CL8064701479801/SR1DM [INTEL]

RISC Microprocessor, 64-Bit, 1600MHz, CMOS;
CL8064701479801/SR1DM
型号: CL8064701479801/SR1DM
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 64-Bit, 1600MHz, CMOS

外围集成电路
文件: 总123页 (文件大小:2232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mobile 4th Generation Intel® Core™  
Processor Family, Mobile Intel®  
Pentium® Processor Family, and  
Mobile Intel® Celeron® Processor  
Family  
Datasheet – Volume 1 of 2  
Supporting 4th Generation Intel® Coreprocessor based on Mobile  
U-Processor and Y-Processor Lines  
Supporting Mobile Intel® Pentium® and Mobile Intel® Celeron®  
Processor Families  
December 2013  
Order No.: 329001-005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.  
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND  
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL  
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF  
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL  
OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or  
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no  
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without  
notice. Do not finalize a design with this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
This document contains information on products in the design phase of development.  
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. ("products") in development by Intel that have not been  
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as "commercial" names for products. Also,  
they are not intended to function as trademarks.  
For Enhanced Intel SpeedStep® Technology, see the Processor Spec Finder at http://ark.intel.com/ or contact your Intel representative for more  
information.  
Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct  
sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more information, see  
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.  
Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Coreprocessors. It requires an Intel® HT Technology enabled  
system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. Not available on Intel® Core™  
i5-750. For more information including details on which processors support Intel® HT Technology, visit http://www.intel.com/info/hyperthreading.  
Intel® 64 architecture requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific  
hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/  
content/www/us/en/architecture-and-technology/microarchitecture/intel-64-architecture-general.html.  
No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer with  
Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured  
launched environment (MLE). Intel TXT also requires the system to contain a TPM v1.s. For more information, visit http://www.intel.com/technology/  
security.  
Intel® Virtualization Technology (Intel® VT) requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM).  
Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be  
compatible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.  
Requires a system with Intel® Turbo Boost Technology. Intel Turbo Boost Technology and Intel Turbo Boost Technology 2.0 are only available on select  
Intel® processors. Consult your PC manufacturer. Performance varies depending on hardware, software, and system configuration. For more  
information, visit http://www.intel.com/go/turbo.  
Requires activation and a system with a corporate network connection, an Intel® AMT-enabled chipset, network hardware and software. For notebooks,  
Intel AMT may be unavailable or limited over a host OS-based VPN, when connecting wirelessly, on battery power, sleeping, hibernating or powered  
off. Results dependent upon hardware, setup and configuration.  
Intel, Intel Core, Celeron, Pentium, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2013, Intel Corporation. All rights reserved.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
2
December 2013  
Order No.: 329001-005  
Contents—Processors  
Contents  
Revision History..................................................................................................................9  
1.0 Introduction................................................................................................................10  
1.1 Supported Technologies.........................................................................................11  
1.2 Power Management Support...................................................................................12  
1.3 Thermal Management Support................................................................................12  
1.4 Package Support...................................................................................................13  
1.5 Processor Testability............................................................................................. 13  
1.6 Terminology.........................................................................................................13  
1.7 Related Documents...............................................................................................16  
2.0 Interfaces................................................................................................................... 17  
2.1 System Memory Interface......................................................................................17  
2.1.1 System Memory Technology Supported.......................................................17  
2.1.2 System Memory Timing Support................................................................. 19  
2.1.3 System Memory Organization Modes........................................................... 19  
2.1.4 System Memory Frequency........................................................................ 20  
2.1.5 Intel® Fast Memory Access (Intel® FMA) Technology Enhancements............... 20  
2.1.6 Data Scrambling......................................................................................21  
2.1.7 DRAM Clock Generation............................................................................. 21  
2.1.8 DRAM Reference Voltage Generation........................................................... 21  
2.2 Processor Graphics................................................................................................22  
2.3 Processor Graphics Controller (GT)..........................................................................22  
2.3.1 3D and Video Engines for Graphics Processing.............................................. 22  
2.4 Digital Display Interface (DDI)................................................................................24  
2.5 Platform Environmental Control Interface (PECI).......................................................29  
2.5.1 PECI Bus Architecture................................................................................29  
3.0 Technologies...............................................................................................................31  
3.1 Intel® Virtualization Technology (Intel® VT)............................................................. 31  
3.2 Intel® Trusted Execution Technology (Intel® TXT).....................................................35  
3.3 Intel® Hyper-Threading Technology (Intel® HT Technology)....................................... 36  
3.4 Intel® Turbo Boost Technology 2.0..........................................................................37  
3.5 Intel® Advanced Vector Extensions 2.0 (Intel® AVX2)................................................37  
3.6 Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI).......................38  
3.7 Intel® 64 Architecture x2APIC................................................................................ 38  
3.8 Power Aware Interrupt Routing (PAIR)....................................................................40  
3.9 Execute Disable Bit............................................................................................... 40  
3.10 Intel® Boot Guard...............................................................................................40  
3.11 Supervisor Mode Execution Protection (SMEP)........................................................40  
3.12 Intel® Transactional Synchronization Extensions - New Instructions (Intel® TSX-NI)... 41  
4.0 Power Management.................................................................................................... 42  
4.1 Advanced Configuration and Power Interface (ACPI) States Supported.........................43  
4.2 Processor Core Power Management......................................................................... 44  
4.2.1 Enhanced Intel® SpeedStep® Technology Key Features..................................44  
4.2.2 Low-Power Idle States...............................................................................45  
4.2.3 Requesting Low-Power Idle States...............................................................46  
4.2.4 Core C-State Rules....................................................................................46  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
3
Processors—Contents  
4.2.5 Package C-States......................................................................................48  
4.2.6 Package C-States and Display Resolutions....................................................51  
4.3 Integrated Memory Controller (IMC) Power Management............................................53  
4.3.1 Disabling Unused System Memory Outputs...................................................53  
4.3.2 DRAM Power Management and Initialization..................................................53  
4.3.3 DDR Electrical Power Gating (EPG)..............................................................56  
4.4 Graphics Power Management..................................................................................56  
4.4.1 Intel® Rapid Memory Power Management (Intel® RMPM)................................56  
4.4.2 Graphics Render C-State............................................................................56  
4.4.3 Intel® Smart 2D Display Technology (Intel® S2DDT)..................................... 56  
4.4.4 Intel® Graphics Dynamic Frequency............................................................ 57  
4.4.5 Intel® Display Power Saving Technology (Intel® DPST).................................57  
4.4.6 Intel® Automatic Display Brightness ...........................................................57  
4.4.7 Intel® Seamless Display Refresh Rate Technology (Intel® SDRRS  
Technology)............................................................................................ 58  
5.0 Thermal Management................................................................................................. 59  
5.1 Thermal Considerations......................................................................................... 59  
5.2 Intel® Turbo Boost Technology 2.0 Power Monitoring.................................................60  
5.3 Intel® Turbo Boost Technology 2.0 Power Control..................................................... 60  
5.3.1 Package Power Control.............................................................................. 60  
5.3.2 Turbo Time Parameter...............................................................................61  
5.4 Configurable TDP (cTDP) and Low-Power Mode......................................................... 61  
5.4.1 Configurable TDP...................................................................................... 61  
5.4.2 Low-Power Mode.......................................................................................62  
5.5 Thermal and Power Specifications........................................................................... 62  
5.6 Thermal Management Features...............................................................................65  
5.6.1 Adaptive Thermal Monitor.......................................................................... 65  
5.6.2 Digital Thermal Sensor.............................................................................. 67  
5.6.3 PROCHOT# Signal.....................................................................................68  
5.6.4 On-Demand Mode.....................................................................................70  
5.6.5 Intel® Memory Thermal Management.......................................................... 70  
5.6.6 Scenario Design Power (SDP)..................................................................... 71  
6.0 Signal Description.......................................................................................................72  
6.1 System Memory Interface Signals........................................................................... 72  
6.2 Memory Compensation and Miscellaneous Signals..................................................... 75  
6.3 Reset and Miscellaneous Signals............................................................................. 76  
6.4 embedded DisplayPort* (eDP*) Signals....................................................................77  
6.5 Display Interface Signals....................................................................................... 77  
6.6 Testability Signals.................................................................................................77  
6.7 Error and Thermal Protection Signals.......................................................................78  
6.8 Power Sequencing Signals......................................................................................79  
6.9 Processor Power Signals........................................................................................ 79  
6.10 Sense Signals.....................................................................................................80  
6.11 Ground and Non-Critical to Function (NCTF) Signals.................................................80  
6.12 Processor Internal Pull-Up / Pull-Down Terminations................................................80  
7.0 Electrical Specifications.............................................................................................. 82  
7.1 Integrated Voltage Regulator..................................................................................82  
7.2 Power and Ground Pins..........................................................................................82  
7.3 VCC Voltage Identification (VID)..............................................................................82  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
4
December 2013  
Order No.: 329001-005  
Contents—Processors  
7.4 Reserved or Unused Signals................................................................................... 87  
7.5 Signal Groups.......................................................................................................87  
7.6 Test Access Port (TAP) Connection.......................................................................... 89  
7.7 DC Specifications.................................................................................................89  
7.8 Voltage and Current Specifications.......................................................................... 90  
7.8.1 Platform Environment Control Interface (PECI) DC Characteristics................... 96  
7.8.2 Input Device Hysteresis............................................................................. 97  
8.0 Package Specifications................................................................................................98  
8.1 Package Mechanical Attributes................................................................................98  
8.2 Package Loading Specifications...............................................................................98  
8.3 Package Storage Specifications...............................................................................99  
9.0 Processor Ball and Signal Information...................................................................... 100  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
5
Processors—Figures  
Figures  
1
2
3
4
5
6
7
8
9
Platform Block Diagram............................................................................................11  
Intel® Flex Memory Technology Operations.................................................................20  
Processor Display Architecture...................................................................................25  
DisplayPort* Overview............................................................................................. 26  
HDMI* Overview..................................................................................................... 27  
PECI Host-Clients Connection Example....................................................................... 30  
Device to Domain Mapping Structures........................................................................ 34  
Processor Power States............................................................................................ 42  
Processor Package and Core C-States.........................................................................43  
10 Idle Power Management Breakdown of the Processor Cores ..........................................45  
11 Package C-State Entry and Exit................................................................................. 49  
12 Package Power Control.............................................................................................61  
13 Input Device Hysteresis............................................................................................97  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
6
December 2013  
Order No.: 329001-005  
Tables—Processors  
Tables  
1
2
3
4
5
6
7
8
9
Terminology........................................................................................................... 13  
Related Documents..................................................................................................16  
Processor DIMM Support Summary by Product ........................................................... 17  
Supported DDR3L / DDR3L-RS SO-DIMM Module Configurations ................................... 18  
Supported LPDDR3 Memory Down Configurations........................................................ 18  
Supported DDR3L / DDR3L-RS Memory Down Configurations........................................ 18  
DRAM System Memory Timing Support.......................................................................19  
Processor Supported Audio Formats over HDMI*and DisplayPort*.................................. 27  
Multiple Display Configuration for U-Processor Line...................................................... 28  
10 Multiple Display Configuration for Y-Processor Line.......................................................28  
11 DisplayPort and embedded DisplayPort* Resolutions per Link Data Rate for U-  
Processor Line.........................................................................................................29  
12 DisplayPort and embedded DisplayPort* Resolutions per Link Data Rate for Y-  
Processor Line.........................................................................................................29  
13 System States.........................................................................................................43  
14 Processor Core / Package State Support..................................................................... 43  
15 Integrated Memory Controller States..........................................................................44  
16 G, S, and C Interface State Combinations .................................................................. 44  
17 Coordination of Core Power States at the Package Level............................................... 49  
18 Deepest Package C-State Available – U-Processor Line and Y-Processor Line................... 52  
19 Targeted Memory State Conditions............................................................................ 55  
20 Intel® Turbo Boost Technology 2.0 Package Power Control Settings............................... 60  
21 Configurable TDP Modes...........................................................................................62  
22 Thermal Design Power (TDP) Specifications.................................................................63  
23 Junction Temperature Specification............................................................................64  
24 Maximum Idle Power Specification............................................................................. 64  
25 Signal Description Buffer Types................................................................................. 72  
26 DDR3L / DDR3L-RS Memory Channel A Interface (Memory-Down / SO-DIMM) Signals...... 72  
27 DDR3L / DDR3L-RS Memory Channel B Interface (Memory-Down / SO-DIMM) Signals...... 73  
28 LPDDR3 Memory Channel A Interface (Memory-Down) Signals.......................................74  
29 LPDDR3 Memory Channel B Interface (Memory-Down) Signals.......................................75  
30 LPDDR3 / DDR3L / DDR3L-RS Reference and Compensation Signals...............................75  
31 Reset and Miscellaneous Signals................................................................................76  
32 embedded Display Port* Signals................................................................................77  
33 Display Interface Signals.......................................................................................... 77  
34 Testability Signals....................................................................................................77  
35 Error and Thermal Protection Signals..........................................................................78  
36 Power Sequencing Signals........................................................................................ 79  
37 Processor Power Signals...........................................................................................79  
38 Sense Signals......................................................................................................... 80  
39 Ground and Non-Critical to Function (NCTF) Signals..................................................... 80  
40 Processor Internal Pull-Up / Pull-Down Terminations.................................................... 80  
41 Voltage Regulator (VR) 12.5 Voltage Identification.......................................................83  
42 Signal Groups......................................................................................................... 87  
43 Processor Core Active and Idle Mode DC Voltage and Current Specifications.................... 90  
44 Memory Controller (VDDQ) Supply DC Voltage and Current Specifications.........................91  
45 Vcc Sustain (VccST) Supply DC Voltage and Current Specifications..................................91  
46 DDR3L / DDR3L-RS Signal Group DC Specifications......................................................92  
47 LPDDR3 Signal Group DC Specifications......................................................................93  
48 Digital Display Interface Group DC Specifications.........................................................95  
49 embedded DisplayPort* (eDP*) Group DC Specifications...............................................95  
50 CMOS Signal Group DC Specifications.........................................................................95  
51 GTL Signal Group and Open Drain Signal Group DC Specifications..................................95  
52 VR Enable CMOS Signal Group DC Specification........................................................... 96  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
7
Processors—Tables  
53 VCOMP_OUT and VCCIO_TERM .................................................................................96  
54 Platform Environment Control Interface (PECI) DC Electrical Limits................................ 97  
55 Package Mechanical Attributes...................................................................................98  
56 Package Loading Specifications..................................................................................98  
57 Package Storage Specifications..................................................................................99  
58 Ball List by Signal Name for DDR3L Configuration.......................................................100  
59 Ball List by Signal Name for LPDDR3 Configuration.....................................................112  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
8
December 2013  
Order No.: 329001-005  
Revision History—Processors  
Revision History  
Revision  
Description  
Date  
001  
Initial Release  
June 2013  
Updated Section 1.1, Supported Technologies  
Updated Table 3, Processor DIMM Support Summary by Product  
Updated Table 4, Supported DDR3L / DDR3L-RS SO-DIMM  
Module Configurations  
Updated Section 2.4, Digital Display Interface (DDI)  
Updated Figure 3, Processor Display Architecture  
Updated Table 9, Multiple Display Configuration for U-Processor  
Line  
Added Table 10, Multiple Display Configuration for Y-Processor  
Line  
002  
June 2013  
Updated Table 11, DisplayPort and Embedded DisplayPort*  
Resolutions per Link Data Rate for U-Processor Line  
Added Table 12, DisplayPort and Embedded DisplayPort*  
Resolutions per Link Data Rate for Y-Processor Line  
Updated Table 16, Intel Turbo Boost Technology 2.0 Package  
Power Control Settings  
Updated Table 21, Thermal Design power (TDP) Specifications  
Updated Table 23, Package Turbo Parameters  
Added Mobile 4th Generation Intel® Corei7-4610Y, i5-4300Y,  
i5-4302Y, i7-4600U, i5-4300U, i5-4202Y, i5-4210Y, i3-4012Y,  
i3-4020Y, i3-4005U processors  
Added Mobile Intel® Pentium® 3560Y and 3556U processors  
Added Mobile Intel® Celeron® 2980U and 2995U processors  
003  
September 2013  
Added Section 4.2.6, "Package C-States and Display  
Resolutions".  
004  
005  
Minor edits throughout for clarity  
November 2013  
December 2013  
Added Mobile Intel® Pentium® 3558U and 3561Y processors  
Added Mobile Intel® Celeron® 2981U and 2957U processors  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
9
Processors—Introduction  
1.0  
Introduction  
The 4th Generation Intel® Coreprocessor based on Mobile U-Processor and Y-  
Processor Lines, Mobile Intel® Pentium® processor family, and Mobile Intel® Celeron®  
processor family are 64-bit, multi-core processors built on 22-nanometer process  
technology.  
The processors are designed for a one-chip platform consisting of a Multi-Chip  
Package (MCP) processor that includes a low-power Platform Controller Hub (PCH) die  
on the same package as the processor die. See the following figure.  
Throughout this document, the 4th Generation Intel® Coreprocessor based on  
Mobile U-Processor and Y-Processor Lines, Mobile Intel® Pentium® processor family,  
and Mobile Intel® Celeron® processor family may be referred to simply as "processor".  
Throughout this document, the 4th Generation Intel® Coreprocessor based on  
Mobile U-Processor and Y-Processor Lines refers to the Mobile 4th Generation Intel®  
Corei7-4650U, i7-4610Y, i7-4600U, i7-4558U, i7-4550U, i7-4500U, i5-4350U,  
i5-4302Y, i5-4300Y, i5-4300U, i5-4288U, i5-4258U, i5-4250U, i5-4210Y, i5-4202Y,  
i5-4200U, i5-4200Y, i3-4158U, i3-4012Y, i3-4005U, i3-4100U, i3-4010U, and  
i3-4010Y processors.  
Throughout this document, the Mobile Mobile Intel® Pentium® processor family refers  
to the Intel® Pentium® 3561Y, 3560Y, 3558U, and 3556U processors.  
Throughout this document, the Mobile Intel® Celeron® processor family refers to the  
Intel® Celeron® 2981U, 2980U, 2957U, and 2955U processor.  
Note:  
Some processor features are not available on all platforms. Refer to the processor  
Specification Update document for details.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
10  
December 2013  
Order No.: 329001-005  
Introduction—Processors  
Figure 1.  
Platform Block Diagram  
DDR3L/LPDDR3  
DDR Ch.A  
DDR Ch.B  
DDIx2  
eDP  
Digital Display  
Interface x 2  
Embedded DisplayPort*  
SATA  
SSD Drive  
USB 2.0  
Cameras  
BIOS/FW Flash  
TPM  
USB 2.0/3.0  
HDA/I2S  
USB 2.0/3.0 Ports  
HD Audio Codec  
SPI  
SPI  
PECI  
SMBus  
EC  
I2C*  
Touch Screen  
USB 2.0  
Fingerprint Sensor  
I2C, UART or USB  
BT/3G/4G  
WiFi / WiMax  
Gyro  
GPS  
GPIO  
Gigabit Network  
Connection  
NFC  
SD Slot  
Magnetometer  
Touch Pad  
Accelometer  
Ambient Light  
Sensor  
1.1  
Supported Technologies  
Intel® Virtualization Technology (Intel® VT)  
Intel® Active Management Technology 9.5 (Intel® AMT 9.5 )  
Intel® Trusted Execution Technology (Intel® TXT)  
Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)  
Intel® Hyper-Threading Technology (Intel® HT Technology)  
Intel® 64 Architecture  
Execute Disable Bit  
Intel® Turbo Boost Technology 2.0  
Intel® Advanced Vector Extensions 2.0 (Intel® AVX2)  
Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)  
PCLMULQDQ Instruction  
Intel® Secure Key  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
11  
Processors—Introduction  
Intel® Transactional Synchronization Extensions - New Instructions (Intel® TSX-  
NI)  
PAIR – Power Aware Interrupt Routing  
SMEP – Supervisor Mode Execution Protection  
Boot Guard  
Note:  
The availability of the features may vary between processor SKUs.  
1.2  
Power Management Support  
Processor Core  
Full support of ACPI C-states as implemented by the following processor C-states:  
— C0, C1, C1E, C3, C6, C7, C8, C9, C10  
Enhanced Intel SpeedStep® Technology  
System  
S0, S3, S4, S5  
Memory Controller  
Conditional self-refresh  
Dynamic power-down  
Processor Graphics Controller  
Intel® Rapid Memory Power Management (Intel® RMPM)  
Intel® Smart 2D Display Technology (Intel® S2DDT)  
Graphics Render C-state (RC6)  
Intel® Seamless Display Refresh Rate Switching with eDP port  
Intel® Display Power Saving Technology (Intel® DPST)  
1.3  
Thermal Management Support  
Digital Thermal Sensor  
Adaptive Thermal Monitor  
THERMTRIP# and PROCHOT# support  
On-Demand Mode  
Memory Open and Closed Loop Throttling  
Memory Thermal Throttling  
External Thermal Sensor (TS-on-DIMM and TS-on-Board)  
Render Thermal Throttling  
Fan speed control with DTS  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
12  
December 2013  
Order No.: 329001-005  
Introduction—Processors  
1.4  
1.5  
Package Support  
The processor is available in the following package:  
A 40 mm x 24 mm x 1.5 mm BGA package (BGA1168)  
Processor Testability  
The processor includes boundary-scan for board and system level testability.  
1.6  
Terminology  
Table 1.  
Terminology  
Term  
Description  
APD  
Active Power-down  
Bus/Device/Function  
Ball Grid Array  
B/D/F  
BGA  
BLC  
Backlight Compensation  
Block Level Transfer  
Bits per pixel  
BLT  
BPP  
CKE  
Clock Enable  
CLTM  
DDI  
Closed Loop Thermal Management  
Digital Display Interface  
DDR3  
DDR3L  
Third-generation Double Data Rate SDRAM memory technology  
DDR3 Low Voltage  
DDR3L-RS  
DLL  
DDR3 Low Voltage Reduced Standby Power  
Delay-Locked Loop  
DMA  
DP  
Direct Memory Access  
DisplayPort*  
DTS  
Digital Thermal Sensor  
EC  
Embedded Controller  
ECC  
Error Correction Code  
eDP*  
EPG  
embedded DisplayPort*  
Electrical Power Gating  
EU  
Execution Unit  
FMA  
Floating-point fused Multiply Add instructions  
Fan Speed Control  
FSC  
HDCP  
HDMI*  
HFM  
High-bandwidth Digital Content Protection  
High Definition Multimedia Interface  
High Frequency Mode  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
13  
Processors—Introduction  
Term  
Description  
iDCT  
IHS  
GFX  
GUI  
IMC  
Inverse Discrete  
Integrated Heat Spreader  
Graphics  
Graphical User Interface  
Integrated Memory Controller  
Intel® 64  
64-bit memory extensions to the IA-32 architecture  
Technology  
Intel® DPST  
Intel® TSX-NI  
Intel® TXT  
Intel Display Power Saving Technology  
Intel Transactional Synchronization Extensions - New Instructions  
Intel Trusted Execution Technology  
Intel Virtualization Technology. Processor virtualization, when used in conjunction  
with Virtual Machine Monitor software, enables multiple, robust independent software  
environments inside a single platform.  
Intel® VT  
Intel Virtualization Technology (Intel VT) for Directed I/O. Intel VT-d is a hardware  
assist, under system software (Virtual Machine Manager or OS) control, for enabling  
I/O device virtualization. Intel VT-d also brings robust security by providing protection  
from errant DMAs by using DMA remapping, a key feature of Intel VT-d.  
Intel® VT-d  
IOV  
ISI  
I/O Virtualization  
Inter-Symbol Interference  
Integrated Trusted Platform Module  
ITPM  
Low Frequency Mode. LFM is Pn in the P-state table. It can be read at MSR CEh  
[47:40].  
LFM  
LFP  
Local Flat Panel  
LPDDR3  
MCP  
Low-Power Third-generation Double Data Rate SDRAM memory technology  
Multi-Chip Package  
Minimum Frequency Mode. MFM is the minimum ratio supported by the processor and  
can be read from MSR CEh [55:48].  
MFM  
MLE  
MLC  
MSI  
MSL  
MSR  
Measured Launched Environment  
Mid-Level Cache  
Message Signaled Interrupt  
Moisture Sensitive Labeling  
Model Specific Registers  
Non-Critical to Function. NCTF locations are typically redundant ground or non-critical  
reserved, so the loss of the solder joint continuity at end of life conditions will not  
affect the overall product functionality.  
NCTF  
ODT  
On-Die Termination  
OLTM  
Open Loop Thermal Management  
Platform Compatibility Guide (PCG) (previously known as FMB) provides a design  
target for meeting all planned processor frequency requirements.  
PCG  
PCH  
Platform Controller Hub. The chipset with centralized platform capabilities including  
the main I/O interfaces along with display connectivity, audio features, power  
management, manageability, security, and storage features.  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
14  
December 2013  
Order No.: 329001-005  
Introduction—Processors  
Term  
Description  
The Platform Environment Control Interface (PECI) is a one-wire interface that  
provides a communication channel between Intel processor and chipset components  
to external monitoring devices.  
PECI  
PL1, PL2  
PPD  
Power Limit 1 and Power Limit 2  
Pre-charge Power-down  
Processor  
The 64-bit multi-core component (package)  
The term “processor core” refers to Si die itself, which can contain multiple execution  
cores. Each execution core has an instruction cache, data cache, and 256-KB L2  
cache. All execution cores share the L3 cache.  
Processor Core  
Processor Graphics  
Rank  
Intel Processor Graphics  
A unit of DRAM corresponding to four to eight devices in parallel, ignoring ECC. These  
devices are usually, but not always, mounted on a single side of a SO-DIMM.  
SCI  
SDP  
SF  
System Control Interrupt. SCI is used in the ACPI protocol.  
Scenario Design Power  
Strips and Fans  
SMM  
SMX  
System Management Mode  
Safer Mode Extensions  
A non-operational state. The processor may be installed in a platform, in a tray, or  
loose. Processors may be sealed in packaging or exposed to free air. Under these  
conditions, processor landings should not be connected to any supply voltages, have  
any I/Os biased, or receive any clocks. Upon exposure to “free air” (that is, unsealed  
packaging or a device removed from packaging material), the processor must be  
handled in accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage Conditions  
SVID  
TAC  
TAP  
Serial Voltage Identification  
Thermal Averaging Constant  
Test Access Point  
The case temperature of the processor, measured at the geometric center of the top-  
side of the TTV IHS.  
TCASE  
TCC  
Thermal Control Circuit  
TCONTROL is a static value that is below the TCC activation temperature and used as a  
trigger point for fan speed control. When DTS > TCONTROL, the processor must comply  
to the TTV thermal profile.  
TCONTROL  
Thermal Design Power: Thermal solution should be designed to dissipate this target  
power level. TDP is not the maximum power that the processor can dissipate.  
TDP  
TLB  
TTV  
Translation Look-aside Buffer  
Thermal Test Vehicle. A mechanically equivalent package that contains a resistive  
heater in the die to evaluate thermal solutions.  
Thermal Monitor. A power reduction feature designed to decrease temperature after  
the processor has reached its maximum operating temperature.  
TM  
VCC  
VDDQ  
VF  
Processor core power supply  
DDR3L and LPDDR3 power supply.  
Vertex Fetch  
VID  
Voltage Identification  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
15  
Processors—Introduction  
Term  
Description  
VS  
Vertex Shader  
VLD  
VMM  
VR  
Variable Length Decoding  
Virtual Machine Monitor  
Voltage Regulator  
VSS  
Processor ground  
1.7  
Related Documents  
Table 2.  
Related Documents  
Document  
Document Number /  
Location  
Mobile 4th Generation Intel® Core® Processor Family, Mobile Intel® Pentium®  
Processor Family, and Mobile Intel® Celeron® Processor Family Datasheet, Volume  
2 of 2  
Supporting 4th Generation Intel® Core® processor based on Mobile U-Processor  
and Y-Processor Lines  
329002  
328903  
Mobile 4th Generation Intel® Core® Processor Family, Mobile Intel® Pentium®  
Processor Family, and Mobile Intel® Celeron® Processor Family Specification  
Update  
Mobile 4th Generation Intel® Core® Processor I/O Family Datasheet  
Mobile 4th Generation Intel® Core® Processor I/O Family Specification Update  
Advanced Configuration and Power Interface 3.0  
329003  
329004  
http://www.acpi.info/  
http://  
www.pcisig.com/  
specifications  
PCI Local Bus Specification 3.0  
PCI Express Base Specification, Revision 2.0  
DDR3 SDRAM Specification  
http://www.pcisig.com  
http://www.jedec.org  
http://www.vesa.org  
DisplayPort* Specification  
http://www.intel.com/  
products/processor/  
manuals/index.htm  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
16  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
2.0  
Interfaces  
2.1  
System Memory Interface  
Two channels of DDR3L/DDR3L-RS and LPDDR3 memory with Unbuffered Small  
Outline Dual In-Line Memory Modules (SO-DIMM) with a maximum of one DIMM  
per channel and memory down.  
Single-channel and dual-channel memory organization modes  
Data burst length of eight for all memory organization modes  
DDR3L/DDR3L-RS I/O Voltage of 1.35V  
64-bit wide channels  
Non-ECC, Unbuffered DDR3L/DDR3L-RS SO-DIMMs and memory down  
Theoretical maximum memory bandwidth of:  
— 21.3 GB/s in dual-channel mode assuming DDR3L/DDR3L-RS/LPDDR3  
1333 MT/s  
— 25.6 GB/s in dual-channel mode assuming DDR3L/DDR3L-RS/LPDDR3  
1600 MT/s  
2.1.1  
System Memory Technology Supported  
The Integrated Memory Controller (IMC) supports DDR3L/DDR3L-RS and LPDDR3  
protocols with two independent, 64-bit wide channels. It supports one unbuffered non-  
ECC DDR3L/DDR3L-RS DIMM per channel; thus, allowing up to two device ranks per  
channel.  
Table 3.  
Processor DIMM Support Summary by Product  
Processors  
TDP  
28W  
15W  
Graphics  
Configuration  
DIMM Per  
Channel  
DDR3L /  
DDR3L-RS  
(MT/s)  
LPDDR3  
(MT/s)  
GT3  
GT3  
GT2  
GT1  
1 DPC  
1 DPC  
1 DPC  
1 DPC  
1333/1600  
1333/1600  
1333/1600  
1333/1600  
N/A  
1333/1600  
1333/1600  
1333/1600  
U-Processor (Dual-Core)  
Y-Processor (Dual-Core)  
11.5W (6W  
SDP / 4.5W  
SDP)  
GT1, GT2  
1 DPC  
1333/1600  
1333/1600  
Notes: 1. LPDDR3 support may vary between the processor SKUs.  
2. DDR3L-RS is supported as a memory configuration. Actual validation checkout depends on parts  
and vendor availability.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
17  
Processors—Interfaces  
Data Transfer Rates:  
DDR3L-RS is supported as a memory configuration. Actual validation checkout  
depends on parts and vendor availability.  
1333 MT/s (PC3-10600)  
1600 MT/s (PC3-12800)  
SO-DIMM Modules:  
Standard 2Gb and 4Gb technologies and addressing are supported for x8 and x16  
devices. There is no support for memory modules with different technologies or  
capacities on opposite sides of the same memory module. If one side of a memory  
module is populated, the other side is either identical or empty.  
LPDDR3 Memory Down:  
Quad Ranked x16  
Single and Dual Ranked x32  
Table 4.  
Supported DDR3L / DDR3L-RS SO-DIMM Module Configurations  
Raw Card  
Version  
DIMM  
Capacity  
DRAM  
Organization  
# of DRAM  
Devices  
# of Row/Col  
Address Bits  
# of Banks  
Inside DRAM  
Page Size  
A
B
C
F
4 GB  
4 GB  
2 GB  
4 GB  
8 GB  
256 M x 16  
512 M x 8  
256 M x 16  
256 M x 8  
512 M x 8  
8
8
15/10  
16/10  
15/10  
15/10  
16/10  
8
8
8
8
8
8K  
8K  
8K  
8K  
8K  
4
16  
16  
F
Table 5.  
Supported LPDDR3 Memory Down Configurations  
DIMM  
Capacity  
PKG Type  
(Dies bits x  
PKG bits)  
Die  
Density  
PKG  
Density  
Dies Per  
Channel  
PKGs per  
Channel  
Physical  
Device Rank  
Banks  
Inside  
DRAM  
Page  
Size  
2 GB  
4 GB  
8 GB  
SDP 32 x32  
DDP 32 x32  
QDP 16 x32  
4 Gb  
4 Gb  
4 Gb  
4 Gb  
8 Gb  
2
4
8
2
2
2
1
2
2
8
8
8
8K  
8K  
8K  
16 Gb  
Note: SDP = Single Die Package, DDP = Dual Die Package, QDP = Quad Die Package  
Table 6.  
Supported DDR3L / DDR3L-RS Memory Down Configurations  
System  
Capacity Organization  
DRAM  
Dies Per  
Package  
PKG  
Density  
Die  
Density  
Dies Per  
Channel  
PKGs  
Per  
Channel  
Physical  
Device  
Rank  
Banks  
Inside  
DRAM  
Page Size  
2 GB  
4 GB  
8 GB  
128 M x 16  
256 M x 16  
256 M x 16  
SDP  
SDP  
DDP  
2 Gb  
4 Gb  
8 Gb  
2 Gb  
4 Gb  
4 Gb  
4
4
8
4
4
4
1
1
2
8
8
8
8K  
8K  
8K  
Note: SDP = Single Die Package, DDP = Dual Die Package  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
18  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
2.1.2  
System Memory Timing Support  
The IMC supports the following DDR3L/DDR3L-RS Speed Bin, CAS Write Latency  
(CWL), and command signal mode timings on the main memory interface:  
tCL = CAS Latency  
tRCD = Activate Command to READ or WRITE Command delay  
tRP = PRECHARGE Command Period  
CWL = CAS Write Latency  
Command Signal modes = 1N indicates a new command may be issued every  
clock and 2N indicates a new command may be issued every 2 clocks. Command  
launch mode programming depends on the transfer rate and memory  
configuration.  
Table 7.  
DRAM System Memory Timing Support  
Segment  
DRAM  
Device  
Transfer  
Rate  
tCL  
(tCK)  
tRCD  
(tCK)  
tRP  
(tCK)  
CWL  
(tCK)  
DPC  
(SO-  
CMD  
Mode  
(MT/s)  
DIMM  
Only)  
DDR3L/  
DDR3L-RS  
1333  
1333  
1600  
1600  
8/9  
10  
8/9  
12  
8/9  
12  
7
7
8
8
1
1
1
1
1N/2N  
0.5N  
U-Processor /  
Y-Processor  
(Dual Core)  
LPDDR3  
DDR3L/  
DDR3L-RS  
10/11  
12  
10/11  
15  
10/11  
15  
1N/2N  
0.5N  
LPDDR3  
2.1.3  
System Memory Organization Modes  
The Integrated Memory Controller (IMC) supports two memory organization modes –  
single-channel and dual-channel. Depending upon how the DIMM Modules are  
populated in each memory channel, a number of different configurations can exist.  
Single-Channel Mode  
In this mode, all memory cycles are directed to a single-channel. Single-channel mode  
is used when either Channel A or Channel B DIMM connectors are populated in any  
order, but not both.  
Dual-Channel Mode – Intel® Flex Memory Technology Mode  
The IMC supports Intel Flex Memory Technology Mode. Memory is divided into  
symmetric and asymmetric zones. The symmetric zone starts at the lowest address in  
each channel and is contiguous until the asymmetric zone begins or until the top  
address of the channel with the smaller capacity is reached. In this mode, the system  
runs with one zone of dual-channel mode and one zone of single-channel mode,  
simultaneously, across the whole memory array.  
Note:  
Channels A and B can be mapped for physical channel 0 and 1 respectively or vice  
versa; however, channel A size must be greater or equal to channel B size.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
19  
Processors—Interfaces  
Figure 2.  
Intel® Flex Memory Technology Operations  
TOM  
Non interleaved  
C
access  
B
C
Dual channel  
interleaved access  
B
B
B
CH A  
CH B  
CH A and CH B can be configured to be physical channels 0 or 1  
B – The largest physical memory amount of the smaller size memory module  
C – The remaining physical memory amount of the larger size memory module  
Dual-Channel Symmetric Mode  
Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum  
performance on real world applications. Addresses are ping-ponged between the  
channels after each cache line (64-byte boundary). If there are two requests, and the  
second request is to an address on the opposite channel from the first, that request  
can be sent before data from the first request has returned. If two consecutive cache  
lines are requested, both may be retrieved simultaneously, since they are ensured to  
be on opposite channels. Use Dual-Channel Symmetric mode when both Channel A  
and Channel B DIMM connectors are populated in any order, with the total amount of  
memory in each channel being the same.  
When both channels are populated with the same memory capacity and the boundary  
between the dual channel zone and the single channel zone is the top of memory, the  
IMC operates completely in Dual-Channel Symmetric mode.  
Note:  
The DRAM device technology and width may vary from one channel to the other.  
2.1.4  
System Memory Frequency  
In all modes, the frequency of system memory is the lowest frequency of all memory  
modules placed in the system, as determined through the SPD registers on the  
memory modules. The system memory controller supports up to two DIMM connectors  
per channel. If DIMMs with different latency are populated across the channels, the  
BIOS will use the slower of the two latencies for both channels. For dual-channel mode  
both channels must have a DIMM connector populated. For single-channel mode, only  
a single channel can have a DIMM connector populated.  
2.1.5  
Intel® Fast Memory Access (Intel® FMA) Technology  
Enhancements  
The following sections describe the Just-in-Time Scheduling, Command Overlap, and  
Out-of-Order Scheduling Intel FMA technology enhancements.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
20  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
Just-in-Time Command Scheduling  
The memory controller has an advanced command scheduler where all pending  
requests are examined simultaneously to determine the most efficient request to be  
issued next. The most efficient request is picked from all pending requests and issued  
to system memory Just-in-Time to make optimal use of Command Overlapping. Thus,  
instead of having all memory access requests go individually through an arbitration  
mechanism forcing requests to be executed one at a time, the requests can be started  
without interfering with the current request allowing for concurrent issuing of  
requests. This allows for optimized bandwidth and reduced latency while maintaining  
appropriate command spacing to meet system memory protocol.  
Command Overlap  
Command Overlap allows the insertion of the DRAM commands between the Activate,  
Pre-charge, and Read/Write commands normally used, as long as the inserted  
commands do not affect the currently executing command. Multiple commands can be  
issued in an overlapping manner, increasing the efficiency of system memory protocol.  
Out-of-Order Scheduling  
While leveraging the Just-in-Time Scheduling and Command Overlap enhancements,  
the IMC continuously monitors pending requests to system memory for the best use of  
bandwidth and reduction of latency. If there are multiple requests to the same open  
page, these requests would be launched in a back-to-back manner to make optimum  
use of the open memory page. This ability to reorder requests on the fly allows the  
IMC to further reduce latency and increase bandwidth efficiency.  
2.1.6  
Data Scrambling  
The system memory controller incorporates a Data Scrambling feature to minimize the  
impact of excessive di/dt on the platform system memory VRs due to successive 1s  
and 0s on the data bus. Past experience has demonstrated that traffic on the data bus  
is not random and can have energy concentrated at specific spectral harmonics  
creating high di/dt, which is generally limited by data patterns that excite resonance  
between the package inductance and on die capacitances. As a result, the system  
memory controller uses a data scrambling feature to create pseudo-random patterns  
on the system memory data bus to reduce the impact of any excessive di/dt.  
2.1.7  
2.1.8  
DRAM Clock Generation  
Every supported DIMM has two differential clock pairs. There are a total of four clock  
pairs driven directly by the processor to two DIMMs.  
DRAM Reference Voltage Generation  
The memory controller has the capability of generating the DDR3L/DDR3L-RS  
Reference Voltage (VREF) internally for both read (RDVREF) and write (VREFDQ)  
operations. The generated VREF can be changed in small steps, and an optimum VREF  
value is determined for both during a cold boot through advanced DDR3L/DDR3L-RS  
training procedures to provide the best voltage and signal margins.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
21  
Processors—Interfaces  
2.2  
Processor Graphics  
The processor graphics contains a generation 7.5 graphics core architecture. This  
enables substantial gains in performance and lower power consumption over previous  
generations. Up to 40 Execution Units are supported depending on the processor SKU.  
Next Generation Intel Clear Video Technology HD Support is a collection of video  
playback and enhancement features that improve the end user’s viewing  
experience  
— Encode / transcode HD content  
— Playback of high definition content including Blu-ray Disc*  
— Superior image quality with sharper, more colorful images  
— Playback of Blu-ray* disc S3D content using HDMI (1.4a specification  
compliant with 3D)  
DirectX* Video Acceleration (DXVA) support for accelerating video processing  
— Full AVC/VC1/MPEG2 HW Decode  
Advanced Scheduler 2.0, 1.0, XPDM support  
Windows* 8, Windows* 7, OSX, Linux* operating system support  
DirectX* 11.1, DirectX* 11, DirectX* 10.1, DirectX* 10, DirectX* 9 support.  
OpenGL* 4.0, support  
2.3  
Processor Graphics Controller (GT)  
The New Graphics Engine Architecture includes 3D compute elements, Multi-format  
HW assisted decode/encode pipeline, and Mid-Level Cache (MLC) for superior high  
definition playback, video quality, and improved 3D performance and media.  
The Display Engine handles delivering the pixels to the screen. GSA (Graphics in  
System Agent) is the primary channel interface for display memory accesses and  
“PCI-like” traffic in and out.  
2.3.1  
3D and Video Engines for Graphics Processing  
The Gen 7.5 3D engine provides the following performance and power-management  
enhancements.  
3D Pipeline  
The 3D graphics pipeline architecture simultaneously operates on different primitives  
or on different portions of the same primitive. All the cores are fully programmable,  
increasing the versatility of the 3D Engine.  
3D Engine Execution Units  
Supports up to 40 EUs. The EUs perform 128-bit wide execution per clock.  
Support SIMD8 instructions for vertex processing and SIMD16 instructions for  
pixel processing.  
Note:  
See Figure 3 on page 25  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
22  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
Vertex Fetch (VF) Stage  
The VF stage executes 3DPRIMITIVE commands. Some enhancements have been  
included to better support legacy D3D APIs as well as SGI OpenGL*.  
Vertex Shader (VS) Stage  
The VS stage performs shading of vertices output by the VF function. The VS unit  
produces an output vertex reference for every input vertex reference received from  
the VF unit, in the order received.  
Geometry Shader (GS) Stage  
The GS stage receives inputs from the VS stage. Compiled application-provided GS  
programs, specifying an algorithm to convert the vertices of an input object into some  
output primitives. For example, a GS shader may convert lines of a line strip into  
polygons representing a corresponding segment of a blade of grass centered on the  
line. Or it could use adjacency information to detect silhouette edges of triangles and  
output polygons extruding out from the edges.  
Clip Stage  
The Clip stage performs general processing on incoming 3D objects. However, it also  
includes specialized logic to perform a Clip Test function on incoming objects. The Clip  
Test optimizes generalized 3D Clipping. The Clip unit examines the position of  
incoming vertices, and accepts/rejects 3D objects based on its Clip algorithm.  
Strips and Fans (SF) Stage  
The SF stage performs setup operations required to rasterize 3D objects. The outputs  
from the SF stage to the Windower stage contain implementation-specific information  
required for the rasterization of objects and also supports clipping of primitives to  
some extent.  
Windower / IZ (WIZ) Stage  
The WIZ unit performs an early depth test, which removes failing pixels and  
eliminates unnecessary processing overhead.  
The Windower uses the parameters provided by the SF unit in the object-specific  
rasterization algorithms. The WIZ unit rasterizes objects into the corresponding set of  
pixels. The Windower is also capable of performing dithering, whereby the illusion of a  
higher resolution when using low-bpp channels in color buffers is possible. Color  
dithering diffuses the sharp color bands seen on smooth-shaded objects.  
Video Engine  
The Video Engine handles the non-3D (media/video) applications. It includes support  
for VLD and MPEG2 decode in hardware.  
2D Engine  
The 2D Engine contains BLT (Block Level Transfer) functionality and an extensive set  
of 2D instructions. To take advantage of the 3D during engine’s functionality, some  
BLT functions make use of the 3D renderer.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
23  
Processors—Interfaces  
Logical 128-Bit Fixed BLT and 256 Fill Engine  
This BLT engine accelerates the GUI of Microsoft Windows* operating systems. The  
128-bit BLT engine provides hardware acceleration of block transfers of pixel data for  
many common Windows operations. The BLT engine can be used for the following:  
Move rectangular blocks of data between memory locations  
Data alignment  
To perform logical operations (raster ops)  
The rectangular block of data does not change, as it is transferred between memory  
locations. The allowable memory transfers are between: cacheable system memory  
and frame buffer memory, frame buffer memory and frame buffer memory, and within  
system memory. Data to be transferred can consist of regions of memory, patterns, or  
solid color fills. A pattern is always 8 x 8 pixels wide and may be 8, 16, or 32 bits per  
pixel.  
The BLT engine expands monochrome data into a color depth of 8, 16, or 32 bits.  
BLTs can be either opaque or transparent. Opaque transfers move the data specified  
to the destination. Transparent transfers compare destination color to source color and  
write according to the mode of transparency selected.  
Data is horizontally and vertically aligned at the destination. If the destination for the  
BLT overlaps with the source memory location, the BLT engine specifies which area in  
memory to begin the BLT transfer. Hardware is included for all 256 raster operations  
(source, pattern, and destination) defined by Microsoft*, including transparent BLT.  
The BLT engine has instructions to invoke BLT and stretch BLT operations, permitting  
software to set up instruction buffers and use batch processing. The BLT engine can  
perform hardware clipping during BLTs.  
2.4  
Digital Display Interface (DDI)  
The processor supports:  
— Two Digital Display (x4 DDI) interfaces that can be configured as DisplayPort*,  
HDMI*. The DisplayPort* can be configured to use 1, 2, or 4 lanes depending  
on the bandwidth requirements and link data rate of RBR (1.62 GT/s), HBR  
(2.97 GT/s), and HBR2 (5.4 GT/s). When configured as HDMI*, the DDIx4  
port can support 2.97 GT/s.  
— One dedicated x4 embedded DisplayPort* (eDP*). Built-in displays are only  
supported on eDP.  
The HDMI* interface supports HDMI with 3D, 4K, Deep Color, and x.v.Color. The  
DisplayPort* interface supports the VESA DisplayPort* Standard Version 1,  
Revision 2.  
The processor supports High-bandwidth Digital Content Protection (HDCP) for  
high-definition content playback over digital interfaces.  
The processor also integrates dedicated a Mini HD audio controller to drive audio  
on integrated digital display interfaces, such as HDMI* and DisplayPort*. The HD  
audio controller on the PCH would continue to support down CODECs, and so on.  
The processor Mini HD audio controller supports two High-Definition Audio streams  
simultaneously on any of the three digital ports.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
24  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
The processor supports streaming any 3 independent and simultaneous display  
combination of DisplayPort*/HDMI*/eDP*/ monitors. In the case of 3  
simultaneous displays, two High Definition Audio streams over the digital display  
interfaces are supported.  
Each digital port is capable of driving resolutions up to 3200x2000 at 60 Hz  
through DisplayPort* and 4096x2304 at 24 Hz using HDMI*.  
DisplayPort* Aux CH, DDC channel, Panel power sequencing, and HPD are  
supported through the PCH.  
Figure 3.  
Processor Display Architecture  
DP  
Aux  
Transcoder eDP*  
DP encoder  
eDP* Mux  
X4 eDP  
Timing, VDIP  
DPT, SRID  
eDP  
Display  
Pipe A  
Transcoder A  
DP / HDMI  
Timing, VDIP  
X4 DP /  
HDMI  
Transcoder B  
DP / HDMI  
Timing, VDIP  
Display  
Pipe B  
X4 DP /  
HDMI  
Transcoder C  
DP / HDMI  
Timing, VDIP  
Display  
Pipe C  
HD Audio  
Controller  
Audio  
Codec  
Display is the presentation stage of graphics. This involves:  
Pulling rendered data from memory  
Converting raw data into pixels  
Blending surfaces into a frame  
Organizing pixels into frames  
Optionally scaling the image to the desired size  
Re-timing data for the intended target  
Formatting data according to the port output standard  
DisplayPort*  
DisplayPort* is a digital communication interface that uses differential signaling to  
achieve a high-bandwidth bus interface designed to support connections between PCs  
and monitors, projectors, and TV displays.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
25  
Processors—Interfaces  
A DisplayPort* consists of a Main Link, Auxiliary channel, and a Hot-Plug Detect signal.  
The Main Link is a unidirectional, high-bandwidth, and low latency channel used for  
transport of isochronous data streams such as uncompressed video and audio. The  
Auxiliary Channel (AUX CH) is a half-duplex bidirectional channel used for link  
management and device control. The Hot-Plug Detect (HPD) signal serves as an  
interrupt request for the sink device.  
The processor is designed in accordance with the VESA DisplayPort* Standard Version  
1.2a. The processor supports VESA DisplayPort* PHY Compliance Test Specification  
1.2a and VESA DisplayPort* Link Layer Compliance Test Specification 1.2a.  
Figure 4.  
DisplayPort* Overview  
Source Device  
DisplayPort Tx  
Sink Device  
DisplayPort Rx  
Main Link  
(Isochronous Streams)  
AUX CH  
(Link/Device Managemet)  
Hot-Plug Detect  
(Interrupt Request)  
High-Definition Multimedia Interface (HDMI*)  
The High-Definition Multimedia Interface* (HDMI*) is provided for transmitting  
uncompressed digital audio and video signals from DVD players, set-top boxes, and  
other audiovisual sources to television sets, projectors, and other video displays. It  
can carry high quality multi-channel audio data and all standard and high-definition  
consumer electronics video formats. The HDMI display interface connecting the  
processor and display devices uses transition minimized differential signaling (TMDS)  
to carry audiovisual information through the same HDMI cable.  
HDMI includes three separate communications channels — TMDS, DDC, and the  
optional CEC (consumer electronics control). CEC is not supported on the processor.  
As shown in the following figure, the HDMI cable carries four differential pairs that  
make up the TMDS data and clock channels. These channels are used to carry video,  
audio, and auxiliary data. In addition, HDMI carries a VESA DDC. The DDC is used by  
an HDMI Source to determine the capabilities and characteristics of the Sink.  
Audio, video, and auxiliary (control/status) data is transmitted across the three TMDS  
data channels. The video pixel clock is transmitted on the TMDS clock channel and is  
used by the receiver for data recovery on the three data channels. The digital display  
data signals driven natively through the PCH are AC coupled and needs level shifting  
to convert the AC coupled signals to the HDMI compliant digital signals.  
The processor HDMI interface is designed in accordance with the High-Definition  
Multimedia Interface with 3D, 4K, Deep Color, and x.v.Color.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
26  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
Figure 5.  
HDMI* Overview  
HDMI Sink  
HDMI Source  
HDMI Tx  
HDMI Rx  
TMDS Data Channel 0  
l 1  
TMDS Data Channe  
TMDS Data Channel 2  
TMDS Clock Channel  
Hot-Plug Detect  
Display Data Channel (DDC)  
CEC Line (optional)  
embedded DisplayPort*  
embedded DisplayPort* (eDP*) is an embedded version of the DisplayPort standard  
oriented towards applications such as notebook and All-In-One PCs. Like DisplayPort,  
embedded DisplayPort also consists of a Main Link, Auxiliary channel, and an optional  
Hot-Plug Detect signal.  
Integrated Audio  
HDMI and display port interfaces carry audio along with video.  
Processor supports two DMA controllers to output two High Definition audio  
streams on two digital ports simultaneously.  
Supports only the internal HDMI and DP CODECs.  
Table 8.  
Processor Supported Audio Formats over HDMI*and DisplayPort*  
Audio Formats  
HDMI*  
Yes  
DisplayPort*  
AC-3 Dolby* Digital  
Dolby Digital Plus  
DTS-HD*  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LPCM, 192 kHz/24 bit, 8 Channel  
Yes  
Dolby TrueHD, DTS-HD Master Audio*  
(Lossless Blu-Ray Disc* Audio Format)  
Yes  
Yes  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
27  
Processors—Interfaces  
The processor will continue to support Silent stream. Silent stream is an integrated  
audio feature that enables short audio streams, such as system events to be heard  
over the HDMI and DisplayPort monitors. The processor supports silent streams over  
the HDMI and DisplayPort interfaces at 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,  
176.4 kHz, and 192 kHz sampling rates.  
Multiple Display Configurations  
The following multiple display configuration modes are supported (with appropriate  
driver software):  
Single Display is a mode with one display port activated to display the output to  
one display device.  
Intel Display Clone is a mode with up to three display ports activated to drive the  
display content of same color depth setting but potentially different refresh rate  
and resolution settings to all the active display devices connected.  
Extended Desktop is a mode with up to three display ports activated to drive the  
content with potentially different color depth, refresh rate, and resolution settings  
on each of the active display devices connected.  
The digital ports on the processor can be configured to support DisplayPort*/HDMI.  
The following table shows examples of valid three display configurations through the  
processor.  
Table 9.  
Multiple Display Configuration for U-Processor Line  
Display 1  
Display 2  
Display 3  
Maximum  
Resolution Display  
1
Maximum  
Resolution  
Display 2  
Maximum  
Resolution  
Display 3  
3200x2000 @  
60 Hz  
HDMI  
DP  
HDMI  
DP  
eDP  
eDP  
eDP  
4096x2304 @ 24 Hz  
3200x2000 @  
60 Hz  
3200x2000 @ 60 Hz  
3200x2000 @  
60 Hz  
3200x2000 @  
60 Hz  
HDMI  
DP  
4096x2304 @ 24Hz  
Note: DP and eDP resolutions in this table are supported for 4 lanes with link data rate HBR2 at 24 bits per  
pixel (bpp) and single stream mode of operation.  
Table 10.  
Multiple Display Configuration for Y-Processor Line  
Display 1  
Display 2  
Display 3  
Maximum  
Resolution Display  
1
Maximum  
Resolution  
Display 2  
Maximum  
Resolution  
Display 3  
2880x1620 @  
60 Hz  
HDMI  
DP  
HDMI  
DP  
eDP  
eDP  
eDP  
4096x2304 @ 24 Hz  
2880x1620 @  
60 Hz  
2880x1620 @ 60 Hz  
2880x1620 @  
60 Hz  
2880x1620 @  
60 Hz  
HDMI  
DP  
4096x2304 @ 24 Hz  
Note: 1. DP and eDP resolutions in this table are supported for 4 lanes with link data rate HBR2 at 24 bits  
per pixel (bpp) and single stream mode of operation.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
28  
December 2013  
Order No.: 329001-005  
Interfaces—Processors  
Table 11.  
DisplayPort and embedded DisplayPort* Resolutions per Link Data Rate for  
U-Processor Line  
Link Data Rate  
Lane Count  
2
1
4
RBR  
HBR  
1064x600  
1280x960  
1920x1200  
1400x1050  
1920x1200  
2880x1800  
2240x1400  
2880x1800  
3200x2000  
HBR2  
Note: The above resolutions are valid at 60 Hz refresh rate and 24 bits per pixel (bpp).  
Table 12.  
DisplayPort and embedded DisplayPort* Resolutions per Link Data Rate for Y-  
Processor Line  
Link Data Rate  
Lane Count  
2
1
4
RBR  
HBR  
1064x600  
1280x960  
1400x1050  
1920x1200  
2240x1400  
2880x1620 @ 60 Hz  
Note: The above resolutions are valid at 60 Hz refresh rate and 24 bits per pixel (bpp).  
High-bandwidth Digital Content Protection (HDCP)  
HDCP is the technology for protecting high-definition content against unauthorized  
copy or unreceptive between a source (computer, digital set top boxes, and so on)  
and the sink (panels, monitor, and TVs). The processor supports HDCP 1.4 for content  
protection over wired displays (HDMI*, and DisplayPort*).  
The HDCP 1.4 keys are integrated into the processor and customers are not required  
to physically configure or handle the keys.  
2.5  
Platform Environmental Control Interface (PECI)  
PECI is an Intel proprietary interface that provides a communication channel between  
Intel processors and external components, like Super I/O (SIO) and Embedded  
Controllers (EC), to provide processor temperature, Turbo, Configurable TDP, and  
memory throttling control mechanisms and many other services. PECI is used for  
platform thermal management and real time control and configuration of processor  
features and performance.  
2.5.1  
PECI Bus Architecture  
The PECI architecture is based on a wired-OR bus that the clients (as processor PECI)  
can pull up high (with strong drive).  
The idle state on the bus is near zero.  
The following figure demonstrates PECI design and connectivity. While the host/  
originator can be a third party PECI host, one of the PECI clients is a processor PECI  
device.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
29  
Processors—Interfaces  
Figure 6.  
PECI Host-Clients Connection Example  
VTT  
VTT  
Q3  
nX  
Q1  
nX  
PECI  
Q2  
1X  
CPECI  
<10pF/Node  
PECI Client  
Host / Originator  
Additional  
PECI Clients  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
30  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
3.0  
Technologies  
This chapter provides a high-level description of Intel technologies implemented in the  
processor.  
The implementation of the features may vary between the processor SKUs.  
Details on the different technologies of Intel processors and other relevant external  
notes are located at the Intel technology web site: http://www.intel.com/technology/  
3.1  
Intel® Virtualization Technology (Intel® VT)  
Intel® Virtualization Technology (Intel® VT) makes a single system appear as multiple  
independent systems to software. This allows multiple, independent operating systems  
to run simultaneously on a single system. Intel VT comprises technology components  
to support virtualization of platforms based on Intel architecture microprocessors and  
chipsets.  
Intel® Virtualization Technology (Intel® VT) for IA-32, Intel® 64 and Intel®  
Architecture (Intel® VT-x) added hardware support in the processor to improve the  
virtualization performance and robustness. Intel® Virtualization Technology for  
Directed I/O (Intel VT-d) extends Intel® VT-x by adding hardware assisted support to  
improve I/O device virtualization performance.  
Intel® VT-x specifications and functional descriptions are included in the Intel® 64 and  
IA-32 Architectures Software Developer’s Manual, Volume 3B and is available at:  
http://www.intel.com/products/processor/manuals/index.htm  
The Intel VT-d specification and other Intel VT documents can be referenced at:  
http://www.intel.com/technology/virtualization/index.htm  
https://sharedspaces.intel.com/sites/PCDC/SitePages/Ingredients/ingredient.aspx?  
ing=VT  
Intel® VT-x Objectives  
Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual  
Machine Monitor (VMM) can use Intel VT-x features to provide an improved reliable  
virtualized platform. By using Intel VT-x, a VMM is:  
Robust: VMMs no longer need to use paravirtualization or binary translation. This  
means that off-the-shelf operating systems and applications can be run without  
any special steps.  
Enhanced: Intel VT enables VMMs to run 64-bit guest operating systems on IA  
x86 processors.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
31  
Processors—Technologies  
More reliable: Due to the hardware support, VMMs can now be smaller, less  
complex, and more efficient. This improves reliability and availability and reduces  
the potential for software conflicts.  
More secure: The use of hardware transitions in the VMM strengthens the  
isolation of VMs and further prevents corruption of one VM from affecting others  
on the same system.  
Intel® VT-x Features  
The processor supports the following Intel VT-x features:  
Extended Page Table (EPT) Accessed and Dirty Bits  
— EPT A/D bits enabled VMMs to efficiently implement memory management and  
page classification algorithms to optimize VM memory operations, such as de-  
fragmentation, paging, live migration, and check-pointing. Without hardware  
support for EPT A/D bits, VMMs may need to emulate A/D bits by marking EPT  
paging-structures as not-present or read-only, and incur the overhead of EPT  
page-fault VM exits and associated software processing.  
Extended Page Table Pointer (EPTP) switching  
— EPTP switching is a specific VM function. EPTP switching allows guest software  
(in VMX non-root operation, supported by EPT) to request a different EPT  
paging-structure hierarchy. This is a feature by which software in VMX non-  
root operation can request a change of EPTP without a VM exit. Software can  
choose among a set of potential EPTP values determined in advance by  
software in VMX root operation.  
Pause loop exiting  
— Support VMM schedulers seeking to determine when a virtual processor of a  
multiprocessor virtual machine is not performing useful work. This situation  
may occur when not all virtual processors of the virtual machine are currently  
scheduled and when the virtual processor in question is in a loop involving the  
PAUSE instruction. The new feature allows detection of such loops and is thus  
called PAUSE-loop exiting.  
The processor core supports the following Intel VT-x features:  
Extended Page Tables (EPT)  
— EPT is hardware assisted page table virtualization.  
— It eliminates VM exits from the guest operating system to the VMM for shadow  
page-table maintenance.  
Virtual Processor IDs (VPID)  
— Ability to assign a VM ID to tag processor core hardware structures (such as  
TLBs).  
— This avoids flushes on VM transitions to give a lower-cost VM transition time  
and an overall reduction in virtualization overhead.  
Guest Preemption Timer  
— Mechanism for a VMM to preempt the execution of a guest operating system  
after an amount of time specified by the VMM. The VMM sets a timer value  
before entering a guest.  
— The feature aids VMM developers in flexibility and Quality of Service (QoS)  
guarantees.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
32  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
Descriptor-Table Exiting  
— Descriptor-table exiting allows a VMM to protect a guest operating system  
from an internal (malicious software based) attack by preventing relocation of  
key system data structures like IDT (interrupt descriptor table), GDT (global  
descriptor table), LDT (local descriptor table), and TSS (task segment  
selector).  
— A VMM using this feature can intercept (by a VM exit) attempts to relocate  
these data structures and prevent them from being tampered by malicious  
software.  
Intel® VT-d Objectives  
The key Intel VT-d objectives are domain-based isolation and hardware-based  
virtualization. A domain can be abstractly defined as an isolated environment in a  
platform to which a subset of host physical memory is allocated. Intel VT-d provides  
accelerated I/O performance for a virtualized platform and provides software with the  
following capabilities:  
I/O device assignment and security: for flexibly assigning I/O devices to VMs and  
extending the protection and isolation properties of VMs for I/O operations.  
DMA remapping: for supporting independent address translations for Direct  
Memory Accesses (DMA) from devices.  
Interrupt remapping: for supporting isolation and routing of interrupts from  
devices and external interrupt controllers to appropriate VMs.  
Reliability: for recording and reporting to system software DMA and interrupt  
errors that may otherwise corrupt memory or impact VM isolation.  
Intel VT-d accomplishes address translation by associating a transaction from a given  
I/O device to a translation table associated with the Guest to which the device is  
assigned. It does this by means of the data structure in the following illustration. This  
table creates an association between the device's PCI Express* Bus/Device/Function  
(B/D/F) number and the base address of a translation table. This data structure is  
populated by a VMM to map devices to translation tables in accordance with the device  
assignment restrictions above, and to include a multi-level translation table (VT-d  
Table) that contains Guest specific address translations.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
33  
Processors—Technologies  
Figure 7.  
Device to Domain Mapping Structures  
(Dev 31, Func 7)  
Context entry 255  
(Dev 0, Func 1)  
(Dev 0, Func 0)  
Context entry 0  
Context entry Table  
For bus N  
Address Translation  
Structures for Domain A  
(Bus 255)  
(Bus N)  
Root entry 255  
Root entry N  
(Bus 0)  
Root entry 0  
Root entry table  
Context entry 255  
Context entry 0  
Address Translation  
Structures for Domain B  
Context entry Table  
For bus 0  
Intel VT-d functionality, often referred to as an Intel VT-d Engine, has typically been  
implemented at or near a PCI Express host bridge component of a computer system.  
This might be in a chipset component or in the PCI Express functionality of a processor  
with integrated I/O. When one such Intel VT-d engine receives a PCI Express  
transaction from a PCI Express bus, it uses the B/D/F number associated with the  
transaction to search for an Intel VT-d translation table. In doing so, it uses the B/D/F  
number to traverse the data structure shown in the above figure. If it finds a valid  
Intel VT-d table in this data structure, it uses that table to translate the address  
provided on the PCI Express bus. If it does not find a valid translation table for a given  
translation, this results in an Intel VT-d fault. If Intel VT-d translation is required, the  
Intel VT-d engine performs an N-level table walk.  
For more information, refer to Intel® Virtualization Technology for Directed I/O  
Architecture Specification http://download.intel.com/technology/computing/vptech/  
Intel(r)_VT_for_Direct_IO.pdf  
Intel® VT-d Features  
The processor supports the following Intel VT-d features:  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
34  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
Memory controller and processor graphics comply with the Intel VT-d 1.2  
Specification  
Two Intel VT-d DMA remap engines  
— iGFX DMA remap engine  
— Default DMA remap engine (covers all devices except iGFX)  
Support for root entry, context entry, and default context  
39-bit guest physical address and host physical address widths  
Support for 4 KB page sizes  
Support for register-based fault recording only (for single entry only) and support  
for MSI interrupts for faults  
Support for both leaf and non-leaf caching  
Support for boot protection of default page table  
Support for non-caching of invalid page table entries  
Support for hardware-based flushing of translated but pending writes and pending  
reads, on IOTLB invalidation  
Support for Global, Domain specific, and Page specific IOTLB invalidation  
MSI cycles (MemWr to address FEEx_xxxxh) not translated  
— Translation faults result in cycle forwarding to VBIOS region (byte enables  
masked for writes). Returned data may be bogus for internal agents; PEG/DMI  
interfaces return unsupported request status  
Interrupt remapping is supported  
Queued invalidation is supported  
Intel VT-d translation bypass address range is supported (Pass Through)  
The processor supports the following added new Intel VT-d features:  
4-level Intel VT-d Page walk: Both default Intel VT-d engine, as well as the IGD  
Intel VT-d engine, are upgraded to support 4-level Intel VT-d tables (adjusted  
guest address width 48 bits)  
Intel VT-d superpage: support of Intel VT-d superpage (2 MB, 1 GB) for the  
default Intel VT-d engine (that covers all devices except IGD)  
IGD Intel VT-d engine does not support superpage and BIOS should disable  
superpage in default Intel VT-d engine when iGFX is enabled.  
Note:  
Intel VT-d Technology may not be available on all SKUs.  
3.2  
Intel® Trusted Execution Technology (Intel® TXT)  
Intel Trusted Execution Technology (Intel TXT) defines platform-level enhancements  
that provide the building blocks for creating trusted platforms.  
The Intel TXT platform helps to provide the authenticity of the controlling environment  
such that those wishing to rely on the platform can make an appropriate trust  
decision. The Intel TXT platform determines the identity of the controlling environment  
by accurately measuring and verifying the controlling software.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
35  
Processors—Technologies  
Another aspect of the trust decision is the ability of the platform to resist attempts to  
change the controlling environment. The Intel TXT platform will resist attempts by  
software processes to change the controlling environment or bypass the bounds set by  
the controlling environment.  
Intel TXT is a set of extensions designed to provide a measured and controlled launch  
of system software that will then establish a protected environment for itself and any  
additional software that it may execute.  
These extensions enhance two areas:  
The launching of the Measured Launched Environment (MLE).  
The protection of the MLE from potential corruption.  
The enhanced platform provides these launch and control interfaces using Safer Mode  
Extensions (SMX).  
The SMX interface includes the following functions:  
Measured/Verified launch of the MLE.  
Mechanisms to ensure the above measurement is protected and stored in a secure  
location.  
Protection mechanisms that allow the MLE to control attempts to modify itself.  
The processor also offers additional enhancements to System Management Mode  
(SMM) architecture for enhanced security and performance. The processor provides  
new MSRs to:  
Enable a second SMM range  
Enable SMM code execution range checking  
Select whether SMM Save State is to be written to legacy SMRAM or to MSRs  
Determine if a thread is going to be delayed entering SMM  
Determine if a thread is blocked from entering SMM  
Targeted SMI, enable/disable threads from responding to SMIs both VLWs and IPI  
For the above features, BIOS must test the associated capability bit before attempting  
to access any of the above registers.  
For more information, refer to the Intel® Trusted Execution Technology Measured  
Launched Environment Programming Guide.  
3.3  
Intel® Hyper-Threading Technology (Intel® HT  
Technology)  
The processor supports Intel Hyper-Threading Technology (Intel HT Technology) that  
allows an execution core to function as two logical processors. While some execution  
resources, such as caches, execution units, and buses are shared, each logical  
processor has its own architectural state with its own set of general-purpose registers  
and control registers. This feature must be enabled using the BIOS and requires  
operating system support.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
36  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
Intel recommends enabling Intel HT Technology with Microsoft Windows* 8 and  
Microsoft Windows* 7 and disabling Intel HT Technology using the BIOS for all  
previous versions of Windows* operating systems. For more information on Intel HT  
Technology, see http://www.intel.com/technology/platform-technology/hyper-  
threading/.  
3.4  
Intel® Turbo Boost Technology 2.0  
The Intel Turbo Boost Technology 2.0 allows the processor core to opportunistically  
and automatically run faster than its rated operating frequency/render clock, if it is  
operating below power, temperature, and current limits. The Intel Turbo Boost  
Technology 2.0 feature is designed to increase performance of both multi-threaded  
and single-threaded workloads.  
Compared with previous generation products, Intel Turbo Boost Technology 2.0 will  
increase the ratio of application power to TDP. Thus, thermal solutions and platform  
cooling that are designed to less than thermal design guidance might experience  
thermal and performance issues since more applications will tend to run at the  
maximum power limit for significant periods of time.  
Note:  
Intel Turbo Boost Technology 2.0 may not be available on all SKUs.  
Intel® Turbo Boost Technology 2.0 Frequency  
To determine the highest performance frequency amongst active cores, the processor  
takes the following into consideration:  
The number of cores operating in the C0 state.  
The estimated core current consumption.  
The estimated package prior and present power consumption.  
The package temperature.  
Any of these factors can affect the maximum frequency for a given workload. If the  
power, current, or thermal limit is reached, the processor will automatically reduce the  
frequency to stay within its TDP limit. Turbo processor frequencies are only active if  
the operating system is requesting the P0 state. For more information on P-states and  
C-states, see Power Management on page 42.  
3.5  
Intel® Advanced Vector Extensions 2.0 (Intel® AVX2)  
Intel Advanced Vector Extensions 2.0 (Intel AVX2) is the latest expansion of the Intel  
instruction set. Intel AVX2 extends the Intel Advanced Vector Extensions (Intel AVX)  
with 256-bit integer instructions, floating-point fused multiply add (FMA) instructions,  
and gather operations. The 256-bit integer vectors benefit math, codec, image, and  
digital signal processing software. FMA improves performance in face detection,  
professional imaging, and high performance computing. Gather operations increase  
vectorization opportunities for many applications. In addition to the vector extensions,  
this generation of Intel processors adds new bit manipulation instructions useful in  
compression, encryption, and general purpose software.  
For more information on Intel AVX, see http://www.intel.com/software/avx  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
37  
Processors—Technologies  
3.6  
Intel® Advanced Encryption Standard New Instructions  
(Intel® AES-NI)  
The processor supports Intel Advanced Encryption Standard New Instructions (Intel  
AES-NI) that are a set of Single Instruction Multiple Data (SIMD) instructions that  
enable fast and secure data encryption and decryption based on the Advanced  
Encryption Standard (AES). Intel AES-NI are valuable for a wide range of  
cryptographic applications, such as applications that perform bulk encryption/  
decryption, authentication, random number generation, and authenticated encryption.  
AES is broadly accepted as the standard for both government and industry  
applications, and is widely deployed in various protocols.  
Intel AES-NI consists of six Intel SSE instructions. Four instructions, AESENC,  
AESENCLAST, AESDEC, and AESDELAST facilitate high performance AES encryption  
and decryption. The other two, AESIMC and AESKEYGENASSIST, support the AES key  
expansion procedure. Together, these instructions provide a full hardware for  
supporting AES; offering security, high performance, and a great deal of flexibility.  
PCLMULQDQ Instruction  
The processor supports the carry-less multiplication instruction, PCLMULQDQ.  
PCLMULQDQ is a Single Instruction Multiple Data (SIMD) instruction that computes the  
128-bit carry-less multiplication of two, 64-bit operands without generating and  
propagating carries. Carry-less multiplication is an essential processing component of  
several cryptographic systems and standards. Hence, accelerating carry-less  
multiplication can significantly contribute to achieving high speed secure computing  
and communication.  
Intel® Secure Key  
The processor supports Intel® Secure Key (formerly known as Digital Random Number  
Generator (DRNG)), a software visible random number generation mechanism  
supported by a high quality entropy source. This capability is available to  
programmers through the RDRAND instruction. The resultant random number  
generation capability is designed to comply with existing industry standards in this  
regard (ANSI X9.82 and NIST SP 800-90).  
Some possible usages of the RDRAND instruction include cryptographic key generation  
as used in a variety of applications, including communication, digital signatures,  
secure storage, and so on.  
3.7  
Intel® 64 Architecture x2APIC  
The x2APIC architecture extends the xAPIC architecture that provides key  
mechanisms for interrupt delivery. This extension is primarily intended to increase  
processor addressability.  
Specifically, x2APIC:  
Retains all key elements of compatibility to the xAPIC architecture:  
— Delivery modes  
— Interrupt and processor priorities  
— Interrupt sources  
— Interrupt destination types  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
38  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
Provides extensions to scale processor addressability for both the logical and  
physical destination modes  
Adds new features to enhance performance of interrupt delivery  
Reduces complexity of logical destination mode interrupt delivery on link based  
architectures  
The key enhancements provided by the x2APIC architecture over xAPIC are the  
following:  
Support for two modes of operation to provide backward compatibility and  
extensibility for future platform innovations:  
— In xAPIC compatibility mode, APIC registers are accessed through memory  
mapped interface to a 4K-Byte page, identical to the xAPIC architecture.  
— In x2APIC mode, APIC registers are accessed through Model Specific Register  
(MSR) interfaces. In this mode, the x2APIC architecture provides significantly  
increased processor addressability and some enhancements on interrupt  
delivery.  
Increased range of processor addressability in x2APIC mode:  
— Physical xAPIC ID field increases from 8 bits to 32 bits, allowing for interrupt  
processor addressability up to 4G–1 processors in physical destination mode.  
A processor implementation of x2APIC architecture can support fewer than 32-  
bits in a software transparent fashion.  
— Logical xAPIC ID field increases from 8 bits to 32 bits. The 32-bit logical  
x2APIC ID is partitioned into two sub-fields – a 16-bit cluster ID and a 16-bit  
logical ID within the cluster. Consequently, ((2^20) – 16) processors can be  
addressed in logical destination mode. Processor implementations can support  
fewer than 16 bits in the cluster ID sub-field and logical ID sub-field in a  
software agnostic fashion.  
More efficient MSR interface to access APIC registers:  
— To enhance inter-processor and self-directed interrupt delivery as well as the  
ability to virtualize the local APIC, the APIC register set can be accessed only  
through MSR-based interfaces in x2APIC mode. The Memory Mapped IO  
(MMIO) interface used by xAPIC is not supported in x2APIC mode.  
The semantics for accessing APIC registers have been revised to simplify the  
programming of frequently-used APIC registers by system software. Specifically,  
the software semantics for using the Interrupt Command Register (ICR) and End  
Of Interrupt (EOI) registers have been modified to allow for more efficient delivery  
and dispatching of interrupts.  
The x2APIC extensions are made available to system software by enabling the  
local x2APIC unit in the “x2APIC” mode. To benefit from x2APIC capabilities, a  
new operating system and a new BIOS are both needed, with special support for  
x2APIC mode.  
The x2APIC architecture provides backward compatibility to the xAPIC architecture  
and forward extendible for future Intel platform innovations.  
Note:  
Intel x2APIC Technology may not be available on all SKUs.  
For more information, see the Intel® 64 Architecture x2APIC Specification at http://  
www.intel.com/products/processor/manuals/.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
39  
Processors—Technologies  
3.8  
Power Aware Interrupt Routing (PAIR)  
The processor includes enhanced power-performance technology that routes  
interrupts to threads or cores based on their sleep states. As an example, for energy  
savings, it routes the interrupt to the active cores without waking the deep idle cores.  
For performance, it routes the interrupt to the idle (C1) cores without interrupting the  
already heavily loaded cores. This enhancement is mostly beneficial for high-interrupt  
scenarios like Gigabit LAN, WLAN peripherals, and so on.  
3.9  
Execute Disable Bit  
The Execute Disable Bit allows memory to be marked as executable when combined  
with a supporting operating system. If code attempts to run in non-executable  
memory, the processor raises an error to the operating system. This feature can  
prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities  
and can thus help improve the overall security of the system. See the Intel® 64 and  
IA-32 Architectures Software Developer's Manuals for more detailed information.  
3.10  
Intel® Boot Guard  
Intel® Boot Guard can help protect the platform boot integrity by preventing execution  
of unauthorized boot blocks. With Intel® Boot Guard, platform manufacturers can  
create boot policies such that invocation of an unauthorized (or untrusted) boot block  
will trigger the platform protection per the manufacturer's defined policy.  
With verification based in the hardware, Intel® Boot Guard extends the trust boundary  
of the platform boot process down to the hardware level.  
Intel® Boot Guard accomplishes this by:  
Providing hardware-based Static Root of Trust for Measurement (S-RTM) and the  
Root of Trust for Verification (RTV) using Intel architectural components.  
Providing architectural definition for platform manufacturer Boot Policy.  
Enforcing manufacture provided Boot Policy using Intel architectural components.  
Benefits of this protection is that Intel® Boot Guard can help maintain platform  
integrity by preventing re-purposing of the manufacturer’s hardware to run an  
unauthorized software stack.  
Note:  
Intel® Boot Guard technology availability may vary between the different SKUs.  
3.11  
Supervisor Mode Execution Protection (SMEP)  
The processor introduces a new mechanism that provides the next level of system  
protection by blocking malicious software attacks from user mode code when the  
system is running in the highest privilege level. This technology helps to protect from  
virus attacks and unwanted code from harming the system. For more information,  
refer to Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A  
at: http://www.intel.com/Assets/PDF/manual/253668.pdf  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
40  
December 2013  
Order No.: 329001-005  
Technologies—Processors  
3.12  
Intel® Transactional Synchronization Extensions - New  
Instructions (Intel® TSX-NI)  
New on the processor are the Intel Transactional Synchronization Extensions - New  
Instructions (Intel TSX-NI). Intel TSX-NI provides a set of instruction extensions that  
allow programmers to specify regions of code for transactional synchronization.  
Programmers can use these extensions to achieve the performance of fine-grain  
locking while actually programming using coarse-grain locks. Details on Intel TSX-NI  
are in the Intel® Architecture Instruction Set Extensions Programming Reference.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
41  
Processors—Power Management  
4.0  
Power Management  
This chapter provides information on the following power management topics:  
Advanced Configuration and Power Interface (ACPI) States  
Processor Core  
Integrated Memory Controller (IMC)  
Processor Graphics Controller  
Figure 8.  
Processor Power States  
G0 Working  
S0 Processor powered on (full on mode / connected standby mode)  
C0 Active mode  
P0  
Pn  
C1 Auto halt  
C1E Auto halt, low freq, low voltage  
C3 L1/L2 caches flush, clocks off  
C6 save core states before shutdown and PLL off  
C7 C6 + L3 cache flush  
C8 C7 internal voltage removal from all power domains  
C9 C8+VCC input to 0V  
C10 C9+VR12.6 shut off or PS4  
G1 Sleeping  
S3 cold Sleep Suspend To Ram (STR)  
S4 Hibernate Suspend To Disk (STD), Wakeup on PCH  
G2 Soft Off  
S5 Soft Off no power,Wakeup on PCH  
G3 Mechanical Off  
* Note: Power states availability may vary between the different SKUs  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
42  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Figure 9.  
Processor Package and Core C-States  
CORE STATE  
C0 C1 C1E C3 C6 C7 C8 C9 C10  
One or more cores or GT executing instructions  
C0  
C3  
C6  
C7  
C8  
C9  
C10  
All cores and GT in C3 or deeper, L3 may be flushed and turned off, memory in self refresh, some Uncore  
clocks stopped, some Uncore voltages reduced  
All cores and GT in C6 or deeper, L3 may be flushed and turned off, memory in self refresh, all Uncore  
clocks stopped, some Uncore voltages reduced  
Package C6 + L3 flushed and turned off, additional Uncore voltages reduced  
Package C7 + most Uncore voltages reduced to 0V  
Package C8 + VR12.6 in low power state  
Package C9 + VR12.6 turned off  
Core behaves the same as Core C6 state  
All core clocks are stopped, core state saved and voltage reduce to 0V  
Cores flush L1/L2 into L3, all core clocks are stopped  
Core halted, most core clocks stopped and voltage reduced to Pn  
Core halted, most core clocks stopped  
Core is executing code  
Possible combination of core/package states  
Impossible combination of core/package states  
Note: The “core state” relates to the core which is in the HIGHEST power state in the package (most active)  
4.1  
Advanced Configuration and Power Interface (ACPI)  
States Supported  
This section describes the ACPI states supported by the processor.  
Table 13.  
System States  
State  
G0/S0  
G0/S0  
Description  
Full On Mode, Display On.  
Connected Standby Mode, Display Off.  
Suspend-to-RAM (STR). Context saved to memory (S3-Hot state is not supported by the  
processor).  
G1/S3-Cold  
G1/S4  
G2/S5  
G3  
Suspend-to-Disk (STD). All power lost (except wakeup on PCH).  
Soft off. All power lost (except wakeup on PCH). Total reboot.  
Mechanical off. All power removed from system.  
Table 14.  
Processor Core / Package State Support  
State  
Description  
Active mode, processor executing code.  
C0  
C1  
AutoHALT state.  
C1E  
AutoHALT state with lowest frequency and voltage operating point.  
Execution cores in C3 state flush their L1 instruction cache, L1 data cache, and L2 cache  
to the L3 shared cache. Clocks are shut off to each core.  
C3  
C6  
Execution cores in this state save their architectural state before removing core voltage.  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
43  
Processors—Power Management  
State  
Description  
Execution cores in this state behave similarly to the C6 state. If all execution cores  
request C7 state, L3 cache ways are flushed until it is cleared. If the entire L3 cache is  
flushed, voltage will be removed from the L3 cache. Power removal to SA, Cores and L3  
will reduce power consumption.  
C7  
C7 state plus voltage is removed from all power domains after required state is saved. PLL  
is powered down.  
C8  
C9  
C8 state plus processor VCC input voltage at 0 V.  
C10  
C9 state plus VR12.6 is set to low-power state, near shut off.  
Table 15.  
Integrated Memory Controller States  
State  
Description  
Power up  
CKE asserted. Active mode.  
Pre-charge  
Power-down  
CKE de-asserted (not self-refresh) with all banks closed.  
CKE de-asserted (not self-refresh) with minimum one bank active.  
CKE de-asserted using device self-refresh.  
Active Power-  
down  
Self-Refresh  
Table 16.  
G, S, and C Interface State Combinations  
Global  
(G)  
State  
Sleep (S)  
State  
Processor  
Package (C)  
State  
Processor  
State  
System Clocks  
Description  
G0  
G0  
G0  
S0  
S0  
S0  
C0  
C1/C1E  
C3  
Full On  
Auto-Halt  
Deep Sleep  
On  
On  
On  
Full On  
Auto-Halt  
Deep Sleep  
Deep Power-  
down  
G0  
G0  
S0  
S0  
C6/C7  
On  
On  
Deep Power-down  
Deeper Power-  
down  
C8/C9/C10  
G1  
G1  
G2  
G3  
S3  
S4  
S5  
NA  
Power off  
Power off  
Power off  
Power off  
Off, except RTC  
Off, except RTC  
Off, except RTC  
Power off  
Suspend to RAM  
Suspend to Disk  
Soft Off  
Hard off  
4.2  
Processor Core Power Management  
While executing code, Enhanced Intel SpeedStep® Technology optimizes the  
processor’s frequency and core voltage based on workload. Each frequency and  
voltage operating point is defined by ACPI as a P-state. When the processor is not  
executing code, it is idle. A low-power idle state is defined by ACPI as a C-state. In  
general, deeper power C-states have longer entry and exit latencies.  
4.2.1  
Enhanced Intel® SpeedStep® Technology Key Features  
The following are the key features of Enhanced Intel SpeedStep Technology:  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
44  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Multiple frequency and voltage points for optimal performance and power  
efficiency. These operating points are known as P-states.  
Frequency selection is software controlled by writing to processor MSRs. The  
voltage is optimized based on the selected frequency and the number of active  
processor cores.  
— Once the voltage is established, the PLL locks on to the target frequency.  
— All active processor cores share the same frequency and voltage. In a multi-  
core processor, the highest frequency P-state requested among all active  
cores is selected.  
— Software-requested transitions are accepted at any time. If a previous  
transition is in progress, the new transition is deferred until the previous  
transition is completed.  
The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
Because there is low transition latency between P-states, a significant number of  
transitions per-second are possible.  
4.2.2  
Low-Power Idle States  
When the processor is idle, low-power idle states (C-states) are used to save power.  
More power savings actions are taken for numerically higher C-states. However,  
higher C-states have longer exit and entry latencies. Resolution of C-states occur at  
the thread, processor core, and processor package level. Thread-level C-states are  
available if Intel Hyper-Threading Technology is enabled.  
Caution:  
Long term reliability cannot be assured unless all the Low-Power Idle States are  
enabled.  
Figure 10.  
Idle Power Management Breakdown of the Processor Cores  
Thread 0  
Thread 1  
Thread 0  
Thread 1  
Core 0 State  
Core N State  
Processor Package State  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
45  
Processors—Power Management  
While individual threads can request low-power C-states, power saving actions only  
take place once the core C-state is resolved. Core C-states are automatically resolved  
by the processor. For thread and core C-states, a transition to and from C0 is required  
before entering any other C-state.  
4.2.3  
Requesting Low-Power Idle States  
The primary software interfaces for requesting low-power idle states are through the  
MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E).  
However, software may make C-state requests using the legacy method of I/O reads  
from the ACPI-defined processor clock control registers, referred to as P_LVLx. This  
method of requesting C-states provides legacy support for operating systems that  
initiate C-state transitions using I/O reads.  
For legacy operating systems, P_LVLx I/O reads are converted within the processor to  
the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result  
in I/O reads to the system. The feature, known as I/O MWAIT redirection, must be  
enabled in the BIOS.  
The BIOS can write to the C-state range field of the PMG_IO_CAPTURE MSR to restrict  
the range of I/O addresses that are trapped and emulate MWAIT like functionality.  
Any P_LVLx reads outside of this range do not cause an I/O redirection to MWAIT(Cx)  
like request. The reads fall through like a normal I/O instruction.  
Note:  
When P_LVLx I/O instructions are used, MWAIT sub-states cannot be defined. The  
MWAIT sub-state is always zero if I/O MWAIT redirection is used. By default, P_LVLx  
I/O redirections enable the MWAIT 'break on EFLAGS.IF’ feature that triggers a  
wakeup on an interrupt, even if interrupts are masked by EFLAGS.IF.  
4.2.4  
Core C-State Rules  
The following are general rules for all core C-states, unless specified otherwise:  
A core C-state is determined by the lowest numerical thread state (such as Thread  
0 requests C1E state while Thread 1 requests C3 state, resulting in a core C1E  
state). See the G, S, and C Interface State Combinations table.  
A core transitions to C0 state when:  
— An interrupt occurs  
— There is an access to the monitored address if the state was entered using an  
MWAIT/Timed MWAIT instruction  
— The deadline corresponding to the Timed MWAIT instruction expires  
An interrupt directed toward a single thread wakes only that thread.  
If any thread in a core is in active (in C0 state), the core's C-state will resolve to  
C0 state.  
Any interrupt coming into the processor package may wake any core.  
A system reset re-initializes all processor cores.  
Core C0 State  
The normal operating state of a core where code is being executed.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
46  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Core C1/C1E State  
C1/C1E is a low power state entered when all threads within a core execute a HLT or  
MWAIT(C1/C1E) instruction.  
A System Management Interrupt (SMI) handler returns execution to either Normal  
state or the C1/C1E state. See the Intel® 64 and IA-32 Architectures Software  
Developer’s Manual for more information.  
While a core is in C1/C1E state, it processes bus snoops and snoops from other  
threads. For more information on C1E state, see Package C-States on page 48.  
Core C3 State  
Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to  
the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its  
L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while  
maintaining its architectural state. All core clocks are stopped at this point. Because  
the core’s caches are flushed, the processor does not wake any core that is in the C3  
state when either a snoop is detected or when another core accesses cacheable  
memory.  
Core C6 State  
Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or  
an MWAIT(C6) instruction. Before entering core C6 state, the core will save its  
architectural state to a dedicated SRAM. Once complete, a core will have its voltage  
reduced to zero volts. During exit, the core is powered on and its architectural state is  
restored.  
Core C7-C10 States  
Individual threads of a core can enter the C7, C8, C9, or C10 state by initiating a  
P_LVL4, P_LVL5, P_LVL6, P_LVL7 I/O read (respectively) to the P_BLK or by an  
MWAIT(C7/C8/C9/C10) instruction. The core C7–C10 state exhibits the same behavior  
as the core C6 state.  
C-State Auto-Demotion  
In general, deeper C-states, such as C6 or C7 state, have long latencies and have  
higher energy entry/exit costs. The resulting performance and energy penalties  
become significant when the entry/exit frequency of a deeper C-state is high.  
Therefore, incorrect or inefficient usage of deeper C-states have a negative impact on  
battery life and idle power. To increase residency and improve battery life and idle  
power in deeper C-states, the processor supports C-state auto-demotion.  
There are two C-state auto-demotion options:  
C7/C6 to C3 state  
C7/C6/C3 To C1 state  
The decision to demote a core from C6/C7 to C3 or C3/C6/C7 to C1 state is based on  
each core’s immediate residency history and interrupt rate . If the interrupt rate  
experienced on a core is high and the residence in a deep C-state between such  
interrupts is low, the core can be demoted to a C3 or C1 state. A higher interrupt  
pattern is required to demote a core to C1 state as compared to C3 state.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
47  
Processors—Power Management  
This feature is disabled by default. BIOS must enable it in the  
PMG_CST_CONFIG_CONTROL register. The auto-demotion policy is also configured by  
this register.  
4.2.5  
Package C-States  
The processor supports C0, C1/C1E, C3, C6, C7, C8, C9, and C10 power states.The  
following is a summary of the general rules for package C-state entry. These apply to  
all package C-states, unless specified otherwise:  
A package C-state request is determined by the lowest numerical core C-state  
amongst all cores.  
A package C-state is automatically resolved by the processor depending on the  
core idle power states and the status of the platform components.  
— Each core can be at a lower idle power state than the package if the platform  
does not grant the processor permission to enter a requested package C-state.  
— The platform may allow additional power savings to be realized in the  
processor.  
— For package C-states, the processor is not required to enter C0 state before  
entering any other C-state.  
— Entry into a package C-state may be subject to auto-demotion – that is, the  
processor may keep the package in a deeper package C-state than requested  
by the operating system if the processor determines, using heuristics, that the  
deeper C-state results in better power/performance.  
The processor exits a package C-state when a break event is detected. Depending on  
the type of break event, the processor does the following:  
If a core break event is received, the target core is activated and the break event  
message is forwarded to the target core.  
— If the break event is not masked, the target core enters the core C0 state and  
the processor enters package C0 state.  
— If the break event is masked, the processor attempts to re-enter its previous  
package state.  
If the break event was due to a memory access or snoop request,  
— But the platform did not request to keep the processor in a higher package C-  
state, the package returns to its previous C-state.  
— And the platform requests a higher power C-state, the memory access or  
snoop request is serviced and the package remains in the higher power C-  
state.  
The following table shows package C-state resolution for a dual-core processor. The  
following figure summarizes package C-state transitions.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
48  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Table 17.  
Coordination of Core Power States at the Package Level  
Package C-State  
Core 1  
C7  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C1  
C0  
C3  
C0  
C11  
C3  
C3  
C3  
C3  
C3  
C3  
C6  
C0  
C11  
C3  
C6  
C6  
C6  
C6  
C6  
C8  
C0  
C11  
C3  
C6  
C7  
C8  
C8  
C8  
C9  
C0  
C11  
C3  
C6  
C7  
C8  
C9  
C9  
C10  
C0  
C0  
C1  
C3  
C0  
C11  
C3  
C6  
C7  
C7  
C7  
C7  
C11  
C11  
C11  
C11  
C11  
C11  
C11  
C11  
C3  
C6  
Core 0  
C6  
C7  
C7  
C8  
C9  
C8  
C9  
C10  
C10  
Note: 1. If enabled, the package C-state will be C1E if all cores have resolved a core C1 state or higher.  
Figure 11.  
Package C-State Entry and Exit  
Package C0  
Package C1/C1E  
Package C3  
Package C6  
Package C7  
Package C8  
Package C9  
Package C10  
Package C0 State  
This is the normal operating state for the processor. The processor remains in the  
normal state when at least one of its cores is in the C0 or C1 state or when the  
platform has not granted permission to the processor to go into a low-power state.  
Individual cores may be in lower power idle states while the package is in C0 state.  
Package C1/C1E State  
No additional power reduction actions are taken in the package C1 state. However, if  
the C1E sub-state is enabled, the processor automatically transitions to the lowest  
supported core clock frequency, followed by a reduction in voltage.  
The package enters the C1 low-power state when:  
At least one core is in the C1 state.  
The other cores are in a C1 or deeper power state.  
The package enters the C1E state when:  
All cores have directly requested C1E using MWAIT(C1) with a C1E sub-state hint.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
49  
Processors—Power Management  
All cores are in a power state deeper than C1/C1E state; however, the package  
low-power state is limited to C1/C1E using the PMG_CST_CONFIG_CONTROL MSR.  
All cores have requested C1 state using HLT or MWAIT(C1) and C1E auto-  
promotion is enabled in IA32_MISC_ENABLES.  
No notification to the system occurs upon entry to C1/C1E state.  
Package C2 State  
Package C2 state is an internal processor state that cannot be explicitly requested by  
software. A processor enters Package C2 state when:  
All cores and graphics have requested a C3 or deeper power state; however,  
constraints (LTR, programmed timer events in the near future, and so on) prevent  
entry to any state deeper than C 2 state. Or,  
All cores and graphics are in the C3 or deeper power states, and a memory access  
request is received. Upon completion of all outstanding memory requests, the  
processor transitions back into a deeper package C-state.  
Package C3 State  
A processor enters the package C3 low-power state when:  
At least one core is in the C3 state.  
The other cores are in a C3 state or deeper power state and the processor has  
been granted permission by the platform.  
The platform has not granted a request to a package C6/C7 or deeper state,  
however, has allowed a package C6 state.  
In package C3 state, the L3 shared cache is valid.  
Package C6 State  
A processor enters the package C6 low-power state when:  
At least one core is in the C6 state.  
The other cores are in a C6 or deeper power state and the processor has been  
granted permission by the platform.  
The platform has not granted a package C7 state or deeper request; however, has  
allowed a package C6 state.  
If the cores are requesting C7 state, but the platform is limiting to a package C6  
state, the last level cache in this case can be flushed.  
In package C6 state all cores have saved their architectural state and have had their  
core voltages reduced to zero volts. It is possible the L3 shared cache is flushed and  
turned off in package C6 state. If at least one core is requesting C6 state, the L3  
cache will not be flushed.  
Package C7 State  
The processor enters the package C7 low-power state when all cores are in the C7  
state. In package C7, the processor will take action to remove power from portions of  
the system agent.  
Core break events are handled the same way as in package C3 or C6 state.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
50  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Package C8 State  
The processor enters C8 states when the core with the highest state is C8.  
The package C8 state is similar to package C7 state; however, in addition, all  
internally generated voltage rails are turned off and the input VCC is reduced to 1.15 V  
to 1.3 V.  
Package C9 State  
The processor enters package C9 states when the core with the highest state is C9.  
The package C9 state is similar to package C8 state; in addition, the input VCC is  
changed to 0 V.  
Package C10 State  
The processor enters C10 states when the core with the highest state is C10.  
The package C10 state is similar to the package C9 state; in addition, the VR12.6 is in  
PS4 low-power state, which is near to shut off of the VR12.6.  
Dynamic L3 Cache Sizing  
When all cores request C7 or deeper C-state, internal heuristics is dynamically flushes  
the L3 cache. Once the cores enter a deep C-state, depending on their MWAIT  
substate request, the L3 cache is either gradually flushed N-ways at a time or flushed  
all at once. Upon the cores exiting to C0, the L3 cache is gradually expanded based on  
internal heuristics.  
4.2.6  
Package C-States and Display Resolutions  
The integrated graphics engine has the frame buffer located in system memory. When  
the display is updated, the graphics engine fetches display data from system memory.  
Different screen resolutions and refresh rates have different memory latency  
requirements. These requirements may limit the deepest Package C-state the  
processor can enter. Other elements that may affect the deepest Package C-state  
available are the following:  
Display is on or off  
Single or multiple displays  
Native or non-native resolution  
Panel Self Refresh (PSR) technology  
Note:  
Display resolution is not the only factor influencing the deepest Package C-state the  
processor can get into. Device latencies, interrupt response latencies, and core C-  
states are among other factors that influence the final package C-state the processor  
can enter.  
The following table lists display resolutions and deepest available package C-State.  
The display resolutions are examples using common values for blanking and pixel  
rate. Actual results will vary. The table shows the deepest possible Package C-state.  
System workload, system idle, and AC or DC power also affect the deepest possible  
Package C-state.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
51  
Processors—Power Management  
Table 18.  
Deepest Package C-State Available – U-Processor Line and Y-Processor Line  
Panel Self Refresh  
(PSR)  
Number of Displays 1  
Native Resolution 2  
Deepest Available  
Package C-State  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Single  
Single  
800x600 60 Hz  
1024x768 60 Hz  
1280x1024 60 Hz  
1920x1080 60 Hz  
1920x1200 60 Hz  
1920x1440 60 Hz  
2048x1536 60 Hz  
2560x1600 60 Hz  
2560x1920 60 Hz  
2880x1620 60 Hz  
2880x1800 60 Hz 3  
3200x1800 60 Hz 3  
3200x2000 60 Hz 3  
3840x2160 30 Hz  
4096x2160 24 Hz  
800x600 60 Hz  
PC7  
PC7  
PC7  
PC7  
PC7  
PC6  
PC6  
PC6  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC7  
PC6  
PC6  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
PC2  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Single  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
Multiple  
1024x768 60 Hz  
1280x1024 60 Hz  
1920x1080 60 Hz  
1920x1200 60 Hz  
1920x1440 60 Hz  
2048x1536 60 Hz  
2560x1600 60 Hz  
2560x1920 60 Hz  
2880x1620 60 Hz  
2880x1800 60 Hz 3  
3200x1800 60 Hz 3  
3200x2000 60 Hz 3  
3840x2160 30 Hz  
4096x2160 24 Hz  
PC2  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
52  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Panel Self Refresh  
Number of Displays 1  
Single  
Native Resolution 2  
Any native resolution 4  
Any native resolution 1  
Deepest Available  
Package C-State  
(PSR)  
Enabled  
PC7  
Same as PSR disabled for  
the given resolution with  
multiple displays  
Enabled  
Multiple  
Notes: 1. For multiple display cases, the resolution listed is the highest native resolution of all enabled  
displays, and PSR is internally disabled; that is, dual display with one 800x600 60 Hz display and  
one 2560x1600 60 Hz display will result in a deepest available package C-state of PC2.  
2. For non-native resolutions, PSR is internally disabled, and the deepest available package C-State  
will be between that of the PSR disabled native resolution and the PSR disabled non-native  
resolution.; that is, a native 3200x1800 60 Hz panel using non-native 1920x1080 60 Hz  
resolution will result in a deepest available package C-State between PC2 and PC7.  
3. Resolution not supported by Y-Processor line.  
4. Microcode Update rev 00000010 or newer must be used.  
4.3  
Integrated Memory Controller (IMC) Power Management  
The main memory is power managed during normal operation and in low-power ACPI  
Cx states.  
4.3.1  
Disabling Unused System Memory Outputs  
Any system memory (SM) interface signal that goes to a memory in which it is not  
connected to any actual memory devices is tri-stated. The benefits of disabling unused  
SM signals are:  
Reduced power consumption.  
Reduced possible overshoot/undershoot signal quality issues seen by the  
processor I/O buffer receivers caused by reflections from potentially un-  
terminated transmission lines.  
When a given rank is not populated, the corresponding chip select and CKE signals are  
not driven.  
At reset, all rows must be assumed to be populated, until it can be determined that  
the rows are not populated. This is due to the fact that when CKE is tri-stated with  
DRAMs present, the DRAMs are not ensured to maintain data integrity. CKE tri-state  
should be enabled by BIOS where appropriate, since at reset all rows must be  
assumed to be populated.  
CKE tristate should be enabled by BIOS where appropriate, since at reset all rows  
must be assumed to be populated.  
4.3.2  
DRAM Power Management and Initialization  
The processor implements extensive support for power management on the memory  
interface.The processor drives four CKE pins, one per rank.  
The CKE is one of the power-save means. When CKE is off, the internal DDR clock is  
disabled and the DDR power is reduced. The power-saving differs according to the  
selected mode and the DDR type used. For more information, refer to the IDD table in  
the DDR specification.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
53  
Processors—Power Management  
The processor supports four different types of power-down modes in package C0. The  
different power-down modes can be enabled through configuring  
"PM_PDWN_config_0_0_0_MCHBAR". The type of CKE power-down can be configured  
through PDWN_mode (bits 15:12) and the idle timer can be configured through  
PDWN_idle_counter (bits 11:0). The different power-down modes supported are:  
No power-down (CKE disable)  
Active power-down (APD): This mode is entered if there are open pages when  
de-asserting CKE. In this mode the open pages are retained. Power-saving in this  
mode is the lowest. Power consumption of DDR is defined by IDD3P. Exiting this  
mode is defined by tXP – small number of cycles. For this mode, DRAM DLL must  
be on.  
PPD/DLL-off: In this mode the data-in DLLs on DDR are off. Power-saving in this  
mode is the best among all power modes. Power consumption is defined by  
IDD2P1. Exiting this mode is defined by tXP, but also tXPDLL (10–20 according to  
DDR type) cycles until first data transfer is allowed. For this mode, DRAM DLL  
must be off.  
Pre-charged power-down (PPD): This mode is entered if all banks in DDR are  
pre-charged when de-asserting CKE. Power saving in this mode is intermediate –  
better than APD, but less than DLL-off. Power consumption is defined by IDD2P1.  
Exiting this mode is defined by tXP. The difference from APD mode is that when  
waking-up all page-buffers are empty.) The LPDDR does not have a DLL. As a  
result, the power savings are as good as PPD/DLL-off, but will have lower exit  
latency and higher performance.  
The CKE is determined per rank, whenever it is inactive. Each rank has an idle-  
counter. The idle-counter starts counting as soon as the rank has no accesses, and if  
it expires, the rank may enter power-down while no new transactions to the rank  
arrives to queues. The idle-counter begins counting at the last incoming transaction  
arrival.  
It is important to understand that since the power-down decision is per rank, the IMC  
can find many opportunities to power down ranks, even while running memory  
intensive applications; the savings are significant (may be few Watts, according to the  
DDR specification). This is significant when each channel is populated with more  
ranks.  
Selection of power modes should be according to power-performance or thermal  
trade-offs of a given system:  
When trying to achieve maximum performance and power or thermal  
consideration is not an issue – use no power-down  
In a system which tries to minimize power-consumption, try using the deepest  
power-down mode possible – PPD/DLL-off with a low idle timer value  
In high-performance systems with dense packaging (that is, tricky thermal  
design) the power-down mode should be considered in order to reduce the heating  
and avoid DDR throttling caused by the heating.  
The default value that BIOS configures in "PM_PDWN_config_0_0_0_MCHBAR" is  
6080h – that is, PPD/DLL-off mode with idle timer of 80h, or 128 DCLKs. This is a  
balanced setting with deep power-down mode and moderate idle timer value.  
The idle timer expiration count defines the # of DCKLs that a rank is idle that causes  
entry to the selected powermode. As this timer is set to a shorter time, the IMC will  
have more opportunities to put DDR in power-down. There is no BIOS hook to set this  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
54  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
register. Customers choosing to change the value of this register can do it by  
changing it in the BIOS. For experiments, this register can be modified in real time if  
BIOS does not lock the IMC registers.  
4.3.2.1  
4.3.2.2  
Initialization Role of CKE  
During power-up, CKE is the only input to the SDRAM that has its level recognized  
(other than the DDR3L/DDR3L-RS reset pin) once power is applied. It must be driven  
LOW by the DDR controller to make sure the SDRAM components float DQ and DQS  
during power-up. CKE signals remain LOW (while any reset is active) until the BIOS  
writes to a configuration register. Using this method, CKE is ensured to remain  
inactive for much longer than the specified 200 micro-seconds after power and clocks  
to SDRAM devices are stable.  
Conditional Self-Refresh  
During S0 idle state, system memory may be conditionally placed into self-refresh  
state when the processor is in package C3 or deeper power state. Refer to Intel®  
Rapid Memory Power Management (Intel® RMPM) for more details on conditional self-  
refresh with Intel HD Graphics enabled.  
When entering the S3 – Suspend-to-RAM (STR) state or S0 conditional self-refresh,  
the processor core flushes pending cycles and then enters SDRAM ranks that are not  
used by Intel graphics memory into self-refresh. The CKE signals remain LOW so the  
SDRAM devices perform self-refresh.  
The target behavior is to enter self-refresh for package C3 or deeper power states as  
long as there are no memory requests to service.  
Table 19.  
Targeted Memory State Conditions  
Mode  
Memory State with Processor Graphics  
Memory State with External Graphics  
Dynamic memory rank power-down based on  
idle conditions.  
Dynamic memory rank power-down based on  
idle conditions.  
C0, C1, C1E  
If the processor graphics engine is idle and  
there are no pending display requests, then  
enter self-refresh. Otherwise, use dynamic  
memory rank power-down based on idle  
conditions.  
If there are no memory requests, then enter  
self-refresh. Otherwise, use dynamic memory  
rank power-down based on idle conditions.  
C3, C6, C7  
or deeper  
S3  
S4  
Self-Refresh Mode  
Self-Refresh Mode  
Memory power-down (contents lost)  
Memory power-down (contents lost)  
4.3.2.3  
Dynamic Power-Down  
Dynamic power-down of memory is employed during normal operation. Based on idle  
conditions, a given memory rank may be powered down. The IMC implements  
aggressive CKE control to dynamically put the DRAM devices in a power-down state.  
The processor core controller can be configured to put the devices in active power-  
down (CKE de-assertion with open pages) or pre-charge power-down (CKE de-  
assertion with all pages closed). Pre-charge power-down provides greater power  
savings, but has a bigger performance impact since all pages will first be closed before  
putting the devices in power-down mode.  
If dynamic power-down is enabled, all ranks are powered up before doing a refresh  
cycle and all ranks are powered down at the end of refresh.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
55  
Processors—Power Management  
4.3.2.4  
DRAM I/O Power Management  
Unused signals should be disabled to save power and reduce electromagnetic  
interference. This includes all signals associated with an unused memory channel.  
Clocks, CKE, ODE, and CS signals are controlled per DIMM rank and will be powered  
down for unused ranks.  
The I/O buffer for an unused signal should be tri-stated (output driver disabled), the  
input receiver (differential sense-amp) should be disabled, and any DLL circuitry  
related ONLY to unused signals should be disabled. The input path must be gated to  
prevent spurious results due to noise on the unused signals (typically handled  
automatically when input receiver is disabled).  
4.3.3  
DDR Electrical Power Gating (EPG)  
The DDR I/O of the processor supports Electrical Power Gating (DDR-EPG) while the  
processor is at C3 or deeper power state.  
In C3 or deeper power state, the processor internally gates VDDQ for the majority of  
the logic to reduce idle power while keeping all critical DDR pins such as CKE and  
VREF in the appropriate state.  
In C7 or deeper power state, the processor internally gates VccST for all non-critical  
state to reduce idle power.  
In S3 or C-state transitions, the DDR does not go through training mode and will  
restore the previous training information.  
4.4  
Graphics Power Management  
4.4.1  
Intel® Rapid Memory Power Management (Intel® RMPM)  
Intel Rapid Memory Power Management (Intel RMPM) conditionally places memory  
into self-refresh when the processor is in package C3 or deeper power state to allow  
the system to remain in the lower power states longer for memory not reserved for  
graphics memory. Intel RMPM functionality depends on graphics/display state  
(relevant only when processor graphics is being used), as well as memory traffic  
patterns generated by other connected I/O devices.  
4.4.2  
4.4.3  
Graphics Render C-State  
Render C-state (RC6) is a technique designed to optimize the average power to the  
graphics render engine during times of idleness. RC6 is entered when the graphics  
render engine, blitter engine, and the video engine have no workload being currently  
worked on and no outstanding graphics memory transactions. When the idleness  
condition is met, the processor graphics will program the graphics render engine  
internal power rail into a low voltage state.  
Intel® Smart 2D Display Technology (Intel® S2DDT)  
Intel S2DDT reduces display refresh memory traffic by reducing memory reads  
required for display refresh. Power consumption is reduced by less accesses to the  
IMC. Intel S2DDT is only enabled in single pipe mode.  
Intel S2DDT is most effective with:  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
56  
December 2013  
Order No.: 329001-005  
Power Management—Processors  
Display images well suited to compression, such as text windows, slide shows, and  
so on. Poor examples are 3D games.  
Static screens such as screens with significant portions of the background showing  
2D applications, processor benchmarks, and so on, or conditions when the  
processor is idle. Poor examples are full-screen 3D games and benchmarks that  
flip the display image at or near display refresh rates.  
4.4.4  
Intel® Graphics Dynamic Frequency  
Intel Graphics Dynamic Frequency Technology is the ability of the processor and  
graphics cores to opportunistically increase frequency and/or voltage above the  
guaranteed processor and graphics frequency for the given part. Intel Graphics  
Dynamic Frequency Technology is a performance feature that makes use of unused  
package power and thermals to increase application performance. The increase in  
frequency is determined by how much power and thermal budget is available in the  
package, and the application demand for additional processor or graphics  
performance. The processor core control is maintained by an embedded controller.  
The graphics driver dynamically adjusts between P-States to maintain optimal  
performance, power, and thermals. The graphics driver will always try to place the  
graphics engine in the most energy efficient P-state.  
4.4.5  
Intel® Display Power Saving Technology (Intel® DPST)  
The Intel DPST technique achieves backlight power savings while maintaining a good  
visual experience. This is accomplished by adaptively enhancing the displayed image  
while decreasing the backlight brightness simultaneously. The goal of this technique is  
to provide equivalent end-user-perceived image quality at a decreased backlight  
power level.  
1. The original (input) image produced by the operating system or application is  
analyzed by the Intel DPST subsystem. An interrupt to Intel DPST software is  
generated whenever a meaningful change in the image attributes is detected. (A  
meaningful change is when the Intel DPST software algorithm determines that  
enough brightness, contrast, or color change has occurred to the displaying  
images that the image enhancement and backlight control needs to be altered.)  
2. Intel DPST subsystem applies an image-specific enhancement to increase image  
contrast, brightness, and other attributes.  
3. A corresponding decrease to the backlight brightness is applied simultaneously to  
produce an image with similar user-perceived quality (such as brightness) as the  
original image.  
Intel DPST 6.0 has improved the software algorithms and has minor hardware  
changes to better handle backlight phase-in and ensures the documented and  
validated method to interrupt hardware phase-in.  
4.4.6  
Intel® Automatic Display Brightness  
The Intel Automatic Display Brightness feature dynamically adjusts the backlight  
brightness based upon the current ambient light environment. This feature requires an  
additional sensor to be on the panel front. The sensor receives the changing ambient  
light conditions and sends the interrupts to the Intel Graphics driver. As per the  
change in Lux, (current ambient light illuminance), the new backlight setting can be  
adjusted through BLC. The converse applies for a brightly lit environment. Intel  
Automatic Display Brightness increases the backlight setting.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
57  
Processors—Power Management  
4.4.7  
Intel® Seamless Display Refresh Rate Technology (Intel®  
SDRRS Technology)  
When a Local Flat Panel (LFP) supports multiple refresh rates, the Intel Display  
Refresh Rate Switching power conservation feature can be enabled. The higher refresh  
rate will be used when plugged in with an AC power adaptor or when the end user has  
not selected/enabled this feature. The graphics software will automatically switch to a  
lower refresh rate for maximum battery life when the notebook is on battery power  
and when the user has selected/enabled this feature. There are two distinct  
implementations of Intel DRRS – static and seamless. The static Intel DRRS method  
uses a mode change to assign the new refresh rate. The seamless Intel DRRS method  
is able to accomplish the refresh rate assignment without a mode change and  
therefore does not experience some of the visual artifacts associated with the mode  
change (SetMode) method.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
58  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
5.0  
Thermal Management  
The thermal solution provides both component-level and system-level thermal  
management. To allow for the optimal operation and long-term reliability of Intel  
processor-based systems, the system/processor thermal solution should be designed  
so that the processor:  
Remains below the maximum junction temperature (TjMax) specification at the  
maximum thermal design power (TDP).  
Conforms to system constraints, such as system acoustics, system skin-  
temperatures, and exhaust-temperature requirements.  
Caution: Thermal specifications given in this chapter are on the component and  
package level and apply specifically to the processor. Operating the processor outside  
the specified limits may result in permanent damage to the processor and potentially  
other components in the system.  
5.1  
Thermal Considerations  
The processor TDP is the maximum sustained power that should be used for design of  
the processor thermal solution. TDP represents an expected maximum sustained  
power from realistic applications. TDP may be exceeded for short periods of time or if  
running a "power virus" workload.  
The processor integrates multiple processing and graphics cores and PCH on a single  
package.This may result in differences in the power distribution across the die and  
must be considered when designing the thermal solution.  
Intel® Turbo Boost Technology 2.0 allows processor cores and processor graphics  
cores to run faster than the guaranteed frequency. It is invoked opportunistically and  
automatically as long as the processor is conforming to its temperature, power  
delivery, and current specification limits. When Intel Turbo Boost Technology 2.0 is  
enabled:  
Applications are expected to run closer to TDP more often as the processor will  
attempt to maximize performance by taking advantage of available TDP headroom  
in the processor package.  
The processor may exceed the TDP for short durations to use any available  
thermal capacitance within the thermal solution. The duration and time of such  
operation can be limited by platform runtime configurable registers within the  
processor.  
Thermal solutions and platform cooling that are designed to less than thermal  
design guidance may experience thermal and performance issues since more  
applications will tend to run at or near TDP for significant periods of time.  
Note:  
Intel Turbo Boost Technology 2.0 availability may vary between the different SKUs.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
59  
Processors—Thermal Management  
5.2  
5.3  
Intel® Turbo Boost Technology 2.0 Power Monitoring  
When operating in turbo mode, the processor monitors its own power and adjusts the  
turbo frequencies to maintain the average power within limits over a thermally  
significant time period. The processor calculates the package power that consists of  
the processor core power and graphics core power. In the event that a workload  
causes the power to exceed program power limits, the processor will protect itself  
using the Adaptive Thermal Monitor.  
Intel® Turbo Boost Technology 2.0 Power Control  
Illustration of Intel Turbo Boost Technology 2.0 power control is shown in the  
following sections and figures. Multiple controls operate simultaneously allowing for  
customization for multiple system thermal and power limitations. These controls allow  
for turbo optimizations within system constraints and are accessible using MSR, MMIO,  
or PECI interfaces  
5.3.1  
Package Power Control  
The package power control allows for customization to implement optimal turbo within  
platform power delivery and package thermal solution limitations.  
Table 20.  
Intel® Turbo Boost Technology 2.0 Package Power Control Settings  
MSR:  
MSR_TURBO_POWER_LIMIT  
610h  
Address:  
Control  
Bit  
Default  
Description  
This value sets the average power limit over a long time  
period. This is normally aligned to the TDP of the part and  
steady-state cooling capability of the thermal solution. The  
default value is the TDP for the SKU.  
PL1 limit may be set lower than TDP in real time for specific  
needs, such as responding to a thermal event. If it is set  
lower than TDP, the processor may require to use frequencies  
below the guaranteed P1 frequency to control the low-power  
limits. The PL1 Clamp bit [16] should be set to enable the  
processor to use frequencies below P1 to control the set-  
power limit.  
POWER_LIMIT_1 (PL1)  
14:0  
SKU TDP  
PL1 limit may be set higher than TDP. If set higher than TDP,  
the processor could stay at that power level continuously and  
cooling solution improvements may be required.  
This value is a time parameter that adjusts the algorithm  
behavior to maintain time averaged power at or below PL1. The  
hardware default value is 1 second; however, 28 seconds is  
recommended for most mobile applications.  
POWER_LIMIT_1_TIME  
(Turbo Time Parameter)  
23:17  
46:32  
1 sec  
PL2 establishes the upper power limit of turbo operation above  
TDP, primarily for platform power supply considerations. Power  
may exceed this limit for up to 10 ms. The default for this limit is  
1.25 x TDP; however, the BIOS may reprogram the default value  
to maximize the performance within platform power supply  
considerations. Setting this limit to TDP will limit the processor to  
only operate up to the TDP. It does not disable turbo because  
turbo is opportunistic and power/temperature dependent. Many  
workloads will allow some turbo frequencies for powers at or  
below TDP.  
POWER_LIMIT_2 (PL2)  
1.25 x TDP  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
60  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
Figure 12.  
Package Power Control  
5.3.2  
Turbo Time Parameter  
Turbo Time Parameter is a mathematical parameter (units in seconds) that controls  
the Intel Turbo Boost Technology 2.0 algorithm using moving average of energy  
usage. During a maximum power turbo event of about 1.25 x TDP, the processor  
could sustain PL2 for up to approximately 1.5 times the Turbo Time Parameter. If the  
power value and/or Turbo Time Parameter is changed during runtime, it may take  
approximately 3 to 5 times the Turbo Time Parameter for the algorithm to settle at the  
new control limits. The time varies depending on the magnitude of the change and  
other factors. There is an individual Turbo Time Parameter associated with Package  
Power Control.  
5.4  
Configurable TDP (cTDP) and Low-Power Mode  
Configurable TDP (cTDP) and Low-Power Mode (LPM) form a design vector where the  
processor behavior and package TDP are dynamically adjusted to a desired system  
performance and power envelope. Configurable TDP and Low-Power Mode  
technologies are not battery life improvement technologies; however, the technologies  
offer opportunities to differentiate system design while running active workloads on  
select processor SKUs through scalability, configureability, and adaptability. The  
scenarios or methods by which each technology is used are customizable, but typically  
involve changes to TDP with a resultant change in performance depending on system  
usage. Either technology can be triggered by (but not limited to) changes in operating  
system power policies, or hardware events such as docking a system, flipping a  
switch, or pressing a button. cTDP and LPM are designed to be configured dynamically  
and do not require an operating system reboot.  
5.4.1  
Configurable TDP  
Note:  
Configurable TDP availability may vary between the different SKUs.  
With cTDP, the processor is now capable of altering the maximum sustained power  
with an alternate guaranteed frequency. Configurable TDP allows operation in  
situations where extra cooling is available or situations where a cooler and quieter  
mode of operation is desired. Configurable TDP can be enabled using Intel's DPTF  
driver or through HW/EC firmware. Enabling cTDP using the DPTF driver is  
recommended as Intel does not provide specific application or EC source code.  
cTDP consists of three modes as shown in the following table.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
61  
Processors—Thermal Management  
Table 21.  
Configurable TDP Modes  
Mode  
Description  
This is the processor's rated frequency and TDP.  
Nominal  
TDP-Up  
When extra cooling is available, this mode specifies a higher TDP and higher  
guaranteed frequency versus the nominal mode.  
TDP-Down  
When a cooler or quieter mode of operation is desired, this mode specifies a lower TDP  
and lower guaranteed frequency versus the nominal mode.  
In each mode, the Intel Turbo Boost Technology 2.0 power and frequency ranges are  
reprogrammed and the OS is given a new effective HFM operating point. The Intel  
DPTF driver assists in all these operations. The cTDP mode does not change the max  
per-core turbo frequency.  
5.4.2  
Low-Power Mode  
Low-Power Mode (LPM) can provide cooler and quieter system operation. By  
combining several active power limiting techniques, the processor can consume less  
power while running at equivalent low frequencies. Active power is defined as  
processor power consumed while a workload is running and does not refer to the  
power consumed during idle modes of operation. LPM is only available using the Intel  
DPTF driver.  
Through the DPTF driver, LPM can be configured to use each of the following methods  
to reduce active power:  
Restricting Intel Turbo Boost Power limits and IA core Turbo Boost availability  
Off-Lining core activity (Move processor traffic to a subset of cores)  
Placing an IA Core at LFM or MFM (Minimum Frequency Mode)  
Utilizing IA clock modulation  
Reducing number of active EUs to GT2 equivalent (Applicable for GT3 SKUs Only)  
LPM power as listed in the TDP Specifications table is defined at a point which IA  
cores working at MFM, GT = RPn and 1 core active  
Off-lining core activity is the ability to dynamically scale a workload to a limited subset  
of cores in conjunction with a lower turbo power limit. It is one of the main vectors  
available to reduce active power. However, not all processor activity is ensured to be  
able to shift to a subset of cores. Shifting a workload to a limited subset of cores  
allows other cores to remain idle and save power. Therefore, when LPM is enabled,  
less power is consumed at equivalent frequencies.  
Minimum Frequency Mode (MFM) of operation, which is the lowest linear frequency  
supported at the LFM voltage, has been made available for use under LPM for further  
reduction in active power beyond LFM capability to enable cooler and quieter modes of  
operation.  
5.5  
Thermal and Power Specifications  
The following notes apply to Table 22 on page 63 and Table 23 on page 64.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
62  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
Note  
Definition  
The TDPs given are not the maximum power the processor can generate. Analysis indicates that real applications  
are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained periods of  
time.  
1
2
3
TDP workload may consist of a combination of processor-core intensive and graphics-core intensive applications.  
The thermal solution needs to ensure that the processor temperature does not exceed the maximum junction  
temperature (TjMAX) limit, as measured by the DTS and the critical temperature bit.  
The processor junction temperature is monitored by Digital Temperature Sensors (DTS). For DTS accuracy, refer to  
Digital Thermal Sensor Accuracy (Taccuracy) on page 68.  
4
5
6
Digital Thermal Sensor (DTS) based fan speed control is required to achieve optimal thermal performance. Intel  
recommends full cooling capability well before the DTS reading reaches TjMAX. An example of this is TjMAX – 10 ºC.  
The idle power specifications are not 100% tested. These power specifications are determined by the  
characterization at higher temperatures and extrapolating the values for the junction temperature indicated.  
7
8
At Tj of TjMAX  
At Tj of 50 ºC  
9
At Tj of 35 ºC  
10  
Can be modified at runtime by MSR writes, with MMIO and with PECI commands.  
'Turbo Time Parameter' is a mathematical parameter (unit in seconds) that controls the processor turbo algorithm  
using a moving average of energy usage. Do not set the Turbo Time Parameter to a value less than 0.1 seconds.  
Refer to Turbo Time Parameter on page 61 for further information.  
11  
12  
Shown limit is a time averaged power, based upon the Turbo Time Parameter. Absolute product power may exceed  
the set limits for short durations or under virus or uncharacterized workloads.  
Processor will be controlled to specified power limit as described in Intel Turbo Boost Technology 2.0 Power  
Monitoring on page 60. If the power value and/or 'Turbo Time Parameter' is changed during runtime, it may take a  
short period of time (approximately 3 to 5 times the 'Turbo Time Parameter') for the algorithm to settle at the new  
control limits.  
13  
14  
15  
16  
17  
This is a hardware default setting and not a behavioral characteristic of the part.  
For controllable turbo workloads, limit may be exceeded for up to 10 ms.  
Refer to Table 21 on page 62 for the definitions of 'TDP-Nominal', 'TDP-Up', 'TDP-Down'.  
LPM power level is an opportunistic power and is not a guaranteed value as usages and implementations may vary.  
Power limits may vary depending on if the product supports the 'TDP-up' and/or 'TDP-down' modes. Default power  
limits can be found in the PKG_PWR_SKU MSR (614h).  
18  
19  
20  
21  
May vary based on SKU.  
cTDP down power is based on GT2 equivalent graphics configuration. cTDP down does not decrease the number of  
active Processor Graphics EUs, but relies on Power Budget Management (PL1) to achieve the specified power level.  
Hardware default values might be overridden by the BIOS.  
Table 22.  
Thermal Design Power (TDP) Specifications  
Segment  
State  
Processor Core  
Frequency  
Processor  
Graphics Core  
Frequency  
Thermal Design  
Power  
Units  
Notes  
TDP-Nominal /  
HFM  
2.0 GHz up to  
2.8 GHz  
28  
U-Processor  
(Dual Core)  
200 MHz up to  
1200 MHz  
1, 2, 7,  
16, 17,  
18  
TDP-Down /  
LFM  
W
28W  
GT3  
800 MHz  
800 MHz  
23  
LPM  
200 MHz  
22.5  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
63  
Processors—Thermal Management  
Segment  
State  
Processor Core  
Frequency  
Processor  
Graphics Core  
Frequency  
Thermal Design  
Power  
Units  
Notes  
TDP Nominal /  
HFM  
1.3 GHz up to  
1.7 GHz  
15  
U-Processor  
(Dual Core)  
200 MHz up to  
1100 MHz  
1, 2, 7,  
16, 17,  
18  
TDP-Down /  
LFM  
W
15W  
GT3  
800 MHz  
800 MHz  
11.5  
LPM  
200 MHz  
11  
25  
TDP-Up  
1.6 GHz up to  
2.3 GHz  
TDP Nominal /  
HFM  
U-Processor  
(Dual Core)  
200 MHz up to  
1100 MHz  
15  
1, 2, 7,  
16, 17,  
18  
W
15W  
GT2  
TDP-Down /  
LFM  
800 MHz  
800 MHz  
11.5  
11  
LPM  
200 MHz  
TDP Nominal /  
HFM  
1.3 GHz up to  
1.4 GHz  
11.5  
Y-Processor  
(Dual Core)  
200 MHz up to  
850 MHz  
TDP-Down /  
LFM  
9.5 (6W SDP / 4.5W  
SDP)  
W
19  
11.5W (6W  
SDP / 4.5W  
SDP)  
800 MHz  
600 MHz  
LPM  
200 MHz  
9
Table 23.  
Junction Temperature Specification  
Segment  
Symbol  
Package Turbo  
Parameter  
Min  
Default  
Max  
Units  
Notes  
U-Processor (Dual  
Core)  
Junction temperature  
limit  
Tj  
0
0
100  
100  
ºC  
ºC  
3, 4, 5  
3, 4, 5  
Y-Processor (Dual  
Core)  
Junction temperature  
limit  
Tj  
Table 24.  
Maximum Idle Power Specification  
Symbol  
Parameter  
U-Processor  
15W with GT3  
U-Processor  
28W with GT3  
Y-Processor  
6W SDP /  
4.5W SDP  
with GT2  
Unit  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Package power in Package C7  
state  
PPACKAGE(C7)  
PPACKAGE(C8)  
PPACKAGE(C9)  
PPACKAGE(C10)  
0.95  
1.5  
0.85  
W
W
W
W
1, 3  
1
Package power in Package C8  
state  
0.12  
0.052  
0.052  
0.18  
0.1  
0.1  
Package power in Package C9  
state  
0.04  
0.04  
1
Package power in Package C10  
state  
0.1  
1
Package power in System  
S3/S4/S5 and M3 state  
(internal Suspend)  
PPACKAGE(Sx/M3)  
INT_SUS  
60  
50  
60  
50  
60  
50  
mW  
1, 2  
Package power in System  
S3/S4/S5 and Moff state  
(internal Suspend)  
PPACKAGE(Sx/Moff)  
INT_SUS  
mW  
1, 2  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
64  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
Symbol  
Parameter  
U-Processor  
15W with GT3  
U-Processor  
28W with GT3  
Y-Processor  
6W SDP /  
4.5W SDP  
with GT2  
Unit  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Package power in System  
S3/S4/S5 and M3 state  
(external Suspend)  
PPACKAGE(Sx/M3)  
EXT_SUS  
51  
51  
51  
mW  
1, 2  
Package power in System  
S3/S4/S5 and Moff state  
(external Suspend)  
PPACKAGE(Sx/Moff)  
EXT_SUS  
33  
19  
33  
19  
33  
19  
mW  
mW  
1, 2  
1, 2  
Package power in System Deep  
Sx state  
PPACKAGE(Deep Sx)  
Notes: 1. Package power includes both MCP components: processor and PCH.  
2. Measured at Tj = 35 °C.  
3. The C7 power is measured with LLC ON.  
5.6  
Thermal Management Features  
Occasionally the processor may operate in conditions that are near to its maximum  
operating temperature. This can be due to internal overheating or overheating within  
the platform. To protect the processor and the platform from thermal failure, several  
thermal management features exist to reduce package power consumption and  
thereby temperature in order to remain within normal operating limits. Furthermore,  
the processor supports several methods to reduce memory power.  
5.6.1  
Adaptive Thermal Monitor  
The purpose of the Adaptive Thermal Monitor is to reduce processor core power  
consumption and temperature until it operates at or below its maximum operating  
temperature. Processor core power reduction is achieved by:  
Adjusting the operating frequency (using the core ratio multiplier) and voltage.  
Modulating (starting and stopping) the internal processor core clocks (duty cycle).  
The Adaptive Thermal Monitor can be activated when the package temperature,  
monitored by any digital thermal sensor (DTS) meets or exceeds its maximum  
operating temperature. The maximum operating temperature implies either maximum  
junction temperature TjMAX, or TjMAX minus TCC Activation offset.  
Exceeding the maximum operating temperature activates the thermal control circuit  
(TCC), if enabled. When activated the thermal control circuit (TCC) causes both the  
processor core and graphics core to reduce frequency and voltage adaptively. The  
Adaptive Thermal Monitor will remain active as long as the package temperature  
exceeds its specified limit. Therefore, the Adaptive Thermal Monitor will continue to  
reduce the package frequency and voltage until the TCC is de-activated.  
TjMAX is factory calibrated and is not user configurable. The default value is software  
visible in the TEMPERATURE_TARGET (0x1A2) MSR, bits [23:16]. The  
TEMPERATURE_TARGET value stays the same when TCC Activation offset is enabled.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
65  
Processors—Thermal Management  
The Adaptive Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines. It is not intended as a mechanism to maintain  
processor TDP. The system design should provide a thermal solution that can maintain  
TDP within its intended usage range.  
Note:  
Adaptive Thermal Monitor protection is always enabled.  
5.6.1.1  
Thermal Control Circuit (TCC) Activation Offset  
TCC Activation Offset can be used to activate the Adaptive Thermal Monitor at  
temperatures lower than TjMAX. It is the preferred thermal protection mechanism for  
Intel Turbo Boost Technology 2.0 operation since ACPI passive throttling states will  
pull the processor out of turbo mode operation when triggered. An offset (in degrees  
Celsius) can be written to the TEMPERATURE_TARGET (0x1A2) MSR, bits [29:24]. This  
value will be subtracted from the value found in bits [23:16]. The default offset is  
0 °C, where throttling will occur at TjMAX. The offset should be set lower than any  
other protection such as ACPI _PSV trip points.  
5.6.1.2  
Frequency / Voltage Control  
Upon Adaptive Thermal Monitor activation, the processor core attempts to dynamically  
reduce processor core power by lowering the frequency and voltage operating point.  
The operating points are automatically calculated by the processor core itself and do  
not require the BIOS to program them as with previous generations of Intel  
processors. The processor core will scale the operating points such that:  
The voltage will be optimized according to the temperature, the core bus ratio,  
and number of cores in deep C-states.  
The core power and temperature are reduced while minimizing performance  
degradation.  
Once the temperature has dropped below the maximum operating temperature, the  
operating frequency and voltage will transition back to the normal system operating  
point.  
Once a target frequency/bus ratio is resolved, the processor core will transition to the  
new target automatically.  
On an upward operating point transition, the voltage transition precedes the  
frequency transition.  
On a downward transition, the frequency transition precedes the voltage  
transition.  
The processor continues to execute instructions. However, the processor will halt  
instruction execution for frequency transitions.  
If a processor load-based Enhanced Intel SpeedStep Technology/P-state transition  
(through MSR write) is initiated while the Adaptive Thermal Monitor is active, there  
are two possible outcomes:  
If the P-state target frequency is higher than the processor core optimized target  
frequency, the P-state transition will be deferred until the thermal event has been  
completed.  
If the P-state target frequency is lower than the processor core optimized target  
frequency, the processor will transition to the P-state operating point.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
66  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
5.6.1.3  
Clock Modulation  
If the frequency/voltage changes are unable to end an Adaptive Thermal Monitor  
event, the Adaptive Thermal Monitor will utilize clock modulation. Clock modulation is  
done by alternately turning the clocks off and on at a duty cycle (ratio between clock  
"on" time and total time) specific to the processor. The duty cycle is factory configured  
to 25% on and 75% off and cannot be modified. The period of the duty cycle is  
configured to 32 microseconds when the Adaptive Thermal Monitor is active. Cycle  
times are independent of processor frequency. A small amount of hysteresis has been  
included to prevent excessive clock modulation when the processor temperature is  
near its maximum operating temperature. Once the temperature has dropped below  
the maximum operating temperature, and the hysteresis timer has expired, the  
Adaptive Thermal Monitor goes inactive and clock modulation ceases. Clock  
modulation is automatically engaged as part of the Adaptive Thermal Monitor  
activation when the frequency/voltage targets are at their minimum settings.  
Processor performance will be decreased by the same amount as the duty cycle when  
clock modulation is active. Snooping and interrupt processing are performed in the  
normal manner while the Adaptive Thermal Monitor is active.  
5.6.2  
Digital Thermal Sensor  
Each processor execution core has an on-die Digital Thermal Sensor (DTS) that  
detects the core's instantaneous temperature. The DTS is the preferred method of  
monitoring processor die temperature because:  
It is located near the hottest portions of the die.  
It can accurately track the die temperature and ensure that the Adaptive Thermal  
Monitor is not excessively activated.  
Temperature values from the DTS can be retrieved through:  
A software interface using processor Model Specific Register (MSR).  
A processor hardware interface as described in Platform Environmental Control  
Interface (PECI) on page 29.  
When temperature is retrieved by the processor MSR, it is the instantaneous  
temperature of the given core. When temperature is retrieved using PECI, it is the  
average of the highest DTS temperature in the package over a 256 ms time window.  
Intel recommends using the PECI reported temperature for platform thermal control  
that benefits from averaging, such as fan speed control. The average DTS  
temperature may not be a good indicator of package Adaptive Thermal Monitor  
activation or rapid increases in temperature that triggers the Out of Specification  
status bit within the PACKAGE_THERM_STATUS MSR 1B1h and IA32_THERM_STATUS  
MSR 19Ch.  
Code execution is halted in C1 or deeper C-states. Package temperature can still be  
monitored through PECI in lower C-states.  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (TjMAX), regardless of  
TCC activation offset. It is the responsibility of software to convert the relative  
temperature to an absolute temperature. The absolute reference temperature is  
readable in the TEMPERATURE_TARGET MSR 1A2h. The temperature returned by the  
DTS is an implied negative integer indicating the relative offset from TjMAX. The DTS  
does not report temperatures greater than TjMAX. The DTS-relative temperature  
readout directly impacts the Adaptive Thermal Monitor trigger point. When a package  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
67  
Processors—Thermal Management  
DTS indicates that it has reached the TCC activation (a reading of 0h, except when the  
TCC activation offset is changed), the TCC will activate and indicate an Adaptive  
Thermal Monitor event. A TCC activation will lower both IA core and graphics core  
frequency, voltage, or both. Changes to the temperature can be detected using two  
programmable thresholds located in the processor thermal MSRs. These thresholds  
have the capability of generating interrupts using the core's local APIC. Refer to the  
Intel® 64 and IA-32 Architectures Software Developer’s Manual for specific register  
and programming details.  
5.6.2.1  
5.6.2.2  
Digital Thermal Sensor Accuracy (Taccuracy)  
The error associated with DTS measurements will not exceed ±5 °C within the entire  
operating range.  
Fan Speed Control with Digital Thermal Sensor  
Digital Thermal Sensor based fan speed control (TFAN) is a recommended feature to  
achieve optimal thermal performance. At the TFAN temperature, Intel recommends full  
cooling capability well before the DTS reading reaches TjMAX  
.
5.6.3  
PROCHOT# Signal  
PROCHOT# (processor hot) is asserted when the processor temperature has reached  
its maximum operating temperature (TjMAX). Only a single PROCHOT# pin exists at a  
package level. When any core arrives at the TCC activation point, the PROCHOT#  
signal will be asserted. PROCHOT# assertion policies are independent of Adaptive  
Thermal Monitor enabling.  
5.6.3.1  
Bi-Directional PROCHOT#  
By default, the PROCHOT# signal is set to bi-directional. However, it is recommended  
to configure the signal as an input only. When configured as an input or bi-directional  
signal, PROCHOT# can be used for thermally protecting other platform components in  
case the components overheat as well. When PROCHOT# is driven by an external  
device:  
The package will immediately transition to the lowest P-State (Pn) supported by  
the processor and graphics cores. This is contrary to the internally-generated  
Adaptive Thermal Monitor response.  
Clock modulation is not activated.  
The processor package will remain at the lowest supported P-state until the system  
de-asserts PROCHOT#. The processor can be configured to generate an interrupt upon  
assertion and de-assertion of the PROCHOT# signal.  
Note:  
When PROCHOT# is configured as a bi-directional signal and PROCHOT# is asserted  
by the processor, it is impossible for the processor to detect a system assertion of  
PROCHOT#. The system assertion will have to wait until the processor de-asserts  
PROCHOT# before PROCHOT# action can occur due to the system assertion. While the  
processor is hot and asserting PROCHOT#, the power is reduced; however, the  
reduction rate is slower than the system PROCHOT# response of < 100 us. The  
processor thermal control is staged in smaller increments over many milliseconds. This  
may cause several milliseconds of delay to a system assertion of PROCHOT# while the  
output function is asserted.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
68  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
5.6.3.2  
Voltage Regulator Protection using PROCHOT#  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and assert PROCHOT#  
and, if enabled, activate the TCC when the temperature limit of the VR is reached.  
When PROCHOT# is configured as a bi-directional or input only signal, if the system  
assertion of PROCHOT# is recognized by the processor, it will result in an immediate  
transition to the lowest P-State (Pn) supported by the processor and graphics cores.  
Systems should still provide proper cooling for the VR and rely on bi-directional  
PROCHOT# only as a backup in case of system cooling failure. Overall, the system  
thermal design should allow the power delivery circuitry to operate within its  
temperature specification even while the processor is operating at its TDP.  
5.6.3.3  
Thermal Solution Design and PROCHOT# Behavior  
With a properly designed and characterized thermal solution, it is anticipated that  
PROCHOT# will only be asserted for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be so minor that it would be immeasurable.  
However, an under-designed thermal solution that is not able to prevent excessive  
assertion of PROCHOT# in the anticipated ambient environment may:  
Cause a noticeable performance loss.  
Result in prolonged operation at or above the specified maximum junction  
temperature and affect the long-term reliability of the processor.  
May be incapable of cooling the processor even when the TCC is active  
continuously (in extreme situations).  
5.6.3.4  
Low-Power States and PROCHOT# Behavior  
Depending on package power levels during package C-states, outbound PROCHOT#  
may de-assert while the processor is idle as power is removed from the signal. Upon  
wakeup, if the processor is still hot, the PROCHOT# will re-assert, although typically  
package idle state residency should resolve any thermal issues. The PECI interface is  
fully operational during all C-states and it is expected that the platform continues to  
manage processor core and package thermals even during idle states by regularly  
polling for thermal data over PECI.  
5.6.3.5  
5.6.3.6  
THERMTRIP# Signal  
Regardless of enabling the automatic or on-demand modes, in the event of a  
catastrophic cooling failure, the package will automatically shut down when the silicon  
has reached an elevated temperature that risks physical damage to the product. At  
this point the THERMTRIP# signal will go active.  
Critical Temperature Detection  
Critical Temperature detection is performed by monitoring the package temperature.  
This feature is intended for graceful shutdown before the THERMTRIP# is activated.  
However, the processor execution is not guaranteed between critical temperature and  
THERMTRIP#. If the Adaptive Thermal Monitor is triggered and the temperature  
remains high, a critical temperature status and sticky bit are latched in the  
PACKAGE_THERM_STATUS MSR 1B1h and the condition also generates a thermal  
interrupt, if enabled. For more details on the interrupt mechanism, refer to the Intel®  
64 and IA-32 Architectures Software Developer’s Manual.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
69  
Processors—Thermal Management  
5.6.4  
On-Demand Mode  
The processor provides an auxiliary mechanism that allows system software to force  
the processor to reduce its power consumption using clock modulation. This  
mechanism is referred to as "On-Demand" mode and is distinct from Adaptive Thermal  
Monitor and bi-directional PROCHOT#. The processor platforms must not rely on  
software usage of this mechanism to limit the processor temperature. On-Demand  
Mode can be accomplished using processor MSR or chipset I/O emulation. On-Demand  
Mode may be used in conjunction with the Adaptive Thermal Monitor. However, if the  
system software tries to enable On-Demand mode at the same time the TCC is  
engaged, the factory configured duty cycle of the TCC will override the duty cycle  
selected by the On-Demand mode. If the I/O based and MSR-based On-Demand  
modes are in conflict, the duty cycle selected by the I/O emulation-based On-Demand  
mode will take precedence over the MSR-based On-Demand Mode.  
5.6.4.1  
MSR Based On-Demand Mode  
If Bit 4 of the IA32_CLOCK_MODULATION MSR is set to a 1, the processor will  
immediately reduce its power consumption using modulation of the internal core clock,  
independent of the processor temperature. The duty cycle of the clock modulation is  
programmable using bits [3:1] of the same IA32_CLOCK_MODULATION MSR. In this  
mode, the duty cycle can be programmed in either 12.5% or 6.25% increments  
(discoverable using CPUID). Thermal throttling using this method will modulate each  
processor core's clock independently.  
5.6.4.2  
5.6.5  
I/O Emulation-Based On-Demand Mode  
I/O emulation-based clock modulation provides legacy support for operating system  
software that initiates clock modulation through I/O writes to ACPI defined processor  
clock control registers on the chipset (PROC_CNT). Thermal throttling using this  
method will modulate all processor cores simultaneously.  
Intel® Memory Thermal Management  
The processor provides thermal protection for system memory by throttling memory  
traffic when using either DIMM modules or a memory down implementation. Two  
levels of throttling are supported by the processor – either a warm threshold or hot  
threshold that is customizable through memory mapped I/O registers. Throttling  
based on the warm threshold should be an intermediate level of throttling. Throttling  
based on the hot threshold should be the most severe. The amount of throttling is  
dynamically controlled by the processor.  
Memory temperature can be acquired through an on-board thermal sensor (TS-on-  
Board), retrieved by an embedded controller and reported to the processor through  
the PECI 3.0 interface. This methodology is known as PECI injected temperatures and  
is a method of Closed Loop Thermal Management (CLTM). CLTM requires the use of a  
physical thermal sensor. EXTTS# is another method of CLTM; however, it is only  
capable of reporting memory thermal status to the processor. EXTTS# consists of two  
GPIO pins on the PCH where the state of the pins is communicated internally to the  
processor.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
70  
December 2013  
Order No.: 329001-005  
Thermal Management—Processors  
When a physical thermal sensor is not available to report temperature, the processor  
supports Open Loop Thermal Management (OLTM) that estimates the power  
consumed per rank of the memory using the processor DRAM power meter. A per rank  
power is associated with the warm and hot thresholds that, when exceeded, may  
trigger memory thermal throttling.  
5.6.6  
Scenario Design Power (SDP)  
Scenario Design Power (SDP) is a usage-based design specification, and provides an  
additional reference design point for power constrained platforms. SDP is a specified  
power level under a specific scenario workload, temperature, and frequency.  
Intel recommends setting POWER_LIMIT_1 (PL1) to the system cooling capability  
(SDP level, or higher). While the SDP specification is characterized at Tj of 80 °C, the  
functional limit for the product remains at TjMAX. Customers may choose to have the  
processor invoke TCC Activation Throttling at 80 °C, but is not required.  
The processors that have SDP specified can still exceed SDP under certain workloads,  
such as TDP workloads. TDP power dissipation is still possible with the intended usage  
models, and protection mechanisms to handle levels beyond cooling capabilities are  
recommended. Intel recommends using such thermal control mechanisms to manage  
situations where power may exceed the thermal design capability.  
Note:  
Note:  
cTDP-Down mode is required for Intel® Coreprocessor products in order to achieve  
SDP.  
Although SDP is defined at 80 °C, the TCC activation temperature is 100 °C, and may  
be changed in BIOS to 80 °C.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
71  
Processors—Signal Description  
6.0  
Signal Description  
This chapter describes the processor signals. The signals are arranged in functional  
groups according to the associated interface or category. The following notations are  
used to describe the signal type.  
Notation  
Signal Type  
I
Input pin  
O
Output pin  
I/O  
Bi-directional Input/Output pin  
The signal description also includes the type of buffer used for the particular signal  
(see the following table).  
Table 25.  
Signal Description Buffer Types  
Signal  
CMOS  
Description  
CMOS buffers. 1.05V- tolerant  
DDR3L/DDR3L-  
RS  
DDR3L/DDR3L-RS buffers: 1.35 V-tolerant  
LPDDR3  
A
LPDDR3 buffers: 1.2 V- tolerant  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation  
GTL  
Gunning Transceiver Logic signaling technology  
Voltage Regulator Asynchronous CMOS output  
VR Enable  
CMOS  
Ref  
Voltage reference signal  
1
Asynchronous  
Signal has no timing relationship with any reference clock.  
1. Qualifier for a buffer type.  
6.1  
System Memory Interface Signals  
Table 26.  
DDR3L / DDR3L-RS Memory Channel A Interface (Memory-Down / SO-DIMM)  
Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Bank Select: These signals define which banks are selected  
within each SDRAM rank.  
SA_BS[2:0]  
O
Write Enable Control Signal: This signal is used with  
SA_RAS# and SA_CAS# (along with SA_CS#) to define the  
SDRAM Commands.  
SA_WE#  
O
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
72  
December 2013  
Order No.: 329001-005  
Signal Description—Processors  
Signal Name  
SA_RAS#  
Description  
Direction / Buffer  
Type  
RAS Control Signal: This signal is used with SA_CAS# and  
SA_WE# (along with SA_CS#) to define the SRAM  
Commands.  
O
O
CAS Control Signal: This signal is used with SA_RAS# and  
SA_WE# (along with SA_CS#) to define the SRAM  
Commands.  
SA_CAS#  
Data Strobes: SA_DQS[7:0] and its complement signal  
group make up a differential strobe pair. The data is captured  
at the crossing point of SA_DQS[7:0] and its SA_DQS#[7:0]  
during read and write transactions.  
SA_DQSP[7:0]  
SA_DQSN[7:0]  
I/O  
Data Bus: Channel A data signal interface to the SDRAM data  
bus.  
SA_DQ[63:0]  
SA_MA[15:0]  
I/O  
O
Memory Address: These signals are used to provide the  
multiplexed row and column address to the SDRAM.  
SDRAM Differential Clock: Channel A SDRAM Differential  
clock signal pair. The crossing of the positive edge of SA_CKP  
and the negative edge of its complement SA_CKN are used to  
sample the command and control signals on the SDRAM.  
SA_CKP[1:0]  
SA_CKN[1:0]  
O
O
Chip Select: (1 per rank). These signals are used to select  
particular SDRAM components during the active state. There  
is one Chip Select for each SDRAM rank.  
SA_CS#[1:0]  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power down SDRAM ranks  
SA_CKE[3:0]  
SA_ODT  
O
O
Place all SDRAM ranks into and out of self-refresh during  
STR  
When 1R DDR3L (SODIMM/MD) CKE[0] is used  
When 2R DDR3L (SODIMM/MD) CKE[1:0] are used  
On Die Termination: Active Termination Control.  
Table 27.  
DDR3L / DDR3L-RS Memory Channel B Interface (Memory-Down / SO-DIMM)  
Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Bank Select: These signals define which banks are selected  
within each SDRAM rank.  
SB_BS[2:0]  
O
O
Write Enable Control Signal: This signal is used with  
SB_RAS# and SB_CAS# (along with SB_CS#) to define the  
SDRAM Commands.  
SB_WE#  
SB_RAS#  
SB_CAS#  
RAS Control Signal: This signal is used with SB_CAS# and  
SB_WE# (along with SB_CS#) to define the SRAM  
Commands.  
O
O
CAS Control Signal: This signal is used with SB_RAS# and  
SB_WE# (along with SB_CS#) to define the SRAM  
Commands.  
Data Strobes: SB_DQS[7:0] and its complement signal  
group make up a differential strobe pair. The data is captured  
at the crossing point of SB_DQS[7:0] and its SB_DQS#[7:0]  
during read and write transactions.  
SB_DQSP[7:0]  
SB_DQSN[7:0]  
I/O  
Data Bus: Channel A data signal interface to the SDRAM data  
bus.  
SB_DQ[63:0]  
I/O  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
73  
Processors—Signal Description  
Signal Name  
Description  
Direction / Buffer  
Type  
Memory Address: These signals are used to provide the  
multiplexed row and column address to the SDRAM.  
SB_MA[15:0]  
O
SDRAM Differential Clock: Channel B SDRAM Differential  
clock signal pair. The crossing of the positive edge of SB_CKP  
and the negative edge of its complement SB_CKN are used to  
sample the command and control signals on the SDRAM.  
SB_CKP[1:0]  
SB_CKN[1:0]  
O
Chip Select: (1 per rank). These signals are used to select  
particular SDRAM components during the active state. There  
is one Chip Select for each SDRAM rank.  
SB_CS#[1:0]  
O
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power down SDRAM ranks  
SB_CKE[3:0]  
SB_ODT  
O
O
Place all SDRAM ranks into and out of self-refresh during  
STR  
When 1R DDR3L (SODIMM/MD) CKE[0] is used  
When 2R DDR3L (SODIMM/MD) CKE[1:0] are used  
On Die Termination: Active Termination Control.  
Table 28.  
LPDDR3 Memory Channel A Interface (Memory-Down) Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Data Bus: Channel A data signal interface to the SDRAM data  
bus.  
SA_DQ[63:0]  
I/O  
Data Strobes: SA_DQS[7:0] and its complement signal  
group make up a differential strobe pair. The data is captured  
at the crossing point of SA_DQS[7:0] and its SA_DQS#[7:0]  
during read and write transactions.  
SA_DQSP[7:0]  
SA_DQSN[7:0]  
I/O  
Command Address: These signals are used to provide the  
multiplexed command and address to the SDRAM.  
SA_CAA[9:0]  
SA_CAB[9:0]  
O
O
Command Address: These signals are used to provide the  
multiplexed command and address to the SDRAM.  
SDRAM Differential Clock: Channel A SDRAM Differential  
clock signal pair. The crossing of the positive edge of SA_CKP  
and the negative edge of its complement SA_CKN are used to  
sample the command and control signals on the SDRAM.  
SA_CKP[1:0]  
SA_CKN[1:0]  
O
O
Chip Select: (1 per rank). These signals are used to select  
particular SDRAM components during the active state. There  
is one Chip Select for each SDRAM rank.  
SA_CS#[1:0]  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power down SDRAM ranks  
Place all SDRAM ranks into and out of self-refresh during  
STR  
SA_CKE[3:0]  
SA_ODT  
O
O
When 1R LPDDR3 CKE[0] and CKE[2] are used for Rank 0  
When 2R LPDDR3 CKE[0] and CKE[2] are used for Rank 0  
& CKE[1] and CKE[3] are used for Rank 1  
On Die Termination: Active Termination Control.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
74  
December 2013  
Order No.: 329001-005  
Signal Description—Processors  
Table 29.  
LPDDR3 Memory Channel B Interface (Memory-Down) Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Data Bus: Channel A data signal interface to the SDRAM data  
bus.  
SB_DQ[63:0]  
I/O  
Data Strobes: SB_DQS[7:0] and its complement signal group  
make up a differential strobe pair. The data is captured at the  
crossing point of SB_DQS[7:0] and its SB_DQS#[7:0] during  
read and write transactions.  
SB_DQSP[7:0]  
SB_DQSN[7:0]  
I/O  
Command Address: These signals are used to provide the  
multiplexed command and address to the SDRAM.  
SB_CAA[9:0]  
SB_CAB[9:0]  
O
O
Command Address: These signals are used to provide the  
multiplexed command and address to the SDRAM.  
SDRAM Differential Clock: Channel A SDRAM Differential  
clock signal pair. The crossing of the positive edge of SB_CKP  
and the negative edge of its complement SB_CKN are used to  
sample the command and control signals on the SDRAM.  
SB_CKP[1:0]  
SB_CKN[1:0]  
O
O
Chip Select: (1 per rank). These signals are used to select  
particular SDRAM components during the active state. There is  
one Chip Select for each SDRAM rank.  
SB_CS#[1:0]  
Clock Enable: (1 per rank). These signals are used to:  
Initialize the SDRAMs during power-up  
Power down SDRAM ranks.  
SB_CKE[3:0]  
SB_ODT  
O
O
Place all SDRAM into and out of self-refresh during STR.  
When 1R LPDDR3 CKE[0] and CKE[2] are used for Rank0  
When 2R LPDDR3 CKE[0] and CKE[2] are used for Rank 0  
and CKE[1] and CKE[3] are used for Rank 1  
On Die Termination: Active Termination Control.  
6.2  
Memory Compensation and Miscellaneous Signals  
Table 30.  
LPDDR3 / DDR3L / DDR3L-RS Reference and Compensation Signals  
Signal Name  
Description  
Direction /  
Buffer Type  
SM_RCOMP[2:0]  
System Memory Impedance Compensation:  
I
SM_VREF_CA  
SM_VREF_DQ0  
SM_VREF_DQ1  
Memory Channel A/B DIMM DQ Voltage Reference:  
The output pins are connected to the MD/DIMMs, and holds  
VDDQ/2 as reference voltage.  
O
System Memory Power Gate Control: This signal  
disables the platform memory VTT regulator in C8 and  
deeper and S3 states.  
SM_PG_CNTL1  
CMOS OUTPUT  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
75  
Processors—Signal Description  
6.3  
Reset and Miscellaneous Signals  
Table 31.  
Reset and Miscellaneous Signals  
Signal Name  
Description  
Direction /  
Buffer Type  
Configuration Signals: The CFG signals have a default value of  
'1' if not terminated on the board.  
CFG[2:0]: Reserved configuration lane. A test point may be  
placed on the board for these lanes.  
CFG[3]: MSR Privacy Bit Feature  
— 1 = Debug capability is determined by  
IA32_Debug_Interface_MSR (C80h) bit[0] setting  
I/O  
CFG[19:0]  
— 0 = IA32_Debug_Interface_MSR (C80h) bit[0] default  
setting overridden  
GTL  
CFG[4]: eDP enable  
— 1 = Disabled  
— 0 = Enabled  
CFG[19:5]: Reserved configuration lanes. A test point may  
be placed on the board for these lands.  
Configuration resistance compensation. Use a 49.9 Ω ±1%  
resistor to ground.  
CFG_RCOMP  
FC_x  
FC (Future Compatibility) signals are signals that are available for  
compatibility with other processors. A test point may be placed  
on the board for these lands.  
Signal is for IFDIM testing only.  
I
IST_TRIGGER  
CMOS  
Signal is for debug. If both THERMTRIP# and this signal are  
simultaneously asserted, the processor has encountered an  
unrecoverable power delivery fault and has engaged automatic  
shutdown as a result.  
O
IVR_ERROR  
CMOS  
RESERVED: All signals that are RSVD and RSVD_NCTF must be  
left unconnected on the board. Intel recommends that all  
RSVD_TP signals have via test points.  
No Connect  
Test Point  
RSVD  
RSVD_TP  
RSVD_NCTF  
Non-Critical to  
Function  
TESTLO should be individually connected to VSS through a  
resistor.  
TESTLO_x  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
76  
December 2013  
Order No.: 329001-005  
Signal Description—Processors  
6.4  
embedded DisplayPort* (eDP*) Signals  
Table 32.  
embedded Display Port* Signals  
Signal Name  
Description  
Direction / Buffer Type  
eDP_TXP[3:0]  
eDP_TXN[3:0]  
embedded DisplayPort Transmit Differential Pair  
embedded DisplayPort Auxiliary Differential Pair  
embedded DisplayPort Current Compensation  
O
eDP  
eDP_AUXP  
eDP_AUXN  
O
eDP  
I/O  
A
eDP_RCOMP  
Low voltage multipurpose DISP_UTIL pin on the  
processor for backlight modulation control of  
embedded panels and S3D device control for active  
shutter glasses. This pin will co-exist with  
functionality similar to existing BKLTCTL pin on the  
PCH.  
O
eDP_DISP_UTIL  
Asynchronous CMOS  
6.5  
Display Interface Signals  
Table 33.  
Display Interface Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
DDIB_TXP[3:0]  
DDIB_TXN[3:0]  
Digital Display Interface Transmit Differential Pair  
Digital Display Interface Transmit Differential Pair  
O
DP*/HDMI*  
DDIC_TXP[3:0]  
DDIC_TXN[3:0]  
O
DP*/HDMI*  
6.6  
Testability Signals  
Table 34.  
Testability Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Breakpoint and Performance Monitor Signals:  
Outputs from the processor that indicate the status of  
breakpoints and programmable counters used for  
monitoring processor performance.  
I/O  
BPM#[7:0]  
CMOS  
Processor Ready: This signal is a processor output  
used by debug tools to determine processor debug  
readiness.  
O
PRDY#  
PREQ#  
Asynchronous CMOS  
Processor Request: This signal is used by debug tools  
to request debug operation of the processor.  
I
Asynchronous CMOS  
Test Clock: This signal provides the clock input for the  
processor Test Bus (also known as the Test Access  
Port). This signal must be driven low or allowed to float  
during power on Reset.  
I
PROC_TCK  
PROC_TDI  
GTL  
Processor Test Data In: This signal transfers serial  
test data into the processor. This signal provides the  
serial input needed for JTAG specification support.  
I
GTL  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
77  
Processors—Signal Description  
Signal Name  
Description  
Direction / Buffer  
Type  
Processor Test Data Out: This signal transfers serial  
test data out of the processor. This signal provides the  
serial output needed for JTAG specification support.  
O
PROC_TDO  
Open Drain  
Processor Test Mode Select: This is a JTAG  
specification supported signal used by debug tools.  
I
PROC_TMS  
GTL  
Processor Test Reset: This signal resets the Test  
Access Port (TAP) logic. This signal must be driven low  
during power on Reset.  
I
PROC_TRST#  
GTL  
6.7  
Error and Thermal Protection Signals  
Table 35.  
Error and Thermal Protection Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
Catastrophic Error: This signal indicates that the system has  
experienced a catastrophic error and cannot continue to  
operate. The processor will set this for non-recoverable  
machine check errors or other unrecoverable internal errors.  
CATERR# is used for signaling the following types of errors:  
Legacy MCERRs, CATERR# is asserted for 16 BCLKs. Legacy  
IERRs, CATERR# remains asserted until warm or cold reset.  
O
CATERR#  
GTL  
Platform Environment Control Interface: A serial  
sideband interface to the processor, it is used primarily for  
thermal, power, and error management.  
I/O  
PECI  
Asynchronous  
Processor Hot: PROCHOT# goes active when the processor  
temperature monitoring sensor(s) detects that the processor  
has reached its maximum safe operating temperature. This  
indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. This signal can also be driven to  
the processor to activate the TCC.  
GTL Input  
Open-Drain Output  
PROCHOT#  
Thermal Trip: The processor protects itself from catastrophic  
overheating by use of an internal thermal sensor. This sensor  
is set well above the normal operating temperature to ensure  
that there are no false trips. The processor will stop all  
execution when the junction temperature exceeds  
approximately 130 °C. This is signaled to the system by the  
THERMTRIP# pin.  
O
Asynchronous OD  
THERMTRIP#  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
78  
December 2013  
Order No.: 329001-005  
Signal Description—Processors  
6.8  
Power Sequencing Signals  
Table 36.  
Power Sequencing Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
The processor requires this input signal to be a clean  
indication that the VCC and VDDQ power supplies are  
stable and within specifications. This requirement  
applies regardless of the S-state of the processor.  
'Clean' implies that the signal will remain low (capable  
of sinking leakage current), without glitches, from the  
time that the power supplies are turned on until the  
supplies come within specification. The signal must  
then transition monotonically to a high state.  
I
PROCPWRGD  
Asynchronous CMOS  
The processor requires this input signal to be a clean  
indication that the VCCST and VDDQ power supplies are  
stable and within specifications. This single must have  
a valid level during both S0 and S3 power states.  
'Clean' implies that the signal will remain low (capable  
of sinking leakage current), without glitches, from the  
time that the power supplies are turned on until the  
supplies come within specification. The signal must  
then transition monotonically to a high state."  
I
VCCST_PWRGD  
PROC_DETECT#  
Asynchronous CMOS  
(Processor Detect): This signal is pulled down  
directly (0 Ohms) on the processor package to ground.  
There is no connection to the processor silicon for this  
signal. System board designers may use this signal to  
determine if the processor is present.  
6.9  
Processor Power Signals  
Table 37.  
Processor Power Signals  
Signal Name  
Description  
Direction / Buffer  
Type  
VCC  
Processor main power rail.  
Ref  
Ref  
Ref  
Processor I/O supply voltage for DDR3L/DDR3L-RS/  
LPDDR3.  
VDDQ  
VCCST  
Sustain voltage for the processor in standby modes  
VIDALERT#, VIDSCLK, and VIDSCLK comprise a three  
signal serial synchronous interface used to transfer  
power management information between the  
processor and the voltage regulator controllers.  
VIDSOUT  
VIDSCLK  
I/O CMOS  
O CMOS  
I CMOS  
VIDALERT#  
Sideband output from the processor which controls  
disabling of the VR when the processor is in the C10  
state. This signal will be used to disable the VR only if  
the processor is configured to support VR disabling  
using VR_CURRENT_CONFIG MSR (601h).  
O
VR_EN  
VR Enable CMOS  
Sideband signal which indicates to the processor that  
the external voltage regulator for the VCC power rail is  
valid.  
I
VR_READY  
CMOS  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
79  
Processors—Signal Description  
6.10  
Sense Signals  
Table 38.  
Sense Signals  
Signal Name  
Description  
Direction /  
Buffer Type  
VCC_SENSE and VSS_SENSE provide an isolated, low-  
impedance connection to the processor input VCC voltage  
and ground. The signals can be used to sense or measure  
voltage near the silicon.  
VCC_SENSE  
VSS_SENSE  
O
A
6.11  
Ground and Non-Critical to Function (NCTF) Signals  
Table 39.  
Ground and Non-Critical to Function (NCTF) Signals  
Signal Name  
Description  
Direction /  
Buffer Type  
VSS  
Processor ground node  
GND  
Non-Critical to Function: These signals are for package  
mechanical reliability.  
VSS_NCTF  
Daisy Chain Non-Critical to Function: These signals are  
for BGA solder joint reliability testing and are non-critical to  
function.  
These signals are connected on the processor package as  
follows:  
Package A1 Corner  
DAISY_CHAIN_NCTF_B2 to DAISY_CHAIN_NCTF_C1  
DAISY_CHAIN_NCTF_C2 to DAISY_CHAIN_NCTF_B3  
DAISY_CHAIN_NCTF_A3 to DAISY_CHAIN_NCTF_A4  
Package A63 Corner  
DAISY_CHAIN_NCTF_A62 to DAISY_CHAIN_NCTF_A61  
DAISY_CHAIN_NCTF_B61 to DAISY_CHAIN_NCTF_B62  
DAISY_CHAIN_NCTF_B63 to DAISY_CHAIN_NCTF_A60  
Package AY1 Corner  
DAISY_CHAIN_NCTF_[Ball #]  
DAISY_CHAIN_NCTF_AW1 to DAISY_CHAIN_NCTF_AW3  
DAISY_CHAIN_NCTF_AY3 to DAISY_CHAIN_NCTF_AW2  
DAISY_CHAIN_NCTF_AY2 to DAISY_CHAIN_NCTF_AV1  
Package AY63 Corner  
DAISY_CHAIN_NCTF_AY60 to  
DAISY_CHAIN_NCTF_AW61  
DAISY_CHAIN_NCTF_AY61 to  
DAISY_CHAIN_NCTF_AW62  
DAISY_CHAIN_NCTF_AY62 to  
DAISY_CHAIN_NCTF_AW63  
6.12  
Processor Internal Pull-Up / Pull-Down Terminations  
Table 40.  
Processor Internal Pull-Up / Pull-Down Terminations  
Signal Name  
BPM[7:0]  
Pull Up / Pull Down  
Pull Up  
Rail  
VccIO  
VccIO  
VccST  
Value  
40–60 Ω  
40–60 Ω  
30–70 Ω  
PREQ#  
Pull Up  
PROC_TDI  
Pull Up  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
80  
December 2013  
Order No.: 329001-005  
Signal Description—Processors  
Signal Name  
Pull Up / Pull Down  
Pull Up  
Rail  
VccST  
VccST  
VccST  
Value  
30–70 Ω  
5–8 kΩ  
30–70 Ω  
PROC_TMS  
CFG[19:0]  
CATERR#  
Pull Up  
Pull Up  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
81  
Processors—Electrical Specifications  
7.0  
Electrical Specifications  
This chapter provides the processor electrical specifications including integrated  
voltage regulator (VR), VCC Voltage Identification (VID), reserved and unused signals,  
signal groups, Test Access Points (TAP), and DC specifications.  
7.1  
Integrated Voltage Regulator  
A new feature to the processor is the integration of platform voltage regulators into  
the processor. Due to this integration, the processor has one main voltage rail (VCC)  
and a voltage rail for the memory interface (VDDQ) , compared to six voltage rails on  
previous processors. The VCC voltage rail will supply the integrated voltage regulators  
which in turn will regulate to the appropriate voltages for the cores, cache, system  
agent, and graphics. This integration allows the processor to better control on-die  
voltages to optimize between performance and power savings. The processor VCC rail  
will remain a VID-based voltage with a loadline similar to the core voltage rail (also  
called VCC) in previous processors.  
7.2  
7.3  
Power and Ground Pins  
The processor has VCC, VDDQ, and VSS (ground) pins for on-chip power distribution.  
All power pins must be connected to their respective processor power planes; all VSS  
pins must be connected to the system ground plane. Use of multiple power and  
ground planes is recommended to reduce I*R drop. The VCC pins must be supplied  
with the voltage determined by the processor Serial Voltage IDentification (SVID)  
interface. Table 41 on page 83 specifies the voltage level for the various VIDs.  
VCC Voltage Identification (VID)  
The processor uses three signals for the serial voltage identification interface to  
support automatic selection of voltages. The following table specifies the voltage level  
corresponding to the 8-bit VID value transmitted over serial VID. A ‘1’ in this table  
refers to a high voltage level and a ‘0’ refers to a low voltage level. If the voltage  
regulation circuit cannot supply the voltage that is requested, the voltage regulator  
must disable itself. VID signals are CMOS push/pull drivers. See Table 50 on page  
95 for the DC specifications for these signals. The VID codes will change due to  
temperature and/or current load changes to minimize the power of the part. A voltage  
range is provided in Voltage and Current Specifications on page 90. The  
specifications are set so that one voltage regulator can operate with all supported  
frequencies.  
Individual processor VID values may be set during manufacturing so that two devices  
at the same core frequency may have different default VID settings. This is shown in  
the VID range values in Voltage and Current Specifications on page 90. The  
processor provides the ability to operate while transitioning to an adjacent VID and its  
associated voltage. This will represent a DC shift in the loadline.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
82  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Table 41.  
Voltage Regulator (VR) 12.5 Voltage Identification  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
00h  
0.0000  
0.5000  
0.5100  
0.5200  
0.5300  
0.5400  
0.5500  
0.5600  
0.5700  
0.5800  
0.5900  
0.6000  
0.6100  
0.6200  
0.6300  
0.6400  
0.6500  
0.6600  
0.6700  
0.6800  
0.6900  
0.7000  
0.7100  
0.7200  
0.7300  
0.7400  
0.7500  
0.7600  
0.7700  
0.7800  
0.7900  
0.8000  
0.8100  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
21h  
0.8200  
0.8300  
0.8400  
0.8500  
0.8600  
0.8700  
0.8800  
0.8900  
0.9000  
0.9100  
0.9200  
0.9300  
0.9400  
0.9500  
0.9600  
0.9700  
0.9800  
0.9900  
1.0000  
1.0100  
1.0200  
1.0300  
1.0400  
1.0500  
1.0600  
1.0700  
1.0800  
1.0900  
1.1000  
1.1100  
1.1200  
1.1300  
1.1400  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
83  
Processors—Electrical Specifications  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
42h  
1.1500  
1.1600  
1.1700  
1.1800  
1.1900  
1.2000  
1.2100  
1.2200  
1.2300  
1.2400  
1.2500  
1.2600  
1.2700  
1.2800  
1.2900  
1.3000  
1.3100  
1.3200  
1.3300  
1.3400  
1.3500  
1.3600  
1.3700  
1.3800  
1.3900  
1.4000  
1.4100  
1.4200  
1.4300  
1.4400  
1.4500  
1.4600  
1.4700  
1.4800  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
64h  
1.4900  
1.5000  
1.5100  
1.5200  
1.5300  
1.5400  
1.5500  
1.5600  
1.5700  
1.5800  
1.5900  
1.6000  
1.6100  
1.6200  
1.6300  
1.6400  
1.6500  
1.6600  
1.6700  
1.6800  
1.6900  
1.7000  
1.7100  
1.7200  
1.7300  
1.7400  
1.7500  
1.7600  
1.7700  
1.7800  
1.7900  
1.8000  
1.8100  
1.8200  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
80h  
81h  
82h  
83h  
84h  
85h  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
84  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
86h  
1.8300  
1.8400  
1.8500  
1.8600  
1.8700  
1.8800  
1.8900  
1.9000  
1.9100  
1.9200  
1.9300  
1.9400  
1.9500  
1.9600  
1.9700  
1.9800  
1.9900  
2.0000  
2.0100  
2.0200  
2.0300  
2.0400  
2.0500  
2.0600  
2.0700  
2.0800  
2.0900  
2.1000  
2.1100  
2.1200  
2.1300  
2.1400  
2.1500  
2.1600  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A8h  
2.1700  
2.1800  
2.1900  
2.2000  
2.2100  
2.2200  
2.2300  
2.2400  
2.2500  
2.2600  
2.2700  
2.2800  
2.2900  
2.3000  
2.3100  
2.3200  
2.3300  
2.3400  
2.3500  
2.3600  
2.3700  
2.3800  
2.3900  
2.4000  
2.4100  
2.4200  
2.4300  
2.4400  
2.4500  
2.4600  
2.4700  
2.4800  
2.4900  
2.5000  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
85  
Processors—Electrical Specifications  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
B
i
t
Hex  
VCC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CAh  
2.5100  
2.5200  
2.5300  
2.5400  
2.5500  
2.5600  
2.5700  
2.5800  
2.5900  
2.6000  
2.6100  
2.6200  
2.6300  
2.6400  
2.6500  
2.6600  
2.6700  
2.6800  
2.6900  
2.7000  
2.7100  
2.7200  
2.7300  
2.7400  
2.7500  
2.7600  
2.7700  
2.7800  
2.7900  
2.8000  
2.8100  
2.8200  
2.8300  
2.8400  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
ECh  
2.8500  
2.8600  
2.8700  
2.8800  
2.8900  
2.9000  
2.9100  
2.9200  
2.9300  
2.9400  
2.9500  
2.9600  
2.9700  
2.9800  
2.9900  
3.0000  
3.0100  
3.0200  
3.0300  
3.0400  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
86  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
7.4  
Reserved or Unused Signals  
The following are the general types of reserved (RSVD) signals and connection  
guidelines:  
RSVD – these signals should not be connected  
RSVD_TP – these signals should be routed to a test point  
RSVD_NCTF – these signals are non-critical to function and may be left un-  
connected  
Arbitrary connection of these signals to VCC, VDDQ, VSS, or to any other signal  
(including each other) may result in component malfunction or incompatibility with  
future processors. See Signal Description on page 72 for a pin listing of the processor  
and the location of all reserved signals.  
For reliable operation, always connect unused inputs or bi-directional signals to an  
appropriate signal level. Unused active high inputs should be connected through a  
resistor to ground (VSS). Unused outputs maybe left unconnected; however, this may  
interfere with some Test Access Port (TAP) functions, complicate debug probing, and  
prevent boundary scan testing. A resistor must be used when tying bi-directional  
signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability.  
7.5  
Signal Groups  
Signals are grouped by buffer type and similar characteristics as listed in the following  
table. The buffer type indicates which signaling technology and specifications apply to  
the signals. All the differential signals and selected DDR3L/DDR3L-RS/LPDDR3 and  
Control Sideband signals have On-Die Termination (ODT) resistors. Some signals do  
not have ODT and need to be terminated on the board.  
Note:  
All Control Sideband Asynchronous signals are required to be asserted/de-asserted for  
at least 10 BCLKs with maximum Trise/Tfall of 6 ns for the processor to recognize the  
proper signal state. See the DC Specifications section and AC Specifications section.  
Table 42.  
Signal Groups  
Signal Group  
Type  
Signals  
DDR3L / DDR3L-RS / LPDDR3 Reference Clocks 2  
Differential  
DDR3L/DDR3L-RS/ SA_CKP[1:0], SA_CKN[1:0], SB_CKP[1:0], SB_CKN[1:0]  
LPDDR3 Output  
DDR3L / DDR3L-RS/LPDDR3 Command Signals 2  
Single ended  
DDR3L/DDR3L-RS/ DDR3L/DDR3L-RS Mode  
LPDDR3 Output  
LPDDR3 Mode  
SA_BS2, SB_BS2  
SA_BS1, SB_BS1  
SA_BS0, SB_BS0  
SA_WE#, SB_WE#  
SA_RAS#, SB_RAS#  
SA_CAS#, SB_CAS#  
SA_CAA5, SB_CAA5  
SA_CAB6, SB_CAB6  
SA_CAB4, SB_CAB4  
SA_CAB2, SB_CAB2  
SA_CAB3, SB_CAB3  
SA_CAB1, SB_CAB1  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
87  
Processors—Electrical Specifications  
Signal Group  
Type  
Signals  
SA_MA15, SB_MA15  
SA_MA14, SB_MA14  
SA_MA13, SB_MA13  
SA_MA12, SB_MA12  
SA_MA11, SB_MA11  
SA_MA10, SB_MA10  
SA_MA9, SB_MA9  
SA_MA8, SB_MA8  
SA_MA7, SB_MA7  
SA_MA6, SB_MA6  
SA_MA5, SB_MA5  
SA_MA4, SB_MA4  
SA_MA3, SB_MA3  
SA_MA2, SB_MA2  
SA_MA1, SB_MA1  
SA_MA0, SB_MA0  
SA_CAA8, SB_CAA8  
SA_CAA9, SB_CAA9  
SA_CAB0, SB_CAB0  
SA_CAA6, SB_CAA6  
SA_CAA7, SB_CAA7  
SA_CAB7, SB_CAB7  
SA_CAA1, SB_CAA1  
SA_CAA3, SB_CAA3  
SA_CAA4, SB_CAA4  
SA_CAA2, SB_CAA2  
SA_CAA0, SB_CAA0  
N/A  
N/A  
SA_CAB5, SB_CAB5  
SA_CAB8, SB_CAB8  
SA_CAB9, SB_CAB9  
DDR3L / DDR3L-RS Control Signals 2  
Single ended  
DDR3L/DDR3L-RS  
Output  
SA_CKE[3:0], SB_CKE[3:0], SA_CS#[1:0], SB_CS#[1:0],  
SA_ODT0, SB_ODT0, SM_PG_CNTL1  
DDR3L / DDR3L-RS Data Signals 2  
Single ended  
DDR3L/DDR3L-RS  
Bi-directional  
SA_DQ[63:0], SB_DQ[63:0]  
Differential  
DDR3L/DDR3L-RS  
Bi-directional  
SA_DQSP[7:0], SA_DQSN[7:0], SB_DQSP[7:0], SB_DQSN[7:0]  
DDR3L / DDR3L-RS Reference Voltage Signals  
DDR3L/DDR3L-RS  
Output  
SM_VREF_CA, SM_VREF_DQ1, SM_VREF_DQ0  
Testability (ITP/XDP)  
Single ended  
Single ended  
Single ended  
Single ended  
Single ended  
Control Sideband  
Single ended  
GTL Input  
GTL  
PROC_TCK, PROC_TDI, PROC_TMS, PROC_TRST#  
PROC_TDO  
BPM#[7:0]  
PREQ#  
GTL  
GTL  
GTL  
PRDY#  
GTL Input/Open  
Drain Output  
PROCHOT#  
IVR_ERROR  
THERMTRIP#  
Single ended  
Single ended  
Asynchronous  
CMOS Output  
Open Drain Output  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
88  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Signal Group  
Single ended  
Type  
Signals  
GTL  
CATERR#  
Single ended  
Asynchronous  
CMOS Input  
RESET#, PROCPWRGD, PWR_DEBUG# , VCCST_PWRGD  
Single ended  
Asynchronous Bi-  
directional  
PECI  
Single ended  
GTL Bi-directional  
CFG[19:0]  
Voltage Regulator  
Single ended  
VR Enable CMOS  
Output  
VR_EN  
Single ended  
Single ended  
Single ended  
Single ended  
Differential  
CMOS Input  
VR_READY  
CMOS Input  
VIDALERT#  
Open Drain Output  
CMOS I/O  
VIDSCLK  
VIDSOUT  
Analog Output  
VCC_SENSE, VSS_SENSE  
Power / Ground / Other  
Single ended Power  
VCC, VDDQ, VCCST  
VSS, VSS_NCTF 3  
RSVD, RSVD_NCTF  
RSVD_TP  
Ground  
No Connect  
Test Point  
Other  
DAISY_CHAIN_NCTF_[ball #]  
Digital Display Interface  
Differential DDI Output  
DDIB_TXP[3:0], DDIB_TXN[3:0], DDIC_TXP[3:0],  
DDIC_TXN[3:0]]  
Notes: 1. See Signal Description on page 72 for signal description details.  
2. SA and SB refer to DDR3L/DDR3L-RS Channel A and DDR3L/DDR3L-RS Channel B.  
7.6  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port  
(TAP) logic, Intel recommends the processor be first in the TAP chain, followed by any  
other components within the system. A translation buffer should be used to connect to  
the rest of the chain unless one of the other components is capable of accepting an  
input of the appropriate voltage. Two copies of each signal may be required with each  
driving a different voltage level.  
The processor supports Boundary Scan (JTAG) IEEE 1149.1-2001 and IEEE  
1149.6-2003 standards. A few of the I/O pins may support only one of those  
standards.  
7.7  
DC Specifications  
The processor DC specifications in this section are defined at the processor pins,  
unless noted otherwise. See Signal Description on page 72 for the processor pin  
listings and signal definitions.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
89  
Processors—Electrical Specifications  
The DC specifications for the DDR3L/DDR3L-RS/LPDDR3 signals are listed in the  
Voltage and Current Specifications section.  
The Voltage and Current Specifications section lists the DC specifications for the  
processor and are valid only while meeting specifications for junction temperature,  
clock frequency, and input voltages. Read all notes associated with each  
parameter.  
AC tolerances for all DC rails include dynamic load currents at switching  
frequencies up to 1 MHz.  
7.8  
Voltage and Current Specifications  
Table 43.  
Processor Core Active and Idle Mode DC Voltage and Current Specifications  
Symbol  
Parameter  
Segment  
Min  
Typ  
Max  
Unit  
Note1  
Voltage Range for  
Processor Active  
Operating Mode  
Operating  
Voltage  
All  
1.6  
1.84  
V
1, 2, 7  
Voltage Range for  
Processor Idle Mode All  
(Package C6/C7)  
Idle Voltage  
1.5  
1.65  
40  
V
A
1, 2, 7  
U-  
Processors  
28W  
U-  
Processors  
Maximum Processor  
Core ICC  
32  
ICCMAX  
4, 6, 7  
15W  
Y-Processors  
11.5W (6W  
SDP / 4.5W  
SDP)  
25  
PS0, PS1  
PS2, PS3  
PS0  
±20  
±20  
TOLVCC  
Ripple  
Voltage Tolerance  
Ripple Tolerance  
mV  
mV  
6, 8  
6, 8  
±15  
PS1  
±15  
PS2  
+50/-15  
+60/-15  
PS3  
Loadline slope  
within the VR  
regulation loop  
capability  
R_DC_LL  
R_AC_LL  
- 2.0  
- 7.0  
mV  
mΩ  
Loadline slope in  
response to  
dynamic load  
increase events  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
90  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Symbol  
Parameter  
Segment  
Min  
Typ  
Max  
500  
200  
Unit  
μs  
Note1  
Max Overshoot  
time  
T_OVS_Max  
V_OVS  
Max Overshoot  
mV  
Notes: 1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or  
empirical data.  
2. Each processor is programmed with a maximum valid voltage identification value (VID) that is  
set at manufacturing and cannot be altered. Individual maximum VID values are calibrated  
during manufacturing such that two processors at the same frequency may have different  
settings within the VID range. Note that this differs from the VID employed by the processor  
during a power management event (Adaptive Thermal Monitor, Enhanced Intel SpeedStep  
Technology, or Low-Power States).  
3. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands  
at the socket with a 20 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1  
MΩ minimum impedance. The maximum length of ground wire on the probe should be less than  
5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.  
4. Processor core VR to be designed to electrically support this current.  
5. Processor core VR to be designed to thermally support this current indefinitely.  
6. Long term reliability cannot be assured if tolerance, ripple, and core noise parameters are  
violated.  
7. Long term reliability cannot be assured in conditions above or below Maximum/Minimum  
functional limits.  
8. PSx refers to the voltage regulator power state as set by the SVID protocol.  
Table 44.  
Memory Controller (VDDQ) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Processor I/O supply  
voltage for DDR3L/DDR3L-  
RS  
VDDQ (DDR3L/DDR3L-RS)  
1.35  
V
2, 3  
Processor I/O supply  
voltage for LPDDR3  
VDDQ (LPDDR3)  
TOLDDQ  
-5  
1.20  
5
V
%
A
2, 3  
2, 3  
1
VDDQ Tolerance (AC+DC)  
IccMAX_VDDQ (DDR3L/  
DDR3L-RS)  
Max Current for VDDQ Rail  
(DDR3L/DDR3L-RS)  
1.4  
1.1  
Max Current for VDDQ Rail  
(LPDDR3)  
A
1
IccMAX_VDDQ (LPDDR3)  
Notes: 1. The current supplied to the DIMM modules is not included in this specification.  
2. Includes AC and DC error, where the AC noise is bandwidth limited to under 20 MHz.  
3. No requirement on the breakdown of AC versus DC noise.  
Table 45.  
Vcc Sustain (VccST) Supply DC Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Processor Vcc Sustain  
supply voltage  
VccST  
- 5%  
1.05  
+ 5%  
V
Maximum Current for  
VccST  
IccMAX_VccST  
100  
mA  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
91  
Processors—Electrical Specifications  
Table 46.  
DDR3L / DDR3L-RS Signal Group DC Specifications  
Symbol  
Parameter  
Input Low Voltage  
Input High Voltage  
Min  
Typ  
Max  
0.43*VDDQ  
Units  
Notes1  
2, 4, 11  
3, 11  
VIL  
VDDQ/2  
VDDQ/2  
V
V
VIH  
0.57*VDDQ  
Input Low Voltage  
(SM_DRAMPWROK)  
VIL  
0.15*VDDQ  
1.0  
V
V
Input High Voltage  
(SM_DRAMPWROK)  
VIH  
0.45*VDDQ  
10, 12  
DDR3L/DDR3L-RS Data  
Buffer pull-up  
Resistance  
RON_UP(DQ)  
20  
20  
26  
32  
Ω
5, 11  
DDR3L/DDR3L-RS Data  
Buffer pull-down  
Resistance  
RON_DN(DQ)  
26  
50  
32  
62  
Ω
Ω
5, 11  
11  
DDR3L/DDR3L-RS On-  
die termination  
equivalent resistance  
for data signals  
RODT(DQ)  
38  
DDR3L/DDR3L-RS On-  
die termination DC  
working point (driver  
set to receive mode)  
VODT(DC)  
0.45*VDDQ  
0.5*VDDQ  
0.55*VDDQ  
V
11  
DDR3L/DDR3L-RS Clock  
Buffer pull-up  
Resistance  
5, 11,  
13  
RON_UP(CK)  
20  
20  
15  
15  
19  
19  
40  
40  
26  
26  
20  
20  
25  
25  
80  
80  
32  
32  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
DDR3L/DDR3L-RS Clock  
Buffer pull-down  
Resistance  
5, 11,  
13  
RON_DN(CK)  
DDR3L/DDR3L-RS  
Command Buffer pull-  
up Resistance  
5, 11,  
13  
RON_UP(CMD)  
RON_DN(CMD)  
RON_UP(CTL)  
25  
DDR3L/DDR3L-RS  
Command Buffer pull-  
down Resistance  
5, 11,  
13  
25  
DDR3L/DDR3L-RS  
Control Buffer pull-up  
Resistance  
5, 11,  
13  
31  
DDR3L/DDR3L-RS  
Control Buffer pull-down  
Resistance  
5, 11,  
13  
RON_DN(CTL)  
31  
System Memory Power  
Gate Control Buffer  
Pull-Up Resistance  
RON_UP(SM_PG_CNTL1)  
130  
130  
13  
13  
System Memory Power  
RON_DN(SM_PG_CNTL1) Gate Control Buffer  
Pull-Down Resistance  
Input Leakage Current  
(DQ, CK)  
0V  
ILI  
0.7  
mA  
0.2*VDDQ  
0.8*VDDQ  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
92  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes1  
Input Leakage Current  
(CMD, CTL)  
0V  
ILI  
1.0  
mA  
0.2*VDDQ  
0.8*VDDQ  
Command COMP  
Resistance  
SM_RCOMP0  
198  
200  
202  
Ω
8
SM_RCOMP1  
SM_RCOMP2  
Data COMP Resistance  
ODT COMP Resistance  
118.8  
99  
120  
100  
121.2  
101  
Ω
Ω
8
8
Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a  
logical low value.  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a  
logical high value.  
4. VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply  
with the signal quality specifications.  
5. This is the pull up/down driver resistance.  
6. RTERM is the termination on the DIMM and in not controlled by the processor.  
7. The minimum and maximum values for these signals are programmable by BIOS to one of the  
two sets.  
8. SM_RCOMPx resistance must be provided on the system board with 1% resistors. SM_RCOMPx  
resistors are to VSS  
.
9. SM_DRAMPWROK rise and fall time must be < 50 ns measured between VDDQ *0.15 and VDDQ  
*0.47.  
10.SM_VREF is defined as VDDQ/2.  
11.Maximum-minimum range is correct; however, center point is subject to change during MRC  
boot training.  
12.Processor may be damaged if VIH exceeds the maximum voltage for extended periods.  
13.The MRC during boot training might optimize RON outside the range specified.  
Table 47.  
LPDDR3 Signal Group DC Specifications  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Input High Voltage  
Min  
Typ.  
Max  
0.43*VDDQ  
Unit  
V
Note  
2, 4, 12  
3, 11  
VDDQ /2  
VDDQ /2  
VIH  
VIL  
0.57*VDDQ  
V
Input Low Voltage  
(SM_DRAMPWROK)  
0.45*VDDQ  
30  
0.15*VDDQ  
1.0*VDDQ  
50  
V
V
Input High Voltage  
(SM_DRAMPWROK)  
VIH  
10, 12  
5, 11  
5, 11  
LPDDR3 Data Buffer pull-  
up Resistance  
RON_UP(DQ)  
40  
40  
Ω
Ω
LPDDR3 Data Buffer pull-  
down Resistance  
RON_DN(DQ)  
30  
50  
LPDDR3 On-die  
termination equivalent  
resistance for data signals  
RODT(DQ)  
150  
200  
250  
Ω
11  
LPDDR3 On-die  
termination DC working  
point (driver set to receive  
mode)  
VODT(DC)  
0.45*VDDQ  
0.5*VDDQ  
0.55*VDDQ  
V
11  
LPDDR3 Clock Buffer pull-  
up Resistance  
RON_UP(CK)  
30  
40  
50  
Ω
5, 11  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
93  
Processors—Electrical Specifications  
Symbol  
Parameter  
Min  
Typ.  
Max  
Unit  
Note  
LPDDR3 Clock Buffer pull-  
down Resistance  
RON_DN(CK)  
30  
40  
50  
Ω
5, 11  
LPDDR3 Command Buffer  
pull-up Resistance  
RON_UP(CMD)  
RON_DN(CMD)  
RON_UP(CTL)  
RON_DN(CTL)  
RON_UP(RST)  
RON_DN(RST)  
19  
19  
19  
19  
40  
40  
25  
25  
25  
25  
80  
80  
31  
31  
Ω
Ω
Ω
Ω
Ω
Ω
5, 11  
5, 11  
5, 11  
5, 11  
LPDDR3 Command Buffer  
pull-down Resistance  
LPDDR3 Control Buffer  
pull-up Resistance  
31  
LPDDR3 Control Buffer  
pull-down Resistance  
31  
LPDDR3 Reset Buffer pull-  
up Resistance  
130  
130  
LPDDR3 Reset Buffer pull-  
up Resistance  
Input Leakage Current  
(DQ, CK)  
0V  
ILI  
0.4  
0.6  
mA  
mA  
0.2* VDDQ  
0.8*VDDQ  
Input Leakage Current  
(CMD,CTL)  
0V  
ILI  
0.2*VDDQ  
0.8*VDDQ  
SM_RCOMP0  
SM_RCOMP1  
ODT COMP Resistance  
Data COMP Resistance  
198  
200  
120  
202  
Ω
Ω
8
8
118.8  
121.2  
Command COMP  
Resistance  
SM_RCOMP2  
99  
100  
101  
Ω
8
Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a  
logical low value.  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a  
logical high value.  
4. VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply  
with the signal quality specifications.  
5. This is the pull up/down driver resistance.  
6. RTERM is the termination on the DIMM and in not controlled by the processor.  
7. The minimum and maximum values for these signals are programmable by BIOS to one of the  
two sets.  
8. SM_RCOMPx resistance must be provided on the system board with 1% resistors. SM_RCOMPx  
resistors are to VSS  
.
9. SM_DRAMPWROK must have a maximum of 15 ns rise or fall time over VDDQ * 0.30 ±100 mV  
and the edge must be monotonic.  
10.SM_VREF is defined as VDDQ/2  
11.Maximum-minimum range is correct; however, center point is subject to change during MRC  
boot training.  
12.Processor may be damaged if VIH exceeds the maximum voltage for extended periods.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
94  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Table 48.  
Digital Display Interface Group DC Specifications  
Symbol  
VIL  
Parameter  
HPD Input Low Voltage  
Min  
Typ  
Max  
0.8  
Units  
V
V
VIH  
HPD Input High Voltage  
2.25  
3.6  
Aux peak-to-peak voltage at transmitting  
device  
Vaux(Tx)  
0.39  
0.32  
1.38  
1.36  
V
V
Aux peak-to-peak voltage at receiving  
device  
Vaux(Rx)  
Table 49.  
embedded DisplayPort* (eDP*) Group DC Specifications  
Symbol  
Parameter  
Min  
0.1*VCC  
0.9*VCC  
100  
Typ  
Max  
Units  
VOL  
VOH  
RUP  
eDP_DISP_UTIL Output Low Voltage  
eDP_DISP_UTIL Output High Voltage  
eDP_DISP_UTIL Internal pull-up  
eDP_DISP_UTIL Internal pull-down  
V
V
Ω
Ω
RDOWN  
100  
Aux peak-to-peak voltage at  
transmitting device  
Vaux(Tx)  
0.39  
1.38  
V
Aux peak-to-peak voltage at receiving  
device  
Vaux(Rx)  
0.32  
1.36  
V
eDP_RCOMP  
COMP Resistance  
24.75  
25  
25.25  
Ω
Note: 1. COMP resistance is to VCOMP_OUT.  
Table 50.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Units  
Notes1  
2
VIL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Buffer on Resistance  
VccST* 0.7  
VccST* 0.3  
V
V
V
V
Ω
VIH  
VOL  
VOH  
RON  
2, 4  
2
VccST * 0.1  
VccST * 0.9  
23  
2, 4  
73  
Input Leakage  
Current  
ILI  
±150  
μA  
3
Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The VccST referred to in these specifications refers to instantaneous VCCIO_OUT.  
3. For VIN between “0” V and VccST. Measured when the driver is tri-stated.  
4. VIH and VOH may experience excursions above VccST . However, input signal drivers must comply  
with the signal quality specifications.  
Table 51.  
GTL Signal Group and Open Drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Units  
Notes1  
Input Low Voltage (TAP, except  
PROC_TCK, PROC_TRST#)  
VIL  
VccST * 0.6  
V
2
Input High Voltage (TAP, except  
PROC_TCK, PROC_TRST#)  
VIH  
VccST * 0.72  
V
2, 4  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
95  
Processors—Electrical Specifications  
Symbol  
VIL  
Parameter  
Min  
Max  
Units  
Notes1  
Input Low Voltage (PROC_TCK,  
PROC_TRST#)  
VccST * 0.3  
V
2
Input High Voltage (PROC_TCK,  
PROC_TRST#)  
VIH  
VccST * 0.7  
V
2, 4  
VHYSTERESIS  
RON  
Hysteresis Voltage  
VccST * 0.2  
V
Ω
V
Buffer on Resistance (TDO)  
Input Low Voltage (other GTL)  
Input High Voltage (other GTL)  
Buffer on Resistance (CFG/BPM)  
Buffer on Resistance (other GTL)  
Input Leakage Current  
7
17  
VccST * 0.6  
VIL  
2
VIH  
VccST * 0.72  
V
2, 4  
RON  
16  
12  
24  
Ω
Ω
μA  
RON  
28  
ILI  
±150  
3
Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The VccST referred to in these specifications refers to instantaneous VccST  
.
3. For VIN between 0 V and VccST. Measured when the driver is tri-stated.  
4. VIH and VOH may experience excursions above VccST. However, input signal drivers must comply  
with the signal quality specifications.  
Table 52.  
Table 53.  
VR Enable CMOS Signal Group DC Specification  
Symbol  
Parameter  
Buffer on Resistance  
Hysteresis Voltage  
Min  
Max  
Units  
Notes  
RON  
VHYSTERESIS  
30  
70  
Ω
0.15*  
VccST  
V
VCOMP_OUT and VCCIO_TERM  
Symbol  
VCOMP_OUT  
VCCIO_TERM  
Parameter  
Termination Voltage  
Termination Voltage  
Typ  
1.0  
1.0  
Max  
Units  
Notes  
1, 3, 4  
2
V
V
Notes: 1. VCOMP_OUT may only be used to connect eDP_RCOMP.  
2. Internal processor power for signal termination.  
7.8.1  
Platform Environment Control Interface (PECI) DC  
Characteristics  
The PECI interface operates at a nominal voltage set by VccST. The set of DC electrical  
specifications shown in the following table is used with devices normally operating  
from a VccST interface supply.  
VccST nominal levels will vary between processor families. All PECI devices will operate  
at the VccST level determined by the processor installed in the system.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
96  
December 2013  
Order No.: 329001-005  
Electrical Specifications—Processors  
Table 54.  
Platform Environment Control Interface (PECI) DC Electrical Limits  
Symbol  
Definition and Conditions  
Internal pull up resistance  
Input Voltage Range  
Hysteresis  
Min  
15  
Max  
45  
Units  
Notes1  
Rup  
Vin  
Ω
V
V
3
-0.15  
VccST  
N/A  
Vhysteresis  
Vn  
0.1 * VccST  
Negative-Edge Threshold  
Voltage  
0.500  
0.275 * VccST  
0.550 * VccST  
V
V
* VccST  
Positive-Edge Threshold  
Voltage  
Vp  
0.725 * VccST  
Cbus  
Bus Capacitance per Node  
Pad Capacitance  
N/A  
0.7  
10  
1.8  
0.6  
pF  
pF  
Cpad  
Ileak000  
leakage current at 0 V  
mA  
leakage current at 0.25*  
VccST  
Ileak025  
Ileak050  
0.4  
0.2  
mA  
mA  
leakage current at 0.50*  
VccST  
leakage current at 0.75*  
VccST  
Ileak075  
Ileak100  
0.13  
0.10  
mA  
mA  
leakage current at VccST  
Notes: 1. VccST supplies the PECI interface. PECI behavior does not affect VccST minimum / maximum  
specifications.  
2. The leakage specification applies to powered devices on the PECI bus.  
3. The PECI buffer internal pull-up resistance measured at 0.75* VccST  
.
7.8.2  
Input Device Hysteresis  
The input buffers in both client and host models must use a Schmitt-triggered input  
design for improved noise immunity. Use the following figure as a guide for input  
buffer design.  
Figure 13.  
Input Device Hysteresis  
VTTD  
Maximum VP  
Minimum VP  
PECI High Range  
Minimum  
Valid Input  
Hysteresis  
Signal Range  
Maximum VN  
Minimum VN  
PECI Ground  
PECI Low Range  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
97  
Processors—Package Specifications  
8.0  
Package Specifications  
8.1  
Package Mechanical Attributes  
The U-Processor line and Y-Processor line use a Flip Chip technology and Multi-Chip  
package (MCP) available in a Ball Grid Array (BGA) package. The following table  
provides an overview of the mechanical attributes of this package.  
Table 55.  
Package Mechanical Attributes  
Parameter  
U-Processor Line and Y-Processor Line  
Package Type  
Interconnect  
Lead Free  
Flip Chip Ball Grid Array  
Ball Grid Array (BGA)  
Package  
Technology  
Yes  
Halogenated Flame Retardant Free  
Solder Ball Composition  
Ball/Pin Count  
Yes  
SAC 405  
1168  
Grid Array Pattern  
Balls Anywhere  
Package  
Configuration  
Land Side Capacitors  
Die Side Capacitors  
Die Configuration  
Yes  
No  
Multi-Chip Package (MCP) / 2 dies  
40.0 mm x 24.0 mm  
0.65 mm  
Nominal Package Size  
Min Ball/Pin pitch  
Package  
Dimensions  
8.2  
Package Loading Specifications  
Table 56.  
Package Loading Specifications  
Maximum Static Normal Load  
U-Processor Line  
Limit  
Notes  
1, 2, 3  
1, 2, 3  
67 N (15 lbf)  
22 N (15 lbf)  
Y-Processor Line  
U-Processor Line/ Y-Processor Line  
BGA  
67 N (15 lbf)  
1, 2, 3  
Notes: 1. The thermal solution attach mechanism must not induce continuous stress to the package. It  
may only apply a uniform load to the die to maintain a thermal interface.  
2. This specification applies to the uniform compressive load in the direction perpendicular to the  
dies’ top surface.  
3. This specification is based on limited testing for design characterization.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
98  
December 2013  
Order No.: 329001-005  
Package Specifications—Processors  
8.3  
Package Storage Specifications  
Table 57.  
Package Storage Specifications  
Parameter  
Description  
Min  
Max  
Notes  
The non-operating device storage temperature.  
Damage (latent or otherwise) may occur when  
subjected to this temperature for any length of  
time.  
TABSOLUTE STORAGE  
-25 °C  
125 °C  
1, 2, 3  
The ambient storage temperature limit (in  
shipping media) for a sustained period of time.  
TSUSTAINED STORAGE  
-5 °C  
40 °C  
4, 5  
5, 6  
6
The maximum device storage relative humidity for  
a sustained period of time.  
RHSUSTAINED STORAGE  
60% @ 24 °C  
A prolonged or extended period of time: typically  
associated with customer shelf life.  
0
6
TIMESUSTAINED STORAGE  
months  
months  
Notes: 1. Refers to a component device that is not assembled in a board or socket that is not to be  
electrically connected to a voltage reference or I/O signals.  
2. Specified temperatures are based on data collected. Exceptions for surface mount reflow are  
specified by applicable JEDEC standards.  
3. TABSOLUTE STORAGE applies to the unassembled component only and does not apply to the shipping  
media, moisture barrier bags or desiccant.  
4. Intel-branded board products are certified to meet the following temperature and humidity limits  
that are given as an example only (Non-Operating Temperature Limit: -40 °C to 70 °C, Humidity  
50% to 90%, non-condensing with a maximum wet bulb of 28 °C). Post board attach storage  
temperature limits are not specified for non-Intel branded boards.  
5. The JEDEC, J-JSTD-020 moisture level rating and associated handling practices apply to all  
moisture sensitive devices removed from the moisture barrier bag.  
6. Nominal temperature and humidity conditions and durations are given and tested within the  
constraints imposed by TSUSTAINED STORAGE and customer shelf life in applicable Intel boxes and  
bags.  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
99  
Processors—Processor Ball and Signal Information  
9.0  
Processor Ball and Signal Information  
This chapter provides the processor Ball information.  
Table 58.  
Ball List by Signal Name for DDR3L Configuration  
Signal Name  
Ball #  
AJ8  
Signal Name  
CFG[4]  
Ball #  
AA60  
Signal Name  
Ball #  
ACPRESENT /  
GPIO31  
DAISY_CHAIN_NCT A3  
F_A3  
CFG[5]  
Y62  
Y61  
Y60  
V62  
V61  
V63  
AF2  
AD2  
AF4  
APWROK  
AB5  
AN4  
DAISY_CHAIN_NCT A4  
F_A4  
CFG[6]  
BATLOW# /  
GPIO72  
CFG[7]  
DAISY_CHAIN_NCT A60  
F_A60  
CFG[8]  
BMBUSY# /  
GPIO76  
P1  
DAISY_CHAIN_NCT A61  
F_A61  
CFG[9]  
BPM#0  
BPM#1  
BPM#2  
BPM#3  
BPM#4  
BPM#5  
BPM#6  
BPM#7  
CATERR#  
CFG[0]  
CFG[1]  
CFG[10]  
CFG[11]  
CFG[12]  
CFG[13]  
CFG[14]  
CFG[15]  
CFG[16]  
CFG[17]  
CFG[18]  
CFG[19]  
CFG[2]  
CFG[3]  
J60  
CFG_RCOMP  
CL_CLK  
CL_DATA  
CL_RST#  
DAISY_CHAIN_NCT A62  
F_A62  
H60  
H61  
H62  
K59  
H63  
K60  
J61  
DAISY_CHAIN_NCT AV1  
F_AV1  
DAISY_CHAIN_NCT AW1  
F_AW1  
CLKOUT_ITPXDP_N B35  
CLKOUT_ITPXDP_P A35  
DAISY_CHAIN_NCT AW2  
F_AW2  
CLKOUT_LPC_0  
AN15  
DAISY_CHAIN_NCT AW3  
F_AW3  
CLKOUT_LPC_1  
AP15  
C43  
B41  
C41  
B38  
A39  
B37  
C42  
A41  
B42  
C37  
B39  
A37  
V5  
K61  
AC60  
AC62  
V60  
U60  
T63  
DAISY_CHAIN_NCT AW61  
F_AW61  
CLKOUT_PCIE_N0  
CLKOUT_PCIE_N1  
CLKOUT_PCIE_N2  
CLKOUT_PCIE_N3  
CLKOUT_PCIE_N4  
CLKOUT_PCIE_N5  
CLKOUT_PCIE_P0  
CLKOUT_PCIE_P1  
CLKOUT_PCIE_P2  
CLKOUT_PCIE_P3  
CLKOUT_PCIE_P4  
CLKOUT_PCIE_P5  
DAISY_CHAIN_NCT AW62  
F_AW62  
DAISY_CHAIN_NCT AW63  
F_AW63  
DAISY_CHAIN_NCT AY2  
F_AY2  
T62  
DAISY_CHAIN_NCT AY3  
F_AY3  
T61  
DAISY_CHAIN_NCT AY60  
F_AY60  
T60  
AA62  
AA61  
U63  
U62  
AC63  
DAISY_CHAIN_NCT AY61  
F_AY61  
DAISY_CHAIN_NCT AY62  
F_AY62  
DAISY_CHAIN_NCT B2  
F_B2  
CLKRUN# /  
GPIO32  
continued...  
continued...  
AA63  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
100  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
Ball #  
Signal Name  
DDPB_CTRLDATA  
DDPB_HPD  
Ball #  
C9  
Signal Name  
GPIO25  
Ball #  
AM4  
DAISY_CHAIN_NCT B3  
F_B3  
C8  
B6  
GPIO26  
GPIO27  
GPIO28  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO8  
AN3  
AN5  
AD7  
AK4  
AG5  
AG3  
AB6  
U4  
DAISY_CHAIN_NCT B61  
F_B61  
DDPC_AUXN  
DDPC_AUXP  
A6  
DAISY_CHAIN_NCT B62  
F_B62  
DDPC_CTRLCLK  
DDPC_CTRLDATA  
DDPC_HPD  
D9  
D11  
A8  
DAISY_CHAIN_NCT B63  
F_B63  
DAISY_CHAIN_NCT C1  
F_C1  
DEVSLP0 / GPIO33 P2  
DEVSLP1 / GPIO38 L2  
DEVSLP2 / GPIO39 N5  
DAISY_CHAIN_NCT C2  
F_C2  
Y3  
DCPRTC  
AE7  
AD10  
AD8  
AH13  
J13  
DIFFCLK_BIASREF  
DPWROK  
C26  
P3  
DCPSUS1  
AV5  
AW7  
A45  
B45  
B8  
R5  
DCPSUS1  
DSWVRMEN  
EDP_AUXN  
EDP_AUXP  
eDP_BKLCTL  
eDP_BKLEN  
EDP_DISP_UTIL  
EDP_HPD  
L1  
DCPSUS2  
L4  
DCPSUS3  
L3  
DCPSUS4  
AB8  
AG19  
AG20  
C54  
B58  
B55  
A57  
C55  
C58  
A55  
B57  
C51  
C53  
C49  
A53  
C50  
B54  
B50  
B53  
C5  
U7  
DCPSUSBYP  
DCPSUSBYP  
DDI1_TXN[0]  
DDI1_TXN[1]  
DDI1_TXN[2]  
DDI1_TXN[3]  
DDI1_TXP[0]  
DDI1_TXP[1]  
DDI1_TXP[2]  
DDI1_TXP[3]  
DDI2_TXN[0]  
DDI2_TXN[1]  
DDI2_TXN[2]  
DDI2_TXN[3]  
DDI2_TXP[0]  
DDI2_TXP[1]  
DDI2_TXP[2]  
DDI2_TXP[3]  
DDPB_AUXN  
DDPB_AUXP  
DDPB_CTRLCLK  
A9  
AG6  
AP1  
AL4  
AT5  
AU2  
AM3  
K2  
A43  
D6  
EDP_RCOMP  
EDP_TXN0  
EDP_TXN1  
EDP_TXN2  
EDP_TXN3  
EDP_TXP0  
EDP_TXP1  
EDP_TXP2  
EDP_TXP3  
eDP_VDDEN  
GPIO10  
D20  
C45  
A47  
C47  
A49  
B46  
B47  
C46  
B49  
C6  
GPIO9  
GSPI_MOSI /  
GPIO90  
GSPI0_CLK /  
GPIO84  
L6  
R6  
N6  
L8  
L5  
R7  
N7  
GSPI0_CS# /  
GPIO83  
GSPI0_MISO /  
GPIO85  
GSPI0_MOSI /  
GPIO86  
AM2  
AT3  
AH4  
AD6  
Y1  
GSPI1_CLK /  
GPIO88  
GPIO13  
GPIO14  
GSPI1_CS# /  
GPIO87  
GPIO15  
GSPI1_MISO /  
GPIO89  
GPIO16  
GPIO17  
T3  
B5  
HDA_BCLK /  
I2S0_SCLK  
AW8  
GPIO24  
AD5  
B9  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
101  
Processors—Processor Ball and Signal Information  
Signal Name  
Ball #  
AW10  
Signal Name  
PCH_TRST#  
PCIE_IREF  
Ball #  
AU62  
Signal Name  
PETn5_L3  
Ball #  
B22  
HDA_DOCK_EN# /  
I2S1_TXD  
B27  
A27  
U2  
PETp1 / USB3Tp3  
PETp2 / USB3Tp4  
PETp3  
C31  
A31  
B30  
A29  
C22  
A23  
C21  
A21  
U6  
HDA_DOCK_RST#  
/ I2S1_SFRM  
AV10  
AU8  
PCIE_RCOMP  
PCIECLKRQ0# /  
GPIO18  
HDA_RST# /  
I2S_MCLK  
PETp4  
PCIECLKRQ1# /  
GPIO19  
Y5  
HDA_SDI0 /  
I2S0_RXD  
AY10  
AU12  
AU11  
AV11  
PETp5_L0  
PETp5_L1  
PCIECLKRQ2# /  
GPIO20  
AD1  
N1  
U5  
T2  
HDA_SDI1 /  
I2S1_RXD  
PETp5_L2  
PCIECLKRQ3# /  
GPIO21  
HDA_SDO /  
I2S0_TXD  
PETp5_L3  
PIRQA# / GPIO77  
PIRQB# / GPIO78  
PIRQC# / GPIO79  
PIRQD# / GPIO80  
PLTRST#  
PCIECLKRQ4# /  
GPIO22  
HDA_SYNC /  
I2S0_SFRM  
P4  
PCIECLKRQ5# /  
GPIO23  
HSIOPC / GPIO71  
I2C0_SCL / GPIO5  
I2C0_SDA / GPIO4  
I2C1_SCL / GPIO7  
I2C1_SDA / GPIO6  
I2S1_SCLK  
INTRUDER#  
INTVRMEN  
Y2  
N4  
F3  
N2  
PECI  
N62  
G17  
F15  
G11  
F13  
F10  
F8  
F2  
AG7  
AD4  
J62  
PERn1 / USB3Rn3  
PERn2 / USB3Rn4  
PERn3  
F1  
PME#  
G4  
PRDY#  
AY8  
AU6  
AV7  
AE63  
AU14  
AW12  
AY12  
AW11  
AM7  
PREQ#  
K62  
D61  
AY15  
E60  
F63  
F62  
E61  
E59  
K63  
C61  
H59  
AL7  
V4  
PERn4  
PROC_DETECT#  
PROC_OPI_RCOMP  
PROC_TCK  
PROC_TDI  
PROC_TDO  
PROC_TMS  
PROC_TRST#  
PROCHOT#  
PROCPWRGD  
PWR_DEBUG#  
PWRBTN#  
RCIN# / GPIO82  
RSMRST#  
PERn5_L0  
PERn5_L1  
PERn5_L2  
PERn5_L3  
PERp1 / USB3Rp3  
PERp2 / USB3Rp4  
PERp3  
JTAGX  
H10  
E6  
LAD0  
LAD1  
F17  
G15  
F11  
G13  
E10  
E8  
LAD2  
LAD3  
LAN_PHY_PWR_CT  
RL / GPIO12  
PERp4  
PERp5_L0  
PERp5_L1  
PERp5_L2  
PERp5_L3  
PETn1 / USB3Tn3  
PETn2 / USB3Tn4  
PETn3  
LFRAME#  
AV12  
AL3  
OC0# / GPIO40  
OC1# / GPIO41  
OC2# / GPIO42  
OC3# / GPIO43  
PCH_OPI_RCOMP  
PCH_PWROK  
PCH_TCK  
G10  
F6  
AT1  
AH2  
AW6  
W23  
Y22  
B43  
T59  
AD60  
C30  
B31  
C29  
B29  
C23  
B23  
AV3  
RSVD  
AW15  
AY7  
RSVD  
RSVD  
PETn4  
AE62  
AD61  
AE61  
RSVD  
PETn5_L0  
PETn5_L1  
PETn5_L2  
PCH_TDI  
RSVD  
PCH_TDO  
RSVD  
AD59  
B21  
PCH_TMS  
AD62  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
102  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
RSVD  
Ball #  
AA59  
Signal Name  
RSVD  
Ball #  
D15  
Signal Name  
RTCX1  
Ball #  
AW5  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AE60  
AC59  
AG58  
V59  
RSVD  
AU10  
AU15  
E1  
RTCX2  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AY5  
RSVD  
AU35  
AV35  
AY41  
AU34  
AU43  
AW43  
AY42  
AY43  
AU37  
AW36  
AV37  
AY36  
AP33  
AR32  
AH63  
AH62  
AP63  
AP62  
AM61  
AM60  
AP61  
AP60  
AY58  
AW58  
AY56  
AW56  
AK63  
AV58  
AU58  
AV56  
AU56  
AY54  
AW54  
RSVD  
RSVD  
D1  
U59  
AL1  
RSVD  
J20  
RSVD  
H18  
AN10  
AM10  
L59  
AP7  
RSVD  
AM11  
AV62  
D58  
P20  
RSVD  
RSVD  
RSVD  
J58  
RSVD  
Y20  
R20  
N60  
AV2  
AF20  
AB21  
AY14  
AW14  
E15  
RSVD  
AC20  
V21  
RSVD  
RSVD  
N58  
AC58  
AB23  
AD23  
AA23  
AE59  
K18  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
E13  
RSVD  
AL11  
AC4  
A5  
RSVD  
M20  
K21  
RSVD  
RSVD  
M21  
AV63  
AU63  
C63  
C62  
A51  
N23  
T23  
#N/A  
#N/A  
U10  
R23  
L11  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
IVR_ERROR  
IST_TRIGGER  
RSVD_TP  
RTCRST#  
K10  
F22  
B51  
P60  
H22  
J21  
P61  
N59  
N61  
L60  
AT2  
AU44  
AV44  
AU7  
AY52  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
103  
Processors—Processor Ball and Signal Information  
Signal Name  
#N/A  
Ball #  
AW52  
Signal Name  
#N/A  
Ball #  
AK61  
Signal Name  
#N/A  
Ball #  
AV40  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AV54  
AU54  
AK62  
AV52  
AU52  
AY31  
AW31  
AY29  
AW29  
AV31  
AU31  
AV29  
AU29  
AH61  
AY27  
AW27  
AY25  
AW25  
AV27  
AU27  
AV25  
AU25  
AY23  
AW23  
AH60  
AY21  
AW21  
AV23  
AU23  
AV21  
AU21  
AY19  
AW19  
AY17  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AV19  
AU19  
AV17  
AU17  
AK60  
AM63  
AM62  
AJ61  
#N/A  
AW39  
AY39  
AU40  
AP32  
AY34  
AW34  
A12  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
SATA_IREF  
SATA_RCOMP  
C12  
AN62  
AV57  
AV53  
AW30  
AV26  
AW22  
AV18  
AJ62  
SATA_Rn0 /  
PERn6_L3  
J5  
SATA_Rn1 /  
PERn6_L2  
J8  
SATA_Rn2 /  
PERn6_L1  
J6  
SATA_Rn3 /  
PERn6_L0  
F5  
SATA_Rp0 /  
PERp6_L3  
H5  
SATA_Rp1 /  
PERp6_L2  
H8  
AN61  
AW57  
AW53  
AV30  
AW26  
AV22  
AW18  
AU36  
AY37  
AP35  
AW41  
AU41  
AR35  
AV42  
AU42  
AR38  
AP36  
AU39  
SATA_Rp2 /  
PERp6_L1  
H6  
SATA_Rp3 /  
PERp6_L0  
E5  
SATA_Tn0 /  
PETn6_L3  
B15  
A17  
B14  
C17  
A15  
B17  
C15  
D17  
SATA_Tn1 /  
PETn6_L2  
SATA_Tn2 /  
PETn6_L1  
SATA_Tn3 /  
PETn6_L0  
SATA_Tp0 /  
PETp6_L3  
SATA_Tp1 /  
PETp6_L2  
SATA_Tp2 /  
PETp6_L1  
SATA_Tp3 /  
PETp6_L0  
SATA0GP / GPIO34 V1  
SATA1GP / GPIO35 U1  
AW17  
AR36  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
104  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
Ball #  
Signal Name  
#N/A  
Ball #  
AM49  
Signal Name  
#N/A  
Ball #  
AL18  
SATA2GP / GPIO36 V6  
SATA3GP / GPIO37 AC1  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AK49  
AM48  
AK48  
AK57  
AM51  
AK51  
AM29  
AK29  
AL28  
AK28  
AR29  
AN29  
AR28  
AP28  
AL58  
AN26  
AR26  
AR25  
AP25  
AK26  
AM26  
AK25  
AL25  
AR21  
AR22  
AK58  
AL21  
AM22  
AN22  
AP21  
AK21  
AK22  
AN20  
AR20  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AR57  
AK20  
AM20  
AR18  
AP18  
AN57  
AP55  
AR55  
AM58  
AM55  
AL43  
AL48  
AN28  
AN25  
AN21  
AN18  
AN58  
AN55  
AL42  
AL49  
AM28  
AM25  
AM21  
AM18  
AP40  
AR40  
AK36  
AV47  
AU47  
AK33  
AR46  
AP46  
AP42  
AR42  
SATALED#  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
U3  
AL35  
AM36  
AU49  
AM33  
AM38  
AK38  
AN38  
AL38  
AY49  
AU50  
AW49  
AV50  
AM32  
AK32  
AP58  
AR58  
AM54  
AK54  
AL55  
AK55  
AR54  
AN54  
AK40  
AK42  
AM43  
AM45  
AM57  
AK45  
AK43  
AM40  
AM42  
AM46  
AK46  
AK18  
AR45  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
105  
Processors—Processor Ball and Signal Information  
Signal Name  
#N/A  
Ball #  
AP45  
Signal Name  
SMBCLK  
Ball #  
AP2  
Signal Name  
Ball #  
UART0_RTS# /  
GPIO93  
J2  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AW46  
AY46  
AY47  
AU46  
AL32  
AM35  
AK35  
E3  
SMBDATA  
AH1  
AL2  
UART0_RXD /  
GPIO91  
J1  
SML0ALERT# /  
GPIO60  
UART0_TXD /  
GPIO92  
K3  
J4  
SML0CLK  
AN1  
AK1  
AU4  
SML0DATA  
UART1_CTS# /  
GPIO3  
SML1ALERT# /  
PCHHOT# /  
GPIO73  
UART1_RST# /  
GPIO2  
J3  
SML1CLK / GPIO75 AU3  
UART1_RXD /  
GPIO0  
K4  
G2  
SDIO_CLK /  
GPIO64  
SML1DATA /  
GPIO74  
AH3  
UART1_TXD /  
GPIO1  
SDIO_CMD /  
GPIO65  
F4  
SPI_CLK  
AA3  
Y7  
USB2n0  
USB2n1  
USB2n2  
USB2n3  
USB2n4  
USB2n5  
USB2n6  
USB2n7  
USB2p0  
USB2p1  
USB2p2  
USB2p3  
USB2p4  
USB2p5  
USB2p6  
USB2p7  
USB3Rn1  
USB3Rn2  
USB3Rp1  
USB3Rp2  
USB3Tn1  
USB3Tn2  
USB3Tp1  
USB3Tp2  
USBRBIAS  
AN8  
AR7  
SDIO_D0 / GPIO66 D3  
SDIO_D1 / GPIO67 E4  
SDIO_D2 / GPIO68 C3  
SDIO_D3 / GPIO69 E2  
SPI_CS0#  
SPI_CS1#  
SPI_CS2#  
SPI_IO2  
Y4  
AR8  
AC2  
Y6  
AR10  
AM15  
AM13  
AP11  
AR13  
AM8  
AT7  
SDIO_POWER_EN / C4  
GPIO70  
SPI_IO3  
AF1  
AA4  
AA2  
V2  
SPI_MISO  
SPI_MOSI  
SPKR / GPIO81  
SRTCRST#  
SERIRQ  
T4  
SLP_A#  
AL5  
AJ7  
AF3  
AT4  
AJ6  
SLP_LAN#  
SLP_S0#  
SLP_S3#  
SLP_S4#  
AV6  
AG4  
SUS_STAT# /  
GPIO61  
AP8  
SUSACK#  
AK2  
AE6  
AV4  
AT10  
AL15  
AN13  
AN11  
AP13  
G20  
SLP_S5# / GPIO63 AP5  
SUSCLK / GPIO62  
SLP_SUS#  
AP4  
SUSWARN# /  
SUSPWRDNACK /  
GPIO30  
SLP_WLAN# /  
GPIO29  
AM5  
SYS_PWROK  
SYS_RESET#  
TD_IREF  
AG2  
AC3  
B12  
AK8  
AL8  
C34  
C35  
D60  
G1  
SM_DRAMRST#  
#N/A  
AV15  
AV61  
AU60  
AV60  
AU61  
AP49  
AR51  
AP51  
AN2  
E18  
#N/A  
TESTLOW_AK8  
TESTLOW_AL8  
TESTLOW_C34  
TESTLOW_C35  
THERMTRIP#  
H20  
#N/A  
F18  
#N/A  
C33  
#N/A  
B33  
#N/A  
B34  
#N/A  
UART0_CTS# /  
GPIO94  
A33  
SMBALERT# /  
GPIO11  
AJ11  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
106  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
USBRBIAS#  
VCC  
Ball #  
AJ10  
Signal Name  
VCC  
Ball #  
F40  
Signal Name  
VCC1_05  
Ball #  
AE8  
F59  
AB57  
AD57  
AG57  
C24  
C28  
C32  
C36  
C40  
C44  
C48  
C52  
C56  
E23  
E25  
E27  
E29  
E31  
E33  
E35  
E37  
E39  
E41  
E43  
E45  
E47  
E49  
E51  
E53  
E55  
E57  
F24  
F28  
F32  
VCC  
F44  
F48  
F52  
F56  
G23  
G25  
G27  
G29  
G31  
G33  
G35  
G37  
G39  
G41  
G43  
G45  
G47  
G49  
G51  
G53  
G55  
G57  
H23  
J23  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC3_3  
AF22  
H11  
H15  
J11  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AG16  
AG17  
V8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC3_3  
W9  
VCC  
VCC  
VCC3_3  
K14  
K16  
A20  
AA21  
W21  
AE9  
AF9  
AG8  
AG13  
AG14  
J18  
VCC  
VCC  
VCC3_3  
VCC  
VCC  
VCCACLKPLL  
VCCAPLL  
VCCAPLL  
VCCASW  
VCCASW  
VCCASW  
VCCASW  
VCCASW  
VCCCLK  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCCLK  
K19  
J17  
VCC  
VCC  
VCCCLK  
VCC  
VCC  
VCCCLK  
T21  
R21  
AH10  
AH14  
M9  
VCC  
VCC  
VCCCLK  
VCC  
VCC  
VCCDSW3_3  
VCCHDA  
VCCHSIO  
VCCHSIO  
VCCHSIO  
VCCIO_OUT  
VCOMP_OUT  
VCCRTC  
VCC  
VCC  
K23  
K57  
L22  
M23  
M57  
P57  
U57  
W57  
E63  
P9  
VCC  
VCC  
VCC  
VCC  
K9  
VCC  
VCC  
L10  
VCC  
VCC  
A59  
E20  
AG10  
B11  
U8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCSATA3PLL  
VCCSDIO  
VCCSDIO  
VCCSPI  
VCC  
VCC_SENSE  
VCC1_05  
VCC1_05  
VCC  
T9  
VCC  
F36  
N8  
Y8  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
107  
Processors—Processor Ball and Signal Information  
Signal Name  
VCCST  
Ball #  
AC22  
Signal Name  
VSS  
Ball #  
A32  
Signal Name  
VSS  
Ball #  
AH17  
VCCST  
AE22  
AE23  
B59  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A36  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH19  
AH20  
AH22  
AH24  
AH28  
AH30  
AH32  
AH34  
AH36  
AH38  
AH40  
AH42  
AH44  
AH49  
AH51  
AH53  
AH55  
AH57  
AJ13  
AJ14  
AJ23  
AJ25  
AJ27  
AJ29  
AJ35  
AJ39  
AJ41  
AJ43  
AJ45  
AJ47  
AJ50  
AJ52  
AJ54  
AJ56  
VCCST  
A40  
VCCST_PWRGD  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCTS1_5  
VCCUSB3PLL  
VDDQ  
A48  
AH11  
AA9  
A52  
A56  
AC9  
AA1  
AE20  
AE21  
J15  
A44  
AA58  
AB10  
AB20  
AE5  
B18  
AH26  
AJ31  
AJ33  
AJ37  
AN33  
AP43  
AR48  
AY35  
AY40  
AY44  
AY50  
L62  
VDDQ  
AB22  
AB7  
VDDQ  
VDDQ  
AC61  
AD3  
VDDQ  
VDDQ  
AD63  
AE10  
AD21  
AE58  
AR43  
C39  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VIDALERT#  
VIDSCLK  
VIDSOUT  
VR_EN  
AF11  
AF12  
AF14  
AF15  
AF17  
AF18  
AG21  
AG23  
AG1  
N63  
L63  
F60  
VR_READY  
VSS  
C59  
P62  
VSS  
D63  
P22  
VSS  
VSS  
N21  
VSS  
A11  
AG11  
AG60  
AG61  
AG62  
VSS  
A14  
VSS  
A18  
VSS  
A24  
VSS  
A28  
AG63  
AJ58  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
108  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
VSS  
Ball #  
AJ60  
Signal Name  
VSS  
Ball #  
AN36  
Signal Name  
VSS  
Ball #  
AR49  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ63  
AK23  
AK3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AN39  
AN40  
AN42  
AN43  
AN45  
AN46  
AN48  
AN49  
AN51  
AN52  
AN60  
AN63  
AN7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AR5  
AR52  
AT13  
AT35  
AT37  
AT40  
AT42  
AT43  
AT46  
AT49  
AT61  
AT62  
AT63  
AU1  
AK52  
AL10  
AL13  
AL17  
AL20  
AL22  
AL23  
AL26  
AL29  
AL31  
AL33  
AL36  
AL39  
AL40  
AL45  
AL46  
AL51  
AL52  
AL54  
AL57  
AL60  
AL61  
AM1  
AP10  
AP17  
AP20  
AP22  
AP23  
AP26  
AP29  
AP3  
AU16  
AU18  
AU20  
AU22  
AU24  
AU26  
AU28  
AU30  
AU33  
AU51  
AU53  
AU55  
AU57  
AU59  
AV14  
D62  
AP31  
AP38  
AP39  
AP52  
AP54  
AP57  
AR11  
AR15  
AR17  
AR23  
AR31  
AR33  
AR39  
AM17  
AM23  
AM31  
AM52  
AN17  
AN23  
AN31  
AN32  
AV16  
AV20  
AV24  
AV28  
AN35  
AP48  
AV33  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
109  
Processors—Processor Ball and Signal Information  
Signal Name  
VSS  
Ball #  
AV34  
Signal Name  
VSS  
Ball #  
AY59  
Signal Name  
VSS  
Ball #  
D34  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AV36  
AV39  
AV41  
AV43  
AV46  
AV49  
AV51  
AV55  
AV59  
AV8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AY6  
AY4  
B20  
B24  
B26  
B28  
B32  
C38  
B36  
B4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D35  
D37  
D38  
D39  
D41  
D42  
D43  
D45  
D46  
D47  
D49  
D50  
D51  
D53  
D54  
D55  
D57  
D59  
E11  
E17  
F42  
F20  
D5  
AW16  
AW24  
AW33  
AW35  
AW37  
AW4  
B40  
B44  
C14  
B48  
B52  
B56  
B60  
C11  
C18  
C20  
C25  
C27  
D12  
D14  
D18  
D21  
D23  
D25  
D26  
D27  
D29  
D2  
AW40  
AW42  
AW44  
AW47  
AW50  
AW51  
AW59  
AW60  
AY11  
AY16  
AY18  
AY22  
AY24  
AY26  
AY30  
AY33  
AY51  
AY53  
F26  
F30  
F34  
F38  
G6  
F46  
F50  
F54  
F58  
F61  
G18  
D30  
D31  
AY57  
D33  
G22  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
110  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
VSS  
Ball #  
G3  
Signal Name  
VSS  
Ball #  
V3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G5  
VSS  
V7  
G8  
VSS  
W20  
Y10  
U9  
H13  
H17  
H57  
J10  
J22  
J59  
J63  
K1  
VSS  
VSS  
VSS  
Y59  
Y63  
W22  
V58  
AH46  
V23  
AH16  
E62  
AJ5  
VSS  
VSS  
VSS  
VSS  
VSS  
K12  
R22  
L13  
L15  
L17  
L18  
L20  
L58  
L61  
L7  
VSS  
VSS_SENSE  
WAKE#  
XTAL24_IN  
XTAL24_OUT  
A25  
B25  
M22  
N10  
N3  
C57  
P59  
P63  
R10  
R8  
T1  
T58  
D8  
U20  
U22  
U61  
V10  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
111  
Processors—Processor Ball and Signal Information  
Table 59.  
Ball List by Signal Name for LPDDR3 Configuration  
Signal Name  
Ball #  
AJ8  
Signal Name  
CFG_RCOMP  
CL_CLK  
Ball #  
V63  
Signal Name  
Ball #  
ACPRESENT /  
GPIO31  
DAISY_CHAIN_NCT AW61  
F_AW61  
AF2  
AD2  
AF4  
APWROK  
AB5  
AN4  
DAISY_CHAIN_NCT AW62  
F_AW62  
CL_DATA  
BATLOW# /  
GPIO72  
CL_RST#  
DAISY_CHAIN_NCT AW63  
F_AW63  
CLKOUT_ITPXDP_N B35  
CLKOUT_ITPXDP_P A35  
BMBUSY# /  
GPIO76  
P1  
DAISY_CHAIN_NCT AY2  
F_AY2  
BPM#0  
BPM#1  
BPM#2  
BPM#3  
BPM#4  
BPM#5  
BPM#6  
BPM#7  
CATERR#  
CFG[0]  
CFG[1]  
CFG[10]  
CFG[11]  
CFG[12]  
CFG[13]  
CFG[14]  
CFG[15]  
CFG[16]  
CFG[17]  
CFG[18]  
CFG[19]  
CFG[2]  
CFG[3]  
CFG[4]  
CFG[5]  
CFG[6]  
CFG[7]  
CFG[8]  
CFG[9]  
J60  
CLKOUT_LPC_0  
AN15  
DAISY_CHAIN_NCT AY3  
F_AY3  
H60  
H61  
H62  
K59  
H63  
K60  
J61  
CLKOUT_LPC_1  
AP15  
C43  
B41  
C41  
B38  
A39  
B37  
C42  
A41  
B42  
C37  
B39  
A37  
V5  
DAISY_CHAIN_NCT AY60  
F_AY60  
CLKOUT_PCIE_N0  
CLKOUT_PCIE_N1  
CLKOUT_PCIE_N2  
CLKOUT_PCIE_N3  
CLKOUT_PCIE_N4  
CLKOUT_PCIE_N5  
CLKOUT_PCIE_P0  
CLKOUT_PCIE_P1  
CLKOUT_PCIE_P2  
CLKOUT_PCIE_P3  
CLKOUT_PCIE_P4  
CLKOUT_PCIE_P5  
DAISY_CHAIN_NCT AY61  
F_AY61  
DAISY_CHAIN_NCT AY62  
F_AY62  
DAISY_CHAIN_NCT B2  
F_B2  
K61  
AC60  
AC62  
V60  
U60  
T63  
DAISY_CHAIN_NCT B3  
F_B3  
DAISY_CHAIN_NCT B61  
F_B61  
DAISY_CHAIN_NCT B62  
F_B62  
DAISY_CHAIN_NCT B63  
F_B63  
T62  
DAISY_CHAIN_NCT C1  
F_C1  
CLKRUN# /  
GPIO32  
T61  
DAISY_CHAIN_NCT C2  
F_C2  
DAISY_CHAIN_NCT A3  
F_A3  
T60  
AA62  
AA61  
U63  
U62  
AC63  
AA63  
AA60  
Y62  
DCPRTC  
AE7  
DAISY_CHAIN_NCT A4  
F_A4  
DCPSUS1  
AD10  
AD8  
AH13  
J13  
DAISY_CHAIN_NCT A60  
F_A60  
DCPSUS1  
DCPSUS2  
DAISY_CHAIN_NCT A61  
F_A61  
DCPSUS3  
DAISY_CHAIN_NCT A62  
F_A62  
DCPSUS4  
AB8  
DCPSUSBYP  
DCPSUSBYP  
DDI1_TXN[0]  
DDI1_TXN[1]  
DDI1_TXN[2]  
DDI1_TXN[3]  
AG19  
AG20  
C54  
DAISY_CHAIN_NCT AV1  
F_AV1  
Y61  
DAISY_CHAIN_NCT AW1  
F_AW1  
Y60  
B58  
DAISY_CHAIN_NCT AW2  
F_AW2  
V62  
B55  
V61  
DAISY_CHAIN_NCT AW3  
F_AW3  
A57  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
112  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
DDI1_TXP[0]  
DDI1_TXP[1]  
DDI1_TXP[2]  
DDI1_TXP[3]  
DDI2_TXN[0]  
DDI2_TXN[1]  
DDI2_TXN[2]  
DDI2_TXN[3]  
DDI2_TXP[0]  
DDI2_TXP[1]  
DDI2_TXP[2]  
DDI2_TXP[3]  
DDPB_AUXN  
DDPB_AUXP  
Ball #  
C55  
Signal Name  
EDP_TXN1  
Ball #  
A47  
Signal Name  
GPIO9  
Ball #  
AM3  
C58  
A55  
B57  
C51  
C53  
C49  
A53  
C50  
B54  
B50  
B53  
C5  
EDP_TXN2  
EDP_TXN3  
EDP_TXP0  
EDP_TXP1  
EDP_TXP2  
EDP_TXP3  
eDP_VDDEN  
GPIO10  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
GPIO52  
GPIO53  
GPIO54  
GPIO55  
GPIO56  
GPIO57  
GPIO58  
GPIO59  
GPIO8  
C47  
A49  
B46  
B47  
C46  
B49  
C6  
GSPI_MOSI /  
GPIO90  
K2  
GSPI0_CLK /  
GPIO84  
L6  
GSPI0_CS# /  
GPIO83  
R6  
GSPI0_MISO /  
GPIO85  
N6  
GSPI0_MOSI /  
GPIO86  
L8  
AM2  
AT3  
AH4  
AD6  
Y1  
GSPI1_CLK /  
GPIO88  
L5  
GSPI1_CS# /  
GPIO87  
R7  
GSPI1_MISO /  
GPIO89  
N7  
B5  
T3  
HDA_BCLK /  
I2S0_SCLK  
AW8  
AW10  
AV10  
AU8  
AY10  
AU12  
AU11  
AV11  
DDPB_CTRLCLK  
DDPB_CTRLDATA  
DDPB_HPD  
B9  
AD5  
AM4  
AN3  
AN5  
AD7  
AK4  
AG5  
AG3  
AB6  
U4  
HDA_DOCK_EN# /  
I2S1_TXD  
C9  
C8  
HDA_DOCK_RST#  
/ I2S1_SFRM  
DDPC_AUXN  
DDPC_AUXP  
B6  
HDA_RST# /  
I2S_MCLK  
A6  
DDPC_CTRLCLK  
DDPC_CTRLDATA  
DDPC_HPD  
D9  
HDA_SDI0 /  
I2S0_RXD  
D11  
A8  
HDA_SDI1 /  
I2S1_RXD  
DEVSLP0 / GPIO33 P2  
DEVSLP1 / GPIO38 L2  
DEVSLP2 / GPIO39 N5  
HDA_SDO /  
I2S0_TXD  
HDA_SYNC /  
I2S0_SFRM  
Y3  
DIFFCLK_BIASREF  
DPWROK  
C26  
P3  
HSIOPC / GPIO71  
I2C0_SCL / GPIO5  
I2C0_SDA / GPIO4  
I2C1_SCL / GPIO7  
I2C1_SDA / GPIO6  
I2S1_SCLK  
Y2  
AV5  
AW7  
A45  
B45  
B8  
R5  
F3  
DSWVRMEN  
EDP_AUXN  
L1  
F2  
L4  
F1  
EDP_AUXP  
L3  
G4  
eDP_BKLCTL  
eDP_BKLEN  
EDP_DISP_UTIL  
EDP_HPD  
U7  
AY8  
AU6  
AV7  
AE63  
A9  
AG6  
AP1  
AL4  
AT5  
INTRUDER#  
A43  
D6  
INTVRMEN  
JTAGX  
EDP_RCOMP  
EDP_TXN0  
D20  
LAD0  
AU14  
C45  
AU2  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
113  
Processors—Processor Ball and Signal Information  
Signal Name  
LAD1  
Ball #  
AW12  
Signal Name  
PERn5_L3  
Ball #  
E6  
Signal Name  
PROC_TDI  
Ball #  
F63  
LAD2  
LAD3  
AY12  
AW11  
AM7  
PERp1 / USB3Rp3  
PERp2 / USB3Rp4  
PERp3  
F17  
G15  
F11  
G13  
E10  
E8  
PROC_TDO  
PROC_TMS  
PROC_TRST#  
PROCHOT#  
PROCPWRGD  
PWR_DEBUG#  
PWRBTN#  
RCIN# / GPIO82  
RSMRST#  
RSVD  
F62  
E61  
LAN_PHY_PWR_CT  
RL / GPIO12  
E59  
PERp4  
K63  
LFRAME#  
AV12  
AL3  
PERp5_L0  
C61  
OC0# / GPIO40  
OC1# / GPIO41  
OC2# / GPIO42  
OC3# / GPIO43  
PCH_OPI_RCOMP  
PCH_PWROK  
PCH_TCK  
PERp5_L1  
H59  
AL7  
AT1  
PERp5_L2  
G10  
F6  
AH2  
AV3  
PERp5_L3  
V4  
PETn1 / USB3Tn3  
PETn2 / USB3Tn4  
PETn3  
C30  
B31  
C29  
B29  
C23  
B23  
B21  
B22  
C31  
A31  
B30  
A29  
C22  
A23  
C21  
A21  
U6  
AW6  
W23  
Y22  
AW15  
AY7  
RSVD  
AE62  
AD61  
AE61  
AD62  
AU62  
B27  
PETn4  
RSVD  
B43  
PCH_TDI  
PETn5_L0  
RSVD  
T59  
PCH_TDO  
PETn5_L1  
RSVD  
AD60  
AD59  
AA59  
AE60  
AC59  
AG58  
V59  
PCH_TMS  
PETn5_L2  
RSVD  
PCH_TRST#  
PCIE_IREF  
PETn5_L3  
RSVD  
PETp1 / USB3Tp3  
PETp2 / USB3Tp4  
PETp3  
RSVD  
PCIE_RCOMP  
A27  
RSVD  
PCIECLKRQ0# /  
GPIO18  
U2  
RSVD  
PETp4  
RSVD  
PCIECLKRQ1# /  
GPIO19  
Y5  
PETp5_L0  
RSVD  
U59  
PCIECLKRQ2# /  
GPIO20  
AD1  
N1  
U5  
T2  
PETp5_L1  
RSVD  
AL1  
PETp5_L2  
RSVD  
AP7  
PCIECLKRQ3# /  
GPIO21  
PETp5_L3  
RSVD  
AM11  
AV62  
D58  
P20  
PCIECLKRQ4# /  
GPIO22  
PIRQA# / GPIO77  
PIRQB# / GPIO78  
PIRQC# / GPIO79  
PIRQD# / GPIO80  
PLTRST#  
RSVD  
P4  
RSVD  
PCIECLKRQ5# /  
GPIO23  
N4  
RSVD  
PECI  
N62  
G17  
F15  
G11  
F13  
F10  
F8  
N2  
RSVD  
R20  
PERn1 / USB3Rn3  
PERn2 / USB3Rn4  
PERn3  
AG7  
AD4  
J62  
K62  
D61  
AY15  
RSVD  
N60  
AV2  
PME#  
RSVD  
PRDY#  
RSVD  
AF20  
AB21  
AY14  
AW14  
PERn4  
PREQ#  
RSVD  
PERn5_L0  
PERn5_L1  
PERn5_L2  
PROC_DETECT#  
PROC_OPI_RCOMP  
PROC_TCK  
RSVD  
RSVD  
H10  
E60  
RSVD  
E15  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
114  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
RSVD  
Ball #  
E13  
Signal Name  
RSVD  
Ball #  
K18  
Signal Name  
#N/A  
Ball #  
AM61  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
AL11  
AC4  
A5  
RSVD  
M20  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AM60  
AP61  
AP60  
AY58  
AW58  
AY56  
AW56  
AK63  
AV58  
AU58  
AV56  
AU56  
AY54  
AW54  
AY52  
AW52  
AV54  
AU54  
AK62  
AV52  
AU52  
AY31  
AW31  
AY29  
AW29  
AV31  
AU31  
AV29  
AU29  
AH61  
AY27  
AW27  
AY25  
AW25  
RSVD  
K21  
RSVD  
M21  
N23  
T23  
#N/A  
AV63  
AU63  
C63  
#N/A  
U10  
R23  
L11  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
RSVD_TP  
IVR_ERROR  
IST_TRIGGER  
RSVD_TP  
RTCRST#  
RTCX1  
RTCX2  
#N/A  
C62  
A51  
K10  
F22  
B51  
P60  
H22  
J21  
P61  
N59  
AT2  
N61  
AU44  
AV44  
D15  
AU10  
AU15  
E1  
L60  
AU7  
AW5  
AY5  
AU35  
AV35  
AY41  
AU34  
AU43  
AW43  
AY42  
AY43  
AU37  
AW36  
AV37  
AY36  
AP33  
AR32  
AH63  
AH62  
AP63  
#N/A  
D1  
#N/A  
J20  
#N/A  
H18  
AN10  
AM10  
L59  
#N/A  
#N/A  
#N/A  
#N/A  
J58  
#N/A  
Y20  
#N/A  
AC20  
V21  
N58  
AC58  
AB23  
AD23  
AA23  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AE59  
#N/A  
AP62  
AV27  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
115  
Processors—Processor Ball and Signal Information  
Signal Name  
#N/A  
Ball #  
AU27  
Signal Name  
#N/A  
Ball #  
AV30  
Signal Name  
Ball #  
E5  
SATA_Rp3 /  
PERp6_L0  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AV25  
AU25  
AY23  
AW23  
AH60  
AY21  
AW21  
AV23  
AU23  
AV21  
AU21  
AY19  
AW19  
AY17  
AW17  
AK61  
AV19  
AU19  
AV17  
AU17  
AK60  
AM63  
AM62  
AJ61  
#N/A  
AW26  
AV22  
AW18  
AU36  
AY37  
AP35  
AW41  
AU41  
AR35  
AV42  
AU42  
AR38  
AP36  
AU39  
AR36  
AV40  
AW39  
AY39  
AU40  
AP32  
AY34  
AW34  
A12  
SATA_Tn0 /  
PETn6_L3  
B15  
A17  
B14  
C17  
A15  
B17  
C15  
D17  
#N/A  
#N/A  
SATA_Tn1 /  
PETn6_L2  
#N/A  
SATA_Tn2 /  
PETn6_L1  
#N/A  
#N/A  
SATA_Tn3 /  
PETn6_L0  
#N/A  
SATA_Tp0 /  
PETp6_L3  
#N/A  
#N/A  
SATA_Tp1 /  
PETp6_L2  
#N/A  
SATA_Tp2 /  
PETp6_L1  
#N/A  
#N/A  
SATA_Tp3 /  
PETp6_L0  
#N/A  
SATA0GP / GPIO34 V1  
SATA1GP / GPIO35 U1  
SATA2GP / GPIO36 V6  
SATA3GP / GPIO37 AC1  
#N/A  
#N/A  
#N/A  
#N/A  
SATALED#  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
U3  
#N/A  
AL35  
AM36  
AU49  
AM33  
AM38  
AK38  
AN38  
AL38  
AY49  
AU50  
AW49  
AV50  
AM32  
AK32  
AP58  
AR58  
#N/A  
#N/A  
#N/A  
#N/A  
SATA_IREF  
SATA_RCOMP  
C12  
AN62  
AV57  
AV53  
AW30  
AV26  
AW22  
AV18  
AJ62  
SATA_Rn0 /  
PERn6_L3  
J5  
SATA_Rn1 /  
PERn6_L2  
J8  
SATA_Rn2 /  
PERn6_L1  
J6  
SATA_Rn3 /  
PERn6_L0  
F5  
H5  
H8  
SATA_Rp0 /  
PERp6_L3  
SATA_Rp1 /  
PERp6_L2  
AN61  
AW57  
SATA_Rp2 /  
PERp6_L1  
H6  
AM54  
AW53  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
116  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
#N/A  
Ball #  
AK54  
Signal Name  
#N/A  
Ball #  
AK26  
Signal Name  
#N/A  
Ball #  
AL49  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AL55  
AK55  
AR54  
AN54  
AK40  
AK42  
AM43  
AM45  
AM57  
AK45  
AK43  
AM40  
AM42  
AM46  
AK46  
AM49  
AK49  
AM48  
AK48  
AK57  
AM51  
AK51  
AM29  
AK29  
AL28  
AK28  
AR29  
AN29  
AR28  
AP28  
AL58  
AN26  
AR26  
AR25  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AM26  
AK25  
AL25  
AR21  
AR22  
AK58  
AL21  
AM22  
AN22  
AP21  
AK21  
AK22  
AN20  
AR20  
AK18  
AL18  
AR57  
AK20  
AM20  
AR18  
AP18  
AN57  
AP55  
AR55  
AM58  
AM55  
AL43  
AL48  
AN28  
AN25  
AN21  
AN18  
AN58  
AN55  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
#N/A  
AM28  
AM25  
AM21  
AM18  
AP40  
AR40  
AK36  
AV47  
AU47  
AK33  
AR46  
AP46  
AP42  
AR42  
AR45  
AP45  
AW46  
AY46  
AY47  
AU46  
AL32  
AM35  
AK35  
E3  
SDIO_CLK /  
GPIO64  
SDIO_CMD /  
GPIO65  
F4  
SDIO_D0 / GPIO66 D3  
SDIO_D1 / GPIO67 E4  
SDIO_D2 / GPIO68 C3  
SDIO_D3 / GPIO69 E2  
SDIO_POWER_EN / C4  
GPIO70  
SERIRQ  
T4  
SLP_A#  
AL5  
SLP_LAN#  
AJ7  
AP25  
AL42  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
117  
Processors—Processor Ball and Signal Information  
Signal Name  
SLP_S0#  
Ball #  
AF3  
Signal Name  
Ball #  
AG4  
Signal Name  
USB2p2  
Ball #  
AP8  
SUS_STAT# /  
GPIO61  
SLP_S3#  
SLP_S4#  
AT4  
AJ6  
USB2p3  
USB2p4  
USB2p5  
USB2p6  
USB2p7  
USB3Rn1  
USB3Rn2  
USB3Rp1  
USB3Rp2  
USB3Tn1  
USB3Tn2  
USB3Tp1  
USB3Tp2  
USBRBIAS  
USBRBIAS#  
VCC  
AT10  
AL15  
AN13  
AN11  
AP13  
G20  
E18  
SUSACK#  
AK2  
AE6  
AV4  
SUSCLK / GPIO62  
SLP_S5# / GPIO63 AP5  
SUSWARN# /  
SUSPWRDNACK /  
GPIO30  
SLP_SUS#  
AP4  
SLP_WLAN# /  
GPIO29  
AM5  
SYS_PWROK  
SYS_RESET#  
TD_IREF  
AG2  
AC3  
B12  
AK8  
AL8  
C34  
C35  
D60  
G1  
SM_DRAMRST#  
#N/A  
AV15  
AV61  
AU60  
AV60  
AU61  
AP49  
AR51  
AP51  
AN2  
H20  
F18  
#N/A  
TESTLOW_AK8  
TESTLOW_AL8  
TESTLOW_C34  
TESTLOW_C35  
THERMTRIP#  
#N/A  
C33  
B33  
B34  
A33  
AJ11  
AJ10  
F59  
#N/A  
#N/A  
#N/A  
#N/A  
UART0_CTS# /  
GPIO94  
SMBALERT# /  
GPIO11  
UART0_RTS# /  
GPIO93  
J2  
SMBCLK  
AP2  
AH1  
AL2  
UART0_RXD /  
GPIO91  
J1  
VCC  
AB57  
AD57  
AG57  
C24  
C28  
C32  
C36  
C40  
C44  
C48  
C52  
C56  
E23  
SMBDATA  
VCC  
SML0ALERT# /  
GPIO60  
UART0_TXD /  
GPIO92  
K3  
J4  
VCC  
SML0CLK  
AN1  
AK1  
AU4  
UART1_CTS# /  
GPIO3  
VCC  
SML0DATA  
VCC  
UART1_RST# /  
GPIO2  
J3  
SML1ALERT# /  
PCHHOT# /  
GPIO73  
VCC  
UART1_RXD /  
GPIO0  
K4  
G2  
VCC  
SML1CLK / GPIO75 AU3  
VCC  
UART1_TXD /  
GPIO1  
SML1DATA /  
GPIO74  
AH3  
VCC  
USB2n0  
USB2n1  
USB2n2  
USB2n3  
USB2n4  
USB2n5  
USB2n6  
USB2n7  
USB2p0  
USB2p1  
AN8  
VCC  
SPI_CLK  
AA3  
Y7  
AR7  
VCC  
SPI_CS0#  
SPI_CS1#  
SPI_CS2#  
SPI_IO2  
AR8  
VCC  
Y4  
AR10  
AM15  
AM13  
AP11  
AR13  
AM8  
VCC  
AC2  
Y6  
VCC  
E25  
VCC  
E27  
SPI_IO3  
AF1  
AA4  
AA2  
V2  
VCC  
E29  
SPI_MISO  
SPI_MOSI  
SPKR / GPIO81  
SRTCRST#  
VCC  
E31  
VCC  
E33  
AT7  
VCC  
E35  
AV6  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
118  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
VCC  
Ball #  
E37  
Signal Name  
VCC  
Ball #  
G55  
Signal Name  
VCCCLK  
Ball #  
J17  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
E39  
E41  
E43  
E45  
E47  
E49  
E51  
E53  
E55  
E57  
F24  
F28  
F32  
F36  
F40  
F44  
F48  
F52  
F56  
G23  
G25  
G27  
G29  
G31  
G33  
G35  
G37  
G39  
G41  
G43  
G45  
G47  
G49  
G51  
VCC  
G57  
H23  
J23  
VCCCLK  
T21  
VCC  
VCCCLK  
R21  
VCC  
VCCDSW3_3  
VCCHDA  
VCCHSIO  
VCCHSIO  
VCCHSIO  
VCCIO_OUT  
VCOMP_OUT  
VCCRTC  
AH10  
AH14  
M9  
VCC  
K23  
K57  
L22  
VCC  
VCC  
K9  
VCC  
M23  
M57  
P57  
U57  
W57  
E63  
P9  
L10  
VCC  
A59  
VCC  
E20  
VCC  
AG10  
B11  
VCC  
VCCSATA3PLL  
VCCSDIO  
VCCSDIO  
VCCSPI  
VCC_SENSE  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC1_05  
VCC3_3  
VCC3_3  
VCC3_3  
VCC3_3  
VCCACLKPLL  
VCCAPLL  
VCCAPLL  
VCCASW  
VCCASW  
VCCASW  
VCCASW  
VCCASW  
VCCCLK  
VCCCLK  
U8  
T9  
N8  
Y8  
AE8  
AF22  
H11  
H15  
J11  
VCCST  
AC22  
AE22  
AE23  
B59  
VCCST  
VCCST  
VCCST_PWRGD  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCSUS3_3  
VCCTS1_5  
VCCUSB3PLL  
VDDQ  
AH11  
AA9  
AC9  
AE20  
AE21  
J15  
AG16  
AG17  
V8  
W9  
K14  
K16  
A20  
AA21  
W21  
AE9  
AF9  
AG8  
AG13  
AG14  
J18  
B18  
AH26  
AJ31  
AJ33  
AJ37  
AN33  
AP43  
AR48  
AY35  
AY40  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
G53  
K19  
VDDQ  
AY44  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
119  
Processors—Processor Ball and Signal Information  
Signal Name  
VDDQ  
Ball #  
AY50  
Signal Name  
VSS  
Ball #  
C39  
Signal Name  
VSS  
Ball #  
AJ23  
VIDALERT#  
VIDSCLK  
VIDSOUT  
VR_EN  
VR_READY  
VSS  
L62  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF11  
AF12  
AF14  
AF15  
AF17  
AF18  
AG21  
AG23  
AG1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ25  
AJ27  
AJ29  
AJ35  
AJ39  
AJ41  
AJ43  
AJ45  
AJ47  
AJ50  
AJ52  
AJ54  
AJ56  
AJ58  
AJ60  
AJ63  
AK23  
AK3  
N63  
L63  
F60  
C59  
P62  
VSS  
D63  
P22  
VSS  
VSS  
N21  
A11  
A14  
A18  
A24  
A28  
A32  
A36  
A40  
A48  
A52  
A56  
AA1  
A44  
AA58  
AB10  
AB20  
AE5  
AB22  
AB7  
AC61  
AD3  
AD63  
AE10  
AD21  
AE58  
VSS  
AG11  
AG60  
AG61  
AG62  
AG63  
AH17  
AH19  
AH20  
AH22  
AH24  
AH28  
AH30  
AH32  
AH34  
AH36  
AH38  
AH40  
AH42  
AH44  
AH49  
AH51  
AH53  
AH55  
AH57  
AJ13  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK52  
AL10  
AL13  
AL17  
AL20  
AL22  
AL23  
AL26  
AL29  
AL31  
AL33  
AL36  
AL39  
AL40  
AL45  
AL46  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AR43  
AJ14  
AL51  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
120  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
VSS  
Ball #  
AL52  
Signal Name  
VSS  
Ball #  
AP3  
Signal Name  
VSS  
Ball #  
AU28  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AL54  
AL57  
AL60  
AL61  
AM1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AP31  
AP38  
AP39  
AP52  
AP54  
AP57  
AR11  
AR15  
AR17  
AR23  
AR31  
AR33  
AR39  
AP48  
AR49  
AR5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AU30  
AU33  
AU51  
AU53  
AU55  
AU57  
AU59  
AV14  
D62  
AM17  
AM23  
AM31  
AM52  
AN17  
AN23  
AN31  
AN32  
AN35  
AN36  
AN39  
AN40  
AN42  
AN43  
AN45  
AN46  
AN48  
AN49  
AN51  
AN52  
AN60  
AN63  
AN7  
AV16  
AV20  
AV24  
AV28  
AV33  
AV34  
AV36  
AV39  
AV41  
AV43  
AV46  
AV49  
AV51  
AV55  
AV59  
AV8  
AR52  
AT13  
AT35  
AT37  
AT40  
AT42  
AT43  
AT46  
AT49  
AT61  
AT62  
AT63  
AU1  
AW16  
AW24  
AW33  
AW35  
AW37  
AW4  
AP10  
AP17  
AP20  
AP22  
AP23  
AP26  
AU16  
AU18  
AU20  
AU22  
AU24  
AW40  
AW42  
AW44  
AP29  
AU26  
AW47  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
121  
Processors—Processor Ball and Signal Information  
Signal Name  
VSS  
Ball #  
AW50  
Signal Name  
VSS  
Ball #  
C25  
Signal Name  
VSS  
Ball #  
F42  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AW51  
AW59  
AW60  
AY11  
AY16  
AY18  
AY22  
AY24  
AY26  
AY30  
AY33  
AY51  
AY53  
AY57  
AY59  
AY6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C27  
D12  
D14  
D18  
D21  
D23  
D25  
D26  
D27  
D29  
D2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F20  
D5  
F26  
F30  
F34  
F38  
G6  
F46  
F50  
F54  
F58  
F61  
G18  
G22  
G3  
D30  
D31  
D33  
D34  
D35  
D37  
D38  
D39  
D41  
D42  
D43  
D45  
D46  
D47  
D49  
D50  
D51  
D53  
D54  
D55  
D57  
D59  
E11  
G5  
AY4  
G8  
B20  
H13  
H17  
H57  
J10  
J22  
J59  
J63  
K1  
B24  
B26  
B28  
B32  
C38  
B36  
B4  
B40  
K12  
R22  
L13  
L15  
L17  
L18  
L20  
L58  
L61  
B44  
C14  
B48  
B52  
B56  
B60  
C11  
C18  
C20  
E17  
L7  
continued...  
continued...  
continued...  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
Datasheet – Volume 1 of 2  
122  
December 2013  
Order No.: 329001-005  
Processor Ball and Signal Information—Processors  
Signal Name  
VSS  
Ball #  
M22  
VSS  
N10  
N3  
VSS  
VSS  
C57  
P59  
P63  
R10  
R8  
VSS  
VSS  
VSS  
VSS  
VSS  
T1  
VSS  
T58  
D8  
VSS  
VSS  
U20  
U22  
U61  
V10  
V3  
VSS  
VSS  
VSS  
VSS  
VSS  
V7  
VSS  
W20  
Y10  
U9  
VSS  
VSS  
VSS  
Y59  
Y63  
W22  
V58  
AH46  
V23  
AH16  
E62  
AJ5  
A25  
B25  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS_SENSE  
WAKE#  
XTAL24_IN  
XTAL24_OUT  
Mobile 4th Generation Intel® CoreProcessor Family, Mobile Intel® Pentium® Processor Family, and Mobile Intel® Celeron®  
Processor Family  
December 2013  
Order No.: 329001-005  
Datasheet – Volume 1 of 2  
123  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY