BX80569Q9650/SLB8W [INTEL]

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775;
BX80569Q9650/SLB8W
型号: BX80569Q9650/SLB8W
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775

文件: 总104页 (文件大小:2811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Intel Core™2 Extreme Processor  
Δ
®
QX9000 Series, Intel Core™2 Quad  
Δ
Δ
Δ
Processor Q9000 , Q9000S , Q8000 ,  
and Q8000S Series  
Δ
Datasheet  
— on 45 nm process in the 775 land package  
August 2009  
Document Number: 318726-010  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY  
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH  
MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights  
that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any  
license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property  
rights.  
®
®
The Intel Core™2 Extreme processor QX9000 series and Intel Core™2 Quad processor Q9000, Q9000S, Q8000, and Q8000S  
series may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Δ
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor  
family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time  
processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not  
intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number  
progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.  
®
Intel 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers, and applications enabled  
for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary  
depending on your hardware and software configurations. See http://www.intel.com/info/em64t for more information including  
details on which processors support Intel 64, or consult with your system vendor for more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting  
operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
±
®
®
Intel Virtualization Technology requires a computer system with an enabled Intel processor, BIOS, virtual machine monitor  
(VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary  
depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible  
with all operating systems. Please check with your application vendor.  
No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires  
a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code  
Modules and an Intel TXT-compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor,  
an OS or an application. In addition, Intel TXT requires the system to contain a TPM v1.2, as defined by the Trusted Computing  
Group and specific software for some uses. For more information, see http://www.intel.com/technology/security/  
®
‡ Not all specified units of this processor support Enhanced Intel SpeedStep Technology. See the Processor Spec Finder at http:/  
/processorfinder.intel.com or contact your Intel representative for more information.  
Not all specified units of this processor support Thermal Monitor 2, Enhanced HALT State and Enhanced Intel SpeedStep®  
Technology. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more  
information.  
Intel, Pentium, Intel Core, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007–2009, Intel Corporation. All Rights Reserved.  
2
Datasheet  
Contents  
1
Introduction............................................................................................................ 11  
1.1  
Terminology ..................................................................................................... 12  
1.1.1 Processor Terminology Definitions ............................................................ 12  
References ....................................................................................................... 14  
1.2  
2
Electrical Specifications........................................................................................... 15  
2.1  
2.2  
Power and Ground Lands.................................................................................... 15  
Decoupling Guidelines........................................................................................ 15  
2.2.1 VCC Decoupling ..................................................................................... 15  
2.2.2 Vtt Decoupling....................................................................................... 15  
2.2.3 FSB Decoupling...................................................................................... 16  
Voltage Identification......................................................................................... 16  
Reserved, Unused, and TESTHI Signals ................................................................ 18  
Power Segment Identifier (PSID)......................................................................... 18  
Voltage and Current Specification........................................................................ 19  
2.6.1 Absolute Maximum and Minimum Ratings .................................................. 19  
2.6.2 DC Voltage and Current Specification........................................................ 20  
2.6.3 VCC Overshoot ...................................................................................... 25  
2.6.4 Die Voltage Validation............................................................................. 25  
Signaling Specifications...................................................................................... 26  
2.7.1 FSB Signal Groups.................................................................................. 26  
2.7.2 CMOS and Open Drain Signals ................................................................. 28  
2.7.3 Processor DC Specifications ..................................................................... 28  
2.7.3.1 Platform Environment Control Interface (PECI) DC Specifications..... 29  
2.7.3.2 GTL+ Front Side Bus Specifications ............................................. 30  
Clock Specifications........................................................................................... 31  
2.8.1 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking............................ 31  
2.8.2 FSB Frequency Select Signals (BSEL[2:0])................................................. 32  
2.8.3 Phase Lock Loop (PLL) and Filter .............................................................. 32  
2.8.4 BCLK[1:0] Specifications......................................................................... 32  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
3
Package Mechanical Specifications .......................................................................... 35  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Package Mechanical Drawing............................................................................... 35  
Processor Component Keep-Out Zones................................................................. 39  
Package Loading Specifications ........................................................................... 39  
Package Handling Guidelines............................................................................... 39  
Package Insertion Specifications.......................................................................... 40  
Processor Mass Specification............................................................................... 40  
Processor Materials............................................................................................ 40  
Processor Markings............................................................................................ 40  
4
5
Land Listing and Signal Descriptions ....................................................................... 43  
4.1  
4.2  
Processor Land Assignments............................................................................... 43  
Alphabetical Signals Reference............................................................................ 64  
Thermal Specifications and Design Considerations .................................................. 75  
5.1  
Processor Thermal Specifications......................................................................... 75  
5.1.1 Thermal Specifications ............................................................................ 75  
5.1.2 Thermal Metrology ................................................................................. 82  
Processor Thermal Features................................................................................ 82  
5.2.1 Thermal Monitor..................................................................................... 82  
5.2.2 Thermal Monitor 2.................................................................................. 83  
5.2  
Datasheet  
3
5.2.3 On-Demand Mode...................................................................................84  
5.2.4 PROCHOT# Signal ..................................................................................85  
5.2.5 THERMTRIP# Signal................................................................................85  
Platform Environment Control Interface (PECI) ......................................................86  
5.3.1 Introduction...........................................................................................86  
5.3.1.1 TCONTROL and TCC activation on PECI-Based Systems ..................86  
5.3.2 PECI Specifications .................................................................................87  
5.3.2.1 PECI Device Address..................................................................87  
5.3.2.2 PECI Command Support.............................................................87  
5.3.2.3 PECI Fault Handling Requirements...............................................87  
5.3.2.4 PECI GetTemp0() Error Code Support ..........................................87  
5.3  
6
Features ..................................................................................................................89  
6.1  
6.2  
Power-On Configuration Options ..........................................................................89  
Clock Control and Low Power States.....................................................................89  
6.2.1 Normal State .........................................................................................90  
6.2.2 HALT and Extended HALT Powerdown States ..............................................90  
6.2.2.1 HALT Powerdown State ..............................................................90  
6.2.2.2 Extended HALT Powerdown State ................................................91  
6.2.3 Stop Grant and Extended Stop Grant States...............................................91  
6.2.3.1 Stop-Grant State.......................................................................91  
6.2.3.2 Extended Stop Grant State.........................................................92  
6.2.4 Extended HALT Snoop State, HALT Snoop State, Extended  
Stop Grant Snoop State, and Stop Grant Snoop State..................................92  
6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................92  
6.2.4.2 Extended HALT Snoop State, Extended Stop Grant Snoop State.......92  
6.2.5 Sleep State............................................................................................92  
6.2.6 Deep Sleep State....................................................................................93  
6.2.7 Deeper Sleep State.................................................................................93  
6.2.8 Enhanced Intel SpeedStep® Technology ....................................................94  
Processor Power Status Indicator (PSI) Signal .......................................................94  
6.3  
7
Boxed Processor Specifications................................................................................95  
7.1  
7.2  
Introduction......................................................................................................95  
Mechanical Specifications....................................................................................96  
7.2.1 Boxed Processor Cooling Solution Dimensions.............................................96  
7.2.2 Boxed Processor Fan Heatsink Weight .......................................................97  
7.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....97  
Electrical Requirements ......................................................................................97  
7.3.1 Fan Heatsink Power Supply ......................................................................97  
Thermal Specifications........................................................................................99  
7.4.1 Boxed Processor Cooling Requirements......................................................99  
7.4.2 Variable Speed Fan...............................................................................100  
Boxed Intel® Core™2 Extreme Processor QX9650 Specifications ............................101  
7.5.1 Boxed Intel® Core™2 Extreme Processor QX9650 Fan Heatsink Weight........102  
7.3  
7.4  
7.5  
8
Debug Tools Specifications ....................................................................................105  
8.1  
Logic Analyzer Interface (LAI) ...........................................................................105  
8.1.1 Mechanical Considerations .....................................................................105  
8.1.2 Electrical Considerations........................................................................105  
4
Datasheet  
Figures  
2-1  
2-2  
2-3  
2-4  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
4-1  
4-2  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
6-1  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
VCC Static and Transient Tolerance......................................................................... 24  
VCC Overshoot Example Waveform......................................................................... 25  
Differential Clock Waveform .................................................................................. 34  
Measurement Points for Differential Clock Waveforms............................................... 34  
Processor Package Assembly Sketch....................................................................... 35  
Processor Package Drawing (Sheet 1 of 3) .............................................................. 36  
Processor Package Drawing (Sheet 2 of 3) .............................................................. 37  
Processor Package Drawing (Sheet 3 of 3) .............................................................. 38  
Processor Top-Side Markings Example (Intel® Core™2 Extreme Processor QX9650)...... 40  
Processor Top-Side Markings Example (Intel® Core™2 Quad Processor Q9000 Series) .. 41  
Processor Land Coordinates and Quadrants, Top View............................................... 42  
land-out Diagram (Top View – Left Side)................................................................. 44  
land-out Diagram (Top View – Right Side)............................................................... 45  
Intel® Core™2 Extreme Processor QX9770 Thermal Profile........................................ 78  
Intel® Core™2 Extreme Processor QX9650 Thermal Profile........................................ 79  
Intel® Core™2 Quad Processor Q9000 and Q8000 Series Thermal Profile .................... 80  
Intel® Core™2 Quad Processor Q9000S and Q8000S Series Thermal Profile................. 81  
Case Temperature (TC) Measurement Location ........................................................ 82  
Thermal Monitor 2 Frequency and Voltage Ordering.................................................. 84  
Conceptual Fan Control Diagram on PECI-Based Platforms ........................................ 86  
Processor Low Power State Machine ....................................................................... 90  
Mechanical Representation of the Boxed Processor ................................................... 95  
Space Requirements for the Boxed Processor (side view) .......................................... 96  
Space Requirements for the Boxed Processor (top view) ........................................... 96  
Space Requirements for the Boxed Processor (overall view) ...................................... 97  
Boxed Processor Fan Heatsink Power Cable Connector Description.............................. 98  
Baseboard Power Header Placement Relative to Processor Socket............................... 98  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ............... 99  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view) ............... 99  
Boxed Processor Fan Heatsink Set Points .............................................................. 100  
Space Requirements for the Boxed Processor (side view) ........................................ 102  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ............. 102  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view) ............. 103  
Datasheet  
5
Tables  
1-1  
References..........................................................................................................14  
Voltage Identification Definition..............................................................................17  
Absolute Maximum and Minimum Ratings................................................................19  
Voltage and Current Specifications .........................................................................20  
VCC Static and Transient Tolerance .........................................................................23  
VCC Overshoot Specifications .................................................................................25  
FSB Signal Groups................................................................................................26  
Signal Characteristics ...........................................................................................27  
Signal Reference Voltages .....................................................................................27  
GTL+ Signal Group DC Specifications......................................................................28  
Open Drain and TAP Output Signal Group DC Specifications .......................................28  
CMOS Signal Group DC Specifications .....................................................................29  
PECI DC Electrical Limits .......................................................................................30  
GTL+ Bus Resistance Definitions ............................................................................30  
Core Frequency to FSB Multiplier Configuration ........................................................31  
BSEL[2:0] Frequency Table for BCLK[1:0]...............................................................32  
Front Side Bus Differential BCLK Specifications.........................................................32  
FSB Differential Clock Specifications (1600 MHz FSB)................................................33  
FSB Differential Clock Specifications (1333 MHz FSB)................................................33  
Processor Loading Specifications ............................................................................39  
Package Handling Guidelines..................................................................................39  
Processor Materials...............................................................................................40  
Alphabetical Land Assignments ..............................................................................46  
Numerical Land Assignment...................................................................................55  
Signal Description ................................................................................................64  
Processor Thermal Specifications............................................................................76  
Intel® Core™2 Extreme Processor QX9770 Thermal Profile ........................................78  
Intel® Core™2 Extreme Processor QX9650 Thermal Profile ........................................79  
Intel® Core™2 Quad Processor Q9000 and Q8000 Series Thermal Profile.....................80  
Intel® Core™2 Quad Processor Q9000S and Q8000S Series Thermal Profile.................81  
GetTemp0() Error Codes .......................................................................................87  
Power-On Configuration Option Signals ...................................................................89  
Fan Heatsink Power and Signal Specifications...........................................................98  
Fan Heatsink Power and Signal Specifications.........................................................100  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
2-17  
2-18  
3-1  
3-2  
3-3  
4-1  
4-2  
4-3  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
6-1  
7-1  
7-2  
6
Datasheet  
Revision History  
Revision  
Number  
Description  
Revision Date  
-001  
-002  
• Initial release  
November 2007  
January 2008  
• Added Intel® Core™2 Quad processors Q9550, Q9450, and Q9300  
• Added 1600 MHz FSB  
• Added Intel® Core™2 Extreme processor QX9770  
-003  
March 2008  
• Added Intel® Core™2 Quad processors Q9650 and Q9400  
• Added PSI# signal  
-004  
August 2008  
• Updated Sections 6.2.3, 6.2.4, 6.2.5, 6.2.6, 6.2.7, and 6.3  
• Updated FSB termination voltage in Table 2-3  
-005  
-006  
• Added Intel® Core™2 Quad processor Q8200  
• Added Intel® Core™2 Quad processor Q8300  
August 2008  
December 2008  
• Added Intel® Core™2 Quad processor Q9000S and Q8000S series – Q9550S,  
Q9400S, and Q8200S.  
• Added Intel® Core™2 Quad processors Q8400 and Q8400S  
• Corrected list of Intel® VT supported processors: Intel® Core™2 Quad  
processors Q8400 and Q8400S  
• Added Intel® Core™2 Quad processors Q9505 and Q9505S  
-007  
-008  
-009  
-010  
January 2009  
April 2009  
May 2009  
August 2009  
§
Datasheet  
7
8
Datasheet  
Intel® Core™2 Extreme Processor QX9000 Series and  
Intel® Core™2 Quad Processor Q9000, Q9000S, Q8000,  
Q8000S Series Features  
• Available at 3.20 GHz and 3.00 GHz (Intel®  
Core™2 Extreme processor QX9000 series)  
• Available at 3.0 GHz, 2.83 GHz, 2.66 GHz,  
and 2.50 GHz (Intel® Core™2 Quad  
processor Q9650, Q9550, Q9505, Q9450,  
Q9400, and Q9300)  
• Available at 2,66 GHz, 2.50 GHz and  
2.33 GHz (Intel® Core™2 Quad processor  
Q8400, Q8300, and Q8200)  
• Available at 2.83 GHz and 2.66 GHz (Intel®  
Core™2 Quad processor Q9550S, Q9505S,  
and Q9400S)  
• Available at 2.66 GHz and 2.33 GHz (Intel®  
Core™2 Quad processor Q8400S and  
Q8200S)  
• FSB frequency at 1333 MHz (Intel® Core™2  
Extreme processor QX9650, Intel® Core™2  
Quad Q9000, Q9000S, Q8000, and Q8000S  
series only)  
• Binary compatible with applications running  
on previous members of the Intel  
microprocessor line  
• Supports Execute Disable Bit capability  
• Intel® Wide Dynamic Execution  
• Intel® Advanced Smart Cache  
• Intel® Smart Memory Access  
• Intel® Intelligent Power Capability  
• Intel® Advanced Digital Media Boost  
• Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
Two 6 MB Level 2 caches (Intel® Core™2  
Extreme processor QX9000 series, Intel®  
Core™2 Quad processor Q9650, Q9550,  
Q9550S, and Q9450)  
Two 4 MB Level 2 caches (Intel® Core™2  
Quad processor Q9505, Q9505S, Q8400,  
and Q8400S)  
Two 3 MB Level 2 caches (Intel® Core™2  
Quad processor Q9400, Q9400S, and  
Q9300)  
Two 2 MB Level 2 caches (Intel® Core™2  
Quad processor Q8200, Q8200S, and  
Q8300)  
• Intel® HD Boost utilizing new SSE4  
instructions for improved multimedia  
performance, especially for video encoding  
and photo processing  
• FSB frequency at 1600 MHz (Intel® Core™2  
Extreme processor QX9770 only)  
• Enhanced Intel SpeedStep® Technology  
• Supports Intel® 64Φ architecture  
• Supports Intel® Virtualization Technology  
(Intel® Core™2 Extreme processor QX9650,  
Intel® Core™2 Quad processor Q9000 and  
Q9000S series, Intel® Core™2 Quad  
processors Q8400 and Q8400S only)  
• Supports Intel® Trusted Execution  
Technology (Intel® Core™2 Quad processor  
Q9000 and Q9000S series only)  
• System Management mode  
• 12-way cache associativity provides  
improved cache hit rate on load/store  
operations  
• Low power processor (Intel® Core™2 Quad  
processor Q9000S and Q8000S series only)  
• 775-land Package  
The Intel Core™2 Extreme processor QX9000 series and Intel® Core™2 Quad processor Q9000,  
Q9000S, Q8000, and Q8000S series deliver Intel's advanced, powerful processors for desktop PCs.  
The processor is designed to deliver performance across applications and usages where end-users can  
truly appreciate and experience the performance. These applications include Internet audio and  
streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and  
multitasking user environments.  
Intel® 64Φ architecture enables the processor to execute operating systems and applications written  
to take advantage of the Intel 64 architecture. The processor, supporting Enhanced Intel Speedstep®  
technology, allows tradeoffs to be made between performance and power consumption.  
The Intel Core™2 Extreme processor QX9000 series, Intel® Core™2 Quad processor Q9000, Q9000S,  
Q8000, and Q8000S series also includes the Execute Disable Bit capability. This feature, combined  
with a supported operating system, allows memory to be marked as executable or non-executable.  
Datasheet  
9
The Intel Core™2 Extreme processor QX9000 series, Intel® Core™2 Quad processor Q9000 and  
Q9000S series, and Intel® Core™2 Quad processors Q8400 and Q8400S support Intel® Virtualization  
Technology. Virtualization Technology provides silicon-based functionality that works together with  
compatible Virtual Machine Monitor (VMM) software to improve on software-only solutions.  
The Intel® Core™2 Quad processor Q9000 and Q9000S series support Intel® Trusted Execution  
Technology (Intel® TXT). Intel® TXT is a key element in Intel's safer computing initiative that defines  
a set of hardware enhancements that operate with an Intel TXT enabled operating system to help  
protect against software-based attacks. It creates a hardware foundation that builds on Intel's  
Virtualization Technology to help protect the confidentiality and integrity of data stored/created on the  
client PC.  
§ §  
10  
Datasheet  
Introduction  
1 Introduction  
The Intel® Core™2 Extreme processor QX9000 series and Intel® Core™2 Quad  
processor Q9000, Q9000S, Q8000, and Q8000S series are based on the Enhanced  
Intel® Core™ microarchitecture. The Enhanced Intel Core microarchitecture combines  
the performance of previous generation Desktop products with the power efficiencies of  
a low-power microarchitecture to enable smaller, quieter systems. The Intel® Core™2  
Extreme processor QX9000 series and Intel® Core™2 Quad processor Q9000, Q9000S,  
Q8000, and Q8000S series are 64-bit processors that maintains compatibility with IA-  
32 software.  
The processors use a Flip-Chip Land Grid Array (FC-LGA6) package technology, and  
plugs into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the  
LGA775 socket.  
Note:  
Note:  
In this document, the Intel® Core™2 Extreme processor QX9000 series and the Intel®  
Core™2 Quad processor Q9000, Q9000S, Q8000, and Q8000S series may be referred  
to simply as "the processor."  
The following products are covered in this document:  
• The Intel® Core™2 Extreme processor QX9000 series refers to the QX9770 and  
QX9650.  
• The Intel® Core™2 Quad processor Q9000 series refers to the Q9650, Q9550,  
Q9505, Q9450, Q9400, and Q9300.  
• The Intel® Core™2 Quad processor Q9000S series refers to the Q9550S, Q9505S,  
and Q9400S.  
• The Intel® Core™2 Quad processor Q8000 series refers to the Q8200, Q8300,  
Q8400.  
• The Intel® Core™2 Quad processor Q8000S series refers to the Q8200S and  
Q8400S.  
The processor is based on 45 nm process technology. The processor features the Intel®  
Advanced Smart Cache, a shared multi-core optimized cache that significantly reduces  
latency to frequently used data. The processors feature 1600 MHz and 1333 MHz front  
side bus (FSB) frequencies.The processors also feature two independent but shared  
12 MB of L2 cache (2x6M), two independent but shared 8 MB of L2 cache (2x4M), two  
independent but shared 6 MB of L2 cache (2x3M) or two independent but shared 4 MB  
of L2 caches (2x2M).  
The processor supports all the existing Streaming SIMD Extensions 2 (SSE2),  
Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD Extension 3  
(SSSE3), and the Streaming SIMD Extensions 4.1 (SSE4.1). The processor supports  
several Advanced Technologies: Execute Disable Bit, Intel® 64 architecture (Intel® 64),  
and Enhanced Intel SpeedStep® Technology. In addition, the Intel® Core™2 Extreme  
processor QX9000 series, Intel® Core™2 Quad processor Q9000 and Q9000S series,  
and Intel® Core™2 Quad processors Q8400 and Q8400S support Intel® Virtualization  
Technology (Intel® VT). Further, the Intel® Core™2 Quad processor Q9000 and  
Q9000S series support Intel® Trusted Execution Technology (Intel® TXT).  
The processor's front side bus (FSB) uses a split-transaction, deferred reply protocol.  
The FSB uses Source-Synchronous Transfer of address and data to improve  
performance by transferring data four times per bus clock (4X data transfer rate).  
Along with the 4X data bus, the address bus can deliver addresses two times per bus  
clock and is referred to as a "double-clocked" or 2X address bus. Working together, the  
4X data bus and 2X address bus provide a data bus bandwidth of up to 12.4 GB/s.  
Datasheet  
11  
Introduction  
The processor uses some of the infrastructure already enabled by 775_VR_CONFIG_05  
platforms including heatsink, heatsink retention mechanism, and socket.  
Manufacturability is a high priority; hence, mechanical assembly may be completed  
from the top of the baseboard and should not require any special tooling.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in  
the active state when driven to a low level. For example, when RESET# is low, a reset  
has been requested. Conversely, when NMI is high, a nonmaskable interrupt has  
occurred. In the case of signals where the name does not imply an active state but  
describes part of a binary sequence (such as address or data), the ‘#’ symbol implies  
that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A, and  
D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).  
“Front Side Bus” refers to the interface between the processor and system core logic  
(a.k.a. the chipset components). The FSB is a multiprocessing interface to processors,  
memory, and I/O.  
1.1.1  
Processor Terminology Definitions  
Commonly used terms are explained here for clarification:  
Intel® Core™2 Extreme processor QX9000 series — Quad core Extreme  
Edition processor in the FC-LGA6 package with two 6 MB L2 cache.  
Intel® Core™2 Quad processor Q9000 series — Quad core processor in the FC-  
LGA8 package with two 6 MB L2 caches or two 3 MB L2 caches.  
Intel® Core™2 Quad processor Q8000 Series — Quad core processor in the  
FC-LGA8 package with two 4 MB L2 caches or two 2 MB L2 caches..  
Intel® Core™2 Quad processor Q9000S series — Low power Quad core  
processor in the FC-LGA8 package with two 6 MB L2 caches or two 3 MB L2 caches.  
Intel® Core™2 Quad Processor Q8000S Series — Low power Quad core  
processor in the FC-LGA8 package with two 4 MB L2 caches or two 2 MB L2 caches  
caches.  
Processor — For this document, the term processor is the generic form of the  
Intel® Core™2 Extreme processor QX9000 series, the Intel® Core™2 Quad  
processor Q9000, Q9000S, Q8000, and Q8000S series.  
Enhanced Intel® CoreTM microarchitecture — A new foundation for Intel®  
architecture-based desktop, mobile and mainstream server multi-core processors.  
For additional information refer to: http://www.intel.com/technology/architecture/  
coremicro/  
Keep-out zone — The area on or near the processor that system design can not  
utilize.  
Processor core — Processor die with integrated L2 cache.  
LGA775 socket — The processor mates with the system board through a surface  
mount, 775-land, LGA socket.  
Integrated heat spreader (IHS) —A component of the processor package used  
to enhance the thermal performance of the package. Component thermal solutions  
interface with the processor at the IHS surface.  
Retention mechanism (RM) — Since the LGA775 socket does not include any  
mechanical features for heatsink attach, a retention mechanism is required.  
Component thermal solutions should attach to the processor via a retention  
mechanism that is independent of the socket.  
FSB (Front Side Bus) — The electrical interface that connects the processor to  
the chipset. Also referred to as the processor system bus or the system bus. All  
12  
Datasheet  
Introduction  
memory and I/O transactions as well as interrupt messages pass between the  
processor and chipset over the FSB.  
Storage conditions — Refers to a non-operational state. The processor may be  
installed in a platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased, or receive any clocks.  
Upon exposure to “free air”(i.e., unsealed packaging or a device removed from  
packaging material) the processor must be handled in accordance with moisture  
sensitivity labeling (MSL) as indicated on the packaging material.  
Functional operation — Refers to normal operating conditions in which all  
processor specifications, including DC, AC, system bus, signal quality, mechanical  
and thermal are satisfied.  
Execute Disable Bit — Allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code attempts  
to run in non-executable memory the processor raises an error to the operating  
system. This feature can prevent some classes of viruses or worms that exploit  
buffer over run vulnerabilities and can thus help improve the overall security of the  
system. See the Intel® Architecture Software Developer's Manual for more detailed  
information.  
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing  
the processor to execute operating systems and applications written to take  
advantage of Intel 64 architecture. Further details on Intel 64 architecture and  
programming model can be found in the Software Developer Guide at http://  
developer.intel.com/technology/64bitextensions/.  
Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep  
Technology allows trade-offs to be made between performance and power  
consumptions, based on processor utilization. This may lower average power  
consumption (in conjunction with OS support).  
Intel® Virtualization Technology (Intel® VT) — A set of hardware  
enhancements to Intel server and client platforms that can improve virtualization  
solutions. Intel VT will provide a foundation for widely-deployed virtualization  
solutions and enables more robust hardware assisted virtualization solutions. More  
information can be found at: http://www.intel.com/technology/virtualization/  
Intel® Trusted Execution Technology (Intel® TXT)— Intel® Trusted Execution  
Technology (Intel® TXT) is a security technology by Intel and requires for operation  
a computer system with Intel® Virtualization Technology, a Intel Trusted Execution  
Technology-enabled Intel processor, chipset, BIOS, Authenticated Code Modules,  
and an Intel or other Intel Trusted Execution Technology compatible measured  
virtual machine monitor. In addition, Intel Trusted Execution Technology requires  
the system to contain a TPMv1.2 as defined by the Trusted Computing Group and  
specific software for some uses.  
Platform Environment Control Interface (PECI) — A proprietary one-wire bus  
interface that provides a communication channel between the processor and  
chipset components to external monitoring devices.  
Datasheet  
13  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document.  
Table 1-1.  
References  
Document  
Location  
Intel® Core™2 Extreme Processor QX9000 Series, Intel® Core™2 http://www.intel.com/  
Quad Processor Q9000, Q9000S, Q8000, and Q8000S Series  
Specification Update  
design/processor/specupdt/  
318727.htm  
http://www.intel.com/  
design/processor/designex/  
315594.htm  
Intel® Core™2 Extreme Processor and Intel® Core™2 Quad  
Processor Thermal and Mechanical Design Guidelines  
Intel® Core™2 Extreme Processor QX6800 and Intel® Core™2  
Extreme Processor QX9770 Thermal and Mechanical Design  
Guidelines  
http://www.intel.com/  
design/processor/designex/  
316854.htm  
http://www.intel.com/  
design/processor/applnots/  
313214.htm  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery  
Design Guidelines For Desktop LGA775 Socket  
Balanced Technology Extended (BTX) System Design Guide  
LGA775 Socket Mechanical Design Guide  
www.formfactors.org  
http://intel.com/design/  
Pentium4/guides/  
302666.htm  
Intel® 64 and IA-32 Intel Architecture Software Developer's  
Manuals  
Volume 1: Basic Architecture  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
http://www.intel.com/  
products/processor/  
manuals/  
§
14  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and  
signals. DC electrical characteristics are provided.  
2.1  
Power and Ground Lands  
The processor has VCC (power), VTT, and VSS (ground) inputs for on-chip power  
distribution. All power lands must be connected to VCC, while all VSS lands must be  
connected to a system ground plane. The processor VCC lands must be supplied the  
voltage determined by the Voltage IDentification (VID) lands.  
The signals denoted as VTT provide termination for the front side bus and power to the  
I/O buffers. A separate supply must be implemented for these lands that meets the VTT  
specifications outlined in Table 2-3.  
2.2  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is  
capable of generating large current swings. This may cause voltages on power planes  
to sag below their minimum specified values if bulk decoupling is not adequate. Larger  
bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply  
current during longer lasting changes in current demand by the component, such as  
coming out of an idle condition. Similarly, they act as a storage well for current when  
entering an idle condition from a running condition. The motherboard must be designed  
to ensure that the voltage provided to the processor remains within the specifications  
listed in Table 2-3. Failure to do so can result in timing violations or reduced lifetime of  
the component.  
2.2.1  
2.2.2  
V
Decoupling  
CC  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the  
processor voltage specifications. This includes bulk capacitance with low effective series  
resistance (ESR) to keep the voltage rail within specifications during large swings in  
load current. In addition, ceramic decoupling capacitors are required to filter high  
frequency content generated by the front side bus and processor activity. Consult the  
Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket.  
VTT Decoupling  
Decoupling must be provided on the motherboard. Decoupling solutions must be sized  
to meet the expected load. To ensure compliance with the specifications, various  
factors associated with the power delivery solution must be considered including  
regulator type, power plane and trace sizing, and component placement. A  
conservative decoupling solution would consist of a combination of low ESR bulk  
capacitors and high frequency ceramic capacitors.  
Datasheet  
15  
Electrical Specifications  
2.2.3  
FSB Decoupling  
The processor integrates signal termination on the die. In addition, some of the high  
frequency capacitance required for the FSB is included on the processor package.  
However, additional high frequency capacitance must be added to the motherboard to  
properly decouple the return currents from the front side bus. Bulk decoupling must  
also be provided by the motherboard for proper [A]GTL+ bus operation.  
2.3  
Voltage Identification  
The Voltage Identification (VID) specification for the processor is defined by the Voltage  
Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop  
LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage  
to be delivered to the processor VCC lands (see Chapter 2.6.3 for VCC overshoot  
specifications). Refer to Table 2-11 for the DC specifications for these signals. Voltages  
for each processor frequency is provided in Table 2-3.  
Note:  
To support the Deeper Sleep State the platform must use a VRD 11.1 compliant  
solution. The Deeper Sleep State also requires additional platform support. For further  
information on Voltage Regulator-Down solutions, contact your Intel field  
representative.  
Individual processor VID values may be calibrated during manufacturing such that two  
devices at the same core speed may have different default VID settings. This is  
reflected by the VID Range values provided in Table 2-3. Refer to the Intel® Core™2  
Extreme Processor QX9000 Series and Intel® Core™2 Quad Processor Q9000, Q9000S,  
Q8000, and Q8000S Series Specification Update for further details on specific valid core  
frequency and VID values of the processor. Note that this differs from the VID  
employed by the processor during a power management event (Thermal Monitor 2,  
Enhanced Intel SpeedStep® technology, or Extended HALT State).  
The processor uses eight voltage identification signals, VID[7:0], to support automatic  
selection of power supply voltages. Table 2-1 specifies the voltage level corresponding  
to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers  
to a low voltage level. If the processor socket is empty (VID[7:0] = 11111110), or the  
voltage regulation circuit cannot supply the voltage that is requested, it must disable  
itself. The processor provides the ability to operate while transitioning to an adjacent  
VID and its associated processor core voltage (VCC). This will represent a DC shift in  
the load line. It should be noted that a low-to-high or high-to-low voltage state change  
may result in as many VID transitions as necessary to reach the target core voltage.  
Transitions above the specified VID are not permitted. Table 2-3 includes VID step sizes  
and DC shift ranges. Minimum and maximum voltages must be maintained as shown in  
Table 2-4 and Figure 2-1as measured across the VCC_SENSE and VSS_SENSE lands.  
The VRM or VRD used must be capable of regulating its output to the value defined by  
the new VID. DC specifications for dynamic VID transitions are included in Table 2-3  
and Table 2-4. Refer to the Voltage Regulator Design Guide for further details.  
16  
Datasheet  
Electrical Specifications  
Table 2-1.  
Voltage Identification Definition  
VID VID VID VID VID VID VID VID  
VID VID VID VID VID VID VID VID  
Voltage  
Voltage  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OFF  
1.6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.0375  
1.025  
1.0125  
1
1.5875  
1.575  
1.5625  
1.55  
0.9875  
0.975  
0.9625  
0.95  
1.5375  
1.525  
1.5125  
1.5  
0.9375  
0.925  
0.9125  
0.9  
1.4875  
1.475  
1.4625  
1.45  
0.8875  
0.875  
0.8625  
0.85  
1.4375  
1.425  
1.4125  
1.4  
0.8375  
0.825  
0.8125  
0.8  
1.3875  
1.375  
1.3625  
1.35  
0.7875  
0.775  
0.7625  
0.75  
1.3375  
1.325  
1.3125  
1.3  
0.7375  
0.725  
0.7125  
0.7  
1.2875  
1.275  
1.2625  
1.25  
0.6875  
0.675  
0.6625  
0.65  
1.2375  
1.225  
1.2125  
1.2  
0.6375  
0.625  
0.6125  
0.6  
1.1875  
1.175  
1.1625  
1.15  
0.5875  
0.575  
0.5625  
0.55  
1.1375  
1.125  
1.1125  
1.1  
0.5375  
0.525  
0.5125  
0.5  
1.0875  
1.075  
1.0625  
1.05  
OFF  
Datasheet  
17  
Electrical Specifications  
2.4  
Reserved, Unused, and TESTHI Signals  
All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS,  
VTT, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Chapter 4 for a land listing of the  
processor and the location of all RESERVED lands.  
In a system level design, on-die termination has been included by the processor to  
allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects as GTL+ termination is provided on the processor silicon.  
However, see Table 2-6 for details on GTL+ signals that do not include on-die  
termination.  
Unused active high inputs, should be connected through a resistor to ground (VSS).  
Unused outputs can be left unconnected, however this may interfere with some TAP  
functions, complicate debug probing, and prevent boundary scan testing. A resistor  
must be used when tying bidirectional signals to power or ground. When tying any  
signal to power or ground, a resistor will also allow for system testability. Resistor  
values should be within ± 20% of the impedance of the motherboard trace for front  
side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). For details, see Table 2-13.  
TAP and CMOS signals do not include on-die termination. Inputs and used outputs must  
be terminated on the motherboard. Unused outputs may be terminated on the  
motherboard or left unconnected. Note that leaving unused outputs unterminated may  
interfere with some TAP functions, complicate debug probing, and prevent boundary  
scan testing.  
All TESTHI[10:7:0] lands should be individually connected to VTT via a pull-up resistor  
which matches the nominal trace impedance.  
The TESTHI signals may use individual pull-up resistors or be grouped together as  
detailed below. A matched resistor must be used for each group:  
• TESTHI[1:0]  
• TESTHI[7:2]  
• TESTHI10 – cannot be grouped with other TESTHI signals  
Terminating multiple TESTHI pins together with a single pull-up resistor is not  
recommended for designs supporting boundary scan for proper Boundary Scan testing  
of the TESTHI signals. For optimum noise margin, all pull-up resistor values used for  
TESTHI[10,7:0] lands should have a resistance value within ± 20% of the impedance  
of the board transmission line traces. For example, if the nominal trace impedance is  
50 Ω, then a value between 40 Ω and 60 Ω should be used.  
2.5  
Power Segment Identifier (PSID)  
Power Segment Identifier (PSID) is a mechanism to prevent booting under mismatched  
power requirement situations. The PSID mechanism enables BIOS to detect if the  
processor in use requires more power than the platform voltage regulator (VR) is  
capable of supplying. For example, a 130 W TDP processor installed in a board with a  
65 W or 95 W TDP capable VR may draw too much power and cause a potential VR  
issue.  
18  
Datasheet  
Electrical Specifications  
2.6  
Voltage and Current Specification  
2.6.1  
Absolute Maximum and Minimum Ratings  
Table 2-2 specifies absolute maximum and minimum ratings only and lie outside the  
functional limits of the processor. Within functional operation limits, functionality and  
long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long-term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function, or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 2-2.  
Absolute Maximum and Minimum Ratings  
Symbol  
VCC  
Parameter  
Min  
Max  
Unit Notes1, 2  
Core voltage with respect to  
VSS  
–0.3  
1.45  
V
V
-
FSB termination voltage with  
respect to VSS  
VTT  
–0.3  
See Section 5  
–40  
1.45  
-
-
See  
Section 5  
TCASE  
Processor case temperature  
°C  
°C  
Processor storage  
temperature  
TSTORAGE  
85  
3, 4, 5  
NOTES:  
1.  
2.  
3.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
Excessive overshoot or undershoot on any signal will likely result in permanent damage to  
the processor.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits will not affect the long-term reliability of the device. For  
functional operation, refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
4.  
5.  
Datasheet  
19  
Electrical Specifications  
2.6.2  
DC Voltage and Current Specification  
Table 2-3.  
Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
1.3625  
Unit Notes2, 10  
VID Range  
VID  
0.8500  
V
1
Processor Number  
V
QX9770  
3.20 GHz (12 MB Cache)  
VCC for  
Processor Number  
775_VR_CONFIG_05B:  
V
QX9650  
3.00 GHz (12 MB Cache)  
Processor Number  
VCC for  
775_VR_CONFIG_05A:  
Q9650  
Q9550  
Q9550S  
Q9505  
Q9505S  
Q9450  
Q9400  
Q9400S  
Q9300  
Q8400  
Q8300  
Q8200  
Q8400S  
Q8200S  
3.0 GHz (12 MB Cache)  
2.83 GHz (12 MB Cache)  
2.83 GHz (12 MB Cache)  
2.83 GHz (8 MB Cache)  
2.83 GHz (8 MB Cache)  
2.66 GHz (12 MB Cache)  
2.66 GHz (6 MB Cache)  
2.66 GHz (6 MB Cache)  
2.50 GHz (6 MB Cache)  
2.66 GHz (8 MB Cache)  
2.50 GHz (4 MB Cache)  
2.33 GHz (4 MB Cache)  
2.66 GHz (8 MB Cache)  
2.33 GHz (4 MB Cache)  
Refer to Table 2-4 and  
Figure 2-1  
VCC Core  
3, 4, 5  
V
VCC_BOOT  
VCCPLL  
Default VCC voltage for initial power up  
PLL VCC  
1.10  
1.50  
V
- 5%  
+ 5%  
20  
Datasheet  
Electrical Specifications  
Table 2-3.  
Symbol  
Voltage and Current Specifications  
Parameter  
Processor Number  
Min  
Typ  
Max  
Unit Notes2, 10  
A
3.20 GHz (12 MB Cache)  
Processor Number ICC for  
775_VR_CONFIG_05B:  
3.00 GHz (12 MB Cache)  
Processor Number ICC for  
775_VR_CONFIG_05A:  
140  
125  
QX9770  
A
QX9650  
Q9650  
Q9550  
Q9550S  
Q9505  
Q9505S  
Q9450  
Q9400  
Q9400S  
Q9300  
Q8400  
Q8300  
Q8200  
Q8400S  
Q8200S  
3.0 GHz (12 MB Cache)  
2.83 GHz (12 MB Cache)  
2.83 GHz (12 MB Cache)  
2.83 GHz (8 MB Cache)  
2.83 GHz (8 MB Cache)  
2.66 GHz (12 MB Cache)  
2.66 GHz (6 MB Cache)  
2.66 GHz (6 MB Cache)  
2.50 GHz (6 MB Cache)  
2.66 GHz (8 MB Cache)  
2.50 GHz (4 MB Cache)  
2.33 GHz (4 MB Cache)  
2.66 GHz (8 MB Cache)  
2.33 GHz (4 MB Cache)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
ICC  
6
A
on Intel® 3 series  
Chipset family boards  
on Intel® 4 series  
Chipset family boards  
FSB termination  
voltage  
1.045  
1.14  
1.1  
1.2  
1.155  
1.26  
VTT  
V
8, 9  
(DC + AC  
specifications)  
VTT_OUT_LEFT  
and  
DC Current that may be drawn from  
580  
mA  
A
VTT_OUT_RIGHT VTT_OUT_LEFT and VTT_OUT_RIGHT per land  
ICC  
ICC for VTT supply before VCC stable  
8.0  
7.0  
ITT  
9
ICC for VTT supply after VCC stable  
ICC_VCCPLL  
ICC_GTLREF  
I
CC for PLL land  
260  
200  
mA  
µA  
ICC for GTLREF  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID),  
which is set at manufacturing and can not be altered. Individual maximum VID values are  
calibrated during manufacturing such that two processors at the same frequency may have  
different settings within the VID range. Note that this differs from the VID employed by the  
processor during a power management event (Thermal Monitor 2, Enhanced Intel  
SpeedStep® Technology, or Extended HALT State).  
2.  
3.  
4.  
Unless otherwise noted, all specifications in this table are based on estimates and  
simulations or empirical data. These specifications will be updated with characterized data  
from silicon measurements at a later date.  
These voltages are targets only. A variable voltage source should exist on systems in the  
event that a different voltage is required. See Section 2.3 and Table 2-1 for more  
information.  
The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE  
lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe  
Datasheet  
21  
Electrical Specifications  
capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the  
probe should be less than 5 mm. Ensure external noise from the system is not coupled into  
the oscilloscope probe.  
5.  
Refer to Table 2-4 and Figure 2-1 for the minimum, typical, and maximum VCC allowed for  
a given current. The processor should not be subjected to any VCC and ICC combination  
wherein VCC exceeds VCC_MAX for a given current.  
6.  
7.  
I
V
CC_MAX specification is based on VCC_MAX loadline. Refer to Figure 2-1 for details.  
TT must be provided via a separate voltage source and not be connected to VCC. This  
specification is measured at the land.  
8.  
9.  
Baseboard bandwidth is limited to 20 MHz.  
This is the maximum total current drawn from the VTT plane by only the processor. This  
specification does not include the current coming from on-board termination (RTT),  
through the signal line. Refer to the Voltage Regulator Design Guide to determine the total  
I
TT drawn by the system. This parameter is based on design characterization and is not  
tested.  
10.  
Adherence to the voltage specifications for the processor are required to ensure reliable  
processor operation.  
22  
Datasheet  
Electrical Specifications  
Table 2-4.  
VCC Static and Transient Tolerance  
Voltage Deviation from VID Setting (V)1, 2, 3, 4  
ICC (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
1.30 mΩ  
1.38 mΩ  
1.45 mΩ  
0
5
0.000  
-0.007  
-0.013  
-0.020  
-0.026  
-0.033  
-0.039  
-0.046  
-0.052  
-0.059  
-0.065  
-0.072  
-0.078  
-0.085  
-0.091  
-0.098  
-0.101  
-0.111  
-0.117  
-0.124  
-0.130  
-0.137  
-0.143  
-0.150  
-0.156  
-0.163  
-0.019  
-0.026  
-0.033  
-0.040  
-0.047  
-0.053  
-0.060  
-0.067  
-0.074  
-0.081  
-0.088  
-0.095  
-0.102  
-0.108  
-0.115  
-0.122  
-0.126  
-0.136  
-0.143  
-0.150  
-0.157  
-0.163  
-0.170  
-0.177  
-0.184  
-0.191  
-0.038  
-0.045  
-0.053  
-0.060  
-0.067  
-0.074  
-0.082  
-0.089  
-0.096  
-0.103  
-0.111  
-0.118  
-0.125  
-0.132  
-0.140  
-0.147  
-0.151  
-0.161  
-0.169  
-0.176  
-0.183  
-0.190  
-0.198  
-0.205  
-0.212  
-0.219  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.6.3.  
2.  
3.  
This table is intended to aid in reading discrete points on Figure 2-1.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket  
loadline guidelines and VR implementation details.  
4.  
Adherence to this loadline specification is required to ensure reliable processor operation.  
Datasheet  
23  
Electrical Specifications  
Figure 2-1. VCC Static and Transient Tolerance  
Icc [A]  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
VID - 0.000  
VID - 0.013  
VID - 0.025  
VID - 0.038  
VID - 0.050  
VID - 0.063  
VID - 0.075  
VID - 0.088  
VID - 0.100  
VID - 0.113  
VID - 0.125  
VID - 0.138  
VID - 0.150  
VID - 0.163  
VID - 0.175  
VID - 0.188  
VID - 0.200  
VID - 0.213  
VID - 0.225  
Vcc Maximum  
Vcc Typical  
Vcc Minimum  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot  
allowed as shown in Section 2.6.3.  
2.  
3.  
This loadline specification shows the deviation from the VID set point.  
The loadlines specify voltage limits at the die measured at the VCC_SENSE and  
VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken  
from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket  
loadline guidelines and VR implementation details.  
24  
Datasheet  
Electrical Specifications  
2.6.3  
V
Overshoot  
CC  
The processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot  
cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).  
The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the  
maximum allowable time duration above VID). These specifications apply to the  
processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.  
Table 2-5.  
VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure Notes  
Magnitude of VCC overshoot above  
VID  
1
VOS_MAX  
50  
mV  
2-2  
Time duration of VCC overshoot above  
VID  
1
TOS_MAX  
25  
µs  
2-2  
NOTES:  
1.  
Adherence to these specifications is required to ensure reliable processor operation.  
Figure 2-2. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VOS  
VID + 0.050  
VID - 0.000  
TOS  
0
5
10  
15  
20  
25  
Time [us]  
TOS: Overshoot time above VID  
OS: Overshoot above VID  
V
NOTES:  
1.  
2.  
V
OS is measured overshoot voltage.  
TOS is measured time duration above VID.  
2.6.4  
Die Voltage Validation  
Overshoot events on processor must meet the specifications in Table 2-5 when  
measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are  
< 10 ns in duration may be ignored. These measurements of processor die level  
overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or  
equal to 100 MHz bandwidth limit.  
Datasheet  
25  
Electrical Specifications  
2.7  
Signaling Specifications  
Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling  
technology. This technology provides improved noise margins and reduced ringing  
through low voltage swings and controlled edge rates. Platforms implement a  
termination voltage level for GTL+ signals defined as VTT. Because platforms implement  
separate power planes for each processor (and chipset), separate VCC and VTT supplies  
are necessary. This configuration allows for improved noise tolerance as processor  
frequency increases. Speed enhancements to data and address busses have caused  
signal integrity considerations and platform design methods to become even more  
critical than with previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to  
determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the  
motherboard (see Table 2-13 for GTLREF specifications). Termination resistors (RTT) for  
GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel  
chipsets will also provide on-die termination; thus, eliminating the need to terminate  
the bus on the motherboard for most GTL+ signals.  
2.7.1  
FSB Signal Groups  
The front side bus signals have been combined into groups by buffer type. GTL+ input  
signals have differential input buffers, which use GTLREF[3:0] as a reference level. In  
this document, the term “GTL+ Input” refers to the GTL+ input group as well as the  
GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output  
group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 2-6 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 2-6.  
FSB Signal Groups (Sheet 1 of 2)  
Signal Group  
Type  
Signals1  
GTL+ Common  
Clock Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#  
GTL+ Common  
Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[5:0]#, BPMb[3:0]#, BR0#3, DBSY#,  
DRDY#, HIT#, HITM#, LOCK#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#3  
A[35:17]#3  
ADSTB0#  
ADSTB1#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
assoc. strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
26  
Datasheet  
Electrical Specifications  
Table 2-6.  
FSB Signal Groups (Sheet 2 of 2)  
Signal Group  
Type  
Signals1  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPSLP#, DPRSTP#, IGNNE#, INIT#, LINT0/  
INTR, LINT1/NMI, SMI#3, STPCLK#, PWRGOOD, SLP#,  
TCK, TDI, TDI_M, TMS, TRST#, BSEL[2:0], VID[7:0],  
PSI#  
CMOS  
Open Drain  
Output  
FERR#/PBE#, IERR#, THERMTRIP#, TDO, TDO_M  
Open Drain  
Input/Output  
PROCHOT#4  
FSB Clock  
Clock  
BCLK[1:0], ITP_CLK[1:0]2  
VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,  
GTLREF[3:0], COMP[8,3:0], RESERVED, TESTHI[10,7:0],  
VCC_SENSE, VCC_MB_REGULATION, VSS_SENSE,  
VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,  
VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]  
Power/Other  
NOTES:  
1.  
2.  
Refer to Section 4.2 for signal descriptions.  
In processor systems where no debug port is implemented on the system board, these  
signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no connects.  
The value of these signals during the active-to-inactive edge of RESET# defines the  
processor configuration options. See Section 6.1 for details.  
3.  
4.  
PROCHOT# signal type is open drain output and CMOS input.  
.
Table 2-7.  
Signal Characteristics  
Signals with RTT  
Signals with No RTT  
A20M#, BCLK[1:0], BSEL[2:0],  
A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,  
D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,  
HITM#, LOCK#, PROCHOT#, REQ[4:0]#,  
RS[2:0]#, TRDY#  
COMP[8,3:0], FERR#/PBE#, IERR#, IGNNE#,  
INIT#, ITP_CLK[1:0], LINT0/INTR, LINT1/  
NMI, MSID[1:0], PWRGOOD, RESET#, SMI#,  
STPCLK#, TDO, TDO_M, TESTHI[10,7:0],  
THERMTRIP#, VID[7:0], GTLREF[3:0], TCK,  
TDI, TDI_M, TMS, TRST#, VTT_SEL  
Open Drain Signals1  
THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,  
BPMb[3:0]#, BR0#, TDO, TDO_M, FCx  
NOTES:  
1.  
Signals that do not have RTT, nor are actively driven to their high-voltage level.  
Table 2-8.  
Signal Reference Voltages  
GTLREF  
VTT/2  
BPM[5:0]#, BPMb[3:0]#, RESET#, BNR#, HIT#,  
HITM#, BR0#, A[35:0]#, ADS#, ADSTB[1:0]#,  
BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,  
DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, LOCK#,  
REQ[4:0]#, RS[2:0]#, TRDY#  
A20M#, LINT0/INTR, LINT1/NMI, IGNNE#,  
INIT#, PROCHOT#, PWRGOOD1, SMI#,  
STPCLK#, TCK1, TDI1, TDI_M1, TMS1,  
TRST#1  
NOTE:  
1.  
See Table 2-10 for more information.  
Datasheet  
27  
Electrical Specifications  
2.7.2  
CMOS and Open Drain Signals  
Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS  
input buffers. All of the CMOS and Open Drain signals are required to be asserted/  
deasserted for at least eight BCLKs in order for the processor to recognize the proper  
signal state. See Section 2.7.3 for the DC specifications. See Section 6.2 for additional  
timing requirements for entering and leaving the low power states.  
2.7.3  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core (pads)  
unless otherwise stated. All specifications apply to all frequencies and cache sizes  
unless otherwise stated.  
Table 2-9.  
GTL+ Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit Notes1  
VIL  
VIH  
VOH  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
-0.10  
GTLREF – 0.10  
VTT + 0.10  
VTT  
V
V
V
2, 5  
3, 4, 5  
4, 5  
GTLREF + 0.10  
VTT – 0.10  
VTT_MAX  
[(RTT_MIN) + (2 * RON_MIN)]  
/
IOL  
ILI  
ILO  
RON  
Output Low Current  
N/A  
N/A  
A
-
Input Leakage  
Current  
± 100  
µA  
6
7
Output Leakage  
Current  
N/A  
7.5  
± 100  
11  
µA  
Buffer On Resistance  
Ω
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the voltage range at a receiving agent that will be interpreted as a logical  
low value.  
IH is defined as the voltage range at a receiving agent that will be interpreted as a logical  
high value.  
IH and VOH may experience excursions above VTT.  
The VTT referred to in these specifications is the instantaneous VTT.  
Leakage to VSS with land held at VTT.  
Leakage to VTT with land held at 300 mV.  
V
3.  
V
4.  
5.  
6.  
7.  
V
Table 2-10. Open Drain and TAP Output Signal Group DC Specifications  
Symbol  
Parameter  
Output Low Voltage  
Min  
Max  
Unit Notes1  
VOL  
IOL  
ILO  
0
0.20  
50  
V
-
Output Low Current  
16  
mA  
µA  
2
3
Output Leakage Current  
N/A  
± 200  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at VTT * 0.2V.  
For Vin between 0 and VOH  
.
28  
Datasheet  
Electrical Specifications  
Table 2-11. CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
Unit  
Notes1  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
ILI  
-0.10  
VTT * 0.70  
-0.10  
VTT * 0.30  
VTT + 0.10  
VTT * 0.10  
VTT + 0.10  
VTT * 0.10 / 27  
VTT * 0.10 / 27  
± 100  
V
V
3, 6  
4, 5, 6  
6
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
V
0.90 * VTT  
VTT * 0.10 / 67  
VTT * 0.10 / 67  
N/A  
V
2, 5, 6  
6, 7  
6, 7  
8
A
A
µA  
µA  
ILO  
N/A  
± 100  
9
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
All outputs are open drain.  
V
IL is defined as the voltage range at a receiving agent that will be interpreted as a logical  
low value.  
IH is defined as the voltage range at a receiving agent that will be interpreted as a logical  
high value.  
IH and VOH may experience excursions above VTT.  
The VTT referred to in these specifications refers to instantaneous VTT.  
OL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.  
4.  
V
5.  
6.  
7.  
8.  
9.  
V
I
Leakage to VSS with land held at VTT.  
Leakage to VTT with land held at 300 mV.  
2.7.3.1  
Platform Environment Control Interface (PECI) DC Specifications  
PECI is an Intel proprietary one-wire interface that provides a communication channel  
between Intel processors, chipsets, and external thermal monitoring devices. The  
processor contains Digital Thermal Sensors (DTS) distributed throughout die. These  
sensors are implemented as analog-to-digital converters calibrated at the factory for  
reasonable accuracy to provide a digital representation of relative processor  
temperature. PECI provides an interface to relay the highest DTS temperature within a  
die to external management devices for thermal/fan speed control. More detailed  
information may be found in the Platform Environment Control Interface (PECI)  
Specification.  
Datasheet  
29  
Electrical Specifications  
Table 2-12. PECI DC Electrical Limits  
Symbol  
Definition and Conditions  
Input Voltage Range  
Min  
Max  
Units  
Notes1  
Vin  
-0.15  
VTT  
V
V
V
V
2
Vhysteresis Hysteresis  
0.1 * VTT  
Vn  
Vp  
Negative-edge threshold voltage  
0.275 * VTT 0.500 * VTT  
0.550 * VTT 0.725 * VTT  
Positive-edge threshold voltage  
High level output source  
(VOH = 0.75 * VTT)  
Isource  
-6.0  
0.5  
N/A  
1.0  
mA  
mA  
Low level output sink  
(VOL = 0.25 * VTT)  
Isink  
3
Ileak+  
Ileak-  
High impedance state leakage to VTT  
High impedance leakage to GND  
Bus capacitance per node  
N/A  
N/A  
50  
10  
10  
µA  
µA  
2
4
Cbus  
pF  
Vnoise  
Signal noise immunity above 300 MHz  
0.1 * VTT  
Vp-p  
NOTES:  
1. VTT supplies the PECI interface. PECI behavior does not affect VTT min/max specifications. Refer  
to Table 2-3 for VTT specifications.  
2. The leakage specification applies to powered devices on the PECI bus.  
3. The input buffers use a Schmitt-triggered input design for improved noise immunity.  
4. One node is counted for each client and one node for the system host. Extended trace lengths  
might appear as additional nodes.  
.
2.7.3.2  
GTL+ Front Side Bus Specifications  
In most cases, termination resistors are not required as these are integrated into the  
processor silicon. See Table 2-7 for details on which GTL+ signals do not include on-die  
termination.  
Valid high and low levels are determined by the input buffers by comparing with a  
reference voltage called GTLREF. Table 2-13 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high  
precision voltage divider circuits.  
Table 2-13. GTL+ Bus Resistance Definitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Notes1  
GTLREF_PU GTLREF pull up resistor  
GTLREF_PD GTLREF pull down resistor  
57.6 * 0.99  
100 * 0.99  
45  
57.6  
100  
57.6 * 1.01  
100 * 1.01  
55  
Ω
Ω
Ω
Ω
Ω
2
2
3
4
4
RTT  
Termination Resistance  
50  
COMP[3:0] COMP Resistance  
49.40  
49.90  
24.90  
50.40  
COMP8  
COMP Resistance  
24.65  
25.15  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
GTLREF is to be generated from VTT by a voltage divider of 1% resistors. If an Variable  
GTLREF circuit is used on the board the GTLREF lands connected to the Variable GTLREF  
circuit may require different resistor values. Each GTLREF land must be connected.  
3.  
4.  
R
TT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.  
COMP resistance must be provided on the system board with 1% resistors. COMP[3:0] and  
COMP8 resistors are to VSS  
.
30  
Datasheet  
Electrical Specifications  
2.8  
Clock Specifications  
2.8.1  
Front Side Bus Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its  
default ratio during manufacturing. The processor supports Half Ratios between 7.5  
and 13.5 (see Table 2-14 for the processor supported ratios).  
The processor uses a differential clocking implementation. For more information on the  
processor clocking, contact your Intel field representative.  
Table 2-14. Core Frequency to FSB Multiplier Configuration  
Multiplication of System  
Core Frequency to FSB  
Frequency  
Core Frequency  
(333 MHz BCLK/  
1333 MHz FSB)  
Core Frequency  
(400 MHz BCLK/  
1600 MHz FSB)  
Notes1, 2  
2 GHz  
1/6  
1/7  
2.6 GHz  
2.8 GHz  
3.0 GHz  
3.2 GHz  
3.4 GHz  
3.6 GHz  
3.8 GHz  
4.0 GHz  
4.2 GHz  
4.4 GHz  
4.6 GHz  
4.8 GHz  
5.0 GHz  
5.2 GHz  
5.4 GHz  
5.6 GHz  
5.8 GHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.33 GHz  
2.50 GHz  
2.66 GHz  
2.83 GHz  
3 GHz  
1/7.5  
1/8  
1/8.5  
1/9  
3.16 GHz  
3.33 GHz  
3.50 GHz  
3.66 GHz  
3.83 GHz  
4 GHz  
1/9.5  
1/10  
1/10.5  
1/11  
1/11.5  
1/12  
1/12.5  
1/13  
1/13.5  
1/14  
1/15  
4.16 GHz  
4.33 GHz  
4.50 GHz  
4.66 GHz  
5 GHz  
NOTES:  
1.  
2.  
Individual processors operate only at or below the rated frequency.  
Listed frequencies are not necessarily committed production frequencies.  
Datasheet  
31  
Electrical Specifications  
2.8.2  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 2-15 defines the possible combinations of the signals and the  
frequency associated with each combination. The required frequency is determined by  
the processor, chipset, and clock synthesizer. All agents must operate at the same  
frequency.  
The Intel® Core™2 Extreme processor QX9650, Intel® Core™2 Quad processor Q9000,  
Q9000S, Q8000, and Q8000S series operate at a 1333 MHz FSB frequency (selected by  
a 333 MHz BCLK[1:0] frequency). The Intel® Core™2 Extreme processor QX9770  
operates at a 1600 MHz FSB frequency (selected by a 400 MHz BCLK[1:0] frequency)  
Individual processors will only operate at their specified FSB frequency.  
For more information about these signals, refer to Section 4.2.  
Table 2-15. BSEL[2:0] Frequency Table for BCLK[1:0]  
BSEL2  
BSEL1  
BSEL0  
FSB Frequency  
L
L
L
L
L
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
400 MHz  
L
H
H
H
H
L
L
H
H
H
H
L
H
H
L
RESERVED  
RESERVED  
333 MHz  
L
2.8.3  
2.8.4  
Phase Lock Loop (PLL) and Filter  
An on-die PLL filter solution will be implemented on the processor. The VCCPLL input is  
used for the PLL. Refer to Table 2-3 for DC specifications.  
BCLK[1:0] Specifications  
Table 2-16. Front Side Bus Differential BCLK Specifications  
Symbol  
Parameter  
Input Low Voltage  
Input High Voltage  
Min  
Typ  
Max  
Unit  
Figure Notes1  
VL  
-0.30  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.15  
0.550  
0.140  
1.4  
V
V
V
V
V
V
V
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-4  
3
3
2
-
VH  
VCROSS(abs) Absolute Crossing Point  
0.300  
N/A  
ΔVCROSS Range of Crossing Points  
VOS  
VUS  
Overshoot  
N/A  
4
4
5
Undershoot  
-0.300  
0.300  
N/A  
VSWING  
Differential Output Swing  
N/A  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing voltage is defined as the instantaneous voltage value when the rising edge of  
BCLK0 equals the falling edge of BCLK1.  
3.  
4.  
“Steady state” voltage, not including overshoot or undershoot.  
Overshoot is defined as the absolute value of the maximum voltage. Undershoot is defined  
as the absolute value of the minimum voltage.  
5.  
Measurement taken from differential waveform.  
32  
Datasheet  
Electrical Specifications  
Table 2-17. FSB Differential Clock Specifications (1600 MHz FSB)  
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure Notes1  
397.962  
2.499766  
-
-
-
-
400.037  
2.512800  
150  
MHz  
ns  
-
T1: BCLK[1:0] Period  
2-3  
2-3  
2
T2: BCLK[1:0] Period Stability  
ps  
3, 4, 7  
T5: BCLK[1:0] Rise and Fall Slew  
Rate  
2.5  
-
8
V/ns  
%
2-4  
-
5
6
Slew Rate Matching  
N/A  
N/A  
20  
NOTES:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor core  
frequencies based on a 400 MHz BCLK[1:0].  
2.  
The period specified here is the average period. A given period may vary from this  
specification as governed by the period stability specification (T2). Min period specification  
is based on -100 PPM deviation from a 3 ns period. Max period specification is based on  
the summation of +100 PPM deviation from a 3 ns period and a +0.5% maximum variance  
due to spread spectrum clocking.  
3.  
4.  
For the clock jitter specification, refer to the CK505 Clock Synthesizer Specification.  
In this context, period stability is defined as the worst case timing difference between  
successive crossover voltages. In other words, the largest absolute difference between  
adjacent clock periods must be less than the period stability.  
5.  
6.  
Slew rate is measured through the VSWING voltage range centered about differential zero.  
Measurement taken from differential waveform.  
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is  
measured using a ±75mV window centered on the average cross point where Clock rising  
meets Clock# falling. The median cross point is used to calculate the voltage thresholds  
the oscilloscope is to use for the edge rate calculations.  
7.  
Duty Cycle (High time/Period) must be between 40 and 60%  
Table 2-18. FSB Differential Clock Specifications (1333 MHz FSB)  
T# Parameter  
BCLK[1:0] Frequency  
Min  
Nom  
Max  
Unit  
Figure Notes1  
331.633  
2.99970  
333.367  
3.01538  
150  
MHz  
ns  
-
6
2
3
4
5
T1: BCLK[1:0] Period  
2-3  
2-3  
2-4  
-
T2: BCLK[1:0] Period Stability  
T5: BCLK[1:0] Rise and Fall Slew Rate  
Slew Rate Matching  
ps  
2.5  
8
V/ns  
%
N/A  
N/A  
20  
NOTES:  
1.  
Unless otherwise noted, all specifications in this table apply to all processor core  
frequencies based on a 333 MHz BCLK[1:0].  
2.  
The period specified here is the average period. A given period may vary from this  
specification as governed by the period stability specification (T2). Min period specification  
is based on -300 PPM deviation from a 3 ns period. Max period specification is based on  
the summation of +300 PPM deviation from a 3 ns period and a +0.5% maximum variance  
due to spread spectrum clocking.  
3.  
In this context, period stability is defined as the worst case timing difference between  
successive crossover voltages. In other words, the largest absolute difference between  
adjacent clock periods must be less than the period stability.  
4.  
5.  
Slew rate is measured through the VSWING voltage range centered about differential zero.  
Measurement taken from differential waveform.  
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is  
measured using a ±75 mV window centered on the average cross point where Clock rising  
meets Clock# falling. The median cross point is used to calculate the voltage thresholds  
the oscilloscope is to use for the edge rate calculations.  
6.  
Duty Cycle (High time/Period) must be between 40% and 60%.  
Datasheet  
33  
Electrical Specifications  
.
Figure 2-3. Differential Clock Waveform  
Tph  
Overshoot  
VH  
BCLK1  
Rising Edge  
Ringback  
Ringback  
Margin  
VCROSS (ABS  
)
VCROSS (ABS)  
Threshold  
Region  
Falling Edge  
Ringback  
BCLK0  
VL  
Undershoot  
Tpl  
Tp  
Tp = T1: BCLK[1:0] period  
T2: BCLK[1:0] period stability (not shown)  
Tph = T3: BCLK[1:0] pulse high time  
Tpl = T4: BCLK[1:0] pulse low time  
T5: BCLK[1:0] rise time through the threshold region  
T6: BCLK[1:0] fall time through the threshold region  
Figure 2-4. Measurement Points for Differential Clock Waveforms  
Slew_rise  
Slew _fall  
+150 mV  
+150mV  
0.0V  
0.0V  
V_swing  
-150 mV  
-150mV  
Diff  
T5 = BCLK[1:0] rise and fall time through the swing region  
§
34  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA6) package that  
interfaces with the motherboard via an LGA775 socket. The package consists of a  
processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS)  
is attached to the package substrate and core and serves as the mating surface for  
processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch  
of the processor package components and how they are assembled together. Refer to  
the LGA775 Socket Mechanical Design Guide for complete details on the LGA775  
socket.  
The package components shown in Figure 3-1 include the following:  
• Integrated Heat Spreader (IHS)  
• Thermal Interface Material (TIM)  
• Processor core (die)  
• Package substrate  
• Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
Core (die)  
TIM  
IHS  
Substrate  
Capacitors  
LGA775 Socket  
System Board  
NOTE:  
1.  
Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The  
drawings include dimensions necessary to design a thermal solution for the processor.  
These dimensions include:  
• Package reference with tolerances (total height, length, width, etc.)  
• IHS parallelism and tilt  
• Land dimensions  
Top-side and back-side component keep-out dimensions  
• Reference datums  
• All drawing dimensions are in mm [in].  
• Guidelines on potential IHS flatness variation with socket load plate actuation and  
installation of the cooling solution is available in the processor Thermal and  
Mechanical Design Guidelines.  
Datasheet  
35  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing (Sheet 1 of 3)  
36  
Datasheet  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing (Sheet 2 of 3)  
Datasheet  
37  
Package Mechanical Specifications  
Figure 3-4. Processor Package Drawing (Sheet 3 of 3)  
38  
Datasheet  
Package Mechanical Specifications  
3.2  
3.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted to either the  
topside or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-  
out zones. The location and quantity of package capacitors may change due to  
manufacturing efficiencies but will remain within the component keep-in.  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package.  
These mechanical maximum load limits should not be exceeded during heatsink  
assembly, shipping conditions, or standard use condition. Also, any mechanical system  
or component testing should not exceed the maximum limits. The processor package  
substrate should not be used as a mechanical reference or load-bearing surface for  
thermal and mechanical solution. The minimum loading specification must be  
maintained by any thermal and mechanical solutions.  
.
Table 3-1.  
Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
Static  
80 N [17 lbf]  
311 N [70 lbf]  
756 N [170 lbf]  
1, 2, 3  
1, 3, 4  
Dynamic  
NOTES:  
1.  
2.  
3.  
4.  
These specifications apply to uniform compressive loading in a direction normal to the  
processor IHS.  
This is the maximum force that can be applied by a heatsink retention clip. The clip must  
also provide the minimum specified load on the processor package.  
These specifications are based on limited testing for design characterization. Loading limits  
are for the package only and do not include the limits of the processor socket.  
Dynamic loading is defined as an 11 ms duration average load superimposed on the static  
load requirement.  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended  
maximum loading on the processor IHS relative to a fixed substrate. These package  
handling loads may be experienced during heatsink removal.  
Table 3-2.  
Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
Shear  
Tensile  
Torque  
311 N [70 lbf]  
111 N [25 lbf]  
1, 4  
2, 4  
3, 4  
3.95 N-m [35 lbf-in]  
NOTES:  
1.  
2.  
3.  
4.  
A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top  
surface.  
A tensile load is defined as a pulling load applied to the IHS in a direction normal to the  
IHS surface.  
A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal  
to the IHS top surface.  
These guidelines are based on limited testing for design characterization.  
Datasheet  
39  
Package Mechanical Specifications  
3.5  
3.6  
Package Insertion Specifications  
The processor can be inserted into and removed from a LGA775 socket 15 times. The  
socket should meet the LGA775 requirements detailed in the LGA775 Socket  
Mechanical Design Guide.  
Processor Mass Specification  
The typical mass of the processor is 21.5 g [0.76 oz]. This mass [weight] includes all  
the components that are included in the package.  
3.7  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3.  
Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Lands  
3.8  
Processor Markings  
Figure 3-5 and Figure 3-6 show the topside markings on the processor. This diagram is  
to aid in the identification of the processor.  
Figure 3-5. Processor Top-Side Markings Example (Intel® Core™2 Extreme Processor  
QX9650)  
M
INTEL ©'06 QX9650  
INTEL® CORE™2 EXTREME  
SLAN3 XXXX  
3.00GHZ/2M/1333/05B  
e4  
[FPO](e4)  
ATPO  
S/N  
40  
Datasheet  
Package Mechanical Specifications  
Figure 3-6. Processor Top-Side Markings Example (Intel® Core™2 Quad Processor Q9000  
Series)  
M
INTEL ©'06 Q9550  
INTEL® CORE™2 Quad  
SLAN3 XXXX  
2.83GHZ/2M/1333/05A  
e4  
[FPO](e4)  
ATPO  
S/N  
Datasheet  
41  
Package Mechanical Specifications  
Figure 3-7 shows the top view of the processor land coordinates. The coordinates are  
referred to throughout the document to identify processor lands.  
.
Figure 3-7. Processor Land Coordinates and Quadrants, Top View  
VCC / VSS  
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
W
V
Address/  
Common Clock/  
Async  
Socket 775  
Quadrants  
Top View  
U
U
T
T
R
R
P
P
N
N
M
M
L
L
K
K
J
J
H
H
G
G
F
F
E
E
D
D
C
C
B
B
A
A
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
VTT / Clocks  
Data  
§
42  
Datasheet  
Land Listing and Signal Descriptions  
4 Land Listing and Signal  
Descriptions  
This chapter provides the processor land assignment and signal descriptions.  
4.1  
Processor Land Assignments  
This section contains the land listings for the processor. The land-out footprint is shown  
in Figure 4-1 and Figure 4-2. These figures represent the land-out arranged by land  
number and they show the physical location of each signal on the package land array  
(top view). Table 4-1 is a listing of all processor lands ordered alphabetically by land  
(signal) name. Table 4-2 is also a listing of all processor lands; the ordering is by land  
number.  
Datasheet  
43  
Land Listing and Signal Descriptions  
Figure 4-1.land-out Diagram (Top View – Left Side)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AN  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AM  
AL  
AK  
AJ  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
W
V
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
T
R
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
N
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
M
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
L
K
J
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
FC34  
VSS  
FC31  
FC33  
VCC  
H
BSEL1  
FC15  
FC32  
G
F
BSEL2 BSEL0 BCLK1 TESTHI4 TESTHI5 TESTHI3 TESTHI6 RESET# D47#  
D44# DSTBN2# DSTBP2# D35#  
D36#  
D37#  
VSS  
D32#  
VSS  
D31#  
D30#  
D33#  
VSS  
RSVD  
FC26  
VTT  
BCLK0 VTT_SEL TESTHI0 TESTHI2 TESTHI7 RSVD  
VSS  
D43#  
D42#  
VSS  
D41#  
VSS  
VSS  
D40#  
DBI2#  
D38#  
D39#  
VSS  
E
D
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
FC10  
VSS  
RSVD  
D45#  
D34#  
RSVD  
VTT  
VTT  
VCCPLL D46#  
D48#  
D49#  
VCCIO  
VSS  
C
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
D58#  
DBI3#  
VSS  
D54# DSTBP3#  
VSS  
D51#  
D53#  
PLL  
B
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSSA  
VCCA  
D63#  
D62#  
D59#  
VSS  
VSS  
D60#  
D61#  
D57#  
VSS  
VSS  
D55#  
A
FC23  
RSVD  
D56#  
DSTBN3# VSS  
16 15  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
44  
Datasheet  
Land Listing and Signal Descriptions  
Figure 4-2.land-out Diagram (Top View – Right Side)  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VID_SEL  
ECT  
VSS_MB_  
REGULATION REGULATION SENSE  
VCC_MB_  
VSS_  
VCC_  
SENSE  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VID0  
VSS  
AN  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VID7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC40  
VID3  
FC8  
VID6  
VID1  
VSS  
VID5  
VID4  
VSS  
VID2  
VSS  
FC25  
FC24  
BPM1#  
VSS  
AM  
AL  
AK  
AJ  
VRDSEL PROCHOT#  
VCC  
VSS  
ITP_CLK0  
ITP_CLK1  
VSS  
VSS  
VCC  
A35#  
VSS  
A34#  
A33#  
A31#  
A27#  
VSS  
BPM0#  
RSVD  
BPM3#  
BPM4#  
VSS  
VCC  
A32#  
A30#  
A28#  
RSVD  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
VCC  
A29#  
VSS  
BPM5#  
VSS  
TRST#  
TDO  
VCC  
SKTOCC#  
VCC  
RSVD  
A22#  
VSS  
FC18  
TCK  
ADSTB1#  
A25#  
A24#  
FC36  
BPM2#  
DBR#  
IERR#  
TDI  
VCC  
RSVD  
A26#  
VSS  
TMS  
VCC  
A17#  
FC37  
VSS  
VTT_OUT_  
RIGHT  
VCC  
VCC  
VSS  
VSS  
VSS  
A23#  
VSS  
A21#  
A20#  
VSS  
PSI#  
FC39  
VSS  
AA  
Y
FC0/BOOT-  
SELECT  
A19#  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
A18#  
VSS  
A10#  
VSS  
A16#  
A14#  
A12#  
A9#  
VSS  
A15#  
A13#  
A11#  
TESTHI1  
VSS  
TDI_M  
RSVD  
MSID0  
MSID1  
TDO_M  
COMP1  
W
V
FC30  
VSS  
FC29  
U
T
DPRSTP#  
FERR#/  
PBE#  
VCC  
VSS  
ADSTB0#  
VSS  
A8#  
VSS  
COMP3  
R
VCC  
VCC  
VSS  
VSS  
A4#  
RSVD  
RSVD  
VSS  
INIT#  
VSS  
SMI#  
P
N
DPSLP#  
VSS  
RSVD  
IGNNE# PWRGOOD  
THER-  
VSS  
VCC  
VSS  
REQ2#  
A5#  
A7#  
STPCLK#  
M
MTRIP#  
VCC  
VCC  
VSS  
VSS  
VSS  
A3#  
A6#  
VSS  
LINT1  
LINT0  
L
SLP#  
REQ3#  
VSS  
REQ0#  
A20M#  
VSS  
K
VTT_OUT_  
LEFT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
REQ4#  
VSS  
REQ1#  
VSS  
FC22  
VSS  
FC3  
J
H
TESTHI10  
FC35  
GTLREF1  
GTLREF0  
BPMb0#  
D29#  
D28#  
VSS  
D27#  
VSS  
DSTBN1# DBI1# GTLREF3  
D16#  
D18#  
D19#  
VSS  
BPRI#  
D17#  
VSS  
DEFER#  
VSS  
RSVD  
FC21  
RSVD  
VSS  
PECI  
RS1#  
FC20  
VSS  
BPMb2#  
VSS  
BPMb3#  
BR0#  
COMP2  
GTLREF2  
VSS  
G
F
D24#  
DSTBP1#  
VSS  
D23#  
VSS  
VSS  
D21#  
D22#  
D26#  
D25#  
RSVD  
D20#  
HITM#  
HIT#  
TRDY#  
VSS  
E
D
C
RSVD  
D15#  
D12#  
ADS#  
RSVD  
DRDY#  
VSS  
D52#  
VSS  
D14#  
D11#  
VSS  
BPMb1# DSTBN0#  
VSS  
D3#  
D1#  
VSS  
LOCK#  
BNR#  
VSS  
D50#  
14  
COMP8  
COMP0  
13  
D13#  
VSS  
12  
VSS  
D9#  
11  
D10#  
D8#  
10  
DSTBP0#  
VSS  
DBI0#  
8
D6#  
D7#  
7
D5#  
VSS  
6
VSS  
D4#  
5
D0#  
D2#  
4
RS0#  
RS2#  
3
DBSY#  
VSS  
2
B
A
VSS  
9
1
Datasheet  
45  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
A3#  
A4#  
L5  
P6  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
BPMb0#  
BPMb1#  
BPMb2#  
BPMb3#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
BSEL2  
COMP0  
COMP1  
COMP2  
COMP3  
COMP8  
D0#  
G1  
C9  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
A5#  
M5  
G4  
A6#  
L4  
G3  
A7#  
M4  
G8  
Common Clock  
Input  
A8#  
R4  
F3  
Common Clock Input/Output  
A9#  
T5  
G29  
H30  
G30  
A13  
T1  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Input  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
ADSTB0#  
ADSTB1#  
BCLK0  
BCLK1  
BNR#  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
U6  
T4  
U5  
U4  
Input  
V5  
G2  
Input  
V4  
R1  
Input  
W5  
AB6  
W6  
Y6  
B13  
B4  
Input  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D1#  
C5  
D2#  
A4  
Y4  
D3#  
C6  
AA4  
AD6  
AA5  
AB5  
AC5  
AB4  
AF5  
AF4  
AG6  
AG4  
AG5  
AH4  
AH5  
AJ5  
AJ6  
K3  
D4#  
A5  
D5#  
B6  
D6#  
B7  
D7#  
A7  
D8#  
A10  
A11  
B10  
C11  
D8  
D9#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
B12  
C12  
D11  
G9  
F8  
F9  
Asynch CMOS  
Input  
E9  
D2  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
D7  
R6  
E10  
D10  
F11  
F12  
D13  
E13  
G13  
F14  
G14  
F15  
G15  
AD5  
F28  
G28  
C2  
Clock  
Clock  
Input  
Input  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
AJ2  
AJ1  
AD2 Common Clock Input/Output  
AG2 Common Clock Input/Output  
AF2  
Common Clock Input/Output  
AG3 Common Clock Input/Output  
46  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
D32#  
D33#  
G16  
E15  
E16  
G18  
G17  
F17  
F18  
E18  
E19  
F20  
E21  
F21  
G21  
E22  
D22  
G22  
D20  
D17  
A14  
C15  
C14  
B15  
C18  
B16  
A17  
B18  
C21  
B21  
B19  
A19  
A22  
B22  
A8  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
B9  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
E12  
G19  
C17  
D34#  
D35#  
D36#  
FC0/  
BOOTSELECT  
Y1  
Power/Other  
D37#  
FC3  
FC8  
J2  
AK6  
E24  
H29  
AE3  
E5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D38#  
D39#  
FC10  
D40#  
FC15  
D41#  
FC18  
D42#  
FC20  
D43#  
FC21  
F6  
D44#  
FC22  
J3  
D45#  
FC23  
A24  
AK1  
AL1  
E29  
U2  
D46#  
FC24  
D47#  
FC25  
D48#  
FC26  
D49#  
FC29  
D50#  
FC30  
U3  
D51#  
FC31  
J16  
H15  
H16  
J17  
H4  
D52#  
FC32  
D53#  
FC33  
D54#  
FC34  
D55#  
FC35  
D56#  
FC36  
AD3  
AB3  
AA2  
AM6  
R3  
D57#  
FC37  
D58#  
FC39  
D59#  
FC40  
D60#  
FERR#/PBE#  
GTLREF0  
GTLREF1  
GTLREF2  
GTLREF3  
HIT#  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Input  
Input  
Input  
Input  
D61#  
H1  
D62#  
H2  
D63#  
F2  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
DBSY#  
DEFER#  
DPRSTP#  
DPSLP#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
G10  
D4  
G11  
D19  
C20  
AC2  
B2  
Common Clock Input/Output  
Common Clock Input/Output  
HITM#  
IERR#  
IGNNE#  
INIT#  
ITP_CLK0  
ITP_CLK1  
LINT0  
LINT1  
LOCK#  
MSID0  
MSID1  
E4  
AB2  
N2  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
TAP  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Power/Other  
Output  
Common Clock Input/Output  
P3  
G7  
Common Clock  
Asynch CMOS  
Asynch CMOS  
Input  
Input  
Input  
AK3  
AJ3  
K1  
T2  
TAP  
P1  
Asynch CMOS  
Asynch CMOS  
C1  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
L1  
C8  
C3  
Common Clock Input/Output  
G12  
G20  
A16  
W1  
V1  
Power/Other  
Power/Other  
Output  
Output  
Datasheet  
47  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
PECI  
PROCHOT#  
PWRGOOD  
PSI#  
G5  
AL2  
N1  
Power/Other Input/Output  
Asynch CMOS Input/Output  
TESTHI5  
TESTHI6  
TESTHI7  
THERMTRIP#  
TMS  
G26  
G24  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
TAP  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Power/Other  
Asynch CMOS  
Input  
F24  
Y3  
Output  
M2  
REQ0#  
K4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
AC1  
REQ1#  
J5  
TRDY#  
TRST#  
VCC  
E3  
Common Clock  
TAP  
REQ2#  
M6  
K6  
AG1  
REQ3#  
AA8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
REQ4#  
J6  
VCC  
AB8  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
V2  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC8  
A20  
AC4  
AE4  
AE6  
AH2  
D1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
D14  
D16  
E23  
E6  
VCC  
VCC  
VCC  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD8  
VCC  
E7  
VCC  
F23  
F29  
G6  
VCC  
VCC  
VCC  
N4  
VCC  
N5  
VCC  
P5  
VCC  
G23  
B3  
Common Clock  
Common Clock  
Common Clock  
Common Clock  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
TAP  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
VCC  
AE11  
AE12  
AE14  
AE15  
AE18  
AE19  
AE21  
AE22  
AE23  
AE9  
VCC  
RS1#  
F5  
VCC  
RS2#  
A3  
VCC  
SKTOCC#  
SLP#  
AE8  
L2  
VCC  
VCC  
SMI#  
P2  
VCC  
STPCLK#  
TCK  
M3  
AE1  
AD1  
W2  
AF1  
U1  
VCC  
VCC  
TDI  
TAP  
VCC  
TDI_M  
Power/Other  
TAP  
VCC  
AF11  
AF12  
AF14  
AF15  
AF18  
AF19  
AF21  
AF22  
AF8  
TDO  
VCC  
TDO_M  
TAP  
VCC  
TESTHI0  
TESTHI1  
TESTHI10  
TESTHI2  
TESTHI3  
TESTHI4  
F26  
W3  
H5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
F25  
G25  
G27  
VCC  
VCC  
VCC  
48  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AK12  
AK14  
AK15  
AK18  
AK19  
AK21  
AK22  
AK25  
AK26  
AK8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AG11  
AG12  
AG14  
AG15  
AG18  
AG19  
AG21  
AG22  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG8  
AK9  
AL11  
AL12  
AL14  
AL15  
AL18  
AL19  
AL21  
AL22  
AL25  
AL26  
AL29  
AL30  
AL8  
AG9  
AH11  
AH12  
AH14  
AH15  
AH18  
AH19  
AH21  
AH22  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH8  
AL9  
AM11  
AM12  
AM14  
AM15  
AM18  
AM19  
AM21  
AM22  
AM25  
AM26  
AM29  
AM30  
AM8  
AH9  
AJ11  
AJ12  
AJ14  
AJ15  
AJ18  
AJ19  
AJ21  
AJ22  
AJ25  
AJ26  
AJ8  
AM9  
AN11  
AN12  
AN14  
AN15  
AN18  
AN19  
AN21  
AJ9  
AK11  
Datasheet  
49  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AN22  
AN25  
AN26  
AN29  
AN30  
AN8  
AN9  
J10  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
M8  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
J11  
J12  
J13  
P8  
J14  
R8  
J15  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T8  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U8  
J27  
J28  
J29  
J30  
J8  
J9  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K8  
V8  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W8  
L8  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
50  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VCC  
VCC  
VCC  
Y29  
Y30  
Y8  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC_MB_  
REGULATION  
AN5  
Power/Other  
Output  
Output  
VCC_SENSE  
VCCA  
VCCIOPLL  
VCCPLL  
VID_SELECT  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VRDSEL  
VSS  
AN3  
A23  
C23  
D23  
AN7  
AM2  
AL5  
AM3  
AL6  
AK4  
AL4  
AM5  
AM7  
AL3  
B1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
AC3  
AC6  
AC7  
AD4  
AD7  
AE10  
AE13  
AE16  
AE17  
AE2  
AE20  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE5  
VSS  
B11  
B14  
B17  
B20  
B24  
B5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B8  
VSS  
A12  
A15  
A18  
A2  
VSS  
AE7  
VSS  
AF10  
AF13  
AF16  
AF17  
AF20  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
VSS  
VSS  
A21  
A6  
VSS  
VSS  
A9  
VSS  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AA30  
AA6  
AA7  
AB1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF30  
AF6  
VSS  
VSS  
AF7  
VSS  
AG10  
Datasheet  
51  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AG13  
AG16  
AG17  
AG20  
AG23  
AG24  
AG7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AL13  
AL16  
AL17  
AL20  
AL23  
AL24  
AL27  
AL28  
AL7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AH1  
AH10  
AH13  
AH16  
AH17  
AH20  
AH23  
AH24  
AH3  
AM1  
AM10  
AM13  
AM16  
AM17  
AM20  
AM23  
AM24  
AM27  
AM28  
AM4  
AN1  
AH6  
AH7  
AJ10  
AJ13  
AJ16  
AJ17  
AJ20  
AJ23  
AJ24  
AJ27  
AJ28  
AJ29  
AJ30  
AJ4  
AN10  
AN13  
AN16  
AN17  
AN2  
AN20  
AN23  
AN24  
AN27  
AN28  
C10  
AJ7  
AK10  
AK13  
AK16  
AK17  
AK2  
C13  
C16  
C19  
C22  
AK20  
AK23  
AK24  
AK27  
AK28  
AK29  
AK30  
AK5  
C24  
C4  
C7  
D12  
D15  
D18  
D21  
D24  
AK7  
D3  
AL10  
D5  
52  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D6  
D9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
E11  
E14  
E17  
E2  
E20  
E25  
E26  
E27  
E28  
E8  
L30  
L6  
L7  
M1  
F10  
F13  
F16  
F19  
F22  
F4  
M7  
N3  
N6  
N7  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P4  
F7  
H10  
H11  
H12  
H13  
H14  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H3  
P7  
R2  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R5  
R7  
H6  
T3  
H7  
T6  
H8  
T7  
H9  
U7  
J4  
V23  
V24  
V25  
V26  
V27  
J7  
K2  
K5  
K7  
Datasheet  
53  
Land Listing and Signal Descriptions  
Table 4-1.  
Alphabetical Land  
Assignments  
Table 4-1.  
Alphabetical Land  
Assignments  
Signal Buffer  
Signal Buffer  
Land Name Land #  
Direction  
Land Name Land #  
Direction  
Type  
Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V28  
V29  
V3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
A26  
A27  
A28  
A29  
A30  
C25  
C26  
C27  
C28  
C29  
C30  
D25  
D26  
D27  
D28  
D29  
D30  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V30  
V6  
V7  
W4  
W7  
Y2  
Y5  
Y7  
VSS_MB_  
REGULATION  
AN6  
Power/Other  
Output  
Output  
VSS_SENSE  
VSSA  
VTT  
AN4  
B23  
B25  
B26  
B27  
B28  
B29  
B30  
A25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
VTT  
VTT_OUT_LE  
FT  
J1  
Power/Other  
Output  
VTT  
VTT  
VTT_OUT_RI  
GHT  
AA1  
F27  
Power/Other  
Power/Other  
Output  
Output  
VTT  
VTT_SEL  
VTT  
54  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
VTT_OUT_RI  
AC28  
AC29  
AC30  
AD1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
TAP  
AA1  
Power/Other  
Output  
GHT  
FC39  
VSS  
AA2  
AA3  
Power/Other  
Power/Other  
VCC  
TDI  
Input  
AA4  
A21#  
A23#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AD2  
BPM2#  
FC36  
VSS  
Common Clock Input/Output  
Power/Other  
AA5  
AD3  
AA6  
AD4  
Power/Other  
AA7  
VSS  
Power/Other  
AD5  
ADSTB1#  
A22#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AA8  
VCC  
Power/Other  
AD6  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
VSS  
Power/Other  
AD7  
VSS  
Power/Other  
AD8  
VCC  
Power/Other  
VSS  
Power/Other  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
AB2  
IERR#  
FC37  
A26#  
A24#  
A17#  
VSS  
Asynch CMOS  
Power/Other  
Output  
VCC  
Power/Other  
AB3  
TCK  
TAP  
Input  
AB4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AE2  
VSS  
Power/Other  
Power/Other  
AB5  
AE3  
FC18  
RESERVED  
VSS  
AB6  
AE4  
AB7  
AE5  
Power/Other  
AB8  
VCC  
Power/Other  
AE6  
RESERVED  
VSS  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
VSS  
Power/Other  
AE7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
Power/Other  
AE8  
SKTOCC#  
VCC  
Output  
VSS  
Power/Other  
AE9  
VSS  
Power/Other  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
VSS  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VCC  
VSS  
Power/Other  
VSS  
VSS  
Power/Other  
VCC  
TMS  
DBR#  
VSS  
TAP  
Input  
VCC  
AC2  
Power/Other  
Power/Other  
Output  
VSS  
AC3  
VSS  
AC4  
RESERVED  
A25#  
VSS  
VCC  
AC5  
Source Synch Input/Output  
Power/Other  
VCC  
AC6  
VSS  
AC7  
VSS  
Power/Other  
VCC  
AC8  
VCC  
Power/Other  
VCC  
AC23  
AC24  
AC25  
AC26  
AC27  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
VCC  
Power/Other  
VSS  
Datasheet  
55  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AE28  
AE29  
AE30  
AF1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
TAP  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
RESERVED  
VSS  
A32#  
A33#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
TDO  
BPM4#  
VSS  
Output  
AF2  
Common Clock Input/Output  
Power/Other  
AF3  
AF4  
A28#  
A27#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AF5  
AF6  
AF7  
VSS  
Power/Other  
AF8  
VCC  
VCC  
VSS  
Power/Other  
AF9  
Power/Other  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AG1  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
AH2  
VSS  
Power/Other  
AH3  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
AH4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
AH5  
Power/Other  
AH6  
VCC  
VCC  
VSS  
Power/Other  
AH7  
Power/Other  
Power/Other  
AH8  
Power/Other  
Power/Other  
AH9  
Power/Other  
VSS  
Power/Other  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
TRST#  
BPM3#  
BPM5#  
A30#  
A31#  
A29#  
VSS  
TAP  
Input  
Power/Other  
AG2  
Common Clock Input/Output  
Common Clock Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
AG3  
Power/Other  
AG4  
Power/Other  
AG5  
Power/Other  
AG6  
Power/Other  
AG7  
Power/Other  
AG8  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
AG9  
Power/Other  
Power/Other  
AG10  
AG11  
AG12  
AG13  
Power/Other  
Power/Other  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
56  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
AH30  
AJ1  
VCC  
BPM1#  
BPM0#  
ITP_CLK1  
VSS  
Power/Other  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AL1  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
FC25  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock Input/Output  
Common Clock Input/Output  
AJ2  
AJ3  
TAP  
Input  
AJ4  
Power/Other  
AJ5  
A34#  
A35#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AJ6  
AJ7  
AJ8  
VCC  
AJ9  
VCC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK1  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
AL2  
PROCHOT# Asynch CMOS Input/Output  
VSS  
AL3  
VRDSEL  
VID5  
VID1  
VID3  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AL4  
Output  
Output  
Output  
VCC  
AL5  
VSS  
AL6  
VCC  
AL7  
VCC  
AL8  
VSS  
AL9  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AM1  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
FC24  
VSS  
AK2  
AK3  
ITP_CLK0  
VID4  
VSS  
TAP  
Input  
AK4  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
AK5  
AK6  
FC8  
AK7  
VSS  
AK8  
VCC  
AK9  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
Datasheet  
57  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
AM2  
AM3  
VID0  
VID2  
VSS  
VID6  
FC40  
VID7  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Power/Other  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
A2  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common Clock  
AM4  
VCC  
AM5  
Output  
Output  
VSS  
AM6  
VCC  
AM7  
VCC  
AM8  
VSS  
AM9  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AN1  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
A3  
RS2#  
D02#  
D04#  
VSS  
Input  
A4  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A5  
A6  
A7  
D07#  
DBI0#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B1  
D08#  
D09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
COMP0  
D50#  
VSS  
Power/Other  
Input  
Source Synch Input/Output  
Power/Other  
DSTBN3#  
D56#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
AN2  
AN3 VCC_SENSE  
Power/Other  
Power/Other  
Output  
Output  
D61#  
RESERVED  
VSS  
Source Synch Input/Output  
AN4  
VSS_SENSE  
VCC_MB_  
REGULATION  
Power/Other  
AN5  
Power/Other  
Power/Other  
Output  
D62#  
VCCA  
FC23  
VTT  
Source Synch Input/Output  
Power/Other  
VSS_MB_  
REGULATION  
AN6  
Output  
Output  
Power/Other  
AN7 VID_SELECT Power/Other  
Power/Other  
AN8  
AN9  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VSS  
Power/Other  
B10  
B11  
D10#  
VSS  
Source Synch Input/Output  
Power/Other  
58  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B2  
D13#  
COMP8  
VSS  
Source Synch Input/Output  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
DBI3#  
D58#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Input  
D53#  
D55#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCCIOPLL  
VSS  
Power/Other  
Power/Other  
VTT  
Power/Other  
D57#  
D60#  
DBSY#  
RS0#  
D00#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Common Clock Input/Output  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
B3  
Common Clock  
Input  
VTT  
Power/Other  
B4  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
B5  
RESERVED  
ADS#  
VSS  
B6  
D05#  
D06#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D2  
Common Clock Input/Output  
Power/Other  
B7  
D3  
B8  
D4  
HIT#  
VSS  
Common Clock Input/Output  
Power/Other  
B9  
DSTBP0#  
VSS  
Source Synch Input/Output  
Power/Other  
D5  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C1  
D6  
VSS  
Power/Other  
D59#  
D63#  
VSSA  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D7  
D20#  
D12#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
D8  
D9  
Power/Other  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E2  
D22#  
D15#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D25#  
RESERVED  
VSS  
Source Synch Input/Output  
VTT  
Power/Other  
VTT  
Power/Other  
Power/Other  
VTT  
Power/Other  
RESERVED  
D49#  
VSS  
DRDY#  
BNR#  
LOCK#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
Source Synch Input/Output  
Power/Other  
C2  
C3  
DBI2#  
D48#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
C4  
C5  
D01#  
D03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
C6  
D46#  
VCCPLL  
VSS  
Source Synch Input/Output  
Power/Other  
C7  
C8  
DSTBN0#  
BPMb1#  
VSS  
Source Synch Input/Output  
Common Clock Input/Output  
Power/Other  
Power/Other  
C9  
VTT  
Power/Other  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
VTT  
Power/Other  
D11#  
D14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
VTT  
Power/Other  
D52#  
D51#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VTT  
Power/Other  
VSS  
Power/Other  
E3  
TRDY#  
HITM#  
FC20  
RESERVED  
Common Clock  
Input  
DSTBP3#  
D54#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
E4  
Common Clock Input/Output  
Power/Other  
E5  
E6  
Datasheet  
59  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
E7  
E8  
RESERVED  
F25  
F26  
F27  
F28  
F29  
G1  
TESTHI2  
TESTHI0  
VTT_SEL  
BCLK0  
RESERVED  
BPMb0#  
COMP2  
BPMb3#  
BPMb2#  
PECI  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
VSS  
D19#  
D21#  
VSS  
Power/Other  
E9  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Output  
Input  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
F2  
DSTBP1#  
D26#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Common Clock Input/Output  
Power/Other Input  
G2  
G3  
Common Clock Input/Output  
Common Clock Input/Output  
D33#  
D34#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
G4  
G5  
Power/Other  
Input/Output  
G6  
RESERVED  
DEFER#  
BPRI#  
D39#  
D40#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
G7  
Common Clock  
Common Clock  
Input  
Input  
G8  
G9  
D16#  
Source Synch Input/Output  
Power/Other Input  
D42#  
D45#  
RESERVED  
FC10  
Source Synch Input/Output  
Source Synch Input/Output  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
GTLREF3  
DBI1#  
DSTBN1#  
D27#  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
D29#  
VSS  
D31#  
VSS  
D32#  
VSS  
D36#  
FC26  
D35#  
GTLREF2  
BR0#  
VSS  
Power/Other  
Input  
DSTBP2#  
DSTBN2#  
D44#  
F3  
Common Clock Input/Output  
Power/Other  
F4  
F5  
RS1#  
FC21  
Common Clock  
Power/Other  
Power/Other  
Input  
D47#  
F6  
RESET#  
TESTHI6  
TESTHI3  
TESTHI5  
TESTHI4  
BCLK1  
BSEL0  
Common Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Clock  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
F7  
VSS  
F8  
D17#  
D18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
D23#  
D24#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
BSEL2  
D28#  
D30#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
GTLREF0  
GTLREF1  
VSS  
H2  
H3  
D37#  
D38#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
H4  
FC35  
H5  
TESTHI10  
VSS  
Input  
H6  
D41#  
D43#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
H7  
VSS  
H8  
VSS  
H9  
VSS  
RESERVED  
TESTHI7  
H10  
H11  
VSS  
Power/Other  
Input  
VSS  
60  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
VSS  
VSS  
VSS  
FC32  
FC33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FC15  
BSEL1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
J27  
J28  
J29  
J30  
K1  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
Asynch CMOS  
VCC  
VCC  
LINT0  
VSS  
Input  
Input  
K2  
K3  
A20M#  
REQ0#  
VSS  
K4  
Source Synch Input/Output  
Power/Other  
K5  
K6  
REQ3#  
VSS  
Source Synch Input/Output  
Power/Other  
K7  
K8  
VCC  
Power/Other  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
Output  
Output  
VCC  
Power/Other  
VTT_OUT_LE  
FT  
VCC  
Power/Other  
J1  
Power/Other  
LINT1  
SLP#  
VSS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
Input  
Input  
J2  
J3  
FC3  
FC22  
VSS  
Power/Other  
Power/Other  
Power/Other  
L2  
L3  
J4  
L4  
A06#  
A03#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
J5  
REQ1#  
REQ4#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
L5  
J6  
L6  
J7  
L7  
VSS  
Power/Other  
J8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
FC31  
FC34  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
L8  
VCC  
Power/Other  
J9  
Power/Other  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VSS  
Power/Other  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
VSS  
Power/Other  
Power/Other  
M2 THERMTRIP# Asynch CMOS  
Output  
Input  
Power/Other  
M3  
M4  
STPCLK#  
A07#  
A05#  
REQ2#  
VSS  
Asynch CMOS  
Power/Other  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
Power/Other  
M5  
Power/Other  
M6  
Power/Other  
M7  
Power/Other  
M8  
VCC  
Power/Other  
Power/Other  
M23  
M24  
VCC  
Power/Other  
Power/Other  
VCC  
Power/Other  
Datasheet  
61  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Land Name  
Direction  
Land Name  
Direction  
Type  
M25  
M26  
M27  
M28  
M29  
M30  
N1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Power/Other  
VSS  
VSS  
VSS  
VSS  
PWRGOOD  
IGNNE#  
VSS  
Power/Other  
Asynch CMOS  
Power/Other  
Input  
Input  
VSS  
N2  
VSS  
N3  
COMP1  
DPRSTP#  
VSS  
Input  
Input  
N4  
RESERVED  
RESERVED  
VSS  
T2  
N5  
T3  
N6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch CMOS  
Asynch CMOS  
Asynch CMOS  
Power/Other  
T4  
A11#  
A09#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
N7  
VSS  
T5  
N8  
VCC  
T6  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
T7  
VSS  
Power/Other  
VCC  
T8  
VCC  
Power/Other  
VCC  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
VCC  
VCC  
Power/Other  
DPSLP#  
SMI#  
INIT#  
VSS  
Input  
Input  
Input  
VCC  
Power/Other  
P2  
VCC  
Power/Other  
P3  
TDO_M  
FC29  
FC30  
A13#  
A12#  
A10#  
VSS  
TAP  
Output  
P4  
U2  
Power/Other  
Power/Other  
P5  
RESERVED  
A04#  
VSS  
U3  
P6  
Source Synch Input/Output  
Power/Other  
U4  
Source Synch Input/Output  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
P7  
U5  
P8  
VCC  
Power/Other  
U6  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
R1  
VSS  
Power/Other  
U7  
VSS  
Power/Other  
U8  
VCC  
Power/Other  
VSS  
Power/Other  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
V1  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
VCC  
Power/Other  
COMP3  
VSS  
Power/Other  
Power/Other  
Input  
VCC  
Power/Other  
R2  
VCC  
Power/Other  
R3  
FERR#/PBE# Asynch CMOS  
Output  
MSID1  
RESERVED  
VSS  
Power/Other  
Output  
R4  
A08#  
VSS  
Source Synch Input/Output  
Power/Other  
V2  
R5  
V3  
Power/Other  
R6  
ADSTB0#  
VSS  
Source Synch Input/Output  
Power/Other  
V4  
A15#  
A14#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
R7  
V5  
R8  
VCC  
Power/Other  
V6  
62  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-2.  
Numerical Land  
Assignment  
Table 4-2.  
Numerical Land  
Assignment  
Land  
#
Signal Buffer  
Type  
Land  
#
Signal Buffer  
Type  
Land Name  
Direction  
Land Name  
Direction  
V7  
V8  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
W26  
W27  
W28  
W29  
W30  
VCC  
VCC  
VCC  
VCC  
VCC  
FC0/  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
VSS  
VSS  
VSS  
VSS  
Y1  
Power/Other  
BOOTSELECT  
VSS  
Y2  
Y3  
VSS  
Power/Other  
VSS  
PSI#  
A20#  
VSS  
Asynch CMOS  
Output  
VSS  
Y4  
Source Synch Input/Output  
Power/Other  
VSS  
Y5  
MSID0  
TDI_M  
Output  
Input  
Input  
Y6  
A19#  
VSS  
Source Synch Input/Output  
Power/Other  
W2  
Y7  
W3  
TESTHI1  
VSS  
Power/Other  
Power/Other  
Y8  
VCC  
Power/Other  
W4  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
VCC  
Power/Other  
W5  
A16#  
A18#  
VSS  
Source Synch Input/Output  
Source Synch Input/Output  
Power/Other  
VCC  
Power/Other  
W6  
VCC  
Power/Other  
W7  
VCC  
Power/Other  
W8  
VCC  
Power/Other  
VCC  
Power/Other  
W23  
W24  
W25  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
VCC  
Power/Other  
Datasheet  
63  
Land Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 4-3.  
Signal Description (Sheet 1 of 10)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these signals  
transmit the address of a transaction. In sub-phase 2, these  
signals transmit transaction type information. These signals must  
connect the appropriate pins/lands of all agents on the processor  
FSB. A[35:3]# are source synchronous signals and are latched  
into the receiving buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor  
samples a subset of the A[35:3]# signals to determine power-on  
configuration. See Section 6.1 for more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must  
be valid along with the TRDY# assertion of the corresponding  
Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# signals. All  
bus agents observe the ADS# activation to begin protocol  
checking, address decode, internal snoop, or deferred reply ID  
match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on  
their rising and falling edges. Strobes are associated with signals  
as shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All processor FSB agents must receive these signals to  
drive their outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any  
bus agent unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
64  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 2 of 10)  
Name  
Type  
Description  
BPM[5:0]# and BPMb[3:0]# (Breakpoint Monitor) are breakpoint  
and performance monitor signals. They are outputs from the  
processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor  
performance. BPM[5:0]# and BPMb[3:0]# should connect the  
appropriate pins/lands of all processor FSB agents. BPM[3:0]# are  
associated with core 0. BPMb[3:0]# are associated with core 1.  
BPM[5:0]#  
Input/  
Output  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP  
port. PRDY# is a processor output used by debug tools to  
determine processor debug readiness.  
BPMb[3:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP  
port. PREQ# is used by debug tools to request debug operation of  
the processor.  
These signals do not have on-die termination. Refer to  
Section 2.6.2 for termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the processor FSB. It must connect the appropriate pins/lands of  
all processor FSB agents. Observing BPRI# active (as asserted by  
the priority agent) causes all other agents to stop issuing new  
requests, unless such requests are part of an ongoing locked  
operation. The priority agent keeps BPRI# asserted until all of its  
requests are completed, then releases the bus by de-asserting  
BPRI#.  
BPRI#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the  
processor to request the bus. During power-on configuration this  
signal is sampled to determine the agent ID = 0.  
Input/  
Output  
BR0#  
This signal does not have on-die termination and must be  
terminated.  
The BCLK[1:0] frequency select signals BSEL[2:0] are used to  
select the processor input clock frequency. Table 2-15 defines the  
possible combinations of the signals and the frequency associated  
with each combination. The required frequency is determined by  
the processor, chipset and clock synthesizer. All agents must  
operate at the same frequency. For more information about these  
signals, including termination recommendations refer to  
Section 2.8.2.  
BSEL[2:0]  
Output  
Analog  
COMP[3:0],  
COMP8  
COMP[3:0] and COMP8 must be terminated to VSS on the system  
board using precision resistors.  
Datasheet  
65  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 3 of 10)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the processor FSB agents, and must  
connect the appropriate pins/lands on all such agents. The data  
driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will, thus, be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group  
of 16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals  
to data strobes and DBI#.  
Quad-Pumped Signal Groups  
DSTBN#/  
Input/  
Output  
D[63:0]#  
Data Group  
DBI#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# signals determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DBI#  
signal. When the DBI# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals.The DBI[3:0]#  
signals are activated when the data on the data bus is inverted. If  
more than half the data bits, within a 16-bit group, would have  
been asserted electrically low, the bus agent may invert the data  
bus signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
DBI[3:0]#  
Data Bus  
Bus Signal  
Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by  
DBR#  
Output a debug port interposer so that an in-target probe can drive  
system reset. If a debug port is implemented in the system, DBR#  
is a no connect in the system. DBR# is not a processor signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the processor FSB to indicate that the data bus is  
Input/  
DBSY#  
in use. The data bus is released after DBSY# is de-asserted. This  
Output  
signal must connect the appropriate pins/lands on all processor  
FSB agents.  
66  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 4 of 10)  
Name  
Type  
Description  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins/lands  
of all processor FSB agents.  
DEFER#  
Input  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state. To  
return to the Deep Sleep State, DPRSTP# must be deasserted.  
Use of the DPRSTP# pin, and corresponding low power state,  
requires chipset support and may not be available on all  
platforms.  
DPRSTP#  
Input  
NOTE:Some processors may not have the Deeper Sleep State  
enabled, refer to the Specification Update for specific sku  
and stepping guidance.  
DPSLP#, when asserted on the platform, causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return  
to the Sleep State, DPSLP# must be deasserted. Use of the  
DPSLP# pin, and corresponding low power state, requires chipset  
support and may not be available on all platforms.  
DPSLP#  
DRDY#  
Input  
NOTE: Some processors may not have the Deep Sleep State  
enabled, refer to the Specification Update for specific sku  
and stepping guidance.  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be de-asserted to insert idle  
clocks. This signal must connect the appropriate pins/lands of all  
processor FSB agents.  
Input/  
Output  
DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FC0/BOOTSELECT is not used by the processor. When this land is  
tied to VSS, previous processors based on the Intel NetBurst®  
microarchitecture should be disabled and prevented from booting.  
FC0/  
BOOTSELECT  
Other  
Other  
FC signals are signals that are available for compatibility with  
other processors.  
FCx  
Datasheet  
67  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 5 of 10)  
Name  
Type  
Description  
FERR#/PBE# (floating point error/pending break event) is a  
multiplexed signal and its meaning is qualified by STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating-point  
error and will be asserted when the processor detects an  
unmasked floating-point error. When STPCLK# is not asserted,  
FERR#/PBE# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using  
MS-DOS*-type floating-point error reporting. When STPCLK# is  
FERR#/PBE#  
Output asserted, an assertion of FERR#/PBE# indicates that the  
processor has a pending break event waiting for service. The  
assertion of FERR#/PBE# indicates that the processor should be  
returned to the Normal state. For additional information on the  
pending break event functionality, including the identification of  
support of the feature and enable/disable information, refer to  
volume 3 of the Intel Architecture Software Developer's Manual  
and the Intel Processor Identification and the CPUID Instruction  
application note.  
GTLREF[3:0] determine the signal reference level for GTL+ input  
GTLREF[3:0]  
Input  
signals. GTLREF is used by the GTL+ receivers to determine if a  
signal is a logical 0 or logical 1.  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Any FSB agent may assert both HIT# and  
HITM# together to indicate that it requires a snoop stall, which  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the processor FSB. This transaction  
may optionally be converted to an external error signal (e.g., NMI)  
by system core logic. The processor will keep IERR# asserted until  
the assertion of RESET#.  
IERR#  
Output  
This signal does not have on-die termination. Refer to  
Section 2.6.2 for termination requirements.  
IGNNE# (Ignore Numeric Error) is asserted to the processor to  
ignore a numeric error and continue to execute noncontrol  
floating-point instructions. If IGNNE# is de-asserted, the  
processor generates an exception on a noncontrol floating-point  
instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0)  
is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure  
recognition of this signal following an Input/Output write  
instruction, it must be valid along with the TRDY# assertion of the  
corresponding Input/Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers  
inside the processor without affecting its internal caches or  
floating-point registers. The processor then begins execution at  
the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests  
during INIT# assertion. INIT# is an asynchronous signal and must  
connect the appropriate pins/lands of all processor FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST).  
68  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 6 of 10)  
Name  
Type  
Description  
ITP_CLK[1:0] are copies of BCLK that are used only in processor  
systems where no debug port is implemented on the system  
board. ITP_CLK[1:0] are used as BCLK[1:0] references for a  
debug port implemented on an interposer. If a debug port is  
implemented in the system, ITP_CLK[1:0] are no connects in the  
system. These are not processor signals.  
ITP_CLK[1:0]  
Input  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate  
pins/lands of all APIC Bus agents. When the APIC is disabled, the  
LINT0 signal becomes INTR, a maskable interrupt request signal,  
and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI  
are backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these signals as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins/lands of  
all processor FSB agents. For a locked sequence of transactions,  
LOCK# is asserted from the beginning of the first transaction to  
the end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership  
of the processor FSB, it will wait until it observes LOCK# de-  
asserted. This enables symmetric agents to retain ownership of  
the processor FSB throughout the bus locked operation and  
ensure the atomicity of lock.  
On the processor these signals are not connected on the package  
(they are floating). As an alternative to MSID, Intel has  
MSID[1:0]  
PECI  
Output implemented the Power Segment Identifier (PSID) to report the  
maximum Thermal Design Power of the processor. Refer to  
Section 2.5 for additional information regarding PSID.  
Input/  
PECI is a proprietary one-wire bus interface. See Chapter 5.3 for  
Output details.  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC)  
Input/  
PROCHOT#  
Output has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system will activate the TCC, if enabled. The  
TCC will remain active until the system de-asserts PROCHOT#.  
See Section 5.2.4 for more details.  
Processor Power Status Indicator Signal. This signal may be asserted when  
PSI#  
Output  
the processor is in the Deeper Sleep State. PSI# can be used to improve  
load efficiency of the voltage regulator, resulting in platform power savings.  
Datasheet  
69  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 7 of 10)  
Name  
Type  
Description  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state. PWRGOOD can be  
driven inactive at any time, but clocks and power must again be  
stable before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate  
pins/lands of all processor FSB agents. They are asserted by the  
Output current bus owner to define the currently active transaction type.  
These signals are source synchronous to ADSTB0#.  
Input/  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known  
state and invalidates its internal caches without writing back any  
of their contents. For a power-on Reset, RESET# must stay active  
for at least one millisecond after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, all FSB agents  
will de-assert their outputs within two clocks. RESET# must not be  
RESET#  
Input  
kept asserted for more than 10 ms while PWRGOOD is asserted.  
A number of bus signals are sampled at the active-to-inactive  
transition of RESET# for power-on configuration. These  
configuration options are described in the Section 6.1.  
This signal does not have on-die termination and must be  
terminated on the system board.  
All RESERVED lands must remain unconnected. Connection of  
these lands to VCC, VSS, VTT, or to any other signal (including each  
other) can result in component malfunction or incompatibility with  
future processors.  
RESERVED  
RS[2:0]# (Response Status) are driven by the response agent  
(the agent responsible for completion of the current transaction),  
and must connect the appropriate pins/lands of all processor FSB  
agents.  
RS[2:0]#  
SKTOCC#  
Input  
SKTOCC# (Socket Occupied) will be pulled to ground by the  
Output processor. System board designers may use this signal to  
determine if the processor is present.  
70  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 8 of 10)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Extended Stop Grant or Stop  
Grant state, causes the processor to enter the Sleep state. In the  
Sleep state, the processor stops providing internal clock signals to  
all units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state will not recognize snoops or interrupts.  
The processor will recognize only assertion of the RESET# signal,  
deassertion of SLP#, and removal of the BCLK input while in Sleep  
state. If SLP# is deasserted, the processor exits Sleep state and  
returns to Extended Stop Grant or Stop Grant state, restarting its  
internal clock signals to the bus and processor core units. If  
DPSLP# is asserted while in the Sleep state, the processor will exit  
the Sleep state and transition to the Deep Sleep state. Use of the  
SLP# pin, and corresponding low power state, requires chipset  
support and may not be available on all platforms.  
SLP#  
Input  
NOTE: Some processors may not have the Sleep State enabled,  
refer to the Specification Update for specific sku and  
stepping guidance.  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt,  
the processor saves the current state and enter System  
Management Mode (SMM). An SMI Acknowledge transaction is  
issued, and the processor begins program execution from the  
SMM handler.  
SMI#  
Input  
If SMI# is asserted during the de-assertion of RESET#, the  
processor will tri-state its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is de-  
asserted, the processor restarts its internal clock to all units and  
resumes execution. The assertion of STPCLK# has no effect on the  
bus clock; STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test  
Bus (also known as the Test Access Port).  
TCK  
Input  
Input  
TDI and TDI_M (Test Data In) transfers serial test data into the  
processor. TDI and TDI_M provide the serial input needed for JTAG  
specification support. TDI connects to core 0. TDI_M connects to  
core 1.  
TDI, TDI_M  
TDO and TDO_M (Test Data Out) transfers serial test data out of  
the processor. TDO and TDO_M provide the serial output needed  
for JTAG specification support. TDO connects to core 1. TDO_M  
connects to core 0.  
TDO, TDO_M  
Output  
Input  
TESTHI[10,7:0] must be connected to the processor’s appropriate  
power source (refer to VTT_OUT_LEFT and VTT_OUT_RIGHT  
signal description) through a resistor for proper processor  
operation. See Section 2.4 for more details.  
TESTHI[10,7:0]  
Datasheet  
71  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 9 of 10)  
Name  
Type  
Description  
In the event of a catastrophic cooling failure, the processor will  
automatically shut down when the silicon has reached a  
temperature approximately 20 °C above the maximum TC.  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor  
junction temperature has reached a level beyond where  
permanent silicon damage may occur. Upon assertion of  
THERMTRIP#, the processor will shut off its internal clocks (thus,  
halting program execution) in an attempt to reduce the processor  
junction temperature. To protect the processor, its core voltage  
(VCC) must be removed following the assertion of THERMTRIP#.  
Driving of the THERMTRIP# signal is enabled within 10 μs of the  
assertion of PWRGOOD (provided VTT and VCC are asserted) and is  
disabled on de-assertion of PWRGOOD (if VTT or VCC are not valid,  
THERMTRIP# may also be disabled). Once activated,  
THERMTRIP#  
Output  
THERMTRIP# remains latched until PWRGOOD, VTT or VCC is de-  
asserted. While the de-assertion of the PWRGOOD, VTT or VCC  
signal will de-assert THERMTRIP#, if the processor’s junction  
temperature remains at or above the trip level, THERMTRIP# will  
again be asserted within 10 μs of the assertion of PWRGOOD  
(provided VTT and VCC are valid).  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it  
is ready to receive a write or implicit writeback data transfer.  
TRDY# must connect the appropriate pins/lands of all FSB agents.  
TRDY#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
TRST#  
VCC  
Input  
Input  
VCC are the power pins for the processor. The voltage supplied to  
these pins is determined by the VID[7:0] pins.  
VCCA provides isolated power for internal PLLs on previous  
generation processors. It may be left as a No-Connect on boards  
supporting the processor.  
VCCA  
Input  
VCCIOPLL provides isolated power for internal processor FSB PLLs  
on previous generation processors. It may be left as a No-Connect  
on boards supporting the processor.  
VCCIOPLL  
VCCPLL  
Input  
Input  
VCCPLL provides isolated power for internal processor FSB PLLs.  
VCC_SENSE is an isolated low impedance connection to processor  
VCC_SENSE  
Output core power (VCC). It can be used to sense or measure voltage  
near the silicon with little noise.  
This land is provided as a voltage regulator feedback sense point  
for VCC. It is connected internally in the processor package to the  
Output sense point land U27 as described in the Voltage Regulator-Down  
(VRD) 11.0 Processor Power Delivery Design Guidelines For  
Desktop LGA775 Socket.  
VCC_MB_  
REGULATION  
72  
Datasheet  
Land Listing and Signal Descriptions  
Table 4-3.  
Signal Description (Sheet 10 of 10)  
Name  
Type  
Description  
The VID (Voltage ID) signals are used to support automatic  
selection of power supply voltages (VCC). Refer to the Voltage  
Regulator Design Guide for more information. The voltage supply  
for these signals must be valid before the VR can supply VCC to  
the processor. Conversely, the VR output must be disabled until  
the voltage supply for the VID signals becomes valid. The VID  
signals are needed to support the processor voltage specification  
variations. See Table 2-1 for definitions of these signals. The VR  
must supply the voltage that is requested by the signals, or  
disable itself.  
VID[7:0]  
Output  
This land is tied high on the processor package and is used by the  
VID_SELECT  
Output VR to choose the proper VID table. Refer to the Voltage Regulator  
Design Guide for more information.  
This input should be left as a no connect in order for the processor  
VRDSEL  
VSS  
Input  
Input  
Input  
to boot. The processor will not boot on legacy platforms where  
this land is connected to VSS  
.
VSS are the ground pins for the processor and should be  
connected to the system ground plane.  
VSSA provides isolated ground for internal PLLs on previous  
generation processors. It may be left as a No-Connect on boards  
supporting the processor.  
VSSA  
VSS_SENSE is an isolated low impedance connection to processor  
VSS_SENSE  
Output core VSS. It can be used to sense or measure ground near the  
silicon with little noise.  
This land is provided as a voltage regulator feedback sense point  
VSS_MB_  
REGULATION  
for VSS. It is connected internally in the processor package to the  
sense point land V27 as described in the Voltage Regulator Design  
Output  
Guide.  
VTT  
Miscellaneous voltage supply.  
VTT_OUT_LEFT  
The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to  
Output provide a voltage supply for some signals that require termination  
to VTT on the motherboard.  
VTT_OUT_RIGHT  
VTT_SEL  
The VTT_SEL signal is used to select the correct VTT voltage level  
Output for the processor. This land is connected internally in the package  
to VSS  
.
§
Datasheet  
73  
Land Listing and Signal Descriptions  
74  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The processor requires a thermal solution to maintain temperatures within the  
operating limits as set forth in Section 5.1.1. Any attempt to operate the processor  
outside these operating limits may result in permanent damage to the processor and  
potentially other components within the system. As processor technology changes,  
thermal management becomes increasingly crucial when building computer systems.  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation.  
A complete thermal solution includes both component and system level thermal  
management features. Component level thermal solutions can include active or passive  
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system  
level thermal solutions may consist of system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the  
appropriate Thermal and Mechanical Design Guidelines (See Section 1.2).  
Note:  
The boxed processor will ship with a component thermal solution. Refer to Chapter 7  
for details on the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum case temperature (TC)  
specifications when operating at or below the Thermal Design Power (TDP) value listed  
per frequency in Table 5-1. Thermal solutions not designed to provide this level of  
thermal capability may affect the long-term reliability of the processor and system. For  
more details on thermal solution design, refer to the appropriate Thermal and  
Mechanical Design Guidelines (See Section 1.2).  
The processor uses a methodology for managing processor temperatures which is  
intended to support acoustic noise reduction through fan speed control. Selection of the  
appropriate fan speed is based on the relative temperature data reported by the  
processor’s Platform Environment Control Interface (PECI) bus as described in  
Section 5.3. If the value reported via PECI is less than TCONTROL, then the case  
temperature is permitted to exceed the Thermal Profile. If the value reported via PECI  
is greater than or equal to TCONTROL, then the processor case temperature must remain  
at or below the temperature as specified by the thermal profile. The temperature  
reported over PECI is always a negative value and represents a delta below the onset of  
thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 5.2).  
Systems that implement fan speed control must be designed to take these conditions in  
to account. Systems that do not alter the fan speed only need to ensure the case  
temperature meets the thermal profile specifications.  
In order to determine a processor's case temperature specification based on the  
thermal profile, it is necessary to accurately measure processor power dissipation. Intel  
has developed a methodology for accurate power measurement that correlates to Intel  
test temperature and voltage conditions. Refer to the appropriate Thermal and  
Mechanical Design Guidelines (See Section 1.2) for the details of this methodology.  
Datasheet  
75  
Thermal Specifications and Design Considerations  
The case temperature is defined at the geometric top center of the processor. Analysis  
indicates that real applications are unlikely to cause the processor to consume  
maximum power dissipation for sustained time periods. Intel recommends that  
complete thermal solution designs target the Thermal Design Power (TDP) indicated in  
Table 5-1 instead of the maximum processor power consumption. The Thermal Monitor  
feature is designed to protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained periods of time. For more details on  
the usage of this feature, refer to Section 5.2. In all cases the Thermal Monitor or  
Thermal Monitor 2 feature must be enabled for the processor to remain within  
specification.  
Table 5-1.  
Processor Thermal Specifications  
Thermal  
Design  
Power  
Extended  
HALT  
Deeper  
Sleep  
Core  
Freq.  
(GHz)  
Processor  
Number  
775_VR_CO Minimum MaximumTC  
Notes  
Power  
Power  
NFIG5  
T
C (°C)  
(°C)  
(W) 3, 4  
(W)1  
(W)  
2
See Table 5-2  
and  
Figure 5-1  
QX9770  
QX9650  
3.20  
3.00  
136  
130  
16  
16  
5
5
8
See Table 5-3  
and  
Figure 5-2  
775_VR_CO  
NFIG_05B  
7, 8  
Q9650  
Q9550  
Q9550  
Q9505  
Q9450  
Q9400  
Q9300  
Q8400  
Q8300  
Q8200  
3.0  
95  
95  
95  
95  
95  
95  
95  
95  
95  
95  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
8
5
5
5
5
5
5
5
5
5
5
6
6
7
7
7
6
7
6
6
7
2.83  
2.83  
2.83  
2.66  
2.66  
2.50  
2.66  
2.50  
2.33  
8
See Table 5-4  
and  
Figure 5-3  
775_VR_CO  
NFIG_05A  
8
8
Q9550S  
Q9505S  
Q9400S  
Q8400S  
Q8200S  
2.83  
2.83  
2.66  
2.66  
2.33  
65  
65  
65  
65  
65  
12  
12  
12  
12  
12  
8
8
8
8
8
5
5
5
5
5
6
6
6
6
6
See Table 5-5  
and  
Figure 5-4  
775_VR_CO  
NFIG_06  
NOTES:  
1.  
2.  
3.  
4.  
Specification is at 37° C Tc and minimum voltage loadline. Specification is ensured by  
design characterization and not 100% tested.  
Specification is at 34° C Tc and minimum voltage loadline. Specification is ensured by design  
characterization and not 100% tested.  
Thermal Design Power (TDP) should be used for processor thermal solution design targets.  
The TDP is not the maximum power that the processor can dissipate.  
This table shows the maximum TDP for a given frequency range. Individual processors  
may have a lower TDP. Therefore, the maximum TC will vary depending on the TDP of the  
individual processor. Refer to thermal profile figure and associated table for the allowed  
combinations of power and TC.  
5.  
775_VR_CONFIG_05 guidelines provide a design target for meeting future thermal  
requirements.  
6.  
7.  
8.  
These processors have CPUID = 1067Ah.  
These processors have CPUID = 10677h.  
These processors have CPUID = 10676h.  
76  
Datasheet  
Thermal Specifications and Design Considerations  
Table 5-2.  
Intel® Core™2 Extreme Processor QX9770 Thermal Profile  
Power Maximum  
Power Maximum  
Power Maximum  
Power Maximum  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
0
37.8  
38.1  
38.3  
38.6  
38.8  
39.1  
39.4  
39.6  
39.9  
40.1  
40.4  
40.7  
40.9  
41.2  
41.4  
41.7  
42.0  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
42.2  
42.5  
42.7  
43.0  
43.3  
43.5  
43.8  
44.0  
44.3  
44.6  
44.8  
45.1  
45.3  
45.6  
45.9  
46.1  
46.4  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
46.6  
46.9  
47.2  
47.4  
47.7  
47.9  
48.2  
48.5  
48.7  
49.0  
49.2  
49.5  
49.8  
50.0  
50.3  
50.5  
50.8  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
51.1  
51.3  
51.6  
51.8  
52.1  
52.4  
52.6  
52.9  
53.1  
53.4  
53.7  
53.9  
54.2  
54.4  
54.7  
55.0  
55.2  
55.5  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Figure 5-1. Intel® Core™2 Extreme Processor QX9770 Thermal Profile  
55  
53  
51  
49  
y = 0.13x + 37.8  
47  
45  
43  
41  
39  
37  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Power (W)  
Datasheet  
77  
Thermal Specifications and Design Considerations  
Table 5-3.  
Intel® Core™2 Extreme Processor QX9650 Thermal Profile  
Power Maximum  
Power Maximum  
Power Maximum  
Power Maximum  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
0
42.4  
42.7  
43.1  
43.4  
43.8  
44.1  
44.4  
44.8  
45.1  
45.5  
45.8  
46.1  
46.5  
46.8  
47.2  
47.5  
47.8  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
48.2  
48.5  
48.9  
49.2  
49.5  
49.9  
50.2  
50.6  
50.9  
51.2  
51.6  
51.9  
52.3  
52.6  
52.9  
53.3  
53.6  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
90  
92  
94  
96  
98  
100  
54.0  
54.3  
54.6  
55.0  
55.3  
55.7  
56.0  
56.3  
56.7  
57.0  
57.4  
57.7  
58.0  
58.4  
58.7  
59.1  
59.4  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
59.7  
60.1  
60.4  
60.8  
61.1  
61.4  
61.8  
62.1  
62.5  
62.8  
63.1  
63.5  
63.8  
64.2  
64.5  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Figure 5-2. Intel® Core™2 Extreme Processor QX9650 Thermal Profile  
65.0  
63.0  
61.0  
59.0  
57.0  
55.0  
y = 0.17x + 42.4  
53.0  
51.0  
49.0  
47.0  
45.0  
43.0  
41.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Power (W)  
78  
Datasheet  
Thermal Specifications and Design Considerations  
Table 5-4.  
Intel® Core™2 Quad Processor Q9000 and Q8000 Series Thermal Profile  
Power Maximum  
Power Maximum  
Power Maximum  
Power Maximum  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
0
2
44.8  
45.4  
45.9  
46.5  
47.0  
47.6  
48.2  
48.7  
49.3  
49.8  
50.4  
51.0  
51.5  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52.1  
52.6  
53.2  
53.8  
54.3  
54.9  
55.4  
56.0  
56.6  
57.1  
57.7  
58.2  
58.8  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
59.4  
59.9  
60.5  
61.0  
61.6  
62.2  
62.7  
63.3  
63.8  
64.4  
65.0  
65.5  
66.1  
78  
80  
82  
84  
86  
88  
90  
92  
94  
95  
66.6  
67.2  
67.8  
68.3  
68.9  
69.4  
70.0  
70.6  
71.1  
71.4  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
Figure 5-3. Intel® Core™2 Quad Processor Q9000 and Q8000 Series Thermal Profile  
72.0  
68.0  
64.0  
y = 0.28x + 44.8  
60.0  
56.0  
52.0  
48.0  
44.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Power (W)  
Datasheet  
79  
Thermal Specifications and Design Considerations  
Table 5-5.  
Intel® Core™2 Quad Processor Q9000S and Q8000S Series Thermal Profile  
Power Maximum  
Power Maximum  
Power Maximum  
Power Maximum  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
(W)  
Tc (°C)  
0
2
49.6  
50.4  
51.2  
52.1  
52.9  
53.7  
54.5  
55.3  
56.2  
18  
20  
22  
24  
26  
28  
30  
32  
34  
57.0  
57.8  
58.6  
59.4  
60.3  
61.1  
61.9  
62.7  
63.5  
36  
38  
40  
42  
44  
46  
48  
50  
52  
64.4  
65.2  
66.0  
66.8  
67.6  
68.5  
69.3  
70.1  
70.9  
54  
56  
58  
60  
62  
64  
65  
71.7  
72.6  
73.4  
74.2  
75.0  
75.8  
76.3  
4
6
8
10  
12  
14  
16  
Figure 5-4. Intel® Core™2 Quad Processor Q9000S and Q8000S Series Thermal Profile  
80  
75  
70  
65  
y = 0.41x + 49.6  
60  
55  
50  
45  
0
10  
20  
30  
40  
50  
60  
Power (W)  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) for the processor is specified in  
Table 5-1. This temperature specification is meant to help ensure proper operation of  
the processor. Figure 5-5 illustrates where Intel recommends TC thermal  
measurements should be made. For detailed guidelines on temperature measurement  
methodology, refer to the appropriate Thermal and Mechanical Design Guidelines (See  
Section 1.2).  
Figure 5-5. Case Temperature (TC) Measurement Location  
Measure TC atthis point  
(geometric center of the package)  
37.5 mm  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the  
thermal control circuit (TCC) when the processor silicon reaches its maximum operating  
temperature. The TCC reduces processor power consumption by modulating (starting  
and stopping) the internal processor core clocks. The Thermal Monitor feature must  
be enabled for the processor to be operating within specifications. The  
temperature at which Thermal Monitor activates the thermal control circuit is not user  
configurable and is not software visible. Bus traffic is snooped in the normal manner,  
and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists  
(i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off  
and on at a duty cycle specific to the processor (typically 30-50%). Clocks often will not  
be off for more than 3.0 microseconds when the TCC is active. Cycle times are  
processor speed dependent and will decrease as processor core frequencies increase. A  
small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
Datasheet  
81  
Thermal Specifications and Design Considerations  
periods of TCC activation is expected to be so minor that it would be immeasurable. An  
under-designed thermal solution that is not able to prevent excessive activation of the  
TCC in the anticipated ambient environment may cause a noticeable performance loss,  
and in some cases may result in a TC that exceeds the specified maximum temperature  
and may affect the long-term reliability of the processor. In addition, a thermal solution  
that is significantly under-designed may not be capable of cooling the processor even  
when the TCC is active continuously. Refer to the appropriate Thermal and Mechanical  
Design Guidelines (See Section 1.2) for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory  
configured and cannot be modified. The Thermal Monitor does not require any  
additional hardware, software drivers, or interrupt handling routines.  
5.2.2  
Thermal Monitor 2  
The processor also supports an additional power reduction capability known as Thermal  
Monitor 2. This mechanism provides an efficient means for limiting the processor  
temperature by reducing the power consumption within the processor.  
When Thermal Monitor 2 is enabled, and a high temperature situation is detected, the  
Thermal Control Circuit (TCC) will be activated. The TCC causes the processor to adjust  
its operating frequency (via the bus multiplier) and input voltage (via the VID signals).  
This combination of reduced frequency and VID results in a reduction to the processor  
power consumption.  
A processor enabled for Thermal Monitor 2 includes two operating points, each  
consisting of a specific operating frequency and voltage. The first operating point  
represents the normal operating condition for the processor. Under this condition, the  
core-frequency-to-FSB multiple utilized by the processor is that contained in the  
CLK_GEYSIII_STAT MSR and the VID is that specified in Table 2-3. These parameters  
represent normal system operation.  
The second operating point consists of both a lower operating frequency and voltage.  
When the TCC is activated, the processor automatically transitions to the new  
frequency. This transition occurs very rapidly (on the order of 5 μs). During the  
frequency transition, the processor is unable to service any bus requests, and  
consequently, all bus traffic is blocked. Edge-triggered interrupts will be latched and  
kept pending until the processor resumes operation at the new frequency.  
Once the new operating frequency is engaged, the processor will transition to the new  
core operating voltage by issuing a new VID code to the voltage regulator. The voltage  
regulator must support dynamic VID steps in order to support Thermal Monitor 2.  
During the voltage change, it will be necessary to transition through multiple VID codes  
to reach the target operating voltage. Each step will likely be one VID table entry (see  
Table 2-3). The processor continues to execute instructions during the voltage  
transition. Operation at the lower voltage reduces the power consumption of the  
processor.  
A small amount of hysteresis has been included to prevent rapid active/inactive  
transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating  
temperature, and the hysteresis timer has expired, the operating frequency and  
voltage transition back to the normal system operating point. Transition of the VID code  
will occur first, in order to ensure proper operation once the processor reaches its  
normal operating frequency. Refer to Figure 5-6 for an illustration of this ordering.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
Figure 5-6. Thermal Monitor 2 Frequency and Voltage Ordering  
TTM2  
Temperature  
fMAX  
fTM2  
Frequency  
VID  
VIDTM2  
VID  
PROCHOT#  
The PROCHOT# signal is asserted when a high temperature situation is detected,  
regardless of whether Thermal Monitor or Thermal Monitor 2 is enabled.  
It should be noted that the Thermal Monitor 2 TCC cannot be activated via the on  
demand mode. The Thermal Monitor TCC, however, can be activated through the use of  
the on demand mode.  
5.2.3  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption. This mechanism is referred to as “On-  
Demand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is  
intended as a means to reduce system level power consumption. Systems using the  
processor must not rely on software usage of this mechanism to limit the processor  
temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor  
IA32_THERM_CONTROL MSR) is written to a '1', the processor will immediately reduce  
its power consumption via modulation (starting and stopping) of the internal core clock,  
independent of the processor temperature. When using On-Demand mode, the duty  
cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT  
Control Register. In On-Demand mode, the duty cycle can be programmed from 12.5%  
on/87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be  
used in conjunction with the Thermal Monitor. If the system tries to enable On-Demand  
mode at the same time the TCC is engaged, the factory configured duty cycle of the  
TCC will override the duty cycle selected by the On-Demand mode.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
5.2.4  
PROCHOT# Signal  
An external signal, PROCHOT# (processor hot), is asserted when the processor core  
temperature has reached its maximum operating temperature. If the Thermal Monitor  
is enabled (note that the Thermal Monitor must be enabled for the processor to be  
operating within specification), the TCC will be active when PROCHOT# is asserted. The  
processor can be configured to generate an interrupt upon the assertion or de-  
assertion of PROCHOT#.  
PROCHOT# is a bi-directional signal. As an output, PROCHOT# (Processor Hot) will go  
active when the processor temperature monitoring sensor detects that one or both  
cores has reached its maximum safe operating temperature. This indicates that the  
processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input,  
assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores.  
The TCC will remain active until the system de-asserts PROCHOT#.  
Note:  
PROCHOT# will not be asserted (as an output) or observed (as an input) when the  
processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low-power states,  
hence the thermal solution must be designed to ensure the processor remains within  
specification. If the processor enters one of the above low-power states with  
PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits  
the low-power state and the processor DTS temperature drops below the thermal trip  
point.  
PROCHOT# allows for some protection of various components from over-temperature  
situations. The PROCHOT# signal is bi-directional in that it can either signal when the  
processor (either core) has reached its maximum operating temperature or be driven  
from an external source to activate the TCC. The ability to activate the TCC via  
PROCHOT# can provide a means for thermal protection of system components.  
Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained  
current instead of maximum current. Systems should still provide proper cooling for the  
VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling  
failure. The system thermal design should allow the power delivery circuitry to operate  
within its temperature specification even while the processor is operating at its Thermal  
Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss. Refer to  
the Voltage Regulator Design Guide for details on implementing the bi-directional  
PROCHOT# feature.  
5.2.5  
THERMTRIP# Signal  
Regardless of whether or not Thermal Monitor or Thermal Monitor 2 is enabled, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in  
Table 4-3). At this point, the FSB signal THERMTRIP# will go active and stay active as  
described in Table 4-3. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles.  
84  
Datasheet  
Thermal Specifications and Design Considerations  
5.3  
Platform Environment Control Interface (PECI)  
5.3.1  
Introduction  
PECI offers an interface for thermal monitoring of Intel processor and chipset  
components. It uses a single wire, thus alleviating routing congestion issues. PECI uses  
CRC checking on the host side to ensure reliable transfers between the host and client  
devices. Also, data transfer speeds across the PECI interface are negotiable within a  
wide range (2Kbps to 2Mbps). The PECI interface on the processor is disabled by  
default and must be enabled through BIOS. More information can be found in the  
Platform Environment Control Interface (PECI) Specification.  
5.3.1.1  
T
and TCC activation on PECI-Based Systems  
CONTROL  
Fan speed control solutions based on PECI utilize a TCONTROL value stored in the  
processor IA32_TEMPERATURE_TARGET MSR. The TCONTROL MSR uses the same offset  
temperature format as PECI though it contains no sign bit. Thermal management  
devices should infer the TCONTROL value as negative. Thermal management algorithms  
should utilize the relative temperature value delivered over PECI in conjunction with the  
T
CONTROL MSR value to control or optimize fan speeds. Figure 5-7 shows a conceptual  
fan control diagram using PECI temperatures.  
The relative temperature value reported over PECI represents the delta below the onset  
of thermal control circuit (TCC) activation as indicated by PROCHOT# assertions. As the  
temperature approaches TCC activation, the PECI value approaches zero. TCC activates  
at a PECI count of zero.  
Figure 5-7. Conceptual Fan Control Diagram on PECI-Based Platforms  
Datasheet  
85  
Thermal Specifications and Design Considerations  
5.3.2  
PECI Specifications  
5.3.2.1  
PECI Device Address  
The PECI register resides at address 30h.  
5.3.2.2  
5.3.2.3  
PECI Command Support  
PECI command support is covered in detail in the Platform Environment Control  
Interface Specification. Refer to this document for details on supported PECI command  
function and codes.  
PECI Fault Handling Requirements  
PECI is largely a fault tolerant interface, including noise immunity and error checking  
improvements over other comparable industry standard interfaces. The PECI client is  
as reliable as the device that it is embedded in, and thus given operating conditions  
that fall under the specification, the PECI will always respond to requests and the  
protocol itself can be relied upon to detect any transmission failures. There are,  
however, certain scenarios where the PECI is know to be unresponsive.  
Prior to a power on RESET# and during RESET# assertion, PECI is not assured to  
provide reliable thermal data. System designs should implement a default power-on  
condition that ensures proper processor operation during the time frame when reliable  
data is not available via PECI.  
To protect platforms from potential operational or safety issues due to an abnormal  
condition on PECI, the Host controller should take action to protect the system from  
possible damage. It is recommended that the PECI host controller take appropriate  
action to protect the client processor device if valid temperature readings have not  
been obtained in response to three consecutive GetTemp()s or for a one second time  
interval. The host controller may also implement an alert to software in the event of a  
critical or continuous fault condition.  
5.3.2.4  
PECI GetTemp0() Error Code Support  
The error codes supported for the processor GetTemp() command are listed in  
Table 5-6.  
Table 5-6.  
GetTemp0() Error Codes  
Error Code  
8000h  
Description  
General sensor error  
Sensor is operational, but has detected a temperature below its operational  
range (underflow)  
8002h  
§
86  
Datasheet  
Features  
6 Features  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These  
configuration options cannot be changed except by another reset. All resets reconfigure  
the processor; for configuration purposes, the processor does not distinguish between  
a "warm" reset and a "power-on" reset.  
Table 6-1.  
Power-On Configuration Option Signals  
Configuration Option  
Output tristate  
Signal1,2  
SMI#  
Execute BIST  
A3#  
A25#  
Disable dynamic bus parking  
Symmetric agent arbitration ID  
RESERVED  
BR0#  
A[24:4]#, A[35:26]#  
NOTE:  
1.  
2.  
Asserting this signal during RESET# will select the corresponding option.  
Address signals not identified in this table as configuration options should not be asserted  
during RESET#.  
3.  
Disabling of any of the cores within a processor must be handled by configuring the  
EXT_CONFIG Model Specific Register (MSR). This MSR allows for the disabling of a single  
core per die within the processor package.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT and Stop-Grant states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on  
each particular state. See Figure 6-1 for a visual representation of the processor low  
power states.  
Datasheet  
89  
Features  
Figure 6-1. Processor Low Power State Machine  
HALT or MWAIT Instruction and  
HALT Bus Cycle Generated  
Extended HALT or HALT  
State  
- BCLK running  
- Snoops and interrupts  
allowed  
Normal State  
INIT#, INTR, NMI, SMI#, RESET#,  
FSB interrupts  
- Normal Execution  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
Extended HALT Snoop or  
HALT Snoop State  
- BCLK running  
- Service Snoops to caches  
Stop Grant State  
- BCLK running  
- Snoops and interrupts  
allowed  
Snoop Event Occurs  
Snoop Event Serviced  
Stop Grant Snoop State  
- BCLK running  
- Service Snoops to caches  
6.2.1  
6.2.2  
Normal State  
This is the normal operating state for the processor.  
HALT and Extended HALT Powerdown States  
The processor supports the HALT or Extended HALT powerdown state. The Extended  
HALT Powerdown state must be configured and enabled via the BIOS for the processor  
to remain within specification.  
The Extended HALT state is a lower power state as compared to the Stop Grant State.  
If Extended HALT is not enabled, the default Powerdown state entered will be HALT.  
Refer to the sections below for details about the HALT and Extended HALT states.  
6.2.2.1  
HALT Powerdown State  
HALT is a low power state entered when all the processor cores have executed the HALT  
or MWAIT instructions. When one of the processor cores executes the HALT instruction,  
that processor core is halted, however, the other processor continues normal operation.  
The halted core will transition to the Normal state upon the occurrence of SMI#, INIT#,  
or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize  
itself.  
The return from a System Management Interrupt (SMI) handler can be to either  
Normal Mode or the HALT Power Down state. See the Intel Architecture Software  
Developer's Manual, Volume 3B: System Programming Guide, Part 2 for more  
information.  
90  
Datasheet  
Features  
The system can generate a STPCLK# while the processor is in the HALT Power Down  
state. When the system deasserts the STPCLK# interrupt, the processor will return  
execution to the HALT state.  
While in HALT Power Down state, the processor will process bus snoops.  
6.2.2.2  
Extended HALT Powerdown State  
Extended HALT is a low power state entered when all processor cores have executed  
the HALT or MWAIT instructions and Extended HALT has been enabled using the BIOS.  
When one of the processor cores executes the HALT instruction, that logical processor  
is halted; however, the other processor continues normal operation. The Extended  
HALT Powerdown must be enabled using the BIOS for the processor to remain within its  
specification.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended HALT state. Note that the processor FSB frequency  
is not altered; only the internal core frequency is changed. When entering the low  
power state, the processor will first switch to the lower bus ratio and then transition to  
the lower VID.  
While in Extended HALT state, the processor will process bus snoops.  
The processor exits the Extended HALT state when a break event occurs. When the  
processor exits the Extended HALT state, it will first transition the VID to the original  
value and then change the bus ratio back to the original value.  
6.2.3  
Stop Grant and Extended Stop Grant States  
The processor supports the Stop Grant and Extended Stop Grant states. The Extended  
Stop Grant state is a feature that must be configured and enabled using BIOS. Refer to  
the sections below for details about the Stop Grant and Extended Stop Grant states.  
6.2.3.1  
Stop-Grant State  
When the STPCLK# signal is asserted, the Stop Grant state of the processor is entered  
20 bus clocks after the response phase of the processor-issued Stop Grant  
Acknowledge special bus cycle.  
Since the GTL+ signals receive power from the FSB, these signals should not be driven  
(allowing the level to return to VTT) for minimum power drawn by the termination  
resistors in this state. In addition, all other input signals on the FSB should be driven to  
the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. A transition back to the Normal state will occur with the de-  
assertion of the STPCLK# signal.  
A transition to the Grant Snoop state will occur when the processor detects a snoop on  
the FSB (see Section 6.2.4).  
While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one  
occurrence of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process a FSB snoop.  
Datasheet  
91  
Features  
6.2.3.2  
Extended Stop Grant State  
Extended Stop Grant is a low power state entered when the STPCLK# signal is asserted  
and Extended Stop Grant has been enabled using BIOS.  
The processor will automatically transition to a lower frequency and voltage operating  
point before entering the Extended Stop Grant state. When entering the low power  
state, the processor will first switch to the lower bus ratio and then transition to the  
lower VID.  
The processor exits the Extended Stop Grant state when a break event occurs. When  
the processor exits the Extended Stop Grant state, it will resume operation at the lower  
frequency, transition the VID to the original value, and then change the bus ratio back  
to the original value.  
6.2.4  
Extended HALT Snoop State, HALT Snoop State, Extended  
Stop Grant Snoop State, and Stop Grant Snoop State  
The Extended HALT Snoop State is used in conjunction with the Extended HALT state. If  
Extended HALT state is not enabled in the BIOS, the default Snoop State entered will  
be the HALT Snoop State. Refer to the sections below for details on HALT Snoop State,  
Stop Grant Snoop State, Extended HALT Snoop State, Extended Stop Grant Snoop  
State.  
6.2.4.1  
6.2.4.2  
HALT Snoop State, Stop Grant Snoop State  
The processor will respond to snoop transactions on the FSB while in Stop-Grant state  
or in HALT powerdown state. During a snoop transaction, the processor enters the HALT  
Snoop State:Stop Grant Snoop state. The processor will stay in this state until the  
snoop on the FSB has been serviced (whether by the processor or another agent on the  
FSB). After the snoop is serviced, the processor will return to the Stop Grant state or  
HALT powerdown state, as appropriate.  
Extended HALT Snoop State, Extended Stop Grant Snoop State  
The processor will remain in the lower bus ratio and VID operating point of the  
Extended HALT state or Extended Stop Grant state.  
While in the Extended HALT Snoop State or Extended Stop Grant Snoop State, snoops  
are handled the same way as in the HALT Snoop State or Stop Grant Snoop State. After  
the snoop is serviced the processor will return to the Extended HALT state or Extended  
Stop Grant state.  
6.2.5  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Extended Stop Grant or Stop  
Grant state. The SLP# pin should only be asserted when the processor is in the  
Extended Stop Grant or Stop Grant state. SLP# assertions while the processor is not in  
these states is out of specification and may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
92  
Datasheet  
Features  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through the Stop-Grant state.  
If RESET# is driven active while the processor is in the Sleep state, the SLP# and  
STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure  
the processor correctly executes the Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 6.2.6). While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur. PECI is not available and will not respond  
while in the Sleep State.  
6.2.6  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on appropriate chipset-based platforms with  
the CK505 clock chip are as follows:  
Deep Sleep entry: the system clock chip may stop/tristate BCLK within two BCLKs  
of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# de-assertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted  
after DPSLP# de-assertion as described above. A period of 15 microseconds (to allow  
for PLL stabilization) must occur before the processor can be considered to be in the  
Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the  
Stop-Grant state.  
While in the Deep Sleep state the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in the Deep Sleep state. When the processor is in the Deep  
Sleep state it will not respond to interrupts or snoop transactions. Any transition on an  
input signal before the processor has returned to the Stop-Grant state will result in  
unpredictable behavior. PECI is not available and will not respond while in the Deep  
Sleep State.  
6.2.7  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but the core voltage is  
reduced to a lower level. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. Exit from Deeper Sleep is initiated by  
DPRSTP# de-assertion. PECI is not available and will not respond while in the Deeper  
Sleep State.  
Datasheet  
93  
Features  
In response to entering Deeper Sleep, the processor drives the VID code corresponding  
to the Deeper Sleep core voltage on the VID pins. Unlike typical Dynamic VID changes  
(where the steps are single VID steps) the processor will perform a VID jump on the  
order of 100 mV. To support the Deeper Sleep State the platform must use a VRD 11.1  
compliant solution.  
®
6.2.8  
Enhanced Intel SpeedStep Technology  
The processor supports Enhanced Intel SpeedStep Technology. This technology enables  
the processor to switch between frequency and voltage points, which may result in  
platform power savings. In order to support this technology, the system must support  
dynamic VID transitions. Switching between voltage/frequency states is software  
controlled.  
Enhanced Intel SpeedStep Technology is a technology that creates processor  
performance states (P states). P states are power consumption and capability states  
within the Normal state as shown in Figure 6-1. Enhanced Intel SpeedStep Technology  
enables real-time dynamic switching between frequency and voltage points. It alters  
the performance of the processor by changing the bus to core frequency ratio and  
voltage. This allows the processor to run at different core frequencies and voltages to  
best serve the performance and power requirements of the processor and system. Note  
that the front side bus is not altered; only the internal core frequency is changed. In  
order to run at reduced power consumption, the voltage is altered in step with the bus  
ratio.  
The following are key features of Enhanced Intel SpeedStep Technology:  
• Voltage/Frequency selection is software controlled by writing to processor MSR's  
(Model Specific Registers), thus eliminating chipset dependency.  
— If the target frequency is higher than the current frequency, Vcc is incremented  
in steps (+12.5 mV) by placing a new value on the VID signals after which the  
processor shifts to the new frequency. Note that the top frequency for the  
processor can not be exceeded.  
— If the target frequency is lower than the current frequency, the processor shifts  
to the new frequency and Vcc is then decremented in steps (-12.5 mV) by  
changing the target VID through the VID signals.  
6.3  
Processor Power Status Indicator (PSI) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve efficiency of the  
voltage regulator, resulting in platform power savings.  
PSI# may be asserted only when the processor is in the Deeper Sleep state.  
§
94  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
7.1  
Introduction  
The Intel Core™2 Extreme processor QX9650, Intel Core™2 quad-core processor  
Q9000, Q9000S, Q8000, and Q8000S series will also be offered as an Intel boxed  
processor. Intel boxed processors are intended for system integrators who build  
systems from baseboards and standard components. The boxed processor will be  
supplied with a cooling solution. This chapter documents baseboard and system  
requirements for the cooling solution that will be supplied with the boxed processor.  
This chapter is particularly important for OEMs that manufacture baseboards for  
system integrators.  
Note:  
Note:  
Note:  
The Intel Core™2 Extreme processor QX9770 requires a special liquid cooling thermal  
solution. It will not be offered with the processor. Refer to the appropriate Thermal and  
Mechanical Design Guidelines (see Section 1.2) for further guidance.  
Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed  
processor.  
Drawings in this section reflect only the specifications on the Intel boxed processor  
product. These dimensions should not be used as a generic keep-out zone for all  
cooling solutions. It is the system designers’ responsibility to consider their proprietary  
cooling solution when designing to the required keep-out zone on their system  
platforms and chassis. Refer to the appropriate Thermal and Mechanical Design  
Guidelines (See Section 1.2) for further guidance. Contact your local Intel Sales  
Representative for this document.  
Figure 7-1. Mechanical Representation of the Boxed Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
95  
Boxed Processor Specifications  
7.2  
Mechanical Specifications  
7.2.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 7-1 shows a  
mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 7-2 (Side View), and Figure 7-3 (Top  
View). The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 7-7 and Figure 7-8. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Space Requirements for the Boxed Processor (side view)  
95.0  
[3.74]  
81.3  
[3.2]  
10.0  
[0.39]  
25.0  
[0.98]  
Figure 7-3. Space Requirements for the Boxed Processor (top view)  
95.0  
[3.74]  
95.0  
[3.74]  
NOTES:  
1.  
Diagram does not show the attached hardware for the clip design and is provided only as a  
mechanical representation.  
96  
Datasheet  
Boxed Processor Specifications  
Figure 7-4. Space Requirements for the Boxed Processor (overall view)  
7.2.2  
7.2.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5  
and the appropriate Thermal and Mechanical Design Guidelines (See Section 1.2) for  
details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a heatsink attach clip assembly, to  
secure the processor and fan heatsink in the baseboard socket. The boxed processor  
will ship with the heatsink attach clip assembly.  
7.3  
Electrical Requirements  
7.3.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable  
will be shipped with the boxed processor to draw power from a power header on the  
baseboard. The power cable connector and pinout are shown in Figure 7-5. Baseboards  
must provide a matched power header to support the boxed processor. Table 7-1  
contains specifications for the input and output signals at the fan heatsink connector.  
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses  
at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides VOH to  
match the system board-mounted fan speed monitor requirements, if applicable. Use of  
the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector  
should be tied to GND.  
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the  
connector labeled as CONTROL.  
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and  
does not support variable voltage control or 3-pin PWM control.  
Datasheet  
97  
Boxed Processor Specifications  
The power header on the baseboard must be positioned to allow the fan heatsink power  
cable to reach it. The power header identification and location should be documented in  
the platform documentation, or on the system board itself. Figure 7-6 shows the  
location of the fan power connector relative to the processor socket. The baseboard  
power header should be positioned within 110 mm [4.33 inches] from the center of the  
processor socket.  
Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description  
Signal  
Pin  
Straight square pin, 4-pin terminal housing with  
polarizing ribs and friction locking ramp.  
1
2
3
4
GND  
+12 V  
0.100" pitch, 0.025" square pin width.  
SENSE  
CONTROL  
Match with straight pin, friction lock header on  
mainboard.  
3
2
4
1
Table 7-1.  
Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
11.4  
12  
12.6  
-
V
IC:  
- Maximum fan steady-state current draw  
- Average fan steady-state current draw  
- Maximum fan start-up current draw  
1.2  
0.5  
2.2  
1.0  
A
A
A
-
- Fan start-up current draw maximum  
duration  
Second  
pulses per  
fan  
1
SENSE: SENSE frequency  
2
revolution  
2, 3  
CONTROL  
21  
25  
28  
kHz  
NOTES:  
1. Baseboard should pull this pin up to 5 V with a resistor.  
2. Open drain type, pulse width modulated.  
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.  
Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket  
R110  
[4.33]  
B
C
98  
Datasheet  
Boxed Processor Specifications  
7.4  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the  
boxed processor.  
7.4.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the  
processor's temperature specification is also a function of the thermal design of the  
entire system, and ultimately the responsibility of the system integrator. The processor  
temperature specification is in Chapter 5. The boxed processor fan heatsink is able to  
keep the processor temperature within the specifications (see Table 5-1) in chassis that  
provide good thermal management. For the boxed processor fan heatsink to operate  
properly, it is critical that the airflow provided to the fan heatsink is unimpeded. Airflow  
of the fan heatsink is into the center and out of the sides of the fan heatsink. Airspace  
is required around the fan to ensure that the airflow through the fan heatsink is not  
blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and  
decreases fan life. Figure 7-7 and Figure 7-8 illustrate an acceptable airspace clearance  
for the fan heatsink. The air temperature entering the fan should be kept below 38 ºC.  
Again, meeting the processor's temperature specification is the responsibility of the  
system integrator.  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)  
Figure 7-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)  
Datasheet  
99  
Boxed Processor Specifications  
7.4.2  
Variable Speed Fan  
If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin  
motherboard header it will operate as follows:  
The boxed processor fan will operate at different speeds over a short range of internal  
chassis temperatures. This allows the processor fan to operate at a lower speed and  
noise level, while internal chassis temperatures are low. If internal chassis  
temperature increases beyond a lower set point, the fan speed will rise linearly with  
the internal temperature until the higher set point is reached. At that point, the fan  
speed is at its maximum. As fan speed increases, so does fan noise levels. Systems  
should be designed to provide adequate air around the boxed processor fan heatsink  
that remains cooler then lower set point. These set points, represented in Figure 7-9  
and Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The  
internal chassis temperature should be kept below 38 ºC. Meeting the processor's  
temperature specification (see Chapter 5) is the responsibility of the system  
integrator.  
The motherboard must supply a constant +12 V to the processor's power header to  
ensure proper operation of the variable speed fan for the boxed processor. Refer to  
Table 7-1 for the specific requirements.  
Figure 7-9. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Table 7-2.  
Fan Heatsink Power and Signal Specifications  
Boxed Processor  
Fan Heatsink Set  
Point (°C)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this  
set point, the fan operates at its lowest speed. Recommended  
maximum internal chassis temperature for nominal operating  
environment.  
1
X 30  
When the internal chassis temperature is at this point, the fan  
operates between its lowest and highest speeds. Recommended  
maximum internal chassis temperature for worst-case operating  
environment.  
Y = 35  
-
-
When the internal chassis temperature is above or equal to this  
set point, the fan operates at its highest speed.  
Z 39  
NOTES:  
1. Set point variance is approximately ±1 °C from fan heatsink to fan heatsink.  
100  
Datasheet  
Boxed Processor Specifications  
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin  
motherboard header and the motherboard is designed with a fan speed controller with  
PWM output (CONTROL see Table 7-1) and remote thermal diode measurement  
capability the boxed processor will operate as follows:  
As processor power has increased the required thermal solutions have generated  
increasingly more noise. Intel has added an option to the boxed processor that allows  
system integrators to have a quieter system in the most common usage.  
The 4th wire PWM solution provides better control over chassis acoustics. This is  
achieved by more accurate measurement of processor die temperature through the  
processor's Digital Thermal Sensors (DTS) and PECI. Fan RPM is modulated through the  
use of an ASIC located on the motherboard that sends out a PWM control signal to the  
4th pin of the connector labeled as CONTROL. The fan speed is based on actual  
processor temperature instead of internal ambient chassis temperatures.  
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard  
processor fan header it will default back to a thermistor controlled mode, allowing  
compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode,  
the fan RPM is automatically varied based on the Tinlet temperature measured by a  
thermistor located at the fan inlet.  
For more details on specific motherboard requirements for 4-wire based fan speed  
control see the appropriate Thermal and Mechanical Design Guidelines (See  
Section 1.2).  
7.5  
Boxed Intel® Core™2 Extreme Processor QX9650  
Specifications  
This section documents the mechanical specifications of the Boxed Intel® Core™2  
Extreme processor QX9650. The boxed processor will be shipped with an unattached  
fan heatsink. Figure 7-10 shows a mechanical representation of the boxed processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper  
cooling. The physical space requirements and dimensions for the boxed processor with  
assembled fan heatsink are shown in Figure 7-3 (top view), and Figure 7-4 (side view).  
The airspace requirements for the boxed processor fan heatsink must also be  
incorporated into new baseboard and system designs. Airspace requirements are  
shown in Figure 7-11 and Figure 7-12. Note that some figures have centerlines shown  
(marked with alphabetic designations) to clarify relative dimensioning.  
Note:  
The Boxed Intel® Core™2 Extreme processor QX9650 cooling solution violates the  
boxed processor keep out zones. This is done intentionally, and with the understanding  
that Extreme Edition systems will be integrated into larger capacity chassis.  
Datasheet  
101  
Boxed Processor Specifications  
Figure 7-10. Space Requirements for the Boxed Processor (side view)  
7.5.1  
Boxed Intel® Core™2 Extreme Processor QX9650 Fan Heatsink  
Weight  
The Boxed Intel® Core™2 Extreme processor QX9650 fan heatsink weight will complies  
with the socket specifications. See Chapter 5 and the appropriate Thermal and  
Mechanical Design Guidelines (See Section 1.2) for details on the processor weight and  
heatsink requirements.  
Figure 7-11. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)  
102  
Datasheet  
Boxed Processor Specifications  
Figure 7-12. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)  
§
Datasheet  
103  
Boxed Processor Specifications  
104  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces  
(LAIs) for use in debugging Intel® Core™2 Extreme processor QX9000 series, Intel®  
Core™2 Quad processor Q9000, Q9000S, Q8000, and Q8000S series systems.  
Tektronix and Agilent should be contacted to get specific information about their logic  
analyzer interfaces. The following information is general in nature. Specific information  
must be obtained from the logic analyzer vendor.  
Due to the complexity of processor systems, the LAI is critical in providing the ability to  
probe and capture FSB signals. There are two sets of considerations to keep in mind  
when designing a processor system that can make use of an LAI: mechanical and  
electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI lands plug  
into the processor socket, while the processor lands plug into a socket on the LAI.  
Cabling that is part of the LAI egresses the system to allow an electrical connection  
between the processor and a logic analyzer. The maximum volume occupied by the LAI,  
known as the keepout volume, as well as the cable egress restrictions, should be  
obtained from the logic analyzer vendor. System designers must make sure that the  
keepout volume remains unobstructed inside the system. Note that it is possible that  
the keepout volume reserved for the LAI may differ from the space normally occupied  
by the processors heatsink. If this is the case, the logic analyzer vendor will provide a  
cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to  
obtain electrical load models from each of the logic analyzers to be able to run system  
level simulations to prove that their tool will work in the system. Contact the logic  
analyzer vendor for electrical specifications and load models for the LAI solution it  
provides.  
§
Datasheet  
105  
Debug Tools Specifications  
106  
Datasheet  

相关型号:

BX80569QX9650

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80569QX9650/SLAN3

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80569QX9650/SLAWN

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80569QX9650A/SLAN3

RISC Microprocessor, 64-Bit, 3000MHz, CMOS, PBGA775
INTEL

BX80569QX9770

RISC Microprocessor, 64-Bit, 3200MHz, CMOS, PBGA775
INTEL

BX80569QX9770/SLAWM

RISC Microprocessor, 64-Bit, 3200MHz, CMOS, PBGA775
INTEL

BX80569X3350

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80569X3350SLAX2

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80569X3350SLB8Y

RISC Microprocessor, 64-Bit, 2660MHz, CMOS, PBGA775
INTEL

BX80569X3360

RISC Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA775
INTEL

BX80569X3360/SLAWZ

RISC Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA775
INTEL

BX80569X3360/SLB8X

RISC Microprocessor, 64-Bit, 2830MHz, CMOS, PBGA775
INTEL