AV80576LH0256M/SLGHC [INTEL]

RISC Microprocessor, 64-Bit, 1600MHz, PBGA956;
AV80576LH0256M/SLGHC
型号: AV80576LH0256M/SLGHC
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 1600MHz, PBGA956

外围集成电路
文件: 总113页 (文件大小:2115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Core™2 Duo Mobile  
Processor, Intel® Core™2 Solo  
Mobile Processor and Intel® Core™2  
Extreme Mobile Processor on 45-nm  
Process  
Datasheet  
For platforms based on Mobile Intel® 4 Series Express Chipset Family  
March 2009  
Document Number: 320120-004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics  
of any features or instructions marked “reserved” or “undefined.Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with  
this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Φ 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
enabled for IntelÆ 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for  
more information.  
Enhanced Intel SpeedStep® Technology for specified units of this processor are available. See the Processor Spec Finder at http://  
processorfinder.intel.com or contact your Intel representative for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Φ
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
Intel, Pentium, Centrino, Intel Core Duo, Intel SpeedStep, MMX and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008-2009, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................8  
References .........................................................................................................9  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low-Power States .................................................................... 11  
2.1.1 Core Low-Power State Descriptions........................................................... 13  
2.1.1.1 Core C0 State........................................................................... 13  
2.1.1.2 Core C1/AutoHALT Powerdown State........................................... 13  
2.1.1.3 Core C1/MWAIT Powerdown State............................................... 14  
2.1.1.4 Core C2 State........................................................................... 14  
2.1.1.5 Core C3 State........................................................................... 14  
2.1.1.6 Core C4 State........................................................................... 14  
2.1.1.7 Core Deep Power Down Technology (Code Name C6) State ............ 15  
2.1.2 Package Low-power State Descriptions...................................................... 15  
2.1.2.1 Normal State............................................................................ 15  
2.1.2.2 Stop-Grant State ...................................................................... 15  
2.1.2.3 Stop-Grant Snoop State............................................................. 16  
2.1.2.4 Sleep State.............................................................................. 16  
2.1.2.5 Deep Sleep State...................................................................... 16  
2.1.2.6 Deeper Sleep State................................................................... 17  
Enhanced Intel SpeedStep® Technology .............................................................. 19  
Extended Low-Power States................................................................................ 20  
FSB Low Power Enhancements............................................................................ 21  
2.4.1 Dynamic FSB Frequency Switching ........................................................... 21  
2.4.2 Enhanced Intel® Dynamic Acceleration Technology .................................... 22  
VID-x .............................................................................................................. 23  
Processor Power Status Indicator (PSI-2) Signal.................................................... 23  
2.2  
2.3  
2.4  
2.5  
2.6  
3
Electrical Specifications........................................................................................... 25  
3.1  
3.2  
Power and Ground Pins ...................................................................................... 25  
Decoupling Guidelines........................................................................................ 25  
3.2.1 VCC Decoupling...................................................................................... 25  
3.2.2 FSB AGTL+ Decoupling ........................................................................... 25  
3.2.3 FSB Clock (BCLK[1:0]) and Processor Clocking........................................... 25  
Voltage Identification and Power Sequencing ........................................................ 26  
Catastrophic Thermal Protection.......................................................................... 29  
Reserved and Unused Pins.................................................................................. 29  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 29  
FSB Signal Groups............................................................................................. 30  
CMOS Signals ................................................................................................... 31  
Maximum Ratings.............................................................................................. 31  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10 Processor DC Specifications ................................................................................ 32  
4
5
Package Mechanical Specifications and Pin Information.......................................... 51  
4.1  
4.2  
4.3  
Package Mechanical Specifications....................................................................... 51  
Processor Pinout and Pin List .............................................................................. 59  
Alphabetical Signals Reference............................................................................ 93  
Thermal Specifications and Design Considerations ................................................ 101  
5.1  
Monitoring Die Temperature ............................................................................. 108  
5.1.1 Thermal Diode ..................................................................................... 108  
5.1.2 Intel® Thermal Monitor......................................................................... 109  
Datasheet  
3
5.1.3 Digital Thermal Sensor ..........................................................................111  
Out of Specification Detection............................................................................112  
PROCHOT# Signal Pin ......................................................................................112  
5.2  
5.3  
Figures  
1
2
3
4
Core Low-Power States .............................................................................................12  
Package Low-Power States ........................................................................................13  
Dynamic FSB Frequency Switching Protocol..................................................................22  
Active VCC and ICC Loadline for Standard Voltage, Low-Power SV (25 W) and Dual-Core,  
Extreme Edition Processors........................................................................................43  
Deeper Sleep VCC and ICC Loadline for Standard-Voltage, Low-Power SV (25 W) and Dual-  
Core Extreme Edition Processors ................................................................................44  
Deeper Sleep VCC and ICC Loadline for Low-Power Standard-Voltage Processors ..............45  
Active VCC and ICC Loadline for Low-Voltage, Ultra-Low-Voltage and Power Optimized  
Performance Processor..............................................................................................46  
Deeper Sleep VCC and ICC Loadline for Low-Voltage, Ultra-Low-Voltage and Power Optimized  
Performance Processor..............................................................................................47  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Package Drawing (Sheet 1 of 2) ......................52  
5
6
7
8
9
10 3-MB die Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ...................................53  
11 3-MB Die Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)...................................54  
12 3-MB Die Micro-FCBGA Processor Package Drawing (Sheet 1 of 2) ..................................55  
13 3-MB Die Micro-FCBGA Processor Package Drawing (Sheet 2 of 2) ..................................56  
14 Intel Core 2 Duo Mobile Processor (POP and LV) Die Micro-FCBGA Processor Package  
Drawing..................................................................................................................57  
15 Intel Core 2 Duo Mobile Processor (ULV SC and ULV DC) Die Micro-FCBGA Processor Package  
Drawing..................................................................................................................58  
16 Processor Pinout (Top Package View, Left Side) ............................................................59  
17 Processor Pinout (Top Package View, Right Side) ..........................................................60  
18 Intel Core 2 Duo Mobile Processor in SFF Package Top View Upper Left Side.....................80  
19 Intel Core 2 Duo Mobile Processor in SFF Package Top View Upper Right Side...................81  
20 Intel Core 2 Duo Mobile Processor in SFF Package Top View Lower Left Side.....................82  
21 Intel Core 2 Duo Mobile Processor in SFF Package Top View Lower Right Side...................83  
Tables  
1
Coordination of Core Low-Power States at the Package Level..........................................13  
2
3
4
5
6
7
8
Voltage Identification Definition..................................................................................26  
BSEL[2:0] Encoding for BCLK Frequency......................................................................29  
FSB Pin Groups ........................................................................................................30  
Processor Absolute Maximum Ratings..........................................................................31  
Voltage and Current Specifications for the Dual-Core, Extreme Edition Processors .............32  
Voltage and Current Specifications for the Dual-Core, Standard-Voltage Processors...........34  
Voltage and Current Specifications for the Dual-Core, Low-Power Standard-Voltage Processors  
(25 W) in Standard Package ......................................................................................35  
Voltage and Current Specifications for the Dual-Core, Power Optimized Performance (25 W)  
SFF Processors.........................................................................................................37  
9
10 Voltage and Current Specifications for the Dual-Core, Low-Voltage SFF Processor .............38  
11 Voltage and Current Specifications for the Dual-Core, Ultra-Low-Voltage SFF Processor .....40  
12 Voltage and Current Specifications for the Ultra-Low-Voltage, Single-Core  
(5.5 W) SFF Processor...............................................................................................41  
13 AGTL+ Signal Group DC Specifications ........................................................................48  
14 CMOS Signal Group DC Specifications..........................................................................49  
15 Open Drain Signal Group DC Specifications ..................................................................49  
4
Datasheet  
16 Pin Name Listing...................................................................................................... 61  
17 Pin # Listing............................................................................................................ 72  
18 Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name........................... 84  
19 Signal Description .................................................................................................... 93  
20 Power Specifications for the Dual-Core Extreme Edition Processor................................. 101  
21 Power Specifications for the Dual-Core Standard Voltage Processor............................... 102  
22 Power Specifications for the Dual-Core Low Power Standard Voltage Processors (25 W) in  
Standard Package .................................................................................................. 103  
23 Power Specifications for the Dual-Core Power Optimized Performance (25 W) SFF  
Processors ............................................................................................................ 104  
24 Power Specifications fro the Dual-Core Low Voltage (LV) SFF Processors ....................... 105  
25 Power Specifications for the Dual-Core Ultra-Low-Voltage (ULV) Processors ................... 106  
26 Power Specifications for the Single-Core Ultra-Low-Voltage (5.5 W) SFF Processors ........ 107  
27 Thermal Diode Interface ......................................................................................... 108  
28 Thermal Diode Parameters Using Transistor Model...................................................... 109  
Datasheet  
5
Revision History  
Document Revision  
Description  
Date  
Number  
Number  
320120  
-001  
Initial Release  
July 2008  
• Chapter Update  
Chapter 1: Added introduction to the Intel Core 2 Duo  
Processor in SFF Package  
Section 4.1: Added the package coplanarity information for  
the processors in SFF Package  
• Figure Update  
— Added Figure 7  
— Added Figure 8  
— Added Figure 14  
— Added Figure 15  
— Added Figure 18 through Figure 21  
Table Update  
320120  
-002  
August 2008  
— Added Table 9  
— Added Table 10  
— Added Table 11  
— Added Table 12  
— Updated Table 16: Added Intel Core 2 Duo SFF Package  
Processor Ball listing by Pin name  
— Added Table 18  
— Added Table 23  
— Added Table 24  
— Added Table 25  
• Added information for Intel Core 2 Duo T9800, T9550, P9600,  
P8700  
320120  
320120  
-003  
-004  
January 2009  
March 2009  
• Added information for Intel Core 2 Duo processor skus below:  
— Updated Table 7 and 21 with T9900  
— Updated Table 9 and 23 with SP9600  
— Updated Table 10 and 24 with SL9600  
— Updataed Table 11 and 25 with SU9600  
— Updated Table 12 and 26 with SU3500  
§
6
Datasheet  
Introduction  
1
Introduction  
The Intel® Core2 Duo mobile processor, Intel® Core2 Duo mobile processor low-  
voltage (LV), ultra low-voltage (ULV) in small form factor (SFF) package and Intel®  
Core2 Extreme mobile are high-performance, low-power mobile processor based on  
the Intel Core microarchitecture for Intel® Centrino® 2 processor technology.  
This document contains electrical, mechanical and thermal specifications for the  
following processors:  
• The Intel Core 2 Duo processors and Intel Core 2 Extreme processors support the  
Mobile Intel® 4 Series Express Chipset and Intel® ICH9M I/O controller.  
— Dual-core extreme edition (DC-XE)  
— Standard voltage (SV)  
— 25-W processor in standard package (Power Optimized Performance-POP)  
• The Intel Core 2 Duo processor in SFF package supports the Mobile Intel® GS45  
Express Chipset and Intel® ICH9M SFF I/O controller.  
This document contains electrical, mechanical and thermal specifications for:  
— Power Optimized Performance (POP) in SFF package  
— Low-voltage (LV) Processor in SFF package  
— Ultra-low voltage (ULV) dual-core (DC) and single-core (SC) Processors in SFF  
package  
Notes:  
In this document  
1. Intel Core 2 Duo processor, and the Intel Core 2 Extreme processor are referred to  
as the processor  
2. Intel Core 2 Duo LV/ULV/POP processors are referred to as SFF processor  
3. Mobile Intel 4 Series Express Chipset is referred as the GMCH.  
Key features include:  
• Dual-core processor for mobile with enhanced performance  
• Supports Intel architecture with Intel® Wide Dynamic Execution  
• Supports L1 cache-to-cache (C2C) transfer  
• On-die, primary 32-KB instruction cache and 32-KB, write-back data cache in each  
core  
• The processor in DC-XE, standard voltage (SV) and LV have an on-die, up to 6-MB  
second-level, shared cache with Advanced Transfer Cache architecture  
• The processor in ULV single-core and dual-core have an on-die, up to 3-MB  
second-level, shared cache with Advanced Transfer Cache architecture  
• Streaming SIMD extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3),  
supplemental streaming SIMD extensions 3 (SSSE3) and SSE4.1 instruction sets  
• The processor in DC-XE, SV and LV are offered at 1066-MHz, source-synchronous  
front side bus (FSB)  
• The processor in ULV are offered at 800-MHz, source-synchronous FSB  
• Advanced power management features including Enhanced Intel SpeedStep®  
Technology and dynamic FSB frequency switching  
Datasheet  
7
Introduction  
• Digital thermal sensor (DTS)  
• Intel® 64 architecture  
• Supports enhanced Intel® Virtualization Technology  
• Enhanced Intel® Dynamic Acceleration Technology and Enhanced Multi-Threaded  
Thermal Management (EMTTM)  
• Supports PSI2 functionality  
• SV processor offered in Micro-FCPGA and Micro-FCBGA packaging technologies  
• Processor in POP, LV and ULV are offered in Micro-FCBGA packaging technologies  
only  
• Execute Disable Bit support for enhanced security  
• Intel® Deep Power Down low-power state with P_LVL6 I/O support  
• Support for Intel® Trusted Execution Technology  
• Half ratio support (N/2) for core to bus ratio  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
#
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor landings should not  
be connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
Enhanced Intel  
SpeedStep®  
Technology  
Technology that provides power management capabilities to laptops.  
Processor core die with integrated L1 and L2 cache. All AC timing and signal  
integrity specifications are at the pads of the processor core.  
Processor Core  
8
Datasheet  
Introduction  
Term  
Definition  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code  
attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or  
worms that exploit buffer overrun vulnerabilities and can thus help improve  
the overall security of the system. See the Intel® 64 and IA-32  
Execute Disable  
Bit  
Architectures Software Developer's Manuals for more detailed information.  
Intel® 64  
Technology  
64-bit memory extensions to the IA-32 architecture.  
Intel®  
Virtualization  
Technology  
Processor virtualization that, when used in conjunction with Virtual Machine  
Monitor software, enables multiple, robust independent software  
environments inside a single platform.  
Half ratio support  
(N/2) for Core to  
Bus ratio  
Intel Core 2 Duo processors and Intel Core 2 Extreme processors support  
the N/2 feature that allows having fractional core-to-bus ratios. This feature  
provides the flexibility of having more frequency options and being able to  
have products with smaller frequency steps.  
TDP  
VCC  
VSS  
Thermal Design Power.  
The processor core power supply.  
The processor ground.  
Low-voltage  
LV  
ULV  
DC-XE  
Ultra-Low-Voltage  
Dual-core Extreme Edition  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Document  
Document  
Number  
Intel® Core2 Duo Mobile Processor, Intel® Core2 Solo Mobile  
Processor, Intel® Core2 Extreme Processor on 45-nm Technology  
320121  
Specification Update  
Mobile Intel® 4 Series Express Chipset Family Datasheet  
320122  
320123  
Mobile Intel® 4 Series Express Chipset Family Specification Update  
Intel® I/O Controller Hub 9 (ICH9)/ I/O Controller Hub 9M (ICH9M)  
Datasheet  
316972  
316973  
Intel® I/O Controller Hub 9 (ICH9)/ I/O Controller Hub 9M (ICH9M)  
Specification Update  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Volume 1: Basic Architecture  
253665  
253666  
Volume 2A: Instruction Set Reference, A-M  
Datasheet  
9
Introduction  
Document  
Number  
Document  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
253667  
253668  
253669  
NOTE: Contact your Intel representative for the latest revision of this document.  
§
10  
Datasheet  
Low Power Features  
2
Low Power Features  
2.1  
Clock Control and Low-Power States  
The processor supports low-power states both at the individual core level and the  
package level for optimal power management.  
A core may independently enter the C1/AutoHALT, C1/MWAIT, C2, C3, C4, Intel®  
Enhanced Deeper Sleep and Intel® Deep Power Down Technology low-power states.  
When both cores coincide in a common core low-power state, the central power  
management logic ensures the entire processor enters the respective package low-  
power state by initiating a P_LVLx (P_LVL2, P_LVL3, P_LVL4, P_LVL5,P_LVL6) I/O read  
to the GMCH.  
The processor implements two software interfaces for requesting low-power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The P_LVLx I/O Monitor address does  
not need to be set up before using the P_LVLx I/O read interface. The sub-state hints  
used for each P_LVLx read can be configured through the IA32_MISC_ENABLES model  
specific register (MSR).  
If a core encounters a GMCH break event while STPCLK# is asserted, it asserts the  
PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system  
logic that individual cores should return to the C0 state and the processor should return  
to the Normal state.  
Figure 1 shows the core low-power states and Figure 2 shows the package low-power  
states for the processor. Table 1 maps the core low-power states to package low-power  
states.  
Datasheet  
11  
Low Power Features  
Figure 1.  
Core Low-Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
C1/Auto  
Halt  
C1/MWAIT  
Core state  
break  
HLT instruction  
MWAIT(C1)  
Halt break  
C0  
P_LVL2 or  
MWAIT(C2)  
Core State  
break  
Core state  
break  
P_LVL3 or  
C2†  
P_LVL4 or  
P_LVL5/P_LVL6ø  
MWAIT(C4/C6)  
Core  
state  
MWAIT(C3)  
C4† ‡/C6  
break  
C3†  
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
† — STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4.  
‡ — Core C4 state supports the package level Deep C4 sub-state.  
Ø — P_LVL5/P_LVL6 read is issued once the L2 cache is reduced to zero.  
12  
Datasheet  
Low Power Features  
Figure 2.  
Package Low-Power States  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
STPCLK# asserted  
Stop  
Grant  
Deep  
Sleep  
Deeper  
Sleep†  
Normal  
Sleep  
STPCLK# deasserted  
SLP# deasserted  
DPSLP# deasserted  
DPRSTP# deasserted  
Snoop Snoop  
serviced occurs  
Stop Grant  
Snoop  
† — Deeper Sleep includes the Deeper Sleep state, Deep C4 sub-state, and C6  
Table 1.  
Coordination of Core Low-Power States at the Package Level  
Package State  
Core1 State  
C4/Deep Power Down  
Technology State  
Core0 State  
C0  
C11  
C2  
C3  
(Code Named C6 State)  
C0  
C11  
C2  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal Stop-Grant Stop-Grant  
Normal Stop-Grant Deep Sleep  
Stop-Grant  
Deep Sleep  
C3  
Deeper Sleep /Intel®  
Enhanced Deeper Sleep/  
Intel® Deep Power Down  
C4/Deep Power  
Down Technology  
Normal  
Normal Stop-Grant Deep Sleep  
NOTE:  
1.  
AutoHALT or MWAIT/C1.  
2.1.1  
Core Low-Power State Descriptions  
2.1.1.1  
Core C0 State  
This is the normal operating state for cores in the processor.  
2.1.1.2  
Core C1/AutoHALT Powerdown State  
C1/AutoHALT is a low-power state entered when a core executes the HALT instruction.  
The processor core will transition to the C0 state upon occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to  
immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT Powerdown state. See the Intel® 64 and IA-32 Architectures  
Software Developer's Manuals, Volume 3A/3B: System Programmer's Guide for more  
information.  
Datasheet  
13  
Low Power Features  
The system can generate a STPCLK# while the processor is in the AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
will return execution to the HALT state.  
While in AutoHALT Powerdown state, the dual-core processor will process bus snoops  
and snoops from the other core. The processor core will enter a snoopable sub-state  
(not shown in Figure 1) to process the snoop and then return to the AutoHALT  
Powerdown state.  
2.1.1.3  
2.1.1.4  
Core C1/MWAIT Powerdown State  
C1/MWAIT is a low-power state entered when the processor core executes the  
MWAIT(C1) instruction. Processor behavior in the MWAIT state is identical to the  
AutoHALT state except that Monitor events can cause the processor core to return to  
the C0 state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals,  
Volume 2A: Instruction Set Reference, A-M and Volume 2B: Instruction Set Reference,  
N-Z, for more information.  
Core C2 State  
Individual cores of the dual-core processor can enter the C2 state by initiating a P_LVL2  
I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not issue a  
Stop-Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.  
While in the C2 state, the dual-core processor will process bus snoops and snoops from  
the other core. The processor core will enter a snoopable sub-state (not shown in  
Figure 1) to process the snoop and then return to the C2 state.  
2.1.1.5  
Core C3 State  
Individual cores of the dual-core processor can enter the C3 state by initiating a P_LVL3  
I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering C3, the processor  
core flushes the contents of its L1 caches into the processor’s L2 cache. Except for the  
caches, the processor core maintains all its architectural states in the C3 state. The  
Monitor remains armed if it is configured. All of the clocks in the processor core are  
stopped in the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the dual-core  
processor accesses cacheable memory. The processor core will transition to the C0  
state upon occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB  
interrupt message. RESET# will cause the processor core to immediately initialize itself.  
2.1.1.6  
Core C4 State  
Individual cores of the dual-core processor can enter the C4 state by initiating a P_LVL4  
or P_LVL5 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor core  
behavior in the C4 state is nearly identical to the behavior in the C3 state. The only  
difference is that if both processor cores are in C4, the central power management logic  
will request that the entire processor enter the Deeper Sleep package low-power state  
(see Section 2.1.2.6).  
To enable the package-level Intel Enhanced Deeper Sleep state, Dynamic Cache Sizing  
and Intel Enhanced Deeper Sleep state fields must be configured in the  
PMG_CST_CONFIG_CONTROL MSR. Refer to Section 2.1.2.6 for further details on Intel  
Enhanced Deeper Sleep state.  
14  
Datasheet  
Low Power Features  
2.1.1.7  
Core Deep Power Down Technology (Code Name C6) State  
Deep Power Down Technology state is a new, power-saving state which is being  
implemented on the processor. In Deep Power Down Technology the processor saves its  
entire architectural state onto an on-die SRAM hence allowing it to lower its main core  
voltage to any value, even as low as 0-V.  
When the core enters Deep Power Down Technology state, it saves the processor state  
that is relevant to the processor context in an on-die SRAM that resides on a separate  
power plane VCCP (I/O power supply). This allows the main core Vcc to be lowered to  
any arbitrary voltage including 0-V. The on-die storage for saving the processor state is  
implemented as a per-core SRAM.  
2.1.2  
Package Low-power State Descriptions  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0, C1/AutoHALT, or C1/MWAIT  
state.  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the dual-core processor enters the  
Stop-Grant state within 20 bus clocks after the response phase of the processor-issued  
Stop-Grant Acknowledge special bus cycle. Processor cores that are already in the C2,  
C3, or C4 state remain in their current low-power state. When the STPCLK# pin is  
deasserted, each core returns to its previous core low-power state.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
RESET# causes the processor to immediately initialize itself, but the processor will stay  
in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#, SLP#,  
DPSLP#, and DPRSTP# pins must be deasserted prior to RESET# deassertion as per AC  
Specification T45. When re-entering the Stop-Grant state from the Sleep state,  
STPCLK# should be deasserted after the deassertion of SLP# as per AC Specification  
T75.  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt or Monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the entire processor  
should return to the Normal state.  
A transition to the Stop-Grant Snoop state occurs when the processor detects a snoop  
on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4)  
occurs with the assertion of the SLP# signal.  
Datasheet  
15  
Low Power Features  
2.1.2.3  
2.1.2.4  
Stop-Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor returns to  
the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low-power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through the Stop-Grant state. If RESET# is driven active while the  
processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted  
immediately after RESET# is asserted to ensure the processor correctly executes the  
Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 2.1.2.5). While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
2.1.2.5  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform-level  
power savings. BCLK stop/restart timings on appropriate GMCH-based platforms with  
the CK505 clock chip are as follows:  
Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs  
of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep  
16  
Datasheet  
Low Power Features  
state, it will not respond to interrupts or snoop transactions. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable  
behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but further reduces core  
voltage levels. One of the potential lower core voltage levels is achieved by entering the  
base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is  
achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of  
Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of  
the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely  
shut down. Refer to Section 2.1.2.6.1 and Section 2.1.2.6.3 for further details on  
reducing the L2 cache and entering Intel Enhanced Deeper Sleep state.  
In response to entering Deeper Sleep, the processor drives the VID code corresponding  
to the Deeper Sleep core voltage on the VID[6:0] pins.  
Exit from Deeper Sleep or Intel Enhanced Deeper Sleep state is initiated by DPRSTP#  
deassertion when either core requests a core state other than C4 or either core  
requests a processor performance state other than the lowest operating point.  
2.1.2.6.1  
Intel® Enhanced Deeper Sleep State  
Intel Enhanced Deeper Sleep state is a sub-state of Deeper Sleep that extends power-  
saving capabilities by allowing the processor to further reduce core voltage once the L2  
cache has been reduced to zero ways and completely shut down. The following events  
occur when the processor enters Intel Enhanced Deeper Sleep state:  
• The last core entering C4 issues a P_LVL4 or P_LVL5 I/O read or an MWAIT(C4)  
instruction and then progressively reduces the L2 cache to zero  
• Once the L2 cache has been reduced to zero, the processor triggers a special  
chipset sequence to notify the chipset to redirect all FSB traffic, except APIC  
messages, to memory. The snoops are replied as misses by the chipset and are  
directed to main memory instead of the L2 cache. This allows for higher residency  
of the processor’s Intel Enhanced Deeper Sleep state.  
• The processor drives the VID code corresponding to the Intel Enhanced Deeper  
Sleep state core voltage on the VID[6:0] pins.  
2.1.2.6.2  
Deep Power Down State Technology (Code Named C6) State  
When both cores have entered the CC6 state and the L2 cache has been shrunk down  
to zero ways, the processor will enter the Deep Power Down Technology state. To do so  
both cores save their architectural states in the on-die SRAM that resides in the VCCP  
domain. At this point, the core VCC will be dropped to the lowest core voltage closer to  
0-V. The processor is now in an extremely low-power state.  
In Intel Deep Power Down Technology state, the processor does not need to be  
snooped as all the caches are flushed before entering this state.  
Datasheet  
17  
Low Power Features  
2.1.2.6.3  
Dynamic Cache Sizing  
Dynamic Cache Sizing allows the processor to flush and disable a programmable  
number of L2 cache ways upon each Deeper Sleep entry under the following  
conditions:  
• The second core is already in C4 and Intel Enhanced Deeper Sleep state or Deep  
Power Down Technology state (C6) is enabled (as specified in Section 2.1.1.6).  
• The C0 timer that tracks continuous residency in the Normal package state has not  
expired. This timer is cleared during the first entry into Deeper Sleep to allow  
consecutive Deeper Sleep entries to shrink the L2 cache as needed.  
• The FSB speed to processor core speed ratio is below the predefined L2 shrink  
threshold.  
The number of L2 cache ways disabled upon each Deeper Sleep entry is configured in  
the BBL_CR_CTL3 MSR. The C0 timer is referenced through the  
CLOCK_CORE_CST_CONTROL_STT MSR. The shrink threshold under which the L2  
cache size is reduced is configured in the PMG_CST_CONFIG_CONTROL MSR. If the  
FSB speed to processor core speed ratio is above the predefined L2 shrink threshold,  
then L2 cache expansion will be requested. If the ratio is zero, then the ratio will not be  
taken into account for Dynamic Cache Sizing decisions.  
Upon STPCLK# deassertion, the first core exiting Intel Enhanced Deeper Sleep state or  
Deep Power Down Technology state will expand the L2 cache to two ways and  
invalidate previously disabled cache ways. If the L2 cache reduction conditions stated  
above still exist when the last core returns to C4 and the package enters Intel  
Enhanced Deeper Sleep state or Deep Power Down Technology state (C6), then the L2  
will be shrunk to zero again. If a core requests a processor performance state resulting  
in a higher ratio than the predefined L2 shrink threshold, the C0 timer expires, or the  
second core (not the one currently entering the interrupt routine) requests the C1, C2,  
or C3 states, then the whole L2 will be expanded upon the next interrupt event.  
In addition, the processor supports Full Shrink on L2 cache. When the MWAIT Deep  
Power Down Technology state instruction is executed with a hint=0x2 in ECX[3:0], the  
micro code will shrink all the active ways of the L2 cache in one step. This ensures that  
the package enters Deep Power Down Technology immediately when both cores are in  
CC6 instead of iterating till the cache is reduced to zero. The operating system (OS) is  
expected to use this hint when it wants to enter the lowest power state and can  
tolerate the longer entry latency.  
L2 cache shrink prevention may be enabled as needed on occasion through an  
MWAIT(C4) sub-state field. If shrink prevention is enabled, the processor does not  
enter Intel Enhanced Deeper Sleep state or Intel Deep Power Down state since the L2  
cache remains valid and in full size.  
18  
Datasheet  
Low Power Features  
2.2  
Enhanced Intel SpeedStep® Technology  
The processor features Enhanced Intel SpeedStep Technology. Following are the key  
features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software-controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins, and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the  
frequency transition.  
— The bus protocol (BNR# mechanism) is used to block snooping.  
• Improved Intel® Thermal Monitor mode:  
— When the on-die thermal sensor indicates that the die temperature is too high  
the processor can automatically perform a transition to a lower frequency and  
voltage specified in a software-programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up-transition to the previous frequency and voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system-level thermal management.  
• Enhanced thermal management features:  
— Digital Thermal Sensor and Out of Specification detection.  
— Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in  
case of unsuccessful TM2 transition.  
— Dual-core thermal management synchronization.  
Each core in the dual-core processor implements an independent MSR for controlling  
Enhanced Intel SpeedStep Technology, but both cores must operate at the same  
frequency and voltage. The processor has performance state coordination logic to  
resolve frequency and voltage requests from the two cores into a single frequency and  
voltage request for the package as a whole. If both cores request the same frequency  
and voltage, then the processor will transition to the requested common frequency and  
voltage. If the two cores have different frequency and voltage requests, then the  
processor will take the highest of the two frequencies and voltages as the resolved  
request and transition to that frequency and voltage.  
The processor also supports Dynamic FSB Frequency Switching and Intel Dynamic  
Acceleration Technology mode on select SKUs. The operating system can take  
advantage of these features and request a lower operating point called SuperLFM (due  
to Dynamic FSB Frequency Switching) and a higher operating point Intel Dynamic  
Acceleration Technology mode.  
Datasheet  
19  
Low Power Features  
2.3  
Extended Low-Power States  
Extended low-power states (CXE) optimize for power by forcibly reducing the  
performance state of the processor when it enters a package low-power state. Instead  
of directly transitioning into the package low-power state, the enhanced package low-  
power state first reduces the performance state of the processor by performing an  
Enhanced Intel SpeedStep Technology transition down to the lowest operating point.  
Upon receiving a break event from the package low-power state, control will be  
returned to software while an Enhanced Intel SpeedStep Technology transition up to  
the initial operating point occurs. The advantage of this feature is that it significantly  
reduces leakage while in the Stop-Grant and Deeper Sleep states.  
Deep Power Down Technology is always enabled in the extended low power state as  
described above.  
Note:  
Long-term reliability cannot be assured unless all the Extended Low Power States are  
enabled.  
The processor implements two software interfaces for requesting enhanced package  
low-power states: MWAIT instruction extensions with sub-state hints and via BIOS by  
configuring IA32_MISC_ENABLES MSR bits to automatically promote package low-  
power states to enhanced package low-power states.  
Caution:  
Caution:  
Extended Stop-Grant and Enhanced Deeper Sleep must be enabled via the  
BIOS for the processor to remain within specification. As processor technology  
changes, enabling the extended low power states becomes increasingly crucial when  
building computer systems. Maintaining the proper BIOS configuration is key to  
reliable, long-term system operation. Not complying to this guideline may affect the  
long-term reliability of the processor.  
Enhanced Intel SpeedStep Technology transitions are multistep processes  
that require clocked control. These transitions cannot occur when the processor is in  
the Sleep or Deep Sleep package low-power states since processor clocks are not  
active in these states. Extended Deeper Sleep is an exception to this rule when the  
Hard C4E configuration is enabled in the IA32_MISC_ENABLES MSR. This Extended  
Deeper Sleep state configuration will lower core voltage to the Deeper Sleep level while  
in Deeper Sleep and, upon exit, will automatically transition to the lowest operating  
voltage and frequency to reduce snoop service latency. The transition to the lowest  
operating point or back to the original software-requested point may not be  
instantaneous. Furthermore, upon very frequent transitions between active and idle  
states, the transitions may lag behind the idle state entry resulting in the processor  
either executing for a longer time at the lowest operating point or running idle at a high  
operating point. Observations and analyses show this behavior should not significantly  
impact total power savings or performance score while providing power benefits in  
most other cases.  
20  
Datasheet  
Low Power Features  
2.4  
FSB Low Power Enhancements  
The processor incorporates FSB low power enhancements:  
• Dynamic FSB Power Down  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On-Die Termination disabling  
• Low VCCP (I/O termination voltage)  
• Dynamic FSB frequency switching  
The processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates  
them only when data bus activity occurs, resulting in significant power savings with no  
performance impact. BPRI# control also allows the processor address and control input  
buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows  
a reciprocal power reduction in GMCH address and control input buffers when the  
processor deasserts its BR0# pin. The On-Die Termination on the processor FSB buffers  
is disabled when the signals are driven low, resulting in additional power savings. The  
low I/O termination voltage is on a dedicated voltage plane independent of the core  
voltage, enabling low I/O switching power at all times.  
2.4.1  
Dynamic FSB Frequency Switching  
Dynamic FSB frequency switching effectively reduces the internal bus clock frequency  
in half to further decrease the minimum processor operating frequency from the  
Enhanced Intel SpeedStep Technology performance states and achieve the Super Low  
Frequency Mode (Super LFM). This feature is supported at FSB frequencies of  
1066 MHz, 800 MHz and 667 MHz and does not entail a change in the external bus  
signal (BCLK) frequency. Instead, both the processor and GMCH internally lower their  
BCLK reference frequency to 50% of the externally visible frequency. Both the  
processor and GMCH maintain a virtual BCLK signal (VBCLK) that is aligned to the  
external BCLK but at half the frequency. After a downward shift, it would appear  
externally as if the bus is running with a 133-MHz base clock in all aspects, except that  
the actual external BCLK remains at 266 MHz. See Figure 3 for details. The transition  
into Super LFM, a “down-shift,is done following a handshake between the processor  
and GMCH. A similar handshake is used to indicate an “up-shift,” a change back to  
normal operating mode. Please ensure this feature is enabled and supported in the  
BIOS.  
Datasheet  
21  
Low Power Features  
Figure 3.  
Dynamic FSB Frequency Switching Protocol  
NOTES:  
1.  
2.  
All common clock signals will be active for two BCLKs instead of one (e.g., ADS#, HIT#).  
The double-pumped signal strobes will have only one transition per BCLK when active,  
instead of two.  
3.  
The quad-pumped signal strobes will have only two transitions per BCLK when active,  
instead of four.  
4.  
5.  
6.  
7.  
Same setup and hold times apply, but relative to every second rising BCLK.  
Following a RESET#, the bus will be in the legacy full-frequency mode.  
There will not be a down-shift right after RESET# deassertion.  
There is no backing out of a transition into or out of half-frequency mode. Once the  
sequence starts it must be completed.  
2.4.2  
Enhanced Intel® Dynamic Acceleration Technology  
The processor supports Intel Dynamic Acceleration Technology mode. The Intel  
Dynamic Acceleration Technology feature allows one core of the processor to operate at  
a higher frequency point when the other core is inactive and the operating system  
requests increased performance. This higher frequency is called the opportunistic  
frequency and the maximum rated operating frequency is the ensured frequency.  
The processor includes a hysteresis mechanism that improves overall Intel Dynamic  
Acceleration Technology performance by decreasing unnecessary transitions of the  
cores in and out of Intel Dynamic Acceleration Technology mode. Normally, the  
processor would exit Intel Dynamic Acceleration Technology as soon as two cores are  
active. This can become an issue if the idle core is frequently awakened for a short  
periods (i.e., high timer tick rates). The hysteresis mechanism allows two cores to be  
active for a limited time before it transitions out of Intel Dynamic Acceleration  
Technology mode.  
Intel Dynamic Acceleration Technology mode enabling requires:  
• Exposure, via BIOS, of the opportunistic frequency as the highest ACPI P state  
• Enhanced Multi-Threaded Thermal Management (EMTTM)  
• Intel Dynamic Acceleration Technology mode and EMTTM MSR configuration via  
BIOS.  
22  
Datasheet  
Low Power Features  
When in Intel Dynamic Acceleration Technology mode, it is possible for both cores to be  
active under certain internal conditions. In such a scenario the processor may draw a  
Instantaneous current (ICC_CORE_INST) for a short duration of tINST; however, the  
average ICC current will be lesser than or equal to ICCDES current specification. Please  
refer to the Processor DC Specifications section for more details.  
2.5  
VID-x  
The processor implements the VID-x feature for improved control of core voltage levels  
when the processor enters a reduced power consumption state. VID-x applies only  
when the processor is in the Intel Dynamic Acceleration Technology performance state  
and one or more cores are in low-power state (i.e., CC3/CC4/CC6). VID-x provides the  
ability for the processor to request core voltage level reductions greater than one VID  
tick. The amount of VID tick reduction is fixed and only occurs while the processor is in  
Intel Dynamic Acceleration Technology mode. This improved voltage regulator  
efficiency during periods of reduced power consumption allows for leakage current  
reduction which results in platform power savings and extended battery life.  
When in Intel Dynamic Acceleration Technology mode, it is possible for both cores to be  
active under certain internal conditions. In such a scenario the processor may draw a  
Instantaneous current (ICC_CORE_INST) for a short duration of tINST; however, the  
average ICC current will be lesser than or equal to ICCDES current specification. Please  
refer to the Processor DC Specifications section for more details.  
2.6  
Processor Power Status Indicator (PSI-2) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve intermediate and light  
load efficiency of the voltage regulator, resulting in platform power savings and  
extended battery life. The algorithm that the processor uses for determining when to  
assert PSI# is different from the algorithm used in previous mobile processors. PSI-2  
functionality is expanded further to support three processor states:  
• Both cores are in idle state  
• Only one core active state  
• Both cores are in active state  
PSI-2 functionality improves overall voltage regulator efficiency over a wide power  
range based on the C-state and P-state of the two cores. The combined C-state and P-  
state of both cores are used to dynamically predict processor power.  
The real-time power prediction is compared against a set of predefined and configured  
values of CHH and CHL. CHH is indicative of the active C-state of both the cores and  
CHL is indicative that only one core is in active C-state and the other core is in low  
power core state. PSI-2# output is asserted upon crossing these thresholds indicating  
that the processor requires lower power. The voltage regulator will adapt its power  
output accordingly. Additionally the voltage regulator may switch to a single phase and/  
or asynchronous mode when the processor is idle and fused leakage limit is less than or  
equal to the BIOS threshold value.  
§
Datasheet  
23  
Low Power Features  
24  
Datasheet  
Electrical Specifications  
3
Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power  
planes while all VSS pins must be connected to system ground planes. Use of multiple  
power and ground planes is recommended to reduce I*R drop. The processor VCC pins  
must be supplied the voltage determined by the VID (Voltage ID) pins.  
3.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large average current swings between low and full power states.  
This may cause voltages on power planes to sag below their minimum values if bulk  
decoupling is not adequate. Larger bulk storage, such as electrolytic capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. Care must be taken in the board  
design to ensure that the voltage provided to the processor remains within the  
specifications listed in the tables in Section 3.10. Failure to do so can result in timing  
violations or reduced lifetime of the component.  
3.2.1  
V Decoupling  
CC  
VCC regulator solutions need to provide bulk capacitance with a low Effective Series  
Resistance (ESR) and keep a low interconnect resistance from the regulator to the  
socket. Bulk decoupling for the large current swings when the part is powering on, or  
entering/exiting low-power states, should be provided by the voltage regulator solution  
depending on the specific system design.  
3.2.2  
3.2.3  
FSB AGTL+ Decoupling  
The processors integrate signal termination on the die as well as incorporate high  
frequency decoupling capacitance on the processor package. Decoupling must also be  
provided by the system motherboard for proper AGTL+ bus operation.  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous-generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio at manufacturing. The processor uses a differential clocking  
implementation.  
Datasheet  
25  
Electrical Specifications  
3.3  
Voltage Identification and Power Sequencing  
The processor uses seven voltage identification pins,VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for the processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 in the table refers to a high-voltage level and a 0 refers to  
a low-voltage level.  
Table 2.  
Voltage Identification Definition (Sheet 1 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
26  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
Datasheet  
27  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
28  
Datasheet  
Electrical Specifications  
3.4  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough that the  
processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of approximately 125°C (maximum), or if the THERMTRIP# signal is asserted, the VCC  
supply to the processor must be turned off within 500 ms to prevent permanent silicon  
damage due to thermal runaway of the processor. THERMTRIP# functionality is not  
ensured if the PWRGOOD signal is not asserted, and during Deep Power Down  
Technology State (C6).  
3.5  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no-connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected. The TEST1,TEST2,TEST3,TEST4,TEST5,TEST6,TEST7 pins are used for  
test purposes internally and can be left as “No Connects.  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the appropriate  
chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BSEL[2]  
BSEL[1] BSEL[0]  
BCLK Frequency  
L
L
L
L
L
H
H
L
266 MHz  
RESERVED  
RESERVED  
200 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
H
H
L
L
Datasheet  
29  
Electrical Specifications  
3.7  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type in the following  
sections. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as  
well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the  
AGTL+ output group as well as the AGTL+ I/O group when driving.  
With the implementation of a source-synchronous data bus, two sets of timing  
parameters are specified. One set is for common clock signals, which are dependent  
upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.), and the second set is for  
the source-synchronous signals which are relative to their respective strobe lines (data  
and address) as well as the rising edge of BCLK0. Asychronous signals are still present  
(A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle.  
Table 4 identifies which signals are common clock, source synchronous, and  
asynchronous.  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
AGTL+ Common Synchronous to  
Clock Input BCLK[1:0]  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#, TRDY#  
AGTL+ Common Synchronous to  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#, DRDY#,  
HIT#, HITM#, LOCK#, PRDY#3, DPWR#  
Clock I/O  
BCLK[1:0]  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]#  
ADSTB[1]#  
AGTL+ Source  
Synchronous  
I/O  
Synchronous to  
assoc. strobe  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#  
Asynchronous  
Asynchronous  
Open Drain  
Output  
FERR#, IERR#, THERMTRIP#  
Open Drain I/O  
CMOS Output  
CMOS Input  
Asynchronous  
Asynchronous  
PROCHOT#4  
PSI#, VID[6:0], BSEL[2:0]  
Synchronous to TCK TCK, TDI, TMS, TRST#  
Synchronous to TCK TDO  
Open Drain  
Output  
FSB Clock  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,  
Power/Other  
THERMDA, THERMDC, VCC, VCCA, VCCP, VCC_SENSE  
SS, VSS_SENSE  
,
V
NOTES:See next page  
30  
Datasheet  
Electrical Specifications  
1.  
2.  
Refer to Chapter 4 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board,  
these signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
BPM[2:1]# and PRDY# are AGTL+ output-only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
On-die termination differs from other AGTL+ signals.  
3.  
4.  
5.  
3.8  
3.9  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) use Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs for the  
processor to recognize them. See Section 3.10 for the DC specifications for the CMOS  
signal groups.  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings only, which lie outside the  
functional limits of the processor. Only within specified operation limits, can  
functionality and long-term reliability be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Caution:  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 5.  
Processor Absolute Maximum Ratings  
Symbol  
TSTORAGE  
TSTORAGE  
Parameter  
Min  
Max  
Unit  
Notes1,2  
Processor Storage Temperature  
Processor Storage Temperature  
-40  
-25  
85  
°C  
°C  
3,4,5  
6
Any Processor Supply Voltage with  
Respect to VSS  
VCC  
-0.3  
-0.1  
-0.1  
1.45  
1.45  
1.45  
V
V
V
AGTL+ Buffer DC Input Voltage with  
Respect to VSS  
VinAGTL+  
CMOS Buffer DC Input Voltage with  
Respect to VSS  
VinAsynch_CMOS  
NOTES:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
Datasheet  
31  
Electrical Specifications  
2.  
3.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to  
the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits will not affect the long-term reliability of the device. For  
functional operation, please refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
For Intel® Core™2 Duo mobile processors in 22x22 mm package.  
4.  
5.  
6.  
3.10  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise.  
The tables list the DC specifications for the processor and are valid only while meeting  
specifications for junction temperature, clock frequency, and input voltages. The  
Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest  
and lowest core operating frequencies supported on the processor. Active mode load  
line specifications apply in all states except in the Deep Sleep and Deeper Sleep states.  
V
CC,BOOT is the default voltage driven by the voltage regulator at power up in order to  
set the VID values. Unless specified otherwise, all specifications for the processor are at  
TJ = 105 °C. Read all notes associated with each parameter.  
Table 6.  
Voltage and Current Specifications for the Dual-Core, Extreme Edition  
Processors (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
1.0  
1.325  
V
1, 2  
VCCHFM  
VCCLFM  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
1.0  
1.275  
1.1  
V
V
1, 2  
1, 2  
0.85  
VCC at Super Low Frequency Mode  
(Super LFM)  
VCCSLFM  
0.8  
1.0  
V
1, 2  
2, 6  
VCC,BOOT  
VCCP  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
PLL Supply Voltage  
1.20  
1.05  
1.5  
V
V
V
V
V
1.00  
1.425  
0.65  
0.6  
1.10  
1.575  
0.85  
VCCA  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
VCC at Intel® Enhanced Deeper Sleep State  
0.85  
VCC at Deep Power Down Technology State  
(C6)  
VCCDPPWDN  
ICCDES  
0.35  
0.7  
V
A
ICC for Processors Recommended Design  
Target  
60  
12  
ICC for Processors  
Processor  
Core Frequency/Voltage  
Number  
ICC  
X9100  
3.06 GHz & VCCHFM  
1.6 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
59  
34  
24  
A
3, 4, 10  
32  
Datasheet  
Electrical Specifications  
Table 6.  
Symbol  
Voltage and Current Specifications for the Dual-Core, Extreme Edition  
Processors (Sheet 2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
29.7  
16.7  
A
3, 4, 10  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
28.8  
16.5  
A
A
3, 4, 10  
3, 4, 10  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
26.8  
16.0  
IDPRSLP  
IDC4  
ICC Deeper Sleep (C4)  
12.2  
11.7  
11.0  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep State  
ICC Deep Power Down Technology State (C6)  
IPPWDN  
VCC Power Supply Current Slew Rate at  
Processor Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
5, 7  
ICC for VCCA Supply  
8
9
ICC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
I
CC for VCCP Supply after VCC Stable  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 4 and Figure 5.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high.  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
11.  
The ICCDES (max) specification of 60 A is for Intel® Core2 Extreme processors only.  
Datasheet  
33  
Electrical Specifications  
Table 7.  
Voltage and Current Specifications for the Dual-Core, Standard-Voltage  
Processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
1.0  
1.3  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.0  
0.85  
0.75  
1.25  
1.1  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
1, 2  
2, 6  
0.95  
1.2  
1.05  
1.5  
1.0  
1.1  
VCCA  
PLL Supply Voltage  
1.425  
0.65  
0.6  
1.575  
0.85  
0.85  
0.7  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
12  
VCC at Intel® Enhanced Deeper Sleep State  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
ICCDES  
ICC for Processors Recommended Design Target  
ICC for Processors  
47  
Processor  
Core Frequency/Voltage  
Number  
T9900  
T9800  
T9600  
T9550  
T9400  
3.06 GHz & VCCHFM  
2.93 GHz & VCCHFM  
2.80 GHz & VCCHFM  
2.66 GHz & VCCHFM  
2.53 GHz & VCCHFM  
1.6 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
47  
47  
47  
47  
47  
ICC  
A
3, 4, 10  
31.4  
22.4  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
25.4  
13.7  
A
A
A
3, 4, 10  
3, 4, 10  
3, 4, 10  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
24.7  
13.5  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
22.9  
13.0  
IDPRSLP  
IDC4  
ICC Deeper Sleep (C4)  
11.7  
10.5  
5.7  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
ICC Deep Power Down Technology State (C6)  
IPPWDN  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
5, 7  
ICC for VCCA Supply  
8
9
ICCC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:See next page.  
34  
Datasheet  
Electrical Specifications  
1.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 7 and Figure 8.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICCcurrent specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 57 A has to be sustained for short time (tINST) of 35 µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
Table 8.  
Voltage and Current Specifications for the Dual-Core, Low-Power  
Standard-Voltage Processors (25 W) in Standard Package  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
0.9  
1.3  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.9  
0.85  
0.75  
1.25  
1.025  
0.95  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
1, 2  
2, 6  
1.2  
1.05  
1.5  
1.0  
1.1  
VCCA  
PLL Supply Voltage  
1.425  
0.65  
0.6  
1.575  
0.85  
0.85  
0.7  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
12  
VCC at Intel® Enhanced Deeper Sleep State  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
ICCDES  
ICC for Processors Recommended Design Target  
ICC for Processors  
38  
Processor  
Core Frequency/Voltage  
Number  
P9700  
P9600  
P8800  
P9500  
P8700  
P8600  
P8400  
2.8 GHz & VCCHFM  
2.667 GHz & VCCHFM  
2.667 GHz & VCCHFM  
2.53 GHz & VCCHFM  
2.53 GHz & VCCHFM  
2.4 GHz & VCCHFM  
2.267 GHz & VCCHFM  
1.6 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
38  
38  
38  
38  
38  
38  
38  
27.7  
17.5  
ICC  
A
3, 4, 10  
Datasheet  
35  
Electrical Specifications  
Table 8.  
Symbol  
Voltage and Current Specifications for the Dual-Core, Low-Power  
Standard-Voltage Processors (25 W) in Standard Package  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
15.3  
10.5  
A
3, 4, 10  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
14.6  
10.3  
A
A
3, 4, 10  
3, 4, 10  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
12.9  
9.8  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
7.3  
6.7  
4.3  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
ICC Deep Power Down Technology State (C6)  
IPPWDN  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
5, 7  
ICC for VCCA Supply  
8
9
ICCC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
I
CC for VCCP Supply after VCC Stable  
NOTES:.  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 4 and Figure 5.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICCcurrent specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 49 A has to be sustained for short time (tINST) of 35 µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
36  
Datasheet  
Electrical Specifications  
Table 9.  
Voltage and Current Specifications for the Dual-Core, Power Optimized  
Performance (25 W) SFF Processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
0.9  
1.275  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.9  
0.85  
0.75  
1.2125  
1.025  
0.95  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
1, 2  
1.20  
1.05  
1.5  
2, 6, 8  
1.00  
1.425  
0.65  
0.6  
1.10  
1.575  
0.85  
0.85  
0.7  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
5
VCC at Intel® Enhanced Deeper Sleep State  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
ICCDES  
ICC for Processors Recommended Design Target  
37  
Processor  
Core Frequency/Voltage  
Number  
SP9600  
SP9400  
SP9300  
2.53 GHz & VCCHFM  
2.4 GHz & VCCHFM  
2.26 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
37  
37  
37  
28  
17  
ICC  
A
3, 4, 12  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
14.8  
8.8  
A
A
A
3, 4, 12  
3, 4, 12  
3, 4, 12  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
14.2  
8.6  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
12.5  
8.1  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
6.9  
5.9  
3.5  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep State  
ICC Deep Power Down Technology State (C6)  
IDPWDN  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
7, 9  
ICC for VCCA Supply  
10  
11  
ICC for VCCP Supply before VCC Stable  
ICC for VCCPSupply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
Datasheet  
37  
Electrical Specifications  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
2.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 7 and Figure 8.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 44 A has to be sustained for short time (tINST) of 35 µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
Table 10.  
Voltage and Current Specifications for the Dual-Core, Low-Voltage SFF  
Processor  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
0.9  
1.25  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.9  
0.85  
0.75  
1.175  
1.025  
0.95  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
1, 2  
1.20  
1.05  
1.5  
2, 6, 8  
1.00  
1.425  
0.65  
0.6  
1.10  
1.575  
0.85  
0.85  
0.7  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
5
VCC at Intel® Enhanced Deeper Sleep State  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
ICCDES  
ICC for Processors Recommended Design Target  
27  
Processor  
Core Frequency/Voltage  
Number  
SL9600  
SL9400  
SL9300  
2.13 GHz & VCCHFM  
1.86 GHz & VCCHFM  
1.6 GHz & VCCHFM  
1.6 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
27  
27  
27  
25.5  
15  
ICC  
A
3, 4, 12  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
12.3  
8.2  
A
A
3, 4, 12  
3, 4, 12  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
11.8  
8.0  
38  
Datasheet  
Electrical Specifications  
Table 10.  
Symbol  
IDSLP  
Voltage and Current Specifications for the Dual-Core, Low-Voltage SFF  
Processor  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Deep Sleep  
HFM  
SuperLFM  
10.5  
7.5  
A
3, 4, 12  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
6.5  
5.6  
3.2  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
IDPWDN  
ICC Deep Power Down Technology State (C6)  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
7, 9  
ICC for VCCA Supply  
10  
11  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 7 and Figure 8.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 36 A has to be sustained for short time (tINST) of 35 µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
Datasheet  
39  
Electrical Specifications  
Table 11.  
Voltage and Current Specifications for the Dual-Core, Ultra-Low-Voltage SFF  
Processor  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Enhanced Intel® Dynamic Acceleration  
Technology Mode  
VCCDAM  
0.8  
1.1625  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.775  
0.8  
1.1  
0.975  
0.925  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
0.725  
1, 2  
1.20  
1.05  
1.5  
2, 6, 8  
1.00  
1.425  
0.65  
0.6  
1.10  
1.575  
0.8  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
5
VCC at Intel® Enhanced Deeper Sleep State  
0.8  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
0.6  
ICCDES  
ICC for Processors Recommended Design Target  
18  
Processor  
Core Frequency/Voltage  
Number  
SU9600  
SU9400  
SU9300  
1.6 GHz & VCCHFM  
1.4 GHz & VCCHFM  
1.2 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
18  
18  
18  
18  
13  
ICC  
A
3, 4, 12  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
6.3  
4.4  
A
A
A
3, 4, 12  
3, 4, 12  
3, 4, 12  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
5.9  
4.2  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
5.0  
3.7  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
3.2  
2.8  
2.4  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep State  
ICC Deep Power Down Technology State (C6)  
IDPWDN  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
7, 9  
ICC for VCCA Supply  
10  
11  
ICC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
I
CC for VCCPSupply after VCC Stable  
NOTES:See next page.  
40  
Datasheet  
Electrical Specifications  
1.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 7 and Figure 8.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 24 A has to be sustained for short time (tINST) of 35µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
Table 12.  
Symbol  
Voltage and Current Specifications for the Ultra-Low-Voltage, Single-Core  
(5.5 W) SFF Processor  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.775  
0.8  
1.1  
0.975  
0.925  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
0.725  
1, 2  
1.20  
1.05  
1.5  
2, 6, 8  
1.00  
1.425  
0.65  
0.6  
1.10  
1.575  
0.8  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
5
VCC at Intel® Enhanced Deeper Sleep State  
0.8  
VCCDPPWDN VCC at Deep Power Down Technology State (C6)  
0.35  
0.6  
ICCDES  
ICC for Processors Recommended Design Target  
9
Processor  
Core Frequency/Voltage  
Number  
SU3500  
SU3300  
1.4 GHz & VCCHFM  
1.2 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
9
9
9
7
ICC  
A
3, 4, 12  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
4.4  
3.7  
A
A
3, 4, 12  
3, 4, 12  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
4.1  
3.5  
Datasheet  
41  
Electrical Specifications  
Table 12.  
Symbol  
IDSLP  
Voltage and Current Specifications for the Ultra-Low-Voltage, Single-Core  
(5.5 W) SFF Processor  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Deep Sleep  
HFM  
SuperLFM  
3.3  
3.0  
A
3, 4, 12  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
2.1  
1.9  
1.7  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep State  
IDPWDN  
ICC Deep Power Down Technology State (C6)  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
7, 9  
ICC for VCCA Supply  
10  
11  
ICC for VCCP Supply before VCC Stable  
ICC for VCCPSupply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 100 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 4 and Figure 5.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode are lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
42  
Datasheet  
Electrical Specifications  
Figure 4.  
Active VCC and ICC Loadline for Standard Voltage, Low-Power SV (25 W) and  
Dual-Core, Extreme Edition Processors  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below :  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5% VCC-CORE > 0.7500V  
+/-11.5mV 0.5000V </= Vcc_core </= 0.75000V  
Datasheet  
43  
Electrical Specifications  
Figure 5.  
Deeper Sleep VCC and ICC Loadline for Standard-Voltage, Low-Power SV  
(25 W) and Dual-Core Extreme Edition Processors  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
13mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-[(VID*1.5%)-3mV]  
VCC-CORE > 0.7500V  
+/-(11.5mV-3mV)  
0.5000V </= VCC-CORE </= 0.7500V  
Total tolerance window  
including ripple is +/-35mV for C6  
0.3000V </= VCC-CORE < 0.5000V  
NOTE: Deeper Sleep mode tolerance depends on VID value.  
44  
Datasheet  
Electrical Specifications  
Figure 6.  
Deeper Sleep VCC and ICC Loadline for Low-Power Standard-Voltage  
Processors  
VCC-CORE [V]  
Slope = -4.0 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom  
{HFM|LFM}  
VCC-CORE, DC min  
{HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
VCC-CORE min {HFM|LFM}  
ICC-CORE  
[A]  
ICC-CORE max  
{HFM|LFM}  
0
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-[(VID*1.5%)-3mV]  
VCC-CORE > 0.7500V  
+/-(11.5mV-3mV)  
0.5000V </= VCC-CORE </= 0.7500V  
Total tolerance window  
including ripple is +/-35mV for C6  
0.3000V </= VCC-CORE < 0.5000V  
NOTES:  
1.  
2.  
Applies to low-power standard-voltage 22-mm (dual-core) processors.  
Deeper Sleep mode tolerance depends on VID value.  
Datasheet  
45  
Electrical Specifications  
Figure 7.  
Active VCC and ICC Loadline for Low-Voltage, Ultra-Low-Voltage and Power  
Optimized Performance Processor  
VCC-CORE [V]  
Slope = -4.0 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5%  
+/-11.5mV  
+/-25mV  
VCC-CORE > 0.7500V  
0.5000V </= VCC-CORE </= 0.7500V  
0.3000V </= VCC-CORE < 0.5000V  
NOTES:  
1.  
Applies to Low-Voltage, Ultra-Low-Voltage and Power Optimised Performance processors in  
22 mmx22 mm package.  
2.  
Active mode tolerance depends on VID value  
46  
Datasheet  
Electrical Specifications  
Figure 8.  
Deeper Sleep VCC and ICC Loadline for Low-Voltage, Ultra-Low-Voltage and  
Power Optimized Performance Processor  
VCC-CORE [V]  
Slope = -4.0 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom  
{HFM|LFM}  
VCC-CORE, DC min  
{HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
VCC-CORE min {HFM|LFM}  
ICC-CORE  
[A]  
ICC-CORE max  
{HFM|LFM}  
0
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-[(VID*1.5%)-3mV]  
VCC-CORE > 0.7500V  
+/-(11.5mV-3mV)  
0.5000V </= VCC-CORE </= 0.7500V  
Total tolerance window  
including ripple is +/-35mV for C6  
0.3000V </= VCC-CORE < 0.5000V  
NOTES:  
1.  
Applies to Low-Voltage, Ultra-Low-Voltage and Power Optimised Performance processors in  
22 mmx22 mm package.  
2.  
Deeper Sleep mode tolerance depends on VID value.  
Datasheet  
47  
Electrical Specifications  
Table 13.  
Symbol  
AGTL+ Signal Group DC Specifications  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
V
1.00  
0.65  
27.23  
49  
1.05  
0.70  
27.5  
55  
1.10  
0.72  
27.78  
63  
V
V
CCP  
GTLREF  
Reference Voltage  
6
10  
R
Compensation Resistor  
Termination Resistor Address  
Termination Resistor Data  
Termination Resistor Control  
Input High Voltage  
Ω
Ω
Ω
Ω
V
COMP  
ODT/A  
ODT/D  
R
R
11, 12  
11, 13  
11, 14  
3,6  
49  
55  
63  
R
49  
55  
63  
ODT/Cntrl  
V
0.82  
-0.10  
0.90  
50  
1.05  
0
1.20  
0.55  
1.10  
61  
IH  
V
Input Low Voltage  
V
2,4  
IL  
V
Output High Voltage  
V
V
6
OH  
CCP  
R
Termination Resistance Address  
Termination Resistance Data  
Termination Resistance Control  
Buffer On Resistance Address  
Buffer On Resistance Data  
Buffer On Resistance Control  
Input Leakage Current  
Pad Capacitance  
55  
55  
Ω
Ω
Ω
Ω
Ω
Ω
µA  
pF  
7, 12  
7, 13  
7, 14  
5, 12  
5, 13  
5, 14  
8
TT/A  
TT/D  
R
50  
61  
R
50  
55  
61  
TT/Cntrl  
R
R
23  
25  
29  
ON/A  
ON/D  
23  
25  
29  
R
23  
25  
29  
ON/Cntrl  
I
± 100  
2.75  
LI  
Cpad  
1.80  
2.30  
9
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
V
IL  
value.  
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
3.  
4.  
5.  
V
IH  
value.  
and V  
V
may experience excursions above V . However, input signal drivers must comply with the  
CCP  
IH  
OH  
signal quality specifications.  
This is the pulldown driver resistance. Measured at 0.31*V . R  
(min) = 0.418*R , R (typ) =  
ON  
CCP  
ON  
TT  
0.455*R ,  
TT  
R
(max) = 0.527*R . R typical value of 55 Ω is used for R  
typ/min/max calculations.  
ON  
TT  
TT  
ON  
6.  
7.  
GTLREF should be generated from V  
specifications is the instantaneous V  
with a 1% tolerance resistor divider. The V  
referred to in these  
CCP  
CCP  
.
CCP  
R
is the on-die termination resistance measured at V of the AGTL+ output driver. Measured at  
TT  
OL  
0.31*V . R is connected to V on die. Refer to processor I/O buffer models for I/V characteristics.  
CCP  
TT  
CCP  
8.  
Specified with on-die R and R  
turned off. Vin between 0 and V  
.
TT  
ON  
CCP  
9.  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
10.  
11.  
12.  
13.  
14.  
On-die termination resistance, measured at 0.33*V  
Applies to Signals A[35:3].  
.
CCP  
Applies to Signals D[63:0].  
Applies to Signals BPRI#, DEFER#, PREQ#, PREST#, RS[2:0]#, TRDY#, ADS#, BNR#, BPM[3:0], BR0#,  
DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#, DPWR#, DSTB[1:0]#, DSTBP[3:0] and DSTBN[3:0]#.  
48  
Datasheet  
Electrical Specifications  
Table 14.  
Symbol  
CMOS Signal Group DC Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
V
I/O Voltage  
1.00  
1.05  
0.00  
1.10  
V
V
CCP  
V
Input Low Voltage CMOS  
Input High Voltage  
-0.10  
0.3*V  
2
2
2
2
3
4
5
6
7
IL  
IH  
CCP  
V
0.7*V  
V
V +0.1  
CCP  
V
CCP  
CCP  
V
Output Low Voltage  
-0.10  
0.9*V  
0
0.1*V  
V
OL  
OH  
OL  
OH  
CCP  
V
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Pad Capacitance  
V
V +0.1  
CCP  
V
CCP  
CCP  
I
1.5  
1.5  
4.1  
mA  
mA  
µA  
pF  
pF  
I
4.1  
±100  
2.75  
1.45  
I
LI  
Cpad1  
Cpad2  
1.80  
0.95  
2.30  
1.2  
Pad Capacitance for CMOS Input  
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The V referred to in these specifications refers to instantaneous V  
.
CCP  
CCP  
Measured at 0.1 *V  
Measured at 0.9 *V  
.
CCP  
.
CCP  
For Vin between 0 V and V . Measured when the driver is tristated.  
CCP  
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are  
included.  
7.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.  
Table 15.  
Symbol  
Open Drain Signal Group DC Specifications  
Parameter  
Output High Voltage  
Min  
–5%  
Typ  
Max  
V +5%  
CCP  
Unit  
Notes1  
V
V
V
V
V
3
OH  
CCP  
CCP  
V
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
0
16  
0.20  
50  
OL  
OL  
LO  
I
I
mA  
µA  
pF  
2
4
5
±200  
2.75  
Cpad  
1.80  
2.30  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
is determined by value of the external pull-up resistor to V  
.
OH  
CCP  
For Vin between 0 V and V  
.
OH  
Cpad includes die capacitance only. No package parasitics are included.  
§
Datasheet  
49  
Electrical Specifications  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
4
Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The processor (XE and SV) is available in 478-pin Micro-FCPGA packages as well as  
479-ball Micro-FCBGA packages. The package mechanical dimensions are shown in  
Figure 9 through Figure 13.  
The processor (POP, LV, ULV DC and ULV SC) is available 956-ball Micro-FCBGA  
packages. The package mechanical dimensions are shown in Figure 14 and Figure 15.  
The maximum outgoing co-planarity is 0.2 mm (8 mils) for SFF processors.  
The mechanical package pressure specifications are in a direction normal to the surface  
of the processor. This protects the processor die from fracture risk due to uneven die  
pressure distribution under tilt, stack-up tolerances and other similar conditions. These  
specifications assume that a mechanical attach is designed specifically to load one type  
of processor.  
A 15-lbf load limit should not be exceeded on BGA packages so as to not impact solder  
joint reliability after reflow. This load limit ensures that impact to the package solder  
joints due to transient bend, shock, or tensile loading is minimized. The 15-lbf metric  
should be used in parallel with the 689-kPa (100 psi) pressure limit as long as neither  
limits are exceeded. In some cases, designing to 15 lbf will exceed the pressure  
specification of 689 kPa (100 psi) and therefore should be reduced to ensure both limits  
are maintained.  
Moreover, the processor package substrate should not be used as a mechanical  
reference or load-bearing surface for the thermal or mechanical solution.  
Caution:  
The Micro-FCBGA package incorporates land-side capacitors. The land-side capacitors  
are electrically conductive so care should be taken to avoid contacting the capacitors  
with other electrically conductive materials on the motherboard. Doing so may short  
the capacitors and possibly damage the device or render it inactive.  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Figure 9.  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Package Drawing (Sheet 1 of 2)  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 10.  
3-MB die Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Figure 11.  
3-MB Die Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 12.  
3-MB Die Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Figure 13.  
3-MB Die Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 14.  
Intel Core 2 Duo Mobile Processor (POP and LV) Die Micro-FCBGA Processor  
Package Drawing  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Figure 15.  
Intel Core 2 Duo Mobile Processor (ULV SC and ULV DC) Die Micro-FCBGA  
Processor Package Drawing  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Figure 16 and Figure 17 show the processor (SV and XE) pinout as viewed from the top  
of the package. Table 16 provides the pin list, arranged numerically by pin number.  
Figure 16 through Figure 18 show the top view of the LV and ULV processor package.  
Table 18 lists the SFF processor ballout alphabetically by signal name. For signal  
descriptions, refer to Section 4.3.  
Figure 16.  
Processor Pinout (Top Package View, Left Side)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1
A
VSS  
RSVD  
SMI#  
INIT#  
VSS  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
1
B
LINT1  
IGNNE  
#
THERM  
TRIP#  
C
D
E
RESET#  
VSS  
VSS  
TEST7  
RSVD  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
D
E
STPCLK  
#
PWRGO  
OD  
RSVD  
BNR#  
VSS  
SLP#  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
F
BR0#  
VSS  
VSS  
RS[0]#  
RS[2]#  
RS[1]#  
VSS  
VSS  
RSVD  
HIT#  
F
G
TRDY#  
BPRI#  
G
REQ[1]  
#
H
J
ADS#  
A[9]#  
VSS  
LOCK#  
A[3]#  
DEFER#  
VSS  
VSS  
H
J
REQ[3]  
#
VSS  
VCCP  
REQ[2]  
#
REQ[0]  
#
K
L
VSS  
VSS  
A[6]#  
A[4]#  
VSS  
VCCP  
VSS  
K
L
REQ[4]#  
A[13]#  
VSS  
VSS  
A[5]#  
RSVD  
ADSTB[0]  
#
M
A[7]#  
VCCP  
M
N
P
R
T
VSS  
A[8]#  
A[12]#  
VSS  
A[10]#  
VSS  
VSS  
RSVD  
A[11]#  
VSS  
VCCP  
VSS  
N
P
R
T
A[15]#  
A[16]#  
VSS  
A[14]#  
A[24]#  
VSS  
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
RSVD  
A[25]#  
A[18]#  
U
A[23]#  
A[30]#  
A[21]#  
U
ADSTB[1]  
#
V
VSS  
RSVD  
A[31]#  
VSS  
VCCP  
V
W
Y
VSS  
A[27]#  
A[17]#  
A[32]#  
VSS  
VSS  
A[28]#  
A[22]#  
A[20]#  
VSS  
W
Y
COMP[3]  
A[29]#  
A
A
AA  
AB  
AC  
AD  
AE  
AF  
COMP[2]  
VSS  
VSS  
A[34]#  
PRDY#  
VSS  
A[35]#  
TDO  
A[33]#  
VSS  
VSS  
TMS  
TDI  
TRST#  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
A
B
BPM[3]  
#
A
C
PREQ#  
BPM[2]#  
VSS  
VSS  
TCK  
BPM[1]  
#
BPM[0]  
#
A
D
VSS  
VID[0]  
PSI#  
VSS  
SENSE  
A
E
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
A
F
TEST5  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NOTES:  
1.  
2.  
Keying option for Micro-FCPGA, A1 and B1 are de-populated.  
Keying option for Micro-FCBGA, A1 is de-populated and B1 is VSS.  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Figure 17.  
Processor Pinout (Top Package View, Right Side)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
TEST6  
VCCA  
VCCA  
A
B
C
VCC  
BSEL[1]  
TEST1  
THRMDC  
VSS  
DBR#  
BSEL[2]  
TEST3  
PROCHOT  
#
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
VSS  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
D[1]#  
D[9]#  
G
D[3]#  
D[5]#  
G
DSTBP[  
0]#  
H
VSS  
D[12]#  
D[15]#  
VSS  
DINV[0]#  
H
DSTBN[  
0]#  
J
K
L
VCCP  
VCCP  
VSS  
VSS  
D[11]#  
VSS  
D[10]#  
D[8]#  
VSS  
VSS  
J
K
L
D[14]#  
D[22]#  
D[17]#  
D[29]#  
VSS  
DSTBN[  
1]#  
D[20]#  
DSTBP[  
1]#  
M
VCCP  
VSS  
D[23]#  
D[21]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[26]#  
VSS  
DINV[1]#  
VSS  
D[31]#  
D[24]#  
VSS  
N
P
D[25]#  
D[18]#  
COMP[0  
]
R
T
VCCP  
VCCP  
VSS  
VSS  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[37]#  
DINV[2]#  
D[30]#  
D[38]#  
VSS  
COMP[1  
]
U
D[39]#  
U
V
VCCP  
VCCP  
VSS  
D[36]#  
VSS  
D[34]#  
D[43]#  
VSS  
D[35]#  
VSS  
V
W
D[41]#  
D[44]#  
W
DSTBN[  
2]#  
Y
VSS  
D[32]#  
VSS  
D[42]#  
D[45]#  
VSS  
D[40]#  
VSS  
Y
DSTBP[  
2]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
D[50]#  
D[46]#  
A
B
AB  
AC  
D[52]#  
VSS  
D[51]#  
D[60]#  
VSS  
VSS  
D[63]#  
D[61]#  
VSS  
D[33]#  
VSS  
D[47]#  
D[57]#  
VSS  
VSS  
D[53]#  
GTLREF  
VSS  
DINV[3  
]#  
A
C
A
D
A
D
D[54]#  
VCC  
D[59]#  
D[58]#  
D[49]#  
D[48]#  
DSTBN[3]  
#
A
E
AE  
AF  
D[55]#  
DSTBP[3]  
#
A
F
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
D[62]#  
D[56]#  
VSS  
TEST4  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
R4  
T5  
A[3]#  
A[4]#  
J4  
L5  
L4  
K5  
M3  
N2  
J1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
T3  
A[5]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W2  
W5  
Y4  
A[6]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[7]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[8]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U2  
A[9]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
V4  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
N3  
P5  
P2  
L2  
P4  
P1  
R1  
Y2  
U5  
R3  
W6  
U4  
Y5  
U1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W3  
AA4  
AB2  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[35]#  
A20M#  
ADS#  
AA3  
A6  
CMOS  
Input  
Source  
Synch  
Input/  
Output  
Common Input/  
Clock  
H1  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
ADSTB[0]#  
ADSTB[1]#  
M1  
V1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock Input  
Bus Clock Input  
Common Input/  
Source  
Synch  
Input/  
Output  
BNR#  
E2  
Source  
Synch  
Input/  
Output  
Clock  
Output  
Common Input/  
Clock  
BPM[0]#  
BPM[1]#  
BPM[2]#  
BPM[3]#  
AD4  
AD3  
AD1  
AC4  
Source  
Synch  
Input/  
Output  
Output  
Output  
Common  
Clock  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Output  
Source  
Synch  
Input/  
Output  
Common Input/  
Clock Output  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Common  
Clock  
Source  
Synch  
Input/  
Output  
BPRI#  
BR0#  
G5  
F1  
Input  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
K22  
H23  
N22  
K25  
P26  
R23  
L23  
M24  
L22  
M23  
P25  
P23  
P22  
T24  
R24  
L25  
T25  
N25  
Y22  
AB24  
V24  
V26  
Common Input/  
Source  
Synch  
Input/  
Output  
Clock  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Output  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Input/  
Output  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
R26  
U26  
AA1  
Y1  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Power/  
Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E22  
F24  
E26  
G22  
F23  
G25  
E25  
E23  
K24  
G24  
J24  
J23  
H22  
F26  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[1]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[2]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[3]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[4]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[5]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[6]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[7]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[8]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[9]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
V23  
T22  
D[58]#  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
AE21  
AD21  
AC22  
AD23  
AF22  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U25  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U23  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Y25  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W22  
Y23  
D[63]#  
DBR#  
AC23  
C20  
E1  
Source  
Synch  
Input/  
Output  
CMOS  
Output  
Common Input/  
Clock  
DBSY#  
Source  
Synch  
Input/  
Output  
Output  
W24  
W25  
AA23  
AA24  
AB25  
AE24  
AD24  
AA21  
AB22  
AB21  
AC26  
AD20  
AE22  
AF23  
AC25  
Common  
Clock  
DEFER#  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
H5  
H25  
N24  
U22  
AC20  
Input  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Source  
Synch  
Input/  
Output  
Common Input/  
Clock Output  
Source  
Synch  
Input/  
Output  
DPWR#  
DRDY#  
D24  
F21  
J26  
L26  
Y26  
Common Input/  
Clock  
Source  
Synch  
Input/  
Output  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN[3]# AE25  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBP[0]#  
DSTBP[1]#  
H26  
M26  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Source  
Synch  
Input/  
Output  
Common  
Clock  
DSTBP[2]# AA26  
DSTBP[3]# AF24  
RS[1]#  
RS[2]#  
F4  
Input  
Input  
Source  
Synch  
Input/  
Output  
Common  
Clock  
G3  
Open  
Drain  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
SMI#  
STPCLK#  
TCK  
B2  
D2  
D3  
D22  
F6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMOS  
FERR#  
GTLREF  
HIT#  
A5  
AD26  
G6  
Output  
Input  
Power/  
Other  
Common Input/  
Clock Output  
Common Input/  
Clock  
M4  
N5  
HITM#  
IERR#  
E4  
Output  
Open  
Drain  
D20  
Output  
T2  
V3  
IGNNE#  
INIT#  
LINT0  
C4  
B3  
C6  
B4  
CMOS  
CMOS  
CMOS  
CMOS  
Input  
Input  
Input  
Input  
D7  
A3  
Input  
Input  
Input  
Input  
Input  
CMOS  
D5  
AC5  
AA6  
CMOS  
LINT1  
CMOS  
Common Input/  
Clock  
LOCK#  
PRDY#  
H4  
Output  
TDI  
CMOS  
Common  
Clock  
Open  
Drain  
AC2  
AC1  
D21  
Output  
TDO  
AB3  
Output  
Common  
Clock  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
TEST7  
C23  
D25  
C24  
AF26  
AF1  
A26  
C3  
Test  
Test  
Test  
Test  
Test  
Test  
Test  
PREQ#  
Input  
Open  
Drain  
Input/  
Output  
PROCHOT#  
PSI#  
AE6  
D6  
CMOS  
CMOS  
Output  
Input  
PWRGOOD  
Source  
Synch  
Input/  
Output  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
K3  
H2  
K2  
J3  
Source  
Synch  
Input/  
Output  
THERMTRIP  
#
Open  
Drain  
C7  
Output  
Source  
Synch  
Input/  
Output  
Power/  
Other  
THRMDA  
A24  
Source  
Synch  
Input/  
Output  
Power/  
Other  
THRMDC  
TMS  
B25  
AB5  
G2  
Source  
Synch  
Input/  
Output  
CMOS  
Input  
Input  
Input  
L1  
C1  
F3  
Common  
Clock  
TRDY#  
TRST#  
VCC  
Common  
Clock  
Input  
Input  
AB6  
A7  
CMOS  
Common  
Clock  
Power/  
Other  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB15  
AB17  
AB18  
AB20  
AC7  
Power/  
Other  
Power/  
Other  
A10  
Power/  
Other  
Power/  
Other  
A12  
Power/  
Other  
Power/  
Other  
A13  
Power/  
Other  
Power/  
Other  
A15  
Power/  
Other  
Power/  
Other  
A17  
AC9  
Power/  
Other  
Power/  
Other  
A18  
AC10  
AC12  
AC13  
AC15  
AC17  
AC18  
AD7  
Power/  
Other  
Power/  
Other  
A20  
Power/  
Other  
Power/  
Other  
AA7  
Power/  
Other  
Power/  
Other  
AA9  
Power/  
Other  
Power/  
Other  
AA10  
AA12  
AA13  
AA15  
AA17  
AA18  
AA20  
AB7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AD9  
Power/  
Other  
Power/  
Other  
AD10  
AD12  
AD14  
AD15  
AD17  
AD18  
AE9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AB9  
Power/  
Other  
Power/  
Other  
AB10  
AB12  
AB14  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE10  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AE12  
AE13  
AE15  
AE17  
AE18  
AE20  
AF9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
B20  
C9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
C10  
C12  
C13  
C15  
C17  
C18  
D9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AF10  
AF12  
AF14  
AF15  
AF17  
AF18  
AF20  
B7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
D10  
D12  
D14  
D15  
D17  
D18  
E7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
B9  
Power/  
Other  
Power/  
Other  
B10  
E9  
Power/  
Other  
Power/  
Other  
B12  
E10  
E12  
E13  
E15  
E17  
Power/  
Other  
Power/  
Other  
B14  
Power/  
Other  
Power/  
Other  
B15  
Power/  
Other  
Power/  
Other  
B17  
Power/  
Other  
Power/  
Other  
B18  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
E18  
E20  
F7  
VCCP  
VCCP  
R6  
R21  
T6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
VCC  
VCCP  
Power/  
Other  
Power/  
Other  
VCC  
F9  
VCCP  
T21  
V6  
Power/  
Other  
Power/  
Other  
VCC  
F10  
F12  
F14  
F15  
F17  
F18  
F20  
B26  
C26  
G21  
J6  
VCCP  
Power/  
Other  
Power/  
Other  
VCC  
VCCP  
V21  
W21  
AF7  
Power/  
Other  
Power/  
Other  
VCC  
VCCP  
Power/  
Other  
Power/  
Other  
VCC  
VCCSENSE  
Power/  
Other  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
AD6  
AF5  
AE5  
AF4  
AE3  
AF3  
AE2  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
VCC  
Power/  
Other  
VCC  
Power/  
Other  
VCC  
Power/  
Other  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A2  
A4  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
A8  
Power/  
Other  
J21  
K6  
Power/  
Other  
A11  
A14  
A16  
A19  
A23  
A25  
Power/  
Other  
Power/  
Other  
Power/  
Other  
K21  
M6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
M21  
N6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
N21  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA2  
AA5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC14  
AC16  
AC19  
AC21  
AC24  
AD2  
Power/  
Other  
Power/  
Other  
Power/  
other  
Power/  
Other  
AA8  
Power/  
Other  
Power/  
Other  
AA11  
AA14  
AA16  
AA19  
AA22  
AA25  
AB1  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AD5  
Power/  
Other  
Power/  
Other  
AD8  
Power/  
Other  
Power/  
Other  
AD11  
AD13  
AD16  
AD19  
AD22  
AD25  
AE1  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AB4  
Power/  
Other  
Power/  
Other  
AB8  
Power/  
Other  
Power/  
Other  
AB11  
AB13  
AB16  
AB19  
AB23  
AB26  
AC3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE4  
Power/  
Other  
Power/  
Other  
AE8  
Power/  
Other  
Power/  
Other  
AE11  
AE14  
AE16  
AE19  
AE23  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AC6  
Power/  
Other  
Power/  
Other  
AC8  
Power/  
Other  
Power/  
Other  
AC11  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE26  
AF2  
AF6  
AF8  
AF11  
AF13  
AF16  
AF19  
AF21  
AF25  
B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C14  
C16  
C19  
C22  
C25  
D1  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
D4  
Power/  
Other  
Power/  
Other  
D8  
Power/  
Other  
Power/  
Other  
D11  
D13  
D16  
D19  
D23  
D26  
E3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
B8  
Power/  
Other  
Power/  
Other  
B11  
B13  
B16  
B19  
B21  
B24  
C2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
E6  
Power/  
Other  
Power/  
Other  
E8  
Power/  
Other  
Power/  
Other  
E11  
E14  
E16  
E19  
E21  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
C5  
Power/  
Other  
Power/  
Other  
C8  
Power/  
Other  
Power/  
Other  
C11  
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E24  
F2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K1  
K4  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
F5  
K23  
K26  
L3  
Power/  
Other  
Power/  
Other  
F8  
Power/  
Other  
Power/  
Other  
F11  
F13  
F16  
F19  
F22  
F25  
G1  
Power/  
Other  
Power/  
Other  
L6  
Power/  
Other  
Power/  
Other  
L21  
L24  
M2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
M5  
Power/  
Other  
Power/  
Other  
M22  
M25  
N1  
Power/  
Other  
Power/  
Other  
G4  
Power/  
Other  
Power/  
Other  
G23  
G26  
H3  
Power/  
Other  
Power/  
Other  
N4  
Power/  
Other  
Power/  
Other  
N23  
N26  
P3  
Power/  
Other  
Power/  
Other  
H6  
Power/  
Other  
Power/  
Other  
H21  
H24  
J2  
Power/  
Other  
Power/  
Other  
P6  
Power/  
Other  
Power/  
Other  
P21  
P24  
R2  
Power/  
Other  
Power/  
Other  
J5  
Power/  
Other  
Power/  
Other  
J22  
J25  
Power/  
Other  
Power/  
Other  
R5  
70  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Pin Name Listing  
Signal  
Table 16.  
Pin Name Listing  
Signal  
Pin Name Pin #  
Buffer  
Type  
Direction  
Pin Name Pin #  
Buffer  
Type  
Direction  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R22  
R25  
T1  
VSS  
VSS  
Y21  
Y24  
AE7  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
VSSSENSE  
Output  
Power/  
Other  
T4  
Power/  
Other  
T23  
T26  
U3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
U6  
Power/  
Other  
U21  
U24  
V2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
V5  
Power/  
Other  
V22  
V25  
W1  
W4  
W23  
W26  
Y3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Y6  
Datasheet  
71  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A2  
A3  
VSS  
SMI#  
VSS  
Power/Other  
CMOS  
Input  
A4  
Power/Other  
Open Drain  
CMOS  
A5  
FERR#  
A20M#  
VCC  
Output  
Input  
A6  
A7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
A8  
VSS  
A9  
VCC  
Input/  
Output  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
VCC  
AA21  
AA22  
AA23  
D[50]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
VSS  
VCC  
Input/  
Output  
D[45]#  
VCC  
VSS  
Input/  
Output  
AA24  
AA25  
AA26  
AB1  
D[46]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
VCC  
VSS  
DSTBP[2]  
#
Input/  
Output  
VCC  
VCC  
VSS  
VSS  
Input/  
Output  
AB2  
A[34]#  
VCC  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
AB3  
AB4  
TDO  
VSS  
TMS  
TRST#  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Open Drain  
Power/Other  
CMOS  
Output  
Bus Clock  
Power/Other  
Power/Other  
Power/Other  
Test  
AB5  
Input  
Input  
THRMDA  
VSS  
AB6  
CMOS  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TEST6  
AB8  
Input/  
Output  
AB9  
AA1  
AA2  
AA3  
COMP[2]  
VSS  
Power/Other  
Power/Other  
Source Synch  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
Input/  
Output  
A[35]#  
Input/  
Output  
AA4  
A[33]#  
Source Synch  
AA5  
AA6  
VSS  
TDI  
Power/Other  
CMOS  
Input  
AA7  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA8  
AA9  
AA10  
AA11  
AA12  
Input/  
Output  
AB21  
D[52]#  
Source Synch  
72  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
Input/  
Output  
AD3  
AD4  
BPM[1]# Common Clock Output  
AB22  
AB23  
AB24  
D[51]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
BPM[0]# Common Clock  
Output  
Input/  
Output  
AD5  
AD6  
VSS  
VID[0]  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
CMOS  
D[33]#  
Output  
Input/  
Output  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB25  
D[47]#  
Source Synch  
Power/Other  
AD8  
AB26  
AC1  
AC2  
AC3  
VSS  
PREQ#  
PRDY#  
VSS  
AD9  
Common Clock Input  
Common Clock Output  
Power/Other  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
Input/  
Output  
AC4  
BPM[3]# Common Clock  
AC5  
AC6  
TCK  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC7  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
Input/  
Output  
AD20  
D[54]#  
Source Synch  
Input/  
Output  
AD21  
AD22  
AD23  
D[59]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[61]#  
Input/  
Output  
AD24  
D[49]#  
Source Synch  
AD25  
AD26  
AE1  
VSS  
GTLREF  
VSS  
Power/Other  
Power/Other  
Power/Other  
CMOS  
Input  
Input/  
Output  
AC20  
AC21  
AC22  
DINV[3]# Source Synch  
VSS  
Power/Other  
Source Synch  
AE2  
VID[6]  
VID[4]  
VSS  
Output  
Output  
Input/  
Output  
AE3  
CMOS  
D[60]#  
AE4  
Power/Other  
CMOS  
Input/  
Output  
AE5  
VID[2]  
PSI#  
Output  
Output  
Output  
AC23  
AC24  
AC25  
D[63]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
AE6  
CMOS  
AE7  
VSSSENSE Power/Other  
Input/  
Output  
D[57]#  
AE8  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE9  
Input/  
Output  
AC26  
D[53]#  
Source Synch  
AE10  
AE11  
AE12  
AD1  
AD2  
BPM[2]# Common Clock Output  
VSS Power/Other  
73  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
AF22  
AF23  
AF24  
D[62]#  
D[56]#  
Source Synch  
Input/  
Output  
Source Synch  
Source Synch  
DSTBP[3]  
#
Input/  
Output  
AF25  
AF26  
B2  
VSS  
TEST4  
RSVD  
INIT#  
LINT1  
DPSLP#  
VSS  
Power/Other  
Test  
Reserved  
Input/  
Output  
B3  
CMOS  
Input  
Input  
Input  
AE21  
D[58]#  
Source Synch  
B4  
CMOS  
Input/  
Output  
AE22  
AE23  
AE24  
D[55]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
B5  
CMOS  
B6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
B7  
VCC  
Input/  
Output  
D[48]#  
B8  
VSS  
DSTBN[3]  
#
Input/  
Output  
B9  
VCC  
AE25  
Source Synch  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VCC  
AE26  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
VSS  
TEST5  
VSS  
Power/Other  
Test  
VSS  
VCC  
Power/Other  
CMOS  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
Output  
Output  
Output  
VCC  
CMOS  
VCC  
CMOS  
VSS  
Power/Other  
VCC  
VCCSENS  
E
VCC  
AF7  
Power/Other  
VSS  
AF8  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AF9  
VSS  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
BSEL[0]  
BSEL[1]  
VSS  
Output  
Output  
CMOS  
Power/Other  
Power/Other  
Power/Other  
THRMDC  
VCCA  
RESET# Common Clock Input  
C2  
VSS  
TEST7  
IGNNE#  
VSS  
Power/Other  
Test  
C3  
C4  
CMOS  
Input  
C5  
Power/Other  
CMOS  
C6  
LINT0  
Input  
THERMTRI  
P#  
C7  
Open Drain  
Output  
Datasheet  
74  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
C8  
C9  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
PROCHOT  
Input/  
Output  
D21  
#
Open Drain  
D22  
D23  
RSVD  
VSS  
Reserved  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VCC  
Power/Other  
VSS  
Input/  
Output  
VCC  
D24  
DPWR#  
Common Clock  
VCC  
D25  
D26  
TEST2  
VSS  
Test  
VSS  
Power/Other  
VCC  
Input/  
Output  
E1  
DBSY#  
Common Clock  
VSS  
VCC  
Input/  
Output  
E2  
E3  
E4  
BNR#  
VSS  
Common Clock  
Power/Other  
VCC  
VSS  
Input/  
Output  
DBR#  
BSEL[2]  
VSS  
Output  
Output  
HITM#  
Common Clock  
CMOS  
E5  
E6  
DPRSTP#  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
CMOS  
Input  
Power/Other  
Test  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TEST1  
TEST3  
VSS  
E7  
Test  
E8  
Power/Other  
Power/Other  
Power/Other  
Reserved  
E9  
VCCA  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
D2  
RSVD  
RSVD  
VSS  
D3  
Reserved  
D4  
Power/Other  
CMOS  
D5  
STPCLK#  
PWRGOOD  
SLP#  
VSS  
Input  
Input  
Input  
D6  
CMOS  
D7  
CMOS  
D8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
D9  
VCC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
VSS  
VCC  
Input/  
Output  
E22  
D[0]#  
Source Synch  
VSS  
VCC  
Input/  
Output  
E23  
E24  
E25  
D[7]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
VCC  
VSS  
VCC  
Input/  
Output  
D[6]#  
VCC  
Input/  
Output  
VSS  
E26  
F1  
D[2]#  
BR0#  
Source Synch  
Common Clock  
IERR#  
Output  
Input/  
Output  
Datasheet  
75  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
F2  
F3  
VSS  
RS[0]#  
RS[1]#  
VSS  
Power/Other  
Input/  
Output  
G25  
G26  
H1  
D[5]#  
VSS  
Source Synch  
Power/Other  
Common Clock Input  
Common Clock Input  
Power/Other  
Reserved  
F4  
Input/  
Output  
F5  
ADS#  
Common Clock  
F6  
RSVD  
VCC  
Input/  
Output  
H2  
H3  
H4  
REQ[1]#  
VSS  
Source Synch  
Power/Other  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F8  
VSS  
F9  
VCC  
Input/  
Output  
LOCK#  
Common Clock  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
VCC  
H5  
H6  
DEFER# Common Clock Input  
VSS  
VSS  
VSS  
Power/Other  
Power/Other  
VCC  
H21  
VSS  
Input/  
Output  
VCC  
H22  
D[12]#  
Source Synch  
VCC  
Input/  
Output  
H23  
H24  
H25  
D[15]#  
VSS  
Source Synch  
Power/Other  
VSS  
VCC  
VCC  
Input/  
Output  
DINV[0]# Source Synch  
VSS  
VCC  
DSTBP[0]  
Source Synch  
#
Input/  
Output  
H26  
Input/  
Common Clock  
Output  
F21  
F22  
F23  
DRDY#  
VSS  
Input/  
Output  
J1  
J2  
J3  
A[9]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Source Synch  
Output  
D[4]#  
Input/  
Output  
REQ[3]#  
Input/  
Source Synch  
Output  
F24  
F25  
F26  
D[1]#  
VSS  
Input/  
Output  
J4  
A[3]#  
Source Synch  
Power/Other  
J5  
J6  
VSS  
VCCP  
VCCP  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Source Synch  
Output  
D[13]#  
G1  
G2  
G3  
G4  
G5  
VSS  
TRDY#  
RS[2]#  
VSS  
Power/Other  
J21  
J22  
Common Clock Input  
Common Clock Input  
Power/Other  
Input/  
Output  
J23  
D[11]#  
Source Synch  
Input/  
Output  
BPRI#  
Common Clock Input  
J24  
J25  
J26  
K1  
D[10]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Common Clock  
Output  
G6  
HIT#  
VCCP  
D[3]#  
VSS  
DSTBN[0]  
#
Input/  
Output  
G21  
G22  
G23  
G24  
Power/Other  
Input/  
Source Synch  
Output  
VSS  
Input/  
Output  
Power/Other  
K2  
REQ[2]#  
Input/  
Source Synch  
Output  
D[9]#  
76  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
Input/  
Output  
M22  
M23  
VSS  
Power/Other  
K3  
K4  
K5  
REQ[0]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[23]#  
Source Synch  
Input/  
Output  
Input/  
Output  
A[6]#  
M24  
M25  
M26  
N1  
D[21]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
K6  
VCCP  
VCCP  
Power/Other  
Power/Other  
K21  
DSTBP[1]  
#
Input/  
Output  
Input/  
Output  
K22  
K23  
K24  
D[14]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
VSS  
Input/  
Output  
N2  
A[8]#  
Input/  
Output  
D[8]#  
Input/  
Output  
N3  
A[10]#  
Source Synch  
Input/  
Output  
K25  
K26  
L1  
D[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
N4  
N5  
VSS  
RSVD  
VCCP  
VCCP  
Power/Other  
Reserved  
Input/  
Output  
N6  
Power/Other  
Power/Other  
REQ[4]#  
N21  
Input/  
Output  
Input/  
Output  
L2  
L3  
L4  
A[13]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
N22  
N23  
N24  
D[16]#  
VSS  
Source Synch  
Power/Other  
Input/  
Output  
Input/  
Output  
A[5]#  
DINV[1]# Source Synch  
Input/  
Output  
Input/  
Output  
L5  
A[4]#  
Source Synch  
N25  
N26  
P1  
D[31]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
L6  
VSS  
VSS  
Power/Other  
Power/Other  
L21  
Input/  
Output  
A[15]#  
Input/  
Output  
L22  
D[22]#  
Source Synch  
Input/  
Output  
P2  
P3  
P4  
A[12]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
L23  
L24  
L25  
D[20]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[14]#  
Input/  
Output  
D[29]#  
Input/  
Output  
P5  
A[11]#  
Source Synch  
DSTBN[1]  
#
Input/  
Output  
L26  
Source Synch  
P6  
VSS  
VSS  
Power/Other  
Power/Other  
ADSTB[0]  
#
Input/  
Output  
P21  
M1  
M2  
M3  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
P22  
D[26]#  
Source Synch  
VSS  
Input/  
Output  
Input/  
Output  
A[7]#  
P23  
P24  
P25  
D[25]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
M4  
M5  
RSVD  
VSS  
Reserved  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
D[24]#  
M6  
VCCP  
VCCP  
M21  
Datasheet  
77  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Signal Buffer Directi  
Pin # Pin Name  
Pin # Pin Name  
Type  
on  
Type  
on  
Input/  
Output  
Input/  
Output  
P26  
D[18]#  
Source Synch  
U5  
A[18]#  
Source Synch  
Input/  
Output  
U6  
VSS  
VSS  
Power/Other  
Power/Other  
R1  
R2  
R3  
A[16]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
U21  
Input/  
Output  
U22  
DINV[2]# Source Synch  
Input/  
Output  
A[19]#  
Input/  
Output  
U23  
U24  
U25  
D[39]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
R4  
A[24]#  
Source Synch  
R5  
R6  
VSS  
VCCP  
VCCP  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
D[38]#  
R21  
R22  
Input/  
Output  
U26  
V1  
COMP[1]  
Power/Other  
Source Synch  
ADSTB[1]  
#
Input/  
Output  
Input/  
Output  
R23  
D[19]#  
Source Synch  
V2  
V3  
VSS  
Power/Other  
Reserved  
Input/  
Output  
R24  
R25  
R26  
D[28]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
RSVD  
Input/  
Output  
V4  
A[31]#  
Source Synch  
Input/  
Output  
COMP[0]  
V5  
V6  
VSS  
VCCP  
VCCP  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
T1  
T2  
VSS  
Power/Other  
Reserved  
RSVD  
V21  
V22  
Input/  
Output  
T3  
T4  
T5  
A[26]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
V23  
D[36]#  
Source Synch  
Input/  
Output  
Input/  
Output  
A[25]#  
V24  
V25  
V26  
W1  
D[34]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
T6  
VCCP  
VCCP  
Power/Other  
Power/Other  
T21  
Input/  
Output  
D[35]#  
VSS  
Input/  
Output  
T22  
T23  
T24  
D[37]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
W2  
A[27]#  
Input/  
Output  
D[27]#  
Input/  
Output  
W3  
W4  
W5  
A[32]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
T25  
T26  
U1  
D[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[28]#  
Input/  
Output  
A[23]#  
Input/  
Output  
W6  
A[20]#  
VCCP  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Output  
U2  
U3  
U4  
A[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
W21  
W22  
W23  
Input/  
Output  
D[41]#  
VSS  
Input/  
Output  
A[21]#  
78  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Pin # Listing  
Signal Buffer Directi  
Pin # Pin Name  
Type  
on  
Input/  
Output  
W24  
D[43]#  
Source Synch  
Input/  
Output  
W25  
W26  
Y1  
D[44]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
COMP[3]  
Input/  
Output  
Y2  
Y3  
Y4  
A[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[29]#  
Input/  
Output  
Y5  
A[22]#  
Source Synch  
Y6  
VSS  
VSS  
Power/Other  
Power/Other  
Y21  
Input/  
Output  
Y22  
D[32]#  
Source Synch  
Input/  
Output  
Y23  
Y24  
Y25  
D[42]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[40]#  
DSTBN[2]  
#
Input/  
Output  
Y26  
Source Synch  
Datasheet  
79  
Package Mechanical Specifications and Pin Information  
Figure 18.  
Intel Core 2 Duo Mobile Processor in SFF Package Top View Upper Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
COMP[  
2]  
VSS  
VSS  
VSS  
TMS  
TDI  
TDO  
A[35]#  
A[17]#  
A[31]#  
A[30]#  
A[19]#  
A[16]#  
1
BPM[3]  
#
COMP[  
3]  
VSS  
VID[5]  
VSS  
PREQ#  
TCK  
A[22]#  
A[20]#  
VSS  
A[34]#  
A[28]#  
VSS  
A[32]#  
A[27]#  
VSS  
A[21]#  
A[18]#  
VSS  
A[23]#  
A[26]#  
VSS  
A[11]#  
A[12]#  
VSS  
2
VSS  
VID[4]  
VID[1]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
3
VSS  
VSS  
VID[6]  
VSS  
A[24]#  
VSS  
4
BPM[2]  
#
ADSTB  
[1]#  
RSVD0  
4
RSVD0  
3
A[33]#  
VSS  
A[29]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[25]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[14]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[10]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
5
VSS  
6
BPM[1]  
#
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
BPM[0]  
#
VID[0]  
PSI#  
VID[3]  
VID[2]  
VSS  
TRST#  
PRDY#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
9
TEST5  
VSS  
VSS  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS  
VCCP  
VCCP  
VSS  
VCCS  
ENSE  
VSS  
VSS  
VSS  
VSS  
VSSSE  
NSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
80  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 19.  
Intel Core 2 Duo Mobile Processor in SFF Package Top View Upper Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
REQ[2]  
#
REQ[0]  
#
A[7]#  
A[5]#  
LOCK#  
TRDY#  
DBSY#  
VSS  
VSS  
1
RSVD0  
2
RSVD0  
1
A[15]#  
A[8]#  
VSS  
A[9]#  
A[3]#  
BR0#  
RS[0]#  
HIT#  
HITM#  
VSS  
2
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BPRI#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VSS  
BNR#  
DBR#  
VSS  
VSS  
VSS  
LINT1  
A20M#  
LINT0  
VSS  
3
ADSTB  
[0]#  
REQ[3]  
#
RSVD0  
6
A[4]#  
VSS  
A[6]#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
ADS#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
RS[2]#  
VSS  
RS[1]#  
VSS  
FERR#  
VSS  
VSS  
VSS  
4
REQ[4]  
#
REQ[1]  
#
DEFER  
#
RESET  
#
A[13]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
SMI#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VSS  
VSS  
VSS  
VSS  
5
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
6
DPRST  
P#  
PWRG  
OOD  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
RSVD0  
7
STPCL  
K#  
DPSLP  
#
VSS  
VSS  
VSS  
INIT#  
SLP#  
VCCP  
VCCP  
VCC  
8
RSVD0  
5
VSS  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
VSS  
9
THER  
MTRIP  
#
IGNNE  
#
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCC  
VCC  
VCC  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
Datasheet  
81  
Package Mechanical Specifications and Pin Information  
Figure 20.  
Intel Core 2 Duo Mobile Processor in SFF Package Top View Lower Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D[58]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D[52]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
D[26]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
THRM  
DC  
THRM  
DA  
VSS  
VSS  
VSS  
D[62]#  
D[54]#  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VSS  
D[55]#  
D[61]#  
VSS  
D[56]#  
VSS  
VCCP  
VCCP  
D[45]#  
VSS  
VSS  
VCCP  
VCCP  
D[43]#  
VSS  
VSS  
VCCP  
VCCP  
D[35]#  
VSS  
DINV[3  
]#  
VSS  
VSS  
DSTBP  
[3]#  
D[48]#  
D[50]#  
VSS  
VSS  
VSS  
VSS  
D[59]#  
VSS  
VSS  
VSS  
DSTBN  
[3]#  
D[57]#  
VSS  
D[42]#  
VSS  
D[34]#  
VSS  
DINV[2  
]#  
D[60]#  
VSS  
D[51]#  
D[63]#  
D[53]#  
D[33]#  
D[46]#  
D[41]#  
D[47]#  
D[37]#  
D[44]#  
TEST4  
D[27]#  
TEST6  
VSS  
VSS  
GTLRE  
F
DSTBP  
[2]#  
COMP[  
0]  
D[36]#  
DSTBN  
[2]#  
COMP[  
1]  
VSS  
D[49]#  
D[32]#  
D[40]#  
D[39]#  
D[38]#  
82  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 21.  
Intel Core 2 Duo Mobile Processor in SFF Package Top View Lower Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCA  
VSS  
VCCP  
VCCA  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VSS  
VCCP  
VCCP  
TEST1  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCCP  
DRDY#  
D[0]#  
VSS  
BCLK[  
1]  
BCLK[  
0]  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
D[25]#  
VSS  
VSS  
VCCP  
VCCP  
D[17]#  
VSS  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VSS  
BSEL[1  
]
BSEL[0  
]
PROC  
HOT#  
BSEL[2  
]
VSS  
VSS  
VSS  
D[6]#  
D[13]#  
D[1]#  
VSS  
VSS  
VSS  
DINV[0  
]#  
DSTBN  
[0]#  
D[29]#  
VSS  
D[11]#  
VSS  
D[12]#  
VSS  
D[4]#  
VSS  
TEST2  
VSS  
IERR#  
VSS  
DSTBP  
[0]#  
DPWR  
#
D[24]#  
D[28]#  
D[21]#  
D[23]#  
D[20]#  
D[10]#  
D[22]#  
D[8]#  
D[15]#  
D[7]#  
D[2]#  
VSS  
VSS  
DSTBP  
[1]#  
DSTBN  
[1]#  
DINV[1  
]#  
D[3]#  
TEST3  
D[19]#  
D[30]#  
D[18]#  
D[31]#  
D[16]#  
D[14]#  
D[9]#  
D[5]#  
VSS  
VSS  
Datasheet  
83  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
A[3]#  
A[4]#  
P2  
V4  
BCLK[0]  
BCLK[1]  
BNR#  
AN5  
A35  
C35  
J5  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
R41  
W41  
A[5]#  
W1  
N43  
A[6]#  
T4  
BPM[0]#  
BPM[1]#  
BPM[2]#  
BPM[3]#  
BPRI#  
U41  
A[7]#  
AA1  
AB4  
T2  
AY8  
BA7  
BA5  
AY2  
L5  
AA41  
AB40  
AD40  
AC41  
AA43  
Y40  
A[8]#  
A[9]#  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
A[35]#  
ADS#  
AC5  
AD2  
AD4  
AA5  
AE5  
AB2  
AC1  
AN1  
AK4  
AG1  
AT4  
AK2  
AT2  
AH2  
AF4  
AJ5  
AH4  
AM4  
AP4  
AR5  
AJ1  
AL1  
AM2  
AU5  
AP2  
AR1  
C7  
BR0#  
BSEL[0]  
BSEL[1]  
BSEL[2]  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
M2  
A37  
C37  
B38  
AE43  
AD44  
AE1  
AF2  
F40  
G43  
E43  
J43  
Y44  
T44  
AP44  
AR43  
AH40  
AF40  
AJ43  
AG41  
AF44  
AH44  
AM44  
AN43  
AM40  
AK40  
AG43  
AP40  
AN41  
AL41  
AV38  
AT44  
AV40  
AU41  
AW41  
AR41  
BA37  
BB38  
D[1]#  
D[2]#  
D[3]#  
D[4]#  
D[5]#  
H40  
H44  
G39  
E41  
L41  
K44  
N41  
T40  
M40  
M44  
L43  
P44  
V40  
V44  
AB44  
D[6]#  
D[7]#  
D[8]#  
D[9]#  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
ADSTB[0]#  
ADSTB[1]#  
M4  
Y4  
84  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
D[56]#  
D[57]#  
AY36  
AT40  
BC35  
BC39  
BA41  
BB40  
BA35  
AU43  
J7  
PRDY#  
PREQ#  
AV10  
AV2  
D38  
BD10  
E7  
TMS  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AW5  
L1  
D[58]#  
PROCHOT#  
PSI#  
AV8  
D[59]#  
AA33  
AB16  
AB18  
AB20  
AB22  
AB24  
AB26  
AB28  
AB30  
AB32  
AC33  
AD16  
AD18  
AD20  
AD22  
AD24  
AD26  
AD28  
AD30  
AD32  
AE33  
AF16  
AF18  
AF20  
AF22  
AF24  
AF26  
AF28  
AF30  
AF32  
AG33  
AH16  
AH18  
AH20  
D[60]#  
PWRGOOD  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD01  
RSVD02  
RSVD03  
RSVD04  
RSVD05  
RSVD06  
RSVD07  
SLP#  
D[61]#  
R1  
D[62]#  
R5  
D[63]#  
U1  
DBR#  
P4  
DBSY#  
J1  
W5  
DEFER#  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
DPRSTP#  
DPSLP#  
DPWR#  
N5  
G5  
P40  
R43  
AJ41  
BC37  
G7  
K2  
H4  
K4  
V2  
Y2  
B8  
AG5  
AL5  
J9  
C41  
F38  
K40  
U43  
AK44  
AY40  
J41  
DRDY#  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
FERR#  
F4  
H8  
D10  
E5  
SMI#  
STPCLK#  
TCK  
F8  
W43  
AL43  
AY38  
D4  
AV4  
AW7  
AU1  
E37  
D40  
C43  
AE41  
AY10  
AC43  
B10  
BB34  
BD34  
B10  
TDI  
TDO  
TEST1  
GTLREF  
AW43  
H2  
TEST2  
HIT#  
TEST3  
HITM#  
F2  
TEST4  
IERR#  
B40  
F10  
D8  
TEST5  
IGNNE#  
INIT#  
TEST6  
THERMTRIP#  
THRMDA  
THRMDC  
THERMTRIP#  
LINT0  
C9  
LINT1  
C5  
LOCK#  
N1  
Datasheet  
85  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH22  
AH24  
AH26  
AH28  
AH30  
AH32  
AJ33  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AP32  
AR33  
AT14  
AT16  
AT18  
AT20  
AT22  
AT24  
AT26  
AT28  
AT30  
AT32  
AT34  
AU33  
AV14  
AV16  
AV18  
AV20  
AV22  
AV24  
AV26  
AV28  
AV30  
AV32  
AY14  
AY16  
AY18  
AY20  
AY22  
AY24  
AY26  
AY28  
AY30  
AY32  
B16  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
B22  
B24  
B26  
B28  
B30  
BB14  
BB16  
BB18  
BB20  
BB22  
BB24  
BB26  
BB28  
BB30  
BB32  
BD14  
BD16  
BD18  
BD20  
BD22  
BD24  
BD26  
BD28  
BD30  
BD32  
D16  
AK16  
AK18  
AK20  
AK22  
AK24  
AK26  
AK28  
AK30  
AK32  
AL33  
AM14  
AM16  
AM18  
AM20  
AM22  
AM24  
AM26  
AM28  
AM30  
AM32  
AN33  
AP14  
AP16  
AP18  
AP20  
AP22  
AP24  
AP26  
AP28  
AP30  
D18  
D20  
D22  
D24  
D26  
D28  
D30  
F16  
F18  
B18  
F20  
B20  
F22  
86  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F24  
F26  
F28  
F30  
F32  
G33  
H16  
H18  
H20  
H22  
H24  
H26  
H28  
H30  
H32  
J33  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
P18  
P20  
P22  
P24  
P26  
P28  
P30  
P32  
R33  
T16  
T18  
T20  
T22  
T24  
T26  
T28  
T30  
T32  
U33  
V16  
V18  
V20  
V22  
V24  
V26  
V28  
V30  
V32  
W33  
Y16  
Y18  
Y20  
Y22  
Y24  
Y26  
Y28  
Y30  
VCC  
Y32  
B34  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
D34  
A13  
A33  
AA7  
AA9  
AA11  
AA13  
AA35  
AA37  
AB10  
AB12  
AB14  
AB36  
AB38  
AC7  
K16  
K18  
K20  
K22  
K24  
K26  
K28  
K30  
K32  
L33  
M16  
M18  
M20  
M22  
M24  
M26  
M28  
M30  
M32  
N33  
P16  
AC9  
AC11  
AC13  
AC35  
AC37  
AD14  
AE7  
AE9  
AE11  
AE13  
AE35  
AE37  
AF10  
AF12  
AF14  
AF36  
AF38  
AG7  
AG9  
AG11  
Datasheet  
87  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
AG13  
AG35  
AG37  
AH14  
AJ7  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
B12  
B14  
B32  
C13  
C33  
D12  
D14  
D32  
E11  
E13  
E33  
E35  
F12  
F14  
F34  
F36  
G11  
G13  
G35  
H12  
H14  
H36  
J11  
J13  
J35  
J37  
K10  
K12  
K14  
K36  
K38  
L7  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
M14  
N7  
N9  
N11  
N13  
N35  
N37  
P10  
P12  
P14  
P36  
P38  
R7  
AJ9  
AJ11  
AJ13  
AJ35  
AJ37  
AK10  
AK12  
AK14  
AK36  
AK38  
AL7  
R9  
R11  
R13  
R35  
R37  
T14  
U7  
AL9  
AL11  
AL13  
AL35  
AL37  
AN7  
U9  
U11  
U13  
U35  
U37  
V10  
V12  
V14  
V36  
V38  
W7  
AN9  
AN11  
AN13  
AN35  
AN37  
AP10  
AP12  
AP36  
AP38  
AR7  
W9  
AR9  
L9  
W11  
W13  
W35  
W37  
Y14  
AR11  
AR13  
AU11  
AU13  
L11  
L13  
L35  
L37  
88  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
BD12  
BD8  
BC7  
BB10  
BB8  
BC5  
BB4  
AY4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AB42  
AC3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AG17  
AG19  
AG21  
AG23  
AG25  
AG27  
AG29  
AG31  
AG39  
AH6  
AC15  
AC17  
AC19  
AC21  
AC23  
AC25  
AC27  
AC29  
AC31  
AC39  
AD6  
A5  
VSS  
A7  
VSS  
A9  
AH8  
VSS  
A11  
AH10  
AH12  
AH34  
AH36  
AH38  
AH42  
AJ3  
VSS  
A15  
VSS  
A17  
AD8  
VSS  
A19  
AD10  
AD12  
AD34  
AD36  
AD38  
AD42  
AE3  
VSS  
A21  
VSS  
A23  
VSS  
A25  
VSS  
A27  
AJ15  
AJ17  
AJ19  
AJ21  
AJ23  
AJ25  
AJ27  
AJ29  
AJ31  
AJ39  
AK6  
VSS  
A29  
VSS  
A31  
VSS  
A39  
AE15  
AE17  
AE19  
AE21  
AE23  
AE25  
AE27  
AE29  
AE31  
AE39  
AF6  
VSS  
A41  
VSS  
AA3  
AA15  
AA17  
AA19  
AA21  
AA23  
AA25  
AA27  
AA29  
AA31  
AA39  
AB6  
AB8  
AB34  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK8  
VSS  
AK34  
AK42  
AL3  
VSS  
VSS  
AF8  
VSS  
AF34  
AF42  
AG3  
AL15  
AL17  
AL19  
AL21  
VSS  
VSS  
VSS  
AG15  
Datasheet  
89  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AL23  
AL25  
AL27  
AL29  
AL31  
AL39  
AM6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AR29  
AR31  
AR35  
AR37  
AR39  
AT6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AW13  
AW15  
AW17  
AW19  
AW21  
AW23  
AW25  
AW27  
AW29  
AW31  
AW33  
AW35  
AW37  
AW39  
AY6  
AT8  
AM8  
AT10  
AT12  
AT36  
AT38  
AT42  
AU3  
AM10  
AM12  
AM34  
AM36  
AM38  
AM42  
AN3  
AU7  
AU9  
AN15  
AN17  
AN19  
AN21  
AN23  
AN25  
AN27  
AN29  
AN31  
AN39  
AP6  
AU15  
AU17  
AU19  
AU21  
AU23  
AU25  
AU27  
AU29  
AU31  
AU35  
AU37  
AU39  
AV6  
AY12  
AY34  
AY42  
AY44  
B4  
B6  
B36  
B42  
BA1  
BA3  
BA9  
AP8  
BA11  
BA13  
BA15  
BA17  
BA19  
BA21  
BA23  
BA25  
BA27  
BA29  
BA31  
AP34  
AP42  
AR3  
AV12  
AV34  
AV36  
AV42  
AV44  
AW1  
AW3  
AW9  
AW11  
AR15  
AR17  
AR19  
AR21  
AR23  
AR25  
AR27  
90  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BA33  
BA39  
BA43  
BB2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C31  
C39  
D2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H10  
H34  
H38  
H42  
J3  
D6  
BB6  
D36  
D42  
D44  
E1  
BB12  
BB36  
BB42  
BC3  
J15  
J17  
J19  
J21  
J23  
J25  
J27  
J29  
J31  
J39  
K6  
E3  
BC9  
E9  
BC11  
BC15  
BC17  
BC19  
BC21  
BC23  
BC25  
BC27  
BC29  
BC31  
BC33  
BC41  
BD4  
E15  
E17  
E19  
E21  
E23  
E25  
E27  
E29  
E31  
E39  
F6  
K8  
K34  
K42  
L3  
L15  
L17  
L19  
L21  
L23  
L25  
L27  
L29  
L31  
L39  
M6  
F42  
F44  
G1  
BD6  
BD36  
BD38  
BD40  
C3  
G3  
G9  
G15  
G17  
G19  
G21  
G23  
G25  
G27  
G29  
G31  
G37  
H6  
C11  
C15  
C17  
C19  
M8  
C21  
M10  
M12  
M34  
M36  
M38  
C23  
C25  
C27  
C29  
Datasheet  
91  
Package Mechanical Specifications and Pin Information  
Table 18.Intel Core 2 Duo Mobile Processor in SFF Package Listing by Ball Name  
Signal  
Name  
Ball  
Number  
Ball  
Number  
Signal  
Name  
Ball  
Number  
Signal Name  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M42  
N3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
U15  
U17  
U19  
U21  
U23  
U25  
U27  
U29  
U31  
U39  
V6  
N15  
N17  
N19  
N21  
N23  
N25  
N27  
N29  
N31  
N39  
P6  
V8  
V34  
V42  
W3  
P8  
P34  
P42  
R3  
W15  
W17  
W19  
W21  
W23  
W25  
W27  
W29  
W31  
W39  
Y6  
R15  
R17  
R19  
R21  
R23  
R25  
R27  
R29  
R31  
R39  
T6  
Y8  
Y10  
Y12  
Y34  
Y36  
Y38  
Y42  
BC13  
T8  
T10  
T12  
T34  
T36  
T38  
T42  
U3  
U5  
92  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.3  
Alphabetical Signals Reference  
Table 19.  
Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
36  
A[35:3]# (Address) define a 2 -byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit the  
address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the processor FSB. A[35:3]# are  
source-synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#. Address signals are used as straps, which  
are sampled before RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]# ADSTB[1]#  
Associated Strobe  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing V  
.
CROSS  
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor that indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[3:0]# should connect the  
appropriate pins of all processor FSB agents.This includes debug or  
performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
Datasheet  
93  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then releases  
the bus by deasserting BPRI#.  
BPRI#  
Input  
BR0# is used by the processor to request the bus. The arbitration is  
done between the processor (Symmetric Agent) and GMCH (High  
Priority Agent).  
Input/  
Output  
BR0#  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 3 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency.  
BSEL[2:0]  
COMP[3:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors.  
D[63:0]# (Data) are the data signals. These signals provide a  
64-bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DINV#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBR# (Data Bus Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
94  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins of both  
FSB agents.  
DEFER#  
Input  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted. The  
bus agent will invert the data bus signals if more than half the bits,  
within the covered group, would change level in the next cycle.  
DINV[3:0]# Assignment To Data Bus  
Input/  
Output  
Bus Signal  
Data Bus Signals  
DINV[3:0]#  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state or  
Deep Power Down Technology (C6) state. To return to the Deep  
Sleep State, DPRSTP# must be deasserted. DPRSTP# is driven by  
the ICH9M.  
DPRSTP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return to  
the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by  
the ICH9M.  
DPSLP#  
DPWR#  
DRDY#  
DPWR# is a control signal used by the chipset to reduce power on  
the processor data bus input buffers. The processor drives this pin  
during dynamic FSB frequency switching.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
Input/  
Output  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBN[3:0]#  
Datasheet  
95  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
Input/  
Output  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
DSTBP[3:0]#  
FERR# (Floating-point Error)/PBE# (Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating point  
when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel® 387  
coprocessor, and is included for compatibility with systems using  
Microsoft MS-DOS*-type floating-point error reporting. When  
STPCLK# is asserted, an assertion of FERR#/PBE# indicates that  
the processor has a pending break event waiting for service. The  
assertion of FERR#/PBE# indicates that the processor should be  
returned to the Normal state. When FERR#/PBE# is asserted,  
indicating a break event, it will remain asserted until STPCLK# is  
deasserted. Assertion of PREQ# when STPCLK# is active will also  
cause an FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volumes 3A and 3B of the Intel® 64 and IA-32  
Architectures Software Developer's Manuals and the Intel®  
Processor Identification and CPUID Instruction application note.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a logical 0 or logical 1.  
GTLREF  
Input  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall that  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
Input/  
Output  
HITM#  
IERR# (Internal Error) is asserted by the processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may optionally  
be converted to an external error signal (e.g., NMI) by system core  
logic. The processor will keep IERR# asserted until the assertion of  
RESET#, BINIT#, or INIT#.  
IERR#  
Output  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute non-control  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a non-control floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
96  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an input/output write instruction,  
it must be valid along with the TRDY# assertion of the  
INIT#  
Input  
corresponding input/output write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
If INIT# is sampled active on the active-to-inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST)  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1  
becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward-compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
PRDY#  
PREQ#  
Output  
Input  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output. The processor  
must be enabled via the BIOS for PROCHOT# to be configured as  
bidirectional.  
This signal may require voltage translation on the motherboard.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is both in the normal state (HFM to LFM) and in  
lower power states (Deep Sleep and Deeper Sleep).  
PSI#  
Output  
Datasheet  
97  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 6 of 8)  
Name  
Type  
Description  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal remains low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
RESET#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after V and BCLK have reached their  
CC  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
Input  
There is a 55 Ω (nominal) on die pull-up resistor on this signal.  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
Input  
Reserved/ These pins are RESERVED and must be left unconnected on the  
No  
Connect  
board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use.  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of SLP#,  
and removal of the BCLK input while in Sleep state. If SLP# is  
deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep state,  
the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enters System Management  
Mode (SMM). An SMI Acknowledge transaction is issued and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
If an SMI# is asserted during the deassertion of RESET#, then the  
processor will tristate its outputs.  
98  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
Output  
TEST1,  
TEST2,  
TEST3,  
TEST4,  
TEST5,  
TEST6  
TEST7  
Refer to the appropriate platform design guide for further TEST1,  
TEST2, TEST3, TEST4, TEST5, TEST6 and TEST7 termination  
requirements and implementation details.  
Input  
THRMDA  
THRMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125 °C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC  
Input  
Input  
Input  
Input  
Processor core power supply.  
Processor core ground node.  
VSS  
VCCA  
VCCP  
VCCA provides isolated power for the internal processor core PLLs  
.
Processor I/O Power Supply.  
Datasheet  
99  
Package Mechanical Specifications and Pin Information  
Table 19.  
Signal Description (Sheet 8 of 8)  
Name  
Type  
Description  
VCCSENSE together with VSSSENSE are voltage feedback signals  
that control the 2.1 mΩ loadline at the processor die. It should be  
used to sense voltage near the silicon with little noise.  
VCCSENSE  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (V ). Unlike some previous generations  
CC  
of processors, these are CMOS signals that are driven by the  
processor. The voltage supply for these pins must be valid before  
the VR can supply V to the processor. Conversely, the VR output  
CC  
VID[6:0]  
Output  
Output  
must be disabled until the voltage supply for the VID pins becomes  
valid. The VID pins are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these pins.  
The VR must supply the voltage that is requested by the pins, or  
disable itself.  
VSSSENSE together with VCCSENSE are voltage feedback signals  
that control the 2.1-mΩ loadline at the processor die. It should be  
used to sense ground near the silicon with little noise.  
VSSSENSE  
§
100  
Datasheet  
Thermal Specifications and Design Considerations  
5
Thermal Specifications and  
Design Considerations  
A complete thermal solution includes both component and system-level thermal  
management features. To allow for the optimal operation and long-term reliability of  
Intel processor-based systems, the system/processor thermal solution should be  
designed so the processor remains within the minimum and maximum junction  
temperature (TJ) specifications at the corresponding thermal design power (TDP) value  
listed in the tables below  
Caution:  
Operating the processor outside these operating limits may result in permanent  
damage to the processor and potentially other components in the system.  
Table 20.  
Power Specifications for the Dual-Core Extreme Edition Processor  
Processor  
Number  
Thermal Design  
Power  
Symbol  
Core Frequency & Voltage  
Unit Notes  
44  
29  
20  
3.06 GHz & V  
1.6 GHz & V  
CCHFM  
1, 4,  
5, 6  
TDP  
X9100  
W
CCLFM  
0.8 GHz & V  
CCSLFM  
Symbol  
Parameter  
Auto Halt, Stop Grant Power  
Min Typ Max  
Unit Notes  
P
P
AH,  
at V  
at V  
18.8  
6.7  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
P
at V  
at V  
17.8  
6.4  
SLP  
CCHFM  
CCSLFM  
Deep Sleep Power  
at V  
at V  
8.2  
3.8  
DSLP  
CCHFM  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
1.9  
1.7  
1.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep state Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
3.  
4.  
5.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser  
than TDP in HFM.  
o
6.  
7.  
8.  
At Tj of 105 C  
o
At Tj of 50 C  
o
At Tj of 35 C  
Datasheet  
101  
Thermal Specifications and Design Considerations  
Table 21.  
Power Specifications for the Dual-Core Standard Voltage Processor  
Processor  
Number  
Thermal Design  
Power  
Symbol  
Core Frequency & Voltage  
Unit Notes  
35  
35  
35  
35  
35  
22  
12  
3.06 GHz & V  
T9900  
CCHFM  
2.93 GHz & V  
T9800  
T9600  
T9550  
T9400  
CCHFM  
2.80 GHz & V  
CCHFM  
1, 4,  
5, 6  
2.66 GHz & V  
TDP  
W
CCHFM  
2.53 GHz & V  
CCHFM  
1.6 GHz & V  
0.8 GHz & V  
CCLFM  
CCSLFM  
Symbol  
Parameter  
Auto Halt, Stop Grant Power  
Min Typ Max  
Unit Notes  
P
P
AH,  
at V  
at V  
13.9  
5.0  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
at V  
at V  
13.1  
4.8  
SLP  
CCHFM  
CCSLFM  
Deep Sleep Power  
P
at V  
at V  
5.5  
2.2  
DSLP  
CCHFM  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
1.7  
1.3  
0.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep state Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
3.  
4.  
5.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser  
than TDP in HFM.  
o
6.  
7.  
8.  
At Tj of 105 C  
o
At Tj of 50 C  
o
At Tj of 35 C  
102  
Datasheet  
Thermal Specifications and Design Considerations  
Table 22.  
Power Specifications for the Dual-Core Low Power Standard Voltage  
Processors (25W) in Standard Package  
Processor  
Thermal Design  
Power  
Symbol  
Core Frequency & Voltage  
Unit Notes  
Number  
P9700  
P9600  
P8800  
P9500  
P8700  
P8600  
P8400  
25  
25  
25  
25  
25  
25  
25  
20  
11  
2.8 GHz & V  
CCHFM  
2.667 GHz & V  
2.667 GHz & V  
CCHFM  
CCHFM  
CCHFM  
CCHFM  
2.53 GHz & V  
2.53 GHz & V  
2.4 GHz & V  
1, 4,  
TDP  
W
5, 6  
CCHFM  
2.267 GHz & V  
CCHFM  
CCLFM  
CCSLFM  
1.6 GHz & V  
0.8 GHz & V  
Symbol  
Parameter  
Auto Halt, Stop Grant Power  
Min Typ Max  
Unit Notes  
P
P
AH,  
8.1  
3.7  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
at V  
at V  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
P
7.3  
3.5  
at V  
SLP  
CCHFM  
at V  
CCSLFM  
Deep Sleep Power  
2.9  
2.1  
at V  
DSLP  
CCHFM  
at V  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
1.0  
0.9  
0.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep State Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
3.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum T has been reached.  
J
Refer to Section 6.1 for more details.  
4.  
5.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser  
than TDP in HFM.  
o
6.  
7.  
8.  
At Tj of 105 C  
o
At Tj of 50 C  
o
At Tj of 35 C  
Datasheet  
103  
Thermal Specifications and Design Considerations  
Table 23.  
Symbol  
Power Specifications for the Dual-Core Power Optimized Performance (25 W)  
SFF Processors  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
SP9600  
2.53 GHz & HFM V  
25  
25  
25  
20  
11  
CC  
SP9400  
SP9300  
2.4 GHz & HFM V  
CC  
1, 4, 5,  
6
TDP  
2.26 GHz & HFM V  
W
CC  
1.6 GHz & Super LFM V  
0.8 GHz & Super LFM V  
CC  
CC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
P
P
AH,  
at V  
at V  
8.3  
3.3  
W
2, 5, 7  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
at V  
at V  
7.5  
3.1  
W
W
2, 5, 7  
2, 5, 8  
SLP  
CCHFM  
CCSLFM  
Deep Sleep Power  
P
at V  
at V  
2.9  
1.8  
DSLP  
CCHFM  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
1.0  
0.9  
0.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep State Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
2.  
3.  
4.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5.  
6.  
7.  
8.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser than TDP in HFM.  
At Tj of 105 C  
o
At Tj of 50 °C  
o
At Tj of 35 C  
104  
Datasheet  
Thermal Specifications and Design Considerations  
Table 24.  
Symbol  
Power Specifications fro the Dual-Core Low Voltage (LV) SFF Processors  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
SL9600  
17  
17  
2.13 GHz & HFM VCC  
1.86 GHz & HFM VCC  
1.6 GHz & HFM VCC  
1.6 GHz & Super LFM VCC  
0.8 GHz & Super LFM VCC  
SL9400  
SL9300  
1, 4, 5,  
6
TDP  
17  
W
16.7  
10  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
P
P
AH,  
6.3  
3.0  
W
2, 5, 7  
at V  
at V  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
5.7  
2.8  
W
W
2, 5, 7  
2, 5, 8  
at V  
SLP  
CCHFM  
at V  
CCSLFM  
Deep Sleep Power  
P
2.6  
1.3  
at V  
DSLP  
CCHFM  
at V  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
0.9  
0.8  
0.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep State Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
2.  
3.  
4.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5.  
6.  
7.  
8.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser than TDP in HFM.  
At Tj of 105 C  
o
At Tj of 50 °C  
o
At Tj of 35 C  
Datasheet  
105  
Thermal Specifications and Design Considerations  
Table 25.  
Symbol  
Power Specifications for the Dual-Core Ultra-Low-Voltage (ULV) Processors  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
1.4 GHz & HFM V  
10  
10  
10  
10  
8
SU9600  
SU9400  
SU9300  
CC  
CC  
1.4 GHz & HFM V  
1.2GHz & HFM V  
1, 4, 5,  
6
TDP  
W
CC  
1.2 GHz & Super LFM V  
0.8 GHz & Super LFM V  
CC  
CC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
P
P
AH,  
at V  
at V  
2.9  
1.6  
W
2, 5, 7  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
2.5  
1.4  
P
P
at V  
at V  
W
W
2, 5, 7  
2, 5, 8  
SLP  
CCHFM  
CCSLFM  
Deep Sleep Power  
at V  
at V  
1.3  
0.9  
DSLP  
CCHFM  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
0.6  
0.4  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep state Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
0.25  
105  
NOTES:  
1.  
2.  
3.  
4.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5.  
6.  
7.  
8.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser than TDP in HFM.  
At Tj of 105 C  
o
At Tj of 50 °C  
o
At Tj of 35 C  
106  
Datasheet  
Thermal Specifications and Design Considerations  
Table 26.  
Symbol  
Power Specifications for the Single-Core Ultra-Low-Voltage (5.5 W) SFF  
Processors  
Processor  
Number  
Thermal Design  
Power  
Core Frequency & Voltage  
Unit  
Notes  
SU3500  
SU3300  
1.4 GHz & HFM V  
5.5  
5.5  
5.5  
5
CC  
CC  
1.2 GHz & HFM V  
1, 4, 5,  
6
TDP  
W
1.2 GHz & Super LFM V  
0.8 GHz & Super LFM V  
CC  
CC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
P
P
AH,  
at V  
at V  
2.1  
1.4  
W
2, 5, 7  
CCHFM  
SGNT  
CCSLFM  
Sleep Power  
P
P
at V  
at V  
1.8  
1.2  
W
W
2, 5, 7  
2, 5, 8  
SLP  
CCHFM  
CCSLFM  
Deep Sleep Power  
at V  
at V  
0.7  
0.6  
DSLP  
CCHFM  
CCSLFM  
P
P
P
T
Deeper Sleep Power  
0
0.4  
0.3  
0.2  
100  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
DPRSLP  
Intel® Enhanced Deeper Sleep state Power  
Intel® Deep Power Down Power  
Junction Temperature  
DC4  
C6  
J
NOTES:  
1.  
2.  
3.  
4.  
The TDP specification should be used to design the processor thermal solution. The TDP is not the  
maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the processor currents  
at higher temperatures and extrapolating the values for the temperature indicated.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic  
mode is used to indicate that the maximum T has been reached.  
J
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within  
specifications.  
5.  
6.  
7.  
8.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode are lesser than TDP in HFM.  
At Tj of 100 C  
At Tj of 50 °C  
At Tj of 35 °C  
o
Datasheet  
107  
Thermal Specifications and Design Considerations  
5.1  
Monitoring Die Temperature  
The processor incorporates three methods of monitoring die temperature:  
• Thermal Diode  
• Intel® Thermal Monitor  
• Digital Thermal Sensor  
5.1.1  
Thermal Diode  
Intel’s processors utilize an SMBus thermal sensor to read back the voltage/current  
characteristics of a substrate PNP transistor. Since these characteristics are a function  
of temperature, these parameters can be used to calculate silicon temperature values.  
For older silicon process technologies, it is possible to simplify the voltage/current and  
temperature relationships by treating the substrate transistor as though it were a  
simple diffusion diode. In this case, the assumption is that the beta of the transistor  
does not impact the calculated temperature values. The resultant “diode” model  
essentially predicts a quasi linear relationship between the base/emitter voltage  
differential of the PNP transistor and the applied temperature (one of the  
proportionality constants in this relationship is processor specific, and is known as the  
diode ideality factor). Realization of this relationship is accomplished with the SMBus  
thermal sensor that is connected to the transistor.  
The processor, however, is built on Intel’s advanced 45-nm processor technology. Due  
to this new processor technology, it is no longer possible to model the substrate  
transistor as a simple diode. To accurately calculate silicon temperature use a full bi-  
polar junction transistor-type model. In this model, the voltage/current and  
temperature characteristics include an additional process dependant parameter which  
is known as the transistor “beta. System designers should be aware that the current  
thermal sensors may not be configured to account for “beta” and should work with their  
SMB thermal sensor vendors to ensure they have a part capable of reading the thermal  
diode in BJT model.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of the thermal control circuit. This temperature offset must be  
considered when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor Model-Specific Register (MSR).  
Table 27 and Table 28 provide the diode interface and transistor model specifications.  
Table 27.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
A25  
Thermal diode anode  
Thermal diode cathode  
108  
Datasheet  
Thermal Specifications and Design Considerations  
Table 28.  
Thermal Diode Parameters Using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
Forward Bias Current  
Emitter Current  
5
5
200  
200  
μA  
μA  
1
1
FW  
E
I
n
Transistor Ideality  
0.997  
0.1  
3.0  
1.001  
0.4  
1.008  
0.5  
2, 3, 4  
2, 3  
2
Q
Beta  
R
Series Resistance  
4.5  
7.0  
Ω
T
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50-105°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
qV /n kT  
I
= I * (e BE  
Q
–1)  
C
S
where I = saturation current, q = electronic charge, V = voltage across the transistor  
S
BE  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
5.1.2  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, the TCC would only be  
activated for very short periods of time when running the most power-intensive  
applications. The processor performance impact due to these brief periods of TCC  
activation is expected to be minor and hence not detectable. An under-designed  
thermal solution that is not able to prevent excessive activation of the TCC in the  
anticipated ambient environment may cause a noticeable performance loss and may  
affect the long-term reliability of the processor. In addition, a thermal solution that is  
significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep  
Technology transition when the processor silicon reaches its maximum operating  
temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic  
mode and on-demand mode. If both modes are activated, automatic mode takes  
precedence.  
There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal  
Monitor 2 (TM2). These modes are selected by writing values to the MSRs of the  
processor. After automatic mode is enabled, the TCC will activate only when the  
internal die temperature reaches the maximum allowed value for operation.  
When TM1 is enabled and a high temperature situation exists, the clocks will be  
modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times  
are processor speed-dependent and will decrease linearly as processor core frequencies  
increase. Once the temperature has returned to a non-critical level, modulation ceases  
and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid  
Datasheet  
109  
Thermal Specifications and Design Considerations  
active/inactive transitions of the TCC when the processor temperature is near the trip  
point. The duty cycle is factory configured and cannot be modified. Also, automatic  
mode does not require any additional hardware, software drivers, or interrupt handling  
routines. Processor performance will be decreased by the same amount as the duty  
cycle when the TCC is active.  
When TM2 is enabled and a high temperature situation exists, the processor will  
perform an Enhanced Intel SpeedStep Technology transition to the LFM. When the  
processor temperature drops below the critical level, the processor will make an  
Enhanced Intel SpeedStep Technology transition to the last requested operating point.  
The processor also supports Enhanced Multi-Threaded Thermal Monitoring (EMTTM).  
EMTTM is a processor feature that enhances TM2 with a processor throttling algorithm  
known as Adaptive TM2. Adaptive TM2 transitions to intermediate operating points,  
rather than directly to the LFM, once the processor has reached its thermal limit and  
subsequently searches for the highest possible operating point. Please ensure this  
feature is enabled and supported in the BIOS. Also with EMTTM enabled, the operating  
system can request the processor to throttling to any point between Intel  
Dynamic Acceleration Technology frequency and SuperLFM frequency as long  
as these features are enabled in the BIOS and supported by the processor.  
The Intel Thermal Monitor automatic mode and Enhanced Multi-Threaded  
Thermal Monitoring must be enabled through BIOS for the processor to be  
operating within specifications. Intel recommends TM1 and TM2 be enabled on the  
processors.  
TM1, TM2 and EMTTM features are collectively referred to as Adaptive Thermal  
Monitoring features.  
TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in  
the auto-throttle MSR, TM2 takes precedence over TM1. However, if Force TM1 over  
TM2 is enabled in MSRs via BIOS and TM2 is not sufficient to cool the processor below  
the maximum operating temperature, then TM1 will also activate to help cool down the  
processor.  
If a processor load-based Enhanced Intel SpeedStep Technology transition (through  
MSR write) is initiated when a TM2 period is active, there are two possible results:  
1. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is higher than the TM2 transition-based target frequency, the processor  
load-based transition will be deferred until the TM2 event has been completed.  
2. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is lower than the TM2 transition-based target frequency, the processor  
will transition to the processor load-based Enhanced Intel SpeedStep Technology  
target frequency point.  
The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
110  
Datasheet  
Thermal Specifications and Design Considerations  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
PROCHOT# will not be asserted when the processor is in the Stop Grant,  
Sleep, Deep Sleep, and Deeper Sleep low-power states, hence the thermal  
diode reading must be used as a safeguard to maintain the processor junction  
temperature within maximum specification. If the platform thermal solution is not  
able to maintain the processor junction temperature within the maximum specification,  
the system must initiate an orderly shutdown to prevent damage. If the processor  
enters one of the above low-power states with PROCHOT# already asserted,  
PROCHOT# will remain asserted until the processor exits the low-power state and the  
processor junction temperature drops below the thermal trip point. However,  
PROCHOT# will de-assert for the duration of Deep Power Down Technology state (C6)  
residency.  
If Thermal Monitor automatic mode is disabled, the processor will be operating out of  
specification. Regardless of enabling the automatic or on-demand modes, in the event  
of a catastrophic cooling failure, the processor will automatically shut down when the  
silicon has reached a temperature of approximately 125 °C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
In all cases the Intel Thermal Monitor feature must be enabled for the processor to  
remain within specification.  
5.1.3  
Digital Thermal Sensor  
The processor also contains an on-die Digital Thermal Sensor (DTS) that can be read  
via an MSR (no I/O interface). Each core of the processor will have a unique digital  
thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
Thermal Monitor. The DTS is only valid while the processor is in the normal operating  
state (the Normal package level low-power state).  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
.
Catastrophic temperature conditions are detectable via an Out Of Specification status  
bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating  
out of specification and immediate shutdown of the system should occur. The processor  
operation and code execution is not ensured once the activation of the Out of  
Specification status bit is set.  
The DTS-relative temperature readout corresponds to the Thermal Monitor (TM1/TM2)  
trigger point. When the DTS indicates maximum processor core temperature has been  
reached, the TM1 or TM2 hardware thermal control mechanism will activate. The DTS  
and TM1/TM2 temperature may not correspond to the thermal diode reading since the  
thermal diode is located in a separate portion of the die and thermal gradient between  
the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode  
can vary substantially due to changes in processor power, mechanical and thermal  
attach, and software application. The system designer is required to use the DTS to  
ensure proper operation of the processor within its temperature operating  
specifications.  
Datasheet  
111  
Thermal Specifications and Design Considerations  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for specific register and programming details.  
5.2  
5.3  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shutdown before the  
THERMTRIP# is activated. If the processor’s TM1 or TM2 are triggered and the  
temperature remains high, an Out Of Spec status and sticky bit are latched in the  
status MSR register and generates a thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If TM1 or TM2 is  
enabled, then the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or deassertion of  
PROCHOT#. Refer to the an interrupt upon the assertion or deassertion of PROCHOT#.  
Refer to the Intel® 64 and IA-32 Architectures Software Developer's Manuals for  
specific register and programming details.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from overheating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
Only a single PROCHOT# pin exists at a package level of the processor. When either  
core's thermal sensor trips, PROCHOT# signal will be driven by the processor package.  
If only TM1 is enabled, PROCHOT# will be asserted regardless of which core is above its  
TCC temperature trip point, and both cores will have their core clocks modulated. If  
TM2 is enabled then, regardless of which core(s) are above the TCC temperature trip  
point, both cores will enter the lowest programmed TM2 performance state. It is  
important to note that Intel recommends both TM1 and TM2 to be enabled.  
When PROCHOT# is driven by an external agent, if only TM1 is enabled on both cores,  
then both processor cores will have their core clocks modulated. If TM2 is enabled on  
both cores, then both processor cores will enter the lowest programmed TM2  
performance state. It should be noted that Force TM1 on TM2, enabled via BIOS, does  
not have any effect on external PROCHOT#. If PROCHOT# is driven by an external  
agent when TM1, TM2, and Force TM1 on TM2 are all enabled, then the processor will  
still apply only TM2.  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is  
operating at its TDP. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
112  
Datasheet  
Thermal Specifications and Design Considerations  
of time when running the most power-intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss.  
§
Datasheet  
113  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY