AV80585VG0091MPSLGAN [INTEL]

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956;
AV80585VG0091MPSLGAN
型号: AV80585VG0091MPSLGAN
厂家: INTEL    INTEL
描述:

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956

时钟 外围集成电路
文件: 总69页 (文件大小:967K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Celeron® Processor 900  
Series and Ultra Low Voltage 700  
Series  
Datasheet  
For platforms based on Mobile Intel® 4 Series Chipset family  
February 2010  
Document Number: 320389-003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics  
of any features or instructions marked “reserved” or “undefined.Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with  
this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Φ 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
enabled for Intel 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for  
more information.  
45nm product is manufactured on a lead-free process. Lead is below 1000 PPM per EU RoHS directive (2002/95/EC, Annex A). Some EU RoHS  
exemptions for lead may apply to other components used in the product package.  
Enhanced Intel SpeedStep® Technology for specified units of this processor are available. See the Processor Spec Finder at http://  
processorfinder.intel.com or contact your Intel representative for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Φ
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
Intel, Celeron, Intel Core Duo, Intel SpeedStep, MMX and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2008-2010, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................6  
1.1  
1.2  
Terminology .......................................................................................................7  
References .........................................................................................................8  
2
Low Power Features..................................................................................................9  
2.1  
Clock Control and Low-Power States ......................................................................9  
2.1.1 Core Low-Power State Descriptions........................................................... 11  
2.1.1.1 Core C0 State........................................................................... 11  
2.1.1.2 Core C1/AutoHALT Powerdown State........................................... 11  
2.1.1.3 Core C1/MWAIT Powerdown State............................................... 12  
2.1.1.4 Core C2 State........................................................................... 12  
2.1.1.5 Core C3 State........................................................................... 12  
2.1.2 Package Low-Power State Descriptions...................................................... 12  
2.1.2.1 Normal State............................................................................ 12  
2.1.2.2 Stop-Grant State ...................................................................... 12  
2.1.2.3 Stop-Grant Snoop State............................................................. 13  
2.1.2.4 Sleep State.............................................................................. 13  
FSB Low-Power Enhancements............................................................................ 14  
Processor Power Status Indicator (PSI-2) Signal.................................................... 14  
2.2  
2.3  
3
Electrical Specifications........................................................................................... 15  
3.1  
Power and Ground Pins ...................................................................................... 15  
3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking........................................... 15  
Voltage Identification and Power Sequencing ........................................................ 15  
Catastrophic Thermal Protection.......................................................................... 18  
Reserved and Unused Pins.................................................................................. 19  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 19  
FSB Signal Groups............................................................................................. 19  
CMOS Signals ................................................................................................... 21  
Maximum Ratings.............................................................................................. 21  
Processor DC Specifications ................................................................................ 22  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
5
Package Mechanical Specifications and Pin Information.......................................... 28  
4.1  
4.2  
4.3  
Package Mechanical Specifications....................................................................... 28  
Processor Pinout and Pin List .............................................................................. 30  
Alphabetical Signals Reference............................................................................ 47  
Thermal Specifications and Design Considerations .................................................. 56  
5.1  
Monitoring Die Temperature ............................................................................... 57  
5.1.1 Thermal Diode ....................................................................................... 57  
5.1.2 Intel® Thermal Monitor........................................................................... 58  
5.1.3 Digital Thermal Sensor............................................................................ 60  
Out of Specification Detection ............................................................................. 61  
PROCHOT# Signal Pin........................................................................................ 61  
5.2  
5.3  
Datasheet  
3
Figures  
1
2
3
4
5
6
7
8
Core Low-Power States .............................................................................................10  
Package Low-Power States ........................................................................................11  
Active VCC and ICC Loadline......................................................................................25  
Processor (ULV SC) Die Micro-FCBGA Processor Package Drawing ...................................29  
Processor Top View Upper Left Side ............................................................................30  
Procssor Top View Upper Right Side............................................................................31  
Processor Top View Lower Left Side ............................................................................32  
Processor Top View Lower Right Side ..........................................................................33  
Tables  
1
2
3
4
5
6
Coordination of Core Low-Power States at the Package Level..........................................11  
Voltage Identification Definition..................................................................................16  
BSEL[2:0] Encoding for BCLK Frequency......................................................................19  
FSB Pin Groups ........................................................................................................20  
Processor Absolute Maximum Ratings..........................................................................22  
Voltage and Current Specifications for the Single-Core, Ultra Low Voltage (ULV, 10 W)  
Processor ................................................................................................................23  
Voltage and Current Specifications for the Single-Core Ultra Low Voltage (ULV, 5.5 W)  
Processors...............................................................................................................24  
FSB Differential BCLK Specifications............................................................................25  
AGTL+ Signal Group DC Specifications ........................................................................26  
7
8
9
10 CMOS Signal Group DC Specifications..........................................................................27  
11 Open Drain Signal Group DC Specifications ..................................................................27  
12 Signal Listing by Ball Number.....................................................................................34  
13 Signal Description.....................................................................................................47  
14 Power Specifications for the Single-Core Ultra Low Voltage Processors (ULV, 10 W)...........56  
15 Power Specifications for the Single-Core Ultra Low Voltage (ULV, 5.5 W) Processors..........57  
16 Thermal Diode Interface............................................................................................58  
17 Thermal Diode Parameters Using Transistor Model ........................................................58  
4
Datasheet  
Revision History  
Document Revision  
Description  
Date  
Number  
Number  
320389  
001  
Initial Release  
August 2008  
Table 6: Added specs for 743  
Table 14: Added specs for 743  
September  
2009  
320389  
320389  
002  
003  
Added 900 series specifications  
February 2010  
Datasheet  
5
Introduction  
1 Introduction  
The Intel® Celeron® processor on 45-nanometer process technology in the Intel®  
Centrino® 2 process technology is the next generation high-performance, low-power  
mobile processor based on the Intel Core microarchitecture.  
In the Centrino 2 process technology platform, the Celeron processor supports the  
Mobile Intel® 4 Series Express Chipset family and Intel® ICH9M I/O controller. This  
document contains electrical, mechanical and thermal specifications for:  
• Dual-Core and Single-Core Standard Voltage (35W TDP)  
In the Montevina SFF platform, the Celeron processor supports the Mobile SFF Intel 4  
Series Express Chipset family and Intel® ICH9M SFF I/O controller. This document also  
contains electrical, mechanical and thermal specifications for:  
• Single-Core SFF Ultra-Low Voltage (10W TDP)  
• Single-Core SFF Ultra-Low Voltage (5.5W TDP)  
In this document, Intel® Celeron® processor on 45-nm process will be referred to as  
the processor and Mobile Intel® 4 Series Express Chipset family will be referred to as  
the (G)MCH.  
The following list provides some of the key features on this processor:  
• Dual-core and single core processors for mobile with enhanced performance  
• Supports Intel® architecture with Intel® Wide Dynamic Execution  
• Supports L1 cache-to-cache (C2C) transfer  
• On-die, primary 32-KB instruction cache and 32-KB write-back data cache in each  
core  
• 1-MB second-level shared cache with Advanced Transfer Cache architecture  
• 800-MHz source-synchronous front side bus (FSB)  
• Digital thermal sensor (DTS)  
• Intel® 64 architecture  
• Supports PSI2 functionality  
• The processor in SV is offered in 478-pin Micro-FCPGA and 479-ball Micro-FCBGA1  
packaging technologies  
• The SFF processor in LV and ULV are offered in 956-ball Micro-FCBGA packaging  
technologies only  
• Execute Disable Bit support for enhanced security  
1. Micro-FCBGA in standard package available for Embedded only.  
6
Datasheet  
Introduction  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
#
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor landings should not  
be connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
Processor core die with integrated L1 and L2 cache. All AC timing and signal  
integrity specifications are at the pads of the processor core.  
Processor Core  
Intel® 64  
Technology  
64-bit memory extensions to the IA-32 architecture.  
TDP  
VCC  
VSS  
Thermal Design Power  
The processor core power supply  
The processor ground  
Datasheet  
7
Introduction  
1.2  
References  
The following documents may be beneficial when reading this document.  
Document  
Number1  
Document  
Intel® Core™2 Duo Mobile Processor and Intel® Core 2 Extreme Mobile  
Processor Specification Update  
377039  
Mobile Intel® 4 Series Express Chipset Family Datasheet  
320122  
320123  
605214  
Mobile Intel® 4 Series Express Chipset Family Graphics Memory  
Controller Hub Specification Update  
Intel® I/O Controller Hub 9 Family Specification Update  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
8
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low-Power States  
The processor supports low-power states both at the individual core level and the  
package level for optimal power management.  
A core may independently enter the C1/AutoHALT, C1/MWAIT, C2, C3. When both cores  
coincide in a common core low-power state, the central power management logic  
ensures the entire processor enters the respective package low-power state by  
initiating a P_LVLx (P_LVL2, P_LVL3) I/O read to the (G)MCH.  
The processor implements two software interfaces for requesting low-power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The P_LVLx I/O Monitor address does  
not need to be set up before using the P_LVLx I/O read interface. The sub-state hints  
used for each P_LVLx read can be configured through the IA32_MISC_ENABLES model  
specific register (MSR).  
If a core encounters a GMCH break event while STPCLK# is asserted, it asserts the  
PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system  
logic that individual cores should return to the C0 state and the processor should return  
to the Normal state.  
Figure 1 shows the core low-power states and Figure 2 shows the package low-power  
states for the processor. Table 1 maps the core low-power states to package low-power  
states.  
Datasheet  
9
Low Power Features  
Figure 1.  
Core Low-Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
STPCLK#  
deasserted  
STPCLK#  
asserted  
C1/Auto  
Halt  
C1/MWAIT  
Core state  
break  
HLT instruction  
MWAIT(C1)  
Halt break  
C0  
P_LVL2 or  
MWAIT(C2)  
Core  
state  
break  
Core state  
break  
C2†  
P_LVL3 or  
MWAIT(C3)  
C3†  
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
† — STPCLK# assertion and de-assertion have no effect if a core is in C2, C3.  
10  
Datasheet  
Low Power Features  
Figure 2.  
Package Low-Power States  
SLP# asserted  
DPSLP# asserted  
STPCLK# asserted  
Stop  
Grant  
Deep  
Sleep  
Normal  
Sleep  
STPCLK# deasserted  
SLP# deasserted  
DPSLP# deasserted  
Snoop Snoop  
serviced occurs  
Stop Grant  
Snoop  
Table 1.  
Coordination of Core Low-Power States at the Package Level  
Package State  
Core0 State  
Core1 State  
C0  
C11  
C2  
C3  
C0  
C11  
C2  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Stop-Grant  
Stop-Grant  
Stop-Grant  
Deep Sleep  
C3  
NOTE:  
1.  
AutoHALT or MWAIT/C1.  
2.1.1  
Core Low-Power State Descriptions  
2.1.1.1  
Core C0 State  
This is the normal operating state for cores in the processor.  
2.1.1.2  
Core C1/AutoHALT Powerdown State  
C1/AutoHALT is a low-power state entered when a core executes the HALT instruction.  
The processor core will transition to the C0 state upon occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to  
immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT Powerdown state. See the Intel® 64 and IA-32 Architectures  
Software Developer's Manuals, Volume 3A/3B: System Programmer's Guide for more  
information.  
The system can generate a STPCLK# while the processor is in the AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
will return execution to the HALT state.  
Datasheet  
11  
Low Power Features  
While in AutoHALT Powerdown state, the dual-core processor will process bus snoops  
and snoops from the other core. The processor core will enter a snoopable sub-state  
(not shown in Figure 1) to process the snoop and then return to the AutoHALT  
Powerdown state.  
2.1.1.3  
2.1.1.4  
Core C1/MWAIT Powerdown State  
C1/MWAIT is a low-power state entered when the processor core executes the  
MWAIT(C1) instruction. Processor behavior in the MWAIT state is identical to the  
AutoHALT state except that Monitor events can cause the processor core to return to  
the C0 state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals,  
Volume 2A: Instruction Set Reference, A-M and Volume 2B: Instruction Set Reference,  
N-Z, for more information.  
Core C2 State  
Individual cores of the dual-core processor can enter the C2 state by initiating a P_LVL2  
I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not issue a  
Stop-Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.  
While in the C2 state, the dual-core processor will process bus snoops and snoops from  
the other core. The processor core will enter a snoopable sub-state (not shown in  
Figure 1) to process the snoop and then return to the C2 state.  
2.1.1.5  
Core C3 State  
Individual cores of the dual-core processor can enter the C3 state by initiating a P_LVL3  
I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering C3, the processor  
core flushes the contents of its L1 caches into the processor’s L2 cache. Except for the  
caches, the processor core maintains all its architectural states in the C3 state. The  
Monitor remains armed if it is configured. All of the clocks in the processor core are  
stopped in the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the dual-core  
processor accesses cacheable memory. The processor core will transition to the C0  
state upon occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB  
interrupt message. RESET# will cause the processor core to immediately initialize itself.  
2.1.2  
Package Low-Power State Descriptions  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0, C1/AutoHALT, or C1/MWAIT  
state.  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the dual-core processor enters the  
Stop-Grant state within 20 bus clocks after the response phase of the processor-issued  
Stop-Grant Acknowledge special bus cycle. Processor cores that are already in the C2,  
C3 state remain in their current low-power state. When the STPCLK# pin is deasserted,  
each core returns to its previous core low-power state.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
12  
Datasheet  
Low Power Features  
RESET# causes the processor to immediately initialize itself, but the processor will stay  
in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#, SLP#,  
DPSLP# pins must be deasserted prior to RESET# deassertion as per AC Specification  
T45. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be  
deasserted after the deassertion of SLP# as per AC Specification T75.  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt or Monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the entire processor  
should return to the Normal state.  
A transition to the Stop-Grant Snoop state occurs when the processor detects a snoop  
on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4)  
occurs with the assertion of the SLP# signal.  
2.1.2.3  
2.1.2.4  
Stop-Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor returns to  
the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low-power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through the Stop-Grant state. If RESET# is driven active while the  
processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted  
immediately after RESET# is asserted to ensure the processor correctly executes the  
Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin. While the processor is in the  
Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event  
needs to occur.  
Datasheet  
13  
Low Power Features  
2.2  
FSB Low-Power Enhancements  
The processor incorporates FSB low power enhancements:  
• Dynamic FSB Power Down  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On-Die Termination disabling  
• Low VCCP (I/O termination voltage)  
The processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates  
them only when data bus activity occurs, resulting in significant power savings with no  
performance impact. BPRI# control also allows the processor address and control input  
buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows  
a reciprocal power reduction in GMCH address and control input buffers when the  
processor deasserts its BR0# pin. The On-Die Termination on the processor FSB buffers  
is disabled when the signals are driven low, resulting in additional power savings. The  
low I/O termination voltage is on a dedicated voltage plane independent of the core  
voltage, enabling low I/O switching power at all times.  
2.3  
Processor Power Status Indicator (PSI-2) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve intermediate and light  
load efficiency of the voltage regulator, resulting in platform power savings and  
extended battery life. Since the processor is single core, the PSI-2 functionality will be  
limited to the single core operational state.Additionally the voltage regulator may  
switch to a single phase and/or asynchronous mode when the processor is idle and  
fused leakage limit is less than or equal to the BIOS threshold value.  
§
14  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power  
planes while all VSS pins must be connected to system ground planes. Use of multiple  
power and ground planes is recommended to reduce I*R drop. Refer to the platform  
design guides for more details. The processor VCC pins must be supplied the voltage  
determined by the VID (Voltage ID) pins.  
3.1.1  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous-generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor uses a differential clocking  
implementation.  
3.2  
Voltage Identification and Power Sequencing  
The processor uses seven voltage identification pins,VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for the processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 in the table refers to a high-voltage level and a 0 refers to  
a low-voltage level.  
Datasheet  
15  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 1 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
16  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
Datasheet  
17  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 3)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3.3  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough that the  
processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the  
processor must be turned off within 500 ms to prevent permanent silicon damage due  
to thermal runaway of the processor. THERMTRIP# functionality is not ensured if the  
PWRGOOD signal is not asserted.  
18  
Datasheet  
Electrical Specifications  
3.4  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no-connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected.  
The TEST1,TEST2,TEST3,TEST4,TEST5,TEST6 pins are used for test purposes internally  
and can be left as “No Connects.  
Note:  
There is no TEST7 pin on the processor.  
3.5  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the appropriate  
chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BSEL[2]  
BSEL[1] BSEL[0] BCLK Frequency  
L
L
L
L
L
H
H
L
RESERVED  
RESERVED  
RESERVED  
200 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
H
H
L
L
3.6  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type in the following  
sections. AGTL+ input signals have differential input buffers that use GTLREF as a  
reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input  
group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers  
to the AGTL+ output group as well as the AGTL+ I/O group when driving.  
Datasheet  
19  
Electrical Specifications  
With the implementation of a source-synchronous data bus, two sets of timing  
parameters need to be specified. One set is for common clock signals, which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.), and the second  
set is for the source-synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 4 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#,  
TRDY#  
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#,  
DRDY#, HIT#, HITM#, LOCK#, PRDY#3, DPWR#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]#  
ADSTB[1]#  
AGTL+ Source Synchronous  
I/O  
Synchronous to assoc.  
strobe  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#,  
LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#,  
STPCLK#  
Asynchronous  
Open Drain Output  
Open Drain I/O  
CMOS Output  
CMOS Input  
Asynchronous  
Asynchronous  
Asynchronous  
Synchronous to TCK  
Synchronous to TCK  
Clock  
FERR#, IERR#, THERMTRIP#  
PROCHOT#4  
PSI#, VID[6:0], BSEL[2:0]  
TCK, TDI, TMS, TRST#  
TDO  
Open Drain Output  
FSB Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,  
Power/Other  
THERMDA, THERMDC, VCC, VCCA, VCCP, VCC_SENSE  
,
V
SS, VSS_SENSE  
NOTES:  
1.  
2.  
Refer to Chapter 4 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board, these signals are  
used to support a debug port interposer. In systems with the debug port implemented on the system  
board, these signals are no connects.  
3.  
4.  
5.  
BPM[2:1]# and PRDY# are AGTL+ output-only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
On-die termination differs from other AGTL+ signals.  
20  
Datasheet  
Electrical Specifications  
3.7  
3.8  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) use Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs for the  
processor to recognize them. See Section 3.9 for the DC and AC specifications for the  
CMOS signal groups.  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings only and these lie outside  
the functional limits of the processor. Within functional operation limits, functionality  
and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions outside these limits but within the  
absolute maximum and minimum ratings, the device may be functional but with its  
lifetime degraded, depending on exposure to conditions exceeding the functional  
operation condition limits.  
At conditions exceeding the absolute maximum and minimum ratings, neither  
functionality nor long-term reliability can be expected. If a device is subjected to these  
conditions for any length of time, the device may not function or may not be reliable  
when returned to conditions within the functional operating condition limits.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Datasheet  
21  
Electrical Specifications  
Table 5.  
Processor Absolute Maximum Ratings  
Parameter  
Symbol  
TSTORAGE  
VCC  
Min  
Max  
Unit  
Notes1,5  
Processor Storage Temperature  
-40  
-0.3  
-0.1  
-0.1  
85  
°C  
V
2,3,4,6  
Any Processor Supply Voltage with Respect to VSS  
AGTL+ Buffer DC Input Voltage with Respect to VSS  
1.45  
1.45  
1.45  
VinAGTL+  
V
VinAsynch_CMOS CMOS Buffer DC Input Voltage with Respect to VSS  
V
NOTES:  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the processor must not  
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect  
the long-term reliability of the device. For functional operation, please refer to the processor case  
temperature specifications.  
3.  
4.  
5.  
6.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long-term reliability of the processor.  
Overshoot and undershoot guidelines for input, output, and I/O signals are in Chapter 4.  
The min TSTORAGE temperature is -25 °C.  
3.9  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and  
signal pin assignments.  
The tables in this section list the DC specifications for the processor and are valid only  
while meeting specifications for junction temperature, clock frequency, and input  
voltages. Active mode load line specifications apply in all states except in the Deep  
Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power  
up in order to set the VID values. Maximum Junction Temperature (TJ,max) values for  
the processor are documented in Table 16 and Table 17. Read all notes associated with  
each parameter.  
22  
Datasheet  
Electrical Specifications  
Table 6.  
Symbol  
Voltage and Current Specifications for the Single-Core Standard Voltage (SV)  
Processors  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
VCC  
0.8  
1.25  
V
V
V
V
A
1, 2  
VCC,BOOT  
VCCP  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.2  
1.05  
1.5  
2, 6, 8  
1.0  
1.425  
1.1  
1.575  
47  
VCCA  
PLL Supply Voltage  
ICCDES  
ICC for Processors Recommended Design Target  
ICC for Processors  
5, 12  
Processor  
ICC  
Core Frequency/Voltage  
Number  
47  
900  
2.2 GHz  
A
A
3, 4  
3, 4  
IAH,  
ISGNT  
ICC Auto-Halt & Stop-Grant  
25.4  
ISLP  
ICC Sleep  
24.7  
22.9  
A
A
3, 4  
3, 4  
IDPSLP  
ICC Deep Sleep  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
7, 9  
ICC for VCCA Supply  
10  
11  
ICCC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:.  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (e.g.  
Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
Specified at 105 °C TJ.  
Specified at the nominal VCC  
Refer to the RS – Intel® Mobile Voltage Positioning (Intel® MVP) - 6 Mobile Processor and Mobile Chipset  
Voltage Regulation Specification for design target capability.  
.
6.  
7.  
8.  
9.  
Refer to Figure 14 for a waveform illustration of this parameter.  
Measured at the bulk capacitors on the motherboard.  
V
CC,BOOT tolerance shown in Figure 3.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
10.  
11.  
12.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICCcurrent specification that is applicable when both VCCP and VCC_CORE are high.  
Average current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to  
support current levels described herein.  
Datasheet  
23  
Electrical Specifications  
Table 7.  
Symbol  
Voltage and Current Specifications for the Single-Core, Ultra Low Voltage  
(ULV, 10 W) Processor  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
VCC  
0.775  
1.20  
1.05  
1.5  
1.1  
V
V
V
V
A
1, 2  
2, 5  
VCC,BOOT  
VCCP  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.00  
1.425  
1.10  
1.575  
18  
VCCA  
PLL Supply Voltage  
ICCDES  
ICC for Processors Recommended Design Target  
10  
Processor  
Core Frequency/Voltage  
Number  
ICC  
723  
743  
1.2 GHz  
1.3 GHz  
17.6  
17.6  
A
A
3, 4  
3, 4  
IAH,  
ISGNT  
ICC Auto-Halt & Stop-Grant  
6.3  
A
3, 4  
ISLP  
ICC Sleep  
5.9  
5.0  
A
A
3, 4  
3, 4  
IDPSLP  
ICC Deep Sleep  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
5, 7  
ICC for VCCA Supply  
8
9
ICC for VCCP Supply before VCC Stable  
ICC for VCCPSupply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (e.g.,  
Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 100 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 3.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Average current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to  
support current levels.  
24  
Datasheet  
Electrical Specifications  
Table 8.  
Symbol  
Voltage and Current Specifications for the Single-Core Ultra Low Voltage (ULV,  
5.5 W) Processors  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC  
VCC  
0.775  
1.20  
1.05  
1.5  
1.1  
V
V
V
V
A
1, 2  
2, 5  
VCC,BOOT  
VCCP  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.00  
1.425  
1.10  
1.575  
9
VCCA  
PLL Supply Voltage  
ICCDES  
ICC for Processors Recommended Design Target  
10  
Processor  
Core Frequency/Voltage  
Number  
9
ICC  
722  
1.2 GHz  
A
A
3, 4  
3, 4  
IAH,  
ISGNT  
ICC Auto-Halt & Stop-Grant  
4.4  
ISLP  
ICC Sleep  
4.1  
3.3  
A
A
3, 4  
3, 4  
IDPSLP  
ICC Deep Sleep  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
mA/µs  
mA  
5, 7  
ICC for VCCA Supply  
8
9
ICC for VCCP Supply before VCC Stable  
ICC for VCCPSupply after VCC Stable  
4.5  
2.5  
A
A
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (e.g.  
Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 100 °C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 3.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification that is applicable when both VCCP and VCC_CORE are high.  
Average current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to  
support current levels.  
Datasheet  
25  
Electrical Specifications  
Figure 3.  
Active VCC and ICC Loadline  
VCC-CORE [V]  
Slope = -4.0 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
V
CC-CORE max  
CC-CORE, DC ma  
VCC-CORE nom  
V
10mV= RIPPLE  
VCC-CORE, DC min  
VCC-CORE min  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5%  
+/-11.5mV  
+/-25mV  
VCC-CORE > 0.7500V  
0.5000V </= VCC-CORE </= 0.7500V  
0.3000V </= VCC-CORE < 0.5000V  
NOTES:  
1.  
Applies to low-voltage, ultra low-voltage and low-power standard voltage 22-mm (dual-  
core) processors for Intel® Centrino® processor technology.  
Active mode tolerance depends on VID value.  
2.  
Table 9.  
Symbol  
FSB Differential BCLK Specifications  
Parameter  
Crossing Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCROSS  
ΔVCROSS  
VSWING  
ILI  
0.3  
0.55  
140  
V
2, 7, 8  
Range of Crossing Points  
Differential Output Swing  
Input Leakage Current  
Pad Capacitance  
mV  
mV  
µA  
pF  
2, 7, 5  
300  
-5  
6
3
4
+5  
Cpad  
0.95  
1.2  
1.45  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of  
BCLK1.  
3.  
4.  
5.  
6.  
7.  
8.  
For Vin between 0 V and VIH.  
Cpad includes die capacitance only. No package parasitics are included.  
ΔVCROSS is defined as the total variation of all crossing voltages as defined in note 2.  
Measurement taken from differential waveform.  
Measurement taken from single-ended waveform.  
Only applies to the differential rising edge (Clock rising and Clock# falling).  
26  
Datasheet  
Electrical Specifications  
Table 10.  
Symbol  
AGTL+ Signal Group DC Specifications  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCCP  
1.00  
0.65  
27.23  
49  
1.05  
0.70  
27.5  
55  
1.10  
0.72  
27.78  
63  
V
V
GTLREF  
RCOMP  
RODT/A  
RODT/D  
RODT/Cntrl  
VIH  
Reference Voltage  
6
10  
Compensation Resistor  
Termination Resistor Address  
Termination Resistor Data  
Termination Resistor Control  
Input High Voltage  
Ω
Ω
Ω
Ω
V
11, 12  
11, 13  
11, 14  
3,6  
49  
55  
63  
49  
55  
63  
0.82  
-0.10  
0.90  
50  
1.05  
0
1.20  
0.55  
1.10  
61  
VIL  
Input Low Voltage  
V
2,4  
VOH  
Output High Voltage  
VCCP  
55  
V
6
RTT/A  
Termination Resistance Address  
Termination Resistance Data  
Termination Resistance Control  
Buffer on Resistance Address  
Buffer on Resistance Data  
Buffer on Resistance Control  
Input Leakage Current  
Pad Capacitance  
Ω
Ω
Ω
Ω
Ω
Ω
µA  
pF  
7, 12  
7, 13  
7, 14  
5, 12  
5, 13  
5, 14  
8
RTT/D  
RTT/Cntrl  
RON/A  
RON/D  
RON/Cntrl  
ILI  
50  
55  
61  
50  
55  
61  
23  
25  
29  
23  
25  
29  
23  
25  
29  
±100  
2.75  
Cpad  
1.80  
2.30  
9
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
value.  
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the  
signal quality specifications.  
This is the pulldown driver resistance. Refer to processor I/O Buffer Models for I/V characteristics.  
Measured at 0.31*VCCP. RON (min) = 0.418*RTT, RON (typ) = 0.455*RTT,  
V
3.  
4.  
5.  
V
V
R
ON (max) = 0.527*RTT. RTT typical value of 55 Ω is used for RON typ/min/max calculations.  
GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these  
specifications is the instantaneous VCCP  
TT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at  
0.31*VCCP. RTT is connected to VCCP on die. Refer to processor I/O buffer models for I/V characteristics.  
Specified with on-die RTT and RON turned off. Vin between 0 and VCCP  
6.  
7.  
.
R
8.  
.
9.  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
10.  
11.  
12.  
13.  
14.  
On-die termination resistance, measured at 0.33*VCCP  
.
Applies to Signals A[35:3].  
Applies to Signals D[63:0].  
Applies to Signals BPRI#, DEFER#, PREQ#, PREST#, RS[2:0]#, TRDY#, ADS#, BNR#, BPM[3:0], BR0#,  
DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#, DPWR#, DSTB[1:0]#, DSTBP[3:0] and DSTBN[3:0]#.  
Datasheet  
27  
Electrical Specifications  
Table 11.  
Symbol  
CMOS Signal Group DC Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
VCCP  
VIL  
I/O Voltage  
1.00  
-0.10  
0.7*VCCP  
-0.10  
0.9*VCCP  
1.5  
1.05  
0.00  
VCCP  
0
1.10  
0.3*VCCP  
VCCP+0.1  
0.1*VCCP  
VCCP+0.1  
4.1  
V
V
Input Low Voltage CMOS  
Input High Voltage  
2, 3  
2
VIH  
V
VOL  
Output Low Voltage  
V
2
VOH  
IOL  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Pad Capacitance  
VCCP  
V
2
mA  
mA  
µA  
pF  
pF  
4
IOH  
1.5  
4.1  
5
ILI  
±100  
6
Cpad1  
Cpad2  
1.80  
2.30  
1.2  
2.75  
7
Pad Capacitance for CMOS Input  
0.95  
1.45  
8
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Refer to the processor I/O Buffer Models for I/V characteristics.  
Measured at 0.1 *VCCP  
Measured at 0.9 *VCCP  
For Vin between 0 V and VCCP. Measured when the driver is tristated.  
.
.
.
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are  
included.  
8.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.  
Table 12.  
Symbol  
Open Drain Signal Group DC Specifications  
Parameter  
Output High Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VOH  
VOL  
IOL  
VCCP–5%  
VCCP  
VCCP+5%  
0.20  
V
V
3
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
0
16  
50  
mA  
µA  
pF  
2
4
5
ILO  
±200  
2.75  
Cpad  
1.80  
2.30  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
OH is determined by value of the external pull-up resistor to VCCP  
.
For Vin between 0 V and VOH  
.
Cpad includes die capacitance only. No package parasitics are included.  
§
28  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The SV processor is available in 478-pin Micro-FCPGA packages as well as 479-ball  
Micro-FCBGA packages. The package mechanical dimensions are shown in Figure 4  
through Figure 8.  
The ULV processor is available 956-ball Micro-FCBGA packages. The package  
mechanical dimensions are shown in Figure 8.  
The mechanical package pressure specifications are in a direction normal to the surface  
of the processor. This requirement is to protect the processor die from fracture risk due  
to uneven die pressure distribution under tilt, stack-up tolerances and other similar  
conditions. These specifications assume that a mechanical attach is designed  
specifically to load one type of processor.  
Intel also specifies that 15-lbf load limit should not be exceeded on any of Intel’s BGA  
packages so as to not impact solder joint reliability after reflow. This load limit ensures  
that impact to the package solder joints due to transient bend, shock, or tensile loading  
is minimized. The 15-lbf metric should be used in parallel with the 689-kPa (100 psi)  
pressure limit as long as neither limits are exceeded. In some cases, designing to 15 lbf  
will exceed the pressure specification of 689 kPa (100 psi) and therefore should be  
reduced to ensure both limits are maintained.  
Moreover, the processor package substrate should not be used as a mechanical  
reference or load-bearing surface for the thermal or mechanical solution.  
Caution:  
The Micro-FCBGA package incorporates land-side capacitors. The land-side capacitors  
are electrically conductive so care should be taken to avoid contacting the capacitors  
with other electrically conductive materials on the motherboard. Doing so may short  
the capacitors and possibly damage the device or render it inactive.  
Datasheet  
29  
Package Mechanical Specifications and Pin Information  
Figure 4.  
1-MB on 6-MB Die (SV) Micro-FCPGA Package Drawing (Sheet 1 of 2)  
h
30  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 5.  
1-MB on 6-MB Die (SV) Micro-FCPGA Package Drawing (Sheet 2 of 2)  
Datasheet  
31  
Package Mechanical Specifications and Pin Information  
Figure 6.  
1-MB on 6-MB Die (SV) Micro-FCBGA Package Drawing (Sheet 1 of 2)  
32  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 7.  
1-MB on 6-MB Die (SV) Micro-FCBGA Package Drawing (Sheet 2 of 2)  
33  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 8.  
Processor (ULV SC) Die Micro-FCBGA Processor Package Drawing  
34  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Figure 9 and Figure 10 show the  
processor (SV) pinout as viewed from the  
top of the package. Table 14 provides the  
pin list, arranged numerically by pin  
number.  
Figure 11 through Figure 14 show the top  
view of the (ULV) processor package.  
Table 13 lists the processor ballout  
alphabetically by signal name. For signal  
descriptions, refer to Section 4.3.  
Figure 9.  
Penryn Processor Pinout (Top Package View, Left Side)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1
A
VSS  
RSVD  
SMI#  
INIT#  
VSS  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
2
B
LINT1  
IGNNE  
#
THERM  
TRIP#  
C
D
E
RESET#  
VSS  
VSS  
TEST7  
RSVD  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
D
E
STPCLK  
#
PWRGO  
OD  
RSVD  
BNR#  
VSS  
SLP#  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
F
BR0#  
VSS  
VSS  
RS[0]#  
RS[2]#  
RS[1]#  
VSS  
VSS  
RSVD  
HIT#  
F
G
TRDY#  
BPRI#  
G
REQ[1]  
#
H
J
ADS#  
A[9]#  
VSS  
LOCK#  
A[3]#  
DEFER#  
VSS  
VSS  
H
J
REQ[3]  
#
VSS  
VCCP  
REQ[2]  
#
REQ[0]  
#
K
L
VSS  
VSS  
A[6]#  
A[4]#  
VSS  
VCCP  
VSS  
K
L
REQ[4]#  
A[13]#  
VSS  
VSS  
A[5]#  
RSVD  
ADSTB[0]  
#
M
A[7]#  
VCCP  
M
N
P
R
T
VSS  
A[8]#  
A[12]#  
VSS  
A[10]#  
VSS  
VSS  
RSVD  
A[11]#  
VSS  
VCCP  
VSS  
N
P
R
T
A[15]#  
A[16]#  
VSS  
A[14]#  
A[24]#  
VSS  
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
RSVD  
A[25]#  
A[18]#  
U
A[23]#  
A[30]#  
A[21]#  
U
ADSTB[1]  
#
V
VSS  
RSVD  
A[31]#  
VSS  
VCCP  
V
W
Y
VSS  
A[27]#  
A[17]#  
A[32]#  
VSS  
VSS  
A[28]#  
A[22]#  
A[20]#  
VSS  
W
Y
COMP[3]  
A[29]#  
A
A
AA  
AB  
AC  
AD  
AE  
AF  
COMP[2]  
VSS  
VSS  
A[34]#  
PRDY#  
VSS  
A[35]#  
TDO  
A[33]#  
VSS  
VSS  
TMS  
TDI  
TRST#  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
A
B
BPM[3]  
#
A
C
PREQ#  
BPM[2]#  
VSS  
VSS  
TCK  
BPM[1]  
#
BPM[0]  
#
A
D
VSS  
VID[0]  
PSI#  
VSS  
SENSE  
A
E
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
A
F
TEST5  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1. Keying option for uFCPGA, A1 and B1 are de-populated.  
2. Keying option for uFCBGA, A1 is de-populated and B1 is VSS.  
35  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 10.  
Processor Pinout (Top Package View, Right Side)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
TEST6  
VCCA  
VCCA  
A
B
C
VCC  
BSEL[1]  
TEST1  
THRMDC  
VSS  
DBR#  
BSEL[2]  
TEST3  
PROCHOT  
#
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
VSS  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
D[1]#  
D[9]#  
G
D[3]#  
D[5]#  
G
DSTBP[  
0]#  
H
VSS  
D[12]#  
D[15]#  
VSS  
DINV[0]#  
H
DSTBN[  
0]#  
J
K
L
VCCP  
VCCP  
VSS  
VSS  
D[11]#  
VSS  
D[10]#  
D[8]#  
VSS  
VSS  
J
K
L
D[14]#  
D[22]#  
D[17]#  
D[29]#  
VSS  
DSTBN[  
1]#  
D[20]#  
DSTBP[  
1]#  
M
VCCP  
VSS  
D[23]#  
D[21]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[26]#  
VSS  
DINV[1]#  
VSS  
D[31]#  
D[24]#  
VSS  
N
P
D[25]#  
D[18]#  
COMP[0  
]
R
T
VCCP  
VCCP  
VSS  
VSS  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[37]#  
DINV[2]#  
D[30]#  
D[38]#  
VSS  
COMP[1  
]
U
D[39]#  
U
V
VCCP  
VCCP  
VSS  
D[36]#  
VSS  
D[34]#  
D[43]#  
VSS  
D[35]#  
VSS  
V
W
D[41]#  
D[44]#  
W
DSTBN[  
2]#  
Y
VSS  
D[32]#  
VSS  
D[42]#  
D[45]#  
VSS  
D[40]#  
VSS  
Y
DSTBP[  
2]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
D[50]#  
D[46]#  
A
B
AB  
AC  
D[52]#  
VSS  
D[51]#  
D[60]#  
VSS  
VSS  
D[63]#  
D[61]#  
VSS  
D[33]#  
VSS  
D[47]#  
D[57]#  
VSS  
VSS  
D[53]#  
GTLREF  
VSS  
DINV[3  
]#  
A
C
A
D
A
D
D[54]#  
VCC  
D[59]#  
D[58]#  
D[49]#  
D[48]#  
DSTBN[3]  
#
A
E
AE  
AF  
D[55]#  
DSTBP[3]  
#
A
F
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
D[62]#  
D[56]#  
VSS  
TEST4  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Datasheet  
36  
Package Mechanical Specifications and Pin Information  
Figure 11.  
Processor Top View Upper Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
COMP[  
2]  
VSS  
VSS  
VSS  
TMS  
TDI  
TDO  
A[35]#  
A[17]#  
A[31]#  
A[30]#  
A[19]#  
A[16]#  
1
BPM[3]  
#
COMP[  
3]  
VSS  
VID[5]  
VSS  
PREQ#  
TCK  
A[22]#  
A[20]#  
VSS  
A[34]#  
A[28]#  
VSS  
A[32]#  
A[27]#  
VSS  
A[21]#  
A[18]#  
VSS  
A[23]#  
A[26]#  
VSS  
A[11]#  
A[12]#  
VSS  
2
VSS  
VID[4]  
VID[1]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
3
VSS  
VSS  
VID[6]  
VSS  
A[24]#  
VSS  
4
BPM[2]  
#
ADSTB  
[1]#  
RSVD0  
4
RSVD0  
3
A[33]#  
VSS  
A[29]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[25]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[14]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
A[10]#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
5
VSS  
6
BPM[1]  
#
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
BPM[0]  
#
VID[0]  
PSI#  
VID[3]  
VID[2]  
VSS  
TRST#  
PRDY#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
9
TEST5  
VSS  
VSS  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS  
VCCP  
VCCP  
VSS  
VCCS  
ENSE  
VSS  
VSS  
VSS  
VSS  
VSSSE  
NSE  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
37  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 12.  
Processor Top View Upper Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
REQ[2]  
#
REQ[0]  
#
A[7]#  
A[5]#  
LOCK#  
TRDY#  
DBSY#  
VSS  
VSS  
1
RSVD0  
2
RSVD0  
1
A[15]#  
VSS  
A[9]#  
A[3]#  
BR0#  
RS[0]#  
HIT#  
HITM#  
VSS  
2
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BPRI#  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VSS  
BNR#  
DBR#  
VSS  
VSS  
VSS  
LINT1  
A20M#  
LINT0  
VSS  
3
ADSTB  
[0]#  
REQ[3]  
#
RSVD0  
6
A[8]#  
A[13]#  
VSS  
A[4]#  
VSS  
A[6]#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
ADS#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
RS[2]#  
VSS  
RS[1]#  
VSS  
FERR#  
VSS  
VSS  
VSS  
4
REQ[4]  
#
REQ[1]  
#
DEFER  
#
RESET  
#
SMI#  
VSS  
VSS  
VSS  
VSS  
VCCP  
VSS  
VSS  
VSS  
VSS  
5
VSS  
VSS  
VSS  
VSS  
VCCP  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
6
DPRST  
P#  
PWRG  
OOD  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
7
RSVD0  
7
STPCL  
K#  
DPSLP  
#
VSS  
VSS  
INIT#  
SLP#  
VCCP  
VCCP  
VCC  
8
RSVD0  
5
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
VSS  
9
THER  
MTRIP  
#
IGNNE  
#
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCCP  
VCC  
VSS  
VCCP  
VCCP  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCC  
VCCP  
VCCP  
VCC  
VCCP  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Datasheet  
38  
Package Mechanical Specifications and Pin Information  
Figure 13.  
Processor Top View Lower Left Side  
BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD AC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D[58]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D[52]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
D[26]#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCC  
VCC  
THRM  
DC  
THRM  
DA  
VSS  
VSS  
VSS  
D[62]#  
D[54]#  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VSS  
D[55]#  
D[61]#  
VSS  
D[56]#  
VSS  
VCCP  
VCCP  
D[45]#  
VSS  
VSS  
VCCP  
VCCP  
D[43]#  
VSS  
VSS  
VCCP  
VCCP  
D[35]#  
VSS  
DINV[3  
]#  
VSS  
VSS  
DSTBP  
[3]#  
D[48]#  
D[50]#  
VSS  
VSS  
VSS  
VSS  
D[59]#  
VSS  
VSS  
VSS  
DSTBN  
[3]#  
D[57]#  
VSS  
D[42]#  
VSS  
D[34]#  
VSS  
DINV[2  
]#  
D[60]#  
VSS  
D[51]#  
D[63]#  
D[53]#  
D[33]#  
D[46]#  
D[41]#  
D[47]#  
D[37]#  
D[44]#  
TEST4  
D[27]#  
TEST6  
VSS  
VSS  
GTLRE  
F
DSTBP  
[2]#  
COMP[  
0]  
D[36]#  
DSTBN  
[2]#  
COMP[  
1]  
VSS  
D[49]#  
D[32]#  
D[40]#  
D[39]#  
D[38]#  
39  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 14.  
Processor Top View Lower Right Side  
AB AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCA  
VSS  
VCCP  
VCCA  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCP  
VCCP  
VSS  
VCC  
VCCP  
VSS  
VCCP  
VCCP  
TEST1  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VSS  
VSS  
VCCP  
VCCP  
DRDY#  
D[0]#  
VSS  
BCLK[  
1]  
BCLK[  
0]  
VCCP  
VCCP  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VSS  
VSS  
VCCP  
VCCP  
D[17]#  
VSS  
VSS  
VCCP  
VCCP  
VSS  
VCCP  
VCCP  
VCCP  
VSS  
BSEL[1  
]
BSEL[0  
]
PROC  
HOT#  
BSEL[2  
]
VSS  
VSS  
VSS  
D[6]#  
D[13]#  
D[1]#  
VSS  
VSS  
VSS  
DINV[0  
]#  
DSTBN  
[0]#  
D[25]#  
D[24]#  
VSS  
D[29]#  
VSS  
D[11]#  
VSS  
D[12]#  
VSS  
D[4]#  
VSS  
TEST2  
VSS  
IERR#  
VSS  
DSTBP  
[0]#  
DPWR  
#
D[21]#  
D[23]#  
D[20]#  
D[10]#  
D[22]#  
D[8]#  
D[15]#  
D[7]#  
D[2]#  
VSS  
VSS  
DSTBP  
[1]#  
DSTBN  
[1]#  
DINV[1  
]#  
D[28]#  
D[19]#  
D[3]#  
TEST3  
D[30]#  
D[18]#  
D[31]#  
D[16]#  
D[14]#  
D[9]#  
D[5]#  
VSS  
VSS  
Datasheet  
40  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
BCLK[0]  
A35  
C35  
J5  
A[3]#  
P2  
V4  
BCLK[1]  
BNR#  
A[4]#  
A[5]#  
W1  
BPM[0]#  
BPM[1]#  
BPM[2]#  
BPM[3]#  
BPRI#  
AY8  
BA7  
BA5  
AY2  
L5  
A[6]#  
T4  
A[7]#  
AA1  
AB4  
T2  
A[8]#  
A[9]#  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
A[35]#  
A20M#  
ADS#  
AC5  
AD2  
AD4  
AA5  
AE5  
AB2  
AC1  
AN1  
AK4  
AG1  
AT4  
AK2  
AT2  
AH2  
AF4  
AJ5  
AH4  
AM4  
AP4  
AR5  
AJ1  
AL1  
AM2  
AU5  
AP2  
AR1  
C7  
BR0#  
M2  
BSEL[0]  
BSEL[1]  
BSEL[2]  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
A37  
C37  
B38  
AE43  
AD44  
AE1  
AF2  
F40  
G43  
E43  
J43  
D[1]#  
D[2]#  
D[3]#  
D[4]#  
H40  
H44  
G39  
E41  
L41  
K44  
N41  
T40  
M40  
G41  
M44  
L43  
P44  
V40  
V44  
AB44  
R41  
D[5]#  
D[6]#  
D[7]#  
D[8]#  
D[9]#  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
M4  
ADSTB[0]#  
ADSTB[1]#  
Y4  
AN5  
41  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
D[21]#  
W41  
N43  
D[58]#  
BC35  
BC39  
BA41  
BB40  
BA35  
AU43  
J7  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[59]#  
D[60]#  
U41  
AA41  
AB40  
AD40  
AC41  
AA43  
Y40  
D[61]#  
D[62]#  
D[63]#  
DBR#  
DBSY#  
J1  
DEFER#  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
DPRSTP#  
DPSLP#  
DPWR#  
DRDY#  
N5  
Y44  
P40  
R43  
AJ41  
BC37  
G7  
T44  
AP44  
AR43  
AH40  
AF40  
AJ43  
AG41  
AF44  
AH44  
AM44  
AN43  
AM40  
AK40  
AG43  
AP40  
AN41  
AL41  
AV38  
AT44  
AV40  
AU41  
AW41  
AR41  
BA37  
BB38  
AY36  
AT40  
B8  
C41  
F38  
K40  
U43  
AK44  
AY40  
J41  
DSTBN[0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
FERR#  
W43  
AL43  
AY38  
D4  
GTLREF  
AW43  
H2  
HIT#  
HITM#  
F2  
IERR#  
B40  
F10  
D8  
IGNNE#  
INIT#  
LINT0  
C9  
LINT1  
C5  
LOCK#  
N1  
PRDY#  
AV10  
AV2  
PREQ#  
Datasheet  
42  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
PROCHOT#  
D38  
BD10  
E7  
VCC  
AA33  
AB16  
AB18  
AB20  
AB22  
AB24  
AB26  
AB28  
AB30  
AB32  
AC33  
AD16  
AD18  
AD20  
AD22  
AD24  
AD26  
AD28  
AD30  
AD32  
AE33  
AF16  
AF18  
AF20  
AF22  
AF24  
AF26  
AF28  
AF30  
AF32  
AG33  
AH16  
AH18  
AH20  
AH22  
AH24  
AH26  
PSI#  
PWRGOOD  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
RSVD01  
RSVD02  
RSVD03  
RSVD04  
RSVD05  
RSVD06  
RSVD07  
SLP#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
R1  
R5  
U1  
P4  
W5  
G5  
K2  
H4  
K4  
V2  
Y2  
AG5  
AL5  
J9  
F4  
H8  
D10  
E5  
SMI#  
STPCLK#  
TCK  
F8  
AV4  
AW7  
AU1  
E37  
D40  
C43  
AE41  
AY10  
AC43  
B10  
BB34  
BD34  
AW5  
L1  
TDI  
TDO  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
THERMTRIP#  
THRMDA  
THRMDC  
TMS  
TRDY#  
TRST#  
AV8  
43  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VCC  
AH28  
AH30  
AH32  
AJ33  
VCC  
AT16  
AT18  
AT20  
AT22  
AT24  
AT26  
AT28  
AT30  
AT32  
AT34  
AU33  
AV14  
AV16  
AV18  
AV20  
AV22  
AV24  
AV26  
AV28  
AV30  
AV32  
AY14  
AY16  
AY18  
AY20  
AY22  
AY24  
AY26  
AY28  
AY30  
AY32  
B16  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AK16  
AK18  
AK20  
AK22  
AK24  
AK26  
AK28  
AK30  
AK32  
AL33  
AM14  
AM16  
AM18  
AM20  
AM22  
AM24  
AM26  
AM28  
AM30  
AM32  
AN33  
AP14  
AP16  
AP18  
AP20  
AP22  
AP24  
AP26  
AP28  
AP30  
AP32  
AR33  
AT14  
B18  
B20  
B22  
B24  
B26  
Datasheet  
44  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VCC  
B28  
B30  
VCC  
F30  
F32  
G33  
H16  
H18  
H20  
H22  
H24  
H26  
H28  
H30  
H32  
J33  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
BB14  
BB16  
BB18  
BB20  
BB22  
BB24  
BB26  
BB28  
BB30  
BB32  
BD14  
BD16  
BD18  
BD20  
BD22  
BD24  
BD26  
BD28  
BD30  
BD32  
D16  
K16  
K18  
K20  
K22  
K24  
K26  
K28  
K30  
K32  
L33  
M16  
M18  
M20  
M22  
M24  
M26  
M28  
M30  
M32  
N33  
P16  
P18  
P20  
P22  
D18  
D20  
D22  
D24  
D26  
D28  
D30  
F16  
F18  
F20  
F22  
F24  
F26  
F28  
45  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VCC  
P24  
P26  
P28  
P30  
P32  
R33  
T16  
T18  
T20  
T22  
T24  
T26  
T28  
T30  
T32  
U33  
V16  
V18  
V20  
V22  
V24  
V26  
V28  
V30  
V32  
W33  
Y16  
Y18  
Y20  
Y22  
Y24  
Y26  
Y28  
Y30  
Y32  
B34  
D34  
VCCP  
A13  
A33  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
AA7  
AA9  
AA11  
AA13  
AA35  
AA37  
AB10  
AB12  
AB14  
AB36  
AB38  
AC7  
AC9  
AC11  
AC13  
AC35  
AC37  
AD14  
AE7  
AE9  
AE11  
AE13  
AE35  
AE37  
AF10  
AF12  
AF14  
AF36  
AF38  
AG7  
AG9  
AG11  
AG13  
AG35  
AG37  
Datasheet  
46  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VCCP  
AH14  
AJ7  
VCCP  
C13  
C33  
D12  
D14  
D32  
E11  
E13  
E33  
E35  
F12  
F14  
F34  
F36  
G11  
G13  
G35  
H12  
H14  
H36  
J11  
J13  
J35  
J37  
K10  
K12  
K14  
K36  
K38  
L7  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
AJ9  
AJ11  
AJ13  
AJ35  
AJ37  
AK10  
AK12  
AK14  
AK36  
AK38  
AL7  
AL9  
AL11  
AL13  
AL35  
AL37  
AN7  
AN9  
AN11  
AN13  
AN35  
AN37  
AP10  
AP12  
AP36  
AP38  
AR7  
AR9  
L9  
AR11  
AR13  
AU11  
AU13  
B12  
L11  
L13  
L35  
L37  
M14  
N7  
B14  
B32  
N9  
47  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VCCP  
N11  
N13  
N35  
N37  
P10  
P12  
P14  
P36  
P38  
R7  
VID[2]  
BB10  
BB8  
BC5  
BB4  
AY4  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A5  
A7  
A9  
A11  
A15  
R9  
A17  
R11  
R13  
R35  
R37  
T14  
U7  
A19  
A21  
A23  
A25  
A27  
A29  
U9  
A31  
U11  
U13  
U35  
U37  
V10  
V12  
V14  
V36  
V38  
W7  
A39  
A41  
AA3  
AA15  
AA17  
AA19  
AA21  
AA23  
AA25  
AA27  
AA29  
AA31  
AA39  
AB6  
AB8  
AB34  
AB42  
AC3  
AC15  
W9  
W11  
W13  
W35  
W37  
Y14  
BD12  
BD8  
BC7  
Datasheet  
48  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VSS  
AC17  
AC19  
AC21  
AC23  
AC25  
AC27  
AC29  
AC31  
AC39  
AD6  
VSS  
AG23  
AG25  
AG27  
AG29  
AG31  
AG39  
AH6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH8  
AH10  
AH12  
AH34  
AH36  
AH38  
AH42  
AJ3  
AD8  
AD10  
AD12  
AD34  
AD36  
AD38  
AD42  
AE3  
AJ15  
AJ17  
AJ19  
AJ21  
AJ23  
AJ25  
AJ27  
AJ29  
AJ31  
AJ39  
AK6  
AE15  
AE17  
AE19  
AE21  
AE23  
AE25  
AE27  
AE29  
AE31  
AE39  
AF6  
AK8  
AK34  
AK42  
AL3  
AF8  
AF34  
AF42  
AG3  
AL15  
AL17  
AL19  
AL21  
AL23  
AL25  
AL27  
AG15  
AG17  
AG19  
AG21  
49  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VSS  
AL29  
AL31  
AL39  
AM6  
VSS  
AR37  
AR39  
AT6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AT8  
AM8  
AT10  
AT12  
AT36  
AT38  
AT42  
AU3  
AM10  
AM12  
AM34  
AM36  
AM38  
AM42  
AN3  
AU7  
AU9  
AN15  
AN17  
AN19  
AN21  
AN23  
AN25  
AN27  
AN29  
AN31  
AN39  
AP6  
AU15  
AU17  
AU19  
AU21  
AU23  
AU25  
AU27  
AU29  
AU31  
AU35  
AU37  
AU39  
AV6  
AP8  
AP34  
AP42  
AR3  
AV12  
AV34  
AV36  
AV42  
AV44  
AW1  
AR15  
AR17  
AR19  
AR21  
AR23  
AR25  
AR27  
AR29  
AR31  
AR35  
AW3  
AW9  
AW11  
AW13  
AW15  
AW17  
Datasheet  
50  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VSS  
AW19  
AW21  
AW23  
AW25  
AW27  
AW29  
AW31  
AW33  
AW35  
AW37  
AW39  
AY6  
VSS  
BB2  
BB6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BB12  
BB36  
BB42  
BC3  
BC9  
BC11  
BC15  
BC17  
BC19  
BC21  
BC23  
BC25  
BC27  
BC29  
BC31  
BC33  
BC41  
BD4  
BD6  
BD36  
BD38  
BD40  
C3  
AY12  
AY34  
AY42  
AY44  
B4  
B6  
B36  
B42  
BA1  
BA3  
BA9  
BA11  
BA13  
BA15  
BA17  
BA19  
BA21  
BA23  
BA25  
BA27  
BA29  
BA31  
BA33  
BA39  
BA43  
C11  
C15  
C17  
C19  
C21  
C23  
C25  
C27  
C29  
C31  
C39  
D2  
51  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VSS  
D6  
D36  
D42  
D44  
E1  
VSS  
H42  
J3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J15  
J17  
J19  
J21  
J23  
J25  
J27  
J29  
J31  
J39  
K6  
E3  
E9  
E15  
E17  
E19  
E21  
E23  
E25  
E27  
E29  
E31  
E39  
F6  
K8  
K34  
K42  
L3  
L15  
L17  
L19  
L21  
L23  
L25  
L27  
L29  
L31  
L39  
M6  
F42  
F44  
G1  
G3  
G9  
G15  
G17  
G19  
G21  
G23  
G25  
G27  
G29  
G31  
G37  
H6  
M8  
M10  
M12  
M34  
M36  
M38  
M42  
N3  
H10  
H34  
H38  
N15  
Datasheet  
52  
Package Mechanical Specifications and Pin Information  
Table 13.  
Signal Listing by Ball  
Number  
Table 13.  
Signal Listing by Ball  
Number  
Signal Name  
Ball Number  
Signal Name  
Ball Number  
VSS  
N17  
N19  
N21  
N23  
N25  
N27  
N29  
N31  
N39  
P6  
VSS  
U19  
U21  
U23  
U25  
U27  
U29  
U31  
U39  
V6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
V8  
P8  
V34  
V42  
W3  
P34  
P42  
R3  
W15  
W17  
W19  
W21  
W23  
W25  
W27  
W29  
W31  
W39  
Y6  
R15  
R17  
R19  
R21  
R23  
R25  
R27  
R29  
R31  
R39  
T6  
Y8  
T8  
Y10  
Y12  
Y34  
Y36  
Y38  
Y42  
BC13  
T10  
T12  
T34  
T36  
T38  
T42  
U3  
U5  
U15  
U17  
53  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.3  
Alphabetical Signals Reference  
Table 14.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit the  
address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the processor FSB. A[35:3]# are  
source-synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#. Address signals are used as straps, which  
are sampled before RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address Bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]# ADSTB[1]#  
Associated Strobe  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
Datasheet  
54  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 2 of 9)  
Name  
Type  
Description  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor that indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[3:0]# should connect the  
appropriate pins of all processor FSB agents.This includes debug or  
performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
Refer to the appropriate eXtended Debug Port: Debug Port Design  
Guide for UP and DP Platforms for more detailed information.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then releases  
the bus by deasserting BPRI#.  
BPRI#  
Input  
BR0# is used by the processor to request the bus. The arbitration is  
done between the processor (Symmetric Agent) and GMCH (High  
Priority Agent).  
Input/  
Output  
BR0#  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 3 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency.  
BSEL[2:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors.  
COMP[3:0]  
Refer to the appropriate platform design guide for more details on  
implementation.  
D[63:0]# (Data) are the data signals. These signals provide a  
64-bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DINV#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
55  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 3 of 9)  
Name  
Type  
Description  
DBR# (Data Bus Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins of both  
FSB agents.  
DEFER#  
Input  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted. The  
bus agent will invert the data bus signals if more than half the bits,  
within the covered group, would change level in the next cycle.  
DINV[3:0]# Assignment To Data Bus  
Input/  
Output  
Bus Signal  
Data Bus Signals  
DINV[3:0]#  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state or  
C6 state. To return to the Deep Sleep State, DPRSTP# must be  
deasserted. DPRSTP# is driven by the ICH9M chipset.  
DPRSTP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return to  
the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by  
the ICH9M chipset.  
DPSLP#  
DPWR#  
DRDY#  
DPWR# is a control signal used by the chipset to reduce power on  
the processor data bus input buffers. The processor drives this pin  
during dynamic FSB frequency switching.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Datasheet  
56  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 4 of 9)  
Name  
Type  
Description  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
DSTBN[0]#  
D[15:0]#, DINV[0]#  
Input/  
Output  
DSTBN[3:0]#  
D[31:16]#, DINV[1]# DSTBN[1]#  
D[47:32]#, DINV[2]# DSTBN[2]#  
D[63:48]#, DINV[3]# DSTBN[3]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
DSTBP[0]#  
D[15:0]#, DINV[0]#  
Input/  
Output  
DSTBP[3:0]#  
D[31:16]#, DINV[1]# DSTBP[1]#  
D[47:32]#, DINV[2]# DSTBP[2]#  
D[63:48]#, DINV[3]# DSTBP[3]#  
FERR# (Floating-point Error)/PBE# (Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating point  
when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel® 387  
coprocessor, and is included for compatibility with systems using  
Microsoft MS-DOS*-type floating-point error reporting. When  
STPCLK# is asserted, an assertion of FERR#/PBE# indicates that  
the processor has a pending break event waiting for service. The  
assertion of FERR#/PBE# indicates that the processor should be  
returned to the Normal state. When FERR#/PBE# is asserted,  
indicating a break event, it will remain asserted until STPCLK# is  
deasserted. Assertion of PREQ# when STPCLK# is active will also  
cause an FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volumes 3A and 3B of the Intel® 64 and IA-32  
Architectures Software Developer's Manuals and the Intel®  
Processor Identification and CPUID Instruction application note.  
Refer to the appropriate platform design guide for termination  
requirements.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a Logical 0 or Logical 1.  
GTLREF  
Input  
Refer to the appropriate platform design guide for details on  
GTLREF implementation.  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall that  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
Input/  
Output  
HITM#  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 5 of 9)  
Name  
Type  
Description  
IERR# (Internal Error) is asserted by the processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may optionally  
be converted to an external error signal (e.g., NMI) by system core  
logic. The processor will keep IERR# asserted until the assertion of  
RESET#, BINIT#, or INIT#.  
IERR#  
Output  
Refer to the appropriate platform design guide for termination  
requirements.  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute non-control  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a non-control floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in Control Register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an input/output write instruction,  
it must be valid along with the TRDY# assertion of the  
INIT#  
Input  
corresponding input/output write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
If INIT# is sampled active on the active-to-inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST)  
Refer to the appropriate platform design guide for termination  
requirements.  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1  
becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward-compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Datasheet  
58  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 6 of 9)  
Name  
Type  
Description  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
PRDY#  
Output  
Refer to the appropriate eXtended Debug Port: Debug Port Design  
Guide for UP and DP Platforms for more detailed information.  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
PREQ#  
Input  
Refer to the appropriate eXtended Debug Port: Debug Port Design  
Guide for UP and DP Platforms for more detailed information.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output. The processor  
must be enabled via the BIOS for PROCHOT# to be configured as  
bidirectional.  
Refer to the appropriate platform design guide for termination  
requirements.  
This signal may require voltage translation on the motherboard.  
Refer to the appropriate platform design guide for more details.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is both in the normal state (HFM to LFM) and in  
lower power states (Deep Sleep and Deeper Sleep). Refer to the  
Intel® MVP-6 Mobile Processor and Mobile Chipset Voltage  
Regulation Specification for more details on the PSI# signal.  
PSI#  
Output  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal remains low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state. PWRGOOD can be  
driven inactive at any time, but clocks and power must again be  
stable before a subsequent rising edge of PWRGOOD. The  
PWRGOOD signal must be supplied to the processor; it is used to  
protect internal circuits against voltage sequencing issues. It should  
be driven high throughout boundary scan operation.  
PWRGOOD  
Input  
Refer to the appropriate platform design guide for termination  
requirements.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 7 of 9)  
Name  
Type  
Description  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
RESET#  
Input  
Refer to the appropriate platform design guide for termination  
requirements and implementation details. There is a 55 Ω  
(nominal) on die pull-up resistor on this signal.  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
Input  
These pins are RESERVED and must be left unconnected on the  
board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use. Refer to the  
appropriate platform design guide for details.  
Reserved/  
No  
Connect  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of SLP#,  
and removal of the BCLK input while in Sleep state. If SLP# is  
deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep state,  
the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enters System Management  
Mode (SMM). An SMI Acknowledge transaction is issued and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
Input  
If an SMI# is asserted during the deassertion of RESET#, then the  
processor will tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 8 of 9)  
Name  
Type  
Description  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
Output  
TEST1,  
TEST2,  
TEST3,  
TEST4,  
TEST5,  
TEST6  
Refer to the appropriate platform design guide for further TEST1,  
TEST2, TEST3, TEST4, TEST5, TEST6 termination requirements and  
implementation details.  
Input  
THRMDA  
THRMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125 °C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
Refer to the appropriate platform design guide for termination  
requirements.  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
Refer to the appropriate eXtended Debug Port: Debug Port Design  
Guide for UP and DP Platforms for more detailed information.  
TRST#  
Input  
VCC  
VSS  
Input  
Input  
Processor core power supply.  
Processor core ground node.  
VCCA provides isolated power for the internal processor core PLLs.  
Refer to the appropriate platform design guide for complete  
implementation details.  
VCCA  
VCCP  
Input  
Input  
Processor I/O Power Supply.  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 9 of 9)  
Name  
Type  
Description  
V
CC_SENSE together with VSS_SENSE are voltage feedback signals to  
Intel® MVP6 that control the 2.1 mΩ loadline at the processor die.  
It should be used to sense voltage near the silicon with little noise.  
Refer to the platform design guide for termination and routing  
recommendations.  
VCC_SENSE  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (VCC). Unlike some previous generations  
of processors, these are CMOS signals that are driven by the  
processor. The voltage supply for these pins must be valid before  
the VR can supply VCC to the processor. Conversely, the VR output  
must be disabled until the voltage supply for the VID pins becomes  
valid. The VID pins are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these pins.  
The VR must supply the voltage that is requested by the pins, or  
disable itself.  
VID[6:0]  
Output  
Output  
VSS_SENSE together with VCC_SENSE are voltage feedback signals to  
Intel MVP6 that control the 2.1-mΩ loadline at the processor die. It  
should be used to sense ground near the silicon with little noise.  
Refer to the platform design guide for termination and routing  
recommendations.  
VSS_SENSE  
§
62  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation. A complete thermal solution includes both component and system-level  
thermal management features. To allow for the optimal operation and long-term  
reliability of Intel processor-based systems, the system/processor thermal solution  
should be designed so the processor remains within the minimum and maximum  
junction temperature (TJ) specifications at the corresponding thermal design power  
(TDP).  
Caution:  
Operating the processor outside these operating limits may result in permanent  
damage to the processor and potentially other components in the system.  
Table 15.  
Power Specifications for the Dual-Core and Single-Core Standard Voltage (SV)  
Processors  
Processor  
Number  
Core Frequency &  
Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
TDP  
900  
2.2 GHz  
Parameter  
35  
W
1, 4, 5  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
PAH,  
Auto Halt, Stop Grant Power  
13.9  
W
2, 6  
PSGNT  
PSLP  
PDPSLP  
TJ  
Sleep Power  
0
13.1  
5.5  
W
W
°C  
2, 6  
2, 6  
3, 4  
Deep Sleep Power  
Junction Temperature  
105  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel® Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
5.  
6.  
At Tj of 105 oC.  
At Tj of 50 oC.  
Datasheet  
63  
Thermal Specifications and Design Considerations  
Table 16.  
Power Specifications for the Single-Core Ultra Low Voltage Processors (ULV,  
10 W)  
Processor  
Number  
Core Frequency &  
Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
723  
743  
10  
10  
W
W
1, 4, 5  
1, 4, 5  
Notes  
1.2 GHz  
TDP  
1.3 GHz  
1
Symbol  
Parameter  
Min  
Typ Max  
Unit  
PAH,  
Auto Halt, Stop Grant Power  
2.9  
W
2, 6  
PSGNT  
PSLP  
PDPSLP  
TJ  
Sleep Power  
0
2.5  
1.3  
100  
W
W
°C  
2, 6  
2, 6  
3, 4  
Deep Sleep Power  
Junction Temperature  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
5.  
6.  
At Tj of 100 oC  
At Tj of 50 °C  
Table 17.  
Power Specifications for the Single-Core Ultra Low Voltage (ULV, 5.5 W)  
Processors  
Processor  
Number  
Core Frequency &  
Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
TDP  
722  
1.2 GHz  
Parameter  
5.5  
W
1, 4, 5  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
PAH,  
Auto Halt, Stop Grant Power  
2.1  
W
2, 6  
PSGNT  
PSLP  
PDPSLP  
TJ  
Sleep Power  
0
1.8  
0.7  
100  
W
W
°C  
2, 6  
2, 7  
3, 4  
Deep Sleep Power  
Junction Temperature  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
64  
Datasheet  
Thermal Specifications and Design Considerations  
4.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
At Tj of 100 oC  
At Tj of 50 °C  
5.  
6.  
7.  
At Tj of 35 °C  
5.1  
Monitoring Die Temperature  
The processor incorporates three methods of monitoring die temperature:  
• Thermal Diode  
• Intel® Thermal Monitor  
• Digital Thermal Sensor  
5.1.1  
Thermal Diode  
Intel’s processors utilize an SMBus thermal sensor to read back the voltage/current  
characteristics of a substrate PNP transistor. Since these characteristics are a function  
of temperature, in principle one can use these parameters to calculate silicon  
temperature values. For older silicon process technologies (i.e., Intel Core 2 Duo Mobile  
Processor and earlier processor), it is possible to simplify the voltage/current and  
temperature relationships by treating the substrate transistor as though it were a  
simple diffusion diode. In this case, the assumption is that the beta of the transistor  
does not impact the calculated temperature values. The resultant “diode” model  
essentially predicts a quasi linear relationship between the base/emitter voltage  
differential of the PNP transistor and the applied temperature (one of the  
proportionality constants in this relationship is processor specific, and is known as the  
diode ideality factor). Realization of this relationship is accomplished with the SMBus  
thermal sensor that is connected to the transistor.  
The processor is built on Intel’s advanced 45-nm processor technology. Due to this new  
highly advanced processor technology, it is no longer possible to model the substrate  
transistor as a simple diode. To accurately calculate silicon temperature one must use a  
full bi-polar junction transistor-type model. In this model, the voltage/current and  
temperature characteristics include an additional process dependant parameter which  
is known as the transistor “beta. System designers should be aware that the current  
thermal sensors on Santa Rosa platforms may not be configured to account for “beta”  
and should work with their SMB thermal sensor vendors to ensure they have a part  
capable of reading the thermal diode in BJT model.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of the thermal control circuit. This temperature offset must be taken  
into account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor Model-Specific Register (MSR).  
Table 18 to Table 19 provide the diode interface and transistor model specifications.  
Table 18.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
A25  
Thermal diode anode  
Thermal diode cathode  
Datasheet  
65  
Thermal Specifications and Design Considerations  
Table 19.  
Thermal Diode Parameters Using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
IE  
Forward Bias Current  
Emitter Current  
5
5
200  
200  
1.008  
0.5  
μA  
μA  
1
1
nQ  
Transistor Ideality  
0.997  
0.1  
3.0  
1.001  
0.4  
2, 3, 4  
2, 3  
2
Beta  
RT  
Series Resistance  
4.5  
7.0  
Ω
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50-100 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
/n  
I
C = IS * (e qVBE kT –1)  
Q
where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
5.1.2  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power-intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks when the processor silicon reaches its  
maximum operating temperature. The Intel Thermal Monitor uses two modes to  
activate the TCC: automatic mode and on-demand mode. If both modes are activated,  
automatic mode takes precedence.  
The automatic mode is called Intel Thermal Monitor 1 (TM1). This modes are selected  
by writing values to the MSRs of the processor. After automatic mode is enabled, the  
TCC will activate only when the internal die temperature reaches the maximum allowed  
value for operation.  
When TM1 is enabled and a high temperature situation exists, the clocks will be  
modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times  
are processor speed-dependent and will decrease linearly as processor core frequencies  
increase. Once the temperature has returned to a non-critical level, modulation ceases  
and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid  
active/inactive transitions of the TCC when the processor temperature is near the trip  
66  
Datasheet  
Thermal Specifications and Design Considerations  
point. The duty cycle is factory configured and cannot be modified. Also, automatic  
mode does not require any additional hardware, software drivers, or interrupt handling  
routines. Processor performance will be decreased by the same amount as the duty  
cycle when the TCC is active.  
The Intel Thermal Monitor automatic mode must be enabled through BIOS for  
the processor to be operating within specifications. Intel recommends TM1 be  
enabled on the processors.  
TM1 features are also referred to as Adaptive Thermal Monitoring features.  
The TCC may also be activated via on-demand mode. If Bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via Bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
PROCHOT# will not be asserted when the processor is in the Stop Grant,  
Sleep, Deep Sleep, low-power states, hence the thermal diode reading must  
be used as a safeguard to maintain the processor junction temperature within  
maximum specification. If the platform thermal solution is not able to maintain the  
processor junction temperature within the maximum specification, the system must  
initiate an orderly shutdown to prevent damage. If the processor enters one of the  
above low-power states with PROCHOT# already asserted, PROCHOT# will remain  
asserted until the processor exits the low-power state and the processor junction  
temperature drops below the thermal trip point. However, PROCHOT# will de-assert for  
the duration of Intel Deep Power Down (C6) state residency.  
If Thermal Monitor automatic mode is disabled, the processor will be operating out of  
specification. Regardless of enabling the automatic or on-demand modes, in the event  
of a catastrophic cooling failure, the processor will automatically shut down when the  
silicon has reached a temperature of approximately 125 °C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
In all cases the Intel Thermal Monitor feature must be enabled for the processor to  
remain within specification.  
5.1.3  
Digital Thermal Sensor  
The processor also contains an on-die Digital Thermal Sensor (DTS) that can be read  
via an MSR (no I/O interface). Each core of the processor will have a unique digital  
thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the  
Datasheet  
67  
Thermal Specifications and Design Considerations  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
Thermal Monitor. The DTS is only valid while the processor is in the normal operating  
state (the Normal package level low-power state).  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
.
Catastrophic temperature conditions are detectable via an Out Of Specification status  
bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating  
out of specification and immediate shutdown of the system should occur. The processor  
operation and code execution is not ensured once the activation of the Out of  
Specification status bit is set.  
The DTS-relative temperature readout corresponds to the Thermal Monitor (TM1)  
trigger point. When the DTS indicates maximum processor core temperature has been  
reached, the TM1 hardware thermal control mechanism will activate. The DTS and TM1  
temperature may not correspond to the thermal diode reading since the thermal diode  
is located in a separate portion of the die and thermal gradient between the individual  
core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary  
substantially due to changes in processor power, mechanical and thermal attach, and  
software application. The system designer is required to use the DTS to ensure proper  
operation of the processor within its temperature operating specifications.  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for specific register and programming details.  
5.2  
5.3  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shutdown before the  
THERMTRIP# is activated. If the processor’s TM1 are triggered and the temperature  
remains high, an Out Of Spec status and sticky bit are latched in the status MSR  
register and generates a thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If TM1 is enabled, then  
the TCC will be active when PROCHOT# is asserted. The processor can be configured to  
generate an interrupt upon the assertion or deassertion of PROCHOT#. Refer to the an  
interrupt upon the assertion or deassertion of PROCHOT#. Refer to the Intel® 64 and  
IA-32 Architectures Software Developer's Manuals for specific register and  
programming details.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from overheating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
68  
Datasheet  
Thermal Specifications and Design Considerations  
Only a single PROCHOT# pin exists at a package level of the processor. When either  
core's thermal sensor trips, PROCHOT# signal will be driven by the processor package.  
If only TM1 is enabled, PROCHOT# will be asserted regardless of which core is above its  
TCC temperature trip point, and both cores will have their core clocks modulated. It is  
important to note that Intel recommends TM1 to be enabled in BIOS.  
When PROCHOT# is driven by an external agent, if only TM1 is enabled on both cores,  
then both processor cores will have their core clocks modulated. It should be noted that  
Force TM1, enabled via BIOS, does not have any effect on external PROCHOT#.  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is  
operating at its TDP. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power-intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss.  
§
Datasheet  
69  

相关型号:

AV80585VG0091MPSLGAT

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956
INTEL

AV80585VG0091MSLGAM

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956
INTEL

AV80585VG0091MSLGAS

Microprocessor, 64-Bit, 1200MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956
INTEL

AV80585VG0131M

Microprocessor, 64-Bit, 1300MHz, CMOS, PBGA956, HALOGEN FREE, UFCBGA8-956
INTEL

AV80585VG0131MSLGEV

Microprocessor, 64-Bit, 1300MHz, CMOS, PBGA956, 22 X 22 MM, LOW HALOGEN FREE, UFCBGA8-956
INTEL

AV80585VG0133M/SLGEW

RISC Microprocessor, 64-Bit, 1300MHz, CMOS, PBGA956
INTEL

AV8062700834912/SR00U

RISC Microprocessor, 64-Bit, 3400MHz, CMOS
INTEL

AV8062700839009/SR041

RISC Microprocessor, 64-Bit, 3400MHz, CMOS, PBGA1023
INTEL

AV8062701146600

Microprocessor, 64-Bit, 2000MHz, CMOS, PBGA1284, 37.50 X 37.50 MM, 1.016 MM PITCH, FCBGA-1284
INTEL

AV8063801116300

Microprocessor, 64-Bit, 1400MHz, CMOS, 31 X 24 MM, FCBGA-1023
INTEL

AV8063801116300SR10E

Microprocessor, 64-Bit, 1400MHz, CMOS, 31 X 24 MM, FCBGA-1023
INTEL

AV8063801117503

Microprocessor, 64-Bit, 3300MHz, CMOS, PBGA1023, 31 X 24 MM, FCBGA-1023
INTEL