpreted as a logical  
high value.  
IH and VOH may experience excursions above VTT.  
The VTT referred to in these specifications refers to instantaneous VTT.  
OL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.  
4.  
V
5.  
6.  
7.  
8.  
9.  
V
I
Leakage to VSS with land held at VTT.  
Leakage to VTT with land held at 300 mV.  
2.7.3.1  
Platform Environment Control Interface (PECI) DC Specifications  
PECI is an Intel proprietary one-wire interface that provides a communication channel  
between Intel processors, chipsets, and external thermal monitoring devices. The  
processor contains Digital Thermal Sensors (DTS) distributed throughout die. These  
sensors are implemented as analog-to-digital converters calibrated at the factory for  
reasonable accuracy to provide a digital representation of relative processor  
temperature. PECI provides an interface to relay the highest DTS temperature within a  
die to external management devices for thermal/fan speed control. More detailed  
information may be found in the Platform Environment Control Interface (PECI)  
Specification.  
Datasheet  
27  
Electrical Specifications  
Table 14.  
PECI DC Electrical Limits  
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units  
Notes1  
Vin  
-0.15  
VTT  
V
V
V
V
2
Vhysteresis Hysteresis  
0.1 * VTT  
Vn  
Vp  
Negative-edge threshold voltage  
0.275 * VTT 0.500 * VTT  
0.550 * VTT 0.725 * VTT  
Positive-edge threshold voltage  
High level output source  
(VOH = 0.75 * VTT)  
Isource  
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
Low level output sink  
(VOL = 0.25 * VTT)  
Isink  
3
Ileak+  
Ileak-  
Cbus  
High impedance state leakage to VTT  
High impedance leakage to GND  
Bus capacitance per node  
N/A  
N/A  
N/A  
50  
10  
10  
µA  
µA  
pF  
3
4
Signal noise immunity above 300  
MHz  
Vnoise  
0.1 * VTT  
Vp-p  
NOTES:  
1. V supplies the PECI interface. PECI behavior does not affect V min/max specifications. Refer to Table 4 for  
TT  
TT  
TT  
V
specifications.  
2. The leakage specification applies to powered devices on the PECI bus.  
3. The input buffers use a Schmitt-triggered input design for improved noise immunity.  
4. One node is counted for each client and one node for the system host. Extended trace lengths might appear  
as additional nodes.  
.
2.7.3.2  
GTL+ Front Side Bus Specifications  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon. See Table 9 for details on which GTL+ signals do not include on-die  
termination.  
Valid high and low levels are determined by the input buffers by comparing with a  
reference voltage called GTLREF. Table 15 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high  
precision voltage divider circuits.  
28  
Datasheet  
Electrical Specifications  
Table 15.  
GTL+ Bus Voltage Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
GTLREF pull up on Intel®  
3 Series Chipset family  
boards  
GTLREF_PU  
57.6 * 0.99  
57.6  
57.6 * 1.01  
Ω
Ω
2
2
GTLREF pull down on  
Intel® 3 Series Chipset  
family boards  
100 * 0.99  
100  
100 * 1.01  
GTLREF_PD  
RTT  
Termination Resistance  
COMP Resistance  
45  
50  
55  
Ω
Ω
Ω
3
4
4
COMP[3:0]  
COMP8  
49.40  
24.65  
49.90  
24.90  
50.40  
25.15  
COMP Resistance  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
GTLREF is to be generated from VTT by a voltage divider of 1% resistors. If an Adjustable  
GTLREF circuit is used on the board (for Quad-Core processors compatibility) the two  
GTLREF lands connected to the Adjustable GTLREF circuit require the following:  
GTLREF_PU = 50 Ω, GTLREF_PD = 100 Ω.  
3.  
4.  
R
TT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.  
COMP resistance must be provided on the system board with 1% resistors. COMP[3:0] and  
COMP8 resistors are to VSS  
.
2.8  
Clock Specifications  
2.8.1  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor’s core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio during manufacturing. The processor supports Half Ratios between 7.5  
and 13.5, refer to Table 16 for the processor supported ratios.  
The processor uses a differential clocking implementation. For more information on the  
processor clocking, contact your Intel field representative.  
Datasheet  
29  
Electrical Specifications  
Table 16.  
Core Frequency to FSB Multiplier Configuration  
Multiplication of  
Core Frequency  
(333 MHz BCLK/  
1333 MHz FSB)  
Core Frequency  
System Core  
Frequency to FSB  
FSB)  
Notes1, 2  
(266 MHz BCLK/1066 MHz  
Frequency  
1.60 GHz  
1.86 GHz  
2 GHz  
1/6  
1/7  
2 GHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.33 GHz  
2.50 GHz  
2.66 GHz  
2.83 GHz  
3 GHz  
1/7.5  
1/8  
2.13 GHz  
2.26 GHz  
2.40 GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
2.93 GHz  
3.06 GHz  
3.20 GHz  
3.33 GHz  
3.46 GHz  
3.60GHz  
3.73 GHz  
4 GHz  
1/8.5  
1/9  
1/9.5  
1/10  
1/10.5  
1/11  
1/11.5  
1/12  
1/12.5  
1/13  
1/13.5  
1/14  
1/15  
3.16 GHz  
3.33 GHz  
3.50 GHz  
3.66 GHz  
3.83 GHz  
4 GHz  
4.16 GHz  
4.33 GHz  
4.50 GHz  
4.66 GHz  
5 GHz  
NOTES:  
1.  
2.  
Individual processors operate only at or below the rated frequency.  
Listed frequencies are not necessarily committed production frequencies.  
2.8.2  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 17 defines the possible combinations of the signals and the  
frequency associated with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must operate at the same  
frequency.  
The Intel® Core™2 Duo processor E7000 series operates at a 1333 MHz FSB and  
1066 MHz FSB frequency (selected by a 333 MHz BCLK[1:0] or 266 MHz BCLK[1:0]  
frequency) and the Intel® Core™2 Duo processor E8000 series operates at a 1333 MHz  
FSB frequency (selected by a 333 MHz BCLK[1:0] frequency). Individual processors will  
only operate at their specified FSB frequency.  
For more information about these signals, refer to Section 4.2.  
30  
Datasheet  
Electrical Specifications  
Table 17.  
BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
266 MHz  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
333 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
H
H
L
L
2.8.3  
Phase Lock Loop (PLL) and Filter  
An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is  
used for the PLL. Refer to Table 4 for DC specifications.  
2.8.4  
BCLK[1:0] Specifications  
Table 18.  
Front Side Bus Differential BCLK Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Figure Notes1  
VL  
Input Low Voltage  
Input High Voltage  
-0.30  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.15  
0.550  
0.140  
1.4  
V
V
V
V
V
V
V
4
4
4
4
4
4
5
VH  
VCROSS(abs) Absolute Crossing Point  
0.300  
N/A  
2
-
ΔVCROSS Range of Crossing Points  
VOS  
VUS  
Overshoot  
N/A  
3
3
4
Undershoot  
-0.300  
0.300  
N/A  
VSWING  
Differential Output Swing  
N/A  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing voltage is defined as the instantaneous voltage value when the rising edge of  
BCLK0 equals the falling edge of BCLK1.  
3.  
4.  
“Steady state” voltage, not including overshoot or undershoot.  
Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined  
as the absolute value of the minimum voltage.  
5.  
Measurement taken from differential waveform.  
Datasheet  
31  
Electrical Specifications  
Table 19.  
FSB Differential Clock Specifications (1333 MHz FSB)  
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure Notes1  
331.633  
2.99970  
333.367  
3.01538  
150  
MHz  
ns  
-
4
4
6
2
3
T1: BCLK[1:0] Period  
T2: BCLK[1:0] Period Stability  
ps  
T5: BCLK[1:0] Rise and Fall Slew  
Rate  
2.5  
8
V/ns  
%
5
4
5
Slew Rate Matching  
N/A  
N/A  
20  
NOTES:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor core  
frequencies based on a 333 MHz BCLK[1:0].  
2.  
The period specified here is the average period. A given period may vary from this  
specification as governed by the period stability specification (T2). Min period specification  
is based on -300 PPM deviation from a 3 ns period. Max period specification is based on  
the summation of +300 PPM deviation from a 3 ns period and a +0.5% maximum variance  
due to spread spectrum clocking.  
3.  
In this context, period stability is defined as the worst case timing difference between  
successive crossover voltages. In other words, the largest absolute difference between  
adjacent clock periods must be less than the period stability.  
4.  
5.  
Slew rate is measured through the VSWING voltage range centered about differential zero.  
Measurement taken from differential waveform.  
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is  
measured using a ±75 mV window centered on the average cross point where Clock rising  
meets Clock# falling. The median cross point is used to calculate the voltage thresholds  
the oscilloscope is to use for the edge rate calculations.  
6.  
Duty Cycle (High time/Period) must be between 40 and 60%  
Table 20.  
FSB Differential Clock Specifications (1066 MHz FSB)  
1
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure  
Notes  
265.307  
3.74963  
-
-
-
-
266.693  
3.76922  
150  
MHz  
ns  
-
4
4
5
-
6
T1: BCLK[1:0] Period  
2
3
4
5
T2: BCLK[1:0] Period Stability  
T5: BCLK[1:0] Rise and Fall Slew Rate  
Slew Rate Matching  
ps  
2.5  
-
8
V/ns  
%
N/A  
N/A  
20  
NOTES:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor core  
frequencies based on a 266 MHz BCLK[1:0].  
2.  
The period specified here is the average period. A given period may vary from this  
specification as governed by the period stability specification (T2). Min period specification  
is based on -300 PPM deviation from a 3.75 ns period. Max period specification is based on  
the summation of +300 PPM deviation from a 3.75 ns period and a +0.5% maximum  
variance due to spread spectrum clocking.  
3.  
In this context, period stability is defined as the worst case timing difference between  
successive crossover voltages. In other words, the largest absolute difference between  
adjacent clock periods must be less than the period stability.  
4.  
5.  
Slew rate is measured through the VSWING voltage range centered about differential zero.  
Measurement taken from differential waveform.  
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is  
measured using a ±75mV window centered on the average cross point where Clock rising  
32  
Datasheet  
Electrical Specifications  
meets Clock# falling. The median cross point is used to calculate the voltage thresholds  
the oscilloscope is to use for the edge rate calculations.  
6.  
Duty Cycle (High time/Period) must be between 40 and 60%  
Figure 4.  
Differential Clock Waveform  
Tph  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Ringback  
Margin  
VCROSS (ABS  
)
VCROSS (ABS)  
Threshold  
Region  
Falling Edge  
Ringback  
BCLK0  
VL  
Undershoot  
Tpl  
Tp  
Tp = T1: BCLK[1:0] period  
T2: BCLK[1:0] period stability (not shown)  
Tph = T3: BCLK[1:0] pulse high time  
Tpl = T4: BCLK[1:0] pulse low time  
T5: BCLK[1:0] rise time through the threshold region  
T6: BCLK[1:0] fall time through the threshold region  
Figure 5.  
Measurement Points for Differential Clock Waveforms  
Slew_rise  
Slew _fall  
+150 mV  
+150mV  
0.0V  
V_swing  
0.0V  
-150 mV  
-150mV  
Diff  
T5 = BCLK[1:0] rise and fall time through the swing region  
§ §  
Datasheet  
33  
Electrical Specifications  
34  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA8) package that  
interfaces with the motherboard via an LGA775 socket. The package consists of a  
processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 6 shows a sketch of  
the processor package components and how they are assembled together. Refer to the  
LGA775 Socket Mechanical Design Guide for complete details on the LGA775 socket.  
The package components shown in Figure 6 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor core (die)  
• Package substrate  
• Capacitors  
Figure 6.  
Processor Package Assembly Sketch  
Core (die)  
IHS  
TIM  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
Processor_Pkg_Assembly_775  
NOTE:  
1.  
Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 7 and Figure 8. The drawings  
include dimensions necessary to design a thermal solution for the processor. These  
dimensions include:  
• Package reference with tolerances (total height, length, width, etc.)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keep-out dimensions  
• Reference datums  
• All drawing dimensions are in mm [in].  
• Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the processor Thermal and  
Mechanical Design Guidelines.  
Datasheet  
35  
Package Mechanical Specifications  
Figure 7.  
Processor Package Drawing Sheet 1 of 3  
36  
Datasheet  
Package Mechanical Specifications  
Figure 8.  
Processor Package Drawing Sheet 2 of 3  
Datasheet  
37  
Package Mechanical Specifications  
Figure 9.  
Processor Package Drawing Sheet 3 of 3  
38  
Datasheet  
Package Mechanical Specifications  
3.2  
3.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
topside or land-side of the package substrate. See Figure 7 and Figure 8 for keep-out  
zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
Package Loading Specifications  
Table 21 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution. The minimum loading specification must be  
maintained by any thermal and mechanical solutions.  
.
Table 21.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
Static  
80 N [17 lbf]  
-
311 N [70 lbf]  
756 N [170 lbf]  
1, 2, 3  
1, 3, 4  
Dynamic  
NOTES:  
1.  
2.  
3.  
4.  
These specifications apply to uniform compressive loading in a direction normal to the  
processor IHS.  
This is the maximum force that can be applied by a heatsink retention clip. The clip must  
also provide the minimum specified load on the processor package.  
These specifications are based on limited testing for design characterization. Loading limits  
are for the package only and do not include the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static  
load requirement.  
3.4  
Package Handling Guidelines  
Table 22 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 22.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
311 N [70 lbf]  
111 N [25 lbf]  
1, 4  
2, 4  
3, 4  
3.95 N-m [35 lbf-in]  
NOTES:  
1.  
2.  
3.  
4.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top  
surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the  
IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal  
to the IHS top surface.  
These guidelines are based on limited testing for design characterization.  
Datasheet  
39  
Package Mechanical Specifications  
3.5  
3.6  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA775 socket 15 times. The  
socket should meet the LGA775 requirements detailed in the LGA775 Socket  
Mechanical Design Guide.  
Processor Mass Specification  
The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all  
the components that are included in the package.  
3.7  
Processor Materials  
Table 23 lists some of the package components and associated materials.  
Table 23.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader  
(IHS)  
Nickel Plated Copper  
Substrate  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 10 shows the topside markings on the processor. This diagram is to aid in the  
identification of the processor.  
Figure 10.  
Processor Top-Side Markings Example  
M
INTEL ©'06 E8500  
Intel® Core®2 Duo  
SLxxx [COO]  
3.16GHZ/6M/1333/06  
e4  
[FPO]  
ATPO  
S/N  
40  
Datasheet  
Package Mechanical Specifications  
3.9  
Processor Land Coordinates  
Figure 11 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
.
Figure 11.  
Processor Land Coordinates and Quadrants, Top View  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
W
V
Address/  
Common Clock/  
Async  
Socket 775  
Quadrants  
Top View  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
VTT / Clocks  
Data  
§
Datasheet  
41  
Package Mechanical Specifications  
42  
Datasheet  
Land Listing and Signal Descriptions  
4 Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the processor. The land-out footprint is shown  
in Figure 12 and Figure 13. These figures represent the land-out arranged by land  
number and they show the physical location of each signal on the package land array  
(top view). Table 24 lists the processor lands ordered alphabetically by land (signal)  
name. Table 25 lists the processor lands ordered numerically by land number.  
Datasheet  
43  
Land Listing and Signal Descriptions  
Figure 12.  
land-out Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
W
V
U
T
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
N
M
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
FC34  
VSS  
FC31  
FC33  
VCC  
H
BSEL1  
FC15  
FC32  
G
F
BSEL2 BSEL0 BCLK1 TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET#  
RSVD BCLK0 VTT_SEL TESTHI0 TESTHI2 TESTHI7 RSVD  
D47#  
VSS  
D44# DSTBN2# DSTBP2# D35#  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
D43#  
D42#  
VSS  
D41#  
VSS  
VSS  
D40#  
DBI2#  
D38#  
D39#  
VSS  
E
D
FC26  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
FC10  
VSS  
RSVD  
D45#  
D46#  
D34#  
RSVD  
VTT  
VTT  
VCCPLL  
D48#  
D49#  
VCCIO  
PLL  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
D58#  
DBI3#  
VSS  
D54# DSTBP3#  
VSS  
D51#  
B
A
VTT  
VTT  
30  
VTT  
VTT  
29  
VTT  
VTT  
28  
VTT  
VTT  
27  
VTT  
VTT  
26  
VTT  
VTT  
25  
VSS  
FC23  
24  
VSSA  
VCCA  
23  
D63#  
D62#  
22  
D59#  
VSS  
21  
VSS  
RSVD  
20  
D60#  
D61#  
19  
D57#  
VSS  
18  
VSS  
D56#  
17  
D55#  
DSTBN3#  
16  
D53#  
VSS  
15  
44  
Datasheet  
Land Listing and Signal Descriptions  
Figure 13.  
land-out Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VID_SEL VSS_MB_RE VCC_MB_  
VSS_  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VID0  
VSS  
AN  
ECT  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GULATION REGULATION SENSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC40  
VID3  
FC8  
VID6  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VSS  
FC25  
FC24  
BPM1#  
VSS  
AM  
AL  
AK  
AJ  
VRDSEL PROCHOT#  
VCC  
VSS  
ITP_CLK0  
ITP_CLK1  
VSS  
VSS  
VCC  
A35#  
VSS  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM3#  
BPM4#  
VSS  
VCC  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
VSS  
BPM5#  
VSS  
TRST#  
TDO  
VCC  
SKTOCC#  
VCC  
RSVD  
A22#  
VSS  
FC18  
TCK  
ADSTB1#  
A25#  
A24#  
FC36  
BPM2#  
DBR#  
IERR#  
TDI  
VCC  
RSVD  
A26#  
VSS  
TMS  
VCC  
A17#  
FC37  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A19#  
A18#  
A23#  
VSS  
A21#  
A20#  
VSS  
VSS  
PSII#  
FC39  
VSS  
AA  
Y
FC0/  
BOOTSELECT  
TESTHI12/  
FC44  
A16#  
TESTHI1  
MSID0  
W
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A10#  
VSS  
A14#  
A12#  
A9#  
A15#  
A13#  
A11#  
VSS  
FC30  
VSS  
RSVD  
FC29  
MSID1  
FC28  
V
U
T
DPRSTP#  
COMP1  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
COMP3  
R
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
A4#  
VSS  
RSVD  
RSVD  
A5#  
VSS  
RSVD  
A7#  
INIT#  
VSS  
SMI#  
DPSLP#  
PWRGOOD  
VSS  
P
N
M
L
IGNNE#  
REQ2#  
VSS  
STPCLK# THERMTRIP#  
A3#  
A6#  
VSS  
SLP#  
VSS  
LINT1  
REQ3#  
VSS  
REQ0#  
A20M#  
LINT0  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
TESTHI10  
PECI  
VSS  
FC22  
VSS  
FC3  
J
H
FC35  
GTLREF1  
COMP2  
GTLREF0  
FC27  
TESTHI9/ TESTHI8/  
FC43  
D29#  
D27#  
DSTBN1# DBI1#  
FC38  
D16#  
BPRI#  
DEFER#  
RSVD  
G
FC42  
BR0#  
TRDY#  
VSS  
D28#  
VSS  
VSS  
D26#  
D25#  
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D21#  
D22#  
D18#  
D19#  
VSS  
D17#  
VSS  
VSS  
RSVD  
D20#  
FC21  
RSVD  
VSS  
RS1#  
FC20  
VSS  
VSS  
FC5  
VSS  
F
HITM#  
HIT#  
E
D
C
RSVD  
D15#  
D12#  
ADS#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
VSS  
D14#  
D11#  
VSS  
FC41  
DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
COMP8  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10#  
D8#  
10  
DSTBP0#  
VSS  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
D50# COMP0  
14 13  
9
1
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
A3#  
A4#  
L5  
P6  
M5  
L4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BNR#  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP8  
D0#  
C2 Common Clock Input/Output  
AJ2 Common Clock Input/Output  
AJ1 Common Clock Input/Output  
AD2 Common Clock Input/Output  
AG2 Common Clock Input/Output  
AF2 Common Clock Input/Output  
AG3 Common Clock Input/Output  
A5#  
A6#  
A7#  
M4  
R4  
T5  
U6  
T4  
U5  
U4  
V5  
V4  
W5  
A8#  
A9#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
ADSTB0#  
ADSTB1#  
BCLK0  
BCLK1  
G8 Common Clock  
Input  
F3 Common Clock Input/Output  
G29 Asynch CMOS  
H30 Asynch CMOS  
G30 Asynch CMOS  
Output  
Output  
Output  
Input  
A13  
T1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
AB6 Source Synch Input/Output  
G2  
R1  
B13  
B4  
C5  
A4  
C6  
A5  
B6  
B7  
A7  
Input  
W6  
Y6  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Input  
Input  
Y4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
AA4 Source Synch Input/Output  
AD6 Source Synch Input/Output  
AA5 Source Synch Input/Output  
AB5 Source Synch Input/Output  
AC5 Source Synch Input/Output  
AB4 Source Synch Input/Output  
AF5 Source Synch Input/Output  
AF4 Source Synch Input/Output  
AG6 Source Synch Input/Output  
AG4 Source Synch Input/Output  
AG5 Source Synch Input/Output  
AH4 Source Synch Input/Output  
AH5 Source Synch Input/Output  
D1#  
D2#  
D3#  
D4#  
D5#  
D6#  
D7#  
D8#  
A10 Source Synch Input/Output  
A11 Source Synch Input/Output  
B10 Source Synch Input/Output  
C11 Source Synch Input/Output  
D9#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D8  
Source Synch Input/Output  
B12 Source Synch Input/Output  
C12 Source Synch Input/Output  
D11 Source Synch Input/Output  
AJ5  
AJ6  
K3  
Source Synch Input/Output  
Source Synch Input/Output  
Asynch CMOS  
Input  
G9  
F8  
F9  
E9  
D7  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D2 Common Clock Input/Output  
R6 Source Synch Input/Output  
AD5 Source Synch Input/Output  
F28  
Clock  
Clock  
Input  
Input  
G28  
E10 Source Synch Input/Output  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D10 Source Synch Input/Output  
D61#  
D62#  
A19 Source Synch Input/Output  
A22 Source Synch Input/Output  
B22 Source Synch Input/Output  
F11  
F12  
Source Synch Input/Output  
Source Synch Input/Output  
D63#  
D13 Source Synch Input/Output  
E13 Source Synch Input/Output  
G13 Source Synch Input/Output  
DBI0#  
A8  
Source Synch Input/Output  
DBI1#  
G11 Source Synch Input/Output  
D19 Source Synch Input/Output  
C20 Source Synch Input/Output  
DBI2#  
F14  
G14 Source Synch Input/Output  
F15 Source Synch Input/Output  
Source Synch Input/Output  
DBI3#  
DBR#  
AC2  
Power/Other  
Output  
DBSY#  
B2 Common Clock Input/Output  
G15 Source Synch Input/Output  
G16 Source Synch Input/Output  
E15 Source Synch Input/Output  
E16 Source Synch Input/Output  
G18 Source Synch Input/Output  
G17 Source Synch Input/Output  
DEFER#  
DPRSTP#  
DPSLP#  
DRDY#  
G7 Common Clock  
Input  
Input  
Input  
T2  
P1  
Asynch CMOS  
Asynch CMOS  
C1 Common Clock Input/Output  
C8 Source Synch Input/Output  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
G12 Source Synch Input/Output  
G20 Source Synch Input/Output  
A16 Source Synch Input/Output  
F17  
F18  
Source Synch Input/Output  
Source Synch Input/Output  
E18 Source Synch Input/Output  
E19 Source Synch Input/Output  
B9  
Source Synch Input/Output  
E12 Source Synch Input/Output  
G19 Source Synch Input/Output  
C17 Source Synch Input/Output  
F20  
E21 Source Synch Input/Output  
F21 Source Synch Input/Output  
Source Synch Input/Output  
FC0/  
BOOTSELECT  
Y1  
Power/Other  
G21 Source Synch Input/Output  
E22 Source Synch Input/Output  
D22 Source Synch Input/Output  
G22 Source Synch Input/Output  
D20 Source Synch Input/Output  
D17 Source Synch Input/Output  
A14 Source Synch Input/Output  
C15 Source Synch Input/Output  
C14 Source Synch Input/Output  
B15 Source Synch Input/Output  
C18 Source Synch Input/Output  
B16 Source Synch Input/Output  
A17 Source Synch Input/Output  
B18 Source Synch Input/Output  
C21 Source Synch Input/Output  
B21 Source Synch Input/Output  
B19 Source Synch Input/Output  
FC3  
J2  
F2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
FC5  
FC8  
AK6  
E24  
H29  
AE3  
E5  
FC10  
FC15  
FC18  
FC20  
FC21  
FC22  
FC23  
FC24  
FC25  
FC26  
FC27  
FC28  
FC29  
FC30  
F6  
J3  
A24  
AK1  
AL1  
E29  
G1  
U1  
U2  
U3  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
FC31  
FC32  
J16  
H15  
H16  
J17  
H4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
Power/Other  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
AE6  
AH2  
D1  
FC33  
FC34  
D14  
D16  
E23  
E6  
FC35  
FC36  
AD3  
AB3  
G10  
AA2  
AM6  
C9  
FC37  
FC38  
E7  
FC39  
F23  
F29  
G6  
FC40  
FC41  
FERR#/PBE#  
GTLREF0  
GTLREF1  
HIT#  
R3  
Output  
Input  
Input  
N4  
H1  
N5  
H2  
P5  
D4 Common Clock Input/Output  
E4 Common Clock Input/Output  
G23 Common Clock  
B3 Common Clock  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
HITM#  
IERR#  
AB2 Asynch CMOS  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
RS1#  
F5  
Common Clock  
IGNNE#  
INIT#  
N2  
P3  
Asynch CMOS  
Asynch CMOS  
TAP  
RS2#  
A3 Common Clock  
SKTOCC#  
SLP#  
AE8  
L2  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
TAP  
ITP_CLK0  
ITP_CLK1  
LINT0  
AK3  
AJ3  
K1  
TAP  
SMI#  
P2  
Asynch CMOS  
Asynch CMOS  
STPCLK#  
TCK  
M3  
LINT1  
L1  
AE1  
AD1  
AF1  
F26  
W3  
H5  
LOCK#  
MSID0  
MSID1  
PECI  
C3 Common Clock Input/Output  
TDI  
TAP  
W1  
V1  
Power/Other  
Power/Other  
Output  
Output  
TDO  
TAP  
TESTHI0  
TESTHI1  
TESTHI10  
Power/Other  
Power/Other  
Power/Other  
G5  
Power/Other Input/Output  
PROCHOT#  
PSI#  
AL2 Asynch CMOS Input/Output  
Y3  
N1  
K4  
Asynch CMOS  
Power/Other  
Output  
Input  
TESTHI12/  
FC44  
W2  
Power/Other  
Input  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TESTHI2  
TESTHI3  
F25  
G25  
G27  
G26  
G24  
F24  
G3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
TAP  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
J5  
TESTHI4  
M6  
K6  
TESTHI5  
TESTHI6  
J6  
TESTHI7  
V2  
TESTHI8/FC42  
TESTHI9/FC43  
THERMTRIP#  
TMS  
A20  
AC4  
AE4  
G4  
M2  
AC1  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E3 Common Clock  
Input  
Input  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF22 Power/Other  
AG1  
AA8  
AB8  
TAP  
AF8  
AF9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG11 Power/Other  
AG12 Power/Other  
AG14 Power/Other  
AG15 Power/Other  
AG18 Power/Other  
AG19 Power/Other  
AG21 Power/Other  
AG22 Power/Other  
AG25 Power/Other  
AG26 Power/Other  
AG27 Power/Other  
AG28 Power/Other  
AG29 Power/Other  
AG30 Power/Other  
AC23 Power/Other  
AC24 Power/Other  
AC25 Power/Other  
AC26 Power/Other  
AC27 Power/Other  
AC28 Power/Other  
AC29 Power/Other  
AC30 Power/Other  
AC8  
Power/Other  
AD23 Power/Other  
AD24 Power/Other  
AD25 Power/Other  
AD26 Power/Other  
AD27 Power/Other  
AD28 Power/Other  
AD29 Power/Other  
AD30 Power/Other  
AG8  
AG9  
Power/Other  
Power/Other  
AH11 Power/Other  
AH12 Power/Other  
AH14 Power/Other  
AH15 Power/Other  
AH18 Power/Other  
AH19 Power/Other  
AH21 Power/Other  
AH22 Power/Other  
AH25 Power/Other  
AH26 Power/Other  
AH27 Power/Other  
AH28 Power/Other  
AH29 Power/Other  
AH30 Power/Other  
AD8  
Power/Other  
AE11 Power/Other  
AE12 Power/Other  
AE14 Power/Other  
AE15 Power/Other  
AE18 Power/Other  
AE19 Power/Other  
AE21 Power/Other  
AE22 Power/Other  
AE23 Power/Other  
AE9  
Power/Other  
AF11 Power/Other  
AF12 Power/Other  
AF14 Power/Other  
AF15 Power/Other  
AF18 Power/Other  
AF19 Power/Other  
AF21 Power/Other  
AH8  
AH9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ11  
AJ12  
AJ14  
AJ15  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AM19 Power/Other  
AM21 Power/Other  
AM22 Power/Other  
AM25 Power/Other  
AM26 Power/Other  
AM29 Power/Other  
AM30 Power/Other  
AJ9  
AM8  
AM9  
Power/Other  
Power/Other  
AK11 Power/Other  
AK12 Power/Other  
AK14 Power/Other  
AK15 Power/Other  
AK18 Power/Other  
AK19 Power/Other  
AK21 Power/Other  
AK22 Power/Other  
AK25 Power/Other  
AK26 Power/Other  
AN11 Power/Other  
AN12 Power/Other  
AN14 Power/Other  
AN15 Power/Other  
AN18 Power/Other  
AN19 Power/Other  
AN21 Power/Other  
AN22 Power/Other  
AN25 Power/Other  
AN26 Power/Other  
AN29 Power/Other  
AN30 Power/Other  
AK8  
AK9  
Power/Other  
Power/Other  
AL11 Power/Other  
AL12 Power/Other  
AL14 Power/Other  
AL15 Power/Other  
AL18 Power/Other  
AL19 Power/Other  
AL21 Power/Other  
AL22 Power/Other  
AL25 Power/Other  
AL26 Power/Other  
AL29 Power/Other  
AL30 Power/Other  
AN8  
AN9  
J10  
J11  
J12  
J13  
J14  
J15  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL8  
AL9  
Power/Other  
Power/Other  
AM11 Power/Other  
AM12 Power/Other  
AM14 Power/Other  
AM15 Power/Other  
AM18 Power/Other  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J28  
J29  
J30  
J8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
T27  
T28  
T29  
T30  
T8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J9  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
L8  
V8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y8  
P8  
VCC_MB_  
REGULATION  
AN5  
Power/Other  
Output  
Output  
R8  
VCC_SENSE  
VCCA  
AN3  
A23  
C23  
D23  
AN7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T23  
T24  
T25  
T26  
VCCIOPLL  
VCCPLL  
VID_SELECT  
Output  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VRDSEL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM2 Asynch CMOS  
AL5 Asynch CMOS  
AM3 Asynch CMOS  
AL6 Asynch CMOS  
AK4 Asynch CMOS  
AL4 Asynch CMOS  
AM5 Asynch CMOS  
AM7 Asynch CMOS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AB26 Power/Other  
AB27 Power/Other  
AB28 Power/Other  
AB29 Power/Other  
AB30 Power/Other  
AB7  
AC3  
AC6  
AC7  
AD4  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL3  
B1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B11  
B14  
B17  
B20  
B24  
B5  
AE10 Power/Other  
AE13 Power/Other  
AE16 Power/Other  
AE17 Power/Other  
AE2  
Power/Other  
B8  
AE20 Power/Other  
AE24 Power/Other  
AE25 Power/Other  
AE26 Power/Other  
AE27 Power/Other  
AE28 Power/Other  
AE29 Power/Other  
AE30 Power/Other  
A12  
A15  
A18  
A2  
A21  
A6  
A9  
AA23 Power/Other  
AA24 Power/Other  
AA25 Power/Other  
AA26 Power/Other  
AA27 Power/Other  
AA28 Power/Other  
AA29 Power/Other  
AE5  
AE7  
Power/Other  
Power/Other  
AF10 Power/Other  
AF13 Power/Other  
AF16 Power/Other  
AF17 Power/Other  
AF20 Power/Other  
AF23 Power/Other  
AF24 Power/Other  
AF25 Power/Other  
AF26 Power/Other  
AF27 Power/Other  
AF28 Power/Other  
AF29 Power/Other  
AA3  
Power/Other  
AA30 Power/Other  
AA6  
AA7  
AB1  
Power/Other  
Power/Other  
Power/Other  
AB23 Power/Other  
AB24 Power/Other  
AB25 Power/Other  
AF3  
Power/Other  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF30 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK2  
Power/Other  
AF6  
AF7  
Power/Other  
Power/Other  
AK20 Power/Other  
AK23 Power/Other  
AK24 Power/Other  
AK27 Power/Other  
AK28 Power/Other  
AK29 Power/Other  
AK30 Power/Other  
AG10 Power/Other  
AG13 Power/Other  
AG16 Power/Other  
AG17 Power/Other  
AG20 Power/Other  
AG23 Power/Other  
AG24 Power/Other  
AK5  
AK7  
Power/Other  
Power/Other  
AG7  
AH1  
Power/Other  
Power/Other  
AL10 Power/Other  
AL13 Power/Other  
AL16 Power/Other  
AL17 Power/Other  
AL20 Power/Other  
AL23 Power/Other  
AL24 Power/Other  
AL27 Power/Other  
AL28 Power/Other  
AH10 Power/Other  
AH13 Power/Other  
AH16 Power/Other  
AH17 Power/Other  
AH20 Power/Other  
AH23 Power/Other  
AH24 Power/Other  
AH3  
AH6  
AH7  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AL7  
Power/Other  
Power/Other  
AM1  
AM10 Power/Other  
AM13 Power/Other  
AM16 Power/Other  
AM17 Power/Other  
AM20 Power/Other  
AM23 Power/Other  
AM24 Power/Other  
AM27 Power/Other  
AM28 Power/Other  
AM4  
AN1  
Power/Other  
Power/Other  
AN10 Power/Other  
AN13 Power/Other  
AN16 Power/Other  
AN17 Power/Other  
AJ7  
AK10 Power/Other  
AK13 Power/Other  
AK16 Power/Other  
AK17 Power/Other  
AN2  
Power/Other  
AN20 Power/Other  
AN23 Power/Other  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AN24 Power/Other  
AN27 Power/Other  
AN28 Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
C10  
C13  
C16  
C19  
C22  
C24  
C4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
C7  
D12  
D15  
D18  
D21  
D24  
D3  
H6  
D5  
H7  
D6  
H8  
D9  
H9  
E11  
E14  
E17  
E2  
J4  
J7  
K2  
K5  
E20  
E25  
E26  
E27  
E28  
E8  
K7  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
F10  
F13  
F16  
F19  
F22  
F4  
L30  
L6  
L7  
F7  
M1  
H10  
H11  
M7  
N3  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 24.  
Alphabetical Land  
Assignments  
Table 24.  
Alphabetical Land  
Assignments  
Land Signal Buffer  
Land Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
#
Type  
#
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N6  
N7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
W7  
Y2  
Y5  
Y7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
VSS_MB_  
REGULATION  
AN6  
Power/Other  
Output  
Output  
VSS_SENSE  
VSSA  
VTT  
AN4  
B23  
B25  
B26  
B27  
B28  
B29  
B30  
A25  
A26  
A27  
A28  
A29  
A30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
J1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
P7  
VTT  
R2  
VTT  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
R7  
VTT  
T3  
VTT  
T6  
VTT  
T7  
VTT  
U7  
VTT  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
VTT  
VTT  
VTT  
VTT  
VTT_OUT_LEFT  
Output  
Output  
Output  
VTT_OUT_RIG  
HT  
AA1  
F27  
Power/Other  
Power/Other  
VTT_SEL  
V30  
V6  
V7  
W4  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
A2  
A3  
VSS  
RS2#  
D02#  
D04#  
VSS  
Power/Other  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
VSS  
D13#  
COMP8  
VSS  
Power/Other  
Common Clock  
Input  
Source Synch Input/Output  
A4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Input  
A5  
A6  
D53#  
D55#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A7  
D07#  
DBI0#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A8  
A9  
D57#  
D60#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D08#  
D09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D59#  
D63#  
VSSA  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
COMP0  
D50#  
VSS  
Power/Other  
Input  
Source Synch Input/Output  
Power/Other  
Power/Other  
DSTBN3#  
D56#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D61#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
VTT  
Power/Other  
Power/Other  
VTT  
Power/Other  
D62#  
VCCA  
FC23  
VTT  
Source Synch Input/Output  
Power/Other  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
C2  
Power/Other  
C3  
Power/Other  
C4  
VTT  
Power/Other  
C5  
D01#  
D03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C6  
VTT  
Power/Other  
C7  
VTT  
Power/Other  
C8  
DSTBN0#  
FC41  
VSS  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
C9  
VSS  
Power/Other  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
Power/Other  
B2  
DBSY#  
RS0#  
D00#  
VSS  
Common Clock Input/Output  
D11#  
D14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B3  
Common Clock  
Input  
B4  
Source Synch Input/Output  
Power/Other  
B5  
D52#  
D51#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B6  
D05#  
D06#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B7  
B8  
DSTBP3#  
D54#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
B9  
DSTBP0#  
D10#  
Source Synch Input/Output  
Source Synch Input/Output  
B10  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
DBI3#  
D58#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D29  
D30  
E2  
VTT  
VTT  
Power/Other  
Power/Other  
Power/Other  
Common Clock  
VSS  
VCCIOPLL  
VSS  
Power/Other  
E3  
TRDY#  
HITM#  
FC20  
Input  
Power/Other  
E4  
Common Clock Input/Output  
Power/Other  
VTT  
Power/Other  
E5  
VTT  
Power/Other  
E6  
RESERVED  
RESERVED  
VSS  
VTT  
Power/Other  
E7  
VTT  
Power/Other  
E8  
Power/Other  
VTT  
Power/Other  
E9  
D19#  
D21#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
RESERVED  
ADS#  
VSS  
D2  
Common Clock Input/Output  
Power/Other  
DSTBP1#  
D26#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D3  
D4  
HIT#  
VSS  
Common Clock Input/Output  
Power/Other  
D5  
D33#  
D34#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D6  
VSS  
Power/Other  
D7  
D20#  
D12#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D8  
D39#  
D40#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D22#  
D15#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D42#  
D45#  
RESERVED  
FC10  
Source Synch Input/Output  
Source Synch Input/Output  
D25#  
RESERVED  
VSS  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
VSS  
RESERVED  
D49#  
VSS  
VSS  
Power/Other  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
DBI2#  
D48#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
FC26  
Power/Other  
FC5  
Power/Other  
F3  
BR0#  
VSS  
Common Clock Input/Output  
Power/Other  
D46#  
VCCPLL  
VSS  
Source Synch Input/Output  
Power/Other  
F4  
F5  
RS1#  
FC21  
Common Clock  
Power/Other  
Power/Other  
Input  
Power/Other  
F6  
VTT  
Power/Other  
F7  
VSS  
VTT  
Power/Other  
F8  
D17#  
D18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
F9  
VTT  
Power/Other  
F10  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
G1  
D23#  
D24#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
DSTBN2#  
D44#  
D47#  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
BSEL2  
GTLREF0  
GTLREF1  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
D28#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
D30#  
VSS  
D37#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D38#  
VSS  
D41#  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D43#  
VSS  
RESERVED  
TESTHI7  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
RESERVED  
FC27  
H2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Output  
Input  
H3  
H4  
FC35  
TESTHI10  
VSS  
H5  
Input  
H6  
H7  
VSS  
H8  
VSS  
Power/Other  
Power/Other  
H9  
VSS  
G2  
COMP2  
Input  
Input  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
VSS  
TESTHI8/  
FC42  
VSS  
G3  
G4  
Power/Other  
Power/Other  
VSS  
TESTHI9/  
FC43  
Input  
VSS  
VSS  
G5  
G6  
PECI  
RESERVED  
DEFER#  
BPRI#  
D16#  
Power/Other Input/Output  
FC32  
FC33  
VSS  
G7  
Common Clock  
Common Clock  
Input  
Input  
G8  
VSS  
G9  
Source Synch Input/Output  
Power/Other  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
FC38  
VSS  
DBI1#  
DSTBN1#  
D27#  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
VSS  
VSS  
VSS  
D29#  
VSS  
D31#  
VSS  
D32#  
VSS  
D36#  
VSS  
D35#  
VSS  
DSTBP2#  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
H29  
H30  
FC15  
Power/Other  
Asynch CMOS  
K8  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
LINT1  
SLP#  
VSS  
A06#  
A03#  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
BSEL1  
Output  
Output  
VTT_OUT_LE  
FT  
J1  
Power/Other  
J2  
J3  
FC3  
FC22  
VSS  
Power/Other  
Power/Other  
Power/Other  
J4  
J5  
REQ1#  
REQ4#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
J6  
J7  
Input  
Input  
J8  
VCC  
Power/Other  
L2  
J9  
VCC  
Power/Other  
L3  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
VCC  
Power/Other  
L4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
L5  
VCC  
Power/Other  
L6  
VCC  
Power/Other  
L7  
Power/Other  
VCC  
Power/Other  
L8  
Power/Other  
VCC  
Power/Other  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
Power/Other  
FC31  
FC34  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
THERMTRIP  
#
M2  
Asynch CMOS  
Asynch CMOS  
Output  
Input  
VCC  
Power/Other  
VCC  
Power/Other  
M3  
M4  
STPCLK#  
A07#  
A05#  
REQ2#  
VSS  
VCC  
Power/Other  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
M5  
VCC  
Power/Other  
M6  
VCC  
Power/Other  
M7  
LINT0  
VSS  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Input  
Input  
M8  
VCC  
Power/Other  
K2  
M23  
M24  
M25  
M26  
M27  
M28  
VCC  
Power/Other  
K3  
A20M#  
REQ0#  
VSS  
VCC  
Power/Other  
K4  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K5  
VCC  
Power/Other  
K6  
REQ3#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
K7  
VCC  
Power/Other  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
M29  
M30  
N1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
R6  
R7  
ADSTB0#  
VSS  
Source Synch Input/Output  
Power/Other  
PWRGOOD  
IGNNE#  
VSS  
Input  
Input  
R8  
VCC  
Power/Other  
N2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
VSS  
Power/Other  
N3  
VSS  
Power/Other  
N4  
RESERVED  
RESERVED  
VSS  
VSS  
Power/Other  
N5  
VSS  
Power/Other  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
VSS  
Power/Other  
N7  
VSS  
VSS  
Power/Other  
N8  
VCC  
VSS  
Power/Other  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
VSS  
Power/Other  
VCC  
COMP1  
DPRSTP#  
VSS  
Power/Other  
Asynch CMOS  
Power/Other  
Input  
Input  
VCC  
T2  
VCC  
T3  
VCC  
T4  
A11#  
A09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
T5  
VCC  
T6  
VCC  
T7  
VSS  
Power/Other  
DPSLP#  
SMI#  
INIT#  
VSS  
Input  
Input  
Input  
T8  
VCC  
Power/Other  
P2  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
Power/Other  
P3  
VCC  
Power/Other  
P4  
VCC  
Power/Other  
P5  
RESERVED  
A04#  
VSS  
VCC  
Power/Other  
P6  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
P7  
VCC  
Power/Other  
P8  
VCC  
Power/Other  
VCC  
Power/Other  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
FC28  
FC29  
FC30  
A13#  
A12#  
A10#  
VSS  
Power/Other  
VSS  
Power/Other  
U2  
Power/Other  
VSS  
Power/Other  
U3  
Power/Other  
VSS  
Power/Other  
U4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
U5  
VSS  
Power/Other  
U6  
VSS  
Power/Other  
U7  
COMP3  
VSS  
Power/Other  
Power/Other  
Input  
U8  
VCC  
Power/Other  
R2  
U23  
U24  
U25  
U26  
VCC  
Power/Other  
R3  
FERR#/PBE# Asynch CMOS  
Output  
VCC  
Power/Other  
R4  
A08#  
VSS  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
R5  
VCC  
Power/Other  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
U27  
U28  
U29  
U30  
V1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Y3  
Y4  
PSI#  
A20#  
VSS  
A19#  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Asynch CMOS  
Output  
Source Synch Input/Output  
Power/Other  
VCC  
Y5  
VCC  
Y6  
Source Synch Input/Output  
Power/Other  
MSID1  
RESERVED  
VSS  
Output  
Y7  
V2  
Y8  
Power/Other  
V3  
Power/Other  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Power/Other  
V4  
A15#  
A14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
V5  
Power/Other  
V6  
Power/Other  
V7  
VSS  
Power/Other  
Power/Other  
V8  
VCC  
Power/Other  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VTT_OUT_RI  
GHT  
AA1  
Power/Other  
Output  
VSS  
Power/Other  
AA2  
AA3  
FC39  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
VSS  
Power/Other  
AA4  
A21#  
A23#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
AA5  
VSS  
Power/Other  
AA6  
MSID0  
Power/Other  
Power/Other  
Output  
Input  
Input  
AA7  
VSS  
Power/Other  
TESTHI12/  
FC44  
W2  
AA8  
VCC  
Power/Other  
W3  
W4  
TESTHI1  
VSS  
Power/Other  
Power/Other  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
VSS  
Power/Other  
VSS  
Power/Other  
W5  
A16#  
A18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
Power/Other  
W6  
VSS  
Power/Other  
W7  
VSS  
Power/Other  
W8  
VCC  
Power/Other  
VSS  
Power/Other  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
AB2  
IERR#  
FC37  
A26#  
A24#  
A17#  
VSS  
Asynch CMOS  
Power/Other  
Output  
VCC  
Power/Other  
AB3  
VCC  
Power/Other  
AB4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AB5  
VCC  
Power/Other  
AB6  
FC0/  
BOOTSELECT  
AB7  
Y1  
Y2  
Power/Other  
Power/Other  
AB8  
VCC  
Power/Other  
VSS  
AB23  
VSS  
Power/Other  
Datasheet  
61  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AE1  
AE2  
TCK  
VSS  
TAP  
Input  
Power/Other  
Power/Other  
VSS  
AE3  
FC18  
RESERVED  
VSS  
VSS  
AE4  
VSS  
AE5  
Power/Other  
VSS  
AE6  
RESERVED  
VSS  
VSS  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
TMS  
Input  
AE8  
SKTOCC#  
VCC  
Output  
AC2  
DBR#  
VSS  
Power/Other  
Power/Other  
Output  
AE9  
AC3  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AF1  
VSS  
AC4  
RESERVED  
A25#  
VSS  
VCC  
AC5  
Source Synch Input/Output  
Power/Other  
VCC  
AC6  
VSS  
AC7  
VSS  
Power/Other  
VCC  
AC8  
VCC  
Power/Other  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
TDI  
TAP  
Input  
VSS  
AD2  
BPM2#  
FC36  
VSS  
Common Clock Input/Output  
Power/Other  
VSS  
AD3  
VSS  
AD4  
Power/Other  
VSS  
AD5  
ADSTB1#  
A22#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
AD6  
VSS  
AD7  
VSS  
AD8  
VCC  
Power/Other  
TDO  
Output  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
VCC  
Power/Other  
AF2  
BPM4#  
VSS  
Common Clock Input/Output  
Power/Other  
VCC  
Power/Other  
AF3  
VCC  
Power/Other  
AF4  
A28#  
A27#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
AF5  
VCC  
Power/Other  
AF6  
VCC  
Power/Other  
AF7  
VSS  
Power/Other  
VCC  
Power/Other  
AF8  
VCC  
Power/Other  
VCC  
Power/Other  
AF9  
VCC  
Power/Other  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
RESERVED  
VSS  
A32#  
A33#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AH2  
VSS  
AH3  
Power/Other  
VSS  
AH4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VSS  
AH5  
VSS  
AH6  
VSS  
AH7  
Power/Other  
VSS  
AH8  
Power/Other  
VSS  
AH9  
Power/Other  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
Input  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
Power/Other  
AG2  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
AG3  
Power/Other  
AG4  
Power/Other  
AG5  
Power/Other  
AG6  
Power/Other  
AG7  
Power/Other  
AG8  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
AG9  
Power/Other  
Power/Other  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VCC  
Power/Other  
Power/Other  
Datasheet  
63  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
AH28  
AH29  
AH30  
AJ1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
AK7  
AK8  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AK9  
VCC  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
VSS  
AJ2  
VCC  
AJ3  
TAP  
Input  
VCC  
AJ4  
Power/Other  
VSS  
AJ5  
A34#  
A35#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AJ6  
VCC  
AJ7  
VSS  
AJ8  
VCC  
VSS  
AJ9  
VCC  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
FC25  
PROCHOT#  
VRDSEL  
VID5  
VID1  
VID3  
VSS  
VSS  
AL2  
Asynch CMOS Input/Output  
Power/Other  
VSS  
AL3  
VCC  
AL4  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
VCC  
AL5  
VSS  
AL6  
VSS  
AL7  
VSS  
AL8  
VCC  
VSS  
AL9  
VCC  
FC24  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
VSS  
AK2  
VCC  
AK3  
ITP_CLK0  
VID4  
VSS  
TAP  
Input  
VCC  
AK4  
Asynch CMOS  
Power/Other  
Power/Other  
Output  
VSS  
AK5  
VCC  
AK6  
FC8  
VCC  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 25.  
Numerical Land  
Assignment  
Table 25.  
Numerical Land  
Assignment  
Signal Buffer  
Signal Buffer  
Land # Land Name  
Direction  
Land # Land Name  
Direction  
Type  
Type  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VID0  
VID2  
VSS  
VID6  
FC40  
VID7  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AN1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VCC  
VCC  
VSS  
AN2  
VSS  
AN3  
VCC_SENSE  
VSS_SENSE  
Output  
Output  
AN4  
VCC_MB_  
REGULATION  
AN5  
AN6  
Power/Other  
Power/Other  
Output  
VSS_MB_  
REGULATION  
Output  
Output  
AN7  
VID_SELECT  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AN8  
AN9  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM2  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
Output  
Output  
AM3  
AM4  
AM5  
Output  
Output  
AM6  
AM7  
AM8  
AM9  
AM20  
AM21  
AM22  
AM23  
AM24  
Datasheet  
65  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 26.  
Signal Description (Sheet 1 of 10)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these signals transmit  
the address of a transaction. In sub-phase 2, these signals transmit  
transaction type information. These signals must connect the  
appropriate pins/lands of all agents on the processor FSB.  
A[35:3]# are source synchronous signals and are latched into the  
receiving buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor  
samples a subset of the A[35:3]# signals to determine power-on  
configuration. See Section 6.1 for more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# signals. All  
bus agents observe the ADS# activation to begin protocol checking,  
address decode, internal snoop, or deferred reply ID match  
operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on  
their rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All processor FSB agents must receive these signals to  
drive their outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent unable to accept new bus transactions. During a bus stall,  
the current bus owner cannot issue any new transactions.  
Input/  
Output  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 2 of 10)  
Name  
Type  
Description  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which  
indicate the status of breakpoints and programmable counters used  
for monitoring processor performance. BPM[5:0]# should connect  
the appropriate pins/lands of all processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP  
port. PRDY# is a processor output used by debug tools to  
determine processor debug readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP  
port. PREQ# is used by debug tools to request debug operation of  
the processor.  
These signals do not have on-die termination. Refer to  
Section 2.6.2 for termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the processor FSB. It must connect the appropriate pins/lands of all  
processor FSB agents. Observing BPRI# active (as asserted by the  
priority agent) causes all other agents to stop issuing new  
requests, unless such requests are part of an ongoing locked  
operation. The priority agent keeps BPRI# asserted until all of its  
requests are completed, then releases the bus by de-asserting  
BPRI#.  
BPRI#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the  
processor to request the bus. During power-on configuration this  
signal is sampled to determine the agent ID = 0.  
Input/  
Output  
BR0#  
This signal does not have on-die termination and must be  
terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to  
select the processor input clock frequency. Table 17 defines the  
possible combinations of the signals and the frequency associated  
with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must  
operate at the same frequency. For more information about these  
signals, including termination recommendations refer to  
Section 2.8.2.  
BSEL[2:0]  
Output  
Analog  
COMP[3:0],  
COMP8  
COMP[3:0] and COMP8 must be terminated to VSS on the system  
board using precision resistors.  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 3 of 10)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the processor FSB agents, and must connect  
the appropriate pins/lands on all such agents. The data driver  
asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DBI#.  
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
Data Group  
DSTBN#/DSTBP#  
DBI#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI#  
signal. When the DBI# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals.The DBI[3:0]# signals  
are activated when the data on the data bus is inverted. If more  
than half the data bits, within a 16-bit group, would have been  
asserted electrically low, the bus agent may invert the data bus  
signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
DBI[3:0]#  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
DBR#  
Output debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the processor FSB to indicate that the data bus is in  
use. The data bus is released after DBSY# is de-asserted. This  
signal must connect the appropriate pins/lands on all processor FSB  
Input/  
Output  
DBSY#  
agents.  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 4 of 10)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
DEFER#  
Input normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins/lands  
of all processor FSB agents.  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state. To  
return to the Deep Sleep State, DPRSTP# must be deasserted. Use  
of the DPRSTP# pin, and corresponding low power state, requires  
chipset support and may not be available on all platforms.  
DPRSTP#  
Input  
NOTE: Some processors may not have the Deeper Sleep State  
enabled, refer to the Specification Update for specific sku  
and stepping guidance.  
DPSLP#, when asserted on the platform, causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return  
to the Sleep State, DPSLP# must be deasserted. Use of the  
DPSLP# pin, and corresponding low power state, requires chipset  
support and may not be available on all platforms.  
NOTE: Some processors may not have the Deep Sleep State  
enabled, refer to the Specification Update for specific  
processor and stepping guidance.  
DPSLP#  
DRDY#  
Input  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
Input/  
clock data transfer, DRDY# may be de-asserted to insert idle  
Output  
clocks. This signal must connect the appropriate pins/lands of all  
processor FSB agents.  
DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FC0/BOOTSELECT is not used by the processor. When this land is  
FC0/BOOTSELECT Other tied to VSS previous processors based on the Intel NetBurst®  
microarchitecture should be disabled and prevented from booting.  
FC signals are signals that are available for compatibility with other  
processors.  
FCx  
Other  
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 5 of 10)  
Name  
Type  
Description  
FERR#/PBE# (floating point error/pending break event) is a  
multiplexed signal and its meaning is qualified by STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating-point  
error and will be asserted when the processor detects an unmasked  
floating-point error. When STPCLK# is not asserted, FERR#/PBE# is  
similar to the ERROR# signal on the Intel 387 coprocessor, and is  
included for compatibility with systems using MS-DOS*-type  
floating-point error reporting. When STPCLK# is asserted, an  
assertion of FERR#/PBE# indicates that the processor has a  
pending break event waiting for service. The assertion of FERR#/  
PBE# indicates that the processor should be returned to the Normal  
state. For additional information on the pending break event  
functionality, including the identification of support of the feature  
and enable/disable information, refer to volume 3 of the Intel  
Architecture Software Developer's Manual and the Intel Processor  
Identification and the CPUID Instruction application note.  
FERR#/PBE#  
Output  
GTLREF[1:0] determine the signal reference level for GTL+ input  
GTLREF[1:0]  
Input signals. GTLREF is used by the GTL+ receivers to determine if a  
signal is a logical 0 or logical 1.  
Input/  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
Output  
HIT#  
snoop operation results. Any FSB agent may assert both HIT# and  
HITM# together to indicate that it requires a snoop stall, which can  
HITM#  
Input/  
be continued by reasserting HIT# and HITM# together.  
Output  
IERR# (Internal Error) is asserted by a processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction  
may optionally be converted to an external error signal (e.g., NMI)  
IERR#  
Output  
by system core logic. The processor will keep IERR# asserted until  
the assertion of RESET#.  
This signal does not have on-die termination. Refer to Section 2.6.2  
for termination requirements.  
IGNNE# (Ignore Numeric Error) is asserted to the processor to  
ignore a numeric error and continue to execute noncontrol floating-  
point instructions. If IGNNE# is de-asserted, the processor  
generates an exception on a noncontrol floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
IGNNE#  
Input  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the  
appropriate pins/lands of all processor FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST).  
70  
Datasheet  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 6 of 10)  
Name  
Type  
Description  
ITP_CLK[1:0] are copies of BCLK that are used only in processor  
systems where no debug port is implemented on the system board.  
ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port  
implemented on an interposer. If a debug port is implemented in  
the system, ITP_CLK[1:0] are no connects in the system. These are  
not processor signals.  
ITP_CLK[1:0]  
Input  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate  
pins/lands of all APIC Bus agents. When the APIC is disabled, the  
LINT0 signal becomes INTR, a maskable interrupt request signal,  
and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI  
are backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these signals as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins/lands of  
all processor FSB agents. For a locked sequence of transactions,  
LOCK# is asserted from the beginning of the first transaction to the  
end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the processor FSB, it will wait until it observes LOCK# de-asserted.  
This enables symmetric agents to retain ownership of the processor  
FSB throughout the bus locked operation and ensure the atomicity  
of lock.  
On the processor these signals are connected on the package to  
VSS. As an alternative to MSID, Intel has implemented the Power  
MSID[1:0]  
PECI  
Output Segment Identifier (PSID) to report the maximum Thermal Design  
Power of the processor. Refer to Section 2.5 for additional  
information regarding PSID.  
Input/ PECI is a proprietary one-wire bus interface. See Chapter 5.3 for  
Output details.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
Input/ This indicates that the processor Thermal Control Circuit (TCC) has  
Output been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system de-asserts PROCHOT#. See Section 5.2.4  
for more details.  
PROCHOT#  
Processor Power Status Indicator Signal. This signal may be  
asserted when the processor is in the Deeper Sleep State. PSI# can  
be used to improve load efficiency of the voltage regulator,  
PSI#  
Output  
resulting in platform power savings.  
Datasheet  
71  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 7 of 10)  
Name  
Type  
Description  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state. PWRGOOD can be  
driven inactive at any time, but clocks and power must again be  
stable before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate  
Input/ pins/lands of all processor FSB agents. They are asserted by the  
Output current bus owner to define the currently active transaction type.  
These signals are source synchronous to ADSTB0#.  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least one millisecond after VCC and BCLK have reached their proper  
specifications. On observing active RESET#, all FSB agents will de-  
assert their outputs within two clocks. RESET# must not be kept  
RESET#  
Input  
asserted for more than 10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive  
transition of RESET# for power-on configuration. These  
configuration options are described in the Section 6.1.  
This signal does not have on-die termination and must be  
terminated on the system board.  
All RESERVED lands must remain unconnected. Connection of these  
lands to VCC, VSS, VTT, or to any other signal (including each other)  
can result in component malfunction or incompatibility with future  
processors.  
RESERVED  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins/lands of all processor FSB  
agents.  
RS[2:0]#  
SKTOCC#  
Input  
SKTOCC# (Socket Occupied) will be pulled to ground by the  
Output processor. System board designers may use this signal to  
determine if the processor is present.  
72  
Datasheet  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 8 of 10)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Extended Stop Grant or Stop Grant  
state, causes the processor to enter the Sleep state. In the Sleep  
state, the processor stops providing internal clock signals to all  
units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state will not recognize snoops or interrupts. The  
processor will recognize only assertion of the RESET# signal,  
deassertion of SLP#, and removal of the BCLK input while in Sleep  
state. If SLP# is de-asserted, the processor exits Sleep state and  
SLP#  
Input returns to Extended Stop Grant or Stop Grant state, restarting its  
internal clock signals to the bus and processor core units. If  
DPSLP# is asserted while in the Sleep state, the processor will exit  
the Sleep state and transition to the Deep Sleep state. Use of the  
SLP# pin, and corresponding low power state, requires chipset  
support and may not be available on all platforms.  
NOTE: Some processors may not have the Sleep State enabled,  
refer to the Specification Update for specific processor and  
stepping guidance.  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enter System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
If SMI# is asserted during the de-assertion of RESET#, the  
processor will tri-state its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
STPCLK#  
Input The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is de-  
asserted, the processor restarts its internal clock to all units and  
resumes execution. The assertion of STPCLK# has no effect on the  
bus clock; STPCLK# is an asynchronous input.  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
Input  
provides the serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor.  
Output TDO provides the serial output needed for JTAG specification  
support.  
TDO  
The TESTHI[12,10:0] lands must be connected to the processor’s  
appropriate power source (refer to VTT_OUT_LEFT and  
VTT_OUT_RIGHT signal description) through a resistor for proper  
TESTHI[12,10:0]  
Input  
processor operation. See Section 2.4 for more details.  
Datasheet  
73  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 9 of 10)  
Name  
Type  
Description  
In the event of a catastrophic cooling failure, the processor will  
automatically shut down when the silicon has reached a  
temperature approximately 20 °C above the maximum TC.  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor  
junction temperature has reached a level beyond where permanent  
silicon damage may occur. Upon assertion of THERMTRIP#, the  
processor will shut off its internal clocks (thus, halting program  
execution) in an attempt to reduce the processor junction  
temperature. To protect the processor, its core voltage (VCC) must  
be removed following the assertion of THERMTRIP#. Driving of the  
THERMTRIP# signal is enabled within 10 μs of the assertion of  
PWRGOOD (provided VTT and VCC are asserted) and is disabled on  
de-assertion of PWRGOOD (if VTT or VCC are not valid, THERMTRIP#  
may also be disabled). Once activated, THERMTRIP# remains  
latched until PWRGOOD, VTT or VCC is de-asserted. While the de-  
assertion of the PWRGOOD, VTT or VCC signal will de-assert  
THERMTRIP#, if the processor’s junction temperature remains at or  
above the trip level, THERMTRIP# will again be asserted within  
10 μs of the assertion of PWRGOOD (provided VTT and VCC are  
valid).  
THERMTRIP#  
Output  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
TRDY#  
Input ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins/lands of all FSB agents.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
TRST#  
VCC  
Input  
VCC are the power pins for the processor. The voltage supplied to  
these pins is determined by the VID[7:0] pins.  
Input  
VCCA provides isolated power for internal PLLs on previous  
Input generation processors. It may be left as a No-Connect on boards  
supporting the processor.  
VCCA  
VCCIOPLL provides isolated power for internal processor FSB PLLs  
Input on previous generation processors. It may be left as a No-Connect  
on boards supporting the processor.  
VCCIOPLL  
VCCPLL  
Input VCCPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE is an isolated low impedance connection to processor  
Output core power (VCC). It can be used to sense or measure voltage near  
the silicon with little noise.  
VCC_SENSE  
This land is provided as a voltage regulator feedback sense point  
VCC_MB_  
REGULATION  
for VCC. It is connected internally in the processor package to the  
sense point land U27 as described in the Voltage Regulator Design  
Output  
Guide.  
74  
Datasheet  
Land Listing and Signal Descriptions  
Table 26.  
Signal Description (Sheet 10 of 10)  
Name  
Type  
Description  
The VID (Voltage ID) signals are used to support automatic  
selection of power supply voltages (VCC). Refer to the Voltage  
Regulator Design Guide for more information. The voltage supply  
for these signals must be valid before the VR can supply VCC to the  
VID[7:0]  
Output processor. Conversely, the VR output must be disabled until the  
voltage supply for the VID signals becomes valid. The VID signals  
are needed to support the processor voltage specification  
variations. See Table 2 for definitions of these signals. The VR must  
supply the voltage that is requested by the signals, or disable itself.  
This land is tied high on the processor package and is used by the  
Output VR to choose the proper VID table. Refer to the Voltage Regulator  
Design Guide for more information.  
VID_SELECT  
This input should be left as a no connect in order for the processor  
VRDSEL  
VSS  
Input to boot. The processor will not boot on legacy platforms where this  
land is connected to VSS  
.
VSS are the ground pins for the processor and should be connected  
to the system ground plane.  
Input  
Input  
VSSA provides isolated ground for internal PLLs on previous  
generation processors. It may be left as a No-Connect on boards  
supporting the processor.  
VSSA  
VSS_SENSE is an isolated low impedance connection to processor  
VSS_SENSE  
Output core VSS. It can be used to sense or measure ground near the  
silicon with little noise.  
This land is provided as a voltage regulator feedback sense point  
VSS_MB_  
REGULATION  
for VSS. It is connected internally in the processor package to the  
sense point land V27 as described in the Voltage Regulator Design  
Output  
Guide.  
VTT  
Miscellaneous voltage supply.  
VTT_OUT_LEFT  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to  
Output provide a voltage supply for some signals that require termination  
to VTT on the motherboard.  
VTT_OUT_RIGHT  
VTT_SEL  
The VTT_SEL signal is used to select the correct VTT voltage level  
Output for the processor. This land is connected internally in the package  
to VSS  
.
75  
Datasheet  
Land Listing and Signal Descriptions  
76  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within the  
operating limits as set forth in Section 5.1.1. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete thermal solution includes both component and system level thermal  
management features. Component level thermal solutions can include active or passive  
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system  
level thermal solutions may consist of system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the  
appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 7  
for details on the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum case temperature (TC)  
specifications when operating at or below the Thermal Design Power (TDP) value listed  
per frequency in Table 27. Thermal solutions not designed to provide this level of  
thermal capability may affect the long-term reliability of the processor and system. For  
more details on thermal solution design, refer to the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2).  
The processor uses a methodology for managing processor temperatures which is  
intended to support acoustic noise reduction through fan speed control. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 5.3. If the value reported via PECI is less than TCONTROL, then the case  
temperature is permitted to exceed the Thermal Profile. If the value reported via PECI  
is greater than or equal to TCONTROL, then the processor case temperature must remain  
at or below the temperature as specified by the thermal profile. The temperature  
reported over PECI is always a negative value and represents a delta below the onset of  
thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 5.2).  
Systems that implement fan speed control must be designed to take these conditions in  
to account. Systems that do not alter the fan speed only need to ensure the case  
temperature meets the thermal profile specifications.  
In order to determine a processor's case temperature specification based on the  
thermal profile, it is necessary to accurately measure processor power dissipation. Intel  
has developed a methodology for accurate power measurement that correlates to Intel  
test temperature and voltage conditions. Refer to the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2) for the details of this methodology.  
Datasheet  
77  
Thermal Specifications and Design Considerations  
The case temperature is defined at the geometric top center of the processor. Analysis  
indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 27 instead of the maximum processor power consumption. The Thermal Monitor  
feature is designed to protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained periods of time. For more details on  
the usage of this feature, refer to Section 5.2. In all cases the Thermal Monitor or  
Thermal Monitor 2 feature must be enabled for the processor to remain within  
specification.  
Table 27.  
Processor Thermal Specifications  
Thermal Extended  
Deeper  
Sleep  
Power  
(W)2  
Core  
Frequency  
(GHz)  
775_VR_  
CONFIG_06  
Guidance5  
Processor  
Number  
Design  
Power  
(W)3,4  
HALT  
Power  
(W)1  
Minimum Maximum  
Notes  
TC (°C)  
TC (°C)  
E8600  
E8500  
E8400  
E8300  
E8200  
E8190  
3.33  
3.16  
3
65.0  
65.0  
65.0  
65.0  
65.0  
65.0  
8
8
8
8
8
8
6
6
6
6
6
6
5
5
5
5
5
5
See  
Table 28  
and  
775_VR_  
CONFIG_06  
(65 W)  
2.83  
2.66  
2.66  
Figure 14  
E7500  
E7400  
E7300  
E7200  
2.93  
2.80  
2.66  
2.53  
65.0  
65.0  
65.0  
65.0  
8
8
8
8
6
6
6
6
5
5
5
5
See  
Table 29  
and  
775_VR_CONFIG  
_06  
(65 W)  
Figure 15  
NOTES:  
1.  
2.  
3.  
4.  
Specification is at 36 °C TC and minimum voltage loadline. Specification is ensured by  
design characterization and not 100% tested.  
Specification is at 34 °C TC and minimum voltage loadline. Specification is ensured by  
design characterization and not 100% tested.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets.  
The TDP is not the maximum power that the processor can dissipate.  
This table shows the maximum TDP for a given frequency range. Individual processors  
may have a lower TDP. Therefore, the maximum TC will vary depending on the TDP of the  
individual processor. Refer to thermal profile figure and associated table for the allowed  
combinations of power and TC.  
5.  
775_VR_CONFIG_06 guidelines provide a design target for meeting future thermal  
requirements.  
78  
Datasheet  
Thermal Specifications and Design Considerations  
Table 28.  
Intel® Core™2 Duo Processor E8000 Series Thermal Profile  
Power  
(W)  
MaximumTc  
(°C)  
Power  
(W)  
MaximumTc  
(°C)  
Power  
(W)  
MaximumTc  
(°C)  
0
2
45.1  
45.9  
46.8  
47.6  
48.5  
49.3  
50.1  
51.0  
51.8  
52.7  
53.5  
54.3  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
55.2  
56.0  
56.9  
57.7  
58.5  
59.4  
60.2  
61.1  
61.9  
62.7  
63.6  
64.4  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
65.3  
66.1  
66.9  
67.8  
68.6  
69.5  
70.3  
71.1  
72.0  
72.4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Figure 14.  
Intel® Core™2 Duo Processor E8000 Series Thermal Profile  
72.0  
68.0  
64.0  
y = 0.42x + 45.1  
60.0  
56.0  
52.0  
48.0  
44.0  
0
10  
20  
30  
Power (W)  
40  
50  
60  
Datasheet  
79  
Thermal Specifications and Design Considerations  
Table 29.  
Intel® Core™2 Duo Processor E7000 Series Thermal Profile  
Maximum Tc  
(°C)  
Maximum Tc  
(°C)  
Maximum Tc  
(°C)  
Power (W)  
Power  
Power  
0
2
44.9  
45.8  
46.7  
47.6  
48.5  
49.4  
50.3  
51.2  
52.1  
53.0  
53.9  
54.8  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
55.7  
56.6  
57.5  
58.4  
59.3  
60.2  
61.1  
62.0  
62.9  
63.8  
64.7  
65.6  
48  
50  
52  
54  
56  
58  
60  
62  
64  
65  
66.5  
67.4  
68.3  
69.2  
70.1  
71.0  
71.9  
72.8  
73.7  
74.1  
4
6
8
10  
12  
14  
16  
18  
20  
22  
Figure 15.  
Intel® Core™2 Duo Processor E7000 Series Thermal Profile  
72.0  
68.0  
64.0  
y = 0.45x + 44.9  
60.0  
56.0  
52.0  
48.0  
44.0  
0
10  
20  
30  
Power (W)  
40  
50  
60  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) for the processor is specified in  
Table 27. This temperature specification is meant to help ensure proper operation of  
the processor. Figure 16 illustrates where Intel recommends TC thermal measurements  
should be made. For detailed guidelines on temperature measurement methodology,  
refer to the appropriate Thermal and Mechanical Design Guidelines (see Section 1.2).  
Figure 16.  
Case Temperature (TC) Measurement Location  
Measure TC at this point  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the  
thermal control circuit (TCC) when the processor silicon reaches its maximum operating  
temperature. The TCC reduces processor power consumption by modulating (starting  
and stopping) the internal processor core clocks. The Thermal Monitor feature must  
be enabled for the processor to be operating within specifications. The  
temperature at which Thermal Monitor activates the thermal control circuit is not user  
configurable and is not software visible. Bus traffic is snooped in the normal manner,  
and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists  
(i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off  
and on at a duty cycle specific to the processor (typically 30–50%). Clocks often will  
not be off for more than 3.0 microseconds when the TCC is active. Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
Datasheet  
81  
Thermal Specifications and Design Considerations  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TC that exceeds the specified maximum temperature  
and may affect the long-term reliability of the processor. In addition, a thermal solution  
that is significantly under-designed may not be capable of cooling the processor even  
when the TCC is active continuously. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (see Section 1.2) for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The processor also supports an additional power reduction capability known as Thermal  
Monitor 2. This mechanism provides an efficient means for limiting the processor  
temperature by reducing the power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the  
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust  
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).  
This combination of reduced frequency and VID results in a reduction to the processor  
power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage. The first operating point  
represents the normal operating condition for the processor. Under this condition, the  
core-frequency-to-FSB multiple used by the processor is that contained in the  
CLK_GEYSIII_STAT MSR and the VID is that specified in Table 4. These parameters  
represent normal system operation.  
The second operating point consists of both a lower operating frequency and voltage.  
When the TCC is activated, the processor automatically transitions to the new  
frequency. This transition occurs very rapidly (on the order of 5 μs). During the  
frequency transition, the processor is unable to service any bus requests, and  
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and  
kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Thermal Monitor 2.  
During the voltage change, it will be necessary to transition through multiple VID codes  
to reach the target operating voltage. Each step will likely be one VID table entry (see  
Table 4). The processor continues to execute instructions during the voltage transition.  
Operation at the lower voltage reduces the power consumption of the processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to ensure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 17 for an illustration of this ordering.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
Figure 17.  
Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
Frequency  
fMAX  
fTM2  
VID  
VIDTM2  
VID  
PROCHOT#  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on  
demand mode. The Thermal Monitor TCC, however, can be activated through the use of  
the on demand mode.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems using the  
processor must not rely on software usage of this mechanism to limit the processor  
temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor  
IA32_THERM_CONTROL MSR) is written to a '1', the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT  
Control Register. In On-Demand mode, the duty cycle can be programmed from 12.5%  
on/87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be  
used in conjunction with the Thermal Monitor. If the system tries to enable On-Demand  
mode at the same time the TCC is engaged, the factory configured duty cycle of the  
TCC will override the duty cycle selected by the On-Demand mode.  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If the Thermal Monitor  
is enabled (note that the Thermal Monitor must be enabled for the processor to be  
Datasheet  
83  
Thermal Specifications and Design Considerations  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
PROCHOT# is a bi-directional signal. As an output, PROCHOT# (Processor Hot) will go  
active when the processor temperature monitoring sensor detects that one or both  
cores has reached its maximum safe operating temperature. This indicates that the  
processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input,  
assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores.  
The TCC will remain active until the system de-asserts PROCHOT#.  
Note:  
PROCHOT# will not be asserted (as an output) or observed (as an input) when the  
processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low-power states,  
hence the thermal solution must be designed to ensure the processor remains within  
specification. If the processor enters one of the above low-power states with  
PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits  
the low-power state and the processor DTS temperature drops below the thermal trip  
point.  
PROCHOT# allows for some protection of various components from over-temperature  
situations. The PROCHOT# signal is bi-directional in that it can either signal when the  
processor (either core) has reached its maximum operating temperature or be driven  
from an external source to activate the TCC. The ability to activate the TCC via  
PROCHOT# can provide a means for thermal protection of system components.  
Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained  
current instead of maximum current. Systems should still provide proper cooling for the  
VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling  
failure. The system thermal design should allow the power delivery circuitry to operate  
within its temperature specification even while the processor is operating at its Thermal  
Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss. Refer to  
the Voltage Regulator Design Guide for details on implementing the bi-directional  
PROCHOT# feature.  
5.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 26). At this point, the FSB signal THERMTRIP# will go active and stay active as  
described in Table 26. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage  
(VCC) must be removed within the timeframe defined in Table 11.  
84  
Datasheet  
Thermal Specifications and Design Considerations  
5.3  
Platform Environment Control Interface (PECI)  
5.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues. PECI uses  
CRC checking on the host side to ensure reliable transfers between the host and client  
devices. Also, data transfer speeds across the PECI interface are negotiable within a  
wide range (2 Kbps to 2 Mbps). The PECI interface on the processor is disabled by  
default and must be enabled through BIOS. More information can be found in the  
Platform Environment Control Interface (PECI) Specification.  
5.3.1.1  
T
and TCC activation on PECI-Based Systems  
CONTROL  
Fan speed control solutions based on PECI utilize a TCONTROL value stored in the  
processor IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
should utilize the relative temperature value delivered over PECI in conjunction with the  
T
CONTROL MSR value to control or optimize fan speeds. Figure 18 shows a conceptual  
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the delta below the onset  
of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
Figure 18.  
Conceptual Fan Control Diagram on PECI-Based Platforms  
Datasheet  
85  
Thermal Specifications and Design Considerations  
5.3.2  
PECI Specifications  
5.3.2.1  
PECI Device Address  
The PECI register resides at address 30h.  
5.3.2.2  
5.3.2.3  
PECI Command Support  
PECI command support is covered in detail in the Platform Environment Control  
Interface Specification. Refer to this document for details on supported PECI command  
function and codes.  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is know to be unresponsive.  
Prior to a power-on RESET# and during RESET# assertion, PECI is not assured to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damage. It is recommended that the PECI host controller take appropriate  
action to protect the client processor device if valid temperature readings have not  
been obtained in response to three consecutive GetTemp()s or for a one second time  
interval. The host controller may also implement an alert to software in the event of a  
critical or continuous fault condition.  
5.3.2.4  
PECI GetTemp0() Error Code Support  
The error codes supported for the processor GetTemp() command are listed in  
Table 30:  
Table 30.  
GetTemp0() Error Codes  
Error Code  
8000h  
Description  
General sensor error  
Sensor is operational, but has detected a temperature below its operational  
range (underflow)  
8002h  
§ §  
86  
Datasheet  
Features  
6 Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 31.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for configuration purposes, the processor does not distinguish between  
a "warm" reset and a "power-on" reset.  
Table 31.  
Power-On Configuration Option Signals  
Configuration Option  
Output tristate  
Signal1,2  
SMI#  
Execute BIST  
A3#  
A25#  
Disable dynamic bus parking  
Symmetric agent arbitration ID  
RESERVED  
BR0#  
A[24:4]#, A[35:26]#  
NOTE:  
1.  
2.  
Asserting this signal during RESET# will select the corresponding option.  
Address signals not identified in this table as configuration options should not be asserted  
during RESET#.  
3.  
Disabling of any of the cores within the processors must be handled by configuring the  
EXT_CONFIG Model Specific Register (MSR). This MSR will allow for the disabling of a  
single core per die within the processor package.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop-Grant states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 19 for a visual representation of the processor low  
power states.  
Datasheet  
87  
Features  
Figure 19.  
Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT  
State  
- BCLK running  
- Snoops and interrupts  
allowed  
Normal State  
INIT#, INTR, NMI, SMI#, RESET#,  
FSB interrupts  
- Normal Execution  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
Extended HALT Snoop or  
HALT Snoop State  
- BCLK running  
- Service Snoops to caches  
Stop Grant State  
- BCLK running  
- Snoops and interrupts  
allowed  
Snoop Event Occurs  
Extended Stop Grant or  
Stop Grant Snoop State  
- BCLK running  
Snoop Event Serviced  
- Service Snoops to caches  
SLP#  
Asserted  
SLP#  
De-asserted  
DPRSTP#  
Asserted  
DPSLP#  
Asserted  
Deeper Sleep State  
- BCLK can be stopped  
- No Snoops or  
interrupts allowed  
- PECI unavailable in  
this state  
Sleep State  
Deep Sleep State  
- BCLK can be stopped  
- No Snoops or  
interrupts allowed  
- PECI unavailable in  
this state  
- BCLK running  
- No Snoops or  
interrupts allowed  
- PECI unavailable in  
this state  
DPSLP#  
De-asserted  
DPRSTP#  
De-asserted  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT and Extended HALT Powerdown States  
The processor supports the HALT or Extended HALT powerdown state. The Extended  
HALT powerdown state must be configured and enabled via the BIOS for the processor  
to remain within specification.  
The Extended HALT state is a lower power state as compared to the Stop Grant State.  
If Extended HALT is not enabled, the default powerdown state entered will be HALT.  
Refer to the sections below for details about the HALT and Extended HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the processor cores have executed the HALT  
or MWAIT instructions. When one of the processor cores executes the HALT instruction,  
that processor core is halted, however, the other processor continues normal operation.  
The halted core will transition to the Normal state upon the occurrence of SMI#, INIT#,  
or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize  
itself.  
88  
Datasheet  
Features  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT powerdown state. See the Intel Architecture Software  
Developer's Manual, Volume 3B: System Programming Guide, Part 2 for more  
information.  
The system can generate a STPCLK# while the processor is in the HALT powerdown  
state. When the system deasserts the STPCLK# interrupt, the processor will return  
execution to the HALT state.  
While in HALT powerdown state, the processor will process bus snoops.  
6.2.2.2  
Extended HALT Powerdown State  
Extended HALT is a low power state entered when all processor cores have executed  
the HALT or MWAIT instructions and Extended HALT has been enabled via the BIOS.  
When one of the processor cores executes the HALT instruction, that logical processor  
is halted; however, the other processor continues normal operation. The Extended  
HALT powerdown state must be enabled via the BIOS for the processor to remain  
within its specification.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended HALT state. Note that the processor FSB frequency  
is not altered; only the internal core frequency is changed. When entering the low  
power state, the processor will first switch to the lower bus ratio and then transition to  
the lower VID.  
While in Extended HALT state, the processor will process bus snoops.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.3  
Stop Grant and Extended Stop Grant States  
The processor supports the Stop Grant and Extended Stop Grant states. The Extended  
Stop Grant state is a feature that must be configured and enabled via the BIOS. Refer  
to the sections below for details about the Stop Grant and Extended Stop Grant states.  
6.2.3.1  
Stop-Grant State  
When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered  
20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven  
(allowing the level to return to VTT) for minimum power drawn by the termination  
resistors in this state. In addition, all other input signals on the FSB should be driven to  
the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the FSB (see Section 6.2.4).  
While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one  
occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a FSB snoop.  
Datasheet  
89  
Features  
6.2.3.2  
Extended Stop Grant State  
Extended Stop Grant is a low power state entered when the STPCLK# signal is asserted  
and Extended Stop Grant has been enabled via the BIOS.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended Stop Grant state. When entering the low power  
state, the processor will first switch to the lower bus ratio and then transition to the  
lower VID.  
The processor exits the Extended Stop Grant state when a break event occurs. When  
the processor exits the Extended Stop Grant state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.4  
Extended HALT Snoop State, HALT Snoop State, Extended  
Stop Grant Snoop State, and Stop Grant Snoop State  
The Extended HALT Snoop State is used in conjunction with the Extended HALT state. If  
Extended HALT state is not enabled in the BIOS, the default Snoop State entered will  
be the HALT Snoop State. Refer to the sections below for details on HALT Snoop State,  
Stop Grant Snoop State, Extended HALT Snoop State, Extended Stop Grant Snoop  
State.  
6.2.4.1  
6.2.4.2  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop-Grant state  
or in HALT powerdown state. During a snoop transaction, the processor enters the HALT  
Snoop State:Stop Grant Snoop state. The processor will stay in this state until the  
snoop on the FSB has been serviced (whether by the processor or another agent on the  
FSB). After the snoop is serviced, the processor will return to the Stop Grant state or  
HALT powerdown state, as appropriate.  
Extended HALT Snoop State, Extended Stop Grant Snoop State  
The processor will remain in the lower bus ratio and VID operating point of the  
Extended HALT state or Extended Stop Grant state.  
While in the Extended HALT Snoop State or Extended Stop Grant Snoop State, snoops  
are handled the same way as in the HALT Snoop State or Stop Grant Snoop State. After  
the snoop is serviced the processor will return to the Extended HALT state or Extended  
Stop Grant state.  
6.2.5  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Extended Stop Grant or Stop  
Grant state. The SLP# pin should only be asserted when the processor is in the  
Extended Stop Grant or Stop Grant state. SLP# assertions while the processor is not in  
these states is out of specification and may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable  
90  
Datasheet  
Features  
behavior.If RESET# is driven active while the processor is in the Sleep state, and held  
active as specified in the RESET# pin specification, then the processor will reset itself,  
ignoring the transition through the Stop-Grant state.  
If RESET# is driven active while the processor is in the Sleep state, the SLP# and  
STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure  
the processor correctly executes the Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section Section 6.2.6).  
While the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur. PECI is not available and will not respond  
while in the Sleep State. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (see Section 1.2) for guidance on how to ensure PECI thermal data is  
available when the Sleep State is enabled.  
6.2.6  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on appropriate chipset-based platforms with  
the CK505 clock chip are as follows:  
Deep Sleep entry: the system clock chip may stop/tristate BCLK within two BCLKs  
of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted  
after DPSLP# deassertion as described above. A period of 15 microseconds (to allow for  
PLL stabilization) must occur before the processor can be considered to be in the Sleep  
state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-  
Grant state.  
While in the Deep Sleep state the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in the Deep Sleep state. When the processor is in the Deep  
Sleep state it will not respond to interrupts or snoop transactions. Any transition on an  
input signal before the processor has returned to the Stop-Grant state will result in  
unpredictable behavior. PECI is not available and will not respond while in the Deep  
Sleep State. Refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2) for guidance on how to ensure PECI thermal data is available when the  
Deep Sleep State is enabled.  
6.2.7  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but the core voltage is  
reduced to a lower level. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. Exit from Deeper Sleep is initiated by  
DPRSTP# deassertion. PECI is not available and will not respond while in the Deeper  
Sleep State. Refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2) for guidance on how to ensure PECI thermal data is available when the  
Deeper Sleep State is enabled.  
Datasheet  
91  
Features  
In response to entering Deeper Sleep, the processor drives the VID code corresponding  
to the Deeper Sleep core voltage on the VID pins. Unlike typical Dynamic VID changes  
(where the steps are single VID steps) the processor will perform a VID jump on the  
order of 100 mV. To support the Deeper Sleep State the platform must use a VRD 11.1  
compliant solution.  
®
6.2.8  
Enhanced Intel SpeedStep Technology  
The processor supports Enhanced Intel SpeedStep Technology. This technology enables  
the processor to switch between frequency and voltage points, which may result in  
platform power savings. To support this technology, the system must support dynamic  
VID transitions. Switching between voltage/frequency states is software controlled.  
Enhanced Intel SpeedStep Technology is a technology that creates processor  
performance states (P states). P states are power consumption and capability states  
within the Normal state as shown in Figure 19. Enhanced Intel SpeedStep Technology  
enables real-time dynamic switching between frequency and voltage points. It alters  
the performance of the processor by changing the bus to core frequency ratio and  
voltage. This allows the processor to run at different core frequencies and voltages to  
best serve the performance and power requirements of the processor and system. Note  
that the front side bus is not altered; only the internal core frequency is changed. In  
order to run at reduced power consumption, the voltage is altered in step with the bus  
ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Voltage/Frequency selection is software controlled by writing to processor MSR's  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, Vcc is incriminated  
in steps (+12.5 mV) by placing a new value on the VID signals after which the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and Vcc is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
6.3  
Processor Power Status Indicator (PSI) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve efficiency of the  
voltage regulator, resulting in platform power savings.  
PSI# may be asserted only when the processor is in the Deeper Sleep state.  
§
92  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
7.1  
Introduction  
The processor will also be offered as an Intel boxed processor. Intel boxed processors  
are intended for system integrators who build systems from baseboards and standard  
components. The boxed processor will be supplied with a cooling solution. This chapter  
documents baseboard and system requirements for the cooling solution that will be  
supplied with the boxed processor. This chapter is particularly important for OEMs that  
manufacture baseboards for system integrators.  
Note:  
Note:  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 20 shows a mechanical representation of a boxed  
processor.  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (see Section 1.2) for further guidance. Contact your local Intel Sales  
Representative for this document.  
Figure 20.  
Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
93  
Boxed Processor Specifications  
7.2  
Mechanical Specifications  
7.2.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 20 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 21 (Side View), and Figure 22 (Top View).  
The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 26 and Figure 27. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 21.  
Space Requirements for the Boxed Processor (Side View)  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
25.0  
[0.39]  
[0.98]  
Figure 22.  
Space Requirements for the Boxed Processor (Top View)  
95.0  
[3.74]  
95.0  
[3.74]  
NOTES:  
1.  
Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
94  
Datasheet  
Boxed Processor Specifications  
Figure 23.  
Overall View Space Requirements for the Boxed Processor  
7.2.2  
7.2.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5  
and the appropriate Thermal and Mechanical Design Guidelines (see Section 1.2) for  
details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
7.3  
Electrical Requirements  
7.3.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 24. Baseboards  
must provide a matched power header to support the boxed processor. Table 32  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses  
at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
Datasheet  
95  
Boxed Processor Specifications  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 25 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
Figure 24.  
Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3 4  
1 2  
Table 32.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
11.4  
12  
12.6  
V
-
IC:  
• Maximum fan steady-state current draw  
• Average fan steady-state current draw  
• Maximum fan start-up current draw  
1.2  
0.5  
2.2  
1.0  
A
A
A
-
• Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2, 3  
CONTROL  
21  
25  
28  
kHz  
NOTES:  
1. Baseboard should pull this pin up to 5 V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.  
96  
Datasheet  
Boxed Processor Specifications  
Figure 25.  
Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
7.4  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the  
boxed processor.  
7.4.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
temperature specification is provided in Chapter 5. The boxed processor fan heatsink is  
able to keep the processor temperature within the specifications (see Table 27) in  
chassis that provide good thermal management. For the boxed processor fan heatsink  
to operate properly, it is critical that the airflow provided to the fan heatsink is  
unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan  
heatsink. Airspace is required around the fan to ensure that the airflow through the fan  
heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the cooling  
efficiency and decreases fan life. Figure 26 and Figure 27 illustrate an acceptable  
airspace clearance for the fan heatsink. The air temperature entering the fan should be  
kept below 38 ºC. Again, meeting the processor's temperature specification is the  
responsibility of the system integrator.  
Datasheet  
97  
Boxed Processor Specifications  
Figure 26.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)  
Figure 27.  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)  
98  
Datasheet  
Boxed Processor Specifications  
7.4.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of  
internal chassis temperatures. This allows the processor fan to operate at a lower  
speed and noise level, while internal chassis temperatures are low. If internal  
chassis temperature increases beyond a lower set point, the fan speed will rise  
linearly with the internal temperature until the higher set point is reached. At that  
point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed  
processor fan heatsink that remains cooler then lower set point. These set points,  
represented in Figure 28 and Table 33, can vary by a few degrees from fan heatsink  
to fan heatsink. The internal chassis temperature should be kept below 38 ºC.  
Meeting the processor's temperature specification (see Chapter 5) is the  
responsibility of the system integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 32 for the specific requirements.  
Figure 28.  
Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Datasheet  
99  
Boxed Processor Specifications  
Table 33.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor  
Fan Heatsink Set  
Point (°C)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to  
this set point, the fan operates at its lowest speed.  
Recommended maximum internal chassis temperature for  
nominal operating environment.  
1
X 30  
When the internal chassis temperature is at this point, the fan  
operates between its lowest and highest speeds.  
Recommended maximum internal chassis temperature for  
worst-case operating environment.  
Y = 35  
-
-
When the internal chassis temperature is above or equal to  
this set point, the fan operates at its highest speed.  
Z 38  
NOTES:  
1. Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 32) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the  
use of an ASIC located on the motherboard that sends out a PWM control signal to the  
4th pin of the connector labeled as CONTROL. The fan speed is based on actual  
processor temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard  
processor fan header, it will default back to a thermistor controlled mode, allowing  
compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode,  
the fan RPM is automatically varied based on the Tinlet temperature measured by a  
thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control, refer to the appropriate Thermal and Mechanical Design Guidelines (see  
Section 1.2).  
§
100  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging Intel Core™2 Duo processor E8000 and E7000 series  
systems. Tektronix and Agilent should be contacted to get specific information about  
their logic analyzer interfaces. The following information is general in nature. Specific  
information must be obtained from the logic analyzer vendor.  
Due to the complexity of Intel Core™2 Duo processor E8000 and E7000 series systems,  
the LAI is critical in providing the ability to probe and capture FSB signals. There are  
two sets of considerations to keep in mind when designing an Intel Core™2 Duo  
processor E8000 and E7000 series system that can make use of an LAI: mechanical  
and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI lands plug  
into the processor socket, while the processor lands plug into a socket on the LAI.  
Cabling that is part of the LAI egresses the system to allow an electrical connection  
between the processor and a logic analyzer. The maximum volume occupied by the LAI,  
known as the keepout volume, as well as the cable egress restrictions, should be  
obtained from the logic analyzer vendor. System designers must make sure that the  
keepout volume remains unobstructed inside the system. Note that it is possible that  
the keepout volume reserved for the LAI may differ from the space normally occupied  
by the processor heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system  
level simulations to prove that their tool will work in the system. Contact the logic  
analyzer vendor for electrical specifications and load models for the LAI solution it  
provides.  
§
Datasheet  
101  
Debug Tools Specifications  
102  
Datasheet  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY