AV8062700834912/SR00U [INTEL]

RISC Microprocessor, 64-Bit, 3400MHz, CMOS;
AV8062700834912/SR00U
型号: AV8062700834912/SR00U
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 3400MHz, CMOS

文件: 总170页 (文件大小:3681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
2nd Generation Intel Core™  
®
Processor Family Mobile and Intel  
®
Celeron Processor Family Mobile  
Datasheet, Volume 1  
®
Supporting Intel Core™ i7 Mobile Extreme Edition Processor Series and  
®
Intel Core™ i5 and i7 Mobile Processor Series  
®
®
Supporting Intel Celeron Mobile Processor Series  
This is Volume 1 of 2  
September 2012  
Document Number: 324692-006  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY  
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH  
MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the  
absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel reserves these for future  
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The  
information here is subject to change without notice. Do not finalize a design with this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change  
without notice. All dates specified are target dates, are provided for planning purposes only and are subject to change.  
This document contains information on products in the design phase of development. Do not finalize a design with this information.  
Revised information will be published when the product is available. Verify with your local sales office that you have the latest  
datasheet before finalizing a design.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting  
operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Enhanced Intel SpeedStep® Technology; See the Processor Spec Finder or contact your Intel representative for more information.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device  
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software  
configurations. Consult with your system vendor for more information.  
No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires  
a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code  
Modules and an Intel TXT-compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor,  
an OS or an application. In addition, Intel TXT requires the system to contain a TPM v1.2, as defined by the Trusted Computing  
Group and specific software for some uses. For more information, see http://www.intel.com/technology/security/  
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor  
(VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary  
depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible  
with all operating systems. Please check with your application vendor.  
Intel® Active Management Technology requires the computer system to have an Intel® AMT-enabled chipset, network hardware  
and software, as well as connection with a power source and a corporate network connection. Setup requires configuration by the  
purchaser and may require scripting with the management console or further integration into existing security frameworks to  
enable certain functionality. It may also require modifications of implementation of new business processes. With regard to  
notebooks, Intel AMT may not be available or certain capabilities may be limited over a host OS-based VPN or when connecting  
wirelessly, on battery power, sleeping, hibernating or powered off. For more information, see http://www.intel.com/technology/  
platform-technology/intel-amt/  
Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost  
Technology performance varies depending on hardware, software and overall system configuration. Check with your PC  
manufacturer on whether your system delivers Intel Turbo Boost Technology.For more information, see http://www.intel.com/  
technology/turboboost.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,  
not across different processor families. See www.intel.com/products/processor_number for details.  
Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced  
for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion  
or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.  
Intel, Intel Core Celeron, Speedstep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2012, Intel Corporation. All rights reserved.  
2
Datasheet, Volume 1  
Contents  
1
Introduction............................................................................................................11  
1.1  
Processor Feature Details ...................................................................................13  
1.1.1 Supported Technologies ..........................................................................13  
Interfaces ........................................................................................................13  
1.2.1 System Memory Support.........................................................................13  
1.2.2 PCI Express* .........................................................................................14  
1.2.3 Direct Media Interface (DMI)....................................................................15  
1.2.4 Platform Environment Control Interface (PECI)...........................................16  
1.2.5 Processor Graphics .................................................................................16  
1.2.6 Embedded DisplayPort* (eDP)..................................................................17  
1.2.7 Intel® Flexible Display Interface (Intel® FDI) .............................................17  
Power Management Support ...............................................................................17  
1.3.1 Processor Core.......................................................................................17  
1.3.2 System.................................................................................................17  
1.3.3 Memory Controller..................................................................................17  
1.3.4 PCI Express* .........................................................................................17  
1.3.5 Direct Media Interface (DMI)....................................................................17  
1.3.6 Processor Graphics Controller...................................................................18  
Thermal Management Support ............................................................................18  
Package...........................................................................................................18  
Terminology .....................................................................................................18  
Related Documents............................................................................................20  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
2
Interfaces................................................................................................................21  
2.1  
System Memory Interface...................................................................................21  
2.1.1 System Memory Technology Supported .....................................................21  
2.1.2 System Memory Timing Support...............................................................22  
2.1.3 System Memory Organization Modes.........................................................22  
2.1.3.1 Single-Channel Mode.................................................................22  
2.1.3.2 Dual-Channel Mode – Intel® Flex Memory Technology Mode ...........22  
2.1.4 Rules for Populating Memory Slots............................................................23  
2.1.5 Technology Enhancements of Intel® Fast Memory Access (Intel® FMA)..........24  
2.1.5.1 Just-in-Time Command Scheduling..............................................24  
2.1.5.2 Command Overlap ....................................................................24  
2.1.5.3 Out-of-Order Scheduling............................................................24  
2.1.6 Memory Type Range Registers (MTRRs) Enhancement.................................24  
2.1.7 Data Scrambling ....................................................................................24  
2.1.8 DRAM Clock Generation...........................................................................24  
PCI Express* Interface.......................................................................................25  
2.2.1 PCI Express* Architecture .......................................................................25  
2.2.1.1 Transaction Layer .....................................................................26  
2.2.1.2 Data Link Layer ........................................................................26  
2.2.1.3 Physical Layer ..........................................................................26  
2.2.2 PCI Express* Configuration Mechanism .....................................................27  
2.2.3 PCI Express Graphics..............................................................................27  
2.2.4 PCI Express* Lanes Connection................................................................28  
Direct Media Interface (DMI)...............................................................................28  
2.3.1 DMI Error Flow.......................................................................................28  
2.3.2 Processor / PCH Compatibility Assumptions................................................28  
2.3.3 DMI Link Down ......................................................................................29  
Processor Graphics Controller (GT) ......................................................................29  
2.2  
2.3  
2.4  
Datasheet, Volume 1  
3
2.4.1 3D and Video Engines for Graphics Processing ........................................... 30  
2.4.1.1 3D Engine Execution Units......................................................... 30  
2.4.1.2 3D Pipeline.............................................................................. 30  
2.4.1.3 Video Engine ........................................................................... 31  
2.4.1.4 2D Engine ............................................................................... 31  
2.4.2 Processor Graphics Display...................................................................... 32  
2.4.2.1 Display Planes.......................................................................... 32  
2.4.2.2 Display Pipes ........................................................................... 33  
2.4.2.3 Display Ports ........................................................................... 33  
2.4.2.4 Embedded DisplayPort*............................................................. 33  
2.4.3 Intel® Flexible Display Interface (Intel® FDI)............................................. 33  
2.4.4 Multi-Graphics Controller Multi-Monitor Support ......................................... 34  
Platform Environment Control Interface (PECI) ..................................................... 34  
Interface Clocking............................................................................................. 34  
2.6.1 Internal Clocking Requirements ............................................................... 34  
2.5  
2.6  
3
Technologies........................................................................................................... 35  
3.1  
Intel® Virtualization Technology (Intel® VT)......................................................... 35  
3.1.1 Intel® Virtualization Technology (Intel® VT) for  
IA-32, Intel® 64 and Intel® Architecture  
(Intel® VT-x) Objectives......................................................................... 35  
3.1.2 Intel® Virtualization Technology (Intel® VT) for  
IA-32, Intel® 64 and Intel® Architecture  
(Intel® VT-x) Features ........................................................................... 36  
3.1.3 Intel® Virtualization Technology (Intel® VT) for Directed  
I/O (Intel® VT-d) Objectives ................................................................... 36  
3.1.4 Intel® Virtualization Technology (Intel® VT) for Directed  
I/O (Intel® VT-d) Features...................................................................... 37  
3.1.5 Intel® Virtualization Technology (Intel® VT) for Directed  
I/O (Intel® VT-d) Features Not Supported................................................. 37  
Intel® Trusted Execution Technology (Intel® TXT)................................................. 38  
Intel® Hyper-Threading Technology (Intel® HT Technology)................................... 38  
Intel® Turbo Boost Technology........................................................................... 39  
3.4.1 Intel® Turbo Boost Technology Frequency................................................. 39  
3.4.2 Intel® Turbo Boost Technology Graphics Frequency.................................... 40  
Intel® Advanced Vector Extensions (Intel® AVX)................................................... 40  
Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI) .................. 40  
3.6.1 PCLMULQDQ Instruction ......................................................................... 41  
Intel® 64 Architecture x2APIC ............................................................................ 41  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4
Power Management ................................................................................................ 43  
4.1  
Advanced Configuration and Power Interface (ACPI) States Supported..................... 44  
4.1.1 System States....................................................................................... 44  
4.1.2 Processor Core / Package Idle States........................................................ 44  
4.1.3 Integrated Memory Controller States........................................................ 44  
4.1.4 PCI Express* Link States ........................................................................ 45  
4.1.5 Direct Media Interface (DMI) States ......................................................... 45  
4.1.6 Processor Graphics Controller States ........................................................ 45  
4.1.7 Interface State Combinations .................................................................. 45  
Processor Core Power Management..................................................................... 46  
4.2.1 Enhanced Intel® SpeedStep® Technology ................................................. 46  
4.2.2 Low-Power Idle States............................................................................ 47  
4.2.3 Requesting Low-Power Idle States ........................................................... 48  
4.2.4 Core C-states........................................................................................ 49  
4.2.4.1 Core C0 State.......................................................................... 49  
4.2.4.2 Core C1/C1E State ................................................................... 49  
4.2.4.3 Core C3 State.......................................................................... 49  
4.2  
4
Datasheet, Volume 1  
4.2.4.4 Core C6 State...........................................................................49  
4.2.4.5 Core C7 State...........................................................................49  
4.2.4.6 C-State Auto-Demotion..............................................................50  
4.2.5 Package C-States ...................................................................................50  
4.2.5.1 Package C0..............................................................................51  
4.2.5.2 Package C1/C1E .......................................................................52  
4.2.5.3 Package C3 State......................................................................52  
4.2.5.4 Package C6 State......................................................................52  
4.2.5.5 Package C7 State......................................................................53  
4.2.5.6 Dynamic L3 Cache Sizing ...........................................................53  
Integrated Memory Controller (IMC) Power Management ........................................53  
4.3.1 Disabling Unused System Memory Outputs ................................................53  
4.3.2 DRAM Power Management and Initialization...............................................54  
4.3.2.1 Initialization Role of CKE............................................................55  
4.3.2.2 Conditional Self-Refresh.............................................................55  
4.3.2.3 Dynamic Power-down Operation .................................................56  
4.3.2.4 DRAM I/O Power Management....................................................56  
PCI Express* Power Management........................................................................56  
Direct Media Interface (DMI) Power Management ..................................................56  
Graphics Power Management ..............................................................................57  
4.6.1 Intel® Rapid Memory Power Management (Intel® RMPM)  
4.3  
4.4  
4.5  
4.6  
(also known as CxSR).............................................................................57  
4.6.2 Intel® Graphics Performance Modulation Technology (Intel® GPMT)..............57  
4.6.3 Graphics Render C-State .........................................................................57  
4.6.4 Intel® Smart 2D Display Technology (Intel® S2DDT) ..................................58  
4.6.5 Intel® Graphics Dynamic Frequency..........................................................58  
4.6.6 Display Power Savings Technology 6.0 (DPST) ...........................................58  
4.6.7 Automatic Display Brightness (ADB)..........................................................59  
4.6.8 Intel® Seamless Display Refresh Rate Switching Technology (Intel® SDRRS  
Technology) ..........................................................................................59  
Thermal Power Management...............................................................................59  
4.7  
5
Thermal Management..............................................................................................61  
5.1  
5.2  
Thermal Design Power (TDP) and Junction Temperature (Tj) ...................................61  
Thermal Considerations......................................................................................61  
5.2.1 Intel® Turbo Boost Technology Power Control and Reporting........................62  
5.2.2 Package Power Control............................................................................63  
5.2.3 Power Plane Control................................................................................63  
5.2.4 Turbo Time Parameter ............................................................................63  
Thermal and Power Specifications........................................................................64  
Thermal Management Features ...........................................................................67  
5.4.1 Processor Package Thermal Features.........................................................67  
5.4.1.1 Adaptive Thermal Monitor ..........................................................68  
5.4.1.2 Digital Thermal Sensor ..............................................................70  
5.4.1.3 PROCHOT# Signal.....................................................................71  
5.4.2 Processor Core Specific Thermal Features..................................................73  
5.4.2.1 On-Demand Mode.....................................................................73  
5.4.3 Memory Controller Specific Thermal Features.............................................73  
5.4.3.1 Programmable Trip Points ..........................................................73  
5.4.4 Platform Environment Control Interface (PECI)...........................................74  
5.4.4.1 Fan Speed Control with Digital Thermal Sensor .............................74  
5.3  
5.4  
6
Signal Description ...................................................................................................75  
6.1  
6.2  
6.3  
6.4  
System Memory Interface Signals........................................................................76  
Memory Reference and Compensation Signals.......................................................77  
Reset and Miscellaneous Signals..........................................................................78  
PCI Express*-Based Interface Signals ..................................................................79  
Datasheet, Volume 1  
5
6.5  
6.6  
6.7  
6.8  
6.9  
Embedded DisplayPort* (eDP) Signals ................................................................. 79  
Intel® Flexible Display Interface (Intel® FDI) Signals............................................. 80  
Direct Media Interface (DMI) Signals ................................................................... 80  
Phase Lock Loop (PLL) Signals............................................................................ 80  
Test Access Points (TAP) Signals......................................................................... 81  
6.10 Error and Thermal Protection Signals................................................................... 81  
6.11 Power Sequencing Signals.................................................................................. 82  
6.12 Processor Power Signals .................................................................................... 82  
6.13 Sense Signals................................................................................................... 83  
6.14 Ground and Non-Critical to Function (NCTF) Signals .............................................. 83  
6.15 Future Compatibility Signals............................................................................... 84  
6.16 Processor Internal Pull-Up / Pull-Down Resistors ................................................... 84  
7
Electrical Specifications .......................................................................................... 85  
7.1  
7.2  
Power and Ground Pins...................................................................................... 85  
Decoupling Guidelines ....................................................................................... 85  
7.2.1 Voltage Rail Decoupling .......................................................................... 85  
7.2.2 PLL Power Supply .................................................................................. 85  
Voltage Identification (VID)................................................................................ 86  
System Agent (SA) VCC VID ............................................................................... 90  
Reserved or Unused Signals ............................................................................... 90  
Signal Groups................................................................................................... 91  
Test Access Port (TAP) Connection ...................................................................... 93  
Storage Condition Specifications ......................................................................... 93  
DC Specifications.............................................................................................. 94  
7.9.1 Voltage and Current Specifications ........................................................... 95  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10 Platform Environmental Control Interface (PECI) DC Specifications.........................101  
7.10.1 PECI Bus Architecture............................................................................101  
7.10.2 PECI DC Characteristics.........................................................................102  
7.10.3 Input Device Hysteresis.........................................................................103  
8
9
Processor Pin and Signal Information ....................................................................105  
8.1  
8.2  
Processor Pin Assignments................................................................................105  
Package Mechanical Information ........................................................................155  
DDR Data Swizzling................................................................................................167  
6
Datasheet, Volume 1  
Figures  
1-1 Mobile Platform System Block Diagram Example .........................................................12  
2-1 Intel® Flex Memory Technology Operation..................................................................23  
2-2 PCI Express* Layering Diagram ................................................................................25  
2-3 Packet Flow through the Layers ................................................................................26  
2-4 PCI Express* Related Register Structures in the Processor............................................27  
2-5 PCI Express* Typical Operation 16 lanes Mapping .......................................................28  
2-6 Processor Graphics Controller Unit Block Diagram........................................................29  
2-7 Processor Display Block Diagram...............................................................................32  
4-1 Power States..........................................................................................................43  
4-2 Idle Power Management Breakdown of the Processor Cores ..........................................47  
4-3 Thread and Core C-State Entry and Exit.....................................................................47  
4-4 Package C-State Entry and Exit ................................................................................51  
5-1 Package Power Control ............................................................................................63  
5-2 Frequency and Voltage Ordering ...............................................................................69  
7-1 Example for PECI Host-clients Connection ................................................................ 102  
7-2 Input Device Hysteresis......................................................................................... 103  
8-1 rPGA988B (Socket-G2) Pinmap (Top View, Upper-Left Quadrant) ................................ 106  
8-2 rPGA988B (Socket-G2) Pinmap (Top View, Upper-Right Quadrant) .............................. 107  
8-3 rPGA988B (Socket-G2) Pinmap (Top View, Lower-Left Quadrant) ................................ 108  
8-4 rPGA988B (Socket-G2) Pinmap (Top View, Lower-Right Quadrant) .............................. 109  
8-5 BGA1224 Ballmap (Top View, Upper-Left Quadrant) .................................................. 121  
8-6 BGA1224 Ballmap (Top View, Upper-Right Quadrant) ................................................ 122  
8-7 BGA1224 Ballmap (Top View, Lower-Left Quadrant) .................................................. 123  
8-8 BGA1224 Ballmap (Top View, Lower-Right Quadrant) ................................................ 124  
8-9 BGA1023 Ballmap (Top View, Upper-Left Quadrant) .................................................. 140  
8-10 BGA1023 Ballmap (Top View, Upper-Right Quadrant) ................................................ 141  
8-11 BGA1023 Ballmap (Top View, Lower-Left Quadrant) .................................................. 142  
8-12 BGA1023 Ballmap (Top View, Lower-Right Quadrant) ................................................ 143  
8-13 Processor rPGA988B 2C (GT2) Mechanical Package (Sheet 1 of 2) ............................... 155  
8-14 Processor rPGA988B 2C (GT2) Mechanical Package (Sheet 2 of 2) ............................... 156  
8-15 Processor rPGA988B 4C (GT2) Mechanical Package (Sheet 1 of 2) ............................... 157  
8-16 Processor rPGA988B 4C (GT2) Mechanical Package (Sheet 2 of 2) ............................... 158  
8-17 Processor BGA1023 2C (GT2) Mechanical Package (Sheet 1 of 2) ................................ 159  
8-18 Processor BGA1023 2C (GT2) Mechanical Package (Sheet 2 of 2) ................................ 160  
8-19 Processor BGA1224 4C (GT2) Mechanical Package (Sheet 1 of 2) ................................ 161  
8-20 Processor BGA1224 4C (GT2) Mechanical Package (Sheet 2 of 2) ................................ 162  
8-21 Processor rPGA988B 2C (GT1) Mechanical Package (Sheet 1 of 2) ............................... 163  
8-22 Processor rPGA988B 2C (GT1) Mechanical Package (Sheet 2 of 2) ............................... 164  
8-23 Processor BGA1023 2C (GT1) Mechanical Package (Sheet 1 of 2) ................................ 165  
8-24 Processor BGA1023 2C (GT1) Mechanical Package (Sheet 2 of 2) ................................ 166  
Tables  
1-1 PCI Express* Supported Configurations in Mobile Products...........................................14  
1-2 Terminology ..........................................................................................................18  
1-3 Related Documents ................................................................................................20  
2-1 Supported SO-DIMM Module Configurations...............................................................21  
2-2 DDR3 System Memory Timing Support......................................................................22  
2-3 Reference Clock .....................................................................................................34  
4-1 System States .......................................................................................................44  
4-2 Processor Core / Package State Support....................................................................44  
4-3 Integrated Memory Controller States ........................................................................44  
4-4 PCI Express* Link States.........................................................................................45  
4-5 Direct Media Interface (DMI) States..........................................................................45  
Datasheet, Volume 1  
7
4-6 Processor Graphics Controller States ........................................................................ 45  
4-7 G, S, and C State Combinations............................................................................... 45  
4-8 D, S, and C State Combination ................................................................................ 46  
4-9 Coordination of Thread Power States at the Core Level ............................................... 48  
4-10 P_LVLx to MWAIT Conversion.................................................................................. 48  
4-11 Coordination of Core Power States at the Package Level.............................................. 51  
4-12 Targeted Memory State Conditions........................................................................... 56  
5-1 Thermal Design Power (TDP) Specifications............................................................... 65  
5-2 Junction Temperature Specification .......................................................................... 65  
5-3 Package Turbo Parameters...................................................................................... 65  
5-4 Idle Power Specifications ........................................................................................ 67  
6-1 Signal Description Buffer Types ............................................................................... 75  
6-2 Memory Channel A Signals...................................................................................... 76  
6-3 Memory Channel B Signals...................................................................................... 77  
6-4 Memory Reference and Compensation ...................................................................... 77  
6-5 Reset and Miscellaneous Signals .............................................................................. 78  
6-6 PCI Express* Graphics Interface Signals ................................................................... 79  
6-7 Embedded DisplayPort* Signals............................................................................... 79  
6-8 Intel® Flexible Display Interface (Intel® FDI) ............................................................ 80  
6-9 Direct Media Interface (DMI) Signals – Processor to PCH Serial Interface....................... 80  
6-10 Phase Lock Loop (PLL) Signals................................................................................. 80  
6-11 Test Access Points (TAP) Signals.............................................................................. 81  
6-12 Error and Thermal Protection Signals........................................................................ 81  
6-13 Power Sequencing Signals ...................................................................................... 82  
6-14 Processor Power Signals ......................................................................................... 82  
6-15 Sense Signals ....................................................................................................... 83  
6-16 Ground and Non-Critical to Function (NCTF) Signals ................................................... 83  
6-17 Future Compatibility Signals.................................................................................... 84  
6-18 Processor Internal Pull-Up / Pull-Down Resistors ........................................................ 84  
7-1 IMVP7 Voltage Identification Definition ..................................................................... 87  
7-2 VCCSA_VID configuration ....................................................................................... 90  
7-3 Signal Groups1...................................................................................................... 91  
7-4 Storage Condition Ratings....................................................................................... 94  
7-5 Processor Core (VCC) Active and Idle Mode DC Voltage and Current Specifications.......... 95  
7-6 Processor Uncore (VCCIO) Supply DC Voltage and Current Specifications........................ 96  
7-7 Memory Controller (VDDQ) Supply DC Voltage and Current Specifications....................... 97  
7-8 System Agent (VCCSA) Supply DC Voltage and Current Specifications............................ 97  
7-9 Processor PLL (VCCPLL) Supply DC Voltage and Current Specifications ........................... 97  
7-10 Processor Graphics (VAXG) Supply DC Voltage and Current Specifications ..................... 98  
7-11 DDR3 Signal Group DC Specifications ....................................................................... 99  
7-12 Control Sideband and TAP Signal Group DC Specifications..........................................100  
7-13 PCI Express* DC Specifications...............................................................................100  
7-14 Embedded DisplayPort* DC Specifications................................................................101  
7-15 PECI DC Electrical Limits........................................................................................102  
8-1 rPGA988B Processor Pin List by Pin Name ................................................................110  
8-2 BGA1224 Processor Ball List by Ball Name................................................................125  
8-3 BGA1023 Processor Ball List by Ball Name................................................................144  
9-1 DDR Data Swizzling Table – Channel A ....................................................................168  
9-2 DDR Data Swizzling Table – Channel B ....................................................................169  
8
Datasheet, Volume 1  
Revision History  
Revision  
Number  
Description  
Date  
001  
• Initial Release  
January 2011  
®
• Added Intel Core™ i7-2677M, i7-2637M, and i5-2557M  
processors  
002  
June 2011  
®
®
• Added Intel Celeron B800 and 847 processors  
®
®
003  
004  
• Added Intel Celeron 787 and 857 processors  
July 2011  
July 2011  
®
®
• Added Intel Celeron B710 processor  
®
• Added Intel Core™ i7-2960XM, i7-2860QM, i7-2760QM, and  
September  
2011  
i7-2640M processors  
005  
006  
®
®
• Added Intel Celeron B840 processor  
September  
2012  
®
®
• Added Intel Celeron B830, 887 processors  
§ §  
Datasheet, Volume 1  
9
10  
Datasheet, Volume 1  
Introduction  
1 Introduction  
The 2nd Generation Intel® Core™ processor family mobile and Intel® Celeron®  
processor family mobile are the next generation of 64-bit, multi-core mobile processor  
built on 32- nanometer process technology. Based on a new micro-architecture, the  
processor is designed for a two-chip platform. The two-chip platform consists of a  
processor and Platform Controller Hub (PCH). The platform enables higher  
performance, lower cost, easier validation, and improved x-y footprint. The processor  
includes Integrated Display Engine, Processor Graphics and Integrated Memory  
Controller and is designed for mobile platforms. The processor comes with either 6 or  
12 Processor Graphics execution units (EU). The processor may be offered in a  
rPGA988B, BGA1224 or BGA1023 package. Figure 1-1 shows an example platform  
block diagram.  
This document provides DC electrical specifications, signal integrity, differential  
signaling specifications, pinout and signal definitions, interface functional descriptions,  
thermal specifications, and additional feature information pertinent to the  
implementation and operation of the processor on its respective platform.  
Note:  
Note:  
Note:  
Throughout this document, the 2nd Generation Intel® Core™ processor family mobile  
and Intel® Celeron® processor family mobile may be referred to simply as “processor.  
Throughout this document, the Intel® Core™ i7 Extreme Edition mobile processor  
series refers to the Intel® Core™ i7-2920XM processor.  
Throughout this document, the Intel® Core™ i7 mobile processor series refers to the  
Intel® Core™ i7-2960XM, i7-2860QM, i7-2820QM, i7-2760QM, i7-2720QM, i7-2677M,  
i7-2640M, i7-2637M, and i7-2620M processors.  
Note:  
Note:  
Note:  
Note:  
Throughout this document, the Intel® Core™ i5 mobile processor series refers to the  
Intel® Core™ i5-2557M, i5-2540M, and i5-2520M processors.  
Throughout this document, the Intel® Celeron® processor family mobile refers to the  
Intel® Celeron® B830, B800, B710, 887, 857, 847, B840, and 787 processors.  
Throughout this document, the Intel® 6 Series Chipset Platform Controller Hub may  
also be referred to as “PCH.  
Some processor features are not available on all platforms. Refer to the processor  
specification update for details.  
Datasheet, Volume 1  
11  
Introduction  
Figure 1-1. Mobile Platform System Block Diagram Example  
12  
Datasheet, Volume 1  
Introduction  
1.1  
Processor Feature Details  
• Four or two execution cores  
• A 32-KB instruction and 32-KB data first-level cache (L1) for each core  
• A 256-KB shared instruction/data second-level cache (L2) for each core  
• Up to 8-MB shared instruction/data third-level cache (L3), shared among all cores  
1.1.1  
Supported Technologies  
• Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d)  
• Intel® Virtualization Technology (Intel® VT) for IA-32, Intel® 64 and Intel®  
Architecture (Intel® VT-x)  
• Intel® Active Management Technology 7.0 (Intel® AMT 7.0)  
• Intel® Trusted Execution Technology (Intel® TXT)  
• Intel® Streaming SIMD Extensions 4.1 (Intel® SSE4.1)  
• Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)  
• Intel® Hyper-Threading Technology (Intel® HT Technology)  
• Intel® 64 Architecture  
• Execute Disable Bit  
• Intel® Turbo Boost Technology  
• Intel® Advanced Vector Extensions (Intel® AVX)  
• Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)  
• PCLMULQDQ Instruction  
1.2  
Interfaces  
1.2.1  
System Memory Support  
Two channels of DDR3 memory with a maximum of one SO-DIMM per channel  
• Single-channel and dual-channel memory organization modes  
• Data burst length of eight for all memory organization modes  
• Memory DDR3 data transfer rates of 1066 MT/s, 1333 MT/s, and 1600 MT/s  
• 64-bit wide channels  
• DDR3 I/O Voltage of 1.5 V  
• Non-ECC, unbuffered DDR3 SO-DIMMs only  
• Theoretical maximum memory bandwidth of  
— 17.1 GB/s in dual-channel mode assuming DDR3 1066 MT/s  
— 21.3 GB/s in dual-channel mode assuming DDR3 1333 MT/s  
— 25.6 GB/s in dual-channel mode assuming DDR3 1600 MT/s  
• 1Gb, 2Gb, and 4Gb DDR3 DRAM technologies are supported for x8 and x16 devices  
— Using 4Gb device technologies, the largest memory capacity possible is 16 GB,  
assuming dual-channel mode with two x8, dual-ranked, un-buffered, non-ECC,  
SO-DIMM memory configuration.  
• Up to 32 simultaneous open pages, 16 per channel (assuming 4 Ranks of 8 Bank  
Devices)  
Datasheet, Volume 1  
13  
Introduction  
• Memory organizations  
— Single-channel modes  
— Dual-channel modes - Intel® Flex Memory Technology:  
- Dual-channel symmetric (Interleaved)  
• Command launch modes of 1n/2n  
• On-Die Termination (ODT)  
• Asynchronous ODT  
• Intel® Fast Memory Access (Intel® FMA)  
— Just-in-Time Command Scheduling  
— Command Overlap  
— Out-of-Order Scheduling  
1.2.2  
PCI Express*  
• PCI Express* port(s) are fully-compliant with the PCI Express Base Specification,  
Revision 2.0.  
• Processor with mobile PCH supported configurations  
Table 1-1.  
PCI Express* Supported Configurations in Mobile Products  
Configuration  
Organization  
Mobile  
1x8  
2x4  
Graphics  
I/O  
1
2
3
2x8  
Graphics, I/O  
Graphics, I/O  
1x16  
• The port may negotiate down to narrower widths  
— Support for x16/x8/x4/x1 widths for a single PCI Express mode  
• 2.5 GT/s and 5.0 GT/s PCI Express* frequencies are supported  
• Gen1 Raw bit-rate on the data pins of 2.5 GT/s, resulting in a real bandwidth per  
pair of 250 MB/s given the 8b/10b encoding used to transmit data across this  
interface. This also does not account for packet overhead and link maintenance.  
• Maximum theoretical bandwidth on the interface of 4 GB/s in each direction  
simultaneously, for an aggregate of 8 GB/s when x16 Gen 1  
• Gen 2 Raw bit-rate on the data pins of 5.0 GT/s, resulting in a real bandwidth per  
pair of 500 MB/s given the 8b/10b encoding used to transmit data across this  
interface. This also does not account for packet overhead and link maintenance.  
• Maximum theoretical bandwidth on the interface of 8 GB/s in each direction  
simultaneously, for an aggregate of 16 GB/s when x16 Gen 2  
• Hierarchical PCI-compliant configuration mechanism for downstream devices  
Traditional PCI style traffic (asynchronous snooped, PCI ordering)  
• PCI Express* extended configuration space. The first 256 bytes of configuration  
space aliases directly to the PCI Compatibility configuration space. The remaining  
portion of the fixed 4-KB block of memory-mapped space above that (starting at  
100h) is known as extended configuration space.  
• PCI Express* Enhanced Access Mechanism; accessing the device configuration  
space in a flat memory mapped fashion  
• Automatic discovery, negotiation, and training of link out of reset  
14  
Datasheet, Volume 1  
Introduction  
Traditional AGP style traffic (asynchronous non-snooped, PCI-X Relaxed ordering)  
• Peer segment destination posted write traffic (no peer-to-peer read traffic) in  
Virtual Channel 0  
— DMI -> PCI Express* Port 0  
— DMI -> PCI Express* Port 1  
— PCI Express* Port 0 -> DMI  
— PCI Express* Port 1 -> DMI  
• 64-bit downstream address format, but the processor never generates an address  
above 64 GB (Bits 63:36 will always be zeros)  
• 64-bit upstream address format, but the processor responds to upstream read  
transactions to addresses above 64 GB (addresses where any of Bits 63:36 are  
nonzero) with an Unsupported Request response. Upstream write transactions to  
addresses above 64 GB will be dropped.  
• Re-issues Configuration cycles that have been previously completed with the  
Configuration Retry status  
• PCI Express* reference clock is 100-MHz differential clock  
• Power Management Event (PME) functions  
• Dynamic width capability  
• Message Signaled Interrupt (MSI and MSI-X) messages  
• Polarity inversion  
• Dynamic lane numbering reversal as defined by the PCI Express Base Specification.  
• Static lane numbering reversal  
— Does not support dynamic lane reversal, as defined (optional) by the PCI  
Express Base Specification.  
• Supports Half Swing “low-power/low-voltage” mode.  
Note:  
The processor does not support PCI Express* Hot-Plug.  
1.2.3  
Direct Media Interface (DMI)  
• DMI 2.0 support  
• Four lanes in each direction  
• 5 GT/s point-to-point DMI interface to PCH is supported  
• Raw bit-rate on the data pins of 5.0 GB/s, resulting in a real bandwidth per pair of  
500 MB/s given the 8b/10b encoding used to transmit data across this interface.  
Does not account for packet overhead and link maintenance.  
• Maximum theoretical bandwidth on interface of 2 GB/s in each direction  
simultaneously, for an aggregate of 4 GB/s when DMI x4  
• Shares 100-MHz PCI Express* reference clock  
• 64-bit downstream address format, but the processor never generates an address  
above 64 GB (Bits 63:36 will always be zeros)  
• 64-bit upstream address format, but the processor responds to upstream read  
transactions to addresses above 64 GB (addresses where any of Bits 63:36 are  
nonzero) with an Unsupported Request response. Upstream write transactions to  
addresses above 64 GB will be dropped.  
Datasheet, Volume 1  
15  
Introduction  
• Supports the following traffic types to or from the PCH  
— DMI -> DRAM  
— DMI -> processor core (Virtual Legacy Wires (VLWs), Resetwarn, or MSIs only)  
— Processor core -> DMI  
• APIC and MSI interrupt messaging support  
— Message Signaled Interrupt (MSI and MSI-X) messages  
• Downstream SMI, SCI and SERR error indication  
• Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port  
DMA, floppy drive, and LPC bus masters  
• DC coupling – no capacitors between the processor and the PCH  
• Polarity inversion  
• PCH end-to-end lane reversal across the link  
• Supports Half Swing “low-power/low-voltage”  
1.2.4  
1.2.5  
Platform Environment Control Interface (PECI)  
The PECI is a one-wire interface that provides a communication channel between a  
PECI client (the processor) and a PECI master. The processors support the PECI 3.0  
Specification.  
Processor Graphics  
• The Processor Graphics contains a refresh of the sixth generation graphics core  
enabling substantial gains in performance and lower power consumption. Up to 12  
EU Support.  
• Next Generation Intel Clear Video Technology HD support is a collection of video  
playback and enhancement features that improve the end user’s viewing  
experience.  
— Encode/transcode HD content  
— Playback of high definition content including Blu-ray Disc*  
— Superior image quality with sharper, more colorful images  
— Playback of Blu-ray disc S3D content using HDMI (V.1.4 with 3D)  
• DirectX* Video Acceleration (DXVA) support for accelerating video processing  
— Full AVC/VC1/MPEG2 HW Decode  
• Advanced Scheduler 2.0, 1.0, XPDM support  
• Windows* 7, XP, Windows Vista*, OSX, Linux OS Support  
• DX10.1, DX10, DX9 support  
• OGL 3.0 support  
16  
Datasheet, Volume 1  
Introduction  
1.2.6  
Embedded DisplayPort* (eDP)  
• Stand alone dedicated port (unlike previous generation processor that shared pins  
with PCIe interface)  
®
®
1.2.7  
Intel Flexible Display Interface (Intel FDI)  
• For SKUs with graphics, Intel FDI carries display traffic from the Processor Graphics  
in the processor to the legacy display connectors in the PCH  
• Based on DisplayPort standard  
Two independent links – one for each display pipe  
• Four unidirectional downstream differential transmitter pairs  
— Scalable down to 3X, 2X, or 1X based on actual display bandwidth  
requirements  
— Fixed frequency 2.7 GT/s data rate  
Two sideband signals for Display synchronization  
— FDI_FSYNC and FDI_LSYNC (Frame and Line Synchronization)  
• One Interrupt signal used for various interrupts from the PCH  
— FDI_INT signal shared by both Intel FDI Links  
• PCH supports end-to-end lane reversal across both links  
• Common 100-MHz reference clock  
1.3  
Power Management Support  
1.3.1  
Processor Core  
• Full support of Advanced Configuration and Power Interface (ACPI) C-states as  
implemented by the following processor C-states  
— C0, C1, C1E, C3, C6, C7  
• Enhanced Intel SpeedStep® Technology  
1.3.2  
1.3.3  
System  
• S0, S3, S4, S5  
Memory Controller  
• Conditional self-refresh (Intel® Rapid Memory Power Management (Intel® RMPM))  
• Dynamic power-down  
1.3.4  
1.3.5  
PCI Express*  
• L0s and L1 ASPM power management capability  
Direct Media Interface (DMI)  
• L0s and L1 ASPM power management capability  
Datasheet, Volume 1  
17  
Introduction  
1.3.6  
Processor Graphics Controller  
• Intel® Rapid Memory Power Management (Intel® RMPM) – CxSR  
• Intel® Graphics Performance Modulation Technology (Intel® GPMT)  
• Intel Smart 2D Display Technology (Intel S2DDT)  
• Graphics Render C-State (RC6)  
• Intel Seamless Display Refresh Rate Switching with Embedded DisplayPort*  
1.4  
Thermal Management Support  
• Digital Thermal Sensor  
• Intel Adaptive Thermal Monitor  
• THERMTRIP# and PROCHOT# support  
• On-Demand Mode  
• Open and Closed Loop Throttling  
• Memory Thermal Throttling  
• External Thermal Sensor (TS-on-DIMM and TS-on-Board)  
• Render Thermal Throttling  
• Fan speed control with DTS  
1.5  
Package  
• The processor is available on two packages:  
— A 37.5 x 37.5 mm rPGA package (rPGA988B)  
— A 31 x 24 mm BGA package (BGA1023 or BGA1224)  
1.6  
Terminology  
Table 1-2.  
Terminology (Sheet 1 of 3)  
Term  
Description  
ACPI  
BLT  
Advanced Configuration and Power Interface  
Block Level Transfer  
CRT  
DDR3  
DMA  
DMI  
DP  
Cathode Ray Tube  
Third-generation Double Data Rate SDRAM memory technology  
Direct Memory Access  
Direct Media Interface  
DisplayPort*  
DTS  
eDP*  
Digital Thermal Sensor  
Embedded DisplayPort*  
Enhanced Intel  
Technology that provides power management capabilities to laptops.  
SpeedStep® Technology  
EU  
Execution Unit  
18  
Datasheet, Volume 1  
Introduction  
Table 1-2.  
Terminology (Sheet 2 of 3)  
Term  
Description  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code  
attempts to run in non-executable memory the processor raises an error to the  
operating system. This feature can prevent some classes of viruses or worms  
that exploit buffer overrun vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for more detailed information.  
Execute Disable Bit  
IMC  
Integrated Memory Controller  
Intel® 64 Technology  
Intel® DPST  
Intel® FDI  
64-bit memory extensions to the IA-32 architecture  
Intel® Display Power Saving Technology  
Intel® Flexible Display Interface  
Intel® TXT  
Intel® Trusted Execution Technology  
Processor virtualization which when used in conjunction with Virtual Machine  
Monitor software enables multiple, robust independent software environments  
inside a single platform.  
Intel® Virtualization  
Technology  
Intel® Virtualization Technology (Intel® VT) for Directed I/O. Intel VT-d is a  
hardware assist, under system software (Virtual Machine Manager or OS)  
control, for enabling I/O device virtualization. Intel VT-d also brings robust  
security by providing protection from errant DMAs by using DMA remapping, a  
key feature of Intel VT-d.  
Intel® VT-d  
IOV  
I/O Virtualization  
ITPM  
LCD  
Integrated Trusted Platform Module  
Liquid Crystal Display  
Low Voltage Differential Signaling. A high speed, low power data transmission  
standard used for display connections to LCD panels.  
LVDS  
NCTF  
Non-Critical to Function. NCTF locations are typically redundant ground or non-  
critical reserved, so the loss of the solder joint continuity at end of life conditions  
will not affect the overall product functionality.  
Platform Controller Hub. The new, 2009 chipset with centralized platform  
capabilities including the main I/O interfaces along with display connectivity,  
audio features, power management, manageability, security and storage  
features.  
PCH  
PECI  
Platform Environment Control Interface  
PCI Express* Graphics. External Graphics using PCI Express* Architecture. A  
high-speed serial interface whose configuration is software compatible with the  
existing PCI specifications.  
PEG  
Processor  
Processor Core  
The 64-bit, single-core or multi-core component (package).  
The term “processor core” refers to Si die itself which can contain multiple  
execution cores. Each execution core has an instruction cache, data cache, and  
256-KB L2 cache. All execution cores share the L3 cache.  
Processor Graphics  
Intel® Processor Graphics  
A unit of DRAM corresponding four to eight devices in parallel. These devices are  
usually, but not always, mounted on a single side of a SO-DIMM.  
Rank  
SCI  
System Control Interrupt. Used in ACPI protocol.  
A non-operational state. The processor may be installed in a platform, in a tray,  
or loose. Processors may be sealed in packaging or exposed to free air. Under  
these conditions, processor landings should not be connected to any supply  
voltages, have any I/Os biased or receive any clocks. Upon exposure to “free air”  
(that is, unsealed packaging or a device removed from packaging material) the  
processor must be handled in accordance with moisture sensitivity labeling  
(MSL) as indicated on the packaging material.  
Storage Conditions  
TAC  
TAP  
Thermal Averaging Constant.  
Test Access Point  
TDP  
VAXG  
Thermal Design Power.  
Graphics core power supply.  
Datasheet, Volume 1  
19  
Introduction  
Table 1-2.  
Terminology (Sheet 3 of 3)  
Term  
Description  
VCC  
Processor core power supply.  
High Frequency I/O logic power supply  
PLL power supply  
VCCIO  
VCCPLL  
System Agent (memory controller, DMI, PCIe controllers, and display engine)  
power supply  
VCCSA  
VDDQ  
VLD  
VSS  
x1  
DDR3 power supply.  
Variable Length Decoding.  
Processor ground.  
Refers to a Link or Port with one Physical Lane.  
Refers to a Link or Port with sixteen Physical Lanes.  
Refers to a Link or Port with four Physical Lanes.  
Refers to a Link or Port with eight Physical Lanes.  
x16  
x4  
x8  
1.7  
Related Documents  
Refer to Table 1-3 for additional information.  
Table 1-3.  
Related Documents  
Document  
Document Number/ Location  
2nd Generation Intel® Core™ Processor Family Mobile and Intel®  
Celeron® Processor Family Mobile Datasheet, Volume 2  
www.intel.com/Assets/PDF/datas  
heet/324803.pdf  
2nd Generation Intel® Core™ Processor Family Mobile and Intel®  
Celeron® Processor Family Mobile Specification Update  
www.intel.com/Assets/PDF/specu  
pdate/324693.pdf  
Intel® 6 Series Chipset and Intel® C200 Series Chipset Datasheet  
www.intel.com/Assets/PDF/datas  
heet/324645.pdf  
Intel® 6 Series Chipset and Intel® C200 Series Chipset Thermal  
Mechanical Specifications and Design Guidelines  
www.intel.com/Assets/PDF/desig  
nguide/324647.pdf  
Advanced Configuration and Power Interface Specification 3.0  
PCI Local Bus Specification 3.0  
http://www.acpi.info/  
http://www.pcisig.com/specifica-  
tions  
Intel® TXT Measured Launched Environment Developer’s Guide  
Intel® 64 Architecture x2APIC Specification  
http://www.intel.com/technology  
/security  
http://www.intel.com/products/pr  
ocessor/manuals/  
PCI Express* Base Specification 2.0  
DDR3 SDRAM Specification  
http://www.pcisig.com  
http://www.jedec.org  
http://www.vesa.org  
DisplayPort* Specification  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
http://www.intel.com/products/pr  
ocessor/manuals/index.htm  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
§ §  
20  
Datasheet, Volume 1  
Interfaces  
2 Interfaces  
This chapter describes the interfaces supported by the processor.  
2.1  
System Memory Interface  
2.1.1  
System Memory Technology Supported  
The Integrated Memory Controller (IMC) supports DDR3 protocols with two  
independent, 64-bit wide channels each accessing one DIMM. It supports a maximum  
of one unbuffered non-ECC DDR3 DIMM per-channel; thus, allowing up to two device  
ranks per-channel.  
• DDR3 Data Transfer Rates  
— 1066 MT/s (PC3-8500), 1333 MT/s (PC3-10600), 1600 MT/s (PC-12800)  
• DDR3 SO-DIMM Modules  
— Raw Card A – Dual Ranked x16 unbuffered non-ECC  
— Raw Card B – Single Ranked x8 unbuffered non-ECC  
— Raw Card C – Single Ranked x16 unbuffered non-ECC  
— Raw Card F – Dual Ranked x8 (planar) unbuffered non-ECC  
• DDR3 DRAM Device Technology  
Standard 1-Gb, 2-Gb, and 4-Gb technologies and addressing are supported for x16 and  
x8 devices. There is no support for memory modules with different technologies or  
capacities on opposite sides of the same memory module. If one side of a memory  
module is populated, the other side is either identical or empty.  
Table 2-1.  
Supported SO-DIMM Module Configurations1,2  
# of  
Raw  
Card  
Version  
# of  
DRAM  
Devices  
# of  
#ofBanks  
Inside  
DRAM  
DIMM  
Capacity  
DRAM Device  
Technology  
DRAM  
Organization  
Physical  
Device  
Ranks  
Row/Col  
Page Size  
Address Bits  
1 GB  
2 GB  
1 GB  
2 GB  
512 MB  
1 GB  
2 GB  
4 GB  
8 GB  
1 Gb  
2 Gb  
1 Gb  
2 Gb  
1 Gb  
2 Gb  
1 Gb  
2 Gb  
4 Gb  
64 M x 16  
128 M x 16  
128 M x 8  
256 M x 8  
64 M x 16  
128 M x 16  
128 M x 8  
256 M x 8  
512 M x 8  
8
8
2
2
1
1
1
1
2
2
2
13/10  
14/10  
14/10  
15/10  
13/10  
14/10  
14/10  
15/10  
16/ 10  
8
8
8
8
8
8
8
8
8
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
A
B
C
8
8
4
4
16  
16  
16  
F
Notes:  
1.  
2.  
System memory configurations are based on availability and are subject to change.  
Interface does not support ULV/LV memory modules or ULV/LV DIMMs.  
Datasheet, Volume 1  
21  
Interfaces  
2.1.2  
System Memory Timing Support  
The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and  
command signal mode timings on the main memory interface:  
• tCL = CAS Latency  
• tRCD = Activate Command to READ or WRITE Command delay  
• tRP = PRECHARGE Command Period  
• CWL = CAS Write Latency  
• Command Signal modes = 1n indicates a new command may be issued every clock  
and 2n indicates a new command may be issued every 2 clocks. Command launch  
mode programming depends on the transfer rate and memory configuration.  
Table 2-2.  
DDR3 System Memory Timing Support  
Transfer  
tCL  
(tCK)  
tRCD  
(tCK)  
tRP  
(tCK)  
CWL  
(tCK)  
CMD  
Mode  
Segment  
Rate  
Notes1  
(MT/s)  
1066  
1333  
1600  
7
9
7
9
7
9
6
7
8
6
6
7
1n/2n  
1n/2n  
1n/2n  
1n/2n  
1n/2n  
1n/2n  
Extreme  
Edition (XE)  
and  
Quad Core SV  
11  
7
11  
7
11  
7
Dual Core SV,  
Low voltage  
and Ultra low  
voltage  
1066  
1333  
8
8
8
9
9
9
Notes:  
1.  
System memory timing support is based on availability and is subject to change.  
2.1.3  
2.1.3.1  
2.1.3.2  
System Memory Organization Modes  
The IMC supports two memory organization modes—single-channel and dual-channel.  
Depending upon how the DIMM Modules are populated in each memory channel, a  
number of different configurations can exist.  
Single-Channel Mode  
In this mode, all memory cycles are directed to a single-channel. Single-channel mode  
is used when either Channel A or Channel B DIMM connectors are populated in any  
order, but not both.  
®
Dual-Channel Mode – Intel Flex Memory Technology Mode  
The IMC supports Intel Flex Memory Technology Mode. Memory is divided into a  
symmetric and an asymmetric zone. The symmetric zone starts at the lowest address  
in each channel and is contiguous until the asymmetric zone begins or until the top  
address of the channel with the smaller capacity is reached. In this mode, the system  
runs with one zone of dual-channel mode and one zone of single-channel mode,  
simultaneously, across the whole memory array.  
Note:  
Channels A and B can be mapped for physical channels 0 and 1 respectively or vice  
versa; however, channel A size must be greater or equal to channel B size.  
22  
Datasheet, Volume 1  
Interfaces  
Figure 2-1. Intel® Flex Memory Technology Operation  
2.1.3.2.1  
Dual-Channel Symmetric Mode  
Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum  
performance on real world applications. Addresses are ping-ponged between the  
channels after each cache line (64-byte boundary). If there are two requests, and the  
second request is to an address on the opposite channel from the first, that request can  
be sent before data from the first request has returned. If two consecutive cache lines  
are requested, both may be retrieved simultaneously since they are ensured to be on  
opposite channels. Use Dual-Channel Symmetric mode when both Channel A and  
Channel B DIMM connectors are populated in any order, with the total amount of  
memory in each channel being the same.  
When both channels are populated with the same memory capacity and the boundary  
between the dual channel zone and the single channel zone is the top of memory, IMC  
operates completely in Dual-Channel Symmetric mode.  
Note:  
The DRAM device technology and width may vary from one channel to the other.  
2.1.4  
Rules for Populating Memory Slots  
In all modes, the frequency of system memory is the lowest frequency of all memory  
modules placed in the system, as determined through the SPD registers on the  
memory modules. The system memory controller supports only one DIMM connector  
per channel. The usage of DIMM modules with different latencies is allowed. For dual-  
channel modes, both channels must have an DIMM connector populated. For single-  
channel mode, only a single-channel can have a DIMM connector populated.  
Datasheet, Volume 1  
23  
Interfaces  
®
2.1.5  
Technology Enhancements of Intel Fast Memory Access  
®
(Intel FMA)  
The following sections describe the Just-in-Time Scheduling, Command Overlap, and  
Out-of-Order Scheduling Intel FMA technology enhancements.  
2.1.5.1  
Just-in-Time Command Scheduling  
The memory controller has an advanced command scheduler where all pending  
requests are examined simultaneously to determine the most efficient request to be  
issued next. The most efficient request is picked from all pending requests and issued  
to system memory Just-in-Time to make optimal use of Command Overlapping. Thus,  
instead of having all memory access requests go individually through an arbitration  
mechanism forcing requests to be executed one at a time, they can be started without  
interfering with the current request allowing for concurrent issuing of requests. This  
allows for optimized bandwidth and reduced latency while maintaining appropriate  
command spacing to meet system memory protocol.  
2.1.5.2  
2.1.5.3  
Command Overlap  
Command Overlap allows the insertion of the DRAM commands between the Activate,  
Precharge, and Read/Write commands normally used, as long as the inserted  
commands do not affect the currently executing command. Multiple commands can be  
issued in an overlapping manner, increasing the efficiency of system memory protocol.  
Out-of-Order Scheduling  
While leveraging the Just-in-Time Scheduling and Command Overlap enhancements,  
the IMC continuously monitors pending requests to system memory for the best use of  
bandwidth and reduction of latency. If there are multiple requests to the same open  
page, these requests would be launched in a back to back manner to make optimum  
use of the open memory page. This ability to reorder requests on the fly allows the IMC  
to further reduce latency and increase bandwidth efficiency.  
2.1.6  
2.1.7  
Memory Type Range Registers (MTRRs) Enhancement  
The processor has 2 additional MTRRs (total 10 MTRRs). These additional MTRRs are  
specially important in supporting larger system memory beyond 4 GB.  
Data Scrambling  
The memory controller incorporates a DDR3 Data Scrambling feature to minimize the  
impact of excessive di/dt on the platform DDR3 VRs due to successive 1s and 0s on the  
data bus. Past experience has demonstrated that traffic on the data bus is not random  
and can have energy concentrated at specific spectral harmonics creating high di/dt  
that is generally limited by data patterns that excite resonance between the package  
inductance and on-die capacitances. As a result, the memory controller uses a data  
scrambling feature to create pseudo-random patterns on the DDR3 data bus to reduce  
the impact of any excessive di/dt.  
2.1.8  
DRAM Clock Generation  
Every supported DIMM has two differential clock pairs. There are a total of four clock  
pairs driven directly by the processor to two DIMMs.  
24  
Datasheet, Volume 1  
Interfaces  
2.2  
PCI Express* Interface  
This section describes the PCI Express interface capabilities of the processor. See the  
PCI Express Base Specification for details of PCI Express.  
The processor has one PCI Express controller that can support one external x16 PCI  
Express Graphics Device. The primary PCI Express Graphics port is referred to as  
PEG 0.  
2.2.1  
PCI Express* Architecture  
Compatibility with the PCI addressing model is maintained to ensure that all existing  
applications and drivers operate unchanged.  
The PCI Express configuration uses standard mechanisms as defined in the PCI  
Plug-and-Play specification. The initial recovered clock speed of 1.25 GHz results in  
2.5 Gb/s/direction that provides a 250 MB/s communications channel in each direction  
(500 MB/s total). That is close to twice the data rate of classic PCI. The fact that  
8b/10b encoding is used accounts for the 250 MB/s where quick calculations would  
imply 300 MB/s. The external graphics ports support Gen2 speed as well. At 5.0 GT/s,  
Gen 2 operation results in twice as much bandwidth per lane as compared to Gen 1  
operation. When operating with two PCIe controllers, each controller can be operating  
at either 2.5 GT/s or 5.0 GT/s.  
The PCI Express architecture is specified in three layers—Transaction Layer, Data Link  
Layer, and Physical Layer. The partitioning in the component is not necessarily along  
these same boundaries. Refer to Figure 2-2 for the PCI Express Layering Diagram.  
Figure 2-2. PCI Express* Layering Diagram  
PCI Express uses packets to communicate information between components. Packets  
are formed in the Transaction and Data Link Layers to carry the information from the  
transmitting component to the receiving component. As the transmitted packets flow  
Datasheet, Volume 1  
25  
Interfaces  
through the other layers, they are extended with additional information necessary to  
handle packets at those layers. At the receiving side, the reverse process occurs and  
packets get transformed from their Physical Layer representation to the Data Link  
Layer representation and finally (for Transaction Layer Packets) to the form that can be  
processed by the Transaction Layer of the receiving device.  
Figure 2-3. Packet Flow through the Layers  
2.2.1.1  
2.2.1.2  
Transaction Layer  
The upper layer of the PCI Express architecture is the Transaction Layer. The  
Transaction Layer's primary responsibility is the assembly and disassembly of  
Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as  
read and write, as well as certain types of events. The Transaction Layer also manages  
flow control of TLPs.  
Data Link Layer  
The middle layer in the PCI Express stack, the Data Link Layer, serves as an  
intermediate stage between the Transaction Layer and the Physical Layer.  
Responsibilities of Data Link Layer include link management, error detection, and error  
correction.  
The transmission side of the Data Link Layer accepts TLPs assembled by the  
Transaction Layer, calculates and applies data protection code and TLP sequence  
number, and submits them to Physical Layer for transmission across the Link. The  
receiving Data Link Layer is responsible for checking the integrity of received TLPs and  
for submitting them to the Transaction Layer for further processing. On detection of TLP  
error(s), this layer is responsible for requesting retransmission of TLPs until information  
is correctly received, or the Link is determined to have failed. The Data Link Layer also  
generates and consumes packets that are used for Link management functions.  
2.2.1.3  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and  
input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance  
matching circuitry. It also includes logical functions related to interface initialization and  
maintenance. The Physical Layer exchanges data with the Data Link Layer in an  
implementation-specific format, and is responsible for converting this to an appropriate  
serialized format and transmitting it across the PCI Express Link at a frequency and  
width compatible with the remote device.  
26  
Datasheet, Volume 1  
Interfaces  
2.2.2  
PCI Express* Configuration Mechanism  
The PCI Express (external graphics) link is mapped through a PCI-to-PCI bridge  
structure.  
Figure 2-4. PCI Express* Related Register Structures in the Processor  
PCI Express extends the configuration space to 4096 bytes per-device/function, as  
compared to 256 bytes allowed by the Conventional PCI Specification. PCI Express  
configuration space is divided into a PCI-compatible region (that consists of the first  
256 bytes of a logical device's configuration space) and an extended PCI Express region  
(that consists of the remaining configuration space). The PCI-compatible region can be  
accessed using either the mechanisms defined in the PCI specification or using the  
enhanced PCI Express configuration access mechanism described in the PCI Express  
Enhanced Configuration Mechanism section.  
The PCI Express Host Bridge is required to translate the memory-mapped PCI Express  
configuration space accesses from the host processor to PCI Express configuration  
cycles. To maintain compatibility with PCI configuration addressing mechanisms, it is  
recommended that system software access the enhanced configuration space using  
32-bit operations (32-bit aligned) only. See the PCI Express Base Specification for  
details of both the PCI-compatible and PCI Express Enhanced configuration  
mechanisms and transaction rules.  
2.2.3  
PCI Express Graphics  
The external graphics attach (PEG) on the processor is a single, 16-lane (x16) port. The  
PEG port is compliant with the PCI Express Base Specification, Revision 2.0.  
Datasheet, Volume 1  
27  
Interfaces  
2.2.4  
PCI Express* Lanes Connection  
Figure 2-5 demonstrates the PCIe lanes mapping.  
Figure 2-5. PCI Express* Typical Operation 16 lanes Mapping  
2.3  
Direct Media Interface (DMI)  
Direct Media Interface (DMI) connects the processor and the PCH. Next generation  
DMI2 is supported.  
Note:  
Only DMI x4 configuration is supported.  
2.3.1  
DMI Error Flow  
DMI can only generate SERR in response to errors, never SCI, SMI, MSI, PCI INT, or  
GPE. Any DMI related SERR activity is associated with Device 0.  
2.3.2  
Processor / PCH Compatibility Assumptions  
®
The processor is compatible with the Intel 6 Series Chipset PCH. The processor is  
not compatible with any previous PCH products.  
28  
Datasheet, Volume 1  
Interfaces  
2.3.3  
DMI Link Down  
The DMI link going down is a fatal, unrecoverable error. If the DMI data link goes to  
data link down, after the link was up, then the DMI link hangs the system by not  
allowing the link to retrain to prevent data corruption. This link behavior is controlled  
by the PCH.  
Downstream transactions that had been successfully transmitted across the link prior  
to the link going down may be processed as normal. No completions from downstream,  
non-posted transactions are returned upstream over the DMI link after a link down  
event.  
2.4  
Processor Graphics Controller (GT)  
New Graphics Engine Architecture includes 3D compute elements, Multi-format  
hardware-assisted decode/encode Pipeline, and Mid-Level Cache (MLC) for superior  
high definition playback, video quality, and improved 3D performance and Media.  
Display Engine in the Uncore handles delivering the pixels to the screen. GSA (Graphics  
in System Agent) is the primary Channel interface for display memory accesses and  
“PCI-like” traffic in and out.  
Figure 2-6. Processor Graphics Controller Unit Block Diagram  
Datasheet, Volume 1  
29  
Interfaces  
2.4.1  
3D and Video Engines for Graphics Processing  
The 3D graphics pipeline architecture simultaneously operates on different primitives or  
on different portions of the same primitive. All the cores are fully programmable,  
increasing the versatility of the 3D Engine. The Gen 6.0 3D engine provides the  
following performance and power-management enhancements:  
• Up to 12 Execution units (EUs)  
• Hierarchal-Z  
• Video quality enhancements  
2.4.1.1  
3D Engine Execution Units  
• Supports up to 12 EUs. The EUs perform 128-bit wide execution per clock.  
• Support SIMD8 instructions for vertex processing and SIMD16 instructions for pixel  
processing.  
2.4.1.2  
3D Pipeline  
2.4.1.2.1  
Vertex Fetch (VF) Stage  
The VF stage executes 3DPRIMITIVE commands. Some enhancements have been  
included to better support legacy D3D APIs as well as SGI OpenGL*.  
2.4.1.2.2  
2.4.1.2.3  
Vertex Shader (VS) Stage  
The VS stage performs shading of vertices output by the VF function. The VS unit  
produces an output vertex reference for every input vertex reference received from the  
VF unit, in the order received.  
Geometry Shader (GS) Stage  
The GS stage receives inputs from the VS stage. Compiled application-provided GS  
programs, specifying an algorithm to convert the vertices of an input object into some  
output primitives. For example, a GS shader may convert lines of a line strip into  
polygons representing a corresponding segment of a blade of grass centered on the  
line. Or it could use adjacency information to detect silhouette edges of triangles and  
output polygons extruding out from the edges.  
2.4.1.2.4  
2.4.1.2.5  
Clip Stage  
The Clip stage performs general processing on incoming 3D objects. However, it also  
includes specialized logic to perform a Clip Test function on incoming objects. The Clip  
Test optimizes generalized 3D Clipping. The Clip unit examines the position of incoming  
vertices, and accepts/rejects 3D objects based on its Clip algorithm.  
Strips and Fans (SF) Stage  
The SF stage performs setup operations required to rasterize 3D objects. The outputs  
from the SF stage to the Windower stage contain implementation-specific information  
required for the rasterization of objects and also supports clipping of primitives to some  
extent.  
30  
Datasheet, Volume 1  
Interfaces  
2.4.1.2.6  
Windower/IZ (WIZ) Stage  
The WIZ unit performs an early depth test, which removes failing pixels and eliminates  
unnecessary processing overhead.  
The Windower uses the parameters provided by the SF unit in the object-specific  
rasterization algorithms. The WIZ unit rasterizes objects into the corresponding set of  
pixels. The Windower is also capable of performing dithering, whereby the illusion of a  
higher resolution when using low-bpp channels in color buffers is possible. Color  
dithering diffuses the sharp color bands seen on smooth-shaded objects.  
2.4.1.3  
2.4.1.4  
Video Engine  
The Video Engine handles the non-3D (media/video) applications. It includes support  
for VLD and MPEG2 decode in hardware.  
2D Engine  
The 2D Engine contains BLT (Block Level Transfer) functionality and an extensive set of  
2D instructions. To take advantage of the 3D during engine’s functionality, some BLT  
functions make use of the 3D renderer.  
2.4.1.4.1  
2.4.1.4.2  
Processor Graphics VGA Registers  
The 2D registers consists of original VGA registers and others to support graphics  
modes that have color depths, resolutions, and hardware acceleration features that go  
beyond the original VGA standard.  
Logical 128-Bit Fixed BLT and 256 Fill Engine  
This BLT engine accelerates the GUI of Microsoft Windows* operating systems. The  
128-bit BLT engine provides hardware acceleration of block transfers of pixel data for  
many common Windows operations. The BLT engine can be used for the following:  
• Move rectangular blocks of data between memory locations  
• Data alignment  
To perform logical operations (raster ops)  
The rectangular block of data does not change, as it is transferred between memory  
locations. The allowable memory transfers are between: cacheable system memory  
and frame buffer memory, frame buffer memory and frame buffer memory, and within  
system memory. Data to be transferred can consist of regions of memory, patterns, or  
solid color fills. A pattern is always 8 x 8 pixels wide and may be 8, 16, or 32 bits per  
pixel.  
The BLT engine expands monochrome data into a color depth of 8, 16, or 32 bits. BLTs  
can be either opaque or transparent. Opaque transfers move the data specified to the  
destination. Transparent transfers compare destination color to source color and write  
according to the mode of transparency selected.  
Data is horizontally and vertically aligned at the destination. If the destination for the  
BLT overlaps with the source memory location, the BLT engine specifies which area in  
memory to begin the BLT transfer. Hardware is included for all 256 raster operations  
(source, pattern, and destination) defined by Microsoft, including transparent BLT.  
The BLT engine has instructions to invoke BLT and stretch BLT operations, permitting  
software to set up instruction buffers and use batch processing. The BLT engine can  
perform hardware clipping during BLTs.  
Datasheet, Volume 1  
31  
Interfaces  
2.4.2  
Processor Graphics Display  
The Processor Graphics controller display pipe can be broken down into three  
components:  
• Display Planes  
• Display Pipes  
• Embedded DisplayPort* and Intel® FDI  
Figure 2-7. Processor Display Block Diagram  
2.4.2.1  
Display Planes  
A display plane is a single displayed surface in memory and contains one image  
(desktop, cursor, overlay). It is the portion of the display hardware logic that defines  
the format and location of a rectangular region of memory that can be displayed on  
display output device and delivers that data to a display pipe. This is clocked by the  
Core Display Clock.  
2.4.2.1.1  
2.4.2.1.2  
Planes A and B  
Planes A and B are the main display planes and are associated with Pipes A and B  
respectively. The two display pipes are independent, allowing for support of two  
independent display streams. They are both double-buffered, which minimizes latency  
and improves visual quality.  
Sprite A and B  
Sprite A and Sprite B are planes optimized for video decode, and are associated with  
Planes A and B respectively. Sprite A and B are also double-buffered.  
32  
Datasheet, Volume 1  
Interfaces  
2.4.2.1.3  
Cursors A and B  
Cursors A and B are small, fixed-sized planes dedicated for mouse cursor acceleration,  
and are associated with Planes A and B respectively. These planes support resolutions  
up to 256 x 256 each.  
2.4.2.1.4  
2.4.2.2  
Video Graphics Array (VGA)  
VGA is used for boot, safe mode, legacy games, etc. It can be changed by an  
application without OS/driver notification, due to legacy requirements.  
Display Pipes  
The display pipe blends and synchronizes pixel data received from one or more display  
planes and adds the timing of the display output device upon which the image is  
displayed. This is clocked by the Display Reference clock inputs.  
The display pipes A and B operate independently of each other at the rate of 1 pixel per  
clock. They can attach to any of the display ports. Each pipe sends display data to the  
PCH over the Intel Flexible Display Interface (Intel FDI).  
2.4.2.3  
2.4.2.4  
Display Ports  
The display ports consist of output logic and pins that transmit the display data to the  
associated encoding logic and send the data to the display device (that is, LVDS,  
HDMI*, DVI, SDVO, and so on). All display interfaces connecting external displays are  
now repartitioned and driven from the PCH with the exception of the DisplayPort.  
Embedded DisplayPort*  
The Processor Graphics supports the Embedded DisplayPort* (eDP) interface, intended  
for display devices that are integrated into the system (such as laptop LCD panel).  
The DisplayPort (abbreviated DP) is different than the generic term display port. The  
DisplayPort specification is a VESA standard. DisplayPort consolidates internal and  
external connection methods to reduce device complexity, support cross industry  
applications, and provide performance scalability. The eDP interface supports link-  
speeds of 1.62 Gbps and 2.7 Gbps on 1, 2, or 4 data lanes. The eDP supports -0.5%  
SSC and non-SSC clock settings.  
®
®
2.4.3  
Intel Flexible Display Interface (Intel FDI)  
The Intel Flexible Display Interface (Intel® FDI) is a proprietary link for carrying display  
traffic from the Processor Graphics controller to the PCH display I/Os. Intel® FDI  
supports two independent channels—one for pipe A and one for pipe B.  
• Each channel has four transmit (Tx) differential pairs used for transporting pixel  
and framing data from the display engine.  
• Each channel has one single-ended LineSync and one FrameSync input (1-V CMOS  
signaling).  
• One display interrupt line input (1-V CMOS signaling).  
• Intel® FDI may dynamically scalable down to 2X or 1X based on actual display  
bandwidth requirements.  
• Common 100-MHz reference clock.  
• Each channel transports at a rate of 2.7 Gbps.  
• PCH supports end-to-end lane reversal across both channels (no reversal support  
required in the processor).  
Datasheet, Volume 1  
33  
Interfaces  
2.4.4  
Multi-Graphics Controller Multi-Monitor Support  
The processor supports simultaneous use of the Processor Graphics Controller (GT) and  
a x16 PCI Express Graphics (PEG) device.  
The processor supports a maximum of 2 displays connected to the PEG card in parallel  
with up to 2 displays connected to the processor and PCH.  
Note:  
When supporting Multi Graphics controllers Multi-Monitors, “drag and drop” between  
monitors and the 2x8 PEG is not supported.  
2.5  
Platform Environment Control Interface (PECI)  
The PECI is a one-wire interface that provides a communication channel between a  
PECI client (processor) and a PECI master. The processor implements a PECI interface  
to:  
• Allow communication of processor thermal and other information to the PECI  
master.  
• Read averaged Digital Thermal Sensor (DTS) values for fan speed control.  
2.6  
Interface Clocking  
2.6.1  
Internal Clocking Requirements  
Table 2-3.  
Reference Clock  
Reference Input Clock  
Input Frequency  
Associated PLL  
BCLK/BCLK#  
DPLL_REF_CLK/DPLL_REF_CLK#  
100 MHz  
120 MHz  
Processor/Memory/Graphics/PCIe/DMI/FDI  
Embedded DisplayPort (eDP)  
§ §  
34  
Datasheet, Volume 1  
Technologies  
3 Technologies  
This chapter provides a high-level description of Intel technologies implemented in the  
processor.  
The implementation of the features may vary between the processor SKUs.  
Details on the different technologies of Intel processors and other relevant external  
notes are located at the Intel technology web site: http://www.intel.com/technology/  
3.1  
Intel® Virtualization Technology (Intel® VT)  
Intel Virtualization Technology (Intel® VT) makes a single system appear as multiple  
independent systems to software. This allows multiple, independent operating systems  
to run simultaneously on a single system. Intel VT comprises technology components  
to support virtualization of platforms based on Intel architecture microprocessors and  
chipsets. Intel Virtualization Technology (Intel VT-x) added hardware support in the  
processor to improve the virtualization performance and robustness. Intel Virtualization  
Technology for Directed I/O (Intel VT-d) adds chipset hardware implementation to  
support and improve I/O virtualization performance and robustness.  
Intel VT-x specifications and functional descriptions are included in the Intel® 64 and  
IA-32 Architectures Software Developer’s Manual, Volume 3B and is available at:  
http://www.intel.com/products/processor/manuals/index.htm  
The Intel VT-d specification and other VT documents can be referenced at:  
http://www.intel.com/technology/virtualization/index.htm  
®
®
3.1.1  
Intel Virtualization Technology (Intel VT) for  
®
®
IA-32, Intel 64 and Intel Architecture  
®
(Intel VT-x) Objectives  
Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual  
Machine Monitor (VMM) can use Intel VT-x features to provide improved a reliable  
virtualized platform. By using Intel VT-x, a VMM is:  
Robust: VMMs no longer need to use paravirtualization or binary translation. This  
means that they will be able to run off-the-shelf OSs and applications without any  
special steps.  
Enhanced: Intel VT enables VMMs to run 64-bit guest operating systems on IA x86  
processors.  
More reliable: Due to the hardware support, VMMs can now be smaller, less  
complex, and more efficient. This improves reliability and availability and reduces  
the potential for software conflicts.  
More secure: The use of hardware transitions in the VMM strengthens the isolation  
of VMs and further prevents corruption of one VM from affecting others on the  
same system.  
Datasheet, Volume 1  
35  
Technologies  
®
®
3.1.2  
Intel Virtualization Technology (Intel VT) for  
®
®
IA-32, Intel 64 and Intel Architecture  
®
(Intel VT-x) Features  
The processor core supports the following Intel VT-x features:  
• Extended Page Tables (EPT)  
— EPT is hardware assisted page table virtualization  
— It eliminates VM exits from guest OS to the VMM for shadow page-table  
maintenance  
• Virtual Processor IDs (VPID)  
— Ability to assign a VM ID to tag processor core hardware structures (such as  
TLBs)  
— This avoids flushes on VM transitions to give a lower-cost VM transition time  
and an overall reduction in virtualization overhead.  
• Guest Preemption Timer  
— Mechanism for a VMM to preempt the execution of a guest OS after an amount  
of time specified by the VMM. The VMM sets a timer value before entering a  
guest  
— The feature aids VMM developers in flexibility and Quality of Service (QoS)  
assurances  
• Descriptor-Table Exiting  
— Descriptor-table exiting allows a VMM to protect a guest OS from internal  
(malicious software based) attack by preventing relocation of key system data  
structures like IDT (interrupt descriptor table), GDT (global descriptor table),  
LDT (local descriptor table), and TSS (task segment selector).  
— A VMM using this feature can intercept (by a VM exit) attempts to relocate  
these data structures and prevent them from being tampered by malicious  
software.  
®
®
3.1.3  
Intel Virtualization Technology (Intel VT) for Directed  
®
I/O (Intel VT-d) Objectives  
The key Intel VT-d objectives are domain-based isolation and hardware-based  
virtualization. A domain can be abstractly defined as an isolated environment in a  
platform to which a subset of host physical memory is allocated. Virtualization allows  
for the creation of one or more partitions on a single system. This could be multiple  
partitions in the same operating system, or there can be multiple operating system  
instances running on the same system – offering benefits such as system  
consolidation, legacy migration, activity partitioning, or security.  
36  
Datasheet, Volume 1  
Technologies  
®
®
3.1.4  
Intel Virtualization Technology (Intel VT) for Directed  
®
I/O (Intel VT-d) Features  
The processor supports the following Intel VT-d features:  
• Memory controller and Processor Graphics comply with Intel® VT-d 1.2  
specification.  
Two VT-d DMA remap engines.  
— iGraphics DMA remap engine  
— DMI/PEG  
• Support for root entry, context entry, and default context  
• 39-bit guest physical address and host physical address widths  
• Support for 4K page sizes only  
• Support for register-based fault recording only (for single entry only) and support  
for MSI interrupts for faults  
• Support for both leaf and non-leaf caching  
• Support for boot protection of default page table  
• Support for non-caching of invalid page table entries  
• Support for hardware based flushing of translated but pending writes and pending  
reads, on IOTLB invalidation  
• Support for page-selective IOTLB invalidation  
• MSI cycles (MemWr to address FEEx_xxxxh) not translated  
Translation faults result in cycle forwarding to VBIOS region (byte enables  
masked for writes). Returned data may be bogus for internal agents, PEG/DMI  
interfaces return unsupported request status  
• Interrupt Remapping is supported  
• Queued invalidation is supported.  
• VT-d translation bypass address range is supported (Pass Through)  
Note:  
Intel VT-d Technology may not be available on all SKUs.  
®
®
3.1.5  
Intel Virtualization Technology (Intel VT) for Directed  
®
I/O (Intel VT-d) Features Not Supported  
The following features are not supported by the processor with Intel VT-d:  
• No support for PCISIG endpoint caching (ATS)  
• No support for Intel VT-d read prefetching/snarfing (that is, translations within a  
cacheline are not stored in an internal buffer for reuse for subsequent translations).  
• No support for advance fault reporting  
• No support for super pages  
• No support for Intel VT-d translation bypass address range (such usage models  
need to be resolved with VMM help in setting up the page tables correctly)  
Datasheet, Volume 1  
37  
Technologies  
3.2  
Intel® Trusted Execution Technology (Intel® TXT)  
Intel Trusted Execution Technology (Intel TXT) defines platform-level enhancements  
that provide the building blocks for creating trusted platforms.  
The Intel TXT platform helps to provide the authenticity of the controlling environment  
such that those wishing to rely on the platform can make an appropriate trust decision.  
The Intel TXT platform determines the identity of the controlling environment by  
accurately measuring and verifying the controlling software.  
Another aspect of the trust decision is the ability of the platform to resist attempts to  
change the controlling environment. The Intel TXT platform will resist attempts by  
software processes to change the controlling environment or bypass the bounds set by  
the controlling environment.  
Intel TXT is a set of extensions designed to provide a measured and controlled launch  
of system software that will then establish a protected environment for itself and any  
additional software that it may execute.  
These extensions enhance two areas:  
• The launching of the Measured Launched Environment (MLE)  
• The protection of the MLE from potential corruption  
The enhanced platform provides these launch and control interfaces using Safer Mode  
Extensions (SMX).  
The SMX interface includes the following functions:  
• Measured/Verified launch of the MLE  
• Mechanisms to ensure the above measurement is protected and stored in a secure  
location  
• Protection mechanisms that allow the MLE to control attempts to modify itself  
For more information, refer to the Intel® TXT Measured Launched Environment  
Developer’s Guide in http://www.intel.com/technology/security.  
3.3  
Intel® Hyper-Threading Technology (Intel® HT  
Technology)  
The processor supports Intel® Hyper-Threading Technology (Intel® HT Technology),  
that allows an execution core to function as two logical processors. While some  
execution resources (such as caches, execution units, and buses) are shared, each  
logical processor has its own architectural state with its own set of general-purpose  
registers and control registers. This feature must be enabled using the BIOS and  
requires operating system support.  
Intel recommends enabling Intel HT Technology with Microsoft Windows 7*, Microsoft  
Windows Vista*, Microsoft Windows* XP Professional/Windows* XP Home, and  
disabling Intel HT Technology using the BIOS for all previous versions of Windows  
operating systems. For more information on Intel HT Technology, see  
http://www.intel.com/technology/platform-technology/hyper-threading/.  
38  
Datasheet, Volume 1  
Technologies  
3.4  
Intel® Turbo Boost Technology  
Compared with previous generation products, Intel Turbo Boost Technology will  
increase the ratio of application power to TDP. Thus, thermal solutions and platform  
cooling that are designed to less than thermal design guidance might experience  
thermal and performance issues since more applications will tend to run at the  
maximum power limit for significant periods of time.  
Note:  
Intel Turbo Boost Technology may not be available on all SKUs.  
Intel Turbo Boost Technology is a feature that allows the processor to opportunistically  
and automatically run faster than its rated operating core and/or render clock  
frequency when there is sufficient power headroom, and the product is within specified  
temperature and current limits. The Intel Turbo Boost Technology feature is designed to  
increase performance of both multi-threaded and single-threaded workloads. The  
processor supports a Turbo mode where the processor can use the thermal capacity  
associated with package and run at power levels higher than TDP power for short  
durations. This improves the system responsiveness for short, bursty usage conditions.  
The turbo feature needs to be properly enabled by BIOS for the processor to operate  
with maximum performance. Since the turbo feature is configurable and dependent on  
many platform design limits outside of the processor control, the maximum  
performance cannot be ensured.  
Turbo Mode availability is independent of the number of active cores; however, the  
Turbo Mode frequency is dynamic and dependent on the instantaneous application  
power load, the number of active cores, user configurable settings, operating  
environment, and system design.  
®
3.4.1  
Intel Turbo Boost Technology Frequency  
The processor's rated frequency assumes that all execution cores are active and are at  
the sustained thermal design power (TDP). However, under typical operation not all  
cores are active or at executing a high power workload. Therefore, most applications  
are consuming less than the TDP at the rated frequency. Intel Turbo Boost Technology  
takes advantage of the available TDP headroom and active cores are able to increase  
their operating frequency.  
To determine the highest performance frequency amongst active cores, the processor  
takes the following into consideration to recalculate turbo frequency during runtime:  
• The number of cores operating in the C0 state.  
• The estimated core current consumption.  
• The estimated package prior and present power consumption.  
• The package temperature.  
Any of these factors can affect the maximum frequency for a given workload. If the  
power, current, or thermal limit is reached, the processor will automatically reduce the  
frequency to stay with its TDP limit.  
Note:  
Intel Turbo Technology processor frequencies are only active if the operating system is  
requesting the P0 state. For more information on P-states and C-states refer to  
Chapter 4, “Power Management”.  
Datasheet, Volume 1  
39  
Technologies  
®
3.4.2  
Intel Turbo Boost Technology Graphics Frequency  
The graphics render frequency is selected dynamically based on graphics workload  
demand as permitted by the processor turbo control. The processor can optimize both  
processor and Processor Graphics performance through power sharing. The processor  
cores and the processor graphics core share a package power limit. If the graphics core  
is not consuming enough power to reach the package power limit, the cores can  
increase frequency to take advantage of the unused thermal power headroom. The  
opposite can happen when the processor cores are not consuming enough power to  
reach the package power limit. For the Processor Graphics, this could mean an increase  
in the render core frequency (above its rated frequency) and increased graphics  
performance. Both the processor core(s) and the graphics render core can increase  
frequency higher than possible without power sharing.  
Note:  
Processor utilization of turbo graphic frequencies requires that the Intel Graphics driver  
to be properly installed. Turbo graphic frequencies are not dependent on the operating  
system processor P-state requests and may turbo while the processor is in any  
processor P-states.  
3.5  
Intel® Advanced Vector Extensions (Intel® AVX)  
Intel Advanced Vector Extensions (Intel AVX) is the latest expansion of the Intel  
instruction set. It extends the Intel Streaming SIMD Extensions (Intel SSE) from 128-  
bit vectors into 256-bit vectors. Intel AVX addresses the continued need for vector  
floating-point performance in mainstream scientific and engineering numerical  
applications, visual processing, recognition, data-mining/synthesis, gaming, physics,  
cryptography and other areas of applications. The enhancement in Intel AVX allows for  
improved performance due to wider vectors, new extensible syntax, and rich  
functionality including the ability to better manage, rearrange, and sort data. For more  
information on Intel AVX, see http://www.intel.com/software/avx  
3.6  
Intel® Advanced Encryption Standard New  
Instructions (Intel® AES-NI)  
The processor supports Advanced Encryption Standard New Instructions (Intel AES-NI)  
that are a set of Single Instruction Multiple Data (SIMD) instructions that enable fast  
and secure data encryption and decryption based on the Advanced Encryption Standard  
(AES). Intel AES-NI are valuable for a wide range of cryptographic applications; such  
as, applications that perform bulk encryption/decryption, authentication, random  
number generation, and authenticated encryption. AES is broadly accepted as the  
standard for both government and industry applications, and is widely deployed in  
various protocols.  
Intel AES-NI consists of six Intel SSE instructions. Four instructions, AESENC,  
AESENCLAST, AESDEC, and AESDELAST facilitate high performance AES encryption and  
decryption. The other two, AESIMC and AESKEYGENASSIST, support the AES key  
expansion procedure. Together, these instructions provide a full hardware for  
supporting AES, offering security, high performance, and a great deal of flexibility.  
40  
Datasheet, Volume 1  
Technologies  
3.6.1  
PCLMULQDQ Instruction  
The processor supports the carry-less multiplication instruction, PCLMULQDQ.  
PCLMULQDQ is a Single Instruction Multiple Data (SIMD) instruction that computes the  
128-bit carry-less multiplication of two, 64-bit operands without generating and  
propagating carries. Carry-less multiplication is an essential processing component of  
several cryptographic systems and standards. Hence, accelerating carry-less  
multiplication can significantly contribute to achieving high speed secure computing  
and communication.  
3.7  
Intel® 64 Architecture x2APIC  
The x2APIC architecture extends the xAPIC architecture that provides a key mechanism  
for interrupt delivery. This extension is intended primarily to increase processor  
addressability.  
Specifically, x2APIC:  
• Retains all key elements of compatibility to the xAPIC architecture  
— delivery modes  
— interrupt and processor priorities  
— interrupt sources  
— interrupt destination types  
• Provides extensions to scale processor addressability for both the logical and  
physical destination modes  
• Adds new features to enhance performance of interrupt delivery  
• Reduces complexity of logical destination mode interrupt delivery on link based  
architectures  
The key enhancements provided by the x2APIC architecture over xAPIC are the  
following:  
• Support for two modes of operation to provide backward compatibility and  
extensibility for future platform innovations  
— In xAPIC compatibility mode, APIC registers are accessed through a memory  
mapped interface to a 4 KB page, identical to the xAPIC architecture.  
— In x2APIC mode, APIC registers are accessed through Model Specific Register  
(MSR) interfaces. In this mode, the x2APIC architecture provides significantly  
increased processor addressability and some enhancements on interrupt  
delivery.  
• Increased range of processor addressability in x2APIC mode  
— Physical xAPIC ID field increases from 8 bits to 32 bits, allowing for interrupt  
processor addressability up to 4G-1 processors in physical destination mode. A  
processor implementation of x2APIC architecture can support fewer than 32-  
bits in a software transparent fashion.  
— Logical xAPIC ID field increases from 8 bits to 32 bits. The 32-bit logical x2APIC  
ID is partitioned into two sub-fields—a 16-bit cluster ID and a 16-bit logical ID  
within the cluster. Consequently, ((2^20) -16) processors can be addressed in  
logical destination mode. Processor implementations can support fewer than  
16 bits in the cluster ID sub-field and logical ID sub-field in a software agnostic  
fashion.  
Datasheet, Volume 1  
41  
Technologies  
• More efficient MSR interface to access APIC registers  
To enhance inter-processor and self directed interrupt delivery as well as the  
ability to virtualize the local APIC, the APIC register set can be accessed only  
through MSR based interfaces in the x2APIC mode. The Memory Mapped IO  
(MMIO) interface used by xAPIC is not supported in the x2APIC mode.  
• The semantics for accessing APIC registers have been revised to simplify the  
programming of frequently-used APIC registers by system software. Specifically,  
the software semantics for using the Interrupt Command Register (ICR) and End Of  
Interrupt (EOI) registers have been modified to allow for more efficient delivery  
and dispatching of interrupts.  
The x2APIC extensions are made available to system software by enabling the local  
x2APIC unit in the “x2APIC” mode. To benefit from x2APIC capabilities, a new  
Operating System and a new BIOS are both needed, with special support for the  
x2APIC mode.  
The x2APIC architecture provides backward compatibility to the xAPIC architecture and  
forward extendibility for future Intel platform innovations.  
Note:  
Intel x2APIC technology may not be available on all processor SKUs.  
For more information, refer to the Intel® 64 Architecture x2APIC Specification at  
http://www.intel.com/products/processor/manuals/  
§ §  
42  
Datasheet, Volume 1  
Power Management  
4 Power Management  
This chapter provides information on the following power management topics:  
• Advanced Configuration and Power Interface (ACPI) States  
• Processor Core  
• Integrated Memory Controller (IMC)  
• PCI Express*  
• Direct Media Interface (DMI)  
• Processor Graphics Controller  
Figure 4-1. Power States  
Datasheet, Volume 1  
43  
Power Management  
4.1  
Advanced Configuration and Power Interface  
(ACPI) States Supported  
The ACPI states supported by the processor are described in this section.  
4.1.1  
System States  
Table 4-1.  
System States  
State  
Description  
G0/S0  
Full On  
G1/S3-Cold Suspend-to-RAM (STR). Context saved to memory (S3-Hot is not supported by the processor).  
G1/S4  
G2/S5  
G3  
Suspend-to-Disk (STD). All power lost (except wakeup on PCH).  
Soft off. All power lost (except wakeup on PCH). Total reboot.  
Mechanical off. All power (AC and battery) removed from system.  
4.1.2  
Processor Core / Package Idle States  
Table 4-2.  
Processor Core / Package State Support  
State  
Description  
C0  
C1  
Active mode, processor executing code  
AutoHALT state  
C1E  
AutoHALT state with lowest frequency and voltage operating point  
Execution cores in C3 flush their L1 instruction cache, L1 data cache, and L2 cache to the L3  
shared cache. Clocks are shut off to each core.  
C3  
C6  
C7  
Execution cores in this state save their architectural state before removing core voltage.  
Execution cores in this state behave similarly to the C6 state. If all execution cores request C7,  
L3 cache ways are flushed until it is cleared.  
4.1.3  
Integrated Memory Controller States  
Table 4-3.  
Integrated Memory Controller States  
State  
Description  
Power up  
CKE asserted. Active mode  
CKE de-asserted (not self-refresh) with all banks closed  
Pre-charge  
Power-down  
Active Power- CKE de-asserted (not self-refresh) with minimum one bank active  
Down  
Self-Refresh  
CKE de-asserted using device self-refresh  
44  
Datasheet, Volume 1  
Power Management  
4.1.4  
PCI Express* Link States  
Table 4-4.  
PCI Express* Link States  
State  
Description  
L0  
L0s  
L1  
Full on – Active transfer state  
First Active Power Management low power state – Low exit latency  
Lowest Active Power Management – Longer exit latency  
Lowest power state (power-off) – Longest exit latency  
L3  
4.1.5  
Direct Media Interface (DMI) States  
Table 4-5.  
Direct Media Interface (DMI) States  
State  
Description  
L0  
L0s  
L1  
Full on – Active transfer state  
First Active Power Management low power state – Low exit latency  
Lowest Active Power Management – Longer exit latency  
Lowest power state (power-off) – Longest exit latency  
L3  
4.1.6  
Processor Graphics Controller States  
Table 4-6.  
Processor Graphics Controller States  
State  
Description  
D0  
Full on, display active  
Power-off  
D3 Cold  
4.1.7  
Interface State Combinations  
Table 4-7.  
G, S, and C State Combinations  
Processor  
Package  
(C) State  
Global  
(G) State  
Sleep  
(S) State  
Processor State  
System Clocks  
Description  
G0  
G0  
G0  
G0  
G1  
G1  
G2  
G3  
S0  
S0  
S0  
S0  
S3  
S4  
S5  
NA  
C0  
Full On  
Auto-Halt  
On  
On  
Full On  
Auto-Halt  
C1/C1E  
C3  
Deep Sleep  
On  
Deep Sleep  
Deep Power-down  
Suspend to RAM  
Suspend to Disk  
Soft Off  
C6/C7  
Deep Power-down  
On  
Power off  
Power off  
Power off  
Power off  
Off, except RTC  
Off, except RTC  
Off, except RTC  
Power off  
Hard off  
Datasheet, Volume 1  
45  
Power Management  
Table 4-8.  
D, S, and C State Combination  
Graphics Adapter  
Sleep (S) State  
Package (C) State  
Description  
(D) State  
D0  
D0  
D0  
D0  
D3  
S0  
S0  
S0  
S0  
S0  
C0  
C1/C1E  
C3  
Full On, Displaying  
Auto-Halt, Displaying  
Deep sleep, Displaying  
Deep Power Down, Displaying  
Not displaying  
C6/C7  
Any  
Not displaying, Graphics Core is  
powered off  
D3  
D3  
S3  
S4  
N/A  
N/A  
Not displaying, suspend to disk  
4.2  
Processor Core Power Management  
While executing code, Enhanced Intel SpeedStep Technology optimizes the processor’s  
frequency and core voltage based on workload. Each frequency and voltage operating  
point is defined by ACPI as a P-state. When the processor is not executing code, it is  
idle. A low-power idle state is defined by ACPI as a C-state. In general, lower power  
C-states have longer entry and exit latencies.  
®
®
4.2.1  
Enhanced Intel SpeedStep Technology  
The following are the key features of Enhanced Intel SpeedStep Technology:  
• Multiple frequency and voltage points for optimal performance and power  
efficiency. These operating points are known as P-states.  
• Frequency selection is software controlled by writing to processor MSRs. The  
voltage is optimized based on the selected frequency and the number of active  
processor cores.  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps to an optimized voltage. This voltage is signaled by the SVID bus to the  
voltage regulator. Once the voltage is established, the PLL locks on to the  
target frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
target frequency, then transitions to a lower voltage by signaling the target  
voltage on SVID bus.  
— All active processor cores share the same frequency and voltage. In a multi-  
core processor, the highest frequency P-state requested amongst all active  
cores is selected.  
— Software-requested transitions are accepted at any time. If a previous  
transition is in progress, the new transition is deferred until the previous  
transition is completed.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Because there is low transition latency between P-states, a significant number of  
transitions per-second are possible.  
46  
Datasheet, Volume 1  
Power Management  
4.2.2  
Low-Power Idle States  
When the processor is idle, low-power idle states (C-states) are used to save power.  
More power savings actions are taken for numerically higher C-states. However, higher  
C-states have longer exit and entry latencies. Resolution of C-states occur at the  
thread, processor core, and processor package level. Thread-level C-states are  
available if Intel HT Technology is enabled.  
Caution:  
Long term reliability cannot be assured unless all the Low Power Idle States are  
enabled.  
Figure 4-2. Idle Power Management Breakdown of the Processor Cores  
Entry and exit of the C-States at the thread and core level are shown in Figure 4-3.  
Figure 4-3. Thread and Core C-State Entry and Exit  
While individual threads can request low power C-states, power saving actions only  
take place once the core C-state is resolved. Core C-states are automatically resolved  
by the processor. For thread and core C-states, a transition to and from C0 is required  
before entering any other C-state.  
Datasheet, Volume 1  
47  
Power Management  
Table 4-9.  
Coordination of Thread Power States at the Core Level  
Thread 1  
Processor Core  
C-State  
C0  
C0  
C0  
C0  
C0  
C0  
C1  
C0  
C3  
C0  
C6  
C7  
C0  
C0  
C1  
C3  
C6  
C7  
C0  
C11  
C3  
C11  
C11  
C11  
C11  
C11  
C3  
C11  
C3  
Thread 0  
C3  
C6  
C6  
C3  
C6  
C7  
Note: If enabled, the core C-state will be C1E if all cores have resolved a core C1 state or higher.  
4.2.3  
Requesting Low-Power Idle States  
The primary software interfaces for requesting low power idle states are through the  
MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E).  
However, software may make C-state requests using the legacy method of I/O reads  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
method of requesting C-states provides legacy support for operating systems that  
initiate C-state transitions using I/O reads.  
For legacy operating systems, P_LVLx I/O reads are converted within the processor to  
the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in  
I/O reads to the system. The feature, known as I/O MWAIT redirection, must be  
enabled in the BIOS.  
Note:  
The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read  
interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as shown in  
Table 4-10.  
Table 4-10. P_LVLx to MWAIT Conversion  
P_LVLx  
MWAIT(Cx)  
Notes  
P_LVL2  
P_LVL3  
MWAIT(C3)  
MWAIT(C6)  
MWAIT(C7)  
MWAIT(C7)  
C6. No sub-states allowed.  
C7. No sub-states allowed.  
C7. No sub-states allowed.  
P_LVL4  
P_LVL5+  
The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict  
the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any  
P_LVLx reads outside of this range does not cause an I/O redirection to MWAIT(Cx) like  
request. They fall through like a normal I/O instruction.  
Note:  
When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The  
MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O  
redirections enable the MWAIT 'break on EFLAGS.IF’ feature that triggers a wakeup on  
an interrupt, even if interrupts are masked by EFLAGS.IF.  
48  
Datasheet, Volume 1  
Power Management  
4.2.4  
Core C-states  
The following are general rules for all core C-states, unless specified otherwise:  
• A core C-State is determined by the lowest numerical thread state (such as Thread  
0 requests C1E while Thread 1 requests C3, resulting in a core C1E state). See  
Table 4-7.  
• A core transitions to C0 state when:  
— An interrupt occurs  
— There is an access to the monitored address if the state was entered using an  
MWAIT instruction  
• For core C1/C1E, core C3, and core C6/C7, an interrupt directed toward a single  
thread wakes only that thread. However, since both threads are no longer at the  
same core C-state, the core resolves to C0.  
• A system reset re-initializes all processor cores.  
4.2.4.1  
4.2.4.2  
Core C0 State  
The normal operating state of a core where code is being executed.  
Core C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1/C1E) instruction.  
A System Management Interrupt (SMI) handler returns execution to either Normal  
state or the C1/C1E state. See the Intel® 64 and IA-32 Architecture Software  
Developer’s Manual, Volume 3A/3B: System Programmer’s Guide for more information.  
While a core is in C1/C1E state, it processes bus snoops and snoops from other  
threads. For more information on C1E, see Section 4.2.5.2.  
4.2.4.3  
Core C3 State  
Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to  
the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its  
L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while  
maintaining its architectural state. All core clocks are stopped at this point. Because the  
core’s caches are flushed, the processor does not wake any core that is in the C3 state  
when either a snoop is detected or when another core accesses cacheable memory.  
4.2.4.4  
4.2.4.5  
Core C6 State  
Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an  
MWAIT(C6) instruction. Before entering core C6, the core will save its architectural  
state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero  
volts. During exit, the core is powered on and its architectural state is restored.  
Core C7 State  
Individual threads of a core can enter the C7 state by initiating a P_LVL4 I/O read to  
the P_BLK or by an MWAIT(C7) instruction. The core C7 state exhibits the same  
behavior as the core C6 state unless the core is the last one in the package to enter the  
C7 state. If it is, that core is responsible for flushing L3 cache ways. The processor  
supports the C7s substate. When an MWAIT(C7) command is issued with a C7s  
sub-state hint, the entire L3 cache is flushed in one step as opposed to flushing the L3  
cache in multiple steps.  
Datasheet, Volume 1  
49  
Power Management  
4.2.4.6  
C-State Auto-Demotion  
In general, deeper C-states such as C6 or C7 have long latencies and have higher  
energy entry/exit costs. The resulting performance and energy penalties become  
significant when the entry/exit frequency of a deeper C-state is high. Therefore,  
incorrect or inefficient usage of deeper C-states have a negative impact on battery life  
idle. To increase residency and improve battery life idle in deeper C-states, the  
processor supports C-state auto-demotion.  
There are two C-State auto-demotion options:  
• C7/C6 to C3  
• C7/C6/C3 To C1  
The decision to demote a core from C6/C7 to C3 or C3/C6/C7 to C1 is based on each  
core’s immediate residency history. Upon each core C6/C7 request, the core C-state is  
demoted to C3 or C1 until a sufficient amount of residency has been established. At  
that point, a core is allowed to go into C3/C6 or C7. Each option can be run  
concurrently or individually.  
This feature is disabled by default. BIOS must enable it in the  
PMG_CST_CONFIG_CONTROL register. The auto-demotion policy is also configured by  
this register.  
4.2.5  
Package C-States  
The processor supports C0, C1/C1E, C3, C6, and C7 power states. The following is a  
summary of the general rules for package C-state entry. These apply to all package C-  
states unless specified otherwise:  
• A package C-state request is determined by the lowest numerical core C-state  
amongst all cores.  
• A package C-state is automatically resolved by the processor depending on the  
core idle power states and the status of the platform components.  
— Each core can be at a lower idle power state than the package if the platform  
does not grant the processor permission to enter a requested package C-state.  
— The platform may allow additional power savings to be realized in the  
processor.  
— For package C-states, the processor is not required to enter C0 before entering  
any other C-state.  
The processor exits a package C-state when a break event is detected. Depending on  
the type of break event, the processor does the following:  
• If a core break event is received, the target core is activated and the break event  
message is forwarded to the target core.  
— If the break event is not masked, the target core enters the core C0 state and  
the processor enters package C0.  
• If the break event was due to a memory access or snoop request.  
— But the platform did not request to keep the processor in a higher package C-  
state, the package returns to its previous C-state.  
— And the platform requests a higher power C-state, the memory access or snoop  
request is serviced and the package remains in the higher power C-state.  
Table 4-11 shows package C-state resolution for a dual-core processor. Figure 4-4  
summarizes package C-state transitions.  
50  
Datasheet, Volume 1  
Power Management  
Table 4-11. Coordination of Core Power States at the Package Level  
Core 1  
Package C-State  
C0  
C0  
C0  
C0  
C0  
C0  
C1  
C0  
C3  
C0  
C6  
C0  
C7  
C0  
C0  
C1  
C3  
C6  
C7  
C11  
C11  
C11  
C11  
C11  
C3  
C11  
C3  
C11  
C3  
Core 0  
C3  
C6  
C6  
C3  
C6  
C7  
Note: If enabled, the package C-state will be C1E if all cores have resolved a core C1 state or higher.  
Figure 4-4. Package C-State Entry and Exit  
4.2.5.1  
Package C0  
This is the normal operating state for the processor. The processor remains in the  
normal state when at least one of its cores is in the C0 or C1 state or when the platform  
has not granted permission to the processor to go into a low power state. Individual  
cores may be in lower power idle states while the package is in C0.  
Datasheet, Volume 1  
51  
Power Management  
4.2.5.2  
Package C1/C1E  
No additional power reduction actions are taken in the package C1 state. However, if  
the C1E sub-state is enabled, the processor automatically transitions to the lowest  
supported core clock frequency, followed by a reduction in voltage.  
The package enters the C1 low power state when:  
• At least one core is in the C1 state.  
• The other cores are in a C1 or lower power state.  
The package enters the C1E state when:  
• All cores have directly requested C1E using MWAIT(C1) with a C1E sub-state hint.  
• All cores are in a power state lower that C1/C1E but the package low power state is  
limited to C1/C1E using the PMG_CST_CONFIG_CONTROL MSR.  
• All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is  
enabled in IA32_MISC_ENABLES.  
No notification to the system occurs upon entry to C1/C1E.  
4.2.5.3  
Package C3 State  
A processor enters the package C3 low power state when:  
• At least one core is in the C3 state.  
• The other cores are in a C3 or lower power state, and the processor has been  
granted permission by the platform.  
• The platform has not granted a request to a package C6/C7 state but has allowed a  
package C6 state.  
In package C3-state, the L3 shared cache is valid.  
4.2.5.4  
Package C6 State  
A processor enters the package C6 low power state when:  
• At least one core is in the C6 state.  
• The other cores are in a C6 or lower power state, and the processor has been  
granted permission by the platform.  
• The platform has not granted a package C7 request but has allowed a C6 package  
state.  
In package C6 state, all cores have saved their architectural state and have had their  
core voltages reduced to zero volts. The L3 shared cache is still powered and snoopable  
in this state. The processor remains in package C6 state as long as any part of the L3  
cache is active.  
52  
Datasheet, Volume 1  
Power Management  
4.2.5.5  
Package C7 State  
The processor enters the package C7 low power state when all cores are in the C7 state  
and the L3 cache is completely flushed. The last core to enter the C7 state begins to  
shrink the L3 cache by N-ways until the entire L3 cache has been emptied. This allows  
further power savings.  
Core break events are handled the same way as in package C3 or C6. However, snoops  
are not sent to the processor in package C7 state because the platform, by granting the  
package C7 state, has acknowledged that the processor possesses no snoopable  
information. This allows the processor to remain in this low power state and maximize  
its power savings.  
Upon exit of the package C7 state, the L3 cache is not immediately re-enabled. It  
re-enables once the processor has stayed out of C6 or C7 for an preset amount of time.  
Power is saved since this prevents the L3 cache from being re-populated only to be  
immediately flushed again.  
4.2.5.6  
Dynamic L3 Cache Sizing  
Upon entry into the package C7 state, the L3 cache is reduced by N-ways until it is  
completely flushed. The number of ways, N, is dynamically chosen per concurrent C7  
entry. Similarly, upon exit, the L3 cache is gradually expanded based on internal  
heuristics.  
4.3  
Integrated Memory Controller (IMC) Power  
Management  
The main memory is power managed during normal operation and in low-power ACPI  
Cx states.  
4.3.1  
Disabling Unused System Memory Outputs  
Any system memory (SM) interface signal that goes to a memory module connector in  
which it is not connected to any actual memory devices (such as SO-DIMM connector is  
unpopulated, or is single-sided) is tri-stated. The benefits of disabling unused SM  
signals are:  
• Reduced power consumption.  
• Reduced possible overshoot/undershoot signal quality issues seen by the processor  
I/O buffer receivers caused by reflections from potentially un-terminated  
transmission lines.  
When a given rank is not populated, the corresponding chip select and CKE signals are  
not driven.  
At reset, all rows must be assumed to be populated, until it can be proven that they are  
not populated. This is due to the fact that when CKE is tristated with an SO-DIMM  
present, the SO-DIMM is not ensured to maintain data integrity.  
SCKE tri-state should be enabled by BIOS where appropriate, since at reset all rows  
must be assumed to be populated.  
Datasheet, Volume 1  
53  
Power Management  
4.3.2  
DRAM Power Management and Initialization  
The processor implements extensive support for power management on the SDRAM  
interface. There are four SDRAM operations associated with the Clock Enable (CKE)  
signals that the SDRAM controller supports. The processor drives four CKE pins to  
perform these operations.  
The CKE is one of the power-save means. When CKE is off the internal DDR clock is  
disabled and the DDR power is reduced. The power-saving differs according the  
selected mode and the DDR type used. For more information, please refer to the IDD  
table in the DDR specification.  
The DDR specification defines 3 levels of power-down that differ in power-saving and in  
wakeup time:  
1. Active power-down (APD): This mode is entered if there are open pages when  
de-asserting CKE. In this mode the open pages are retained. Power-saving in this  
mode is the lowest. Power consumption of DDR is defined by IDD3P. Exiting this  
mode is fined by tXP – small number of cycles.  
2. Precharged power-down (PPD): This mode is entered if all banks in DDR are  
precharged when de-asserting CKE. Power-saving in this mode is intermediate –  
better than APD, but less than DLL-off. Power consumption is defined by IDD2P1.  
Exiting this mode is defined by tXP. Difference from APD mode is that when waking-  
up all page-buffers are empty  
3. DLL-off: In this mode the data-in DLLs on DDR are off. Power-saving in this mode  
is the best among all power-modes. Power consumption is defined by IDD2P1.  
Exiting this mode is defined by tXP, but also tXPDLL (10 – 20 according to DDR  
type) cycles until first data transfer is allowed.  
The processor supports 5 different types of power-down. The different modes are the  
power-down modes supported by DDR3 and combinations of these. The type of CKE  
power-down is defined by the configuration. The are options are:  
1. No power-down  
2. APD: The rank enters power-down as soon as idle-timer expires, no matter what is  
the bank status  
3. PPD: When idle timer expires the MC sends PRE-all to rank and then enters power-  
down  
4. DLL-off: same as option (2) but DDR is configured to DLL-off  
5. APD, change to PPD (APD-PPD): Begins as option (1), and when all page-close  
timers of the rank are expired, it wakes the rank, issues PRE-all, and returns to PPD  
APD, change to DLL-off (APD_DLLoff) – Begins as option (1), and when all page-  
close timers of the rank are expired, it wakes the rank, issues PRE-all and returns  
to DLL-off power-down  
The CKE is determined per rank when it is inactive. Each rank has an idle-counter. The  
idle-counter starts counting as soon as the rank has no accesses, and if it expires, the  
rank may enter power-down while no new transactions to the rank arrive to queues.  
The idle-counter begins counting at the last incoming transaction arrival.  
It is important to understand that since the power-down decision is per rank, the MC  
can find many opportunities to power-down ranks even while running memory  
intensive applications, and savings are significant (may be a few watts, according to  
the DDR specification). This is significant when each channel is populated with more  
ranks.  
54  
Datasheet, Volume 1  
Power Management  
Selection of power modes should be according to power-performance or thermal trade-  
offs of a given system:  
• When trying to achieve maximum performance and power or thermal consideration  
is not an issue: use no power-down.  
• In a system that tries to minimize power-consumption, try to use the deepest  
power-down mode possible – DLL-off or APD_DLLoff.  
• In high-performance systems with dense packaging (that is, complex thermal  
design) the power-down mode should be considered in order to reduce the heating  
and avoid DDR throttling caused by the heating.  
Control of the power-mode through CRB-BIOS: The BIOS selects by default no-power-  
down. There are knobs to change the power-down selected mode.  
Another control is the idle timer expiration count. This is set through PM_PDWN_config  
bits 7:0 (MCHBAR +4CB0). As this timer is set to a shorter time, the MC will have more  
opportunities to put DDR in power-down. The minimum recommended value for this  
register is 15. There is no BIOS hook to set this register. Customers who choose to  
change the value of this register can do it by changing the BIOS. For experiments, this  
register can be modified in real time if BIOS did not lock the MC registers.  
Note:  
In APD, APD-PPD, and APD-DLLoff there is no point in setting the idle-counter in the  
same range of page-close idle timer.  
Another option associated with CKE power-down is the S_DLL-off. When this option is  
enabled, the SBR I/O slave DLLs go off when all channel ranks are in power-down. (Do  
not confuse it with the DLL-off mode, in which the DDR DLLs are off). This mode  
requires to define the I/O slave DLL wakeup time.  
4.3.2.1  
Initialization Role of CKE  
During power-up, CKE is the only input to the SDRAM that has its level recognized  
(other than the DDR3 reset pin) once power is applied. It must be driven LOW by the  
DDR controller to make sure the SDRAM components float DQ and DQS during power-  
up. CKE signals remain LOW (while any reset is active) until the BIOS writes to a  
configuration register. Using this method, CKE is ensured to remain inactive for much  
longer than the specified 200 micro-seconds after power and clocks to SDRAM devices  
are stable.  
4.3.2.2  
Conditional Self-Refresh  
Intel Rapid Memory Power Management (Intel RMPM) conditionally places memory into  
self-refresh in the package C3, C6, and C7 low-power states. Intel RMPM functionality  
depends on the graphics/display state (relevant only when processor graphics is being  
used), as well as memory traffic patterns generated by other connected I/O devices.  
The target behavior is to enter self-refresh as long as there are no memory requests to  
service.  
When entering the S3 – Suspend-to-RAM (STR) state or S0 conditional self-refresh, the  
processor core flushes pending cycles and then enters all SDRAM ranks into self-  
refresh. The CKE signals remain LOW so the SDRAM devices perform self-refresh.  
Datasheet, Volume 1  
55  
Power Management  
Table 4-12. Targeted Memory State Conditions  
Mode  
Memory State with Processor Graphics  
Memory State with External Graphics  
Dynamic memory rank power down based on Dynamic memory rank power down based on  
C0, C1, C1E  
idle conditions.  
idle conditions.  
If the Processor Graphics engine is idle and  
there are no pending display requests, then  
enter self-refresh. Otherwise, use dynamic  
memory rank power down based on idle  
conditions.  
If there are no memory requests, then enter  
self-refresh. Otherwise, use dynamic  
memory rank power down based on idle  
conditions.  
C3, C6, C7  
S3  
S4  
Self-Refresh Mode.  
Self-Refresh Mode.  
Memory power down (contents lost).  
Memory power down (contents lost)  
4.3.2.3  
Dynamic Power-down Operation  
Dynamic power-down of memory is employed during normal operation. Based on idle  
conditions, a given memory rank may be powered down. The IMC implements  
aggressive CKE control to dynamically put the DRAM devices in a power-down state.  
The processor core controller can be configured to put the devices in active power-  
down (CKE de-assertion with open pages) or precharge power-down (CKE de-assertion  
with all pages closed). Precharge power-down provides greater power savings but has  
a bigger performance impact, since all pages will first be closed before putting the  
devices in power-down mode.  
If dynamic power-down is enabled, all ranks are powered up before doing a refresh  
cycle and all ranks are powered down at the end of refresh.  
4.3.2.4  
DRAM I/O Power Management  
Unused signals should be disabled to save power and reduce electromagnetic  
interference. This includes all signals associated with an unused memory channel.  
Clocks can be controlled on a per SO-DIMM basis. Exceptions are made for per SO-  
DIMM control signals such as CS#, CKE, and ODT for unpopulated SO-DIMM slots.  
The I/O buffer for an unused signal should be tri-stated (output driver disabled), the  
input receiver (differential sense-amp) should be disabled, and any DLL circuitry  
related ONLY to unused signals should be disabled. The input path must be gated to  
prevent spurious results due to noise on the unused signals (typically handled  
automatically when input receiver is disabled).  
4.4  
PCI Express* Power Management  
• Active power management support using L0s, and L1 states.  
• All inputs and outputs disabled in L2/L3 Ready state.  
Note:  
Note:  
PEG interface does not support Hot Plug.  
Power impact may be observed when PEG link disable power management state is  
used.  
4.5  
Direct Media Interface (DMI) Power Management  
• Active power management support using L0s/L1 state.  
56  
Datasheet, Volume 1  
Power Management  
4.6  
Graphics Power Management  
®
®
4.6.1  
Intel Rapid Memory Power Management (Intel RMPM)  
(also known as CxSR)  
The Intel Rapid Memory Power Management puts rows of memory into self refresh  
mode during C3/C6/C7 to allow the system to remain in the lower power states longer.  
Mobile processors routinely save power during runtime conditions by entering the C3,  
C6, or C7 state. Intel RMPM is an indirect method of power saving that can have a  
significant effect on the system as a whole.  
®
4.6.2  
Intel Graphics Performance Modulation Technology  
®
(Intel GPMT)  
Intel Graphics Power Modulation Technology (Intel GPMT) is a method for saving power  
in the graphics adapter while continuing to display and process data in the adapter. This  
method will switch the render frequency and/or render voltage dynamically between  
higher and lower power states supported on the platform based on render engine  
workload. When the system is running in battery mode, and if the end user launches  
applications such as 3D or Video, the graphics software may switch the render  
frequency dynamically between higher and lower power/performance states depending  
on the render engine workload.  
In products where Intel® Graphics Dynamic Frequency (also known as Turbo Boost  
Technology) is supported and enabled, the functionality of Intel GPMT will be  
maintained by Intel® Graphics Dynamic Frequency (also known as Turbo Boost  
Technology).  
4.6.3  
Graphics Render C-State  
Render C-State (RC6) is a technique designed to optimize the average power to the  
graphics render engine during times of idleness of the render engine. Render C-state is  
entered when the graphics render engine, blitter engine and the video engine have no  
workload being currently worked on and no outstanding graphics memory transactions.  
When the idleness condition is met, the Integrated Graphics will program the VR into a  
low voltage state (~0.4 V) through the SVID bus.  
Render C-State (RC6) is a technique designed to optimize the average power to the  
graphics render engine during times of idleness of the render engine. Render C-state is  
entered when the graphics render engine, blitter engine and the video engine have no  
workload being currently worked on and no outstanding graphics memory transactions.  
When the idleness condition is met, the Processor Graphics will program the VR into a  
low voltage state (0-~0.4 V) through the SVID bus.  
Datasheet, Volume 1  
57  
Power Management  
®
®
4.6.4  
Intel Smart 2D Display Technology (Intel S2DDT)  
Intel S2DDT reduces display refresh memory traffic by reducing memory reads  
required for display refresh. Power consumption is reduced by less accesses to the IMC.  
S2DDT is only enabled in single pipe mode.  
Intel S2DDT is most effective with:  
• Display images well suited to compression, such as text windows, slide shows, and  
so on. Poor examples are 3D games.  
• Static screens such as screens with significant portions of the background showing  
2D applications, processor benchmarks, and so on, or conditions when the  
processor is idle. Poor examples are full-screen 3D games and benchmarks that flip  
the display image at or near display refresh rates.  
®
4.6.5  
Intel Graphics Dynamic Frequency  
Intel® Graphics Dynamic Frequency Technology is the ability of the processor and  
graphics cores to opportunistically increase frequency and/or voltage above the  
ensured processor and graphics frequency for the given part. Intel® Graphics Dynamic  
Frequency Technology is a performance feature that makes use of unused package  
power and thermals to increase application performance. The increase in frequency is  
determined by how much power and thermal budget is available in the package, and  
the application demand for additional processor or graphics performance. The  
processor core control is maintained by an embedded controller. The graphics driver  
dynamically adjusts between P-States to maintain optimal performance, power, and  
thermals. The graphics driver will always place the graphics engine in its lowest  
possible P-State; thereby, acting in the same capacity as Intel GPMT.  
4.6.6  
Display Power Savings Technology 6.0 (DPST)  
This is a mobile only supported power management feature.  
The Intel® DPST technique achieves backlight power savings while maintaining a good  
visual experience. This is accomplished by adaptively enhancing the displayed image  
while decreasing the backlight brightness simultaneously. The goal of this technique is  
to provide equivalent end-user-perceived image quality at a decreased backlight power  
level.  
1. The original (input) image produced by the operating system or application is  
analyzed by the Intel® DPST subsystem. An interrupt to Intel® DPST software is  
generated whenever a meaningful change in the image attributes is detected. (A  
meaningful change is when the Intel® DPST software algorithm determines that  
enough brightness, contrast, or color change has occurred to the displaying images  
that the image enhancement and backlight control needs to be altered.)  
2. Intel® DPST subsystem applies an image-specific enhancement to increase image  
contrast, brightness, and other attributes.  
3. A corresponding decrease to the backlight brightness is applied simultaneously to  
produce an image with similar user-perceived quality (such as brightness) as the  
original image.  
Intel® DPST 5.0 has improved the software algorithms and has minor hardware  
changes to better handle backlight phase-in and ensures the documented and validated  
method to interrupt hardware phase-in.  
58  
Datasheet, Volume 1  
Power Management  
4.6.7  
Automatic Display Brightness (ADB)  
This is a mobile only supported power management feature.  
Intel® Automatic Display Brightness feature dynamically adjusts the backlight  
brightness based upon the current ambient light environment. This feature requires an  
additional sensor to be on the panel front. The sensor receives the changing ambient  
light conditions and sends the interrupts to the Intel Graphics driver. As per the change  
in Lux, (current ambient light illuminance), the new backlight setting can be adjusted  
through BLC (see section 11). The converse applies for a brightly lit environment.  
Intel® Automatic Display Brightness increases the back light setting.  
®
4.6.8  
Intel Seamless Display Refresh Rate Switching  
®
Technology (Intel SDRRS Technology)  
This is a mobile only supported power management feature.  
When a Local Flat Panel (LFP) supports multiple refresh rates, the Intel® Display  
Refresh Rate Switching power conservation feature can be enabled. The higher refresh  
rate will be used when on plugged in power or when the end user has not  
selected/enabled this feature. The graphics software will automatically switch to a  
lower refresh rate for maximum battery life when the notebook is on battery power and  
when the user has selected/enabled this feature.  
There are two distinct implementations of Intel® DRRS—static and seamless. The static  
Intel® Display Refresh Rate Switching Technology (Intel® DRRS Technology) method  
uses a mode change to assign the new refresh rate. The seamless Intel® Seamless  
Display Refresh Rate Switching Technology (Intel® SDRRS Technology) method is able  
to accomplish the refresh rate assignment without a mode change and therefore does  
not experience some of the visual artifacts associated with the mode change (SetMode)  
method.  
4.7  
Thermal Power Management  
See Section 4.6 for all graphics thermal power management-related features.  
§ §  
Datasheet, Volume 1  
59  
Power Management  
60  
Datasheet, Volume 1  
Thermal Management  
5 Thermal Management  
The thermal solution provides both the component-level and the system-level thermal  
management. To allow for the optimal operation and long-term reliability of Intel  
processor-based systems, the system/processor thermal solution should be designed  
so that the processor:  
• Remains below the maximum junction temperature (Tj,Max) specification at the  
maximum thermal design power (TDP).  
• Conforms to system constraints, such as system acoustics, system skin-  
temperatures, and exhaust-temperature requirements.  
Caution:  
Thermal specifications given in this chapter are on the component and package level  
and apply specifically to the 2nd Generation Intel® Core™ processor family mobile and  
Intel® Celeron® processor family mobile. Operating the processor outside the specified  
limits may result in permanent damage to the processor and potentially other  
components in the system.  
5.1  
Thermal Design Power (TDP) and Junction  
Temperature (Tj)  
The processor TDP is the maximum sustained power that should be used for design of  
the processor thermal solution. TDP represents an expected maximum sustained power  
from realistic applications. TDP may be exceeded for short periods of time or if running  
a “power virus” workload. Due to Intel Turbo Boost Technology, applications are  
expected to run closer to TDP more often as the processor attempts to take advantage  
of available headroom in the platform to maximize performance.  
The processor may also exceed the TDP for short durations after a period of lower  
power operation due to its turbo feature. This feature is intended to take advantage of  
available thermal capacitance in the thermal solution for momentary high power  
operation. The duration and time of such operation can be limited by platform runtime  
configurable registers within the processor.  
The processor integrates multiple processor and graphics cores on a single die. This  
may result in differences in the power distribution across the die and must be  
considered when designing the thermal solution.  
5.2  
Thermal Considerations  
Intel Turbo Boost Technology allows processor cores and Processor Graphics cores to  
run faster than the baseline frequency. During a turbo event, the processor can exceed  
its TDP power for brief periods. Turbo is invoked opportunistically and automatically as  
long as the processor is conforming to its temperature, power delivery, and current  
specification limits. Thus, thermal solutions and platform cooling that are designed to  
be less than thermal design guidance may experience thermal and performance issues  
since more applications will tend to run at or near the maximum power limit for  
significant periods of time.  
Datasheet, Volume 1  
61  
Thermal Management  
®
5.2.1  
Intel Turbo Boost Technology Power Control and  
Reporting  
When operating in the turbo mode, the processor will monitor its own power and adjust  
the turbo frequency to maintain the average power within limits over a thermally  
significant time period. The package, processor core, and graphic core powers are  
estimated using architectural counters and do not rely on any input from the platform.  
The behavior of turbo is dictated by the following controls that are accessible using  
MSR, MMIO, or PECI interfaces:  
POWER_LIMIT_1: TURBO_POWER_LIMIT, MSR 610h, bits 14:0. This value sets  
the exponentially weighted moving average power limit over a long time period.  
This is normally aligned to the TDP of the part and steady-state cooling capability of  
the thermal solution. This limit may be set lower than TDP, real-time, for specific  
needs, such as responding to a thermal event. If set lower than TDP, the processor  
may not be able to honor this limit for all workloads since this control only applies  
in the turbo frequency range; a very high powered application may exceed  
POWER_LIMIT_1, even at non-turbo frequencies. The default value is the TDP for  
the SKU.  
POWER_LIMIT_1_TIME: TURBO _POWER_LIMIT, MSR 610h, bits 23:17. This  
value is a time parameter that adjusts the algorithm behavior. The exponentially  
weighted moving average turbo algorithm will use this parameter to maintain time  
averaged power at or below POWER_LIMIT_1. The default value is 1 second;  
however, 28 seconds is recommended for most mobile applications.  
POWER_LIMIT_2: TURBO_POWER_LIMIT, MSR 610h, bits 46:32. This value  
establishes the upper power limit of turbo operation above TDP, primarily for  
platform power supply considerations. Power may exceed this limit for up to  
10 mS. The default for this limit is 1.25 x TDP.  
The following considerations and limitations apply to the power monitoring feature:  
• Calibration applies to the processor family and is not conducted on a part-by-part  
basis. Therefore, some difference between actual and reported power may be  
observed.  
• Power monitoring is calibrated with a variety of common, realistic workloads near  
Tj_max. Workloads with power characteristic markedly different from those used  
during the calibration process or lower temperatures may result in increased  
differences between actual and estimated power.  
• In the event an uncharacterized workload or power “virus” application were to  
result in exceeding programmed power limits, the processor Thermal Control  
Circuitry (TCC) will protect the processor when properly enabled. Adaptive Thermal  
Monitor must be enabled for the processor to remain within specification.  
Illustration of Intel Turbo Boost Technology power control is shown in the following  
sections and figures. Multiple controls operate simultaneously allowing for  
customization for multiple system thermal and power limitations. These controls allow  
for turbo optimizations within system constraints.  
62  
Datasheet, Volume 1  
Thermal Management  
5.2.2  
Package Power Control  
The package power control allows for customization to implement optimal turbo within  
platform power delivery and package thermal solution limitations.  
Figure 5-1. Package Power Control  
5.2.3  
5.2.4  
Power Plane Control  
The processor core and graphics core power plane controls allow for customization to  
implement optimal turbo within voltage regulator thermal limitations. It is possible to  
use these power plane controls to protect the voltage regulator from overheating due  
to extended high currents. Power limiting per plane cannot be ensured in all usages.  
This function is similar to the package level long duration window control.  
Turbo Time Parameter  
'Turbo Time Parameter' is a mathematical parameter (units in seconds) that controls  
the processor turbo algorithm using an exponentially weighted moving average of  
energy usage. During a maximum power turbo event of about 1.25 x TDP, the  
processor could sustain Power_Limit_2 for up to approximately 1.5 the Turbo Time  
Parameter. If the power value and/or ‘Turbo Time Parameter’ is changed during  
runtime, it may take a period of time (possibly up to approximately 3 to 5 times the  
Turbo Time Parameter, depending on the magnitude of the change and other factors)  
for the algorithm to settle at the new control limits.  
Datasheet, Volume 1  
63  
Thermal Management  
5.3  
Thermal and Power Specifications  
The following notes apply to Table 5-1, Table 5-2, Table 5-3, and Table 5-4.  
Notes  
Description  
The TDPs given are not the maximum power the processor can generate. Analysis indicates that  
real applications are unlikely to cause the processor to consume the theoretical maximum power  
dissipation for sustained periods of time.  
1
TDP workload may consist of a combination of a CPU-core intensive and a graphics-core  
intensive applications.  
2
3
4
5
The thermal solution needs to ensure that the processor temperature does not exceed the  
maximum junction temperature (Tj,max) limit, as measured by the DTS and the critical  
temperature bit.  
The processor junction temperature is monitored by Digital Temperature Sensors (DTS). For DTS  
accuracy, refer to Section 5.4.1.2.1.  
Digital Thermal Sensor (DTS) based fan speed control is required to achieve optimal thermal  
performance. Intel recommends full cooling capability well before the DTS reading reaches  
Tj,Max. An example of this is Tj,Max – 10 ºC.  
The idle power specifications are not 100% tested. These power specifications are determined  
by the characterization at higher temperatures and extrapolating the values for the junction  
temperature indicated.  
6
7
8
At Tj of Tj,max  
At Tj of 50 ºC  
9
At Tj of 35 ºC  
10  
Can be modified at runtime by MSR writes, with MMIO and with PECI commands  
'Turbo Time Parameter' is a mathematical parameter (unit in seconds) that controls the  
processor turbo algorithm using a moving average of energy usage. Avoid setting the Turbo  
Time Parameter to a value less than 0.1 seconds. Refer to Section 5.2.4 for further information.  
11  
12  
Shown limit is a time averaged power, based upon the Turbo Time Parameter. Absolute product  
power may exceed the set limits for short durations or under virus or uncharacterized  
workloads.  
Processor will be controlled to specified power limit as described in Section 5.2.1. If the power  
value and/or ‘Turbo Time Parameter’ is changed during runtime, it may take a short period of  
time (approximately 3 to 5 times the ‘Turbo Time Parameter’) for the algorithm to settle at the  
new control limits.  
13  
14  
15  
This is a hardware default setting and not a behavioral characteristic of the part.  
For controllable turbo workloads, the limit may be exceeded for up to 10 ms  
Tjmax for some Dual Core SV SKUs in rPGA package will be 85 °C. Refer to Dear Customer  
Letters (DCLs) or contact your field representative to get details of SKUs that have Tjmax of  
85 °C.  
16  
64  
Datasheet, Volume 1  
Thermal Management  
Table 5-1.  
Thermal Design Power (TDP) Specifications  
CPU Core  
Frequency  
ProcessorGraphics  
Core frequency  
Thermal Design  
Power  
Segment  
State  
Units  
Notes  
2.5 GHz up to  
3.5 GHz  
650 MHz up to  
1300 MHz  
HFM  
LFM  
HFM  
LFM  
HFM  
LFM  
HFM  
LFM  
HFM  
LFM  
55  
36  
45  
33  
35  
26  
25  
12  
17  
10  
Extreme  
W
1, 2, 7  
Edition (XE)  
650 MHz up to  
1300 MHz  
800 MHz  
2.2 GHz up to  
3.4 GHz  
650 MHz up to  
1300 MHz  
Quad Core SV  
Dual Core SV  
Low Voltage  
W
W
W
W
1, 2, 7  
1, 2, 7  
1, 2, 7  
1, 2, 7  
650 MHz up to  
1300 MHz  
800 MHz  
2.5 GHz up to  
3.4 GHz  
650 MHz up to  
1300 MHz  
650 MHz up to  
1300 MHz  
800 MHz  
2.1 GHz up to  
3.2 GHz  
500 MHz up to  
1100 MHz  
500 MHz up to  
1100 MHz  
800 MHz  
1.4 GHz up to  
2.7 GHz  
350 MHz up to  
1000 MHz  
Ultra Low  
Voltage  
350 MHz up to  
1000 MHz  
800 MHz  
Table 5-2.  
Junction Temperature Specification  
Package Turbo  
Parameter  
Segment  
Symbol  
Min  
Default  
Max  
Units  
Notes  
Extreme Edition  
(XE)  
TJ  
Junction temperature limit  
0
100  
°C  
3, 4, 5,  
Quad Core SV  
Dual Core SV  
Low Voltage  
TJ  
TJ  
TJ  
Junction temperature limit  
Junction temperature limit  
Junction temperature limit  
0
0
0
100  
100  
100  
°C  
°C  
°C  
3, 4, 5,  
3, 4, 5, 16  
3, 4, 5  
Ultra Low  
Voltage  
TJ  
Junction temperature limit  
0
100  
°C  
3, 4, 5  
Table 5-3.  
Package Turbo Parameters (Sheet 1 of 2)  
H/W  
Default  
Segment  
Symbol  
Package Turbo Parameter  
Min  
Max  
Units  
Notes  
Processor turbo long duration time  
window  
(POWER_LIMIT_1_TIME in  
TURBO_POWER_LIMIT MSR 0610h  
bits [23:17])  
TurboTime  
Parameter  
(package)  
10, 11,  
14  
N/A  
1
N/A  
s
'Long duration' turbo power limit  
Extreme  
Edition  
(XE)  
Long P  
(package)  
10,12,13,  
14  
(POWER_LIMIT_1 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [14:0])  
N/A  
N/A  
55  
N/A  
N/A  
W
W
'Short duration' turbo power limit  
Short P  
(package)  
10, 14,  
15  
(POWER_LIMIT_2 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [46:32])  
1.25 x 55  
Datasheet, Volume 1  
65  
Thermal Management  
Table 5-3.  
Package Turbo Parameters (Sheet 2 of 2)  
H/W  
Default  
Segment  
Symbol  
Package Turbo Parameter  
Min  
Max  
Units  
Notes  
Processor turbo long duration time  
window  
(POWER_LIMIT_1_TIME in  
TURBO_POWER_LIMIT MSR 0610h  
bits [23:17])  
TurboTime  
Parameter  
(package)  
10, 11,  
14  
0.001  
1
64  
S
'Long duration' turbo power limit  
Quad Core  
SV  
Long P  
(package)  
10,12,13,  
14  
(POWER_LIMIT_1 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [14:0])  
40  
40  
45  
48  
60  
W
W
'Short duration' turbo power limit  
Short P  
(package)  
10, 14,  
15  
(POWER_LIMIT_2 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [46:32])  
1.25 x 45  
Processor turbo long duration time  
window  
(POWER_LIMIT_1_TIME in  
TURBO_POWER_LIMIT MSR 0610h  
bits [23:17])  
TurboTime  
Parameter  
(package)  
10, 11,  
14  
0.001  
1
64  
S
'Long duration' turbo power limit  
Dual Core  
SV  
Long P  
(package)  
10, 12,  
13, 14  
(POWER_LIMIT_1 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [14:0])  
28  
28  
35  
36  
44  
W
W
'Short duration' turbo power limit  
Short P  
(package)  
10, 14,  
15  
(POWER_LIMIT_2 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [46:32])  
1.25 x 35  
Processor turbo long duration time  
window  
(POWER_LIMIT_1_TIME in  
TURBO_POWER_LIMIT MSR 0610h  
bits [23:17])  
TurboTime  
Parameter  
(package)  
10, 11,  
14  
0.001  
1
32  
S
'Long duration' turbo power limit  
Low  
Voltage  
Long P  
(package)  
10, 12,  
13, 14  
(POWER_LIMIT_1 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [14:0])  
24  
24  
25  
28  
36  
W
W
'Short duration' turbo power limit  
Short P  
(package)  
10, 14,  
15  
(POWER_LIMIT_2 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [46:32])  
1.25 x 25  
Processor turbo long duration time  
window  
(POWER_LIMIT_1_TIME in  
TURBO_POWER_LIMIT MSR 0610h  
bits [23:17])  
TurboTime  
Parameter  
(package)  
0.001  
1
32  
S
10,11,14  
'Long duration' turbo power limit  
Ultra Low  
Voltage  
Long P  
(package)  
10,12,  
13, 14  
(POWER_LIMIT_1 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [14:0])  
17  
W
W
'Short duration' turbo power limit  
Short P  
(package)  
(POWER_LIMIT_2 in  
TURBO_POWER_LIMIT MSR 0610h  
bits [46:32])  
1.25 x 17  
10,14,15  
66  
Datasheet, Volume 1  
Thermal Management  
Table 5-4.  
Idle Power Specifications  
Idle Parameter  
Min  
Typ  
Max  
12.5  
4
Segment  
Symbol  
Units  
Notes  
Idle power in the Package  
C1e state  
PC1E  
W
6, 8  
Idle power in the Package  
C6 state  
Extreme  
Edition (XE)  
PC6  
PC7  
PC1E  
PC6  
PC7  
PC1E  
PC6  
PC7  
PC1E  
PC6  
PC7  
PC1E  
PC6  
PC7  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
6, 9  
6, 9  
6, 8  
6, 9  
6, 9  
6, 8  
6, 9  
6, 9  
6, 8  
6, 9  
6, 9  
6, 8  
6, 9  
6, 9  
Idle power in the Package  
C7state  
3.85  
11  
Idle power in the Package  
C1e state  
Idle power in the Package  
C6 state  
Quad Core SV  
Dual Core SV  
Low Voltage  
3.9  
3.8  
8.8  
3.1  
2.95  
6.4  
2.5  
2.35  
5.8  
2.3  
2.2  
Idle power in the Package  
C7state  
Idle power in the Package  
C1e state  
Idle power in the Package  
C6 state  
Idle power in the Package  
C7state  
Idle power in the Package  
C1e state  
Idle power in the Package  
C6 state  
Idle power in the Package  
C7state  
Idle power in the Package  
C1e state  
Idle power in the Package  
C6 state  
Ultra Low  
Voltage  
Idle power in the Package  
C7state  
5.4  
Thermal Management Features  
This section covers thermal management features for the processor.  
5.4.1  
Processor Package Thermal Features  
This section covers thermal management features for the entire processor complex  
(including the processor core, the graphics core, and integrated memory controller  
hub), and will be referred to as processor package, or by simply the package.  
Occasionally the package will operate in conditions that exceed its maximum allowable  
operating temperature. This can be due to internal overheating or due to overheating in  
the entire system. To protect itself and the system from thermal failure, the package is  
capable of reducing its power consumption and thereby its temperature to attempt to  
remain within normal operating limits using the Adaptive Thermal Monitor.  
Datasheet, Volume 1  
67  
Thermal Management  
The Adaptive Thermal Monitor can be activated when any package temperature,  
monitored by a digital thermal sensor (DTS), meets or exceeds its maximum junction  
temperature specification (TJ,max) and asserts PROCHOT#. The thermal control circuit  
(TCC) can be activated prior to TJ,max by use of the TCC activation offset. The assertion  
of PROCHOT# activates the thermal control circuit (TCC), and causes both the  
processor core and graphics core to reduce frequency and voltage adaptively. The TCC  
will remain active as long as any package temperature exceeds its specified limit.  
Therefore, the Adaptive Thermal Monitor will continue to reduce the package frequency  
and voltage until the TCC is de-activated.  
Note:  
Adaptive Thermal Monitor protection is always enabled.  
5.4.1.1  
Adaptive Thermal Monitor  
The purpose of the Adaptive Thermal Monitor is to reduce processor core power  
consumption and temperature until it operates at or below its maximum operating  
temperature (according for TCC activation offset). Processor core power reduction is  
achieved by:  
• Adjusting the operating frequency (using the core ratio multiplier) and input  
voltage (using the SVID bus).  
• Modulating (starting and stopping) the internal processor core clocks (duty cycle).  
The temperature at which the Adaptive Thermal Monitor activates the Thermal Control  
Circuit is factory calibrated and is not user configurable. The default value is software  
visible in the TEMPERATURE_TARGET (1A2h) MSR, Bits 23:16. The Adaptive Thermal  
Monitor does not require any additional hardware, software drivers, or interrupt  
handling routines. The Adaptive Thermal Monitor is not intended as a mechanism to  
maintain processor TDP. The system design should provide a thermal solution that can  
maintain TDP within its intended usage range.  
5.4.1.1.1  
Frequency / Voltage Control  
Upon TCC activation, the processor core attempts to dynamically reduce processor core  
power by lowering the frequency and voltage operating point. The operating points are  
automatically calculated by the processor core itself and do not require the BIOS to  
program them as with previous generations of Intel processors. The processor core will  
scale the operating points such that:  
• The voltage will be optimized according to the temperature, the core bus ratio, and  
number of cores in deep C-states.  
• The core power and temperature are reduced while minimizing performance  
degradation.  
A small amount of hysteresis has been included to prevent an excessive amount of  
operating point transitions when the processor temperature is near its maximum  
operating temperature. Once the temperature has dropped below the maximum  
operating temperature the operating frequency and voltage will transition back to the  
normal system operating point. This is illustrated in Figure 5-2.  
68  
Datasheet, Volume 1  
Thermal Management  
Figure 5-2. Frequency and Voltage Ordering  
Once a target frequency/bus ratio is resolved, the processor core will transition to the  
new target automatically.  
• On an upward operating point transition, the voltage transition precedes the  
frequency transition.  
• On a downward transition, the frequency transition precedes the voltage transition.  
When transitioning to a target core operating voltage, a new VID code to the voltage  
regulator is issued. The voltage regulator must support dynamic VID steps to support  
this method.  
During the voltage change:  
• It will be necessary to transition through multiple VID steps to reach the target  
operating voltage.  
• Each step is 5 mV for Intel MVP-7.0 compliant VRs.  
• The processor continues to execute instructions. However, the processor will halt  
instruction execution for frequency transitions.  
If a processor load-based Enhanced Intel SpeedStep Technology / P-state transition  
(through MSR write) is initiated while the Adaptive Thermal Monitor is active, there are  
two possible outcomes:  
• If the P-state target frequency is higher than the processor core optimized target  
frequency, the p-state transition will be deferred until the thermal event has been  
completed.  
• If the P-state target frequency is lower than the processor core optimized target  
frequency, the processor will transition to the P-state operating point.  
Datasheet, Volume 1  
69  
Thermal Management  
5.4.1.1.2  
Clock Modulation  
If the frequency/voltage changes are unable to end an Adaptive Thermal Monitor  
event, the Adaptive Thermal Monitor will use clock modulation. Clock modulation is  
done by alternately turning the clocks off and on at a duty cycle (ratio between clock  
“on” time and total time) specific to the processor. The duty cycle is factory configured  
to 25% on and 75% off and cannot be modified. The period of the duty cycle is  
configured to 32 microseconds when the TCC is active. Cycle times are independent of  
processor frequency. A small amount of hysteresis has been included to prevent  
excessive clock modulation when the processor temperature is near its maximum  
operating temperature. Once the temperature has dropped below the maximum  
operating temperature, and the hysteresis timer has expired, the TCC goes inactive and  
clock modulation ceases. Clock modulation is automatically engaged as part of the TCC  
activation when the frequency/voltage targets are at their minimum settings. Processor  
performance will be decreased by the same amount as the duty cycle when clock  
modulation is active. Snooping and interrupt processing are performed in the normal  
manner while the TCC is active.  
5.4.1.2  
Digital Thermal Sensor  
Each processor execution core has an on-die Digital Thermal Sensor (DTS) that detects  
the core’s instantaneous temperature. The DTS is the preferred method of monitoring  
processor die temperature because:  
• It is located near the hottest portions of the die.  
• It can accurately track the die temperature and ensure that the Adaptive Thermal  
Monitor is not excessively activated.  
Temperature values from the DTS can be retrieved through:  
• A software interface using processor Model Specific Register (MSR).  
• A processor hardware interface as described in Section 5.4.4.  
Note:  
When temperature is retrieved by processor MSR, it is the instantaneous temperature  
of the given core. When temperature is retrieved using PECI, it is the average of the  
highest DTS temperature in the package over a 256 ms time window. Intel  
recommends using the PECI reported temperature for platform thermal control that  
benefits from averaging, such as fan speed control. The average DTS temperature may  
not be a good indicator of package Adaptive Thermal Monitor activation or rapid  
increases in temperature that triggers the Out of Specification status bit within the  
PACKAGE_THERM_STATUS MSR 01B1h and IA32_THERM_STATUS MSR 19Ch.  
Code execution is halted in C1–C7. Therefore, temperature cannot be read using the  
processor MSR without bringing a core back into C0. However, temperature can still be  
monitored through PECI in lower C-states except for C7.  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (Tj,max), regardless of  
TCC activation offset. It is the responsibility of software to convert the relative  
temperature to an absolute temperature. The absolute reference temperature is  
readable in the TEMPERATURE_TARGET MSR 1A2h. The temperature returned by the  
DTS is an implied negative integer indicating the relative offset from Tj,max. The DTS  
does not report temperatures greater than Tj,max  
.
70  
Datasheet, Volume 1  
Thermal Management  
The DTS-relative temperature readout directly impacts the Adaptive Thermal Monitor  
trigger point. When a package DTS indicates that it has reached the TCC activation (a  
reading of 0h, except when the TCC activation offset is changed), the TCC will activate  
and indicate a Adaptive Thermal Monitor event. A TCC activation will lower both IA core  
and graphics core frequency, voltage or both.  
Changes to the temperature can be detected using two programmable thresholds  
located in the processor thermal MSRs. These thresholds have the capability of  
generating interrupts using the core's local APIC. Refer to the Intel® 64 and IA-32  
Architectures Software Developer's Manuals for specific register and programming  
details.  
5.4.1.2.1  
5.4.1.3  
Digital Thermal Sensor Accuracy (Taccuracy)  
The error associated with DTS measurement will not exceed ±5 °C at Tj,max. The DTS  
measurement within the entire operating range will meet a ±5 °C accuracy.  
PROCHOT# Signal  
PROCHOT# (processor hot) is asserted when the processor core temperature has  
reached its maximum operating temperature (Tj,max). See Figure 5-2 for a timing  
diagram of the PROCHOT# signal assertion relative to the Adaptive Thermal Response.  
Only a single PROCHOT# pin exists at a package level. When any core arrives at the  
TCC activation point, the PROCHOT# signal will be asserted. PROCHOT# assertion  
policies are independent of Adaptive Thermal Monitor enabling.  
Note:  
Bus snooping and interrupt latching are active while the TCC is active.  
5.4.1.3.1  
Bi-Directional PROCHOT#  
By default, the PROCHOT# signal is defined as an output only. However, the signal may  
be configured as bi-directional. When configured as a bi-directional signal, PROCHOT#  
can be used for thermally protecting other platform components should they overheat  
as well. When PROCHOT# is driven by an external device:  
• the package will immediately transition to the minimum operation points (voltage  
and frequency) supported by the processor and graphics cores. This is contrary to  
the internally-generated Adaptive Thermal Monitor response.  
• Clock modulation is not activated.  
The TCC will remain active until the system de-asserts PROCHOT#. The processor can  
be configured to generate an interrupt upon assertion and de-assertion of the  
PROCHOT# signal.  
Note:  
Toggling PROCHOT# more than once in 1.5ms period will result in constant Pn state of  
the processor.  
Datasheet, Volume 1  
71  
Thermal Management  
5.4.1.3.2  
Voltage Regulator Protection  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target thermal  
design current (ICCTDC) instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. Overall, the system thermal design should allow the power  
delivery circuitry to operate within its temperature specification even while the  
processor is operating at its TDP.  
5.4.1.3.3  
Thermal Solution Design and PROCHOT# Behavior  
With a properly designed and characterized thermal solution, it is anticipated that  
PROCHOT# will only be asserted for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable.  
However, an under-designed thermal solution that is not able to prevent excessive  
assertion of PROCHOT# in the anticipated ambient environment may:  
• Cause a noticeable performance loss.  
• Result in prolonged operation at or above the specified maximum junction  
temperature and affect the long-term reliability of the processor.  
• May be incapable of cooling the processor even when the TCC is active continuously  
(in extreme situations).  
5.4.1.3.4  
Low-Power States and PROCHOT# Behavior  
If the processor enters a low-power package idle state such as C3 or C6/C7 with  
PROCHOT# asserted, PROCHOT# will remain asserted until:  
• The processor exits the low-power state  
• The processor junction temperature drops below the thermal trip point.  
For the package C7 state, PROCHOT# may de-assert for the duration of C7 state  
residency even if the processor enters the idle state operating at the TCC activation  
temperature. The PECI interface is fully operational during all C-states and it is  
expected that the platform continues to manage processor (“package”) core thermals  
even during idle states by regularly polling for thermal data over PECI.  
5.4.1.3.5  
5.4.1.3.6  
THERMTRIP# Signal  
Regardless of enabling the automatic or on-demand modes, in the event of a  
catastrophic cooling failure, the package will automatically shut down when the silicon  
has reached an elevated temperature that risks physical damage to the product. At this  
point the THERMTRIP# signal will go active.  
Critical Temperature Detection  
Critical Temperature detection is performed by monitoring the package temperature.  
This feature is intended for graceful shutdown before the THERMTRIP# is activated;  
however, the processor execution is not ensured between critical temperature and  
THERMTRIP#. If the package's Adaptive Thermal Monitor is triggered and the  
temperature remains high, a critical temperature status and sticky bit are latched in the  
PACKAGE_THERM_STATUS MSR 1B1h and also generates a thermal interrupt if  
72  
Datasheet, Volume 1  
Thermal Management  
enabled. For more details on the interrupt mechanism, refer to the Intel® 64 and IA-32  
Architectures Software Developer's Manuals.  
5.4.2  
Processor Core Specific Thermal Features  
5.4.2.1  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption using clock modulation. This  
mechanism is referred to as “On-Demand” mode and is distinct from Adaptive Thermal  
Monitor and bi-directional PROCHOT#. The processor platforms must not rely on  
software usage of this mechanism to limit the processor temperature. On-Demand  
Mode can be done using processor MSR or chipset I/O emulation.  
On-Demand Mode may be used in conjunction with the Adaptive Thermal Monitor.  
However, if the system software tries to enable On-Demand mode at the same time the  
TCC is engaged, the factory configured duty cycle of the TCC will override the duty  
cycle selected by the On-Demand mode. If the I/O based and MSR-based On-Demand  
modes are in conflict, the duty cycle selected by the I/O emulation-based On-Demand  
mode will take precedence over the MSR-based On-Demand Mode.  
5.4.2.1.1  
MSR Based On-Demand Mode  
If Bit 4 of the IA32_CLOCK_MODULATION MSR is set to a 1, the processor will  
immediately reduce its power consumption using modulation of the internal core clock,  
independent of the processor temperature. The duty cycle of the clock modulation is  
programmable using Bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In this  
mode, the duty cycle can be programmed in either 12.5% or 6.25% increments  
(discoverable using CPU ID). Thermal throttling using this method will modulate each  
processor core’s clock independently.  
5.4.2.1.2  
I/O Emulation-Based On-Demand Mode  
I/O emulation-based clock modulation provides legacy support for operating system  
software that initiates clock modulation through I/O writes to ACPI defined processor  
clock control registers on the chipset (PROC_CNT). Thermal throttling using this  
method will modulate all processor cores simultaneously.  
5.4.3  
Memory Controller Specific Thermal Features  
The memory controller provides the ability to initiate memory throttling based upon  
memory temperature. The memory temperature can be provided to the memory  
controller using PECI or can be estimated by the memory controller based upon  
memory activity. The temperature trigger points are programmable by memory  
mapped IO registers.  
5.4.3.1  
Programmable Trip Points  
This memory controller provides programmable critical, hot and warm trip points.  
Crossing a critical trip point forces a system shutdown. Crossing a hot or warm trip  
point will initiate throttling. The amount of memory throttle at each trip point is  
programmable.  
Datasheet, Volume 1  
73  
Thermal Management  
5.4.4  
Platform Environment Control Interface (PECI)  
The Platform Environment Control Interface (PECI) is a one-wire interface that provides  
a communication channel between Intel processor and chipset components to external  
monitoring devices. The processor implements a PECI interface to allow communication  
of processor thermal information to other devices on the platform. The processor  
provides a digital thermal sensor (DTS) for fan speed control. The DTS is calibrated at  
the factory to provide a digital representation of relative processor temperature.  
Averaged DTS values are read using the PECI interface.  
The PECI physical layer is a self-clocked one-wire bus that begins each bit with a  
driven, rising edge from an idle level near zero volts. The duration of the signal driven  
high depends on whether the bit value is a Logic 0 or Logic 1. PECI also includes  
variable data transfer rate established with every message. The single wire interface  
provides low board routing overhead for the multiple load connections in the congested  
routing area near the processor and chipset components. Bus speed, error checking,  
and low protocol overhead provides adequate link bandwidth and reliability to transfer  
critical device operating conditions and configuration information.  
5.4.4.1  
Fan Speed Control with Digital Thermal Sensor  
Digital Thermal Sensor based fan speed control (TFAN) is a recommended feature to  
achieve optimal thermal performance. At the TFAN temperature, Intel recommends full  
cooling capability well before the DTS reading reaches Tj,max. An example of this would  
be TFAN = Tj,max – 10 ºC.  
§ §  
74  
Datasheet, Volume 1  
Signal Description  
6 Signal Description  
This chapter describes the processor signals. They are arranged in functional groups  
according to their associated interface or category. The following notations are used to  
describe the signal type.  
Notations  
Signal Type  
I
Input Pin  
Output Pin  
O
I/O  
Bi-directional Input/Output Pin  
The signal description also includes the type of buffer used for the particular signal (see  
Table 6-1).  
Table 6-1.  
Signal Description Buffer Types  
Signal  
Description  
PCI Express interface signals. These signals are compatible with PCI Express* 2.0  
Signalling Environment AC Specifications and are AC coupled. The buffers are not  
3.3-V tolerant. Refer to the PCIe specification.  
PCI Express*  
Embedded Display Port interface signals. These signals are compatible with VESA  
Revision 1.0 DP specifications and the interface is AC coupled. The buffers are not  
3.3-V tolerant.  
eDP  
FDI  
DMI  
Intel Flexible Display interface signals. These signals are based on PCI Express* 2.0  
Signaling Environment AC Specifications (2.7 GT/s), but are DC coupled. The buffers  
are not 3.3-V tolerant.  
Direct Media Interface signals. These signals are based on PCI Express* 2.0 Signaling  
Environment AC Specifications (5 GT/s), but are DC coupled. The buffers are not  
3.3-V tolerant.  
CMOS  
DDR3  
CMOS buffers. 1.1-V tolerant  
DDR3 buffers: 1.5-V tolerant  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation  
A
Ref  
Voltage reference signal  
Asynchronous1  
Signal has no timing relationship with any reference clock.  
Notes:  
1. Qualifier for a buffer type.  
Datasheet, Volume 1  
75  
Signal Description  
6.1  
System Memory Interface Signals  
Table 6-2.  
Memory Channel A Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
Bank Select: These signals define which banks are selected within  
O
DDR3  
SA_BS[2:0]  
SA_WE#  
each SDRAM rank.  
Write Enable Control Signal: This signal is used with SA_RAS# and  
SA_CAS# (along with SA_CS#) to define the SDRAM Commands.  
O
DDR3  
RAS Control Signal: This signal is used with SA_CAS# and SA_WE#  
O
DDR3  
SA_RAS#  
SA_CAS#  
(along with SA_CS#) to define the SRAM Commands.  
CAS Control Signal: This signal is used with SA_RAS# and SA_WE#  
(along with SA_CS#) to define the SRAM Commands.  
O
DDR3  
Data Strobes: SA_DQS[7:0] and its complement signal group make  
up a differential strobe pair. The data is captured at the crossing point  
of SA_DQS[7:0] and its SA_DQS#[7:0] during read and write  
transactions.  
I/O  
DDR3  
SA_DQS[7:0]  
SA_DQS#[7:0]  
Data Bus: Channel A data signal interface to the SDRAM data bus.  
I/O  
DDR3  
SA_DQ[63:0]  
SA_MA[15:0]  
Memory Address: These signals are used to provide the multiplexed  
row and column address to the SDRAM.  
O
DDR3  
SDRAM Differential Clock: Channel A SDRAM Differential clock signal  
pair. The crossing of the positive edge of SA_CK and the negative edge  
of its complement SA_CK# are used to sample the command and  
control signals on the SDRAM.  
O
DDR3  
SA_CK[1:0]  
SDRAM Inverted Differential Clock: Channel A SDRAM Differential  
clock signal-pair complement.  
O
DDR3  
SA_CK#[1:0]  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power-down SDRAM ranks  
Place all SDRAM ranks into and out of self-refresh during STR  
O
DDR3  
SA_CKE[1:0]  
Chip Select: (1 per rank). These signals are used to select particular  
SDRAM components during the active state. There is one Chip Select  
for each SDRAM rank.  
O
DDR3  
SA_CS#[1:0]  
SA_ODT[1:0]  
On Die Termination: Active Termination Control.  
O
DDR3  
76  
Datasheet, Volume 1  
Signal Description  
Table 6-3.  
Memory Channel B Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
Bank Select: These signals define which banks are selected within  
O
DDR3  
SB_BS[2:0]  
SB_WE#  
each SDRAM rank.  
Write Enable Control Signal: This signal is used with SB_RAS# and  
SB_CAS# (along with SB_CS#) to define the SDRAM Commands.  
O
DDR3  
RAS Control Signal: This signal is used with SB_CAS# and SB_WE#  
O
DDR3  
SB_RAS#  
SB_CAS#  
(along with SB_CS#) to define the SRAM Commands.  
CAS Control Signal: This signal is used with SB_RAS# and SB_WE#  
(along with SB_CS#) to define the SRAM Commands.  
O
DDR3  
Data Strobes: SB_DQS[7:0] and its complement signal group make  
up a differential strobe pair. The data is captured at the crossing point  
of SB_DQS[8:0] and its SB_DQS#[7:0] during read and write  
transactions.  
I/O  
DDR3  
SB_DQS[7:0]  
SB_DQS#[7:0]  
Data Bus: Channel B data signal interface to the SDRAM data bus.  
I/O  
DDR3  
SB_DQ[63:0]  
SB_MA[15:0]  
Memory Address: These signals are used to provide the multiplexed  
row and column address to the SDRAM.  
O
DDR3  
SDRAM Differential Clock: Channel B SDRAM Differential clock signal  
pair. The crossing of the positive edge of SB_CK and the negative edge  
of its complement SB_CK# are used to sample the command and  
control signals on the SDRAM.  
O
DDR3  
SB_CK[1:0]  
SDRAM Inverted Differential Clock: Channel B SDRAM Differential  
clock signal-pair complement.  
O
DDR3  
SB_CK#[1:0]  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up.  
Power-down SDRAM ranks.  
Place all SDRAM ranks into and out of self-refresh during STR.  
O
DDR3  
SB_CKE[1:0]  
Chip Select: (1 per rank). These signals are used to select particular  
SDRAM components during the active state. There is one Chip Select  
for each SDRAM rank.  
O
DDR3  
SB_CS#[1:0]  
SB_ODT[1:0]  
On Die Termination: Active Termination Control.  
O
DDR3  
6.2  
Memory Reference and Compensation Signals  
Table 6-4.  
Memory Reference and Compensation  
Direction/  
Buffer Type  
Signal Name  
Description  
System Memory Impedance Compensation:  
I
A
SM_RCOMP[2:0]  
SM_VREF  
DDR3 Reference Voltage: This provides reference voltage to the  
DDR3 interface and is defined as VDDQ/2.  
I
A
Datasheet, Volume 1  
77  
Signal Description  
6.3  
Reset and Miscellaneous Signals  
Table 6-5.  
Reset and Miscellaneous Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
Configuration Signals: The CFG signals have a default value of '1' if not  
terminated on the board.  
CFG[1:0]: Reserved configuration lane. A test point may be placed on  
the board for this lane.  
CFG[2]: PCI Express* Static x16 Lane Numbering Reversal  
— 1 = Normal operation  
— 0 = Lane numbers reversed  
CFG[3]: Reserved  
CFG[4]: eDP enable  
I
CFG[17:0]  
— 1 = Disabled  
CMOS  
— 0 = Enabled  
CFG[6:5]: PCI Express Bifurcation  
— 00 = 1 x8, 2 x4 PCI Express  
— 01 = Reserved  
— 10 = 2 x8 PCI Express  
— 11 = 1 x16 PCI Express  
CFG[17:7]: Reserved configuration lanes. A test point may be placed  
on the board for these lands.  
Power Management Sync: A sideband signal to communicate power  
I
PM_SYNC  
RESET#  
management status from the platform to the processor.  
CMOS  
Platform Reset pin driven by the PCH  
I
CMOS  
RESERVED: All signals that are RSVD and RSVD_NCTF must be left  
unconnected on the board. However, Intel recommends that all RSVD_TP  
signals have using test points.  
No Connect  
Test Point  
Non-Critical  
to Function  
RSVD  
RSVD_TP  
RSVD_NCTF  
DDR3 DRAM Reset: Reset signal from processor to DRAM devices. One  
common to all channels.  
O
CMOS  
SM_DRAMRST#  
78  
Datasheet, Volume 1  
Signal Description  
6.4  
PCI Express*-Based Interface Signals  
Table 6-6.  
PCI Express* Graphics Interface Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
PCI Express Input Current Compensation  
I
A
PEG_ICOMPI  
PEG_ICOMPO  
PEG_RCOMPO  
PCI Express Current Compensation  
PCI Express Resistance Compensation  
PCI Express Receive Differential Pair  
PCI Express Transmit Differential Pair  
I
A
I
A
PEG_RX[15:0]  
PEG_RX#[15:0]  
I
PCI Express  
PEG_TX[15:0]  
O
PEG_TX#[15:0]  
PCI Express  
6.5  
Embedded DisplayPort* (eDP) Signals  
Table 6-7.  
Embedded DisplayPort* Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
eDP_TX[3:0]  
Embedded DisplayPort Transmit Differential Pair  
O
eDP_TX#[3:0]  
Diff  
eDP_AUX  
eDP_AUX#  
Embedded DisplayPort Auxiliary Differential Pair  
Embedded DisplayPort Hot Plug Detect:  
I/O  
Diff  
I
eDP_HPD#  
Asynchronous  
CMOS  
Embedded DisplayPort Current Compensation  
Embedded DisplayPort Current Compensation  
I
A
eDP_COMPIO  
eDP_ICOMPO  
I
A
Datasheet, Volume 1  
79  
Signal Description  
6.6  
Intel® Flexible Display Interface (Intel® FDI)  
Signals  
Table 6-8.  
Intel® Flexible Display Interface (Intel® FDI)  
Direction/  
Buffer Type  
Signal Name  
Description  
FDI0_TX[3:0]  
FDI0_TX#[3:0]  
Intel® Flexible Display Interface Transmit Differential Pair –  
Pipe A  
O
FDI  
Intel® Flexible Display Interface Frame Sync – Pipe A  
Intel® Flexible Display Interface Line Sync – Pipe A  
I
FDI0_FSYNC[0]  
FDI0_LSYNC[0]  
CMOS  
I
CMOS  
FDI1_TX[3:0]  
FD1I_TX#[3:0]  
Intel® Flexible Display Interface Transmit Differential Pair –  
Pipe B  
O
FDI  
Intel® Flexible Display Interface Frame Sync – Pipe B  
Intel® Flexible Display Interface Line Sync – Pipe B  
Intel® Flexible Display Interface Hot Plug Interrupt  
I
FDI1_FSYNC[1]  
FDI1_LSYNC[1]  
CMOS  
I
CMOS  
I
FDI_INT  
Asynchronous  
CMOS  
6.7  
Direct Media Interface (DMI) Signals  
Table 6-9.  
Direct Media Interface (DMI) Signals – Processor to PCH Serial Interface  
Direction/  
Buffer Type  
Signal Name  
Description  
DMI_RX[3:0]  
DMI Input from PCH: Direct Media Interface receive differential pair.  
I
DMI_RX#[3:0]  
DMI  
DMI_TX[3:0]  
DMI Output to PCH: Direct Media Interface transmit differential pair.  
O
DMI_TX#[3:0]  
DMI  
6.8  
Phase Lock Loop (PLL) Signals  
Table 6-10. Phase Lock Loop (PLL) Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
BCLK  
Differential bus clock input to the processor  
I
BCLK#  
Diff Clk  
DPLL_REF_CLK  
Embedded Display Port PLL Differential Clock In: 120 MHz.  
I
DPLL_REF_CLK#  
Diff Clk  
80  
Datasheet, Volume 1  
Signal Description  
6.9  
Test Access Points (TAP) Signals  
Table 6-11. Test Access Points (TAP) Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
Breakpoint and Performance Monitor Signals: These signals are  
outputs from the processor that indicate the status of breakpoints  
and programmable counters used for monitoring processor  
performance.  
I/O  
CMOS  
BPM#[7:0]  
BCLK_ITP  
BCLK_ITP#  
These pins are connected in parallel to the top side debug probe to  
enable debug capacities.  
I
DBR# is used only in systems where no debug port is implemented  
on the system board. DBR# is used by a debug port interposer so  
that an in-target probe can drive system reset.  
DBR#  
PRDY#  
PREQ#  
TCK  
O
O
PRDY# is a processor output used by debug tools to determine  
processor debug readiness.  
Asynchronous  
CMOS  
PREQ# is used by debug tools to request debug operation of the  
processor.  
I
Asynchronous  
CMOS  
TCK (Test Clock): This signal provides the clock input for the  
processor Test Bus (also known as the Test Access Port). TCK must be  
driven low or allowed to float during power on Reset.  
I
CMOS  
TDI (Test Data In): This signal transfers serial test data into the  
processor. TDI provides the serial input needed for JTAG specification  
support.  
I
TDI  
CMOS  
TDO (Test Data Out): This signal transfers serial test data out of the  
processor. TDO provides the serial output needed for JTAG  
specification support.  
O
TDO  
Open Drain  
TMS (Test Mode Select): A JTAG specification support signal used by  
debug tools.  
I
TMS  
CMOS  
TRST# (Test Reset): This signal resets the Test Access Port (TAP)  
logic. TRST# must be driven low during power on Reset.  
I
TRST#  
CMOS  
6.10  
Error and Thermal Protection Signals  
Table 6-12. Error and Thermal Protection Signals (Sheet 1 of 2)  
Direction/  
Buffer Type  
Signal Name  
Description  
Catastrophic Error: This signal indicates that the system has  
experienced a catastrophic error and cannot continue to operate. The  
processor will set this for non-recoverable machine check errors or  
other unrecoverable internal errors.  
On the processor, CATERR# is used for signaling the following types of  
errors:  
O
CMOS  
CATERR#  
Legacy MCERRs – CATERR# is asserted for 16 BCLKs.  
Legacy IERRs – CATERR# remains asserted until warm or cold  
reset.  
PECI (Platform Environment Control Interface): A serial sideband  
interface to the processor, it is used primarily for thermal, power, and  
error management.  
I/O  
PECI  
Asynchronous  
Processor Hot: PROCHOT# goes active when the processor  
temperature monitoring sensor(s) detects that the processor has  
reached its maximum safe operating temperature. This indicates that  
the processor Thermal Control Circuit (TCC) has been activated, if  
enabled. This signal can also be driven to the processor to activate the  
TCC.  
CMOS Input/  
Open-Drain  
Output  
PROCHOT#  
Datasheet, Volume 1  
81  
Signal Description  
Table 6-12. Error and Thermal Protection Signals (Sheet 2 of 2)  
Direction/  
Buffer Type  
Signal Name  
Description  
Thermal Trip: The processor protects itself from catastrophic  
overheating by use of an internal thermal sensor. This sensor is set  
well above the normal operating temperature to ensure that there are  
no false trips. The processor will stop all execution when the junction  
temperature exceeds approximately 130 °C. This is signaled to the  
system by the THERMTRIP# pin.  
O
THERMTRIP#  
Asynchronous  
CMOS  
6.11  
Power Sequencing Signals  
Table 6-13. Power Sequencing Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
SM_DRAMPWROK Processor Input: Connects to PCH  
DRAMPWROK.  
I
SM_DRAMPWROK  
UNCOREPWRGOOD  
Asynchronous  
CMOS  
The processor requires this input signal to be a clean indication that  
the VCCSA, VCCIO, VAXG, and VDDQ, power supplies are stable and  
within specifications. This requirement applies, regardless of the S-  
state of the processor. 'Clean' implies that the signal will remain low  
(capable of sinking leakage current), without glitches, from the time  
that the power supplies are turned on until they come within  
specification. The signal must then transition monotonically to a high  
state. This is connected to the PCH PROCPWRGD signal.  
I
Asynchronous  
CMOS  
SKTOCC#  
SKTOCC# (Socket Occupied)/PROC_DETECT (Processor  
Detect): Pulled down directly (0 Ohms) on the processor package to  
ground. There is no connection to the processor silicon for this signal.  
System board designers may use this signal to determine if the  
processor is present.  
(rPGA only)  
PROC_DETECT#  
(BGA)  
6.12  
Processor Power Signals  
Table 6-14. Processor Power Signals (Sheet 1 of 2)  
Direction/  
Buffer Type  
Signal Name  
Description  
VCC  
VCCIO  
VDDQ  
VAXG  
Processor core power rail  
Ref  
Ref  
Ref  
Ref  
Ref  
Ref  
Processor power for I/O  
Processor I/O supply voltage for DDR3  
Graphics core power supply.  
VCCPLL  
VCCSA  
VCCPLL provides isolated power for internal processor PLLs  
System Agent power supply  
VCCPQE  
(BGA Only)  
Filtered, low noise derivative of VCCIO  
Ref  
82  
Datasheet, Volume 1  
Signal Description  
Table 6-14. Processor Power Signals (Sheet 2 of 2)  
Direction/  
Buffer Type  
Signal Name  
Description  
VCCDQ  
(BGA Only)  
Filtered, low noise derivative of VDDQ  
Ref  
VIDALERT#, VIDSCLK, and VIDSCLK comprise a three signal serial  
synchronous interface used to transfer power management information  
between the processor and the voltage regulator controllers. This serial  
VID interface replaces the parallel VID interface on previous  
processors.  
I/O  
O
I
VIDSOUT  
VIDSCLK  
VIDALERT#  
CMOS  
Voltage selection for VCCSA: This pin must have a pull down resistor  
to ground.  
O
CMOS  
VCCSA_VID[1]  
6.13  
Sense Signals  
Table 6-15. Sense Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
VCC_SENSE and VSS_SENSE provide an isolated, low impedance  
connection to the processor core voltage and ground. They can be  
used to sense or measure voltage near the silicon.  
VCC_SENSE  
VSS_SENSE  
O
Analog  
VAXG_SENSE and VSSAXG_SENSE provide an isolated, low  
impedance connection to the VAXG voltage and ground. They can  
be used to sense or measure voltage near the silicon.  
VAXG_SENSE  
VSSAXG_SENSE  
O
Analog  
VCCIO_SENSE and VSS_SENSE_VCCIO provide an isolated, low  
impedance connection to the processor VCCIO voltage and ground.  
They can be used to sense or measure voltage near the silicon.  
VCCIO_SENSE  
VSS_SENSE_VCCIO  
O
Analog  
VDDQ_SENSE and VSS_SENSE_VDDQ provides an isolated, low  
impedance connection to the VDDQ voltage and ground. They can  
be used to sense or measure voltage near the silicon.  
VDDQ_SENSE  
VSS_SENSE_VDDQ  
O
Analog  
VCCSA_SENSE provide an isolated, low impedance connection to  
the processor system agent voltage. It can be used to sense or  
measure voltage near the silicon.  
O
VCCSA_SENSE  
Analog  
Die Validation Sense:  
O
VCC_DIE_SENSE  
Analog  
VCC_VAL_SENSE  
VSS_VAL_SENSE  
VCC Validation Sense:  
O
Analog  
VAXG_VAL_SENSE  
V
AXG Validation Sense:  
O
VSSAXG_VAL_SENSE  
Analog  
6.14  
Ground and Non-Critical to Function (NCTF)  
Signals  
Table 6-16. Ground and Non-Critical to Function (NCTF) Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
VSS  
Processor ground node  
GND  
Non-Critical to Function: These pins are for package mechanical  
reliability.  
VSS_NCTF  
(BGA Only)  
Daisy Chain- These pins are for solder joint reliability and non-critical to  
function. For BGA only.  
DC_TEST_xx#  
Datasheet, Volume 1  
83  
Signal Description  
6.15  
Future Compatibility Signals  
Table 6-17. Future Compatibility Signals  
Direction/  
Buffer Type  
Signal Name  
Description  
This pin is for compatibility with future platforms. A pull-up resistor  
to VCPLL is required if connected to the DF_TVS strap on the PCH.  
PROC_SELECT#  
Memory Channel A/B DIMM DQ Voltage Reference: These  
signals are not used by the processors and are for future compatibility  
only. No connection is required.  
SA_DIMM_VREFDQ  
SB_DIMM_VREFDQ  
Voltage selection for VCCIO: This pin must be pulled high on the  
motherboard, when using dual rail voltage regulator, which will be  
used for future compatibility.  
VCCIO_SEL  
Voltage selection for VCCSA: This pin must have a pull down  
resistor to ground.  
VCCSA_VID[0]  
6.16  
Processor Internal Pull-Up / Pull-Down Resistors  
Table 6-18. Processor Internal Pull-Up / Pull-Down Resistors  
Signal Name  
Pull-Up / Pull-Down  
Rail  
Value  
BPM[7:0]  
PRDY#  
PREQ#  
TCK  
Pull Up  
Pull Up  
Pull Up  
Pull Down  
Pull Up  
Pull Up  
Pull Up  
Pull Up  
VCCIO  
VCCIO  
VCCIO  
VSS  
65–165  
65–165   
65–165   
5–15 k  
5–15 k  
5–15 k  
5–15 k  
5–15 k  
TDI  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
TMS  
TRST#  
CFG[17:0]  
§ §  
84  
Datasheet, Volume 1  
Electrical Specifications  
7 Electrical Specifications  
7.1  
Power and Ground Pins  
The processor has VCC, VCCIO, VDDQ, VCCPLL, VCCSA, VAXG and VSS (ground) inputs  
for on-chip power distribution. All power pins must be connected to their respective  
processor power planes, while all VSS pins must be connected to the system ground  
plane. Use of multiple power and ground planes is recommended to reduce I*R drop.  
The VCC pins and VAXG pins must be supplied with the voltage determined by the  
processor Serial Voltage IDentification (SVID) interface. Table 7-1 specifies the voltage  
level for the various VIDs.  
7.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings between low- and full-power states. To keep  
voltages within specification, output decoupling must be properly designed.  
Caution:  
Design the board to ensure that the voltage provided to the processor remains within  
the specifications listed in Table 7-3. Failure to do so can result in timing violations or  
reduced lifetime of the processor.  
7.2.1  
Voltage Rail Decoupling  
The voltage regulator solution must:  
• provide sufficient decoupling to compensate for large current swings generated  
during different power mode transitions.  
• provide low parasitic resistance from the regulator to the socket.  
• meet voltage and current specifications as defined in Table 7-3.  
7.2.2  
PLL Power Supply  
An on-die PLL filter solution is implemented on the processor.  
Datasheet, Volume 1  
85  
Electrical Specifications  
7.3  
Voltage Identification (VID)  
The VID specifications for the processor VCC and VAXG are defined by the VR12/IMVP7  
SVID Protocol. The processor uses three signals for the serial voltage identification  
interface to support automatic selection of voltages. Table 7-1 specifies the voltage  
level corresponding to the eight bit VID value transmitted over serial VID. A ‘1’ in this  
table refers to a high voltage level and a ‘0’ refers to a low voltage level. If the voltage  
regulation circuit cannot supply the voltage that is requested, the voltage regulator  
must disable itself. See the VR12/IMVP7 SVID Protocol for further details. The VID  
codes will change due to temperature and/or current load changes in order to minimize  
the power of the part. A voltage range is provided in Table 7-1. The specifications are  
set so that one voltage regulator can operate with all supported frequencies.  
Individual processor VID values may be set during manufacturing so that two devices  
at the same core frequency may have different default VID settings. This is shown in  
the VID range values in Table 7-5. The processor provides the ability to operate while  
transitioning to an adjacent VID and its associated voltage. This will represent a DC  
shift in the loadline.  
Note:  
Transitions above the maximum specified VID are not permitted. Table 7-5 includes VID  
step sizes and DC shift ranges. Minimum and maximum voltages must be maintained.  
The VR used must be capable of regulating its output to the value defined by the new  
VID values issued. DC specifications for dynamic VID transitions are included in  
Table 7-5 and Table 7-10. See the VR12/IMVP7 SVID Protocol for further details.  
86  
Datasheet, Volume 1  
Electrical Specifications  
h
Table 7-1.  
IMVP7 Voltage Identification Definition (Sheet 1 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
HEX VCC_MAX  
HEX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
0
1
2
3
4
5
6
7
8
9
0.00000  
0.25000  
0.25500  
0.26000  
0.26500  
0.27000  
0.27500  
0.28000  
0.28500  
0.29000  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
8
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0.88500  
0.89000  
0.89500  
0.90000  
0.90500  
0.91000  
0.91500  
0.92000  
0.92500  
0.93000  
0.93500  
0.94000  
0.94500  
0.95000  
0.95500  
0.96000  
0.96500  
0.97000  
0.97500  
0.98000  
0.98500  
0.99000  
0.99500  
1.00000  
1.00500  
1.01000  
1.01500  
1.02000  
1.02500  
1.03000  
1.03500  
1.04000  
1.04500  
1.05000  
1.05500  
1.06000  
1.06500  
1.07000  
1.07500  
1.08000  
1.08500  
1.09000  
1.09500  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A 0.29500  
B 0.30000  
C 0.30500  
D 0.31000  
E
F
0
1
2
3
4
5
6
7
8
9
0.31500  
0.32000  
0.32500  
0.33000  
0.33500  
0.34000  
0.34500  
0.35000  
0.35500  
0.36000  
0.36500  
0.37000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A 0.37500  
B 0.38000  
C 0.38500  
D 0.39000  
E
F
0
1
2
3
4
5
6
7
8
9
0.39500  
0.40000  
0.40500  
0.41000  
0.41500  
0.42000  
0.42500  
0.43000  
0.43500  
0.44000  
0.44500  
0.45000  
0
1
2
3
4
5
6
7
8
9
A
A 0.45500  
Datasheet, Volume 1  
87  
Electrical Specifications  
Table 7-1.  
IMVP7 Voltage Identification Definition (Sheet 2 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
HEX VCC_MAX  
HEX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
B 0.46000  
C 0.46500  
D 0.47000  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A
B
C
D
E
F
1.10000  
1.10500  
1.11000  
1.11500  
1.12000  
1.12500  
1.13000  
1.13500  
1.14000  
1.14500  
1.15000  
1.15500  
1.16000  
1.16500  
1.17000  
1.17500  
1.18000  
1.18500  
1.19000  
1.19500  
1.20000  
1.20500  
1.21000  
1.21500  
1.22000  
1.22500  
1.23000  
1.23500  
1.24000  
1.24500  
1.25000  
1.25500  
1.26000  
1.26500  
1.27000  
1.27500  
1.28000  
1.28500  
1.29000  
1.29500  
1.30000  
1.30500  
1.31000  
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
E
F
0
1
2
3
4
5
6
7
8
9
0.47500  
0.48000  
0.48500  
0.49000  
0.49500  
0.50000  
0.50500  
0.51000  
0.51500  
0.52000  
0.52500  
0.53000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A 0.53500  
B 0.54000  
C 0.54500  
D 0.55000  
E
F
0
1
2
3
4
5
6
7
8
9
0.55500  
0.56000  
0.56500  
0.57000  
0.57500  
0.58000  
0.58500  
0.59000  
0.59500  
0.60000  
0.60500  
0.61000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A 0.61500  
B 0.62000  
C 0.62500  
D 0.63000  
E
F
0
1
2
3
4
5
0.63500  
0.64000  
0.64500  
0.65000  
0.65500  
0.66000  
0.66500  
0.67000  
0
1
2
3
4
5
88  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-1.  
IMVP7 Voltage Identification Definition (Sheet 3 of 3)  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
HEX VCC_MAX  
HEX  
VCC_MAX  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
6
7
8
9
0.67500  
0.68000  
0.68500  
0.69000  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D
6
7
8
9
A
B
C
D
E
F
1.31500  
1.32000  
1.32500  
1.33000  
1.33500  
1.34000  
1.34500  
1.35000  
1.35500  
1.36000  
1.36500  
1.37000  
1.37500  
1.38000  
1.38500  
1.39000  
1.39500  
1.40000  
1.40500  
1.41000  
1.41500  
1.42000  
1.42500  
1.43000  
1.43500  
1.44000  
1.44500  
1.45000  
1.45500  
1.46000  
1.46500  
1.47000  
1.47500  
1.48000  
1.48500  
1.49000  
1.49500  
1.50000  
1.50500  
1.51000  
1.51500  
1.52000  
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
A 0.69500  
B 0.70000  
C 0.70500  
D 0.71000  
E
F
0
1
2
3
4
5
6
7
8
9
0.71500  
0.72000  
0.72500  
0.73000  
0.73500  
0.74000  
0.74500  
0.75000  
0.75500  
0.76000  
0.76500  
0.77000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
A 0.77500  
B 0.78000  
C 0.78500  
D 0.79000  
E
F
0
1
2
3
4
5
6
7
8
9
0.79500  
0.80000  
0.80500  
0.81000  
0.81500  
0.82000  
0.82500  
0.83000  
0.83500  
0.84000  
0.84500  
0.85000  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
F
F
F
F
F
F
F
F
F
A 0.85500  
B 0.86000  
C 0.86500  
D 0.87000  
F
F
F
F
E
F
0.87500  
0.88000  
F
F
Datasheet, Volume 1  
89  
Electrical Specifications  
7.4  
System Agent (SA) VCC VID  
The VccSA is configured by the processor output pins VCCSA_VID[1:0].  
VCCSA_VID[0] output default logic state is low for the 2nd Generation Intel® Core™  
processor family mobile and Intel® Celeron® processor family mobile. Logic high is  
reserved for future compatibility.  
VCCSA_VID[1] output default logic state is low – will not change the SA voltage. Logic  
high will reduce the voltage.  
Note:  
During boot, the processor’s VccSA is 0.9 V.  
Table 7-2 specifies the different VCCSA_VID configurations.  
Table 7-2.  
VCCSA_VID configuration  
Selected VCCSA  
(XE and SV  
segments)  
Selected VCCSA  
(LV and ULV  
segments)  
Processor family  
VCCSA_VID[0] VCCSA_VID[1]  
2nd Generation Intel®  
Core™ processor family  
mobile, Intel® Celeron®  
processor family mobile  
0
0
0
1
0.9 V  
0.8 V  
0.9 V  
0.85 V  
Future Intel processors  
1
1
0
1
Note 1  
Note 1  
Note 1  
Note 1  
Notes:  
1.  
Some of VCCSA configurations are reserved for future Intel processor families.  
7.5  
Reserved or Unused Signals  
The following are the general types of reserved (RSVD) signals and connection  
guidelines:  
• RSVD – these signals should not be connected  
• RSVD_TP – these signals should be routed to a test point  
• RSVD_NCTF – these signals are non-critical to function and may be left un-  
connected  
Arbitrary connection of these signals to VCC, VCCIO, VDDQ, VCCPLL, VCCSA, VAXG, VSS, or  
to any other signal (including each other) may result in component malfunction or  
incompatibility with future processors. See Chapter 8 for a pin listing of the processor  
and the location of all reserved signals.  
For reliable operation, always connect unused inputs or bi-directional signals to an  
appropriate signal level. Unused active high inputs should be connected through a  
resistor to ground (VSS). Unused outputs maybe left unconnected; however, this may  
interfere with some Test Access Port (TAP) functions, complicate debug probing, and  
prevent boundary scan testing. A resistor must be used when tying bi-directional  
signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability.  
90  
Datasheet, Volume 1  
Electrical Specifications  
7.6  
Signal Groups  
Signals are grouped by buffer type and similar characteristics as listed in Table 7-3. The  
buffer type indicates which signaling technology and specifications apply to the signals.  
All the differential signals, and selected DDR3 and Control Sideband signals, have On-  
Die Termination (ODT) resistors. There are some signals that do not have ODT and  
need to be terminated on the board.  
Table 7-3.  
Signal Groups1 (Sheet 1 of 3)  
Signal Group  
Type  
Signals  
System Reference Clock  
BCLK, BCLK#  
DPLL_REF_CLK, DPLL_REF_CLK#  
Differential  
CMOS Input  
DDR3 Reference Clocks2  
Differential  
SA_CK[1:0], SA_CK#[1:0]  
SB_CK[1:0], SB_CK#[1:0]  
DDR3 Output  
DDR3 Output  
DDR3 Command Signals2  
SA_BS[2:0], SB_BS[2:0]  
SA_WE#, SB_WE#  
SA_RAS#, SB_RAS#  
SA_CAS#, SB_CAS#  
SA_MA[15:0], SB_MA[15:0]  
Single Ended  
DDR3 Control Signals2  
SA_CKE[1:0], SB_CKE[1:0]  
SA_CS#[1:0], SB_CS#[1:0]  
SA_ODT[1:0], SB_ODT[1:0]  
SM_DRAMRST#  
Single Ended  
DDR3 Output  
DDR3 Data Signals2  
Single ended  
DDR3 Bi-directional  
DDR3 Bi-directional  
SA_DQ[63:0], SB_DQ[63:0]  
SA_DQS[7:0], SA_DQS#[7:0]  
SB_DQS[7:0], SB_DQS#[7:0]  
Differential  
DDR3 Compensation  
Analog Bi-directional  
Analog Input  
SM_RCOMP[2:0]  
SM_VREF  
DDR3 Reference  
TAP (ITP/XDP)  
Input  
BCLK_ITP, BCLK_ITP#  
TCK, TDI, TMS, TRST#  
TDO  
Single Ended  
Single Ended  
Single Ended  
CMOS Input  
Open-Drain Output  
Output  
DBR#  
Asynchronous CMOS  
Bi-Directional  
Single Ended  
Single Ended  
Single Ended  
BPM#[7:0]  
PREQ#  
Asynchronous CMOS  
Input  
Asynchronous CMOS  
Output  
PRDY#  
Datasheet, Volume 1  
91  
Electrical Specifications  
Table 7-3.  
Signal Groups1 (Sheet 2 of 3)  
Signal Group  
Type  
Signals  
Control Sideband  
Single Ended  
CMOS Input  
CFG[17:0]  
PROCHOT#  
Asynchronous  
CMOS/Open Drain Bi-  
directional  
Single Ended  
Asynchronous CMOS  
Output  
Single Ended  
Single Ended  
Single Ended  
THERMTRIP#, CATERR#  
Asynchronous CMOS  
Input  
SM_DRAMPWROK, UNCOREPWRGOOD4,  
PM_SYNC, RESET#  
Asynchronous Bi-  
directional  
PECI  
Voltage Regulator  
Single Ended  
CMOS Input  
VIDALERT#  
VIDSCLK  
Single Ended  
Open Drain Output  
CMOS Output  
Single Ended  
VCCSA_VID[1]  
Bi-directional CMOS  
Input/Open Drain  
Output  
Single Ended  
Single Ended  
VIDSOUT  
VCCSA_SENSE  
VCC_DIE_SENSE  
Analog Output  
VCC_SENSE, VSS_SENSE  
VCCIO_SENSE, VSS_SENSE_VCCIO  
VAXG_SENSE, VSSAXG_SENSE  
VCC_VAL_SENSE, VSS_VAL_SENSE  
VAXG_VAL_SENSE, VSSAXG_VAL_SENSE  
Differential  
Analog Output  
Power / Ground / Other  
3
VCC, VCCIO, VCCSA, VCCPLL, VDDQ, VAXG, VCCPQE ,  
Power  
3
VCCDQ  
3
Ground  
VSS, VSS_NCTF , DC_TEST_xx#  
Single Ended  
No Connect  
Test Point  
Other  
RSVD, RSVD_NCTF  
RSVD_TP  
SKTOCC#, PROC_DETECT#3  
PCI Express* Graphics  
Differential  
PCI Express Input  
PCI Express Output  
Analog Input  
PEG_RX[15:0], PEG_RX#[15:0]  
Differential  
PEG_TX[15:0], PEG_TX#[15:0]  
Single Ended  
PEG_ICOMPO, PEG_ICOMPI, PEG_RCOMPO  
Embedded DisplayPort*  
Differential  
eDP Output  
eDP_TX[3:0], eDP_TX#[3:0]  
eDP_AUX, eDP_AUX#  
Differential  
eDP Bi-directional  
Asynchronous CMOS  
Input  
Single Ended  
eDP_HPD#  
Single Ended  
Analog Input  
eDP_ICOMPO, eDP_COMPIO  
Direct Media Interface (DMI)  
Differential  
Differential  
DMI Input  
DMI_RX[3:0], DMI_RX#[3:0]  
DMI_TX[3:0], DMI_TX#[3:0]  
DMI Output  
92  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-3.  
Signal Groups1 (Sheet 3 of 3)  
Signal Group  
Intel® FDI  
Type  
Signals  
FDI0_FSYNC, FDI1_FSYNC, FDI0_LSYNC,  
FDI1_LSYNC  
Single Ended  
Single Ended  
CMOS Input  
Asynchronous CMOS  
Input  
FDI_INT  
FDI0_TX[3:0], FDI0_TX#[3:0], FDI1_TX[3:0],  
FDI1_TX#[3:0]  
Differential  
FDI Output  
Future Compatibility  
PROC_SELECT#,  
VCCSA_VID[0],  
VCCIO_SEL,  
SA_DIMM_VREFDQ, SB_DIMM_VREFDQ  
Notes:  
1.  
2.  
3.  
4.  
Refer to Chapter 6 for signal description details.  
SA and SB refer to DDR3 Channel A and DDR3 Channel B.  
These signals only apply to BGA packages.  
The maximum rise/fall time of UNCOREPWRGOOD is 20 ns.  
All Control Sideband Asynchronous signals are required to be asserted/de-asserted for  
at least 10 BCLKs with a maximum Trise/Tfall of 6 ns for the processor to recognize  
the proper signal state. See Section 7.10 for the DC specifications.  
7.7  
7.8  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP)  
logic, Intel recommends the processor be first in the TAP chain, followed by any other  
components within the system. A translation buffer should be used to connect to the  
rest of the chain unless one of the other components is capable of accepting an input of  
the appropriate voltage. Two copies of each signal may be required with each driving a  
different voltage level.  
The processor supports Boundary Scan (JTAG) IEEE 1149.1-2001 and IEEE 1149.6-  
2003 standards. Some small portion of the I/O pins may support only one of these  
standards.  
Storage Condition Specifications  
Environmental storage condition limits define the temperature and relative humidity  
that the device is exposed to while being stored in a moisture barrier bag. The specified  
storage conditions are for component level prior to board attach.  
Table 7-5 specifies absolute maximum and minimum storage temperature limits that  
represent the maximum or minimum device condition beyond which damage, latent or  
otherwise, may occur. The table also specifies sustained storage temperature, relative  
humidity, and time-duration limits. These limits specify the maximum or minimum  
device storage conditions for a sustained period of time. Failure to adhere to the  
following specifications can affect long term reliability of the processor.  
Datasheet, Volume 1  
93  
Electrical Specifications  
Table 7-4.  
Storage Condition Ratings  
Symbol  
Parameter  
Min  
Max  
Notes  
The non-operating device storage  
temperature. Damage (latent or otherwise)  
may occur when exceeded for any length of  
time.  
Tabsolute storage  
-25 °C  
125 °C  
1, 2, 3, 4  
The ambient storage temperature (in shipping  
media) for a sustained period of time  
Tsustained storage  
Tshort term storage  
RHsustained storage  
-5 °C  
40 °C  
85 °C  
5, 6  
The ambient storage temperature (in shipping  
media) for a short period of time.  
-20 °C  
The maximum device storage relative humidity  
for a sustained period of time.  
60% at 24 °C  
6, 7  
7
A prolonged or extended period of time;  
typically associated with customer shelf life.  
30  
Months  
Timesustained storage  
Timeshort term storage  
Notes:  
0 Months  
0 hours  
A short-period of time;  
72 hours  
1.  
2.  
3.  
4.  
5.  
Refers to a component device that is not assembled in a board or socket and is not electrically connected to  
a voltage reference or I/O signal.  
Specified temperatures are not to exceed values based on data collected. Exceptions for surface mount  
reflow are specified by the applicable JEDEC standard. Non-adherence may affect processor reliability.  
Tabsolute storage applies to the unassembled component only and does not apply to the shipping media,  
moisture barrier bags, or desiccant.  
Component product device storage temperature qualification methods may follow JESD22-A119 (low temp)  
and JESD22-A103 (high temp) standards when applicable for volatile memory.  
Intel branded products are specified and certified to meet the following temperature and humidity limits  
that are given as an example only (Non-Operating Temperature Limit: -40 °C to 70 °C and Humidity: 50%  
to 90%, non-condensing with a maximum wet bulb of 28 °C.) Post board attach storage temperature limits  
are not specified for non-Intel branded boards.  
6.  
7.  
The JEDEC J-JSTD-020 moisture level rating and associated handling practices apply to all moisture  
sensitive devices removed from the moisture barrier bag.  
Nominal temperature and humidity conditions and durations are given and tested within the constraints  
imposed by Tsustained storage and customer shelf life in applicable Intel boxes and bags.  
7.9  
DC Specifications  
The processor DC specifications in this section are defined at the processor  
pins, unless noted otherwise. See Chapter 8 for the processor pin listings and  
Chapter 6 for signal definitions.  
• The DC specifications for the DDR3 signals are listed in Table 7-11. Control  
Sideband and Test Access Port (TAP) are listed in Table 7-12.  
Table 7-5 lists the DC specifications for the processor and are valid only while  
meeting specifications for junction temperature, clock frequency, and input  
voltages. Care should be taken to read all notes associated with each parameter.  
• AC tolerances for all DC rails include dynamic load currents at switching frequencies  
up to 1 MHz.  
94  
Datasheet, Volume 1  
Electrical Specifications  
7.9.1  
Voltage and Current Specifications  
Table 7-5.  
Processor Core (VCC) Active and Idle Mode DC Voltage and Current  
Specifications (Sheet 1 of 2)  
Symbol  
Parameter  
Segment  
Min  
Typ  
Max  
Unit  
Note  
XE  
0.8  
0.8  
0.8  
0.75  
0.7  
1.35  
1.35  
1.35  
1.3  
SV-QC  
SV-DC  
LV  
VID Range for Highest  
Frequency Mode (Includes  
Turbo Mode Operation)  
1, 2, 6,  
8
HFM_VID  
V
ULV  
1.2  
XE  
0.65  
0.65  
0.65  
0.65  
0.65  
0.95  
0.95  
0.95  
0.9  
SV-QC  
SV-DC  
LV  
VID Range for Lowest  
Frequency Mode  
LFM_VID  
VCC  
V
V
A
1, 2, 8  
2, 3  
ULV  
0.9  
VCC for processor core  
0.3–1.52  
XE  
97  
94  
53  
43  
33  
SV-QC  
SV-DC  
LV  
Maximum Processor Core  
ICC  
ICCMAX  
4, 6, 8  
ULV  
XE  
62  
52  
36  
25  
21.5  
SV-QC  
SV-DC  
LV  
ICC_TDC  
Thermal Design ICC  
A
A
5, 6, 8  
ULV  
XE  
31  
28  
11.6  
17.6  
12.5  
SV-QC  
SV-DC  
LV  
ICC_LFM  
ICC at LFM  
5
ULV  
XE  
6
SV-QC  
SV-DC  
LV  
5.5  
2.5  
3.8  
2.6  
IC6/C7  
ICC at C6/C7 Idle-state  
Voltage Tolerance  
A
10  
ULV  
PS0  
±15  
±12  
TOLVCC  
PS1  
mV  
7, 9  
PS2, PS3  
±11.5  
±15  
PS0 &  
Icc >  
TDC+30%  
PS0 &  
Icc   
TDC+30%  
±10  
Ripple  
Ripple Tolerance  
VID resolution  
mV  
mV  
7, 9  
PS1  
PS2  
PS3  
5
±13  
-7.5/ +18.5  
-7.5/ +27.5  
VR Step  
Datasheet, Volume 1  
95  
Electrical Specifications  
Table 7-5.  
Processor Core (VCC) Active and Idle Mode DC Voltage and Current  
Specifications (Sheet 2 of 2)  
Symbol  
Parameter  
Segment  
Min  
Typ  
Max  
Unit  
Note  
XE  
-1.9  
-1.9  
-1.9  
-2.9  
-2.9  
SV-QC  
SV-DC  
LV  
SLOPELL  
Processor Loadline  
mΩ  
ULV  
Notes:  
1.  
Unless otherwise noted, all specifications in this table are based on post-silicon estimates and simulations  
or empirical data.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. This  
differs from the VID employed by the processor during a power or thermal management event (Intel  
Adaptive Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the  
socket with a 100-MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1-Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled into the oscilloscope probe.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Processor core VR to be designed to electrically support this current.  
Processor core VR to be designed to thermally support this current indefinitely.  
This specification assumes that Intel Turbo Boost Technology is enabled.  
Long term reliability cannot be assured if tolerance, ripple, and core noise parameters are violated.  
Long term reliability cannot be assured in conditions above or below Max/Min functional limits.  
PSx refers to the voltage regulator power state as set by the SVID protocol.  
10. Idle power specification is measured under temperature condition of 35 oC.  
Table 7-6.  
Processor Uncore (VCCIO) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Voltage for the memory controller  
and shared cache defined at the  
motherboard VCCIO_SENSE and  
VSS_SENSE_VCCIO  
VCCIO  
1.05  
V
VCCIO Tolerance defined across  
VCCIO_SENSE and VSS_SENSE_VCCIO  
DC: ±2% including ripple  
AC: ±3%  
TOLCCIO  
%
A
ICCMAX_VCCIO  
ICCTDC_VCCIO  
Max Current for VCCIO Rail  
8.5  
8.5  
Thermal Design Current (TDC) for  
VCCIO Rail  
A
Note: Long term reliability cannot be assured in conditions above or below Max/Min functional limits.  
96  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-7.  
Memory Controller (VDDQ) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Processor I/O supply voltage for  
DDR3 (DC + AC specification)  
VDDQ(DC+AC)  
1.5  
V
VDDQ Tolerance  
DC= ±3%  
AC= ±2%  
TOLDDQ  
%
AC+DC= ±5%  
ICCMAX_VDDQ  
Max Current for VDDQ Rail  
5
A
1
Average Current for VDDQ Rail  
during Standby  
ICCAVG_VDDQ  
(Standby)  
66  
133  
mA  
Notes:  
1. The current supplied to the SO-DIMM modules is not included in this specification.  
Table 7-8.  
System Agent (VCCSA) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Voltage for the System Agent and  
VCCSA_SENSE  
VCCSA  
0.75  
0.90  
V
TOLCCSA  
VCCSA Tolerance  
AC+DC= ±5%  
%
A
ICCMAX_VCCSA  
Max Current for VCCSA Rail  
6
6
Thermal Design Current (TDC) for  
VCCSA Rail  
ICCTDC_VCCSA  
Slew Rate  
A
Voltage Ramp rate (dV/dT)  
0.5  
10  
mV/us  
Note: Long term reliability cannot be assured in conditions above or below Max/Min functional limits.  
Table 7-9.  
Processor PLL (VCCPLL) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
PLL supply voltage (DC + AC  
specification)  
VCCPLL  
1.8  
v
V
TOLCCPLL  
VCCPLL Tolerance  
AC+DC= ±5%  
%
A
ICCMAX_VCCPLL Max Current for VCCPLL Rail  
1.2  
1.2  
Thermal Design Current (TDC) for  
VCCPLL Rail  
ICCTDC_VCCPLL  
A
Note: Long term reliability cannot be assured in conditions above or below Max/Min functional limits.  
Datasheet, Volume 1  
97  
Electrical Specifications  
Table 7-10. Processor Graphics (VAXG) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note1,5  
Active VID Range for VAXG  
XE, SV-QC, SV-DC  
LV  
ULV  
0.65  
0.65  
0.65  
1.35  
1.35  
1.35  
GFX_VID  
VAXG  
V
V
2, 3  
Processor Graphics core voltage  
0 – 1.52  
Max Current for Processor  
Graphics Rail  
XE, SV-QC, SV-DC (GT2)  
SV-DC (GT1)  
LV (GT2)  
ULV (GT2)  
ULV (GT1)  
33  
24  
33  
26  
16  
ICCMAX_VAXG  
A
A
Thermal Design Current (TDC)  
for Processor Graphics Rail  
XE, SV-QC, SV-DC (GT2)  
SV-DC (GT1)  
LV (GT2)  
21.5  
20  
21.5  
10  
ICCTDC_VAXG  
ULV (GT2)  
ULV (GT1)  
8
VAXG Tolerance  
Ripple Tolerance  
PS0,PS1  
PS2,PS3  
PS0, PS1  
PS2  
±15  
±11.5  
mV  
mV  
mV  
mV  
mV  
4
4
4
4
TOLAXG  
Ripple  
±18  
-7.5/+18.5  
-7.5/+27.5  
PS3  
VAXG Loadline  
LLAXG  
GT2 based units  
GT1 based units  
-3.9  
-4.6  
m  
Notes:  
1.  
Unless otherwise noted, all specifications in this table are based on post-silicon estimates and simulations  
or empirical data.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. This  
differs from the VID employed by the processor during a power or thermal management event (Intel  
Adaptive Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the  
socket with a 100-MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1-Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled into the oscilloscope probe.  
3.  
4.  
5.  
PSx refers to the voltage regulator power state as set by the SVID protocol.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. This  
differs from the VID employed by the processor during a power or thermal management event (Intel  
Adaptive Thermal Monitor, Enhanced Intel SpeedStep Technology, or Low Power States).  
98  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-11. DDR3 Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Typ  
Max  
Units Notes1  
VIL  
VIH  
VIL  
VIH  
SM_VREF + 0.1  
SM_VREF -0.1  
V
V
V
V
2, 4, 11  
3, 11  
10  
Input High Voltage  
VDDQ*0.55 -0.1  
Input Low Voltage (SM_DRAMPWROK)  
Input High Voltage (SM_DRAMPWROK) VDDQ*0.55 +0.1  
10  
Output Low Voltage  
(VDDQ / 2)* (RON  
/(RON+RTERM))  
VOL  
VOH  
6
Output High Voltage  
VDDQ - ((VDDQ / 2)*  
(RON/(RON+RTERM))  
V
4, 6  
RON_UP(DQ) DDR3 Data Buffer pull-up Resistance  
RON_DN(DQ) DDR3 Data Buffer pull-down Resistance  
24.31  
22.88  
28.6  
28.6  
32.9  
5
5
34.32  
DDR3 On-die termination equivalent  
RODT(DQ)  
83  
41.5  
100  
50  
117  
65  
resistance for data signals  
DDR3 On-die termination DC working  
VODT(DC)  
0.43*VCC  
0.5*VCC  
0.56*VCC  
V
point (driver set to receive mode)  
RON_UP(CK) DDR3 Clock Buffer pull-up Resistance  
RON_DN(CK) DDR3 Clock Buffer pull-down Resistance  
20.8  
20.8  
26  
26  
28.6  
31.2  
5
5
DDR3 Command Buffer pull-up  
RON_UP(CMD)  
Resistance  
16  
20  
22  
5
DDR3 Command Buffer pull-down  
RON_DN(CMD)  
Resistance  
16  
16  
16  
20  
20  
20  
24  
22  
24  
5
5
5
RON_UP(CTL) DDR3 Control Buffer pull-up Resistance  
DDR3 Control Buffer pull-down  
RON_DN(CTL)  
Resistance  
Input Leakage Current (DQ, CK)  
0V  
0.2*VDDQ  
0.8*VDDQ  
VDDQ  
± 0.75  
± 0.55  
± 0.9  
ILI  
mA  
mA  
± 1.4  
Input Leakage Current (CMD, CTL)  
0V  
0.2*VDDQ  
0.8*VDDQ  
VDDQ  
± 0.85  
± 0.65  
± 1.10  
± 1.65  
ILI  
SM_RCOMP0 Command COMP Resistance  
SM_RCOMP1 Data COMP Resistance  
SM_RCOMP2 ODT COMP Resistance  
138.6  
25.74  
198  
140  
26  
141.4  
26.26  
202  
8
8
8
200  
Notes:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
value.  
3.  
4.  
VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply with the  
signal quality specifications.  
This is the pull up/down driver resistance.  
5.  
6.  
7.  
8.  
RTERM is the termination on the DIMM and in not controlled by the Processor.  
The minimum and maximum values for these signals are programmable by BIOS to one of the two sets.  
SM_RCOMPx resistance must be provided on the system board with 1% resistors. SM_RCOMPx resistors  
are to VSS  
.
9.  
DDR3 values are pre-silicon estimations and are subject to change.  
10. SM_DRAMPWROK must have a maximum of 15 ns rise or fall time over VDDQ * 0.55 ±200 mV and the  
edge must be monotonic.  
11. SM_VREF is defined as VDDQ/2.  
Datasheet, Volume 1  
99  
Electrical Specifications  
Table 7-12. Control Sideband and TAP Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
Notes1  
VIL  
VIH  
VOL  
VOH  
RON  
ILI  
VCCIO * 0.3  
V
V
2
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Buffer on Resistance  
Input Leakage Current  
VCCIO * 0.7  
VCCIO * 0.1  
2, 4  
2
V
VCCIO * 0.9  
V
2, 4  
23  
73  
A  
±200  
3
Notes:  
1.  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCIO referred to in these specifications refers to instantaneous VCCIO  
.
For VIN between 0 V and VCCIO. Measured when the driver is tristated.  
VIH and VOH may experience excursions above VCCIO. However, input signal drivers must comply with the  
signal quality specifications.  
.
Table 7-13. PCI Express* DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes1  
Differential Peak-to-Peak Tx Voltage  
Swing  
VTX-DIFF-p-p  
0.4  
0.5  
0.6  
V
3
Tx AC Peak Common Mode Output  
Voltage (Gen 1 Only)  
VTX_CM-AC-p  
0.8  
1
1.2  
mV  
1, 2, 6  
DC Differential Tx Impedance (Gen 1  
Only)  
ZTX-DIFF-DC  
ZRX-DC  
80  
40  
80  
120  
60  
1, 10  
1, 8, 9  
1
DC Common Mode Rx Impedance  
DC Differential Rx Impedance (Gen1  
Only)  
ZRX-DIFF-DC  
120  
Differential Rx Input Peak-to-Peak  
Voltage (Gen 1 only)  
VRX-DIFFp-p  
0.175  
1.2  
V
1, 11  
VRX_CM-AC-p  
PEG_ICOMPO  
PEG_ICOMPI  
PEG_RCOMPO  
Rx AC Peak Common Mode Input Voltage  
Comp Resistance  
25  
25  
25  
150  
mV  
1, 7  
4, 5  
4, 5  
4, 5  
24.75  
24.75  
24.75  
25.25  
25.25  
25.25  
Comp Resistance  
Comp Resistance  
Notes:  
1.  
2.  
Refer to the PCI Express Base Specification for more details.  
VTX-AC-CM-PP and VTX-AC-CM-P are defined in the PCI Express Base Specification. Measurement is made over  
at least 10^6 UI.  
3.  
4.  
5.  
6.  
7.  
As measured with compliance test load. Defined as 2*|VTXD+ – VTXD- |.  
COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to VCCIO  
PEG_ICOMPO, PEG_ICOMPI, PEG_RCOMPO are the same resistor. Intel allows using 24.9 1% resistors.  
RMS value.  
Measured at Rx pins into a pair of 50-terminations into ground. Common mode peak voltage is defined by  
the expression: max{|(Vd+ - Vd-) – V-CMDC|}.  
DC impedance limits are needed to ensure Receiver detect.  
.
8.  
9.  
The Rx DC Common Mode Impedance must be present when the Receiver terminations are first enabled to  
ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately  
and the 15 Rx Common Mode Impedance (constrained by RLRX-CM to 50 ±20%) must be within the  
specified range by the time Detect is entered.  
10. Low impedance defined during signaling. Parameter is captured for 5.0 GHz by RLTX-DIFF.  
11. This specification is the same as VRX-EYE  
100  
Datasheet, Volume 1  
Electrical Specifications  
Table 7-14. Embedded DisplayPort* DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
eDP_HPD#  
VIL  
Input Low Voltage  
Input High Voltage  
-0.1  
0.3 * VCCIO  
VCCIO  
V
V
VIH  
0.7 * VCCIO  
eDP_AUX, eDP_AUX#  
AUX Peak-to-Peak Voltage at the  
transmitting device  
0.4  
0.6  
1
1
V
AUX-DIFFp-p (Tx)  
AUX Peak-to-Peak Voltage at the  
receiving device  
0.32  
1.36  
V
VAUX-DIFFp-p (Rx)  
eDP COMPs  
eDP_ICOMPI  
eDP_COMPIO  
Comp Resistance  
Comp Resistance  
24.75  
24.75  
25  
25  
25.25  
25.25  
2, 3  
2, 3  
Notes:  
1.  
VAUX-DIFFp-p = 2*|VAUXP – VAUXM|. Refer to the VESA DisplayPort Standard specification for more  
details.  
2.  
3.  
COMP resistance must be provided on the system board with 1% resistors. COMP resistors are to VSS  
.
eDP_ICOMPO, eDP_ICOMPI, eDP_RCOMPO are the same resistor.  
7.10  
Platform Environmental Control Interface (PECI)  
DC Specifications  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and chipset components to external Adaptive Thermal Monitor devices.  
The processor contains a Digital Thermal Sensor (DTS) that reports a relative die  
temperature as an offset from Thermal Control Circuit (TCC) activation temperature.  
Temperature sensors located throughout the die are implemented as analog-to-digital  
converters calibrated at the factory. PECI provides an interface for external devices to  
read the DTS temperature for thermal management and fan speed control. More  
detailed information may be found in the Platform Environment Control Interface  
(PECI) Specification.  
7.10.1  
PECI Bus Architecture  
The PECI architecture based on wired OR bus that the clients (such as 2nd Generation  
Intel® Core™ processor family mobile PECI) can pull up high (with strong drive).  
The idle state on the bus is near zero.  
Figure 7-1 demonstrates PECI design and connectivity, while the host/originator can be  
3rd party PECI host, and one of the PECI client is a 2nd Generation Intel® Core™  
processor family mobile PECI and Intel® Celeron® processor family mobile PECI device.  
Datasheet, Volume 1  
101  
Electrical Specifications  
Figure 7-1. Example for PECI Host-clients Connection  
7.10.2  
PECI DC Characteristics  
The PECI interface operates at a nominal voltage set by VCCIO The set of DC electrical  
specifications shown in Table 7-15 are used with devices normally operating from a  
V
CCIO interface supply. VCCIO nominal levels will vary between processor families. All  
PECI devices will operate at the VCCIO level determined by the processor installed in the  
system. For specific nominal VCCIO levels, refer to Table 7-6.  
Table 7-15. PECI DC Electrical Limits  
Symbol  
Definition and Conditions  
Min  
Max  
Units  
Notes1  
Rup  
Vin  
Internal pull up resistance  
Input Voltage Range  
15  
45  
Ohm  
V
3
-0.15  
VCCIO  
Vhysteresis  
Vn  
Hysteresis  
0.1 * VCCIO  
N/A  
V
Negative-Edge Threshold Voltage  
Positive-Edge Threshold Voltage  
Bus Capacitance per Node  
Pad Capacitance  
0.275 * VCCIO  
0.500 * VCCIO  
V
Vp  
0.550 * VCCIO  
0.725 * VCCIO  
V
Cbus  
N/A  
0.7  
10  
1.8  
pF  
pF  
mA  
mA  
mA  
mA  
mA  
Cpad  
Ileak000  
Ileak025  
Ileak050  
Ileak075  
Ileak100  
leakage current @ 0V  
0.6  
2
2
2
2
2
leakage current @ 0.25*VCCIO  
leakage current @ 0.50*VCCIO  
leakage current @ 0.75*VCCIO  
leakage current @ VCCIO  
0.4  
0.2  
0.13  
0.10  
Notes:  
1.  
2.  
3.  
VCCIO supplies the PECI interface. PECI behavior does not affect VCCIO min/max specifications.  
The leakage specification applies to powered devices on the PECI bus.  
The PECI buffer internal pull up resistance measured at 0.75*VCCIO  
102  
Datasheet, Volume 1  
Electrical Specifications  
7.10.3  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use Figure 7-2 as a guide for input buffer design.  
Figure 7-2. Input Device Hysteresis  
§ §  
Datasheet, Volume 1  
103  
Electrical Specifications  
104  
Datasheet, Volume 1  
Processor Pin and Signal Information  
8 Processor Pin and Signal  
Information  
8.1  
Processor Pin Assignments  
Table 8-1, Table 8-2 and Table 8-3 all pins ordered alphabetically for the rPGA988B  
BGA1224 and BGA1023 package respectively.  
Figure 8-1, Figure 8-2, Figure 8-3 and Figure 8-4 show the Top-Down view of the  
rPGA988B pinmap.  
Figure 8-5, Figure 8-6, Figure 8-7 and Figure 8-8 show the Top-Down view of the  
BGA1224 ballmap.  
Figure 8-9, Figure 8-10, Figure 8-11 and Figure 8-12 show the Top-Down view of  
the BGA1023 ballmap.  
Datasheet, Volume 1  
105  
Processor Pin and Signal Information  
Figure 8-1. rPGA988B (Socket-G2) Pinmap (Top View, Upper-Left Quadrant)  
106  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-2. rPGA988B (Socket-G2) Pinmap (Top View, Upper-Right Quadrant)  
Datasheet, Volume 1  
107  
Processor Pin and Signal Information  
Figure 8-3. rPGA988B (Socket-G2) Pinmap (Top View, Lower-Left Quadrant)  
108  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-4. rPGA988B (Socket-G2) Pinmap (Top View, Lower-Right Quadrant)  
Datasheet, Volume 1  
109  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
BCLK  
BCLK#  
A28  
A27  
Diff Clk  
Diff Clk  
Diff Clk  
Diff Clk  
I
I
DMI_TX[3]  
DPLL_REF_CLK  
DPLL_REF_CLK#  
eDP_AUX  
C21  
A16  
A15  
C15  
D15  
A18  
DMI  
Diff Clk  
Diff Clk  
eDP  
O
I
BCLK_ITP  
BCLK_ITP#  
BPM#[0]  
BPM#[1]  
BPM#[2]  
BPM#[3]  
BPM#[4]  
BPM#[5]  
BPM#[6]  
BPM#[7]  
CATERR#  
CFG[0]  
AN35  
AM35  
I
I
I
I/O  
I/O  
I
AT28 Asynch CMOS  
AR29 Asynch CMOS  
AR30 Asynch CMOS  
AT30 Asynch CMOS  
AP32 Asynch CMOS  
AR31 Asynch CMOS  
AT31 Asynch CMOS  
AR32 Asynch CMOS  
AL33 Asynch CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
I
eDP_AUX#  
eDP  
eDP_COMPIO  
eDP_HPD#  
eDP_ICOMPO  
eDP_TX#[0]  
eDP_TX#[1]  
eDP_TX#[2]  
eDP_TX#[3]  
eDP_TX[0]  
Analog  
B16 Asynch CMOS  
I
A17  
C18  
E16  
D16  
F15  
C17  
F16  
C16  
G15  
Analog  
eDP  
eDP  
eDP  
eDP  
eDP  
eDP  
eDP  
eDP  
I
O
O
O
O
O
O
O
O
I
AK28  
AK29  
AL26  
AL27  
AK26  
AL29  
AL30  
AM31  
AM32  
AM30  
AM28  
AM26  
AN28  
AN31  
AN26  
AM27  
AK31  
AN29  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
eDP_TX[1]  
CFG[1]  
I
eDP_TX[2]  
CFG[2]  
I
eDP_TX[3]  
CFG[3]  
I
FDI_INT  
H20 Asynch CMOS  
CFG[4]  
I
FDI0_FSYNC  
FDI0_LSYNC  
FDI0_TX#[0]  
FDI0_TX#[1]  
FDI0_TX#[2]  
FDI0_TX#[3]  
FDI0_TX[0]  
FDI0_TX[1]  
FDI0_TX[2]  
FDI0_TX[3]  
FDI1_FSYNC  
FDI1_LSYNC  
FDI1_TX#[0]  
FDI1_TX#[1]  
FDI1_TX#[2]  
FDI1_TX#[3]  
FDI1_TX[0]  
FDI1_TX[1]  
FDI1_TX[2]  
FDI1_TX[3]  
KEY  
J18  
J19  
CMOS  
CMOS  
FDI  
I
CFG[5]  
I
I
CFG[6]  
I
A21  
H19  
E19  
F18  
A22  
G19  
E20  
G18  
J17  
O
O
O
O
O
O
O
O
I
CFG[7]  
I
FDI  
CFG[8]  
I
FDI  
CFG[9]  
I
FDI  
CFG[10]  
I
FDI  
CFG[11]  
I
FDI  
CFG[12]  
I
FDI  
CFG[13]  
I
FDI  
CFG[14]  
I
CMOS  
CMOS  
FDI  
CFG[15]  
I
H17  
B21  
C20  
D18  
E17  
B20  
C19  
D19  
F17  
B1  
I
CFG[16]  
I
O
O
O
O
O
O
O
O
N/A  
I/O  
I
CFG[17]  
I
FDI  
DBR#  
AL35 Asynch CMOS  
O
I
FDI  
DMI_RX#[0]  
DMI_RX#[1]  
DMI_RX#[2]  
DMI_RX#[3]  
DMI_RX[0]  
DMI_RX[1]  
DMI_RX[2]  
DMI_RX[3]  
DMI_TX#[0]  
DMI_TX#[1]  
DMI_TX#[2]  
DMI_TX#[3]  
DMI_TX[0]  
DMI_TX[1]  
DMI_TX[2]  
B27  
B25  
A25  
B24  
B28  
B26  
A24  
B23  
G21  
E22  
F21  
D21  
G22  
D22  
F20  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
FDI  
I
FDI  
I
FDI  
I
FDI  
I
FDI  
I
N/A  
I
PECI  
AN33  
J22  
Asynch  
Analog  
Analog  
Analog  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
I
PEG_ICOMPI  
PEG_ICOMPO  
PEG_RCOMPO  
PEG_RX#[0]  
PEG_RX#[1]  
PEG_RX#[2]  
PEG_RX#[3]  
PEG_RX#[4]  
O
O
O
O
O
O
O
J21  
I
H22  
K33  
M35  
L34  
J35  
I
I
I
I
I
J32  
I
110  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
PEG_RX#[5]  
PEG_RX#[6]  
PEG_RX#[7]  
PEG_RX#[8]  
PEG_RX#[9]  
PEG_RX#[10]  
PEG_RX#[11]  
PEG_RX#[12]  
PEG_RX#[13]  
PEG_RX#[14]  
PEG_RX#[15]  
PEG_RX[0]  
H34  
H31  
G33  
G30  
F35  
E34  
E32  
D33  
D31  
B33  
C32  
J33  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
I
I
PEG_TX[4]  
PEG_TX[5]  
PEG_TX[6]  
PEG_TX[7]  
PEG_TX[8]  
PEG_TX[9]  
PEG_TX[10]  
PEG_TX[11]  
PEG_TX[12]  
PEG_TX[13]  
PEG_TX[14]  
PEG_TX[15]  
PM_SYNC  
PRDY#  
L28  
K30  
K27  
J29  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
O
O
O
O
O
O
O
O
O
O
O
O
I
I
I
I
J27  
I
H28  
G28  
E28  
F28  
D27  
E26  
D25  
I
I
I
I
I
I
PEG_RX[1]  
L35  
K34  
H35  
H32  
G34  
G31  
F33  
F30  
E35  
E33  
F32  
D34  
E31  
C33  
B32  
M29  
M32  
M31  
L32  
L29  
K31  
K28  
J30  
I
AM34 Asynch CMOS  
AP29 Asynch CMOS  
AP27 Asynch CMOS  
PEG_RX[2]  
I
O
I
PEG_RX[3]  
I
PREQ#  
PEG_RX[4]  
I
PROC_SELECT#  
PROCHOT#  
RESET#  
RSVD  
C26  
N/A  
O
I/O  
I
PEG_RX[5]  
I
AL32 Asynch CMOS  
PEG_RX[6]  
I
AR33 Asynch CMOS  
PEG_RX[7]  
I
C30  
A31  
B30  
B29  
D30  
B31  
A30  
C29  
F25  
F24  
F23  
D24  
G25  
G24  
E23  
D23  
AT26  
AG7  
AE7  
W8  
PEG_RX[8]  
I
RSVD  
PEG_RX[9]  
I
RSVD  
PEG_RX[10]  
PEG_RX[11]  
PEG_RX[12]  
PEG_RX[13]  
PEG_RX[14]  
PEG_RX[15]  
PEG_TX#[0]  
PEG_TX#[1]  
PEG_TX#[2]  
PEG_TX#[3]  
PEG_TX#[4]  
PEG_TX#[5]  
PEG_TX#[6]  
PEG_TX#[7]  
PEG_TX#[8]  
PEG_TX#[9]  
PEG_TX#[10]  
PEG_TX#[11]  
PEG_TX#[12]  
PEG_TX#[13]  
PEG_TX#[14]  
PEG_TX#[15]  
PEG_TX[0]  
I
RSVD  
I
RSVD  
I
RSVD  
I
RSVD  
I
RSVD  
I
RSVD  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
J28  
RSVD  
H29  
G27  
E29  
F27  
D28  
F26  
E25  
M28  
M33  
M30  
L31  
RSVD  
RSVD  
RSVD  
T8  
RSVD  
L7  
RSVD  
J20  
RSVD  
J16  
RSVD  
AM33  
J15  
RSVD  
PEG_TX[1]  
RSVD  
H16  
G16  
B18  
PEG_TX[2]  
RSVD  
PEG_TX[3]  
RSVD  
Datasheet, Volume 1  
111  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
RSVD  
AK32  
AK2  
AJ32  
AJ27  
AJ26  
AT34  
B35  
B34  
A34  
A33  
AT33  
AT2  
SA_CKE[1]  
SA_CS#[0]  
SA_CS#[1]  
SA_DIMM_VREFDQ  
SA_DQ[0]  
V10  
AK3  
AL3  
B4  
DDR3  
DDR3  
DDR3  
N/A  
O
RSVD  
O
RSVD  
O
RSVD  
O
RSVD  
C5  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_NCTF  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
SA_BS[0]  
SA_BS[1]  
SA_BS[2]  
SA_CAS#  
SA_CK#[0]  
SA_CK#[1]  
SA_CK[0]  
SA_CK[1]  
SA_CKE[0]  
SA_DQ[1]  
D5  
SA_DQ[2]  
D3  
SA_DQ[3]  
D2  
SA_DQ[4]  
D6  
SA_DQ[5]  
C6  
SA_DQ[6]  
C2  
SA_DQ[7]  
C3  
AT1  
SA_DQ[8]  
F10  
F8  
AR35  
AR34  
AR1  
AP35  
C35  
W9  
SA_DQ[9]  
SA_DQ[10]  
SA_DQ[11]  
SA_DQ[12]  
SA_DQ[13]  
SA_DQ[14]  
SA_DQ[15]  
SA_DQ[16]  
SA_DQ[17]  
SA_DQ[18]  
SA_DQ[19]  
SA_DQ[20]  
SA_DQ[21]  
SA_DQ[22]  
SA_DQ[23]  
SA_DQ[24]  
SA_DQ[25]  
SA_DQ[26]  
SA_DQ[27]  
SA_DQ[28]  
SA_DQ[29]  
SA_DQ[30]  
SA_DQ[31]  
SA_DQ[32]  
SA_DQ[33]  
SA_DQ[34]  
SA_DQ[35]  
SA_DQ[36]  
SA_DQ[37]  
SA_DQ[38]  
SA_DQ[39]  
SA_DQ[40]  
SA_DQ[41]  
SA_DQ[42]  
G10  
G9  
F9  
F7  
G8  
W10  
AA4  
AA3  
AB4  
AB3  
AG1  
AH1  
AG2  
AH2  
T9  
G7  
K4  
K5  
K1  
J1  
J5  
J4  
J2  
K2  
M8  
N10  
N8  
T10  
AA2  
AB1  
AB2  
AA1  
AD6  
AE6  
AD5  
AE5  
N7  
M10  
M9  
N9  
M7  
AG6  
AG5  
AK6  
AK5  
AH5  
AH6  
AJ5  
AJ6  
AJ8  
AK8  
AJ9  
AE10  
AF10  
V6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
O
O
O
O
O
O
AE8  
AA6  
AB5  
AB6  
AA5  
V9  
112  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
SA_DQ[43]  
SA_DQ[44]  
SA_DQ[45]  
SA_DQ[46]  
SA_DQ[47]  
SA_DQ[48]  
SA_DQ[49]  
SA_DQ[50]  
SA_DQ[51]  
SA_DQ[52]  
SA_DQ[53]  
SA_DQ[54]  
SA_DQ[55]  
SA_DQ[56]  
SA_DQ[57]  
SA_DQ[58]  
SA_DQ[59]  
SA_DQ[60]  
SA_DQ[61]  
SA_DQ[62]  
SA_DQ[63]  
SA_DQS#[0]  
SA_DQS#[1]  
SA_DQS#[2]  
SA_DQS#[3]  
SA_DQS#[4]  
SA_DQS#[5]  
SA_DQS#[6]  
SA_DQS#[7]  
SA_DQS[0]  
SA_DQS[1]  
SA_DQS[2]  
SA_DQS[3]  
SA_DQS[4]  
SA_DQS[5]  
SA_DQS[6]  
SA_DQS[7]  
SA_MA[0]  
AK9  
AH8  
AH9  
AL9  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SA_MA[10]  
SA_MA[11]  
SA_MA[12]  
SA_MA[13]  
SA_MA[14]  
SA_MA[15]  
SA_ODT[0]  
SA_ODT[1]  
SA_RAS#  
AD8  
V4  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
N/A  
O
O
W4  
AF8  
V5  
O
O
AL8  
O
AP11  
AN11  
AL12  
AM12  
AM11  
AL11  
AP12  
AN12  
AJ14  
AH14  
AL15  
AK15  
AL14  
AK14  
AJ15  
AH15  
C4  
V7  
O
AH3  
AG3  
AD9  
AF9  
AA9  
AA7  
R6  
O
O
O
SA_WE#  
O
SB_BS[0]  
O
SB_BS[1]  
O
SB_BS[2]  
O
SB_CAS#  
AA10  
AD2  
AD1  
AE2  
AE1  
R9  
O
SB_CK#[0]  
SB_CK#[1]  
SB_CK[0]  
O
O
O
SB_CK[1]  
O
SB_CKE[0]  
SB_CKE[1]  
SB_CS#[0]  
SB_CS#[1]  
SB_DIMM_VREFDQ  
SB_DQ[0]  
SB_DQ[1]  
SB_DQ[2]  
SB_DQ[3]  
SB_DQ[4]  
SB_DQ[5]  
SB_DQ[6]  
SB_DQ[7]  
SB_DQ[8]  
SB_DQ[9]  
SB_DQ[10]  
SB_DQ[11]  
SB_DQ[12]  
SB_DQ[13]  
SB_DQ[14]  
SB_DQ[15]  
SB_DQ[16]  
SB_DQ[17]  
SB_DQ[18]  
SB_DQ[19]  
SB_DQ[20]  
SB_DQ[21]  
SB_DQ[22]  
SB_DQ[23]  
O
R10  
AD3  
AE3  
D1  
O
O
O
G6  
O
J3  
C9  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M6  
A7  
AL6  
D10  
C8  
AM8  
AR12  
AM15  
D4  
A9  
A8  
D9  
F6  
D8  
K3  
G4  
N6  
F4  
AL5  
F1  
AM9  
AR11  
AM14  
AD10  
W1  
G1  
G5  
F5  
F2  
SA_MA[1]  
O
G2  
SA_MA[2]  
W2  
O
J7  
SA_MA[3]  
W7  
O
J8  
SA_MA[4]  
V3  
O
K10  
K9  
SA_MA[5]  
V2  
O
SA_MA[6]  
W3  
O
J9  
SA_MA[7]  
W6  
O
J10  
K8  
SA_MA[8]  
V1  
O
SA_MA[9]  
W5  
O
K7  
Datasheet, Volume 1  
113  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
SB_DQ[24]  
SB_DQ[25]  
SB_DQ[26]  
SB_DQ[27]  
SB_DQ[28]  
SB_DQ[29]  
SB_DQ[30]  
SB_DQ[31]  
SB_DQ[32]  
SB_DQ[33]  
SB_DQ[34]  
SB_DQ[35]  
SB_DQ[36]  
SB_DQ[37]  
SB_DQ[38]  
SB_DQ[39]  
SB_DQ[40]  
SB_DQ[41]  
SB_DQ[42]  
SB_DQ[43]  
SB_DQ[44]  
SB_DQ[45]  
SB_DQ[46]  
SB_DQ[47]  
SB_DQ[48]  
SB_DQ[49]  
SB_DQ[50]  
SB_DQ[51]  
SB_DQ[52]  
SB_DQ[53]  
SB_DQ[54]  
SB_DQ[55]  
SB_DQ[56]  
SB_DQ[57]  
SB_DQ[58]  
SB_DQ[59]  
SB_DQ[60]  
SB_DQ[61]  
SB_DQ[62]  
SB_DQ[63]  
SB_DQS#[0]  
SB_DQS#[1]  
SB_DQS#[2]  
SB_DQS#[3]  
SB_DQS#[4]  
SB_DQS#[5]  
SB_DQS#[6]  
M5  
N4  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SB_DQS#[7]  
SB_DQS[0]  
SB_DQS[1]  
SB_DQS[2]  
SB_DQS[3]  
SB_DQS[4]  
SB_DQS[5]  
SB_DQS[6]  
SB_DQS[7]  
SB_MA[0]  
SB_MA[1]  
SB_MA[2]  
SB_MA[3]  
SB_MA[4]  
SB_MA[5]  
SB_MA[6]  
SB_MA[7]  
SB_MA[8]  
SB_MA[9]  
SB_MA[10]  
SB_MA[11]  
SB_MA[12]  
SB_MA[13]  
SB_MA[14]  
SB_MA[15]  
SB_ODT[0]  
SB_ODT[1]  
SB_RAS#  
SB_WE#  
AP15  
C7  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
Analog  
Asynch CMOS  
DDR3  
Analog  
Analog  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
N2  
G3  
N1  
J6  
M4  
M3  
N5  
AN6  
AP8  
AK11  
AP14  
AA8  
T7  
M2  
M1  
AM5  
AM6  
AR3  
AP3  
AN3  
AN2  
AN1  
AP2  
AP5  
AN9  
AT5  
AT6  
AP6  
AN8  
AR6  
AR5  
AR9  
AJ11  
AT8  
AT9  
AH11  
AR8  
AJ12  
AH12  
AT11  
AN14  
AR14  
AT14  
AT12  
AN15  
AR15  
AT15  
D7  
O
R7  
O
T6  
O
T2  
O
T4  
O
T3  
O
R2  
O
T5  
O
R3  
O
AB7  
R1  
O
O
T1  
O
AB10  
R5  
O
O
R4  
O
AE4  
AD4  
AB8  
AB9  
AN34  
V8  
O
O
O
O
SKTOCC#  
SM_DRAMPWROK  
SM_DRAMRST#  
SM_RCOMP[0]  
SM_RCOMP[1]  
SM_RCOMP[2]  
SM_VREF  
O
I
R8  
O
AK1  
A5  
I/O  
I/O  
I/O  
I
A4  
AL1  
AR26  
AR28  
AP26  
TCK  
I
TDI  
I
TDO  
O
THERMTRIP#  
TMS  
AN32 Asynch CMOS  
O
AR27  
AP30  
CMOS  
CMOS  
I
F3  
TRST#  
I
K6  
UNCOREPWRGOOD  
VAXG  
AP33 Asynch CMOS  
I
N3  
AH17  
AH18  
AH20  
AH21  
PWR  
PWR  
PWR  
PWR  
AN5  
AP9  
AK12  
VAXG  
VAXG  
VAXG  
114  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
AH23  
AH24  
AJ17  
AJ18  
AJ20  
AJ21  
AJ23  
AJ24  
AK17  
AK18  
AK20  
AK21  
AK23  
AK24  
AL17  
AL18  
AL20  
AL21  
AL23  
AL24  
AM17  
AM18  
AM20  
AM21  
AM23  
AM24  
AN17  
AN18  
AN20  
AN21  
AN23  
AN24  
AP17  
AP18  
AP20  
AP21  
AP23  
AP24  
AR17  
AR18  
AR20  
AR21  
AR23  
AR24  
AT17  
AT18  
AT20  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VAXG  
VAXG  
VAXG  
VAXG_SENSE  
VAXG_VAL_SENSE  
VCC  
AT21  
AT23  
AT24  
AK35  
AJ31  
AA26  
AA27  
AA28  
AA29  
AA30  
AA31  
AA32  
AA33  
AA34  
AA35  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AC32  
AC33  
AC34  
AC35  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD32  
AD33  
AD34  
AD35  
AF26  
AF27  
AF28  
AF29  
AF30  
AF31  
AF32  
AF33  
AF34  
AF35  
AG26  
AG27  
PWR  
PWR  
PWR  
Analog  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
O
O
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Datasheet, Volume 1  
115  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG28  
AG29  
AG30  
AG31  
AG32  
AG33  
AG34  
AG35  
P26  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
V35  
Y26  
Y27  
Y28  
Y29  
Y30  
Y31  
Y32  
Y33  
Y34  
Y35  
AH27  
AJ35  
AJ33  
J23  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
P27  
VCC  
P28  
VCC  
P29  
VCC_DIE_SENSE  
VCC_SENSE  
VCC_VAL_SENSE  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
O
O
O
P30  
P31  
P32  
P33  
A11  
A12  
AC10  
AG10  
AH10  
AH13  
B12  
C11  
C12  
D11  
D12  
E11  
E12  
F11  
P34  
P35  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
U26  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
U35  
V26  
V27  
V28  
V29  
V30  
V31  
V32  
V33  
V34  
F12  
G12  
H11  
H12  
J11  
J12  
L10  
P10  
U10  
Y10  
A13  
A14  
B14  
C13  
C14  
D13  
D14  
E14  
116  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VCCIO  
VCCIO  
F13  
F14  
G13  
G14  
H14  
J13  
J14  
A19  
B10  
A2  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N/A  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A35  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AB32  
AB33  
AB34  
AB35  
AC2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO_SEL  
VCCIO_SENSE  
VCCPLL  
VCCPLL  
VCCPLL  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA_SENSE  
VCCSA_VID[0]  
VCCSA_VID[1]  
VDDQ  
O
O
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
CMOS  
CMOS  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CMOS  
CMOS  
CMOS  
GND  
GND  
GND  
GND  
GND  
GND  
A6  
B6  
H25  
H26  
J24  
J25  
J26  
L26  
M26  
M27  
H23  
C22  
C24  
AC1  
AC4  
AC7  
AF1  
AF4  
AF7  
P1  
AC3  
AC5  
AC6  
AC8  
AC9  
AD7  
AE26  
AE27  
AE28  
AE29  
AE30  
AE31  
AE32  
AE33  
AE34  
AE35  
AE9  
O
O
O
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
AF2  
VDDQ  
P4  
AF3  
VDDQ  
P7  
AF5  
VDDQ  
U1  
AF6  
VDDQ  
U4  
AG4  
VDDQ  
U7  
AG8  
VDDQ  
Y1  
AG9  
VDDQ  
Y4  
AH16  
AH19  
AH22  
AH25  
AH26  
AH28  
AH29  
AH30  
AH32  
AH34  
AH35  
VDDQ  
Y7  
VIDALERT#  
VIDSCLK  
VIDSOUT  
VSS  
AJ29  
AJ30  
AJ28  
A20  
A23  
A26  
A29  
A3  
I
O
I/O  
VSS  
VSS  
VSS  
VSS  
VSS  
A32  
Datasheet, Volume 1  
117  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH4  
AH7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM7  
AN10  
AN13  
AN16  
AN19  
AN22  
AN25  
AN27  
AN30  
AN4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AJ1  
AJ10  
AJ13  
AJ16  
AJ19  
AJ2  
AJ22  
AJ25  
AJ3  
AN7  
AJ4  
AP1  
AJ7  
AP10  
AP13  
AP16  
AP19  
AP22  
AP25  
AP28  
AP31  
AP34  
AP4  
AK10  
AK13  
AK16  
AK19  
AK22  
AK25  
AK27  
AK30  
AK33  
AK4  
AP7  
AK7  
AR10  
AR13  
AR16  
AR19  
AR2  
AL10  
AL13  
AL16  
AL19  
AL2  
AR22  
AR25  
AR4  
AL22  
AL25  
AL28  
AL31  
AL34  
AL4  
AR7  
AT10  
AT13  
AT16  
AT19  
AT22  
AT25  
AT27  
AT29  
AT3  
AL7  
AM1  
AM10  
AM13  
AM16  
AM19  
AM2  
AT32  
AT35  
AT4  
AM22  
AM25  
AM29  
AM3  
AT7  
B11  
AM4  
B13  
118  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B15  
B17  
B19  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G17  
G20  
G23  
G26  
G29  
G32  
G35  
H1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B22  
B3  
B5  
B7  
B8  
H10  
H13  
H15  
H18  
H2  
B9  
C1  
C10  
C23  
C25  
C27  
C28  
C31  
C34  
D17  
D20  
D26  
D29  
D32  
D35  
E1  
H21  
H24  
H27  
H3  
H30  
H33  
H4  
H5  
H6  
H7  
H8  
H9  
E10  
E13  
E15  
E18  
E2  
J31  
J34  
K26  
K29  
K32  
K35  
L1  
E21  
E24  
E27  
E3  
L2  
L27  
L3  
E30  
E4  
L30  
L33  
L4  
E5  
E6  
E7  
L5  
E8  
L6  
E9  
L8  
F19  
F22  
F29  
F31  
F34  
G11  
L9  
M34  
N26  
N27  
N28  
N29  
Datasheet, Volume 1  
119  
Processor Pin and Signal Information  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Table 8-1.  
rPGA988B Processor Pin  
List by Pin Name  
Pin Name  
Pin # Buffer Type  
Dir  
Pin Name  
Pin # Buffer Type  
Dir  
VSS  
VSS  
N30  
N31  
N32  
N33  
N34  
N35  
P2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Analog  
Analog  
VSS_VAL_SENSE  
VSSAXG_SENSE  
AH33  
AK34  
Analog  
Analog  
Analog  
O
O
O
VSS  
VSSAXG_VAL_SENSE AH31  
VSS  
VSS  
VSS  
VSS  
VSS  
P3  
VSS  
P5  
VSS  
P6  
VSS  
P8  
VSS  
P9  
VSS  
T26  
T27  
T28  
T29  
T30  
T31  
T32  
T33  
T34  
T35  
U2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U3  
VSS  
U5  
VSS  
U6  
VSS  
U8  
VSS  
U9  
VSS  
W26  
W27  
W28  
W29  
W30  
W31  
W32  
W33  
W34  
W35  
Y2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Y3  
VSS  
Y5  
VSS  
Y6  
VSS  
Y8  
VSS  
Y9  
VSS_SENSE  
VSS_SENSE_VCCIO  
AJ34  
A10  
O
O
120  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-5. BGA1224 Ballmap (Top View, Upper-Left Quadrant)  
Datasheet, Volume 1  
121  
Processor Pin and Signal Information  
Figure 8-6. BGA1224 Ballmap (Top View, Upper-Right Quadrant)  
122  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-7. BGA1224 Ballmap (Top View, Lower-Left Quadrant)  
Datasheet, Volume 1  
123  
Processor Pin and Signal Information  
Figure 8-8. BGA1224 Ballmap (Top View, Lower-Right Quadrant)  
124  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
BCLK  
BCLK#  
D5  
C6  
Diff Clk  
Diff Clk  
Diff Clk  
Diff Clk  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
CMOS  
I
DC_TEST_BH3  
DC_TEST_BH63  
DC_TEST_BH65  
DC_TEST_BJ2  
DC_TEST_BJ4  
DC_TEST_BJ62  
DC_TEST_BJ64  
DC_TEST_C2  
DC_TEST_C64  
DC_TEST_D1  
DC_TEST_D65  
DMI_RX#[0]  
DMI_RX#[1]  
DMI_RX#[2]  
DMI_RX#[3]  
DMI_RX[0]  
BH3  
BH63  
BH65  
BJ2  
BJ4  
BJ62  
BJ64  
C2  
N/A  
N/A  
I
BCLK_ITP  
BCLK_ITP#  
BPM#[0]  
K63  
K65  
C62  
D61  
E62  
F63  
D59  
F61  
F59  
G60  
H53  
B57  
D57  
B55  
A54  
A58  
D55  
C56  
E54  
J54  
I
N/A  
I
N/A  
I/O  
N/A  
BPM#[1]  
I/O  
N/A  
BPM#[2]  
I/O  
N/A  
BPM#[3]  
I/O  
N/A  
BPM#[4]  
I/O  
C64  
D1  
N/A  
BPM#[5]  
I/O  
N/A  
BPM#[6]  
I/O  
I/O  
O
I
D65  
N10  
R10  
R8  
N/A  
BPM#[7]  
DMI  
I
I
CATERR#  
CFG[0]  
DMI  
DMI  
I
CFG[1]  
CMOS  
I
U10  
N8  
DMI  
I
CFG[2]  
CMOS  
I
DMI  
I
CFG[3]  
CMOS  
I
DMI_RX[1]  
T9  
DMI  
I
CFG[4]  
CMOS  
I
DMI_RX[2]  
R6  
DMI  
I
CFG[5]  
CMOS  
I
DMI_RX[3]  
U8  
DMI  
I
CFG[6]  
CMOS  
I
DMI_TX#[0]  
DMI_TX#[1]  
DMI_TX#[2]  
DMI_TX#[3]  
DMI_TX[0]  
N4  
DMI  
O
O
O
O
O
O
O
O
I
CFG[7]  
CMOS  
I
R4  
DMI  
CFG[8]  
CMOS  
I
P1  
DMI  
CFG[9]  
G56  
F55  
K55  
F57  
E58  
H57  
H55  
D53  
K57  
H61  
A4  
CMOS  
I
U6  
DMI  
CFG[10]  
CMOS  
I
N2  
DMI  
CFG[11]  
CMOS  
I
DMI_TX[1]  
R2  
DMI  
CFG[12]  
CMOS  
I
DMI_TX[2]  
P3  
DMI  
CFG[13]  
CMOS  
I
DMI_TX[3]  
T5  
DMI  
CFG[14]  
CMOS  
I
DPLL_REF_CLK  
DPLL_REF_CLK#  
eDP_AUX  
AJ4  
AJ2  
AE4  
AE2  
AC2  
AE8  
AB1  
AG2  
AF1  
AE6  
AG6  
AG4  
AF3  
AF7  
AG8  
AD9  
Diff Clk  
Diff Clk  
eDP  
CFG[15]  
CMOS  
I
I
CFG[16]  
CMOS  
I
I/O  
I/O  
I
CFG[17]  
CMOS  
I
eDP_AUX#  
eDP  
DBR#  
Asynch CMOS  
N/A  
O
eDP_COMPIO  
eDP_HPD#  
Analog  
Asynch CMOS  
Analog  
eDP  
DC_TEST_A4  
DC_TEST_A62  
DC_TEST_A64  
DC_TEST_B3  
DC_TEST_B63  
DC_TEST_B65  
DC_TEST_BF1  
DC_TEST_BF65  
DC_TEST_BG2  
DC_TEST_BG64  
DC_TEST_BH1  
I
A62  
A64  
B3  
N/A  
eDP_ICOMPO  
eDP_TX#[0]  
eDP_TX#[1]  
eDP_TX#[2]  
eDP_TX#[3]  
eDP_TX[0]  
I
N/A  
O
O
O
O
O
O
O
O
I
N/A  
eDP  
B63  
B65  
BF1  
BF65  
BG2  
BG64  
BH1  
N/A  
eDP  
N/A  
eDP  
N/A  
eDP  
N/A  
eDP_TX[1]  
eDP  
N/A  
eDP_TX[2]  
eDP  
N/A  
eDP_TX[3]  
eDP  
N/A  
FDI_INT  
Asynch CMOS  
Datasheet, Volume 1  
125  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
FDI0_FSYNC  
FDI0_LSYNC  
FDI0_TX#[0]  
FDI0_TX#[1]  
FDI0_TX#[2]  
FDI0_TX#[3]  
FDI0_TX[0]  
FDI0_TX[1]  
FDI0_TX[2]  
FDI0_TX[3]  
FDI1_FSYNC  
FDI1_LSYNC  
FDI1_TX#[0]  
FDI1_TX#[1]  
FDI1_TX#[2]  
FDI1_TX#[3]  
FDI1_TX[0]  
FDI1_TX[1]  
FDI1_TX[2]  
FDI1_TX[3]  
PECI  
AC8  
AB7  
V7  
CMOS  
CMOS  
FDI  
I
I
PEG_RX[3]  
PEG_RX[4]  
PEG_RX[5]  
PEG_RX[6]  
PEG_RX[7]  
PEG_RX[8]  
PEG_RX[9]  
PEG_RX[10]  
PEG_RX[11]  
PEG_RX[12]  
PEG_RX[13]  
PEG_RX[14]  
PEG_RX[15]  
PEG_TX#[0]  
PEG_TX#[1]  
PEG_TX#[2]  
PEG_TX#[3]  
PEG_TX#[4]  
PEG_TX#[5]  
PEG_TX#[6]  
PEG_TX#[7]  
PEG_TX#[8]  
PEG_TX#[9]  
PEG_TX#[10]  
PEG_TX#[11]  
PEG_TX#[12]  
PEG_TX#[13]  
PEG_TX#[14]  
PEG_TX#[15]  
PEG_TX[0]  
F19  
K19  
H17  
K15  
G14  
J16  
K13  
F11  
K11  
F9  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
I
I
O
O
O
O
O
O
O
O
I
I
W8  
AA8  
AC10  
W6  
W10  
Y9  
FDI  
I
FDI  
I
FDI  
I
FDI  
I
FDI  
I
FDI  
I
AA10  
AA2  
AB3  
U4  
FDI  
I
CMOS  
CMOS  
FDI  
H9  
I
I
H7  
I
O
O
O
O
O
O
O
O
I/O  
I
G6  
I
W2  
V1  
FDI  
A22  
B23  
C18  
D21  
B19  
E20  
A14  
D17  
B15  
E16  
D13  
A10  
B11  
D9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
FDI  
Y5  
FDI  
U2  
FDI  
W4  
V3  
FDI  
FDI  
AA6  
F53  
G2  
FDI  
Asynch  
Analog  
Analog  
Analog  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PEG_ICOMPI  
PEG_ICOMPO  
PEG_RCOMPO  
PEG_RX#[0]  
PEG_RX#[1]  
PEG_RX#[2]  
PEG_RX#[3]  
PEG_RX#[4]  
PEG_RX#[5]  
PEG_RX#[6]  
PEG_RX#[7]  
PEG_RX#[8]  
PEG_RX#[9]  
PEG_RX#[10]  
PEG_RX#[11]  
PEG_RX#[12]  
PEG_RX#[13]  
PEG_RX#[14]  
PEG_RX#[15]  
PEG_RX[0]  
H1  
I
F3  
I
F23  
H23  
H21  
H19  
J20  
G18  
K17  
F15  
H15  
H13  
H11  
J12  
E8  
I
I
I
I
B7  
I
E12  
C22  
D23  
A18  
B21  
D19  
F21  
C14  
B17  
D15  
F17  
B13  
C10  
D11  
B9  
I
I
PEG_TX[1]  
I
PEG_TX[2]  
I
PEG_TX[3]  
I
PEG_TX[4]  
I
PEG_TX[5]  
I
PEG_TX[6]  
I
PEG_TX[7]  
G10  
J8  
I
PEG_TX[8]  
I
PEG_TX[9]  
F7  
I
PEG_TX[10]  
PEG_TX[11]  
PEG_TX[12]  
PEG_TX[13]  
G22  
K23  
K21  
I
PEG_RX[1]  
I
PEG_RX[2]  
I
126  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
PEG_TX[14]  
PEG_TX[15]  
PM_SYNC  
PRDY#  
PREQ#  
PROC_DETECT#  
PROC_SELECT#  
PROCHOT#  
RESET#  
RSVD  
D7  
PCIe  
O
O
I
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
BC14  
BB57  
BB43  
BB25  
BB17  
BB15  
BB13  
BA48  
BA16  
AY45  
AY41  
AY17  
AY15  
AY13  
AW50  
AW46  
AW42  
AW14  
AJ10  
AJ6  
F13  
PCIe  
K53  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Analog  
J62  
O
I
H65  
B59  
O
O
I/O  
I
AH9  
N/A  
H51  
Asynch CMOS  
Asynch CMOS  
K51  
G64  
RSVD  
BJ42  
BJ34  
BJ22  
BH43  
BH35  
BH25  
BH23  
BH21  
BH19  
BG62  
BG34  
BG26  
BG22  
BG4  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AH5  
AD5  
AC6  
AC4  
AA4  
P7  
RSVD  
RSVD  
RSVD  
RSVD  
BF63  
BF43  
BF41  
BF35  
BF25  
BF23  
BF21  
BF19  
BF3  
RSVD  
RSVD  
N6  
RSVD  
M9  
RSVD  
M5  
RSVD  
L10  
RSVD  
L6  
RSVD  
L4  
RSVD  
L2  
RSVD  
BE32  
BE16  
BE6  
K49  
K47  
K9  
RSVD  
RSVD  
RSVD  
BD33  
BD29  
BD19  
BD15  
BD13  
BC42  
BC30  
K7  
RSVD  
K5  
RSVD  
J50  
RSVD  
J4  
RSVD  
J2  
RSVD  
H49  
H47  
RSVD  
Datasheet, Volume 1  
127  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
RSVD  
RSVD  
H5  
G52  
G48  
G4  
SA_DQ[18]  
SA_DQ[19]  
SA_DQ[20]  
SA_DQ[21]  
SA_DQ[22]  
SA_DQ[23]  
SA_DQ[24]  
SA_DQ[25]  
SA_DQ[26]  
SA_DQ[27]  
SA_DQ[28]  
SA_DQ[29]  
SA_DQ[30]  
SA_DQ[31]  
SA_DQ[32]  
SA_DQ[33]  
SA_DQ[34]  
SA_DQ[35]  
SA_DQ[36]  
SA_DQ[37]  
SA_DQ[38]  
SA_DQ[39]  
SA_DQ[40]  
SA_DQ[41]  
SA_DQ[42]  
SA_DQ[43]  
SA_DQ[44]  
SA_DQ[45]  
SA_DQ[46]  
SA_DQ[47]  
SA_DQ[48]  
SA_DQ[49]  
SA_DQ[50]  
SA_DQ[51]  
SA_DQ[52]  
SA_DQ[53]  
SA_DQ[54]  
SA_DQ[55]  
SA_DQ[56]  
SA_DQ[57]  
SA_DQ[58]  
SA_DQ[59]  
SA_DQ[60]  
BG6  
AY9  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RSVD  
AW8  
RSVD  
BB7  
RSVD  
F5  
BC8  
RSVD  
D49  
D25  
D3  
BE4  
RSVD  
AW12  
AV11  
BB11  
BA12  
BE8  
RSVD  
RSVD  
C52  
RSVD  
C24  
RSVD  
C4  
RSVD  
B53  
BA10  
BD11  
BE12  
BB49  
AY49  
BE52  
BD51  
BD49  
BE48  
BA52  
AY51  
BC54  
AY53  
AW54  
AY55  
BD53  
BB53  
BE56  
BA56  
BD57  
BF61  
BA60  
BB61  
BE60  
BD63  
BB59  
BC58  
AW58  
AY59  
AL60  
AP61  
AW60  
RSVD  
B25  
SA_BS[0]  
SA_BS[1]  
SA_BS[2]  
SA_CAS#  
SA_CKE[0]  
SA_CKE[1]  
SA_CK#[0]  
SA_CK#[1]  
SA_CK[0]  
SA_CK[1]  
SA_CS#[0]  
SA_CS#[1]  
SA_DQ[0]  
SA_DQ[1]  
SA_DQ[2]  
SA_DQ[3]  
SA_DQ[4]  
SA_DQ[5]  
SA_DQ[6]  
SA_DQ[7]  
SA_DQ[8]  
SA_DQ[9]  
SA_DQ[10]  
SA_DQ[11]  
SA_DQ[12]  
SA_DQ[13]  
SA_DQ[14]  
SA_DQ[15]  
SA_DQ[16]  
SA_DQ[17]  
BA36  
BC38  
BB19  
BE44  
BC18  
BD17  
BA32  
AY33  
BB31  
AW34  
BD41  
BD45  
AL6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
O
O
O
O
O
O
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AL8  
AP7  
AM5  
AK7  
AL10  
AN10  
AM9  
AR10  
AR8  
AV7  
AY5  
AT5  
AR6  
AW6  
AT9  
BA6  
BA8  
128  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
SA_DQ[61]  
SA_DQ[62]  
SA_DQ[63]  
SA_DQS#[0]  
SA_DQS#[1]  
SA_DQS#[2]  
SA_DQS#[3]  
SA_DQS#[4]  
SA_DQS#[5]  
SA_DQS#[6]  
SA_DQS#[7]  
SA_DQS[0]  
SA_DQS[1]  
SA_DQS[2]  
SA_DQS[3]  
SA_DQS[4]  
SA_DQS[5]  
SA_DQS[6]  
SA_DQS[7]  
SA_MA[0]  
AY57  
AN60  
AR60  
AN8  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SB_CKE[0]  
SB_CKE[1]  
SB_CK#[0]  
SB_CK#[1]  
SB_CK[0]  
BD25  
BJ26  
BH33  
BH37  
BF33  
BF37  
BE40  
BH41  
AL4  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
O
AU6  
O
BC6  
SB_CK[1]  
O
BD9  
SB_CS#[0]  
SB_CS#[1]  
SB_DQ[0]  
SB_DQ[1]  
SB_DQ[2]  
SB_DQ[3]  
SB_DQ[4]  
SB_DQ[5]  
SB_DQ[6]  
SB_DQ[7]  
SB_DQ[8]  
SB_DQ[9]  
SB_DQ[10]  
SB_DQ[11]  
SB_DQ[12]  
SB_DQ[13]  
SB_DQ[14]  
SB_DQ[15]  
SB_DQ[16]  
SB_DQ[17]  
SB_DQ[18]  
SB_DQ[19]  
SB_DQ[20]  
SB_DQ[21]  
SB_DQ[22]  
SB_DQ[23]  
SB_DQ[24]  
SB_DQ[25]  
SB_DQ[26]  
SB_DQ[27]  
SB_DQ[28]  
SB_DQ[29]  
SB_DQ[30]  
SB_DQ[31]  
SB_DQ[32]  
SB_DQ[33]  
SB_DQ[34]  
O
BC50  
BB55  
BD59  
AU60  
AN6  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AK3  
AP3  
AR2  
AU8  
AL2  
BD5  
AK1  
BC10  
BB51  
BD55  
BD61  
AV61  
BD27  
BA28  
BB27  
AW26  
BB23  
BA24  
AY21  
BD21  
BC22  
BB21  
AW38  
AW22  
BA20  
BB45  
BE20  
AW18  
BB41  
BC46  
BE36  
BA44  
BJ38  
BD37  
AY29  
BH39  
AP1  
AR4  
AV3  
AU4  
BA4  
BB1  
SA_MA[1]  
O
AV1  
SA_MA[2]  
O
AU2  
SA_MA[3]  
O
BA2  
SA_MA[4]  
O
BB3  
SA_MA[5]  
O
BC2  
SA_MA[6]  
O
BF7  
SA_MA[7]  
O
BF11  
BJ10  
BC4  
SA_MA[8]  
O
SA_MA[9]  
O
SA_MA[10]  
SA_MA[11]  
SA_MA[12]  
SA_MA[13]  
SA_MA[14]  
SA_MA[15]  
SA_ODT[0]  
SA_ODT[1]  
SA_RAS#  
O
BH7  
O
BH11  
BG10  
BJ14  
BG14  
BF17  
BJ18  
BF13  
BH13  
BH17  
BG18  
BH49  
BF47  
BH53  
O
O
O
O
O
O
O
SA_WE#  
O
SB_BS[0]  
O
SB_BS[1]  
O
SB_BS[2]  
O
SB_CAS#  
O
Datasheet, Volume 1  
129  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
SB_DQ[35]  
SB_DQ[36]  
SB_DQ[37]  
SB_DQ[38]  
SB_DQ[39]  
SB_DQ[40]  
SB_DQ[41]  
SB_DQ[42]  
SB_DQ[43]  
SB_DQ[44]  
SB_DQ[45]  
SB_DQ[46]  
SB_DQ[47]  
SB_DQ[48]  
SB_DQ[49]  
SB_DQ[50]  
SB_DQ[51]  
SB_DQ[52]  
SB_DQ[53]  
SB_DQ[54]  
SB_DQ[55]  
SB_DQ[56]  
SB_DQ[57]  
SB_DQ[58]  
SB_DQ[59]  
SB_DQ[60]  
SB_DQ[61]  
SB_DQ[62]  
SB_DQ[63]  
SB_DQS#[0]  
SB_DQS#[1]  
SB_DQS#[2]  
SB_DQS#[3]  
SB_DQS#[4]  
SB_DQS#[5]  
SB_DQS#[6]  
SB_DQS#[7]  
SB_DQS[0]  
SB_DQS[1]  
SB_DQS[2]  
SB_DQS[3]  
SB_DQS[4]  
SB_DQS[5]  
BG50  
BF49  
BH47  
BF53  
BJ50  
BF55  
BH55  
BJ58  
BH59  
BJ54  
BG54  
BG58  
BF59  
BA64  
BC62  
AU62  
AW64  
BA62  
BC64  
AU64  
AW62  
AR64  
AT65  
AL64  
AM65  
AR62  
AT63  
AL62  
AM63  
AN4  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SB_DQS[6]  
SB_DQS[7]  
SB_MA[0]  
SB_MA[1]  
SB_MA[2]  
SB_MA[3]  
SB_MA[4]  
SB_MA[5]  
SB_MA[6]  
SB_MA[7]  
SB_MA[8]  
SB_MA[9]  
SB_MA[10]  
SB_MA[11]  
SB_MA[12]  
SB_MA[13]  
SB_MA[14]  
SB_MA[15]  
SB_ODT[0]  
SB_ODT[1]  
SB_RAS#  
SB_WE#  
AY65  
AN64  
BF31  
BH31  
BB37  
BC34  
BF27  
BB33  
BH27  
BG30  
BH29  
BF29  
AY37  
BJ30  
AW30  
BA40  
BB29  
BE28  
BG42  
BH45  
BG38  
BF39  
AY25  
BE24  
BJ46  
BG46  
BF45  
BJ44  
J58  
DDR3  
DDR3  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
SM_DRAMPWROK  
SM_DRAMRST#  
SM_RCOMP[0]  
SM_RCOMP[1]  
SM_RCOMP[2]  
SM_VREF  
TCK  
Asynch CMOS  
DDR3  
O
I/O  
I/O  
I/O  
I
Analog  
Analog  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
Asynch CMOS  
CMOS  
CMOS  
Asynch CMOS  
PWR  
I
TDI  
K61  
I
AW2  
TDO  
K59  
O
O
I
BH9  
THERMTRIP#  
TMS  
F51  
BF15  
BF51  
BH57  
AY63  
AN62  
AN2  
H59  
TRST#  
H63  
I
UNCOREPWRGOOD  
VAXG  
C60  
I
AH65  
AH63  
AH61  
AH58  
AH56  
AG64  
AG62  
AG60  
VAXG  
PWR  
VAXG  
PWR  
AW4  
VAXG  
PWR  
BF9  
VAXG  
PWR  
BH15  
BH51  
BF57  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
130  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
AF58  
AF56  
AE64  
AE62  
AE60  
AD65  
AD63  
AD61  
AD58  
AD56  
AB65  
AB63  
AB61  
AB58  
AB56  
AA64  
AA62  
AA60  
Y58  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG_SENSE  
VAXG_VAL_SENSE  
VCC  
N56  
N52  
N49  
M65  
M63  
M61  
M59  
M55  
M53  
M48  
L56  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
L52  
L48  
F49  
B49  
R46  
R42  
R40  
R36  
R34  
R29  
R27  
R23  
R21  
N45  
N43  
N39  
N37  
N33  
N30  
N26  
N24  
N20  
M46  
M42  
M40  
M36  
M34  
M29  
M27  
M23  
M21  
L44  
O
O
VCC  
VCC  
VCC  
Y56  
VCC  
W64  
W62  
W60  
V65  
VCC  
VCC  
VCC  
VCC  
V63  
VCC  
V61  
VCC  
V58  
VCC  
V56  
VCC  
T65  
VCC  
T63  
VCC  
T61  
VCC  
T58  
VCC  
T56  
VCC  
R64  
VCC  
R62  
VCC  
R60  
VCC  
R55  
VCC  
R53  
VCC  
R48  
VCC  
N64  
VCC  
N62  
VCC  
N60  
VCC  
N58  
VCC  
Datasheet, Volume 1  
131  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L40  
L38  
L34  
L32  
L28  
L26  
L22  
K45  
K43  
K41  
K37  
K35  
K31  
K29  
K25  
J44  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCC  
VCC  
F29  
F25  
E44  
E40  
E38  
E34  
E32  
E28  
E26  
D45  
D43  
D41  
D37  
D35  
D31  
D29  
C44  
C40  
C38  
C34  
C32  
C28  
C26  
B45  
B43  
B41  
B37  
B35  
B31  
B29  
A44  
A40  
A38  
A34  
A32  
A28  
A26  
F47  
B47  
D47  
AV23  
AT23  
AP23  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
Analog  
PWR  
PWR  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J40  
VCC  
J38  
VCC  
J34  
VCC  
J32  
VCC  
J28  
VCC  
J26  
VCC  
H45  
H43  
H41  
H37  
H35  
H31  
H29  
H25  
G44  
G40  
G38  
G34  
G32  
G28  
G26  
F45  
F43  
F41  
F37  
F35  
F31  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_DIE_SENSE  
VCC_SENSE  
VCC_VAL_SENSE  
VCCDQ  
VCCDQ  
VCCDQ  
O
O
O
132  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VCCDQ  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
AL23  
AV55  
AV53  
AV48  
AV17  
AV15  
AV12  
AU58  
AU56  
AU52  
AU49  
AU20  
AU18  
AT55  
AT53  
AT48  
AT17  
AT15  
AT12  
AR58  
AR56  
AR52  
AR49  
AR20  
AR18  
AR16  
AR14  
AP55  
AP53  
AP48  
AN58  
AN56  
AN52  
AN49  
AN20  
AN18  
AN16  
AN14  
AM11  
AL55  
AL53  
AL48  
AL17  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCCIO  
VCCIO  
AL15  
AL12  
AK58  
AK56  
AJ17  
AJ15  
AJ12  
AH16  
AH14  
AH11  
AF16  
AF14  
AE17  
AE15  
AE12  
AD11  
AC17  
AC15  
AC12  
AB16  
AB14  
Y16  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N/A  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
Y14  
VCCIO  
Y11  
VCCIO_SEL  
VCCIO_SENSE  
VCCPLL  
VCCPLL  
VCCPLL  
VCCPQE  
VCCPQE  
VCCPQE  
VCCPQE  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
AJ8  
O
O
AW10  
AK65  
AK63  
AK61  
AV21  
AT21  
AP21  
AL21  
W17  
W15  
W12  
U17  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
U15  
U12  
T16  
T14  
T11  
N18  
Datasheet, Volume 1  
133  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA_SENSE  
VCCSA_VID[0]  
VCCSA_VID[1]  
VDDQ  
N16  
N14  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
CMOS  
CMOS  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ_SENSE  
VIDALERT#  
VIDSCLK  
VIDSOUT  
VSS  
AT46  
AT42  
AT40  
AT36  
AT34  
AT29  
AT27  
AR45  
AR43  
AR39  
AR37  
AR33  
AR30  
AR26  
AR24  
AP46  
AP42  
AP40  
AP36  
AP34  
AP29  
AP27  
AN45  
AN43  
AN39  
AN37  
AN33  
AN30  
AN26  
AN24  
AL46  
AL42  
AL40  
AL36  
AL34  
AL29  
AL27  
AY19  
B51  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
CMOS  
CMOS  
CMOS  
GND  
GND  
M17  
M15  
M12  
M11  
L18  
L14  
K3  
O
O
O
AE10  
AG10  
BJ36  
BJ28  
BG40  
BG32  
BD47  
BD43  
BD39  
BD31  
BD23  
BB35  
AY47  
AY43  
AY39  
AY35  
AY31  
AY27  
AY23  
AV46  
AV42  
AV40  
AV36  
AV34  
AV29  
AV27  
AU45  
AU43  
AU39  
AU37  
AU33  
AU30  
AU26  
AU24  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
O
I
VDDQ  
VDDQ  
D51  
O
VDDQ  
A50  
I/O  
VDDQ  
BJ56  
BJ52  
VDDQ  
VSS  
134  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BJ48  
BJ40  
BJ32  
BJ24  
BJ20  
BJ16  
BJ12  
BJ8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BC40  
BC36  
BC32  
BC28  
BC26  
BC24  
BC20  
BC16  
BC12  
BB65  
BB63  
BB47  
BB39  
BB9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BG60  
BG56  
BG52  
BG48  
BG44  
BG36  
BG28  
BG24  
BG20  
BG16  
BG12  
BG8  
BB5  
BA58  
BA54  
BA50  
BA46  
BA42  
BA38  
BA34  
BA30  
BA26  
BA22  
BA18  
BA14  
AY61  
AY11  
AY7  
BF5  
BE62  
BE58  
BE54  
BE50  
BE46  
BE42  
BE38  
BE34  
BE30  
BE26  
BE22  
BE18  
BE14  
BE10  
BD35  
BD7  
AY3  
AY1  
AW56  
AW52  
AW48  
AW44  
AW40  
AW36  
AW32  
AW28  
AW24  
AW16  
AV65  
BD3  
BC60  
BC56  
BC52  
BC48  
BC44  
Datasheet, Volume 1  
135  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AV63  
AV59  
AV57  
AV50  
AV44  
AV38  
AV31  
AV25  
AV19  
AV9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AP31  
AP25  
AP19  
AP17  
AP15  
AP12  
AP11  
AP9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AP5  
AN54  
AN47  
AN41  
AN35  
AN28  
AN22  
AM61  
AM7  
AV5  
AU54  
AU47  
AU41  
AU35  
AU28  
AU22  
AU16  
AU14  
AT61  
AT57  
AT50  
AT44  
AT38  
AT31  
AT25  
AT19  
AT11  
AT7  
AM3  
AM1  
AL57  
AL50  
AL44  
AL38  
AL31  
AL25  
AL19  
AK16  
AK14  
AK11  
AK9  
AT3  
AT1  
AK5  
AR54  
AR47  
AR41  
AR35  
AR28  
AR22  
AP65  
AP63  
AP57  
AP50  
AP44  
AP38  
AJ64  
AJ62  
AJ60  
AJ57  
AH7  
AH3  
AH1  
AG57  
AG17  
AG15  
AG12  
AF65  
136  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF63  
AF61  
AF11  
AF9  
AF5  
AE57  
AD16  
AD14  
AD7  
AD3  
AD1  
AC64  
AC62  
AC60  
AC57  
AB11  
AB9  
AB5  
AA57  
AA17  
AA15  
AA12  
Y65  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R44  
R38  
R31  
R25  
R19  
R17  
R15  
R12  
P65  
P63  
P61  
P11  
P9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P5  
N54  
N47  
N41  
N35  
N28  
N22  
M57  
M50  
M44  
M38  
M31  
M25  
M19  
M7  
Y63  
Y61  
Y7  
Y3  
Y1  
W57  
V16  
V14  
V11  
V9  
M3  
M1  
L64  
L62  
L60  
L58  
L54  
L50  
L46  
L42  
L36  
L30  
L24  
L20  
L16  
V5  
U64  
U62  
U60  
U57  
T7  
T3  
T1  
R57  
R50  
Datasheet, Volume 1  
137  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
Ball Name  
Ball #  
Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L12  
L8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS_NCTF  
VSS_NCTF  
E52  
E48  
E46  
E42  
E36  
E30  
E24  
E22  
E18  
E14  
E10  
E6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K39  
K33  
K27  
K1  
J64  
J60  
J56  
J52  
J48  
J46  
J42  
J36  
J30  
J24  
J22  
J18  
J14  
J10  
J6  
E4  
D63  
D39  
D33  
D27  
C58  
C54  
C50  
C46  
C42  
C36  
C30  
C20  
C16  
C12  
C8  
H39  
H33  
H27  
H3  
G62  
G58  
G54  
G50  
G46  
G42  
G36  
G30  
G24  
G20  
G16  
G12  
G8  
B39  
B33  
B27  
A56  
A52  
A42  
A36  
A30  
A24  
A20  
A16  
A12  
A8  
F39  
F33  
F27  
E60  
E56  
BJ60  
BJ6  
138  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-2. BGA1224 Processor Ball  
List by Ball Name  
Ball Name  
Ball #  
Buffer Type  
Dir  
VSS_NCTF  
VSS_NCTF  
BH61  
BH5  
BE64  
BE2  
BD65  
BD1  
F65  
F1  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
E64  
E2  
VSS_NCTF  
VSS_NCTF  
B61  
B5  
VSS_NCTF  
VSS_NCTF  
A60  
A6  
VSS_NCTF  
VSS_SENSE  
VSS_SENSE_VDDQ  
VSS_VAL_SENSE  
VSSAXG_SENSE  
VSSAXG_VAL_SENSE  
VSS_SENSE_VCCIO  
A46  
AW20  
C48  
E50  
A48  
AU10  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
O
O
O
O
O
O
Datasheet, Volume 1  
139  
Processor Pin and Signal Information  
Figure 8-9. BGA1023 Ballmap (Top View, Upper-Left Quadrant)  
140  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-10. BGA1023 Ballmap (Top View, Upper-Right Quadrant)  
Datasheet, Volume 1  
141  
Processor Pin and Signal Information  
Figure 8-11. BGA1023 Ballmap (Top View, Lower-Left Quadrant)  
142  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-12. BGA1023 Ballmap (Top View, Lower-Right Quadrant)  
Datasheet, Volume 1  
143  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
BCLK  
BCLK#  
J3  
H2  
Diff Clk  
Diff Clk  
Diff Clk  
Diff Clk  
I
I
I
I
DC_TEST_BG61  
DC_TEST_C4  
DC_TEST_C59  
DC_TEST_C61  
DC_TEST_D1  
DC_TEST_D3  
DC_TEST_D61  
DMI_RX#[0]  
DMI_RX#[1]  
DMI_RX#[2]  
DMI_RX#[3]  
DMI_RX[0]  
BG61  
C4  
N/A  
N/A  
BCLK_ITP  
BCLK_ITP#  
BPM#[0]  
N59  
N58  
G58  
E55  
E59  
G55  
G59  
H60  
J59  
C59  
C61  
D1  
N/A  
N/A  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
Asynch CMOS I/O  
N/A  
BPM#[1]  
D3  
N/A  
BPM#[2]  
D61  
M2  
P6  
N/A  
BPM#[3]  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
DMI  
Diff Clk  
Diff Clk  
eDP  
I
I
BPM#[4]  
BPM#[5]  
P1  
I
BPM#[6]  
P10  
N3  
I
BPM#[7]  
J61  
I
CATERR#  
CFG[0]  
C49  
B50  
C51  
B54  
D53  
A51  
C53  
C55  
H49  
A55  
H51  
K49  
K53  
F53  
G53  
L51  
Asynch CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Asynch CMOS  
N/A  
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
O
DMI_RX[1]  
P7  
I
DMI_RX[2]  
P3  
I
CFG[1]  
DMI_RX[3]  
P11  
K1  
I
CFG[2]  
DMI_TX#[0]  
DMI_TX#[1]  
DMI_TX#[2]  
DMI_TX#[3]  
DMI_TX[0]  
O
O
O
O
O
O
O
O
I
CFG[3]  
M8  
N4  
CFG[4]  
CFG[5]  
R2  
CFG[6]  
K3  
CFG[7]  
DMI_TX[1]  
M7  
P4  
CFG[8]  
DMI_TX[2]  
CFG[9]  
DMI_TX[3]  
T3  
CFG[10]  
DPLL_REF_CLK  
DPLL_REF_CLK#  
eDP_AUX  
AG3  
AG1  
AF4  
AG4  
AF3  
CFG[11]  
I
CFG[12]  
I/O  
I/O  
I
CFG[13]  
eDP_AUX#  
eDP  
CFG[14]  
eDP_COMPIO  
eDP_HPD#  
Analog  
CFG[15]  
F51  
D52  
L53  
AG11 Asynch CMOS  
I
CFG[16]  
eDP_ICOMPO  
eDP_TX#[0]  
eDP_TX#[1]  
eDP_TX#[2]  
eDP_TX#[3]  
eDP_TX[0]  
AD2  
AC3  
AC4  
AE11  
AE7  
AC1  
AA4  
AE10  
AE6  
U11  
AA11  
AA10  
U7  
Analog  
eDP  
I
CFG[17]  
O
O
O
O
O
O
O
O
I
DBR#  
K58  
A4  
eDP  
DC_TEST_A4  
DC_TEST_A58  
DC_TEST_A59  
DC_TEST_A61  
DC_TEST_BD1  
DC_TEST_BD61  
DC_TEST_BE1  
DC_TEST_BE3  
DC_TEST_BE59  
DC_TEST_BE61  
DC_TEST_BG1  
DC_TEST_BG3  
DC_TEST_BG4  
DC_TEST_BG58  
DC_TEST_BG59  
eDP  
A58  
A59  
A61  
BD1  
BD61  
BE1  
BE3  
BE59  
BE61  
BG1  
BG3  
BG4  
BG58  
BG59  
N/A  
eDP  
N/A  
eDP  
N/A  
eDP_TX[1]  
eDP  
N/A  
eDP_TX[2]  
eDP  
N/A  
eDP_TX[3]  
eDP  
N/A  
FDI_INT  
Asynch CMOS  
CMOS  
CMOS  
FDI  
N/A  
FDI0_FSYNC  
FDI0_LSYNC  
FDI0_TX#[0]  
FDI0_TX#[1]  
FDI0_TX#[2]  
FDI0_TX#[3]  
FDI0_TX[0]  
FDI0_TX[1]  
I
N/A  
I
N/A  
O
O
O
O
O
O
N/A  
W11  
W1  
FDI  
N/A  
FDI  
N/A  
AA6  
U6  
FDI  
N/A  
FDI  
N/A  
W10  
FDI  
144  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
FDI0_TX[2]  
FDI0_TX[3]  
FDI1_FSYNC  
FDI1_LSYNC  
FDI1_TX#[0]  
FDI1_TX#[1]  
FDI1_TX#[2]  
FDI1_TX#[3]  
FDI1_TX[0]  
FDI1_TX[1]  
FDI1_TX[2]  
FDI1_TX[3]  
PECI  
W3  
AA7  
AC12  
AG8  
W6  
V4  
FDI  
FDI  
O
O
I
PEG_RX[15]  
PEG_TX#[0]  
PEG_TX#[1]  
PEG_TX#[2]  
PEG_TX#[3]  
PEG_TX#[4]  
PEG_TX#[5]  
PEG_TX#[6]  
PEG_TX#[7]  
PEG_TX#[8]  
PEG_TX#[9]  
PEG_TX#[10]  
PEG_TX#[11]  
PEG_TX#[12]  
PEG_TX#[13]  
PEG_TX#[14]  
PEG_TX#[15]  
PEG_TX[0]  
PEG_TX[1]  
PEG_TX[2]  
PEG_TX[3]  
PEG_TX[4]  
PEG_TX[5]  
PEG_TX[6]  
PEG_TX[7]  
PEG_TX[8]  
PEG_TX[9]  
PEG_TX[10]  
PEG_TX[11]  
PEG_TX[12]  
PEG_TX[13]  
PEG_TX[14]  
PEG_TX[15]  
PM_SYNC  
K6  
G22  
C23  
D23  
F21  
H19  
C17  
K15  
F17  
F14  
A15  
J14  
PCIe  
PCIe  
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
CMOS  
CMOS  
FDI  
PCIe  
I
PCIe  
O
O
O
O
O
O
O
O
I/O  
I
PCIe  
FDI  
PCIe  
Y2  
FDI  
PCIe  
AC9  
W7  
T4  
FDI  
PCIe  
FDI  
PCIe  
FDI  
PCIe  
AA3  
AC8  
A48  
G3  
FDI  
PCIe  
FDI  
PCIe  
Asynch  
Analog  
Analog  
Analog  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
PCIe  
H13  
M10  
F10  
D9  
PCIe  
PEG_ICOMPI  
PEG_ICOMPO  
PEG_RCOMPO  
PEG_RX#[0]  
PEG_RX#[1]  
PEG_RX#[2]  
PEG_RX#[3]  
PEG_RX#[4]  
PEG_RX#[5]  
PEG_RX#[6]  
PEG_RX#[7]  
PEG_RX#[8]  
PEG_RX#[9]  
PEG_RX#[10]  
PEG_RX#[11]  
PEG_RX#[12]  
PEG_RX#[13]  
PEG_RX#[14]  
PEG_RX#[15]  
PEG_RX[0]  
PCIe  
G1  
I
PCIe  
G4  
I
PCIe  
H22  
J21  
B22  
D21  
A19  
D17  
B14  
D13  
A11  
B10  
G8  
I
J4  
PCIe  
I
F22  
A23  
D24  
E21  
G19  
B18  
K17  
G17  
E14  
C15  
K13  
G13  
K10  
G10  
D8  
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
I
PCIe  
A8  
I
PCIe  
B6  
I
PCIe  
H8  
I
PCIe  
E5  
I
PCIe  
K7  
I
PCIe  
K22  
K19  
C21  
D19  
C19  
D16  
C13  
D12  
C11  
C9  
I
K4  
PCIe  
PEG_RX[1]  
I
C48  
N53  
N55  
C57  
F49  
C45  
D44  
BG26  
BG22  
BG7  
BF23  
BE26  
BE24  
BE22  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Analog  
N/A  
PEG_RX[2]  
I
PRDY#  
O
I
PEG_RX[3]  
I
PREQ#  
PEG_RX[4]  
I
PROC_DETECT#  
PROC_SELECT#  
PROCHOT#  
RESET#  
O
O
PEG_RX[5]  
I
PEG_RX[6]  
I
Asynch CMOS I/O  
PEG_RX[7]  
I
Asynch CMOS  
I
PEG_RX[8]  
I
RSVD  
PEG_RX[9]  
I
RSVD  
PEG_RX[10]  
PEG_RX[11]  
PEG_RX[12]  
PEG_RX[13]  
PEG_RX[14]  
F8  
I
RSVD  
C8  
I
RSVD  
C5  
I
RSVD  
H6  
I
RSVD  
F6  
I
RSVD  
Datasheet, Volume 1  
145  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
RSVD  
RSVD  
BE7  
BD26  
BD25  
BD22  
BD21  
BB21  
BB19  
BA22  
BA19  
AY22  
AY21  
AV19  
AU21  
AU19  
AT49  
AT21  
AM15  
AM14  
AH2  
SA_DQ[2]  
SA_DQ[3]  
AP11  
AL6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
RSVD  
SA_DQ[4]  
AJ10  
AJ8  
RSVD  
SA_DQ[5]  
RSVD  
SA_DQ[6]  
AL8  
RSVD  
SA_DQ[7]  
AL7  
RSVD  
SA_DQ[8]  
AR11  
AP6  
RSVD  
SA_DQ[9]  
RSVD  
SA_DQ[10]  
SA_DQ[11]  
SA_DQ[12]  
SA_DQ[13]  
SA_DQ[14]  
SA_DQ[15]  
SA_DQ[16]  
SA_DQ[17]  
SA_DQ[18]  
SA_DQ[19]  
SA_DQ[20]  
SA_DQ[21]  
SA_DQ[22]  
SA_DQ[23]  
SA_DQ[24]  
SA_DQ[25]  
SA_DQ[26]  
SA_DQ[27]  
SA_DQ[28]  
SA_DQ[29]  
SA_DQ[30]  
SA_DQ[31]  
SA_DQ[32]  
SA_DQ[33]  
SA_DQ[34]  
SA_DQ[35]  
SA_DQ[36]  
SA_DQ[37]  
SA_DQ[38]  
SA_DQ[39]  
SA_DQ[40]  
SA_DQ[41]  
SA_DQ[42]  
SA_DQ[43]  
SA_DQ[44]  
SA_DQ[45]  
SA_DQ[46]  
SA_DQ[47]  
SA_DQ[48]  
AU6  
RSVD  
AV9  
RSVD  
AR6  
RSVD  
AP8  
RSVD  
AT13  
AU13  
BC7  
RSVD  
RSVD  
RSVD  
BB7  
RSVD  
BA13  
BB11  
BA7  
RSVD  
RSVD  
RSVD  
AG13  
W14  
U14  
BA9  
RSVD  
BB9  
RSVD  
AY13  
AV14  
AR14  
AY17  
AR19  
BA14  
AU14  
BB14  
BB17  
BA45  
AR43  
AW48  
BC48  
BC45  
AR45  
AT48  
AY48  
BA49  
AV49  
BB51  
AY53  
BB49  
AU49  
BA53  
BB55  
BA55  
RSVD  
P13  
RSVD  
N50  
RSVD  
N42  
RSVD  
M14  
RSVD  
M13  
RSVD  
L47  
RSVD  
L45  
RSVD  
L42  
RSVD  
K48  
RSVD  
K24  
RSVD  
H48  
SA_BS[0]  
SA_BS[1]  
SA_BS[2]  
SA_CAS#  
SA_CKE[0]  
SA_CKE[1]  
SA_CK#[0]  
SA_CK#[1]  
SA_CK[0]  
SA_CK[1]  
SA_CS#[0]  
SA_CS#[1]  
SA_DQ[0]  
SA_DQ[1]  
BD37  
BF36  
BA28  
BE39  
AY26  
BB26  
AV36  
AU40  
AU36  
AT40  
BB40  
BC41  
AG6  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
O
O
O
O
O
O
O
O
O
I/O  
I/O  
AJ6  
146  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
SA_DQ[49]  
SA_DQ[50]  
SA_DQ[51]  
SA_DQ[52]  
SA_DQ[53]  
SA_DQ[54]  
SA_DQ[55]  
SA_DQ[56]  
SA_DQ[57]  
SA_DQ[58]  
SA_DQ[59]  
SA_DQ[60]  
SA_DQ[61]  
SA_DQ[62]  
SA_DQ[63]  
SA_DQS#[0]  
SA_DQS#[1]  
SA_DQS#[2]  
SA_DQS#[3]  
SA_DQS#[4]  
SA_DQS#[5]  
SA_DQS#[6]  
SA_DQS#[7]  
SA_DQS[0]  
SA_DQS[1]  
SA_DQS[2]  
SA_DQS[3]  
SA_DQS[4]  
SA_DQS[5]  
SA_DQS[6]  
SA_DQS[7]  
SA_MA[0]  
AV56  
AP50  
AP53  
AV54  
AT54  
AP56  
AP52  
AN57  
AN53  
AG56  
AG53  
AN55  
AN52  
AG55  
AK56  
AL11  
AR8  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SA_ODT[0]  
SA_ODT[1]  
SA_RAS#  
AY40  
BA41  
BD39  
AT41  
BG39  
BD42  
AT22  
AV43  
AR22  
BF27  
AY34  
BB36  
BA34  
BA36  
BE41  
BE47  
AL4  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
O
O
O
SA_WE#  
O
SB_BS[0]  
O
SB_BS[1]  
O
SB_BS[2]  
O
SB_CAS#  
O
SB_CKE[0]  
SB_CKE[1]  
SB_CK#[0]  
SB_CK#[1]  
SB_CK[0]  
O
O
O
O
O
SB_CK[1]  
O
SB_CS#[0]  
SB_CS#[1]  
SB_DQ[0]  
SB_DQ[1]  
SB_DQ[2]  
SB_DQ[3]  
SB_DQ[4]  
SB_DQ[5]  
SB_DQ[6]  
SB_DQ[7]  
SB_DQ[8]  
SB_DQ[9]  
SB_DQ[10]  
SB_DQ[11]  
SB_DQ[12]  
SB_DQ[13]  
SB_DQ[14]  
SB_DQ[15]  
SB_DQ[16]  
SB_DQ[17]  
SB_DQ[18]  
SB_DQ[19]  
SB_DQ[20]  
SB_DQ[21]  
SB_DQ[22]  
SB_DQ[23]  
SB_DQ[24]  
SB_DQ[25]  
SB_DQ[26]  
SB_DQ[27]  
SB_DQ[28]  
SB_DQ[29]  
SB_DQ[30]  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AV11  
AT17  
AV45  
AY51  
AT55  
AK55  
AJ11  
AR10  
AY11  
AU17  
AW45  
AV51  
AT56  
AK54  
BG35  
BB34  
BE35  
BD35  
AT34  
AU34  
BB32  
AT32  
AY32  
AV32  
BE37  
BA30  
BC30  
AW41  
AY28  
AU26  
AL1  
AN3  
AR4  
AK4  
AK3  
AN4  
AR1  
AU4  
AT2  
AV4  
BA4  
AU3  
AR3  
AY2  
BA3  
SA_MA[1]  
O
BE9  
SA_MA[2]  
O
BD9  
SA_MA[3]  
O
BD13  
BF12  
BF8  
SA_MA[4]  
O
SA_MA[5]  
O
SA_MA[6]  
O
BD10  
BD14  
BE13  
BF16  
BE17  
BE18  
BE21  
BE14  
BG14  
BG18  
SA_MA[7]  
O
SA_MA[8]  
O
SA_MA[9]  
O
SA_MA[10]  
SA_MA[11]  
SA_MA[12]  
SA_MA[13]  
SA_MA[14]  
SA_MA[15]  
O
O
O
O
O
O
Datasheet, Volume 1  
147  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
SB_DQ[31]  
SB_DQ[32]  
SB_DQ[33]  
SB_DQ[34]  
SB_DQ[35]  
SB_DQ[36]  
SB_DQ[37]  
SB_DQ[38]  
SB_DQ[39]  
SB_DQ[40]  
SB_DQ[41]  
SB_DQ[42]  
SB_DQ[43]  
SB_DQ[44]  
SB_DQ[45]  
SB_DQ[46]  
SB_DQ[47]  
SB_DQ[48]  
SB_DQ[49]  
SB_DQ[50]  
SB_DQ[51]  
SB_DQ[52]  
SB_DQ[53]  
SB_DQ[54]  
SB_DQ[55]  
SB_DQ[56]  
SB_DQ[57]  
SB_DQ[58]  
SB_DQ[59]  
SB_DQ[60]  
SB_DQ[61]  
SB_DQ[62]  
SB_DQ[63]  
SB_DQS#[0]  
SB_DQS#[1]  
SB_DQS#[2]  
SB_DQS#[3]  
SB_DQS#[4]  
SB_DQS#[5]  
SB_DQS#[6]  
SB_DQS#[7]  
SB_DQS[0]  
SB_DQS[1]  
SB_DQS[2]  
SB_DQS[3]  
SB_DQS[4]  
SB_DQS[5]  
BF19  
BD50  
BF48  
BD53  
BF52  
BD49  
BE49  
BD54  
BE53  
BF56  
BE57  
BC59  
AY60  
BE54  
BG54  
BA58  
AW59  
AW58  
AU58  
AN61  
AN59  
AU59  
AU61  
AN58  
AR58  
AK58  
AL58  
AG58  
AG59  
AM60  
AL59  
AF61  
AH60  
AL3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SB_DQS[6]  
SB_DQS[7]  
SB_MA[0]  
SB_MA[1]  
SB_MA[2]  
SB_MA[3]  
SB_MA[4]  
SB_MA[5]  
SB_MA[6]  
SB_MA[7]  
SB_MA[8]  
SB_MA[9]  
SB_MA[10]  
SB_MA[11]  
SB_MA[12]  
SB_MA[13]  
SB_MA[14]  
SB_MA[15]  
SB_ODT[0]  
SB_ODT[1]  
SB_RAS#  
SB_WE#  
SM_DRAMPWROK  
SM_DRAMRST#  
SM_RCOMP[0]  
SM_RCOMP[1]  
SM_RCOMP[2]  
SM_VREF  
TCK  
AR59  
AK61  
BF32  
BE33  
BD33  
AU30  
BD30  
AV30  
BG30  
BD29  
BE30  
BE28  
BD43  
AT28  
AV28  
BD46  
AT26  
AU22  
AT43  
BG47  
BF40  
BD45  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
DDR3  
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
BE45 Asynch CMOS  
AT30  
BF44  
BE43  
BG43  
AY43  
L56  
DDR3  
Analog  
Analog  
Analog  
Analog  
CMOS  
CMOS  
CMOS  
Asynch CMOS  
CMOS  
CMOS  
Asynch CMOS  
PWR  
O
I/O  
I/O  
I/O  
I
I
TDI  
M60  
I
TDO  
L59  
O
O
I
THERMTRIP#  
TMS  
D45  
L55  
TRST#  
J58  
I
AV3  
UNCOREPWRGOOD  
VAXG  
B46  
I
BG11  
BD17  
BG51  
BA59  
AT60  
AK59  
AM2  
AE46  
AD59  
AD58  
AD56  
AD55  
AD53  
AD52  
AD51  
AD50  
AD48  
AD47  
AC61  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
AV1  
VAXG  
PWR  
BE11  
BD18  
BE51  
BA61  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
VAXG  
PWR  
148  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG  
VAXG_SENSE  
VAXG_VAL_SENSE  
VCC  
AB59  
AB58  
AB56  
AB55  
AB53  
AB52  
AB51  
AB50  
AB47  
AA46  
Y61  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
PWR  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
N34  
N30  
N26  
L40  
L36  
L33  
L28  
L25  
K42  
K39  
K37  
K35  
K34  
K32  
K29  
K27  
K26  
J42  
J40  
J38  
J37  
J35  
J34  
J32  
J29  
J28  
J26  
J25  
H40  
H38  
H37  
H35  
H34  
H32  
H29  
H28  
H26  
H25  
G42  
F42  
F38  
F37  
F34  
F32  
F28  
F26  
F25  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Y48  
W61  
W56  
W55  
W53  
W52  
W51  
W50  
V59  
V58  
V56  
V55  
V53  
V52  
V51  
V50  
V48  
V47  
U46  
T61  
T59  
T58  
T48  
P61  
P56  
P55  
P53  
P52  
P51  
P50  
P48  
P47  
N45  
F45  
O
O
H45  
N38  
Datasheet, Volume 1  
149  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VCC  
VCC  
E38  
E37  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
Analog  
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO_SEL  
VCCIO_SENSE  
VCCPLL  
VCCPLL  
VCCPLL  
VCCPQE  
VCCPQE  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
AL15  
AL14  
AK51  
AK50  
AJ47  
AJ43  
AJ25  
AJ21  
AJ17  
AJ15  
AJ14  
AG51  
AG50  
AG48  
AG21  
AG20  
AG17  
AG16  
AG15  
AF46  
AF20  
AF18  
AF16  
AE15  
AE14  
AD21  
AD18  
AD16  
AC13  
AB20  
AB17  
AA15  
AA14  
W17  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
N/A  
VCC  
E34  
VCC  
E32  
VCC  
E28  
VCC  
E26  
VCC  
D42  
D39  
D37  
D34  
D32  
D27  
C42  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
C39  
VCC  
C37  
VCC  
C34  
VCC  
C32  
VCC  
C27  
VCC  
C26  
VCC  
A42  
VCC  
A39  
VCC  
A38  
VCC  
A35  
VCC  
A34  
VCC  
A31  
VCC  
A29  
VCC  
A26  
VCC_DIE_SENSE  
VCC_SENSE  
VCC_VAL_SENSE  
VCCDQ  
VCCDQ  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
F48  
O
O
O
F43  
H43  
AN26  
AM28  
AN48  
AN45  
AN42  
AN20  
AM47  
AM43  
AM21  
AM17  
AM16  
AL48  
AL45  
AL26  
AL22  
AL20  
AL16  
W16  
BC22  
AN16  
BC4  
O
O
Analog  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
BC1  
BB3  
AN22  
AM25  
W20  
V21  
V18  
V17  
V16  
150  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA  
VCCSA_SENSE  
VCCSA_VID[0]  
VCCSA_VID[1]  
VDDQ  
U15  
R21  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
CMOS  
CMOS  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
Analog  
CMOS  
CMOS  
CMOS  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BG41  
BG37  
BG28  
BG24  
BG21  
BG17  
BG13  
BG9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R18  
R16  
P20  
P17  
N22  
N20  
N16  
BE5  
L21  
BD56  
BD52  
BD48  
BD44  
BD40  
BD36  
BD32  
BD27  
BD23  
BD19  
BD16  
BD12  
BD8  
L17  
U10  
O
O
O
D48  
D49  
BG33  
BB28  
BA40  
AW26  
AV41  
AR40  
AR36  
AR34  
AR32  
AR30  
AR28  
AR26  
AN38  
AN34  
AN30  
AM40  
AM36  
AM33  
AL42  
AL38  
AL34  
AL30  
AJ40  
AJ36  
AJ33  
AJ28  
BC43  
A44  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
BC57  
BC13  
BC5  
VDDQ  
VDDQ  
VDDQ  
BB53  
BA51  
BA48  
BA32  
BA26  
BA21  
BA17  
BA11  
BA1  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
AY58  
AY55  
AY49  
AY45  
AY41  
AY36  
AY30  
AY19  
AY14  
AY9  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ_SENSE  
VIDALERT#  
VIDSCLK  
VIDSOUT  
VSS  
O
I
B43  
O
C44  
I/O  
BG53  
BG49  
BG45  
AY4  
VSS  
AW61  
AW43  
VSS  
Datasheet, Volume 1  
151  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AW13  
AW7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM42  
AM38  
AM34  
AM30  
AM26  
AM22  
AM20  
AM13  
AM4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AV55  
AV48  
AV40  
AV34  
AV22  
AV21  
AV17  
AU51  
AU32  
AU28  
AU11  
AU7  
AL61  
AL47  
AL43  
AL40  
AL36  
AL33  
AL28  
AL25  
AL21  
AL17  
AL13  
AL10  
AK52  
AK1  
AU1  
AT58  
AT52  
AT45  
AT36  
AT19  
AT14  
AT4  
AR61  
AR48  
AR41  
AR21  
AR17  
AR13  
AR7  
AJ48  
AJ45  
AJ42  
AJ38  
AJ34  
AJ30  
AJ26  
AJ22  
AJ20  
AJ16  
AJ13  
AJ7  
AP55  
AP51  
AP10  
AP7  
AN54  
AN50  
AN47  
AN43  
AN40  
AN36  
AN33  
AN28  
AN25  
AN21  
AN1  
AH58  
AH4  
AG61  
AG52  
AG47  
AG18  
AG14  
AG10  
AG7  
AM58  
AM48  
AM45  
AF59  
AF58  
AF56  
152  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF55  
AF53  
AF52  
AF51  
AF50  
AF48  
AF47  
AF21  
AF17  
AF1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U8  
T56  
T55  
T53  
T52  
T51  
T50  
T47  
T1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R46  
R20  
R17  
R4  
AE13  
AE8  
AD61  
AD20  
AD17  
AD4  
P59  
P58  
P21  
P18  
P16  
P14  
P9  
AC46  
AC14  
AC10  
AC6  
AB61  
AB48  
AB21  
AB18  
AB16  
AA56  
AA55  
AA53  
AA52  
AA51  
AA50  
AA13  
AA8  
N61  
N56  
N52  
N51  
N48  
N47  
N43  
N40  
N36  
N33  
N28  
N25  
N21  
N17  
N1  
AA1  
Y59  
Y58  
M58  
M15  
M11  
M6  
Y47  
Y4  
W46  
W21  
W18  
W15  
W13  
W8  
M4  
L61  
L48  
L43  
L38  
L34  
L30  
L26  
V61  
V20  
U13  
Datasheet, Volume 1  
153  
Processor Pin and Signal Information  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Table 8-3.  
BGA1023 Processor Ball  
List by Ball Name  
Ball Name  
Ball # Buffer Type  
Dir  
Ball Name  
Ball # Buffer Type  
Dir  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L22  
L20  
L16  
K51  
K21  
K11  
K8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
D4  
C40  
C35  
C29  
A53  
A49  
A45  
A40  
A37  
A33  
A28  
A25  
A21  
A17  
A13  
A9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VSS  
VSS  
VSS  
VSS  
VSS  
J55  
J49  
J1  
VSS  
VSS  
VSS  
H58  
H53  
H21  
H17  
H14  
H10  
H4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_SENSE  
VSS_SENSE_VDDQ  
VSS_VAL_SENSE  
VSSAXG_SENSE  
VSSAXG_VAL_SENSE  
VSS_SENSE_VCCIO  
BG57  
BG5  
BE58  
BE4  
BD59  
BD3  
BC61  
E61  
E1  
G61  
G51  
G48  
G6  
F55  
F40  
F35  
F29  
F19  
F15  
F13  
E40  
E35  
E29  
E25  
E3  
D59  
C58  
C3  
A57  
A5  
G43  
BA43  
K43  
G45  
K45  
AN17  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
O
O
O
O
O
O
D58  
D54  
D50  
D46  
D43  
D40  
D35  
D29  
D26  
D22  
D18  
D14  
D10  
D6  
154  
Datasheet, Volume 1  
Processor Pin and Signal Information  
8.2  
Package Mechanical Information  
Figure 8-13. Processor rPGA988B 2C (GT2) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
155  
Processor Pin and Signal Information  
Figure 8-14. Processor rPGA988B 2C (GT2) Mechanical Package (Sheet 2 of 2)  
156  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-15. Processor rPGA988B 4C (GT2) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
157  
Processor Pin and Signal Information  
Figure 8-16. Processor rPGA988B 4C (GT2) Mechanical Package (Sheet 2 of 2)  
158  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-17. Processor BGA1023 2C (GT2) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
159  
Processor Pin and Signal Information  
Figure 8-18. Processor BGA1023 2C (GT2) Mechanical Package (Sheet 2 of 2)  
160  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-19. Processor BGA1224 4C (GT2) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
161  
Processor Pin and Signal Information  
Figure 8-20. Processor BGA1224 4C (GT2) Mechanical Package (Sheet 2 of 2)  
162  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-21. Processor rPGA988B 2C (GT1) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
163  
Processor Pin and Signal Information  
Figure 8-22. Processor rPGA988B 2C (GT1) Mechanical Package (Sheet 2 of 2)  
164  
Datasheet, Volume 1  
Processor Pin and Signal Information  
Figure 8-23. Processor BGA1023 2C (GT1) Mechanical Package (Sheet 1 of 2)  
Datasheet, Volume 1  
165  
Processor Pin and Signal Information  
Figure 8-24. Processor BGA1023 2C (GT1) Mechanical Package (Sheet 2 of 2)  
§ §  
166  
Datasheet, Volume 1  
DDR Data Swizzling  
9 DDR Data Swizzling  
To achieve better memory performance and better memory timing; Intel design  
performed the DDR Data pin swizzling which will allow a better use of the product  
across different platforms. Swizzling has no effect on functional operation and is  
invisible to the OS/SW.  
However, during debug, swizzling needs to be taken into consideration; thus, swizzling  
data is presented in this chapter. When placing DIMM logic analyzer, the design  
engineer must pay attention to the swizzling table to perform an efficient memory  
debug.  
Datasheet, Volume 1  
167  
DDR Data Swizzling  
Table 9-1.  
DDR Data Swizzling  
Table – Channel A  
Table 9-1.  
DDR Data Swizzling  
Table – Channel A  
Pin  
Number  
rPGA  
Pin  
Number  
BGA1023 BGA1224  
Pin  
Number  
Pin  
Number  
rPGA  
Pin  
Number  
BGA1023 BGA1224  
Pin  
Number  
MC Pin  
Name  
MC Pin  
Name  
Pin Name  
Pin Name  
SA_DQ[0]  
SA_DQ[1]  
SA_DQ[2]  
SA_DQ[3]  
SA_DQ[4]  
SA_DQ[5]  
SA_DQ[6]  
SA_DQ[7]  
SA_DQ[8]  
SA_DQ[9]  
SA_DQ[10]  
SA_DQ[11]  
SA_DQ[12]  
SA_DQ[13]  
SA_DQ[14]  
SA_DQ[15]  
SA_DQ[16]  
SA_DQ[17]  
SA_DQ[18]  
SA_DQ[19]  
SA_DQ[20]  
SA_DQ[21]  
SA_DQ[22]  
SA_DQ[23]  
SA_DQ[24]  
SA_DQ[25]  
SA_DQ[26]  
SA_DQ[27]  
SA_DQ[28]  
SA_DQ[29]  
SA_DQ[30]  
SA_DQ[31]  
SA_DQ[32]  
SA_DQ[33]  
SA_DQ[34]  
SA_DQ[35]  
SA_DQ[36]  
SA_DQ[37]  
SA_DQ[38]  
SA_DQ[39]  
SA_DQ[40]  
SA_DQ[41]  
C5  
D5  
AG6  
AJ6  
AL6  
AL8  
DQ01  
DQ02  
DQ07  
DQ06  
DQ03  
DQ00  
DQ05  
DQ04  
DQ08  
DQ10  
DQ14  
DQ15  
DQ09  
DQ11  
DQ13  
DQ12  
DQ18  
DQ20  
DQ22  
DQ21  
DQ16  
DQ17  
DQ19  
DQ23  
DQ27  
DQ25  
DQ30  
DQ31  
DQ24  
DQ26  
DQ28  
DQ29  
DQ35  
DQ32  
DQ38  
DQ39  
DQ33  
DQ36  
DQ34  
DQ37  
DQ42  
DQ43  
SA_DQ[42]  
SA_DQ[43]  
SA_DQ[44]  
SA_DQ[45]  
SA_DQ[46]  
SA_DQ[47]  
SA_DQ[48]  
SA_DQ[49]  
SA_DQ[50]  
SA_DQ[51]  
SA_DQ[52]  
SA_DQ[53]  
SA_DQ[54]  
SA_DQ[55]  
SA_DQ[56]  
SA_DQ[57]  
SA_DQ[58]  
SA_DQ[59]  
SA_DQ[60]  
SA_DQ[61]  
SA_DQ[62]  
SA_DQ[63]  
AJ9  
AK9  
BB51  
AY53  
BB49  
AU49  
BA53  
BB55  
BA55  
AV56  
AP50  
AP53  
AV54  
AT54  
AP56  
AP52  
AN57  
AN53  
AG56  
AG53  
AN55  
AN52  
AG55  
AK56  
AW54  
AY55  
BD53  
BB53  
BE56  
BA56  
BD57  
BF61  
BA60  
BB61  
BE60  
BD63  
BB59  
BC58  
AW58  
AY59  
AL60  
AP61  
AW60  
AY57  
AN60  
AR60  
DQ44  
DQ47  
DQ41  
DQ40  
DQ46  
DQ45  
DQ51  
DQ50  
DQ53  
DQ52  
DQ49  
DQ48  
DQ54  
DQ55  
DQ58  
DQ56  
DQ60  
DQ61  
DQ57  
DQ59  
DQ63  
DQ62  
D3  
AP11  
AL6  
AP7  
AH8  
D2  
AM5  
AK7  
AH9  
D6  
AJ10  
AJ8  
AL9  
C6  
AL10  
AN10  
AM9  
AR10  
AR8  
AL8  
C2  
AL8  
AP11  
AN11  
AL12  
AM12  
AM11  
AL11  
AP12  
AN12  
AJ14  
AH14  
AL15  
AK15  
AL14  
AK14  
AJ15  
AH15  
C3  
AL7  
F10  
F8  
AR11  
AP6  
G10  
G9  
AU6  
AV7  
AV9  
AY5  
F9  
AR6  
AT5  
F7  
AP8  
AR6  
G8  
AT13  
AU13  
BC7  
AW6  
AT9  
G7  
K4  
BA6  
K5  
BB7  
BA8  
K1  
BA13  
BB11  
BA7  
BG6  
J1  
AY9  
J5  
AW8  
BB7  
J4  
BA9  
J2  
BB9  
BC8  
K2  
AY13  
AV14  
AR14  
AY17  
AR19  
BA14  
AU14  
BB14  
BB17  
BA45  
AR43  
AW48  
BC48  
BC45  
AR45  
AT48  
AY48  
BA49  
AV49  
BE4  
M8  
N10  
N8  
AW12  
AV11  
BB11  
BA12  
BE8  
N7  
M10  
M9  
N9  
BA10  
BD11  
BE12  
BB49  
AY49  
BE52  
BD51  
BD49  
BE48  
BA52  
AY51  
BC54  
AY53  
M7  
AG6  
AG5  
AK6  
AK5  
AH5  
AH6  
AJ5  
AJ6  
AJ8  
AK8  
168  
Datasheet, Volume 1  
DDR Data Swizzling  
Table 9-2. DDR Data Swizzling  
Table – Channel B  
Table 9-2. DDR Data Swizzling  
Table – Channel B  
Pin  
Number  
rPGA  
Pin  
Number  
BGA1023 BGA1224  
Pin  
Number  
MC  
Pin  
Name  
Pin  
Number  
rPGA  
Pin  
Number  
BGA1023 BGA1224  
Pin  
Number  
MC  
Pin  
Name  
Pin Name  
Pin Name  
SB_DQ[42]  
SB_DQ[43]  
SB_DQ[44]  
SB_DQ[45]  
SB_DQ[46]  
SB_DQ[47]  
SB_DQ[48]  
SB_DQ[49]  
SB_DQ[50]  
SB_DQ[51]  
SB_DQ[52]  
SB_DQ[53]  
SB_DQ[54]  
SB_DQ[55]  
SB_DQ[56]  
SB_DQ[57]  
SB_DQ[58]  
SB_DQ[59]  
SB_DQ[60]  
SB_DQ[61]  
SB_DQ[62]  
SB_DQ[63]  
AT5  
AT6  
BC59  
AY60  
BE54  
BG54  
BA58  
AW59  
AW58  
AU58  
AN61  
AN59  
AU59  
AU61  
AN58  
AR58  
AK58  
AL58  
AG58  
AG59  
AM60  
AL59  
AF61  
AH60  
BJ58  
BH59  
BJ54  
DQ47  
DQ46  
DQ40  
DQ42  
DQ45  
DQ41  
DQ51  
DQ49  
DQ52  
DQ48  
DQ53  
DQ50  
DQ55  
DQ54  
DQ56  
DQ58  
DQ61  
DQ62  
DQ57  
DQ59  
DQ63  
DQ60  
SB_DQ[0]  
SB_DQ[1]  
SB_DQ[2]  
SB_DQ[3]  
SB_DQ[4]  
SB_DQ[5]  
SB_DQ[6]  
SB_DQ[7]  
SB_DQ[8]  
SB_DQ[9]  
SB_DQ[10]  
SB_DQ[11]  
SB_DQ[12]  
SB_DQ[13]  
SB_DQ[14]  
SB_DQ[15]  
SB_DQ[16]  
SB_DQ[17]  
SB_DQ[18]  
SB_DQ[19]  
SB_DQ[20]  
SB_DQ[21]  
SB_DQ[22]  
SB_DQ[23]  
SB_DQ[24]  
SB_DQ[25]  
SB_DQ[26]  
SB_DQ[27]  
SB_DQ[28]  
SB_DQ[29]  
SB_DQ[30]  
SB_DQ[31]  
SB_DQ[32]  
SB_DQ[33]  
SB_DQ[34]  
SB_DQ[35]  
SB_DQ[36]  
SB_DQ[37]  
SB_DQ[38]  
SB_DQ[39]  
SB_DQ[40]  
SB_DQ[41]  
C9  
A7  
AL4  
AL1  
AL4  
AK3  
DQ03  
DQ02  
DQ05  
DQ04  
DQ00  
DQ01  
DQ06  
DQ07  
DQ11  
DQ10  
DQ12  
DQ14  
DQ08  
DQ09  
DQ13  
DQ15  
DQ19  
DQ18  
DQ20  
DQ22  
DQ17  
DQ16  
DQ21  
DQ23  
DQ25  
DQ30  
DQ29  
DQ28  
DQ24  
DQ31  
DQ27  
DQ26  
DQ36  
DQ38  
DQ34  
DQ35  
DQ39  
DQ37  
DQ33  
DQ32  
DQ44  
DQ43  
AP6  
D10  
C8  
AN3  
AP3  
AN8  
BG54  
BG58  
BF59  
BA64  
BC62  
AU62  
AW64  
BA62  
BC64  
AU64  
AW62  
AR64  
AT65  
AL64  
AM65  
AR62  
AT63  
AL62  
AM63  
AR4  
AR2  
AR6  
A9  
AK4  
AL2  
AR5  
A8  
AK3  
AK1  
AR9  
D9  
AN4  
AP1  
AJ11  
AT8  
D8  
AR1  
AR4  
G4  
F4  
AU4  
AV3  
AT9  
AT2  
AU4  
AH11  
AR8  
F1  
AV4  
BA4  
G1  
G5  
F5  
BA4  
BB1  
AJ12  
AH12  
AT11  
AN14  
AR14  
AT14  
AT12  
AN15  
AR15  
AT15  
AU3  
AV1  
AR3  
AU2  
F2  
AY2  
BA2  
G2  
J7  
BA3  
BB3  
BE9  
BC2  
J8  
BD9  
BF7  
K10  
K9  
BD13  
BF12  
BF8  
BF11  
BJ10  
BC4  
J9  
J10  
K8  
BD10  
BD14  
BE13  
BF16  
BE17  
BE18  
BE21  
BE14  
BG14  
BG18  
BF19  
BD50  
BF48  
BD53  
BF52  
BD49  
BE49  
BD54  
BE53  
BF56  
BE57  
BH7  
BH11  
BG10  
BJ14  
BG14  
BF17  
BJ18  
BF13  
BH13  
BH17  
BG18  
BH49  
BF47  
BH53  
BG50  
BF49  
BH47  
BF53  
BJ50  
BF55  
BH55  
K7  
M5  
N4  
N2  
N1  
M4  
N5  
§ §  
M2  
M1  
AM5  
AM6  
AR3  
AP3  
AN3  
AN2  
AN1  
AP2  
AP5  
AN9  
Datasheet, Volume 1  
169  
DDR Data Swizzling  
170  
Datasheet, Volume 1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY