EP2S180F1508C3N [INTEL]

Field Programmable Gate Array, 8970 CLBs, 717MHz, 179400-Cell, CMOS, PBGA1508, 40 X 40 MM, 1 MM PITCH, LEAD FREE, FBGA-1508;
EP2S180F1508C3N
型号: EP2S180F1508C3N
厂家: INTEL    INTEL
描述:

Field Programmable Gate Array, 8970 CLBs, 717MHz, 179400-Cell, CMOS, PBGA1508, 40 X 40 MM, 1 MM PITCH, LEAD FREE, FBGA-1508

时钟 栅 现场可编程门阵列 可编程逻辑
文件: 总248页 (文件大小:2983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Stratix II Device Handbook, Volume 1  
101 Innovation Drive  
San Jose, CA 95134  
www.altera.com  
SII5V1-4.5  
Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-  
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and  
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-  
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants  
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make  
changes to any products and services at any time without notice. Altera assumes no responsibility or liabil-  
ity arising out of the application or use of any information, product, or service described herein except as  
expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest ver-  
sion of device specifications before relying on any published information and before placing orders for  
products or services.  
ii  
Altera Corporation  
Contents  
Chapter Revision Dates .......................................................................... vii  
About this Handbook ................................................................................ i  
How to Contact Altera ............................................................................................................................... i  
Typographic Conventions ......................................................................................................................... i  
Section I. Stratix II Device Family Data Sheet  
Revision History ....................................................................................................................... Section I–1  
Chapter 1. Introduction  
Introduction ............................................................................................................................................ 1–1  
Features ................................................................................................................................................... 1–1  
Document Revision History ................................................................................................................. 1–6  
Chapter 2. Stratix II Architecture  
Functional Description .......................................................................................................................... 2–1  
Logic Array Blocks ................................................................................................................................ 2–3  
LAB Interconnects ............................................................................................................................ 2–4  
LAB Control Signals ......................................................................................................................... 2–5  
Adaptive Logic Modules ...................................................................................................................... 2–6  
ALM Operating Modes ................................................................................................................... 2–9  
Register Chain ................................................................................................................................. 2–20  
Clear & Preset Logic Control ........................................................................................................ 2–22  
MultiTrack Interconnect ..................................................................................................................... 2–22  
TriMatrix Memory ............................................................................................................................... 2–28  
Memory Block Size ......................................................................................................................... 2–29  
Digital Signal Processing Block ......................................................................................................... 2–40  
Modes of Operation ....................................................................................................................... 2–44  
DSP Block Interface ........................................................................................................................ 2–44  
PLLs & Clock Networks ..................................................................................................................... 2–48  
Global & Hierarchical Clocking ................................................................................................... 2–48  
Enhanced & Fast PLLs ................................................................................................................... 2–57  
Enhanced PLLs ............................................................................................................................... 2–68  
Fast PLLs .......................................................................................................................................... 2–69  
I/O Structure ........................................................................................................................................ 2–69  
Double Data Rate I/O Pins ........................................................................................................... 2–77  
External RAM Interfacing ............................................................................................................. 2–81  
Programmable Drive Strength ..................................................................................................... 2–83  
Altera Corporation  
iii  
Contents  
Stratix II Device Handbook, Volume 1  
Open-Drain Output ........................................................................................................................ 2–84  
Bus Hold .......................................................................................................................................... 2–84  
Programmable Pull-Up Resistor .................................................................................................. 2–85  
Advanced I/O Standard Support ................................................................................................ 2–85  
On-Chip Termination .................................................................................................................... 2–89  
MultiVolt I/O Interface ................................................................................................................. 2–93  
High-Speed Differential I/O with DPA Support ............................................................................ 2–96  
Dedicated Circuitry with DPA Support .................................................................................... 2–100  
Fast PLL & Channel Layout ........................................................................................................ 2–102  
Document Revision History ............................................................................................................. 2–104  
Chapter 3. Configuration & Testing  
IEEE Std. 1149.1 JTAG Boundary-Scan Support ............................................................................... 3–1  
SignalTap II Embedded Logic Analyzer ............................................................................................ 3–4  
Configuration ......................................................................................................................................... 3–4  
Operating Modes .............................................................................................................................. 3–5  
Configuration Schemes ................................................................................................................... 3–7  
Configuring Stratix II FPGAs with JRunner ............................................................................... 3–10  
Programming Serial Configuration Devices with SRunner ..................................................... 3–10  
Configuring Stratix II FPGAs with the MicroBlaster Driver ................................................... 3–11  
PLL Reconfiguration ...................................................................................................................... 3–11  
Temperature Sensing Diode (TSD) ................................................................................................... 3–11  
Automated Single Event Upset (SEU) Detection ............................................................................ 3–13  
Custom-Built Circuitry .................................................................................................................. 3–14  
Software Interface ........................................................................................................................... 3–14  
Document Revision History ............................................................................................................... 3–14  
Chapter 4. Hot Socketing & Power-On Reset  
Stratix II  
Hot-Socketing Specifications ............................................................................................................... 4–1  
Devices Can Be Driven Before Power-Up .................................................................................... 4–2  
I/O Pins Remain Tri-Stated During Power-Up ........................................................................... 4–2  
Signal Pins Do Not Drive the VCCIO, VCCINT or VCCPD Power Supplies .................................... 4–2  
Hot Socketing Feature Implementation in Stratix II Devices .......................................................... 4–3  
Power-On Reset Circuitry .................................................................................................................... 4–5  
Document Revision History ................................................................................................................. 4–6  
Chapter 5. DC & Switching Characteristics  
Operating Conditions ........................................................................................................................... 5–1  
Absolute Maximum Ratings ........................................................................................................... 5–1  
Recommended Operating Conditions .......................................................................................... 5–2  
DC Electrical Characteristics .......................................................................................................... 5–3  
I/O Standard Specifications ........................................................................................................... 5–4  
Bus Hold Specifications ................................................................................................................. 5–17  
On-Chip Termination Specifications ........................................................................................... 5–17  
Pin Capacitance .............................................................................................................................. 5–19  
Power Consumption ........................................................................................................................... 5–20  
iv  
Altera Corporation  
Contents  
Contents  
Timing Model ....................................................................................................................................... 5–20  
Preliminary & Final Timing .......................................................................................................... 5–20  
I/O Timing Measurement Methodology .................................................................................... 5–21  
Performance .................................................................................................................................... 5–27  
Internal Timing Parameters .......................................................................................................... 5–34  
Stratix II Clock Timing Parameters .............................................................................................. 5–41  
Clock Network Skew Adders ....................................................................................................... 5–50  
IOE Programmable Delay ............................................................................................................. 5–51  
Default Capacitive Loading of Different I/O Standards .......................................................... 5–52  
I/O Delays ....................................................................................................................................... 5–54  
Maximum Input & Output Clock Toggle Rate .......................................................................... 5–66  
Duty Cycle Distortion ......................................................................................................................... 5–77  
DCD Measurement Techniques ................................................................................................... 5–78  
High-Speed I/O Specifications .......................................................................................................... 5–87  
PLL Timing Specifications .................................................................................................................. 5–91  
External Memory Interface Specifications ....................................................................................... 5–94  
JTAG Timing Specifications ............................................................................................................... 5–96  
Document Revision History ............................................................................................................... 5–97  
Chapter 6. Reference & Ordering Information  
Software .................................................................................................................................................. 6–1  
Device Pin-Outs ..................................................................................................................................... 6–1  
Ordering Information ........................................................................................................................... 6–1  
Document Revision History ................................................................................................................. 6–2  
Altera Corporation  
v
Contents  
Stratix II Device Handbook, Volume 1  
vi  
Altera Corporation  
Chapter Revision Dates  
The chapters in this book, Stratix II Device Handbook, Volume 1, were revised on the following dates.  
Where chapters or groups of chapters are available separately, part numbers are listed.  
Chapter 1. Introduction  
Revised:  
May 2007  
Part number: SII51001-4.2  
Chapter 2. Stratix II Architecture  
Revised:  
May 2007  
Part number: SII51002-4.3  
Chapter 3. Configuration & Testing  
Revised:  
May 2007  
Part number: SII51003-4.2  
Chapter 4. Hot Socketing & Power-On Reset  
Revised:  
May 2007  
Part number: SII51004-3.2  
Chapter 5. DC & Switching Characteristics  
Revised:  
April 2011  
Part number: SII51005-4.5  
Chapter 6. Reference & Ordering Information  
Revised:  
April 2011  
Part number: SII51006-2.2  
Altera Corporation  
vii  
Chapter Revision Dates  
Stratix II Device Handbook, Volume 1  
viii  
Altera Corporation  
About this Handbook  
This handbook provides comprehensive information about the Altera®  
Stratix® II family of devices.  
For the most up-to-date information about Altera products, refer to the  
following table.  
How to Contact  
Altera  
Contact  
Method  
Contact (1)  
Address  
Technical support  
Website  
www.altera.com/support  
www.altera.com/training  
custrain@altera.com  
Technical training  
Website  
Email  
Product literature  
Email  
www.altera.com/literature  
literature@altera.com  
nacomp@altera.com  
Altera literature services  
Website  
Non-technical support (General) Email  
(Software Licensing)  
Email  
authorization@altera.com  
Note to table:  
(1) You can also contact your local Altera sales office or sales representative.  
This document uses the typographic conventions shown below.  
Typographic  
Conventions  
Visual Cue  
Meaning  
Bold Type with Initial  
Capital Letters  
Command names, dialog box titles, checkbox options, and dialog box options are  
shown in bold, initial capital letters. Example: Save As dialog box.  
bold type  
External timing parameters, directory names, project names, disk drive names,  
filenames, filename extensions, and software utility names are shown in bold  
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.  
Italic Type with Initial Capital Document titles are shown in italic type with initial capital letters. Example: AN 75:  
Letters  
High-Speed Board Design.  
Altera Corporation  
i
Preliminary  
Typographic Conventions  
Stratix II Device Handbook, Volume 1  
Visual Cue  
Meaning  
Italic type  
Internal timing parameters and variables are shown in italic type.  
Examples: tPIA, n + 1.  
Variable names are enclosed in angle brackets (< >) and shown in italic type.  
Example: <file name>, <project name>.pof file.  
Initial Capital Letters  
“Subheading Title”  
Courier type  
Keyboard keys and menu names are shown with initial capital letters. Examples:  
Delete key, the Options menu.  
References to sections within a document and titles of on-line help topics are  
shown in quotation marks. Example: “Typographic Conventions.”  
Signal and port names are shown in lowercase Courier type. Examples: data1,  
tdi, input.Active-low signals are denoted by suffix n, e.g., resetn.  
Anything that must be typed exactly as it appears is shown in Courier type. For  
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an  
actual file, such as a Report File, references to parts of files (e.g., the AHDL  
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in  
Courier.  
1., 2., 3., and  
a., b., c., etc.  
Numbered steps are used in a list of items when the sequence of the items is  
important, such as the steps listed in a procedure.  
Bullets are used in a list of items when the sequence of the items is not important.  
The checkmark indicates a procedure that consists of one step only.  
The hand points to information that requires special attention.  
v
1
The caution indicates required information that needs special consideration and  
understanding and should be read prior to starting or continuing with the  
procedure or process.  
c
The warning indicates information that should be read prior to starting or  
continuing the procedure or processes  
w
r
f
The angled arrow indicates you should press the Enter key.  
The feet direct you to more information on a particular topic.  
ii  
Preliminary  
Altera Corporation  
Section I. Stratix II Device  
Family Data Sheet  
This section provides the data sheet specifications for Stratix® II devices.  
This section contains feature definitions of the internal architecture,  
configuration and JTAG boundary-scan testing information, DC  
operating conditions, AC timing parameters, a reference to power  
consumption, and ordering information for Stratix II devices.  
This section contains the following chapters:  
Chapter 1, Introduction  
Chapter 2, Stratix II Architecture  
Chapter 3, Configuration & Testing  
Chapter 4, Hot Socketing & Power-On Reset  
Chapter 5, DC & Switching Characteristics  
Chapter 6, Reference & Ordering Information  
Refer to each chapter for its own specific revision history. For information  
on when each chapter was updated, refer to the Chapter Revision Dates  
section, which appears in the full handbook.  
Revision History  
Altera Corporation  
Section I–1  
Stratix II Device Family Data Sheet  
Stratix II Device Handbook, Volume 1  
Section I–2  
Altera Corporation  
1. Introduction  
SII51001-4.2  
The Stratix® II FPGA family is based on a 1.2-V, 90-nm, all-layer copper  
SRAM process and features a new logic structure that maximizes  
performance, and enables device densities approaching 180,000  
equivalent logic elements (LEs). Stratix II devices offer up to 9 Mbits of  
on-chip, TriMatrix™ memory for demanding, memory intensive  
applications and has up to 96 DSP blocks with up to 384 (18-bit × 18-bit)  
multipliers for efficient implementation of high performance filters and  
other DSP functions. Various high-speed external memory interfaces are  
supported, including double data rate (DDR) SDRAM and DDR2  
SDRAM, RLDRAM II, quad data rate (QDR) II SRAM, and single data  
rate (SDR) SDRAM. Stratix II devices support various I/O standards  
along with support for 1-gigabit per second (Gbps) source synchronous  
signaling with DPA circuitry. Stratix II devices offer a complete clock  
management solution with internal clock frequency of up to 550 MHz  
and up to 12 phase-locked loops (PLLs). Stratix II devices are also the  
industry’s first FPGAs with the ability to decrypt a configuration  
bitstream using the Advanced Encryption Standard (AES) algorithm to  
protect designs.  
Introduction  
The Stratix II family offers the following features:  
Features  
15,600 to 179,400 equivalent LEs; see Table 1–1  
New and innovative adaptive logic module (ALM), the basic  
building block of the Stratix II architecture, maximizes performance  
and resource usage efficiency  
Up to 9,383,040 RAM bits (1,172,880 bytes) available without  
reducing logic resources  
TriMatrixmemory consisting of three RAM block sizes to implement  
true dual-port memory and first-in first-out (FIFO) buffers  
High-speed DSP blocks provide dedicated implementation of  
multipliers (at up to 450 MHz), multiply-accumulate functions, and  
finite impulse response (FIR) filters  
Up to 16 global clocks with 24 clocking resources per device region  
Clock control blocks support dynamic clock network enable/disable,  
which allows clock networks to power down to reduce power  
consumption in user mode  
Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device  
provide spread spectrum, programmable bandwidth, clock switch-  
over, real-time PLL reconfiguration, and advanced multiplication  
and phase shifting  
Altera Corporation  
May 2007  
1–1  
Features  
Support for numerous single-ended and differential I/O standards  
High-speed differential I/O support with DPA circuitry for 1-Gbps  
performance  
Support for high-speed networking and communications bus  
standards including Parallel RapidIO, SPI-4 Phase 2 (POS-PHY  
Level 4), HyperTransport™ technology, and SFI-4  
Support for high-speed external memory, including DDR and DDR2  
SDRAM, RLDRAM II, QDR II SRAM, and SDR SDRAM  
Support for multiple intellectual property megafunctions from  
Altera MegaCore® functions and Altera Megafunction Partners  
Program (AMPPSM) megafunctions  
Support for design security using configuration bitstream  
encryption  
Support for remote configuration updates  
Table 1–1. Stratix II FPGA Family Features  
Feature  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130 EP2S180  
ALMs  
6,240  
12,480  
15,600  
104  
13,552  
27,104  
33,880  
202  
24,176  
48,352  
60,440  
329  
36,384  
72,768  
90,960  
488  
53,016  
106,032  
132,540  
699  
71,760  
143,520  
179,400  
930  
Adaptive look-up tables (ALUTs) (1)  
Equivalent LEs (2)  
M512 RAM blocks  
M4K RAM blocks  
M-RAM blocks  
78  
144  
255  
408  
609  
768  
0
1
2
4
6
9
Total RAM bits  
419,328 1,369,728 2,544,192 4,520,488 6,747,840 9,383,040  
DSP blocks  
12  
48  
2
16  
64  
2
36  
144  
4
48  
192  
4
63  
252  
4
96  
384  
4
18-bit × 18-bit multipliers (3)  
Enhanced PLLs  
Fast PLLs  
4
4
8
8
8
8
Maximum user I/O pins  
366  
500  
718  
902  
1,126  
1,170  
Notes to Table 1–1:  
(1) One ALM contains two ALUTs. The ALUT is the cell used in the Quartus® II software for logic synthesis.  
(2) This is the equivalent number of LEs in a Stratix device (four-input LUT-based architecture).  
(3) These multipliers are implemented using the DSP blocks.  
1–2  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Introduction  
Stratix II devices are available in space-saving FineLine BGA® packages  
(see Tables 1–2 and 1–3).  
Table 1–2. Stratix II Package Options & I/O Pin Counts  
Notes (1), (2)  
484-Pin  
Hybrid  
FineLine  
BGA  
672-Pin  
FineLine  
BGA  
780-Pin  
FineLine  
BGA  
484-Pin  
FineLine BGA  
1,020-Pin  
FineLine BGA FineLine BGA  
1,508-Pin  
Device  
EP2S15  
342  
342  
334  
366  
500  
492  
EP2S30  
EP2S60 (3)  
EP2S90 (3)  
EP2S130 (3)  
EP2S180 (3)  
718  
308  
534  
534  
758  
742  
742  
902  
1,126  
1,170  
Notes to Table 1–2:  
(1) All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n,  
clk11p, and clk11n) that can be used for data inputs.  
(2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as general-  
purpose I/O pins. The PLL_ENApin can only be used to enable the PLLs within the device.  
(3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages  
include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and  
FPLL10CLKp/n) that can be used for data inputs.  
Table 1–3. Stratix II FineLine BGA Package Sizes  
484-Pin  
Hybrid  
Dimension  
484 Pin  
672 Pin  
780 Pin  
1,020 Pin  
1,508 Pin  
Pitch (mm)  
Area (mm2)  
1.00  
529  
1.00  
729  
1.00  
729  
1.00  
841  
1.00  
1,089  
1.00  
1,600  
Length × width  
(mm × mm)  
23 × 23  
27 × 27  
27 × 27  
29 × 29  
33 × 33  
40 × 40  
All Stratix II devices support vertical migration within the same package  
(for example, you can migrate between the EP2S15, EP2S30, and EP2S60  
devices in the 672-pin FineLine BGA package). Vertical migration means  
that you can migrate to devices whose dedicated pins, configuration pins,  
and power pins are the same for a given package across device densities.  
To ensure that a board layout supports migratable densities within one  
package offering, enable the applicable vertical migration path within the  
Quartus II software (Assignments menu > Device > Migration Devices).  
Altera Corporation  
May 2007  
1–3  
Stratix II Device Handbook, Volume 1  
Features  
After compilation, check the information messages for a full list of I/O,  
DQ, LVDS, and other pins that are not available because of the selected  
migration path.  
Table 1–4 lists the Stratix II device package offerings and shows the total  
number of non-migratable user I/O pins when migrating from one  
density device to a larger density device. Additional I/O pins may not be  
migratable if migrating from the larger device to the smaller density  
device.  
1
When moving from one density to a larger density, the larger  
density device may have fewer user I/O pins. The larger device  
requires more power and ground pins to support the additional  
logic within the device. Use the Quartus II Pin Planner to  
determine which user I/O pins are migratable between the two  
devices.  
Table 1–4. Total Number of Non-Migratable I/O Pins for Stratix II Vertical Migration Paths  
Vertical Migration  
Path  
484-Pin  
672-Pin  
780-Pin  
1020-Pin  
1508-Pin  
FineLine BGA FineLine BGA FineLine BGA FineLine BGA FineLine BGA  
EP2S15 to EP2S30  
EP2S15 to EP2S60  
EP2S30 to EP2S60  
EP2S60 to EP2S90  
EP2S60 to EP2S130  
EP2S60 to EP2S180  
EP2S90 to EP2S130  
EP2S90 to EP2S180  
EP2S130 to EP2S180  
0 (1)  
8 (1)  
8 (1)  
0
0
8
0
0
0
0 (1)  
16  
16  
0
17  
0
0
Note to Table 1–4:  
(1) Some of the DQ/DQS pins are not migratable. Refer to the Quartus II software information messages for more  
detailed information.  
1
To determine if your user I/O assignments are correct, run the  
I/O Assignment Analysis command in the Quartus II software  
(Processing > Start > Start I/O Assignment Analysis).  
f
Refer to the I/O Management chapter in volume 2 of the Quartus II  
Handbook for more information on pin migration.  
1–4  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Introduction  
Stratix II devices are available in up to three speed grades, -3, -4, and -5,  
with -3 being the fastest. Table 1–5 shows Stratix II device speed-grade  
offerings.  
Table 1–5. Stratix II Device Speed Grades  
484-Pin  
Hybrid  
FineLine  
BGA  
484-Pin  
FineLine  
BGA  
672-Pin  
FineLine  
BGA  
780-Pin  
FineLine  
BGA  
1,020-Pin  
FineLine  
BGA  
1,508-Pin  
FineLine  
BGA  
Temperature  
Grade  
Device  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
Commercial  
Industrial  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
Commercial  
Industrial  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
Commercial  
Industrial  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
Commercial  
Industrial  
-4, -5  
-4, -5  
-4, -5  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
EP2S130 Commercial  
Industrial  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
EP2S180 Commercial  
Industrial  
-3, -4, -5  
-4  
-3, -4, -5  
-4  
Altera Corporation  
May 2007  
1–5  
Stratix II Device Handbook, Volume 1  
Document Revision History  
Table 1–6 shows the revision history for this chapter.  
Document  
Revision History  
Table 1–6. Document Revision History  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
May 2007, v4.2 Moved Document Revision History to the end of the  
chapter.  
April 2006, v4.1  
Updated “Features” section.  
Removed Note 4 from Table 1–2.  
Updated Table 1–4.  
December 2005,  
v4.0  
Updated Tables 1–2, 1–4, and 1–5.  
Updated Figure 2–43.  
July 2005, v3.1  
Added vertical migration information, including  
Table 1–4.  
Updated Table 1–5.  
May 2005, v3.0  
Updated “Features” section.  
Updated Table 1–2.  
March 2005,  
v2.1  
Updated “Introduction” and “Features” sections.  
January 2005,  
v2.0  
Added note to Table 1–2.  
October 2004,  
v1.2  
Updated Tables 1–2, 1–3, and 1–5.  
July 2004, v1.1  
Updated Tables 1–1 and 1–2.  
Updated “Features” section.  
February 2004, Added document to the Stratix II Device Handbook.  
v1.0  
1–6  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
2. Stratix II Architecture  
SII51002-4.3  
Stratix® II devices contain a two-dimensional row- and column-based  
architecture to implement custom logic. A series of column and row  
interconnects of varying length and speed provides signal interconnects  
between logic array blocks (LABs), memory block structures (M512 RAM,  
M4K RAM, and M-RAM blocks), and digital signal processing (DSP)  
blocks.  
Functional  
Description  
Each LAB consists of eight adaptive logic modules (ALMs). An ALM is  
the Stratix II device family’s basic building block of logic providing  
efficient implementation of user logic functions. LABs are grouped into  
rows and columns across the device.  
M512 RAM blocks are simple dual-port memory blocks with 512 bits plus  
parity (576 bits). These blocks provide dedicated simple dual-port or  
single-port memory up to 18-bits wide at up to 500 MHz. M512 blocks are  
grouped into columns across the device in between certain LABs.  
M4K RAM blocks are true dual-port memory blocks with 4K bits plus  
parity (4,608 bits). These blocks provide dedicated true dual-port, simple  
dual-port, or single-port memory up to 36-bits wide at up to 550 MHz.  
These blocks are grouped into columns across the device in between  
certain LABs.  
M-RAM blocks are true dual-port memory blocks with 512K bits plus  
parity (589,824 bits). These blocks provide dedicated true dual-port,  
simple dual-port, or single-port memory up to 144-bits wide at up to  
420 MHz. Several M-RAM blocks are located individually in the device's  
logic array.  
DSP blocks can implement up to either eight full-precision 9 × 9-bit  
multipliers, four full-precision 18 × 18-bit multipliers, or one  
full-precision 36 × 36-bit multiplier with add or subtract features. The  
DSP blocks support Q1.15 format rounding and saturation in the  
multiplier and accumulator stages. These blocks also contain shift  
registers for digital signal processing applications, including finite  
impulse response (FIR) and infinite impulse response (IIR) filters. DSP  
blocks are grouped into columns across the device and operate at up to  
450 MHz.  
Altera Corporation  
May 2007  
2–1  
Functional Description  
Each Stratix II device I/O pin is fed by an I/O element (IOE) located at  
the end of LAB rows and columns around the periphery of the device.  
I/O pins support numerous single-ended and differential I/O standards.  
Each IOE contains a bidirectional I/O buffer and six registers for  
registering input, output, and output-enable signals. When used with  
dedicated clocks, these registers provide exceptional performance and  
interface support with external memory devices such as DDR and DDR2  
SDRAM, RLDRAM II, and QDR II SRAM devices. High-speed serial  
interface channels with dynamic phase alignment (DPA) support data  
TM  
transfer at up to 1 Gbps using LVDS or HyperTransport technology I/O  
standards.  
Figure 2–1 shows an overview of the Stratix II device.  
Figure 2–1. Stratix II Block Diagram  
M4K RAM Blocks  
for True Dual-Port  
Memory & Other Embedded LVDS, HyperTransport & other  
IOEs Support DDR, PCI, PCI-X,  
SSTL-3, SSTL-2, HSTL-1, HSTL-2,  
M512 RAM Blocks for  
Dual-Port Memory, Shift  
Registers, & FIFO Buffers  
DSP Blocks for  
Multiplication and Full  
Implementation of FIR Filters  
Memory Functions  
I/O Standards  
IOEs  
LABs  
IOEs  
LABs  
IOEs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
M-RAM Block  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
IOEs  
IOEs  
LABs  
LABs  
LABs  
LABs  
LABs  
LABs  
DSP  
Block  
2–2  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The number of M512 RAM, M4K RAM, and DSP blocks varies by device  
along with row and column numbers and M-RAM blocks. Table 2–1 lists  
the resources available in Stratix II devices.  
Table 2–1. Stratix II Device Resources  
M512 RAM  
Columns/Blocks Columns/Blocks  
M4K RAM  
M-RAM  
Blocks  
DSP Block  
Columns/Blocks Columns  
LAB  
Device  
LAB Rows  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
4 / 104  
6 / 202  
7 / 329  
8 / 488  
9 / 699  
11 / 930  
3 / 78  
4 / 144  
5 / 255  
6 / 408  
7 / 609  
8 / 768  
0
1
2
4
6
9
2 / 12  
2 / 16  
3 / 36  
3 / 48  
3 / 63  
4 / 96  
30  
49  
26  
36  
51  
68  
87  
96  
62  
71  
81  
100  
Each LAB consists of eight ALMs, carry chains, shared arithmetic chains,  
LAB control signals, local interconnect, and register chain connection  
lines. The local interconnect transfers signals between ALMs in the same  
LAB. Register chain connections transfer the output of an ALM register to  
the adjacent ALM register in an LAB. The Quartus® II Compiler places  
associated logic in an LAB or adjacent LABs, allowing the use of local,  
shared arithmetic chain, and register chain connections for performance  
and area efficiency. Figure 2–2 shows the Stratix II LAB structure.  
Logic Array  
Blocks  
Altera Corporation  
May 2007  
2–3  
Stratix II Device Handbook, Volume 1  
Logic Array Blocks  
Figure 2–2. Stratix II LAB Structure  
Row Interconnects of  
Variable Speed & Length  
ALMs  
Direct link  
interconnect from  
adjacent block  
Direct link  
interconnect from  
adjacent block  
Direct link  
Direct link  
interconnect to  
adjacent block  
interconnect to  
adjacent block  
Local Interconnect  
LAB  
Local Interconnect is Driven  
from Either Side by Columns & LABs,  
& from Above by Rows  
Column Interconnects of  
Variable Speed & Length  
LAB Interconnects  
The LAB local interconnect can drive ALMs in the same LAB. It is driven  
by column and row interconnects and ALM outputs in the same LAB.  
Neighboring LABs, M512 RAM blocks, M4K RAM blocks, M-RAM  
blocks, or DSP blocks from the left and right can also drive an LAB's local  
interconnect through the direct link connection. The direct link  
connection feature minimizes the use of row and column interconnects,  
providing higher performance and flexibility. Each ALM can drive  
24 ALMs through fast local and direct link interconnects. Figure 2–3  
shows the direct link connection.  
2–4  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–3. Direct Link Connection  
Direct link interconnect from  
left LAB, TriMatrix memory  
Direct link interconnect from  
right LAB, TriMatrix memory  
block, DSP block, or IOE output  
block, DSP block, or IOE output  
ALMs  
Direct link  
interconnect  
to right  
Direct link  
interconnect  
to left  
Local  
Interconnect  
LAB Control Signals  
Each LAB contains dedicated logic for driving control signals to its ALMs.  
The control signals include three clocks, three clock enables, two  
asynchronous clears, synchronous clear, asynchronous preset/load, and  
synchronous load control signals. This gives a maximum of 11 control  
signals at a time. Although synchronous load and clear signals are  
generally used when implementing counters, they can also be used with  
other functions.  
Each LAB can use three clocks and three clock enable signals. However,  
there can only be up to two unique clocks per LAB, as shown in the LAB  
control signal generation circuit in Figure 2–4. Each LAB's clock and clock  
enable signals are linked. For example, any ALM in a particular LAB  
using the labclk1signal also uses labclkena1. If the LAB uses both  
the rising and falling edges of a clock, it also uses two LAB-wide clock  
signals. De-asserting the clock enable signal turns off the corresponding  
LAB-wide clock.  
Each LAB can use two asynchronous clear signals and an asynchronous  
load/preset signal. By default, the Quartus II software uses a NOTgate  
push-back technique to achieve preset. If you disable the NOTgate  
push-up option or assign a given register to power up high using the  
Quartus II software, the preset is achieved using the asynchronous load  
Altera Corporation  
May 2007  
2–5  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
signal with asynchronous load data input tied high. When the  
asynchronous load/preset signal is used, the labclkena0signal is no  
longer available.  
The LAB row clocks [5..0]and LAB local interconnect generate the  
TM  
LAB-wide control signals. The MultiTrack interconnect's inherent low  
skew allows clock and control signal distribution in addition to data.  
Figure 2–4 shows the LAB control signal generation circuit.  
Figure 2–4. LAB-Wide Control Signals  
There are two unique  
clock signals per LAB.  
6
Dedicated Row LAB Clocks  
6
6
Local Interconnect  
Local Interconnect  
Local Interconnect  
Local Interconnect  
Local Interconnect  
Local Interconnect  
labclr1  
labclk0  
syncload  
labclk1  
labclk2  
labclkena2  
labclkena0  
or asyncload  
or labpreset  
labclkena1  
labclr0  
synclr  
The basic building block of logic in the Stratix II architecture, the adaptive  
logic module (ALM), provides advanced features with efficient logic  
utilization. Each ALM contains a variety of look-up table (LUT)-based  
resources that can be divided between two adaptive LUTs (ALUTs). With  
up to eight inputs to the two ALUTs, one ALM can implement various  
combinations of two functions. This adaptability allows the ALM to be  
Adaptive Logic  
Modules  
2–6  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
completely backward-compatible with four-input LUT architectures. One  
ALM can also implement any function of up to six inputs and certain  
seven-input functions.  
In addition to the adaptive LUT-based resources, each ALM contains two  
programmable registers, two dedicated full adders, a carry chain, a  
shared arithmetic chain, and a register chain. Through these dedicated  
resources, the ALM can efficiently implement various arithmetic  
functions and shift registers. Each ALM drives all types of interconnects:  
local, row, column, carry chain, shared arithmetic chain, register chain,  
and direct link interconnects. Figure 2–5 shows a high-level block  
diagram of the Stratix II ALM while Figure 2–6 shows a detailed view of  
all the connections in the ALM.  
Figure 2–5. High-Level Block Diagram of the Stratix II ALM  
carry_in  
shared_arith_in  
reg_chain_in  
To general or  
local routing  
dataf0  
datae0  
dataa  
datab  
datac  
To general or  
local routing  
adder0  
D
Q
reg0  
Combinational  
Logic  
datad  
datae1  
dataf1  
To general or  
local routing  
adder1  
D
Q
reg1  
To general or  
local routing  
carry_out  
shared_arith_out  
reg_chain_out  
Altera Corporation  
May 2007  
2–7  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
Figure 2–6. Stratix II ALM Details  
2–8  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
One ALM contains two programmable registers. Each register has data,  
clock, clock enable, synchronous and asynchronous clear, asynchronous  
load data, and synchronous and asynchronous load/preset inputs.  
Global signals, general-purpose I/O pins, or any internal logic can drive  
the register's clock and clear control signals. Either general-purpose I/O  
pins or internal logic can drive the clock enable, preset, asynchronous  
load, and asynchronous load data. The asynchronous load data input  
comes from the dataeor datafinput of the ALM, which are the same  
inputs that can be used for register packing. For combinational functions,  
the register is bypassed and the output of the LUT drives directly to the  
outputs of the ALM.  
Each ALM has two sets of outputs that drive the local, row, and column  
routing resources. The LUT, adder, or register output can drive these  
output drivers independently (see Figure 2–6). For each set of output  
drivers, two ALM outputs can drive column, row, or direct link routing  
connections, and one of these ALM outputs can also drive local  
interconnect resources. This allows the LUT or adder to drive one output  
while the register drives another output. This feature, called register  
packing, improves device utilization because the device can use the  
register and the combinational logic for unrelated functions. Another  
special packing mode allows the register output to feed back into the LUT  
of the same ALM so that the register is packed with its own fan-out LUT.  
This provides another mechanism for improved fitting. The ALM can also  
drive out registered and unregistered versions of the LUT or adder  
output.  
f
See the Performance & Logic Efficiency Analysis of Stratix II Devices White  
Paper for more information on the efficiencies of the Stratix II ALM and  
comparisons with previous architectures.  
ALM Operating Modes  
The Stratix II ALM can operate in one of the following modes:  
Normal mode  
Extended LUT mode  
Arithmetic mode  
Shared arithmetic mode  
Each mode uses ALM resources differently. In each mode, eleven  
available inputs to the ALM--the eight data inputs from the LAB local  
interconnect; carry-infrom the previous ALM or LAB; the shared  
arithmetic chain connection from the previous ALM or LAB; and the  
register chain connection--are directed to different destinations to  
implement the desired logic function. LAB-wide signals provide clock,  
asynchronous clear, asynchronous preset/load, synchronous clear,  
Altera Corporation  
May 2007  
2–9  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
synchronous load, and clock enable control for the register. These LAB-  
wide signals are available in all ALM modes. See the “LAB Control  
Signals” section for more information on the LAB-wide control signals.  
The Quartus II software and supported third-party synthesis tools, in  
conjunction with parameterized functions such as library of  
parameterized modules (LPM) functions, automatically choose the  
appropriate mode for common functions such as counters, adders,  
subtractors, and arithmetic functions. If required, you can also create  
special-purpose functions that specify which ALM operating mode to use  
for optimal performance.  
Normal Mode  
The normal mode is suitable for general logic applications and  
combinational functions. In this mode, up to eight data inputs from the  
LAB local interconnect are inputs to the combinational logic. The normal  
mode allows two functions to be implemented in one Stratix II ALM, or  
an ALM to implement a single function of up to six inputs. The ALM can  
support certain combinations of completely independent functions and  
various combinations of functions which have common inputs.  
Figure 2–7 shows the supported LUT combinations in normal mode.  
2–10  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–7. ALM in Normal Mode Note (1)  
dataf0  
datae0  
datac  
dataa  
datab  
dataf0  
4-Input  
LUT  
datae0  
datac  
dataa  
5-Input  
LUT  
combout0  
combout1  
combout0  
combout1  
datab  
datad  
datae1  
dataf1  
4-Input  
LUT  
5-Input  
LUT  
datad  
datae1  
dataf1  
dataf0  
datae0  
datac  
dataa  
datab  
5-Input  
LUT  
dataf0  
datae0  
dataa  
datab  
datac  
datad  
combout0  
combout1  
6-Input  
LUT  
combout0  
datad  
datae1  
dataf1  
3-Input  
LUT  
dataf0  
datae0  
dataa  
datab  
datac  
datad  
6-Input  
LUT  
combout0  
combout1  
dataf0  
datae0  
datac  
dataa  
datab  
5-Input  
LUT  
combout0  
combout1  
6-Input  
LUT  
datad  
datae1  
4-Input  
LUT  
datae1  
dataf1  
dataf1  
Note to Figure 2–7:  
(1) Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of  
functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, etc.  
The normal mode provides complete backward compatibility with four-  
input LUT architectures. Two independent functions of four inputs or less  
can be implemented in one Stratix II ALM. In addition, a five-input  
function and an independent three-input function can be implemented  
without sharing inputs.  
Altera Corporation  
May 2007  
2–11  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
For the packing of two five-input functions into one ALM, the functions  
must have at least two common inputs. The common inputs are dataa  
and datab. The combination of a four-input function with a five-input  
function requires one common input (either dataaor datab).  
In the case of implementing two six-input functions in one ALM, four  
inputs must be shared and the combinational function must be the same.  
For example, a 4 × 2 crossbar switch (two 4-to-1 multiplexers with  
common inputs and unique select lines) can be implemented in one ALM,  
as shown in Figure 2–8. The shared inputs are dataa, datab, datac, and  
datad, while the unique select lines are datae0 and dataf0for  
function0, and datae1and dataf1for function1. This crossbar  
switch consumes four LUTs in a four-input LUT-based architecture.  
Figure 2–8. 4 × 2 Crossbar Switch Example  
4 × 2 Crossbar Switch  
Implementation in 1 ALM  
sel0[1..0]  
inputa  
inputb  
dataf0  
datae0  
dataa  
datab  
datac  
datad  
Six-Input  
LUT  
(Function0)  
out0  
combout0  
combout1  
inputc  
inputd  
out1  
sel1[1..0]  
Six-Input  
LUT  
(Function1)  
datae1  
dataf1  
In a sparsely used device, functions that could be placed into one ALM  
may be implemented in separate ALMs. The Quartus II Compiler spreads  
a design out to achieve the best possible performance. As a device begins  
to fill up, the Quartus II software automatically utilizes the full potential  
of the Stratix II ALM. The Quartus II Compiler automatically searches for  
functions of common inputs or completely independent functions to be  
placed into one ALM and to make efficient use of the device resources. In  
addition, you can manually control resource usage by setting location  
assignments.  
Any six-input function can be implemented utilizing inputs dataa,  
datab, datac, datad, and either datae0and dataf0or datae1and  
dataf1. If datae0and dataf0are utilized, the output is driven to  
register0, and/or register0is bypassed and the data drives out to  
the interconnect using the top set of output drivers (see Figure 2–9). If  
2–12  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
datae1and dataf1are utilized, the output drives to register1  
and/or bypasses register1and drives to the interconnect using the  
bottom set of output drivers. The Quartus II Compiler automatically  
selects the inputs to the LUT. Asynchronous load data for the register  
comes from the dataeor datafinput of the ALM. ALMs in normal  
mode support register packing.  
Figure 2–9. 6-Input Function in Normal Mode Notes (1), (2)  
To general or  
local routing  
dataf0  
datae0  
dataa  
datab  
datac  
datad  
6-Input  
LUT  
To general or  
local routing  
D
D
Q
reg0  
datae1  
dataf1  
(2)  
To general or  
local routing  
Q
These inputs are available for register packing.  
reg1  
Notes to Figure 2–9:  
(1) If datae1and dataf1are used as inputs to the six-input function, then datae0  
and dataf0are available for register packing.  
(2) The dataf1input is available for register packing only if the six-input function is  
un-registered.  
Extended LUT Mode  
The extended LUT mode is used to implement a specific set of  
seven-input functions. The set must be a 2-to-1 multiplexer fed by two  
arbitrary five-input functions sharing four inputs. Figure 2–10 shows the  
template of supported seven-input functions utilizing extended LUT  
mode. In this mode, if the seven-input function is unregistered, the  
unused eighth input is available for register packing.  
Functions that fit into the template shown in Figure 2–10 occur naturally  
in designs. These functions often appear in designs as “if-else” statements  
in Verilog HDL or VHDL code.  
Altera Corporation  
May 2007  
2–13  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
Figure 2–10. Template for Supported Seven-Input Functions in Extended LUT Mode  
datae0  
datac  
dataa  
5-Input  
LUT  
datab  
To general or  
local routing  
datad  
dataf0  
combout0  
To general or  
local routing  
D
Q
5-Input  
LUT  
reg0  
datae1  
dataf1  
(1)  
This input is available  
for register packing.  
Note to Figure 2–10:  
(1) If the seven-input function is unregistered, the unused eighth input is available for register packing. The second  
register, reg1, is not available.  
Arithmetic Mode  
The arithmetic mode is ideal for implementing adders, counters,  
accumulators, wide parity functions, and comparators. An ALM in  
arithmetic mode uses two sets of two four-input LUTs along with two  
dedicated full adders. The dedicated adders allow the LUTs to be  
available to perform pre-adder logic; therefore, each adder can add the  
output of two four-input functions. The four LUTs share the dataaand  
databinputs. As shown in Figure 2–11, the carry-in signal feeds to  
adder0, and the carry-out from adder0feeds to carry-in of adder1. The  
carry-out from adder1drives to adder0of the next ALM in the LAB.  
ALMs in arithmetic mode can drive out registered and/or unregistered  
versions of the adder outputs.  
2–14  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–11. ALM in Arithmetic Mode  
carry_in  
datae0  
adder0  
4-Input  
LUT  
To general or  
local routing  
To general or  
local routing  
D
Q
dataf0  
datac  
datab  
dataa  
reg0  
4-Input  
LUT  
adder1  
4-Input  
LUT  
To general or  
local routing  
datad  
datae1  
To general or  
local routing  
D
Q
4-Input  
LUT  
reg1  
dataf1  
carry_out  
While operating in arithmetic mode, the ALM can support simultaneous  
use of the adder's carry output along with combinational logic outputs. In  
this operation, the adder output is ignored. This usage of the adder with  
the combinational logic output provides resource savings of up to 50% for  
functions that can use this ability. An example of such functionality is a  
conditional operation, such as the one shown in Figure 2–12. The  
equation for this example is:  
R = (X < Y) ? Y : X  
To implement this function, the adder is used to subtract ‘Y’ from ‘X.’ If  
‘X’ is less than ‘Y,’ the carry_outsignal is ‘1.’ The carry_outsignal is  
fed to an adder where it drives out to the LAB local interconnect. It then  
feeds to the LAB-wide syncloadsignal. When asserted, syncload  
selects the syncdatainput. In this case, the data ‘Y’ drives the  
syncdata inputs to the registers. If ‘X’ is greater than or equal to ‘Y,’ the  
syncloadsignal is de-asserted and ‘X’ drives the data port of the  
registers.  
Altera Corporation  
May 2007  
2–15  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
Figure 2–12. Conditional Operation Example  
Adder output  
is not used.  
ALM 1  
X[0]  
Y[0]  
Comb &  
Adder  
Logic  
X[0]  
X[1]  
R[0]  
R[1]  
To general or  
local routing  
D
D
Q
reg0  
syncdata  
syncload  
syncload  
X[1]  
Y[1]  
Comb &  
Adder  
Logic  
To general or  
local routing  
Q
reg1  
Carry Chain  
ALM 2  
X[2]  
Y[2]  
Comb &  
Adder  
Logic  
X[2]  
R[2]  
To general or  
local routing  
D
Q
reg0  
syncload  
Comb &  
Adder  
Logic  
To local routing &  
then to LAB-wide  
syncload  
carry_out  
The arithmetic mode also offers clock enable, counter enable,  
synchronous up/down control, add/subtract control, synchronous clear,  
synchronous load. The LAB local interconnect data inputs generate the  
clock enable, counter enable, synchronous up/down and add/subtract  
control signals. These control signals are good candidates for the inputs  
that are shared between the four LUTs in the ALM. The synchronous clear  
and synchronous load options are LAB-wide signals that affect all  
registers in the LAB. The Quartus II software automatically places any  
registers that are not used by the counter into other LABs.  
Carry Chain  
The carry chain provides a fast carry function between the dedicated  
adders in arithmetic or shared arithmetic mode. Carry chains can begin in  
either the first ALM or the fifth ALM in an LAB. The final carry-out signal  
is routed to an ALM, where it is fed to local, row, or column interconnects.  
2–16  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The Quartus II Compiler automatically creates carry chain logic during  
design processing, or you can create it manually during design entry.  
Parameterized functions such as LPM functions automatically take  
advantage of carry chains for the appropriate functions.  
The Quartus II Compiler creates carry chains longer than 16 (8 ALMs in  
arithmetic or shared arithmetic mode) by linking LABs together  
automatically. For enhanced fitting, a long carry chain runs vertically  
allowing fast horizontal connections to TriMatrix memory and DSP  
blocks. A carry chain can continue as far as a full column.  
To avoid routing congestion in one small area of the device when a high  
fan-in arithmetic function is implemented, the LAB can support carry  
chains that only utilize either the top half or the bottom half of the LAB  
before connecting to the next LAB. This leaves the other half of the ALMs  
in the LAB available for implementing narrower fan-in functions in  
normal mode. Carry chains that use the top four ALMs in the first LAB  
carry into the top half of the ALMs in the next LAB within the column.  
Carry chains that use the bottom four ALMs in the first LAB carry into the  
bottom half of the ALMs in the next LAB within the column. Every other  
column of LABs is top-half bypassable, while the other LAB columns are  
bottom-half bypassable.  
See the “MultiTrack Interconnect” on page 2–22 section for more  
information on carry chain interconnect.  
Shared Arithmetic Mode  
In shared arithmetic mode, the ALM can implement a three-input add. In  
this mode, the ALM is configured with four 4-input LUTs. Each LUT  
either computes the sum of three inputs or the carry of three inputs. The  
output of the carry computation is fed to the next adder (either to adder1  
in the same ALM or to adder0of the next ALM in the LAB) via a  
dedicated connection called the shared arithmetic chain. This shared  
arithmetic chain can significantly improve the performance of an adder  
tree by reducing the number of summation stages required to implement  
an adder tree. Figure 2–13 shows the ALM in shared arithmetic mode.  
Altera Corporation  
May 2007  
2–17  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
Figure 2–13. ALM in Shared Arithmetic Mode  
shared_arith_in  
carry_in  
4-Input  
LUT  
To general or  
local routing  
To general or  
local routing  
D
Q
datae0  
datac  
datab  
dataa  
reg0  
4-Input  
LUT  
4-Input  
LUT  
To general or  
local routing  
datad  
datae1  
To general or  
local routing  
D
Q
4-Input  
LUT  
reg1  
carry_out  
shared_arith_out  
Note to Figure 2–13:  
(1) Inputs dataf0and dataf1are available for register packing in shared arithmetic mode.  
Adder trees can be found in many different applications. For example, the  
summation of the partial products in a logic-based multiplier can be  
implemented in a tree structure. Another example is a correlator function  
that can use a large adder tree to sum filtered data samples in a given time  
frame to recover or to de-spread data which was transmitted utilizing  
spread spectrum technology.  
An example of a three-bit add operation utilizing the shared arithmetic  
mode is shown in Figure 2–14. The partial sum (S[2..0])and the  
partial carry (C[2..0])is obtained using the LUTs, while the result  
(R[2..0])is computed using the dedicated adders.  
2–18  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–14. Example of a 3-bit Add Utilizing Shared Arithmetic Mode  
shared_arith_in = '0'  
carry_in = '0'  
3-Bit Add Example  
ALM Implementation  
ALM 1  
X2 X1 X0  
Y2 Y1 Y0  
Z2 Z1 Z0  
3-Input S0  
1st stage add is  
implemented in LUTs.  
LUT  
+
R0  
2nd stage add is  
implemented in adders.  
S2 S1 S0  
C2 C1 C0  
X0  
Y0  
Z0  
3-Input  
LUT  
+
C0  
S1  
R3 R2 R1 R0  
X1  
Y1  
Z1  
3-Input  
LUT  
Decimal  
Equivalents  
Binary Add  
R1  
1
1
0
1
0
1
0
1
0
6
5
C1  
3-Input  
LUT  
2
+
+
0
1
0
0
1
1
+
+
1
1
2 x 6  
13  
ALM 2  
1
0
1
S2  
C2  
'0'  
3-Input  
LUT  
R2  
X2  
Y2  
Z2  
3-Input  
LUT  
3-Input  
LUT  
R3  
3-Input  
LUT  
Shared Arithmetic Chain  
In addition to the dedicated carry chain routing, the shared arithmetic  
chain available in shared arithmetic mode allows the ALM to implement  
a three-input add. This significantly reduces the resources necessary to  
implement large adder trees or correlator functions.  
The shared arithmetic chains can begin in either the first or fifth ALM in  
an LAB. The Quartus II Compiler creates shared arithmetic chains longer  
than 16 (8 ALMs in arithmetic or shared arithmetic mode) by linking  
LABs together automatically. For enhanced fitting, a long shared  
Altera Corporation  
May 2007  
2–19  
Stratix II Device Handbook, Volume 1  
Adaptive Logic Modules  
arithmetic chain runs vertically allowing fast horizontal connections to  
TriMatrix memory and DSP blocks. A shared arithmetic chain can  
continue as far as a full column.  
Similar to the carry chains, the shared arithmetic chains are also top- or  
bottom-half bypassable. This capability allows the shared arithmetic  
chain to cascade through half of the ALMs in a LAB while leaving the  
other half available for narrower fan-in functionality. Every other LAB  
column is top-half bypassable, while the other LAB columns are bottom-  
half bypassable.  
See the “MultiTrack Interconnect” on page 2–22 section for more  
information on shared arithmetic chain interconnect.  
Register Chain  
In addition to the general routing outputs, the ALMs in an LAB have  
register chain outputs. The register chain routing allows registers in the  
same LAB to be cascaded together. The register chain interconnect allows  
an LAB to use LUTs for a single combinational function and the registers  
to be used for an unrelated shift register implementation. These resources  
speed up connections between ALMs while saving local interconnect  
resources (see Figure 2–15). The Quartus II Compiler automatically takes  
advantage of these resources to improve utilization and performance.  
2–20  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–15. Register Chain within an LAB Note (1)  
From Previous ALM  
Within The LAB  
reg_chain_in  
To general or  
local routing  
To general or  
local routing  
adder0  
D
Q
reg0  
Combinational  
Logic  
To general or  
local routing  
adder1  
D
Q
reg1  
To general or  
local routing  
To general or  
local routing  
To general or  
local routing  
adder0  
D
Q
reg0  
Combinational  
Logic  
To general or  
local routing  
adder1  
D
Q
reg1  
To general or  
local routing  
reg_chain_out  
To Next ALM  
within the LAB  
Note to Figure 2–15:  
(1) The combinational or adder logic can be utilized to implement an unrelated, un-registered function.  
See the “MultiTrack Interconnect” on page 2–22 section for more  
information on register chain interconnect.  
Altera Corporation  
May 2007  
2–21  
Stratix II Device Handbook, Volume 1  
MultiTrack Interconnect  
Clear & Preset Logic Control  
LAB-wide signals control the logic for the register's clear and load/preset  
signals. The ALM directly supports an asynchronous clear and preset  
function. The register preset is achieved through the asynchronous load  
of a logic high. The direct asynchronous preset does not require a NOT-  
gate push-back technique. Stratix II devices support simultaneous  
asynchronous load/preset, and clear signals. An asynchronous clear  
signal takes precedence if both signals are asserted simultaneously. Each  
LAB supports up to two clears and one load/preset signal.  
In addition to the clear and load/preset ports, Stratix II devices provide a  
device-wide reset pin (DEV_CLRn) that resets all registers in the device.  
An option set before compilation in the Quartus II software controls this  
pin. This device-wide reset overrides all other control signals.  
In the Stratix II architecture, connections between ALMs, TriMatrix  
memory, DSP blocks, and device I/O pins are provided by the MultiTrack  
interconnect structure with DirectDrive technology. The MultiTrack  
interconnect consists of continuous, performance-optimized routing lines  
of different lengths and speeds used for inter- and intra-design block  
connectivity. The Quartus II Compiler automatically places critical design  
paths on faster interconnects to improve design performance.  
MultiTrack  
Interconnect  
TM  
DirectDrive technology is a deterministic routing technology that ensures  
identical routing resource usage for any function regardless of placement  
in the device. The MultiTrack interconnect and DirectDrive technology  
simplify the integration stage of block-based designing by eliminating the  
re-optimization cycles that typically follow design changes and  
additions.  
The MultiTrack interconnect consists of row and column interconnects  
that span fixed distances. A routing structure with fixed length resources  
for all devices allows predictable and repeatable performance when  
migrating through different device densities. Dedicated row  
interconnects route signals to and from LABs, DSP blocks, and TriMatrix  
memory in the same row. These row resources include:  
Direct link interconnects between LABs and adjacent blocks  
R4 interconnects traversing four blocks to the right or left  
R24 row interconnects for high-speed access across the length of the  
device  
2–22  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
The direct link interconnect allows an LAB, DSP block, or TriMatrix  
memory block to drive into the local interconnect of its left and right  
neighbors and then back into itself. This provides fast communication  
between adjacent LABs and/or blocks without using row interconnect  
resources.  
The R4 interconnects span four LABs, three LABs and one M512 RAM  
block, two LABs and one M4K RAM block, or two LABs and one DSP  
block to the right or left of a source LAB. These resources are used for fast  
row connections in a four-LAB region. Every LAB has its own set of R4  
interconnects to drive either left or right. Figure 2–16 shows R4  
interconnect connections from an LAB. R4 interconnects can drive and be  
driven by DSP blocks and RAM blocks and row IOEs. For LAB  
interfacing, a primary LAB or LAB neighbor can drive a given R4  
interconnect. For R4 interconnects that drive to the right, the primary  
LAB and right neighbor can drive on to the interconnect. For R4  
interconnects that drive to the left, the primary LAB and its left neighbor  
can drive on to the interconnect. R4 interconnects can drive other R4  
interconnects to extend the range of LABs they can drive. R4  
interconnects can also drive C4 and C16 interconnects for connections  
from one row to another. Additionally, R4 interconnects can drive R24  
interconnects.  
Figure 2–16. R4 Interconnect Connections Notes (1), (2), (3)  
Adjacent LAB can  
Drive onto Another  
LAB's R4 Interconnect  
C4 and C16  
Column Interconnects (1)  
R4 Interconnect  
Driving Right  
R4 Interconnect  
Driving Left  
LAB  
Neighbor  
Primary  
LAB (2)  
LAB  
Neighbor  
Notes to Figure 2–16:  
(1) C4 and C16 interconnects can drive R4 interconnects.  
(2) This pattern is repeated for every LAB in the LAB row.  
(3) The LABs in Figure 2–16 show the 16 possible logical outputs per LAB.  
Altera Corporation  
May 2007  
2–23  
Stratix II Device Handbook, Volume 1  
MultiTrack Interconnect  
R24 row interconnects span 24 LABs and provide the fastest resource for  
long row connections between LABs, TriMatrix memory, DSP blocks, and  
Row IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row  
interconnects drive to other row or column interconnects at every fourth  
LAB and do not drive directly to LAB local interconnects. R24 row  
interconnects drive LAB local interconnects via R4 and C4 interconnects.  
R24 interconnects can drive R24, R4, C16, and C4 interconnects.  
The column interconnect operates similarly to the row interconnect and  
vertically routes signals to and from LABs, TriMatrix memory, DSP  
blocks, and IOEs. Each column of LABs is served by a dedicated column  
interconnect. These column resources include:  
Shared arithmetic chain interconnects in an LAB  
Carry chain interconnects in an LAB and from LAB to LAB  
Register chain interconnects in an LAB  
C4 interconnects traversing a distance of four blocks in up and down  
direction  
C16 column interconnects for high-speed vertical routing through  
the device  
Stratix II devices include an enhanced interconnect structure in LABs for  
routing shared arithmetic chains and carry chains for efficient arithmetic  
functions. The register chain connection allows the register output of one  
ALM to connect directly to the register input of the next ALM in the LAB  
for fast shift registers. These ALM to ALM connections bypass the local  
interconnect. The Quartus II Compiler automatically takes advantage of  
these resources to improve utilization and performance. Figure 2–17  
shows the shared arithmetic chain, carry chain and register chain  
interconnects.  
2–24  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–17. Shared Arithmetic Chain, Carry Chain & Register Chain  
Interconnects  
Local Interconnect  
Routing Among ALMs  
in the LAB  
ALM 1  
Carry Chain & Shared  
Arithmetic Chain  
Routing to Adjacent ALM  
Register Chain  
Routing to Adjacent  
ALM's Register Inpu  
ALM 2  
ALM 3  
ALM 4  
ALM 5  
ALM 6  
ALM 7  
Local  
Interconnect  
ALM 8  
The C4 interconnects span four LABs, M512, or M4K blocks up or down  
from a source LAB. Every LAB has its own set of C4 interconnects to drive  
either up or down. Figure 2–18 shows the C4 interconnect connections  
from an LAB in a column. The C4 interconnects can drive and be driven  
by all types of architecture blocks, including DSP blocks, TriMatrix  
memory blocks, and column and row IOEs. For LAB interconnection, a  
primary LAB or its LAB neighbor can drive a given C4 interconnect. C4  
interconnects can drive each other to extend their range as well as drive  
row interconnects for column-to-column connections.  
Altera Corporation  
May 2007  
2–25  
Stratix II Device Handbook, Volume 1  
MultiTrack Interconnect  
Figure 2–18. C4 Interconnect Connections Note (1)  
C4 Interconnect  
Drives Local and R4  
Interconnects  
up to Four Rows  
C4 Interconnect  
Driving Up  
LAB  
Row  
Interconnect  
Adjacent LAB can  
drive onto neighboring  
LAB's C4 interconnect  
Local  
Interconnect  
C4 Interconnect  
Driving Down  
Note to Figure 2–18:  
(1) Each C4 interconnect can drive either up or down four rows.  
2–26  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
C16 column interconnects span a length of 16 LABs and provide the  
fastest resource for long column connections between LABs, TriMatrix  
memory blocks, DSP blocks, and IOEs. C16 interconnects can cross  
M-RAM blocks and also drive to row and column interconnects at every  
fourth LAB. C16 interconnects drive LAB local interconnects via C4 and  
R4 interconnects and do not drive LAB local interconnects directly.  
All embedded blocks communicate with the logic array similar to LAB-  
to-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks)  
connects to row and column interconnects and has local interconnect  
regions driven by row and column interconnects. These blocks also have  
direct link interconnects for fast connections to and from a neighboring  
LAB. All blocks are fed by the row LAB clocks, labclk[5..0].  
Table 2–2 shows the Stratix II device’s routing scheme.  
Table 2–2. Stratix II Device Routing Scheme (Part 1 of 2)  
Destination  
Source  
Shared arithmetic chain  
Carry chain  
v
v
v
v
Register chain  
Local interconnect  
Direct link interconnect  
R4 interconnect  
R24 interconnect  
C4 interconnect  
C16 interconnect  
ALM  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
M512 RAM block  
M4K RAM block  
M-RAM block  
v
DSP blocks  
Altera Corporation  
May 2007  
2–27  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
Table 2–2. Stratix II Device Routing Scheme (Part 2 of 2)  
Destination  
Source  
Column IOE  
v
v
v
v
Row IOE  
v
v v  
TriMatrix memory consists of three types of RAM blocks: M512, M4K,  
and M-RAM. Although these memory blocks are different, they can all  
implement various types of memory with or without parity, including  
true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO  
buffers. Table 2–3 shows the size and features of the different RAM  
blocks.  
TriMatrix  
Memory  
Table 2–3. TriMatrix Memory Features (Part 1 of 2)  
M512 RAM Block  
Memory Feature  
M4K RAM Block  
(128 × 36 Bits)  
M-RAM Block  
(4K × 144 Bits)  
(32 × 18 Bits)  
Maximum performance  
True dual-port memory  
Simple dual-port memory  
Single-port memory  
Shift register  
500 MHz  
550 MHz  
420 MHz  
v
v
v
v
v
v
v
v
v
v
v
v
ROM  
(1)  
v
v
v
v
v
v
v
FIFO buffer  
v
Pack mode  
v
Byte enable  
v
v
Address clock enable  
Parity bits  
v
v
v
v
v
Mixed clock mode  
Memory initialization (.mif)  
v
v
2–28  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–3. TriMatrix Memory Features (Part 2 of 2)  
M512 RAM Block  
Memory Feature  
M4K RAM Block  
(128 × 36 Bits)  
M-RAM Block  
(4K × 144 Bits)  
(32 × 18 Bits)  
Simple dual-port memory  
mixed width support  
v
v
v
v
v
True dual-port memory  
mixed width support  
Power-up conditions  
Register clears  
Outputs cleared  
Output registers  
Outputs cleared  
Output registers  
Outputs unknown  
Output registers  
Mixed-port read-during-write Unknown output/old data Unknown output/old data Unknown output  
Configurations  
512 × 1  
256 × 2  
128 × 4  
64 × 8  
64 × 9  
32 × 16  
32 × 18  
4K × 1  
2K × 2  
1K × 4  
512 × 8  
512 × 9  
256 × 16  
256 × 18  
128 × 32  
128 × 36  
64K × 8  
64K × 9  
32K × 16  
32K × 18  
16K × 32  
16K × 36  
8K × 64  
8K × 72  
4K × 128  
4K × 144  
Notes to Table 2–3:  
(1) The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM  
function using a dual-port RAM bock. The Stratix II device must write to the dual-port memory once and then  
disable the write-enable ports afterwards.  
Memory Block Size  
TriMatrix memory provides three different memory sizes for efficient  
application support. The Quartus II software automatically partitions the  
user-defined memory into the embedded memory blocks using the most  
efficient size combinations. You can also manually assign the memory to  
a specific block size or a mixture of block sizes.  
When applied to input registers, the asynchronous clear signal for the  
TriMatrix embedded memory immediately clears the input registers.  
However, the output of the memory block does not show the effects until  
the next clock edge. When applied to output registers, the asynchronous  
clear signal clears the output registers and the effects are seen  
immediately.  
Altera Corporation  
May 2007  
2–29  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
M512 RAM Block  
The M512 RAM block is a simple dual-port memory block and is useful  
for implementing small FIFO buffers, DSP, and clock domain transfer  
applications. Each block contains 576 RAM bits (including parity bits).  
M512 RAM blocks can be configured in the following modes:  
Simple dual-port RAM  
Single-port RAM  
FIFO  
ROM  
Shift register  
1
Violating the setup or hold time on the memory block address  
registers could corrupt memory contents. This applies to both  
read and write operations.  
When configured as RAM or ROM, you can use an initialization file to  
pre-load the memory contents.  
M512 RAM blocks can have different clocks on its inputs and outputs.  
The wren, datain, and write address registers are all clocked together  
from one of the two clocks feeding the block. The read address, rden, and  
output registers can be clocked by either of the two clocks driving the  
block. This allows the RAM block to operate in read/write or  
input/output clock modes. Only the output register can be bypassed. The  
six labclksignals or local interconnect can drive the inclock,  
outclock, wren, rden, and outclrsignals. Because of the advanced  
interconnect between the LAB and M512 RAM blocks, ALMs can also  
control the wrenand rdensignals and the RAM clock, clock enable, and  
asynchronous clear signals. Figure 2–19 shows the M512 RAM block  
control signal generation logic.  
The RAM blocks in Stratix II devices have local interconnects to allow  
ALMs and interconnects to drive into RAM blocks. The M512 RAM block  
local interconnect is driven by the R4, C4, and direct link interconnects  
from adjacent LABs. The M512 RAM blocks can communicate with LABs  
on either the left or right side through these row interconnects or with  
LAB columns on the left or right side with the column interconnects. The  
M512 RAM block has up to 16 direct link input connections from the left  
adjacent LABs and another 16 from the right adjacent LAB. M512 RAM  
outputs can also connect to left and right LABs through direct link  
interconnect. The M512 RAM block has equal opportunity for access and  
performance to and from LABs on either its left or right side. Figure 2–20  
shows the M512 RAM block to logic array interface.  
2–30  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–19. M512 RAM Block Control Signals  
Dedicated  
6
Row LAB  
Clocks  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
outclocken  
inclocken  
wren  
Local  
Interconnect  
outclr  
inclock  
outclock  
rden  
Altera Corporation  
May 2007  
2–31  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
Figure 2–20. M512 RAM Block LAB Row Interface  
C4 Interconnect  
R4 Interconnect  
16  
Direct link  
Direct link  
interconnect  
to adjacent LAB  
interconnect  
to adjacent LAB  
dataout  
Direct link  
Direct link  
M512 RAM  
interconnect  
interconnect  
Block  
from adjacent LAB  
from adjacent LAB  
clocks  
datain  
control  
signals  
address  
2
6
M512 RAM Block Local LAB Row Clocks  
Interconnect Region  
M4K RAM Blocks  
The M4K RAM block includes support for true dual-port RAM. The M4K  
RAM block is used to implement buffers for a wide variety of applications  
such as storing processor code, implementing lookup schemes, and  
implementing larger memory applications. Each block contains 4,608  
RAM bits (including parity bits). M4K RAM blocks can be configured in  
the following modes:  
True dual-port RAM  
Simple dual-port RAM  
Single-port RAM  
FIFO  
ROM  
Shift register  
When configured as RAM or ROM, you can use an initialization file to  
pre-load the memory contents.  
2–32  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The M4K RAM blocks allow for different clocks on their inputs and  
outputs. Either of the two clocks feeding the block can clock M4K RAM  
block registers (renwe, address, byte enable, datain, and output registers).  
Only the output register can be bypassed. The six labclksignals or local  
interconnects can drive the control signals for the A and B ports of the  
M4K RAM block. ALMs can also control the clock_a, clock_b,  
renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b  
signals, as shown in Figure 2–21.  
The R4, C4, and direct link interconnects from adjacent LABs drive the  
M4K RAM block local interconnect. The M4K RAM blocks can  
communicate with LABs on either the left or right side through these row  
resources or with LAB columns on either the right or left with the column  
resources. Up to 16 direct link input connections to the M4K RAM Block  
are possible from the left adjacent LABs and another 16 possible from the  
right adjacent LAB. M4K RAM block outputs can also connect to left and  
right LABs through direct link interconnect. Figure 2–22 shows the M4K  
RAM block to logic array interface.  
Figure 2–21. M4K RAM Block Control Signals  
Dedicated  
Row LAB  
Clocks  
6
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
Local  
Interconnect  
clocken_b  
clock_b  
renwe_b  
aclr_b  
Local  
Interconnect  
renwe_a  
aclr_a  
clock_a  
clocken_a  
Altera Corporation  
May 2007  
2–33  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
Figure 2–22. M4K RAM Block LAB Row Interface  
C4 Interconnect  
R4 Interconnect  
16  
Direct link  
Direct link  
interconnect  
to adjacent LAB  
interconnect  
to adjacent LAB  
36  
dataout  
M4K RAM  
Block  
Direct link  
Direct link  
interconnect  
interconnect  
from adjacent LAB  
from adjacent LAB  
datain  
byte  
enable  
control  
signals  
clocks  
address  
6
M4K RAM Block Local  
Interconnect Region  
LAB Row Clocks  
M-RAM Block  
The largest TriMatrix memory block, the M-RAM block, is useful for  
applications where a large volume of data must be stored on-chip. Each  
block contains 589,824 RAM bits (including parity bits). The M-RAM  
block can be configured in the following modes:  
True dual-port RAM  
Simple dual-port RAM  
Single-port RAM  
FIFO  
You cannot use an initialization file to initialize the contents of an M-RAM  
block. All M-RAM block contents power up to an undefined value. Only  
synchronous operation is supported in the M-RAM block, so all inputs  
are registered. Output registers can be bypassed.  
2–34  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Similar to all RAM blocks, M-RAM blocks can have different clocks on  
their inputs and outputs. Either of the two clocks feeding the block can  
clock M-RAM block registers (renwe, address, byte enable, datain, and  
output registers). The output register can be bypassed. The six labclk  
signals or local interconnect can drive the control signals for the A and B  
ports of the M-RAM block. ALMs can also control the clock_a,  
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and  
clocken_bsignals as shown in Figure 2–23.  
Figure 2–23. M-RAM Block Control Signals  
Dedicated  
Row LAB  
Clocks  
6
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
Local  
Local  
Interconnect  
Interconnect  
clocken_a  
renwe_a  
clock_b  
aclr_b  
Local  
Local  
Interconnect  
Interconnect  
clocken_b  
clock_a  
aclr_a  
renwe_b  
The R4, R24, C4, and direct link interconnects from adjacent LABs on  
either the right or left side drive the M-RAM block local interconnect. Up  
to 16 direct link input connections to the M-RAM block are possible from  
the left adjacent LABs and another 16 possible from the right adjacent  
LAB. M-RAM block outputs can also connect to left and right LABs  
through direct link interconnect. Figure 2–24 shows an example floorplan  
for the EP2S130 device and the location of the M-RAM interfaces.  
Figures 2–25 and 2–26 show the interface between the M-RAM block and  
the logic array.  
Altera Corporation  
May 2007  
2–35  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
Figure 2–24. EP2S130 Device with M-RAM Interface Locations Note (1)  
M-RAM blocks interface to  
LABs on right and left sides for  
easy access to horizontal I/O pins  
M-RAM  
Block  
M-RAM  
Block  
M-RAM  
Block  
M-RAM  
Block  
M-RAM  
Block  
M-RAM  
Block  
M4K  
Blocks  
M512  
Blocks  
DSP  
Blocks  
LABs  
DSP  
Blocks  
Note to Figure 2–24:  
(1) The device shown is an EP2S130 device. The number and position of M-RAM blocks varies in other devices.  
2–36  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–25. M-RAM Block LAB Row Interface Note (1)  
Row Unit Interface Allows LAB  
Rows to Drive Port A Datain,  
Dataout, Address and Control  
Signals to and from M-RAM Block  
Row Unit Interface Allows LAB  
Rows to Drive Port B Datain,  
Dataout, Address and Control  
Signals to and from M-RAM Block  
L0  
L1  
R0  
R1  
M-RAM Block  
L2  
L3  
L4  
L5  
R2  
R3  
R4  
R5  
Port A  
Port B  
LAB Interface  
Blocks  
LABs in Row  
M-RAM Boundary  
LABs in Row  
M-RAM Boundary  
Note to Figure 2–25:  
(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.  
Altera Corporation  
May 2007  
2–37  
Stratix II Device Handbook, Volume 1  
TriMatrix Memory  
Figure 2–26. M-RAM Row Unit Interface to Interconnect  
C4 Interconnect  
R4 and R24 Interconnects  
M-RAM Block  
LAB  
Up to 16  
dataout_a[ ]  
16  
datain_a[ ]  
addressa[ ]  
addr_ena_a  
renwe_a  
Up to 28  
Direct Link  
Interconnects  
byteena [ ]  
A
clocken_a  
clock_a  
aclr_a  
Row Interface Block  
M-RAM Block to  
LAB Row Interface  
Block Interconnect Region  
Table 2–4 shows the input and output data signal connections along with  
the address and control signal input connections to the row unit interfaces  
(L0 to L5 and R0 to R5).  
2–38  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Table 2–4. M-RAM Row Interface Unit Signals  
Unit Interface Block  
Input Signals  
Output Signals  
L0  
datain_a[14..0]  
dataout_a[11..0]  
byteena_a[1..0]  
L1  
L2  
datain_a[29..15]  
byteena_a[3..2]  
dataout_a[23..12]  
dataout_a[35..24]  
datain_a[35..30]  
addressa[4..0]  
addr_ena_a  
clock_a  
clocken_a  
renwe_a  
aclr_a  
L3  
L4  
L5  
R0  
R1  
R2  
addressa[15..5]  
datain_a[41..36]  
dataout_a[47..36]  
dataout_a[59..48]  
dataout_a[71..60]  
dataout_b[11..0]  
dataout_b[23..12]  
dataout_b[35..24]  
datain_a[56..42]  
byteena_a[5..4]  
datain_a[71..57]  
byteena_a[7..6]  
datain_b[14..0]  
byteena_b[1..0]  
datain_b[29..15]  
byteena_b[3..2]  
datain_b[35..30]  
addressb[4..0]  
addr_ena_b  
clock_b  
clocken_b  
renwe_b  
aclr_b  
R3  
R4  
R5  
addressb[15..5]  
datain_b[41..36]  
dataout_b[47..36]  
dataout_b[59..48]  
dataout_b[71..60]  
datain_b[56..42]  
byteena_b[5..4]  
datain_b[71..57]  
byteena_b[7..6]  
f
See the TriMatrix Embedded Memory Blocks in Stratix II & Stratix II GX  
Devices chapter in volume 2 of the Stratix II Device Handbook or the  
Stratix II GX Device Handbook for more information on TriMatrix  
memory.  
Altera Corporation  
May 2007  
2–39  
Stratix II Device Handbook, Volume 1  
Digital Signal Processing Block  
The most commonly used DSP functions are FIR filters, complex FIR  
Digital Signal  
Processing  
Block  
filters, IIR filters, fast Fourier transform (FFT) functions, direct cosine  
transform (DCT) functions, and correlators. All of these use the multiplier  
as the fundamental building block. Additionally, some applications need  
specialized operations such as multiply-add and multiply-accumulate  
operations. Stratix II devices provide DSP blocks to meet the arithmetic  
requirements of these functions.  
Each Stratix II device has from two to four columns of DSP blocks to  
efficiently implement DSP functions faster than ALM-based  
implementations. Stratix II devices have up to 24 DSP blocks per column  
(see Table 2–5). Each DSP block can be configured to support up to:  
Eight 9 × 9-bit multipliers  
Four 18 × 18-bit multipliers  
One 36 × 36-bit multiplier  
As indicated, the Stratix II DSP block can support one 36 × 36-bit  
multiplier in a single DSP block. This is true for any combination of  
signed, unsigned, or mixed sign multiplications.  
1
This list only shows functions that can fit into a single DSP block.  
Multiple DSP blocks can support larger multiplication  
functions.  
2–40  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–27 shows one of the columns with surrounding LAB rows.  
Figure 2–27. DSP Blocks Arranged in Columns  
DSP Block  
Column  
DSP Block  
4 LAB  
Rows  
Altera Corporation  
May 2007  
2–41  
Stratix II Device Handbook, Volume 1  
Digital Signal Processing Block  
Table 2–5 shows the number of DSP blocks in each Stratix II device.  
Table 2–5. DSP Blocks in Stratix II Devices Note (1)  
Total 9 × 9  
Multipliers  
Total 18 × 18  
Multipliers  
Total 36 × 36  
Multipliers  
Device  
DSP Blocks  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
12  
16  
36  
48  
63  
96  
96  
48  
64  
12  
16  
36  
48  
63  
96  
128  
288  
384  
504  
768  
144  
192  
252  
384  
Note to Table 2–5:  
(1) Each device has either the numbers of 9 × 9-, 18 × 18-, or 36 × 36-bit multipliers  
shown. The total number of multipliers for each device is not the sum of all the  
multipliers.  
DSP block multipliers can optionally feed an adder/subtractor or  
accumulator in the block depending on the configuration. This makes  
routing to ALMs easier, saves ALM routing resources, and increases  
performance, because all connections and blocks are in the DSP block.  
Additionally, the DSP block input registers can efficiently implement shift  
registers for FIR filter applications, and DSP blocks support Q1.15 format  
rounding and saturation.  
Figure 2–28 shows the top-level diagram of the DSP block configured for  
18 × 18-bit multiplier mode.  
2–42  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–28. DSP Block Diagram for 18 × 18-Bit Configuration  
Optional Serial Shift  
Register Inputs from  
Previous DSP Block  
Output  
Selection  
Adder Output Block  
Multiplier Block  
PRN  
PRN  
D
Multiplexer  
Q
ENA  
CLRN  
D
Q
Q1.15  
Round/  
Saturate  
Optional Stage Configurable  
as Accumulator or Dynamic  
Adder/Subtractor  
ENA  
CLRN  
PRN  
From the row  
interface block  
D
Q
ENA  
CLRN  
Adder/  
Q1.15  
Subtractor/  
Round/  
Accumulator  
Saturate  
1
PRN  
D
Q
PRN  
ENA  
CLRN  
D
Q
Q1.15  
Round/  
Saturate  
ENA  
CLRN  
PRN  
D
Q
Summation  
Block  
ENA  
CLRN  
Adder  
D
Q
ENA  
CLRN  
PRN  
D
Q
PRN  
ENA  
CLRN  
D
Q
Q1.15  
Round/  
Saturate  
Summation Stage  
for Adding Four  
ENA  
CLRN  
PRN  
Multipliers Together  
D
Q
ENA  
CLRN  
Adder/  
Subtractor/  
Accumulator  
2
Q1.15  
Round/  
Saturate  
PRN  
D
Q
PRN  
ENA  
CLRN  
D
Q
Q1.15  
Round/  
Saturate  
Optional Serial Shift  
Register Outputs to  
Next DSP Block  
ENA  
CLRN  
Optional Pipline  
Register Stage  
PRN  
D
Q
in the Column  
Optional Input Register  
Stage with Parallel Input or  
Shift Register Configuration  
ENA  
CLRN  
to MultiTrack  
Interconnect  
Altera Corporation  
May 2007  
2–43  
Stratix II Device Handbook, Volume 1  
Digital Signal Processing Block  
Modes of Operation  
The adder, subtractor, and accumulate functions of a DSP block have four  
modes of operation:  
Simple multiplier  
Multiply-accumulator  
Two-multipliers adder  
Four-multipliers adder  
Table 2–6 shows the different number of multipliers possible in each DSP  
block mode according to size. These modes allow the DSP blocks to  
implement numerous applications for DSP including FFTs, complex FIR,  
FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication  
and many other functions. The DSP blocks also support mixed modes  
and mixed multiplier sizes in the same block. For example, half of one  
DSP block can implement one 18 × 18-bit multiplier in multiply-  
accumulator mode, while the other half of the DSP block implements four  
9 × 9-bit multipliers in simple multiplier mode.  
Table 2–6. Multiplier Size & Configurations per DSP Block  
DSP Block Mode  
9 × 9  
18 × 18  
36 × 36  
Multiplier  
Eight multipliers with  
eight product outputs  
Four multipliers with four One multiplier with one  
product outputs  
product output  
Multiply-accumulator  
Two-multipliers adder  
-
Two 52-bit multiply-  
accumulate blocks  
-
Four two-multiplier adder Two two-multiplier adder  
(two 9 × 9 complex  
multiply)  
-
-
(one 18 × 18 complex  
multiply)  
Four-multipliers adder  
Two four-multiplier adder One four-multiplier adder  
DSP Block Interface  
Stratix II device DSP block input registers can generate a shift register that  
can cascade down in the same DSP block column. Dedicated connections  
between DSP blocks provide fast connections between the shift register  
inputs to cascade the shift register chains. You can cascade registers  
within multiple DSP blocks for 9 × 9- or 18 × 18-bit FIR filters larger than  
four taps, with additional adder stages implemented in ALMs. If the DSP  
block is configured as 36 × 36 bits, the adder, subtractor, or accumulator  
stages are implemented in ALMs. Each DSP block can route the shift  
register chain out of the block to cascade multiple columns of DSP blocks.  
2–44  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
The DSP block is divided into four block units that interface with four  
LAB rows on the left and right. Each block unit can be considered one  
complete 18 × 18-bit multiplier with 36 inputs and 36 outputs. A local  
interconnect region is associated with each DSP block. Like an LAB, this  
interconnect region can be fed with 16 direct link interconnects from the  
LAB to the left or right of the DSP block in the same row. R4 and C4  
routing resources can access the DSP block's local interconnect region.  
The outputs also work similarly to LAB outputs as well. Eighteen outputs  
from the DSP block can drive to the left LAB through direct link  
interconnects and eighteen can drive to the right LAB though direct link  
interconnects. All 36 outputs can drive to R4 and C4 routing  
interconnects. Outputs can drive right- or left-column routing.  
Figures 2–29 and 2–30 show the DSP block interfaces to LAB rows.  
Figure 2–29. DSP Block Interconnect Interface  
DSP Block  
OA[17..0]  
OB[17..0]  
R4, C4 & Direct  
R4, C4 & Direct  
Link Interconnects  
Link Interconnects  
A1[17..0]  
B1[17..0]  
OC[17..0]  
OD[17..0]  
A2[17..0]  
B2[17..0]  
OE[17..0]  
OF[17..0]  
A3[17..0]  
B3[17..0]  
OG[17..0]  
OH[17..0]  
A4[17..0]  
B4[17..0]  
Altera Corporation  
May 2007  
2–45  
Stratix II Device Handbook, Volume 1  
Digital Signal Processing Block  
Figure 2–30. DSP Block Interface to Interconnect  
Direct Link Interconnect  
from Adjacent LAB  
Direct Link Outputs  
to Adjacent LABs  
Direct Link Interconnect  
from Adjacent LAB  
C4 Interconnect  
R4 Interconnect  
36  
DSP Block  
Row Structure  
LAB  
36  
16  
LAB  
18  
16  
12  
36  
Control  
36  
A[17..0]  
B[17..0]  
OA[17..0]  
OB[17..0]  
Row Interface  
Block  
DSP Block to  
36 Inputs per Row  
36 Outputs per Row  
LAB Row Interface  
Block Interconnect Region  
A bus of 44 control signals feeds the entire DSP block. These signals  
include clocks, asynchronous clears, clock enables, signed/unsigned  
control signals, addition and subtraction control signals, rounding and  
saturation control signals, and accumulator synchronous loads. The clock  
signals are routed from LAB row clocks and are generated from specific  
LAB rows at the DSP block interface.  
2–46  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The LAB row source for control signals, data inputs, and outputs is  
shown in Table 2–7.  
Table 2–7. DSP Block Signal Sources & Destinations  
LAB Row at  
Interface  
Control Signals Generated  
Data Inputs Data Outputs  
0
clock0  
aclr0  
A1[17..0]  
B1[17..0]  
OA[17..0]  
OB[17..0]  
ena0  
mult01_saturate  
addnsub1_round/ accum_round  
addnsub1  
signa  
sourcea  
sourceb  
1
2
3
clock1  
aclr1  
ena1  
accum_saturate  
mult01_round  
accum_sload  
sourcea  
sourceb  
mode0  
A2[17..0]  
B2[17..0]  
OC[17..0]  
OD[17..0]  
clock2  
aclr2  
ena2  
mult23_saturate  
addnsub3_round/ accum_round  
addnsub3  
sign_b  
sourcea  
sourceb  
A3[17..0]  
B3[17..0]  
OE[17..0]  
OF[17..0]  
clock3  
aclr3  
A4[17..0]  
B4[17..0]  
OG[17..0]  
OH[17..0]  
ena3  
accum_saturate  
mult23_round  
accum_sload  
sourcea  
sourceb  
mode1  
f
See the DSP Blocks in Stratix II & Stratix II GX Devices chapter in  
volume 2 of the Stratix II Device Handbook or the Stratix II GX Device  
Handbook, for more information on DSP blocks.  
Altera Corporation  
May 2007  
2–47  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Stratix II devices provide a hierarchical clock structure and multiple PLLs  
with advanced features. The large number of clocking resources in  
combination with the clock synthesis precision provided by enhanced  
and fast PLLs provides a complete clock management solution.  
PLLs & Clock  
Networks  
Global & Hierarchical Clocking  
Stratix II devices provide 16 dedicated global clock networks and  
32 regional clock networks (eight per device quadrant). These clocks are  
organized into a hierarchical clock structure that allows for up to  
24 clocks per device region with low skew and delay. This hierarchical  
clocking scheme provides up to 48 unique clock domains in Stratix II  
devices.  
There are 16 dedicated clock pins (CLK[15..0]) to drive either the global  
or regional clock networks. Four clock pins drive each side of the device,  
as shown in Figures 2–31 and 2–32. Internal logic and enhanced and fast  
PLL outputs can also drive the global and regional clock networks. Each  
global and regional clock has a clock control block, which controls the  
selection of the clock source and dynamically enables/disables the clock  
to reduce power consumption. Table 2–8 shows global and regional clock  
features.  
Table 2–8. Global & Regional Clock Features  
Feature  
Global Clocks  
Regional Clocks  
Number per device  
16  
16  
32  
8
Number available per  
quadrant  
Sources  
CLKpins, PLL outputs, CLKpins, PLL outputs,  
or internal logic  
or internal logic  
Dynamic clock source  
selection  
v (1)  
Dynamic enable/disable  
v
v
Note to Table 2–8:  
(1) Dynamic source clock selection is supported for selecting between CLKppins and  
PLL outputs only.  
Global Clock Network  
These clocks drive throughout the entire device, feeding all device  
quadrants. The global clock networks can be used as clock sources for all  
resources in the device-IOEs, ALMs, DSP blocks, and all memory blocks.  
These resources can also be used for control signals, such as clock enables  
and synchronous or asynchronous clears fed from the external pin. The  
2–48  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
global clock networks can also be driven by internal logic for internally  
generated global clocks and asynchronous clears, clock enables, or other  
control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK  
pins driving global clock networks.  
Figure 2–31. Global Clocking  
CLK[15..12]  
Global Clock [15..0]  
CLK[3..0]  
CLK[11..8]  
Global Clock [15..0]  
CLK[7..4]  
Regional Clock Network  
There are eight regional clock networks RCLK[7..0]in each quadrant of  
the Stratix II device that are driven by the dedicated CLK[15..0]input  
pins, by PLL outputs, or by internal logic. The regional clock networks  
provide the lowest clock delay and skew for logic contained in a single  
quadrant. The CLKclock pins symmetrically drive the RCLKnetworks in  
a particular quadrant, as shown in Figure 2–32.  
Altera Corporation  
May 2007  
2–49  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Figure 2–32. Regional Clocks  
RCLK[31..28] RCLK[27..24]  
CLK[15..12]  
RCLK[3..0]  
RCLK[23..20]  
CLK[11..8]  
CLK[3..0]  
RCLK[7..4]  
RCLK[19..16]  
CLK[7..4]  
Regional Clocks Only Drive a Device  
Quadrant from Specified CLK Pins,  
PLLs or Core Logic within that Quadrant  
RCLK[11..8] RCLK[15..12]  
Dual-Regional Clock Network  
A single source (CLKpin or PLL output) can generate a dual-regional  
clock by driving two regional clock network lines in adjacent quadrants  
(one from each quadrant). This allows logic that spans multiple  
quadrants to utilize the same low skew clock. The routing of this clock  
signal on an entire side has approximately the same speed but slightly  
higher clock skew when compared with a clock signal that drives a single  
quadrant. Internal logic-array routing can also drive a dual-regional  
clock. Clock pins and enhanced PLL outputs on the top and bottom can  
drive horizontal dual-regional clocks. Clock pins and fast PLL outputs on  
the left and right can drive vertical dual-regional clocks, as shown in  
Figure 2–33. Corner PLLs cannot drive dual-regional clocks.  
2–50  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
Figure 2–33. Dual-Regional Clocks  
Clock Pins or PLL Clock Outputs  
Can Drive Dual-Regional Network  
Clock Pins or PLL Clock  
Outputs Can Drive  
Dual-Regional Network  
CLK[15..12]  
CLK[15..12]  
CLK[3..0]  
CLK[11..8]  
CLK[3..0]  
CLK[11..8]  
PLLs  
PLLs  
CLK[7..4]  
CLK[7..4]  
Combined Resources  
Within each quadrant, there are 24 distinct dedicated clocking resources  
consisting of 16 global clock lines and eight regional clock lines.  
Multiplexers are used with these clocks to form busses to drive LAB row  
clocks, column IOE clocks, or row IOE clocks. Another multiplexer is  
used at the LAB level to select three of the six row clocks to feed the ALM  
registers in the LAB (see Figure 2–34).  
Figure 2–34. Hierarchical Clock Networks Per Quadrant  
Clocks Available  
to a Quadrant  
or Half-Quadrant  
Column I/O Cell  
IO_CLK[7..0]  
Global Clock Network [15..0]  
Regional Clock Network [7..0]  
Clock [23..0]  
Lab Row Clock [5..0]  
Row I/O Cell  
IO_CLK[7..0]  
Altera Corporation  
May 2007  
2–51  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
IOE clocks have row and column block regions that are clocked by eight  
I/O clock signals chosen from the 24 quadrant clock resources.  
Figures 2–35 and 2–36 show the quadrant relationship to the I/O clock  
regions.  
Figure 2–35. EP2S15 & EP2S30 Device I/O Clock Groups  
IO_CLKA[7:0]  
IO_CLKB[7:0]  
8
8
I/O Clock Regions  
8
24 Clocks in  
the Quadrant  
24 Clocks in  
the Quadrant  
IO_CLKH[7:0]  
IO_CLKC[7:0]  
IO_CLKD[7:0]  
8
8
IO_CLKG[7:0]  
24 Clocks in  
the Quadrant  
24 Clocks in  
the Quadrant  
8
8
8
IO_CLKF[7:0]  
IO_CLKE[7:0]  
2–52  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–36. EP2S60, EP2S90, EP2S130 & EP2S180 Device I/O Clock Groups  
IO_CLKA[7:0]  
IO_CLKB[7:0]  
IO_CLKC[7:0]  
IO_CLKD[7:0]  
8
8
8
8
I/O Clock Regions  
IO_CLKE[7:0]  
8
8
8
8
8
8
IO_CLKP[7:0]  
24 Clocks in the  
Quadrant  
24 Clocks in the  
Quadrant  
IO_CLKF[7:0]  
IO_CLKO[7:0]  
IO_CLKN[7:0]  
IO_CLKG[7:0]  
IO_CLKH[7:0]  
24 Clocks in the  
Quadrant  
24 Clocks in the  
Quadrant  
8
8
IO_CLKM[7:0]  
8
8
8
8
IO_CLKL[7:0]  
IO_CLKK[7:0]  
IO_CLKJ[7:0]  
IO_CLKI[7:0]  
You can use the Quartus II software to control whether a clock input pin  
drives either a global, regional, or dual-regional clock network. The  
Quartus II software automatically selects the clocking resources if not  
specified.  
Clock Control Block  
Each global clock, regional clock, and PLL external clock output has its  
own clock control block. The control block has two functions:  
Clock source selection (dynamic selection for global clocks)  
Clock power-down (dynamic clock enable/disable)  
Altera Corporation  
May 2007  
2–53  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
1
When using the global or regional clock control blocks in  
Stratix II devices to select between multiple clocks or to enable  
and disable clock networks, be aware of possible narrow pulses  
or glitches when switching from one clock signal to another. A  
glitch or runt pulse has a width that is less than the width of the  
highest frequency input clock signal. To prevent logic errors  
within the FPGA, Altera recommends that you build circuits  
that filter out glitches and runt pulses.  
Figures 2–37 through 2–39 show the clock control block for the global  
clock, regional clock, and PLL external clock output, respectively.  
Figure 2–37. Global Clock Control Blocks  
CLKp  
Pins  
PLL Counter  
Outputs  
2
2
CLKn  
Pin  
Internal  
Logic  
CLKSELECT[1..0]  
2
(1)  
Static Clock Select (2)  
This multiplexer supports  
User-Controllable  
Dynamic Switching  
Enable/  
Disable  
Internal  
Logic  
GCLK  
Notes to Figure 2–37:  
(1) These clock select signals can be dynamically controlled through internal logic  
when the device is operating in user mode.  
(2) These clock select signals can only be set through a configuration file (.sof or .pof)  
and cannot be dynamically controlled during user mode operation.  
2–54  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–38. Regional Clock Control Blocks  
CLKp  
Pin  
CLKn  
Pin  
(2)  
PLL Counter  
Outputs (3)  
2
Internal  
Logic  
Static Clock Select  
(1)  
Enable/  
Disable  
Internal  
Logic  
RCLK  
Notes to Figure 2–38:  
(1) These clock select signals can only be set through a configuration file (.sof or .pof)  
and cannot be dynamically controlled during user mode operation.  
(2) Only the CLKnpins on the top and bottom of the device feed to regional clock select  
blocks.The clock outputs from corner PLLs cannot be dynamically selected  
through the global clock control block.  
(3) The clock outputs from corner PLLs cannot be dynamically selected through the  
global clock control block.  
Altera Corporation  
May 2007  
2–55  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Figure 2–39. External PLL Output Clock Control Blocks  
PLL Counter  
Outputs (c[5..0])  
6
Static Clock Select  
(1)  
Enable/  
Disable  
Internal  
Logic  
IOE (2)  
Internal  
Logic  
Static Clock  
Select  
(1)  
PLL_OUT  
Pin  
Notes to Figure 2–39:  
(1) These clock select signals can only be set through a configuration file (.sof or .pof)  
and cannot be dynamically controlled during user mode operation.  
(2) The clock control block feeds to a multiplexer within the PLL_OUTpin’s IOE. The  
PLL_OUTpin is a dual-purpose pin. Therefore, this multiplexer selects either an  
internal signal or the output of the clock control block.  
For the global clock control block, the clock source selection can be  
controlled either statically or dynamically. The user has the option of  
statically selecting the clock source by using the Quartus II software to set  
specific configuration bits in the configuration file (.sof or .pof) or the  
user can control the selection dynamically by using internal logic to drive  
the multiplexor select inputs. When selecting statically, the clock source  
can be set to any of the inputs to the select multiplexor. When selecting  
the clock source dynamically, you can either select between two PLL  
outputs (such as the C0 or C1 outputs from one PLL), between two PLLs  
(such as the C0/C1 clock output of one PLL or the C0/C1 c1ock output of  
the other PLL), between two clock pins (such as CLK0or CLK1), or  
between a combination of clock pins or PLL outputs. The clock outputs  
from corner PLLs cannot be dynamically selected through the global  
control block.  
For the regional and PLL_OUTclock control block, the clock source  
selection can only be controlled statically using configuration bits. Any of  
the inputs to the clock select multiplexor can be set as the clock source.  
2–56  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The Stratix II clock networks can be disabled (powered down) by both  
static and dynamic approaches. When a clock net is powered down, all  
the logic fed by the clock net is in an off-state thereby reducing the overall  
power consumption of the device.  
The global and regional clock networks can be powered down statically  
through a setting in the configuration (.sof or .pof) file. Clock networks  
that are not used are automatically powered down through configuration  
bit settings in the configuration file generated by the Quartus II software.  
The dynamic clock enable/disable feature allows the internal logic to  
control power up/down synchronously on GCLK and RCLKnets and  
PLL_OUTpins. This function is independent of the PLL and is applied  
directly on the clock network or PLL_OUTpin, as shown in Figures 2–37  
through 2–39.  
1
The following restrictions for the input clock pins apply:  
CLK0 pin -> inclk[0] of CLKCTRL  
CLK1 pin -> inclk[1] of CLKCTRL  
CLK2 pin -> inclk[0] of CLKCTRL  
CLK3 pin -> inclk[1] of CLKCTRL  
In general, even CLK numbers connect to the inclk[0]port of  
CLKCTRL, and odd CLK numbers connect to the inclk[1]port  
of CLKCTRL.  
Failure to comply with these restrictions will result in a no-fit  
error.  
Enhanced & Fast PLLs  
Stratix II devices provide robust clock management and synthesis using  
up to four enhanced PLLs and eight fast PLLs. These PLLs increase  
performance and provide advanced clock interfacing and clock-  
frequency synthesis. With features such as clock switchover,  
spread-spectrum clocking, reconfigurable bandwidth, phase control, and  
reconfigurable phase shifting, the Stratix II device’s enhanced PLLs  
provide you with complete control of clocks and system timing. The fast  
PLLs provide general purpose clocking with multiplication and phase  
shifting as well as high-speed outputs for high-speed differential I/O  
support. Enhanced and fast PLLs work together with the Stratix II  
high-speed I/O and advanced clock architecture to provide significant  
improvements in system performance and bandwidth.  
Altera Corporation  
May 2007  
2–57  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
The Quartus II software enables the PLLs and their features without  
requiring any external devices. Table 2–9 shows the PLLs available for  
each Stratix II device and their type.  
Table 2–9. Stratix II Device PLL Availability  
Fast PLLs  
Enhanced PLLs  
Device  
1
2
3
4
7
8
9
10  
5
6
11  
12  
EP2S15  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
EP2S30  
EP2S60 (1)  
EP2S90 (2)  
EP2S130 (3)  
EP2S180  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Notes to Table 2–9:  
(1) EP2S60 devices in the 1020-pin package contain 12 PLLs. EP2S60 devices in the 484-pin and 672-pin packages  
contain fast PLLs 1–4 and enhanced PLLs 5 and 6.  
(2) EP2S90 devices in the 1020-pin and 1508-pin packages contain 12 PLLs. EP2S90 devices in the 484-pin and 780-pin  
packages contain fast PLLS 1–4 and enhanced PLLs 5 and 6.  
(3) EP2S130 devices in the 1020-pin and 1508-pin packages contain 12PLLs. The EP2S130 device in the 780-pin package  
contains fast PLLs 1–4 and enhanced PLLs 5 and 6.  
2–58  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–10 shows the enhanced PLL and fast PLL features in Stratix II  
devices.  
Table 2–10. Stratix II PLL Features  
Feature  
Enhanced PLL  
Fast PLL  
Clock multiplication and division  
Phase shift  
m/(n × post-scale counter) (1)  
m/(n × post-scale counter) (2)  
Down to 125-ps increments (3), (4)  
Down to 125-ps increments (3), (4)  
Clock switchover  
v
v (5)  
v
PLL reconfiguration  
v
Reconfigurable bandwidth  
Spread spectrum clocking  
Programmable duty cycle  
Number of internal clock outputs  
Number of external clock outputs  
Number of feedback clock inputs  
v
v
v
v
v
4
6
Three differential/six single-ended  
(6)  
One single-ended or differential  
(7), (8)  
Notes to Table 2–10:  
(1) For enhanced PLLs, m ranges from 1 to 256, while n and post-scale counters range from 1 to 512 with 50% duty  
cycle.  
(2) For fast PLLs, m, and post-scale counters range from 1 to 32. The n counter ranges from 1 to 4.  
(3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.  
(4) For degree increments, Stratix II devices can shift all output frequencies in increments of at least 45. Smaller degree  
increments are possible depending on the frequency and divide parameters.  
(5) Stratix II fast PLLs only support manual clock switchover.  
(6) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data  
channel to generate txclkout.  
(7) If the feedback input is used, you lose one (or two, if FBIN is differential) external clock output pin.  
(8) Every Stratix II device has at least two enhanced PLLs with one single-ended or differential external feedback input  
per PLL.  
Altera Corporation  
May 2007  
2–59  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Figure 2–40 shows a top-level diagram of the Stratix II device and PLL  
floorplan.  
Figure 2–40. PLL Locations  
CLK[15..12]  
11  
5
7
10  
FPLL7CLK  
FPLL10CLK  
CLK[8..11]  
FPLL9CLK  
1
2
4
3
CLK[3..0]  
PLLs  
FPLL8CLK  
8
9
12  
6
CLK[7..4]  
Figures 2–41 and 2–42 shows the global and regional clocking from the  
fast PLL outputs and the side clock pins.  
2–60  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–41. Global & Regional Clock Connections from Center Clock Pins &  
Fast PLL Outputs  
Note (1)  
Notes to Figure 2–41:  
(1) EP2S15 and EP2S30 devices only have four fast PLLs (1, 2, 3, and 4), but the  
connectivity from these four PLLs to the global and regional clock networks  
remains the same as shown.  
(2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input.  
The global or regional clock input can be driven by an output from another PLL, a  
pin-driven dedicated global or regional clock, or through a clock control block,  
provided the clock control block is fed by an output from another PLL or a  
pin-driven dedicated global or regional clock. An internally generated global  
signal cannot drive the PLL.  
Altera Corporation  
May 2007  
2–61  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Figure 2–42. Global & Regional Clock Connections from Corner Clock Pins &  
Fast PLL Outputs  
Note (1)  
Note to Figure 2–42:  
(1) The corner fast PLLs can also be driven through the global or regional clock  
networks. The global or regional clock input can be driven by an output from  
another PLL, a pin-driven dedicated global or regional clock, or through a clock  
control block, provided the clock control block is fed by an output from another  
PLL or a pin-driven dedicated global or regional clock. An internally generated  
global signal cannot drive the PLL.  
2–62  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–43 shows the global and regional clocking from enhanced PLL  
outputs and top and bottom CLKpins. The connections to the global and  
regional clocks from the top clock pins and enhanced PLL outputs is  
shown in Table 2–11. The connections to the clocks from the bottom clock  
pins is shown in Table 2–12.  
Altera Corporation  
May 2007  
2–63  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Figure 2–43. Global & Regional Clock Connections from Top & Bottom Clock Pins & Enhanced PLL Outputs  
Notes (1), (2), and (3)  
CLK15  
CLK14  
CLK13  
CLK12  
PLL5_FB  
PLL11_FB  
PLL 11  
PLL 5  
c0 c1 c2 c3 c4 c5 c0 c1 c2 c3 c4 c5  
PLL5_OUT[2..0]p  
PLL5_OUT[2..0]n  
PLL11_OUT[2..0]p  
PLL11_OUT[2..0]n  
RCLK31  
RCLK30  
RCLK29  
RCLK28  
RCLK27  
Regional  
Clocks  
RCLK26  
RCLK25  
RCLK24  
G15  
G14  
G13  
G12  
Global  
Clocks  
G4  
G5  
G6  
G7  
RCLK8  
RCLK9  
RCLK10  
RCLK11  
Regional  
Clocks  
RCLK12  
RCLK13  
RCLK14  
RCLK15  
PLL12_OUT[2..0]p  
PLL12_OUT[2..0]n  
PLL6_OUT[2..0]p  
PLL6_OUT[2..0]n  
c0 c1 c2 c3 c4 c5 c0 c1 c2 c3 c4 c5  
PLL 12  
PLL 6  
PLL12_FB  
PLL6_FB  
CLK4  
CLK6  
CLK5  
CLK7  
Notes to Figure 2–43:  
(1) EP2S15 and EP2S30 devices only have two enhanced PLLs (5 and 6), but the connectivity from these two PLLs to  
the global and regional clock networks remains the same as shown.  
(2) If the design uses the feedback input, you lose one (or two, if FBIN is differential) external clock output pin.  
(3) The enhanced PLLs can also be driven through the global or regional clock netowrks. The global or regional clock  
input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a  
clock control block provided the clock control block is fed by an output from another PLL or a pin-driven dedicated  
global or regional clock. An internally generated global signal cannot drive the PLL.  
2–64  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–11. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs (Part 1  
of 2)  
Top Side Global & Regional  
Clock Network Connectivity  
Clock pins  
CLK12p  
v
v
v
v
v
v
v
v
v
v
v
v
CLK13p  
CLK14p  
CLK15p  
CLK12n  
CLK13n  
CLK14n  
CLK15n  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Drivers from internal logic  
GCLKDRV0  
GCLKDRV1  
GCLKDRV2  
GCLKDRV3  
RCLKDRV0  
RCLKDRV1  
RCLKDRV2  
RCLKDRV3  
RCLKDRV4  
RCLKDRV5  
RCLKDRV6  
RCLKDRV7  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Enhanced PLL 5 outputs  
c0  
v
v
v
v
v
v
v
v
v
v
c1  
c2  
c3  
v
v
v
v
v
v
v
v
v
v
Altera Corporation  
May 2007  
2–65  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Table 2–11. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs (Part 2  
of 2)  
Top Side Global & Regional  
Clock Network Connectivity  
c4  
v
v
v
v
v
v
v
v
c5  
v
v
v
v
v
v
Enhanced PLL 11 outputs  
c0  
v
v
v
v
c1  
c2  
c3  
c4  
c5  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Table 2–12. Global & Regional Clock Connections from Bottom Clock Pins & Enhanced PLL  
Outputs (Part 1 of 2)  
Bottom Side Global &  
Regional Clock Network  
Connectivity  
Clock pins  
CLK4p  
v
v
v
v
v
v
v
v
v
v
v
v
CLK5p  
CLK6p  
CLK7p  
CLK4n  
CLK5n  
CLK6n  
CLK7n  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Drivers from internal logic  
GCLKDRV0  
GCLKDRV1  
GCLKDRV2  
2–66  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–12. Global & Regional Clock Connections from Bottom Clock Pins & Enhanced PLL  
Outputs (Part 2 of 2)  
Bottom Side Global &  
Regional Clock Network  
Connectivity  
GCLKDRV3  
RCLKDRV0  
RCLKDRV1  
RCLKDRV2  
RCLKDRV3  
RCLKDRV4  
RCLKDRV5  
RCLKDRV6  
RCLKDRV7  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Enhanced PLL 6 outputs  
c0  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
c1  
c2  
c3  
c4  
c5  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Enhanced PLL 12 outputs  
c0  
v
v
v
v
v
c1  
c2  
c3  
c4  
c5  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
Altera Corporation  
May 2007  
2–67  
Stratix II Device Handbook, Volume 1  
PLLs & Clock Networks  
Enhanced PLLs  
Stratix II devices contain up to four enhanced PLLs with advanced clock  
management features. Figure 2–44 shows a diagram of the enhanced PLL.  
Figure 2–44. Stratix II Enhanced PLL Note (1)  
From Adjacent PLL  
Post-Scale  
VCO Phase Selection  
Selectable at Each  
PLL Output Port  
Counters  
Clock  
Switchover  
Circuitry  
Spread  
Spectrum  
/c0  
/c1  
/c2  
Phase Frequency  
Detector  
INCLK[3..0]  
4
4
8
6
Global  
Clocks  
/n  
8
Charge  
Pump  
Loop  
Filter  
PFD  
VCO  
6
Regional  
Clocks  
Global or  
Regional  
/c3  
/c4  
/c5  
Clock  
(4)  
I/O Buffers  
(3)  
/m  
(2)  
to I/O or general  
routing  
Lock Detect  
& Filter  
FBIN  
VCO Phase Selection  
Affecting All Outputs  
Shaded Portions of the  
PLL are Reconfigurable  
Notes to Figure 2–44:  
(1) Each clock source can come from any of the four clock pins that are physically located on the same side of the device  
as the PLL.  
(2) If the feedback input is used, you lose one (or two, if FBIN is differential) external clock output pin.  
(3) Each enhanced PLL has three differential external clock outputs or six single-ended external clock outputs.  
(4) The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or  
regional clock, or through a clock control block, provided the clock control block is fed by an output from another  
PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL.  
2–68  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Fast PLLs  
Stratix II devices contain up to eight fast PLLs with high-speed serial  
interfacing ability. Figure 2–45 shows a diagram of the fast PLL.  
Figure 2–45. Stratix II Device Fast PLL Notes (1), (2), (3)  
Post-Scale  
Counters  
VCO Phase Selection  
Selectable at each PLL  
Output Port  
Clock  
Switchover  
Circuitry (4)  
Phase  
Frequency  
Detector  
diffioclk0 (2)  
Global or  
regional clock (1)  
load_en0  
(3)  
÷c0  
÷c1  
÷c2  
(5)  
8
Charge  
Pump  
(3)  
(2)  
Loop  
Filter  
load_en1  
diffioclk1  
÷k  
÷n  
PFD  
VCO  
4
Clock  
Input  
4
8
Global clocks  
4
Global or  
regional clock (1)  
Regional clocks  
÷c3  
÷m  
8
to DPA block  
Shaded Portions of the  
PLL are Reconfigurable  
Notes to Figure 2–45:  
(1) The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or  
regional clock, or through a clock control block, provided the clock control block is fed by an output from another  
PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL.  
(2) In high-speed differential I/O support mode, this high-speed PLL clock feeds the SERDES circuitry. Stratix II  
devices only support one rate of data transfer per fast PLL in high-speed differential I/O support mode.  
(3) This signal is a differential I/O SERDES control signal.  
(4) Stratix II fast PLLs only support manual clock switchover.  
(5) If the design enables this ÷2 counter, then the device can use a VCO frequency range of 150 to 520 MHz.  
f
See the PLLs in Stratix II & Stratix II GX Devices chapter in volume 2 of  
the Stratix II Device Handbook or the Stratix II GX Device Handbook for  
more information on enhanced and fast PLLs. See “High-Speed  
Differential I/O with DPA Support” on page 2–96 for more information  
on high-speed differential I/O support.  
The Stratix II IOEs provide many features, including:  
I/O Structure  
Dedicated differential and single-ended I/O buffers  
3.3-V, 64-bit, 66-MHz PCI compliance  
3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance  
Joint Test Action Group (JTAG) boundary-scan test (BST) support  
On-chip driver series termination  
On-chip parallel termination  
On-chip termination for differential standards  
Programmable pull-up during configuration  
Altera Corporation  
May 2007  
2–69  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Output drive strength control  
Tri-state buffers  
Bus-hold circuitry  
Programmable pull-up resistors  
Programmable input and output delays  
Open-drain outputs  
DQ and DQS I/O pins  
Double data rate (DDR) registers  
The IOE in Stratix II devices contains a bidirectional I/O buffer, six  
registers, and a latch for a complete embedded bidirectional single data  
rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The  
IOE contains two input registers (plus a latch), two output registers, and  
two output enable registers. The design can use both input registers and  
the latch to capture DDR input and both output registers to drive DDR  
outputs. Additionally, the design can use the output enable (OE) register  
for fast clock-to-output enable timing. The negative edge-clocked OE  
register is used for DDR SDRAM interfacing. The Quartus II software  
automatically duplicates a single OE register that controls multiple  
output or bidirectional pins.  
2–70  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–46. Stratix II IOE Structure  
Logic Array  
OE Register  
D
Q
OE  
OE Register  
D
Q
Output Register  
D
Q
Output A  
Output B  
CLK  
Output Register  
D
Q
Input Register  
D
Q
Input A  
Input B  
Input Latch  
Input Register  
D
Q
D
Q
ENA  
The IOEs are located in I/O blocks around the periphery of the Stratix II  
device. There are up to four IOEs per row I/O block and four IOEs per  
column I/O block. The row I/O blocks drive row, column, or direct link  
interconnects. The column I/O blocks drive column interconnects.  
Figure 2–47 shows how a row I/O block connects to the logic array.  
Figure 2–48 shows how a column I/O block connects to the logic array.  
Altera Corporation  
May 2007  
2–71  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Figure 2–47. Row I/O Block Connection to the Interconnect Note (1)  
R4 & R24  
Interconnects  
C4 Interconnect  
I/O Block Local  
Interconnect  
32 Data & Control  
Signals from  
Logic Array (1)  
32  
LAB  
Horizontal  
I/O Block  
io_dataina[3..0]  
io_datainb[3..0]  
Direct Link  
Interconnect  
to Adjacent LAB  
Direct Link  
Interconnect  
to Adjacent LAB  
Horizontal I/O  
Block Contains  
up to Four IOEs  
io_clk[7:0]  
LAB Local  
Interconnect  
Note to Figure 2–47:  
(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications  
io_dataouta[3..0]and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables  
io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous  
clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals  
io_sclr/spreset[3..0].  
2–72  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–48. Column I/O Block Connection to the Interconnect Note (1)  
32 Data &  
Control Signals  
from Logic Array (1)  
Vertical I/O  
Block Contains  
up to Four IOEs  
Vertical I/O Block  
32  
IO_dataina[3:0]  
IO_datainb[3:0]  
io_clk[7..0]  
I/O Block  
Local Interconnect  
R4 & R24  
Interconnects  
LAB  
LAB  
LAB  
LAB Local  
Interconnect  
C4 & C16  
Interconnects  
Note to Figure 2–48:  
(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications  
io_dataouta[3..0]and io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables  
io_ce_in[3..0], four output clock enables io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous  
clear and preset signals io_aclr/apreset[3..0], and four synchronous clear and preset signals  
io_sclr/spreset[3..0].  
Altera Corporation  
May 2007  
2–73  
Stratix II Device Handbook, Volume 1  
I/O Structure  
There are 32 control and data signals that feed each row or column I/O  
block. These control and data signals are driven from the logic array. The  
row or column IOE clocks, io_clk[7..0], provide a dedicated routing  
resource for low-skew, high-speed clocks. I/O clocks are generated from  
global or regional clocks (see the “PLLs & Clock Networks” section).  
Figure 2–49 illustrates the signal paths through the I/O block.  
Figure 2–49. Signal Path through the I/O Block  
Row or Column  
io_clk[7..0]  
To Other  
IOEs  
io_dataina  
To Logic  
Array  
io_datainb  
oe  
ce_in  
io_oe  
io_ce_in  
io_ce_out  
io_aclr  
ce_out  
Control  
Signal  
Selection  
IOE  
aclr/apreset  
sclr/spreset  
From Logic  
Array  
clk_in  
io_sclr  
io_clk  
clk_out  
io_dataouta  
io_dataoutb  
Each IOE contains its own control signal selection for the following  
control signals: oe, ce_in, ce_out, aclr/apreset, sclr/spreset,  
clk_in, and clk_out. Figure 2–50 illustrates the control signal  
selection.  
2–74  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Stratix II Architecture  
Figure 2–50. Control Signal Selection per IOE  
Dedicated I/O  
Clock [7..0]  
io_oe  
Local  
Interconnect  
io_sclr  
Local  
Interconnect  
io_aclr  
Local  
Interconnect  
io_ce_out  
Local  
Interconnect  
io_ce_in  
io_clk  
Local  
Interconnect  
ce_out  
clk_out  
sclr/spreset  
Local  
Interconnect  
clk_in  
ce_in  
aclr/apreset  
oe  
Notes to Figure 2–50:  
(1) Control signals ce_in, ce_out, aclr/apreset, sclr/spreset, and oecan be global signals even though their  
control selection multiplexers are not directly fed by the ioe_clk[7..0]signals. The ioe_clksignals can drive  
the I/O local interconnect, which then drives the control selection multiplexers.  
In normal bidirectional operation, the input register can be used for input  
data requiring fast setup times. The input register can have its own clock  
input and clock enable separate from the OE and output registers. The  
output register can be used for data requiring fast clock-to-output  
performance. The OE register can be used for fast clock-to-output enable  
timing. The OE and output register share the same clock source and the  
same clock enable source from local interconnect in the associated LAB,  
dedicated I/O clocks, and the column and row interconnects.  
Altera Corporation  
May 2007  
2–75  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Figure 2–51 shows the IOE in bidirectional configuration.  
Figure 2–51. Stratix II IOE in Bidirectional I/O Configuration Note (1)  
ioe_clk[7..0]  
Column, Row,  
or Local  
Interconnect  
oe  
OE Register  
D
Q
clkout  
ENA  
CLRN/PRN  
OE Register  
t
Delay  
CO  
ce_out  
V
CCIO  
PCI Clamp (2)  
V
CCIO  
Programmable  
Pull-Up  
aclr/apreset  
Resistor  
Chip-Wide Reset  
On-Chip  
Termination  
Output Register  
Output  
Pin Delay  
D
Q
Drive Strength Control  
Open-Drain Output  
sclr/spreset  
ENA  
CLRN/PRN  
Input Pin to  
Logic Array Delay  
Bus-Hold  
Circuit  
Input Pin to  
Input Register Delay  
Input Register  
clkin  
D
Q
ce_in  
ENA  
CLRN/PRN  
Notes to Figure 2–51:  
(1) All input signals to the IOE can be inverted at the IOE.  
(2) The optional PCI clamp is only available on column I/O pins.  
2–76  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
The Stratix II device IOE includes programmable delays that can be  
activated to ensure input IOE register-to-logic array register transfers,  
input pin-to-logic array register transfers, or output IOE register-to-pin  
transfers.  
A path in which a pin directly drives a register may require the delay to  
ensure zero hold time, whereas a path in which a pin drives a register  
through combinational logic may not require the delay. Programmable  
delays exist for decreasing input-pin-to-logic-array and IOE input  
register delays. The Quartus II Compiler can program these delays to  
automatically minimize setup time while providing a zero hold time.  
Programmable delays can increase the register-to-pin delays for output  
and/or output enable registers. Programmable delays are no longer  
required to ensure zero hold times for logic array register-to-IOE register  
transfers. The Quartus II Compiler can create the zero hold time for these  
transfers. Table 2–13 shows the programmable delays for Stratix II  
devices.  
Table 2–13. Stratix II Programmable Delay Chain  
Programmable Delays  
Quartus II Logic Option  
Input pin to logic array delay  
Input pin to input register delay  
Output pin delay  
Input delay from pin to internal cells  
Input delay from pin to input register  
Delay from output register to output pin  
Delay to output enable pin  
Output enable register tCO delay  
The IOE registers in Stratix II devices share the same source for clear or  
preset. You can program preset or clear for each individual IOE. You can  
also program the registers to power up high or low after configuration is  
complete. If programmed to power up low, an asynchronous clear can  
control the registers. If programmed to power up high, an asynchronous  
preset can control the registers. This feature prevents the inadvertent  
activation of another device's active-low input upon power-up. If one  
register in an IOE uses a preset or clear signal then all registers in the IOE  
must use that same signal if they require preset or clear. Additionally, a  
synchronous reset signal is available for the IOE registers.  
Double Data Rate I/O Pins  
Stratix II devices have six registers in the IOE, which support DDR  
interfacing by clocking data on both positive and negative clock edges.  
The IOEs in Stratix II devices support DDR inputs, DDR outputs, and  
bidirectional DDR modes.  
Altera Corporation  
May 2007  
2–77  
Stratix II Device Handbook, Volume 1  
I/O Structure  
When using the IOE for DDR inputs, the two input registers clock double  
rate input data on alternating edges. An input latch is also used in the IOE  
for DDR input acquisition. The latch holds the data that is present during  
the clock high times. This allows both bits of data to be synchronous with  
the same clock edge (either rising or falling). Figure 2–52 shows an IOE  
configured for DDR input. Figure 2–53 shows the DDR input timing  
diagram.  
Figure 2–52. Stratix II IOE in DDR Input I/O Configuration Notes (1), (2), (3)  
ioe_clk[7..0]  
VCCIO  
Column, Row,  
or Local  
PCI Clamp (4)  
To DQS Logic  
Block (3)  
Interconnect  
DQS Local  
Bus (2)  
VCCIO  
Programmable  
Pull-Up  
Resistor  
On-Chip  
Termination  
I
nput Pin to  
Input RegisterDelay  
sclr/spreset  
Input Register  
D
Q
clkin  
ENA  
CLRN/PRN  
ce_in  
Bus-Hold  
Circuit  
aclr/apreset  
Chip-Wide Reset  
Latch  
D Q  
Input Register  
D
Q
ENA  
ENA  
CLRN/PRN  
CLRN/PRN  
Notes to Figure 2–52:  
(1) All input signals to the IOE can be inverted at the IOE.  
(2) This signal connection is only allowed on dedicated DQ function pins.  
(3) This signal is for dedicated DQS function pins only.  
(4) The optional PCI clamp is only available on column I/O pins.  
2–78  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–53. Input Timing Diagram in DDR Mode  
Data at  
input pin  
B0  
A0 B1 A1 B2 A2 B3 A3 B4  
CLK  
A0  
B0  
A1  
B1  
A2  
B2  
A3  
B3  
Input To  
Logic Array  
When using the IOE for DDR outputs, the two output registers are  
configured to clock two data paths from ALMs on rising clock edges.  
These output registers are multiplexed by the clock to drive the output  
pin at a ×2 rate. One output register clocks the first bit out on the clock  
high time, while the other output register clocks the second bit out on the  
clock low time. Figure 2–54 shows the IOE configured for DDR output.  
Figure 2–55 shows the DDR output timing diagram.  
Altera Corporation  
May 2007  
2–79  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Figure 2–54. Stratix II IOE in DDR Output I/O Configuration Notes (1), (2)  
ioe_clk[7..0]  
Column, Row,  
or Local  
Interconnect  
oe  
OE Register  
D
Q
clkout  
ENA  
CLRN/PRN  
OE Register  
Delay  
ce_out  
t
CO  
aclr/apreset  
sclr/spreset  
V
CCIO  
PCI Clamp (3)  
Chip-Wide Reset  
OE Register  
V
CCIO  
D
Q
Programmable  
Pull-Up  
Resistor  
Used for  
DDR, DDR2  
SDRAM  
ENA  
CLRN/PRN  
Output Register  
D
Q
On-Chip  
Termination  
Output  
Pin Delay  
clk  
ENA  
CLRN/PRN  
Drive Strength  
Control  
Open-Drain Output  
Output Register  
D
Q
Bus-Hold  
Circuit  
ENA  
CLRN/PRN  
Notes to Figure 2–54:  
(1) All input signals to the IOE can be inverted at the IOE.  
(2) The tri-state buffer is active low. The DDIO megafunction represents the tri-state buffer as active-high with an  
inverter at the OE register data port. Similarly, the aclrand apresetsignals are also active-high at the input ports  
of the DDIO megafunction.  
(3) The optional PCI clamp is only available on column I/O pins.  
2–80  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–55. Output TIming Diagram in DDR Mode  
CLK  
A1  
B1  
A2  
B2  
A3  
B3  
A4  
B4  
From Internal  
Registers  
B1 A1 B2 A2 B3 A3 B4 A4  
DDR output  
The Stratix II IOE operates in bidirectional DDR mode by combining the  
DDR input and DDR output configurations. The negative-edge-clocked  
OE register holds the OE signal inactive until the falling edge of the clock.  
This is done to meet DDR SDRAM timing requirements.  
External RAM Interfacing  
In addition to the six I/O registers in each IOE, Stratix II devices also have  
dedicated phase-shift circuitry for interfacing with external memory  
interfaces. Stratix II devices support DDR and DDR2 SDRAM, QDR II  
SRAM, RLDRAM II, and SDR SDRAM memory interfaces. In every  
Stratix II device, the I/O banks at the top (banks 3 and 4) and bottom  
(banks 7 and 8) of the device support DQ and DQS signals with DQ bus  
modes of ×4, ×8/×9, ×16/×18, or ×32/×36. Table 2–14 shows the number  
of DQ and DQS buses that are supported per device.  
Table 2–14. DQS & DQ Bus Mode Support (Part 1 of 2)  
Note (1)  
Number of  
×4 Groups  
Number of  
Number of  
Number of  
Device  
Package  
×8/×9 Groups ×16/×18 Groups ×32/×36 Groups  
EP2S15 484-pin FineLine BGA  
672-pin FineLine BGA  
8
18  
8
4
8
0
4
0
4
0
4
8
0
0
0
0
0
0
4
EP2S30 484-pin FineLine BGA  
672-pin FineLine BGA  
4
18  
8
8
EP2S60 484-pin FineLine BGA  
672-pin FineLine BGA  
4
18  
36  
8
1,020-pin FineLine BGA  
18  
Altera Corporation  
May 2007  
2–81  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Table 2–14. DQS & DQ Bus Mode Support (Part 2 of 2)  
Note (1)  
Number of  
×4 Groups  
Number of  
Number of  
Number of  
Device  
Package  
×8/×9 Groups ×16/×18 Groups ×32/×36 Groups  
EP2S90 484-pin Hybrid FineLine BGA  
780-pin FineLine BGA  
8
4
0
4
8
8
4
8
8
8
8
0
0
4
4
0
4
4
4
4
18  
36  
36  
18  
36  
36  
36  
36  
8
1,020-pin FineLine BGA  
18  
18  
8
1,508-pin FineLine BGA  
EP2S130 780-pin FineLine BGA  
1,020-pin FineLine BGA  
18  
18  
18  
18  
1,508-pin FineLine BGA  
EP2S180 1,020-pin FineLine BGA  
1,508-pin FineLine BGA  
Notes to Table 2–14:  
(1) Check the pin table for each DQS/DQ group in the different modes.  
A compensated delay element on each DQS pin automatically aligns  
input DQS synchronization signals with the data window of their  
corresponding DQ data signals. The DQS signals drive a local DQS bus in  
the top and bottom I/O banks. This DQS bus is an additional resource to  
the I/O clocks and is used to clock DQ input registers with the DQS  
signal.  
The Stratix II device has two phase-shifting reference circuits, one on the  
top and one on the bottom of the device. The circuit on the top controls  
the compensated delay elements for all DQS pins on the top. The circuit  
on the bottom controls the compensated delay elements for all DQS pins  
on the bottom.  
Each phase-shifting reference circuit is driven by a system reference clock,  
which must have the same frequency as the DQS signal. Clock pins  
CLK[15..12]pfeed the phase circuitry on the top of the device and  
clock pins CLK[7..4]pfeed the phase circuitry on the bottom of the  
device. In addition, PLL clock outputs can also feed the phase-shifting  
reference circuits.  
Figure 2–56 illustrates the phase-shift reference circuit control of each  
DQS delay shift on the top of the device. This same circuit is duplicated  
on the bottom of the device.  
2–82  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–56. DQS Phase-Shift Circuitry Notes (1), (2), (3), (4)  
From PLL 5 (3)  
CLK[15..12]p (2)  
DQSn  
Pin  
DQS  
Pin  
DQSn  
Pin  
DQS  
Pin  
DQS  
Pin  
DQSn  
Pin  
DQS  
Pin  
DQSn  
Pin  
DQS  
Phase-Shift  
Circuitry  
DQS Logic  
Blocks  
Δt  
Δt  
Δt  
Δt  
Δt  
Δt  
Δt  
Δt  
to IOE  
to IOE  
to IOE  
to IOE  
to IOE  
to IOE  
to IOE  
to IOE  
Notes to Figure 2–56:  
(1) There are up to 18 pairs of DQS and DQSn pins available on the top or the bottom of the Stratix II device. There are  
up to 10 pairs on the right side and 8 pairs on the left side of the DQS phase-shift circuitry.  
(2) The Δt module represents the DQS logic block.  
(3) Clock pins CLK[15..12]pfeed the phase-shift circuitry on the top of the device and clock pins CLK[7..4]pfeed  
the phase circuitry on the bottom of the device. You can also use a PLL clock output as a reference clock to the phase-  
shift circuitry.  
(4) You can only use PLL 5 to feed the DQS phase-shift circuitry on the top of the device and PLL 6 to feed the DQS  
phase-shift circuitry on the bottom of the device.  
These dedicated circuits combined with enhanced PLL clocking and  
phase-shift ability provide a complete hardware solution for interfacing  
to high-speed memory.  
f
For more information on external memory interfaces, refer to the  
External Memory Interfaces in Stratix II & Stratix II GX Devices chapter in  
volume 2 of the Stratix II Device Handbook or the Stratix II GX Device  
Handbook.  
Programmable Drive Strength  
The output buffer for each Stratix II device I/O pin has a programmable  
drive strength control for certain I/O standards. The LVTTL, LVCMOS,  
SSTL, and HSTL standards have several levels of drive strength that the  
user can control. The default setting used in the Quartus II software is the  
maximum current strength setting that is used to achieve maximum I/O  
performance. For all I/O standards, the minimum setting is the lowest  
drive strength that guarantees the IOH/IOL of the standard. Using  
minimum settings provides signal slew rate control to reduce system  
noise and signal overshoot.  
Altera Corporation  
May 2007  
2–83  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Table 2–15 shows the possible settings for the I/O standards with drive  
strength control.  
Table 2–15. Programmable Drive Strength Note (1)  
IOH / IOL Current Strength IOH / IOL Current Strength  
I/O Standard  
Setting (mA) for Column Setting (mA) for Row I/O  
I/O Pins  
Pins  
3.3-V LVTTL  
24, 20, 16, 12, 8, 4  
24, 20, 16, 12, 8, 4  
16, 12, 8, 4  
12, 8, 4  
3.3-V LVCMOS  
8, 4  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
12, 8, 4  
12, 10, 8, 6, 4, 2  
8, 6, 4, 2  
8, 6, 4, 2  
4, 2  
SSTL-2 Class I  
12, 8  
12, 8  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
HSTL-18 Class I  
HSTL-18 Class II  
HSTL-15 Class I  
HSTL-15 Class II  
24, 20, 16  
16  
12, 10, 8, 6, 4  
20, 18, 16, 8  
12, 10, 8, 6, 4  
20, 18, 16  
10, 8, 6, 4  
-
12, 10, 8, 6, 4  
-
8, 6, 4  
-
12, 10, 8, 6, 4  
20, 18, 16  
Note to Table 2–15:  
(1) The Quartus II software default current setting is the maximum setting for each  
I/O standard.  
Open-Drain Output  
Stratix II devices provide an optional open-drain (equivalent to an open-  
collector) output for each I/O pin. This open-drain output enables the  
device to provide system-level control signals (e.g., interrupt and write-  
enable signals) that can be asserted by any of several devices.  
Bus Hold  
Each Stratix II device I/O pin provides an optional bus-hold feature. The  
bus-hold circuitry can weakly hold the signal on an I/O pin at its  
last-driven state. Since the bus-hold feature holds the last-driven state of  
the pin until the next input signal is present, you do not need an external  
pull-up or pull-down resistor to hold a signal level when the bus is  
tri-stated.  
2–84  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
The bus-hold circuitry also pulls undriven pins away from the input  
threshold voltage where noise can cause unintended high-frequency  
switching. You can select this feature individually for each I/O pin. The  
bus-hold output drives no higher than VCCIO to prevent overdriving  
signals. If the bus-hold feature is enabled, the programmable pull-up  
option cannot be used. Disable the bus-hold feature when the I/O pin has  
been configured for differential signals.  
The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of  
approximately 7 kΩ to weakly pull the signal level to the last-driven state.  
See the DC & Switching Characteristics chapter in the Stratix II Device  
Handbook, Volume 1, for the specific sustaining current driven through this  
resistor and overdrive current used to identify the next-driven input  
level. This information is provided for each VCCIO voltage level.  
The bus-hold circuitry is active only after configuration. When going into  
user mode, the bus-hold circuit captures the value on the pin present at  
the end of configuration.  
Programmable Pull-Up Resistor  
Each Stratix II device I/O pin provides an optional programmable  
pull-up resistor during user mode. If you enable this feature for an I/O  
pin, the pull-up resistor (typically 25 kΩ) weakly holds the output to the  
VCCIO level of the output pin’s bank.  
Programmable pull-up resistors are only supported on user I/O pins, and  
are not supported on dedicated configuration pins, JTAG pins or  
dedicated clock pins.  
Advanced I/O Standard Support  
Stratix II device IOEs support the following I/O standards:  
3.3-V LVTTL/LVCMOS  
2.5-V LVTTL/LVCMOS  
1.8-V LVTTL/LVCMOS  
1.5-V LVCMOS  
3.3-V PCI  
3.3-V PCI-X mode 1  
LVDS  
LVPECL (on input and output clocks only)  
HyperTransport technology  
Differential 1.5-V HSTL Class I and II  
Differential 1.8-V HSTL Class I and II  
Differential SSTL-18 Class I and II  
Differential SSTL-2 Class I and II  
Altera Corporation  
May 2007  
2–85  
Stratix II Device Handbook, Volume 1  
I/O Structure  
1.5-V HSTL Class I and II  
1.8-V HSTL Class I and II  
1.2-V HSTL  
SSTL-2 Class I and II  
SSTL-18 Class I and II  
Table 2–16 describes the I/O standards supported by Stratix II devices.  
Table 2–16. Stratix II Supported I/O Standards (Part 1 of 2)  
Input Reference  
Voltage (VREF) (V) Voltage (VCCIO) (V) Voltage (VTT) (V)  
Output Supply  
BoardTermination  
I/O Standard  
Type  
LVTTL  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Single-ended  
Differential  
-
3.3  
3.3  
-
LVCMOS  
-
-
2.5 V  
-
2.5  
-
1.8 V  
-
1.8  
-
1.5-V LVCMOS  
3.3-V PCI  
3.3-V PCI-X mode 1  
LVDS  
-
1.5  
-
-
3.3  
-
-
3.3  
-
-
2.5 (3)  
3.3  
-
LVPECL (1)  
Differential  
-
-
-
-
HyperTransport technology Differential  
2.5  
Differential 1.5-V HSTL  
Differential  
0.75  
1.5  
0.75  
Class I and II (2)  
Differential 1.8-V HSTL  
Class I and II (2)  
Differential  
0.90  
0.90  
1.25  
1.8  
1.8  
2.5  
0.90  
0.90  
1.25  
Differential SSTL-18 Class Differential  
I and II (2)  
Differential SSTL-2 Class I Differential  
and II (2)  
1.2-V HSTL(4)  
Voltage-referenced  
0.6  
0.75  
0.9  
1.2  
1.5  
1.8  
1.8  
0.6  
0.75  
0.9  
1.5-V HSTL Class I and II Voltage-referenced  
1.8-V HSTL Class I and II Voltage-referenced  
SSTL-18 Class I and II  
Voltage-referenced  
0.90  
0.90  
2–86  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–16. Stratix II Supported I/O Standards (Part 2 of 2)  
Input Reference  
Voltage (VREF) (V) Voltage (VCCIO) (V) Voltage (VTT) (V)  
Output Supply  
BoardTermination  
I/O Standard  
Type  
SSTL-2 Class I and II  
Voltage-referenced  
1.25  
2.5  
1.25  
Notes to Table 2–16:  
(1) This I/O standard is only available on input and output column clock pins.  
(2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock  
pins in I/O banks 9,10, 11, and 12.  
(3)  
VCCIO is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 9, 10, 11, and 12).  
The clock input pins supporting LVDS on banks 3, 4, 7, and 8 use VCCINT for LVDS input operations and have no  
dependency on the VCCIO level of the bank.  
(4) 1.2-V HSTL is only supported in I/O banks 4,7, and 8.  
f
For more information on I/O standards supported by Stratix II I/O  
banks, refer to the Selectable I/O Standards in Stratix II & Stratix II GX  
Devices chapter in volume 2 of the Stratix II Device Handbook or the  
Stratix II GX Device Handbook.  
Stratix II devices contain eight I/O banks and four enhanced PLL external  
clock output banks, as shown in Figure 2–57. The four I/O banks on the  
right and left of the device contain circuitry to support high-speed  
differential I/O for LVDS and HyperTransport inputs and outputs. These  
banks support all Stratix II I/O standards except PCI or PCI-X I/O pins,  
and SSTL-18 Class II and HSTL outputs. The top and bottom I/O banks  
support all single-ended I/O standards. Additionally, enhanced PLL  
external clock output banks allow clock output capabilities such as  
differential support for SSTL and HSTL.  
Altera Corporation  
May 2007  
2–87  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Figure 2–57. Stratix II I/O Banks Notes (1), (2), (3), (4)  
DQS8T  
DQS7T  
DQS6T  
DQS5T  
DQS4T  
DQS3T  
DQS2T  
DQS1T  
DQS0T  
PLL11  
PLL5  
VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3  
VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4  
PLL7  
PLL10  
Bank 11  
Bank 9  
Bank 3  
Bank 4  
This I/O bank supports LVDS  
and LVPECL standards for input  
clock operations. Differential  
HSTL and differential SSTL  
This I/O bank supports LVDS  
and LVPECL standards for input  
clock operations. Differential  
HSTL and differential SSTL  
I/O banks 3, 4, 9 & 11 support all  
single-ended I/O standards and  
differential I/O standards except for  
HyperTransport technology for  
both input and output operations.  
standards are supported for both  
input and output operations.  
standards are supported for both  
input and output operations.  
I/O banks 1, 2, 5 & 6 support LVTTL, LVCMOS,  
2.5-V, 1.8-V, 1.5-V, SSTL-2, SSTL-18 Class I,  
HSTL-18 Class I, HSTL-15 Class I, LVDS, and  
HyperTransport standards for input and output  
operations. HSTL-18 Class II, HSTL-15-Class II,  
SSTL-18 Class II standards are only supported  
for input operations.  
PLL1  
PLL2  
PLL4  
PLL3  
I/O banks 7, 8, 10 & 12 support all  
single-ended I/O standards and  
differential I/O standards except for  
HyperTransport technology for  
both input and output operations.  
This I/O bank supports LVDS  
and LVPECL standards for input  
clock operations. Differential  
HSTL and differential SSTL  
standards are supported for both  
input and output operations.  
This I/O bank supports LVDS  
and LVPECL standards for input  
clock operations. Differential  
HSTL and differential SSTL  
standards are supported for both  
input and output operations.  
Bank 12 Bank 10  
Bank 8  
Bank 7  
PLL8  
PLL9  
VREF4B8 VREF3B8 VREF2B8 VREF1B8 VREF0B8  
DQS8B DQS7B DQS6B DQS5B  
VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7  
PLL12  
PLL6  
DQS4B  
DQS3B  
DQS2B  
DQS1B  
DQS0B  
Notes to Figure 2–57:  
(1) Figure 2–57 is a top view of the silicon die that corresponds to a reverse view for flip-chip packages. It is a graphical  
representation only.  
(2) Depending on the size of the device, different device members have different numbers of VREF groups. Refer to the  
pin list and the Quartus II software for exact locations.  
(3) Banks 9 through 12 are enhanced PLL external clock output banks. These PLL banks utilize the adjacent VREF group  
when voltage-referenced standards are implemented. For example, if an SSTL input is implemented in PLL bank  
10, the voltage level at VREFB7 is the reference voltage level for the SSTL input.  
(4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. See the High  
Speed Differential I/O Interfaces in Stratix II & Stratix II GX Devices chapter of the Stratix II Device Handbook, Volume 2  
or the Stratix II GX Device Handbook, Volume 2 for more information on differential I/O standards.  
2–88  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Each I/O bank has its own VCCIOpins. A single device can support  
1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different  
VCCIO level independently. Each bank also has dedicated VREFpins to  
support the voltage-referenced standards (such as SSTL-2). The PLL  
banks utilize the adjacent VREFgroup when voltage-referenced  
standards are implemented. For example, if an SSTL input is  
implemented in PLL bank 10, the voltage level at VREFB7is the reference  
voltage level for the SSTL input.  
I/O pins that reside in PLL banks 9 through 12 are powered by the  
VCC_PLL<5, 6, 11, or 12>_OUTpins, respectively. The EP2S60F484,  
EP2S60F780, EP2S90H484, EP2S90F780, and EP2S130F780 devices do not  
support PLLs 11 and 12. Therefore, any I/O pins that reside in bank 11 are  
powered by the VCCIO3pin, and any I/O pins that reside in bank 12 are  
powered by the VCCIO8pin.  
Each I/O bank can support multiple standards with the same VCCIO for  
input and output pins. Each bank can support one VREF voltage level. For  
example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, and  
3.3-V PCI for inputs and outputs.  
On-Chip Termination  
Stratix II devices provide differential (for the LVDS or HyperTransport  
technology I/O standard), series, and parallel on-chip termination to  
reduce reflections and maintain signal integrity. On-chip termination  
simplifies board design by minimizing the number of external  
termination resistors required. Termination can be placed inside the  
package, eliminating small stubs that can still lead to reflections.  
Stratix II devices provide four types of termination:  
Differential termination (RD)  
Series termination (RS) without calibration  
Series termination (RS) with calibration  
Parallel termination (RT) with calibration  
Altera Corporation  
May 2007  
2–89  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Table 2–17 shows the Stratix II on-chip termination support per I/O bank.  
Table 2–17. On-Chip Termination Support by I/O Banks (Part 1 of 2)  
On-Chip Termination Support  
I/O Standard Support  
Top & Bottom Banks  
Left & Right Banks  
Series termination without  
calibration  
3.3-V LVTTL  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
3.3-V LVCMOS  
2.5-V LVTTL  
2.5-V LVCMOS  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVTTL  
1.5-V LVCMOS  
SSTL-2 Class I and II  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.2-V HSTL  
v
v
2–90  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–17. On-Chip Termination Support by I/O Banks (Part 2 of 2)  
On-Chip Termination Support  
I/O Standard Support  
Top & Bottom Banks  
Left & Right Banks  
Series termination with  
calibration  
3.3-V LVTTL  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
3.3-V LVCMOS  
2.5-V LVTTL  
2.5-V LVCMOS  
1.8-V LVTTL  
1.8-V LVCMOS  
1.5-V LVTTL  
1.5-V LVCMOS  
SSTL-2 Class I and II  
SSTL-18 Class I and II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.2-V HSTL  
Parallel termination with  
calibration  
SSTL-2 Class I and II  
SSTL-18 Class I and II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I and II  
1.2-V HSTL  
LVDS  
Differential termination (1)  
v
v
HyperTransport technology  
Note to Table 2–17:  
(1) Clock pins CLK1, CLK3, CLK9, CLK11, and pins FPLL[7..10]CLKdo not support differential on-chip  
termination. Clock pins CLK0, CLK2, CLK8, and CLK10do support differential on-chip termination. Clock pins in  
the top and bottom banks (CLK[4..7, 12..15]) do not support differential on-chip termination.  
Altera Corporation  
May 2007  
2–91  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Differential On-Chip Termination  
Stratix II devices support internal differential termination with a nominal  
resistance value of 100 Ω for LVDS or HyperTransport technology input  
receiver buffers. LVPECL input signals (supported on clock pins only)  
require an external termination resistor. Differential on-chip termination  
is supported across the full range of supported differential data rates as  
shown in the DC & Switching Characteristics chapter in volume 1 of the  
Stratix II Device Handbook.  
f
f
For more information on differential on-chip termination, refer to the  
High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX  
Devices chapter in volume 2 of the Stratix II Device Handbook or the  
Stratix II GX Device Handbook.  
For more information on tolerance specifications for differential on-chip  
termination, refer to the DC & Switching Characteristics chapter in  
volume 1 of the Stratix II Device Handbook.  
On-Chip Series Termination Without Calibration  
Stratix II devices support driver impedance matching to provide the I/O  
driver with controlled output impedance that closely matches the  
impedance of the transmission line. As a result, reflections can be  
significantly reduced. Stratix II devices support on-chip series  
termination for single-ended I/O standards with typical RS values of 25  
and 50 Ω. Once matching impedance is selected, current drive strength is  
no longer selectable. Table 2–17 shows the list of output standards that  
support on-chip series termination without calibration.  
On-Chip Series Termination with Calibration  
Stratix II devices support on-chip series termination with calibration in  
column I/O pins in top and bottom banks. There is one calibration circuit  
for the top I/O banks and one circuit for the bottom I/O banks. Each  
on-chip series termination calibration circuit compares the total  
impedance of each I/O buffer to the external 25- or 50-Ω resistors  
connected to the RUPand RDNpins, and dynamically enables or disables  
the transistors until they match. Calibration occurs at the end of device  
configuration. Once the calibration circuit finds the correct impedance, it  
powers down and stops changing the characteristics of the drivers.  
f
For more information on series on-chip termination supported by  
Stratix II devices, refer to the Selectable I/O Standards in Stratix II &  
Stratix II GX Devices chapter in volume 2 of the Stratix II Device Handbook  
or the Stratix II GX Device Handbook.  
2–92  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
f
For more information on tolerance specifications for on-chip termination  
with calibration, refer to the DC & Switching Characteristics chapter in  
volume 1 of the Stratix II Device Handbook.  
On-Chip Parallel Termination with Calibration  
Stratix II devices support on-chip parallel termination with calibration for  
column I/O pins only. There is one calibration circuit for the top I/O  
banks and one circuit for the bottom I/O banks. Each on-chip parallel  
termination calibration circuit compares the total impedance of each I/O  
buffer to the external 50-Ω resistors connected to the RUP and RDN pins  
and dynamically enables or disables the transistors until they match.  
Calibration occurs at the end of device configuration. Once the calibration  
circuit finds the correct impedance, it powers down and stops changing  
the characteristics of the drivers.  
1
On-chip parallel termination with calibration is only supported  
for input pins.  
f
f
For more information on on-chip termination supported by Stratix II  
devices, refer to the Selectable I/O Standards in Stratix II & Stratix II GX  
Devices chapter in volume 2 of the Stratix II Device Handbook or the  
Stratix II GX Device Handbook.  
For more information on tolerance specifications for on-chip termination  
with calibration, refer to the DC & Switching Characteristics chapter in  
volume 1 of the Stratix II Device Handbook.  
MultiVolt I/O Interface  
The Stratix II architecture supports the MultiVolt I/O interface feature  
that allows Stratix II devices in all packages to interface with systems of  
different supply voltages.  
The Stratix II VCCINTpins must always be connected to a 1.2-V power  
supply. With a 1.2-V VCCINT level, input pins are 1.5-, 1.8-, 2.5-, and 3.3-V  
tolerant. The VCCIOpins can be connected to either a 1.5-, 1.8-, 2.5-, or  
3.3-V power supply, depending on the output requirements. The output  
levels are compatible with systems of the same voltage as the power  
supply (for example, when VCCIOpins are connected to a 1.5-V power  
supply, the output levels are compatible with 1.5-V systems).  
The Stratix II VCCPDpower pins must be connected to a 3.3-V power  
supply. These power pins are used to supply the pre-driver power to the  
output buffers, which increases the performance of the output pins. The  
VCCPDpins also power configuration input pins and JTAG input pins.  
Altera Corporation  
May 2007  
2–93  
Stratix II Device Handbook, Volume 1  
I/O Structure  
Table 2–18 summarizes Stratix II MultiVolt I/O support.  
Table 2–18. Stratix II MultiVolt I/O Support Note (1)  
Input Signal (V)  
VCCIO (V)  
Output Signal (V)  
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
2.5  
3.3 5.0  
1.2  
1.5  
1.8  
2.5  
3.3  
(4)  
(4)  
(4)  
(4)  
(4)  
v (2)  
v
v
v (2)  
v
v
v(2)  
v(2)  
v(2)  
v
v(2)  
v(2)  
v(2)  
v
v (4)  
v (3)  
v
v(3) v(3)  
v
v(3) v(3) v(3)  
v(3) v(3) v(3)  
v
v(3)  
v
v
v
v
Notes to Table 2–18:  
(1) To drive inputs higher than VCCIO but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL  
and LVCMOS input levels to overdrive input buffer option in the Quartus II software.  
(2) The pin current may be slightly higher than the default value. You must verify that the driving device’s VOL  
maximum and VO H minimum voltages do not violate the applicable Stratix II VIL maximum and VIH minimum  
voltage specifications.  
(3) Although VCCIO specifies the voltage necessary for the Stratix II device to drive out, a receiving device powered at  
a different level can still interface with the Stratix II device if it has inputs that tolerate the VCCIO value.  
(4) Stratix II devices do not support 1.2-V LVTTL and 1.2-V LVCMOS. Stratix II devices support 1.2-V HSTL.  
The TDOand nCEOpins are powered by VCCIO of the bank that they reside  
in. TDOis in I/O bank 4 and nCEOis in I/O bank 7.  
Ideally, the VCC supplies for the I/O buffers of any two connected pins are  
at the same voltage level. This may not always be possible depending on  
the VCCIO level of TDOand nCEOpins on master devices and the  
configuration voltage level chosen by VCCSELon slave devices. Master  
and slave devices can be in any position in the chain. Master indicates that  
it is driving out TDOor nCEOto a slave device.  
For multi-device passive configuration schemes, the nCEOpin of the  
master device drives the nCEpin of the slave device. The VCCSELpin on  
the slave device selects which input buffer is used for nCE. When VCCSEL  
is logic high, it selects the 1.8-V/1.5-V buffer powered by VCCIO. When  
VCCSELis logic low it selects the 3.3-V/2.5-V input buffer powered by  
VCCPD. The ideal case is to have the VCCIO of the nCEObank in a master  
device match the VCCSELsettings for the nCEinput buffer of the slave  
device it is connected to, but that may not be possible depending on the  
application. Table 2–19 contains board design recommendations to  
ensure that nCEOcan successfully drive nCEfor all power supply  
combinations.  
2–94  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–19. Board Design Recommendations for nCEO  
Stratix II nCEO VCCIO Voltage Level in I/O Bank 7  
nCE Input Buffer Power in I/O  
Bank 3  
VCCIO  
3.3 V  
=
VCCIO  
=
VCCIO  
=
VCCIO  
=
VCCIO  
=
2.5 V  
1.8 V  
1.5 V  
1.2 V  
VCCSELhigh  
(VCCIO Bank 3 = 1.5 V)  
v(1), (2)  
v(1), (2)  
v
v(3), (4)  
v(3), (4)  
v(4)  
v(5)  
v
v
v
v
Level shifter  
required  
VCCSELhigh  
(VCCIO Bank 3 = 1.8 V)  
Level shifter Level shifter  
required required  
VCCSELlow  
(nCE Powered by VCCPD = 3.3V)  
v(6)  
Notes to Table 2–19:  
(1) Input buffer is 3.3-V tolerant.  
(2) The nCEOoutput buffer meets VO H (MIN) = 2.4 V.  
(3) Input buffer is 2.5-V tolerant.  
(4) The nCEOoutput buffer meets VOH (MIN) = 2.0 V.  
(5) Input buffer is 1.8-V tolerant.  
(6) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal.  
For JTAG chains, the TDOpin of the first device drives the TDIpin of the  
second device in the chain. The VCCSEL input on JTAG input I/O cells  
(TCK, TMS, TDI, and TRST) is internally hardwired to GND selecting the  
3.3-V/2.5-V input buffer powered by VCCPD. The ideal case is to have the  
VCCIO of the TDObank from the first device to match the VCCSEL settings  
for TDIon the second device, but that may not be possible depending on  
the application. Table 2–20 contains board design recommendations to  
ensure proper JTAG chain operation.  
Table 2–20. Supported TDO/TDI Voltage Combinations (Part 1 of 2)  
Stratix II TDO VCCIO Voltage Level in I/O Bank 4  
TDI Input  
Device  
Buffer Power  
VCCI O = 3.3 V VCCIO = 2.5 V VCCIO = 1.8 V VCCIO = 1.5 V VCCI O = 1.2 V  
Stratix II  
Always  
VCCPD (3.3V)  
Level shifter  
required  
Level shifter  
required  
v(1)  
v(2)  
v(3)  
Altera Corporation  
May 2007  
2–95  
Stratix II Device Handbook, Volume 1  
High-Speed Differential I/O with DPA Support  
Table 2–20. Supported TDO/TDI Voltage Combinations (Part 2 of 2)  
Stratix II TDO VCCIO Voltage Level in I/O Bank 4  
VCCI O = 3.3 V VCCIO = 2.5 V VCCIO = 1.8 V VCCIO = 1.5 V VCCI O = 1.2 V  
TDI Input  
Buffer Power  
Device  
Non-Stratix II VCC = 3.3 V  
VCC = 2.5 V  
Level shifter  
required  
Level shifter  
required  
v(1)  
v(2)  
v(2)  
v(3)  
v(3)  
v
Level shifter  
required  
Level shifter  
required  
v(1), (4)  
v(1), (4)  
v(1), (4)  
VCC = 1.8 V  
Level shifter  
required  
Level shifter  
required  
v(2), (5)  
v(2), (5)  
VCC = 1.5 V  
v(6)  
v
v
Notes to Table 2–20:  
(1) The TDOoutput buffer meets VOH (MIN) = 2.4 V.  
(2) The TDOoutput buffer meets VOH (MIN) = 2.0 V.  
(3) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal.  
(4) Input buffer must be 3.3-V tolerant.  
(5) Input buffer must be 2.5-V tolerant.  
(6) Input buffer must be 1.8-V tolerant.  
Stratix II devices contain dedicated circuitry for supporting differential  
standards at speeds up to 1 Gbps. The LVDS and HyperTransport  
differential I/O standards are supported in the Stratix II device. In  
addition, the LVPECL I/O standard is supported on input and output  
High-Speed  
Differential I/O  
with DPA  
clock pins on the top and bottom I/O banks.  
Support  
The high-speed differential I/O circuitry supports the following high  
speed I/O interconnect standards and applications:  
SPI-4 Phase 2 (POS-PHY Level 4)  
SFI-4  
Parallel RapidIO  
HyperTransport technology  
There are four dedicated high-speed PLLs in the EP2S15 to EP2S30  
devices and eight dedicated high-speed PLLs in the EP2S60 to EP2S180  
devices to multiply reference clocks and drive high-speed differential  
SERDES channels.  
Tables 2–21 through 2–26 show the number of channels that each fast PLL  
can clock in each of the Stratix II devices. In Tables 2–21 through 2–26 the  
first row for each transmitter or receiver provides the number of channels  
driven directly by the PLL. The second row below it shows the maximum  
channels a PLL can drive if cross bank channels are used from the  
adjacent center PLL. For example, in the 484-pin FineLine BGA EP2S15  
2–96  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
device, PLL 1 can drive a maximum of 10 transmitter channels in I/O  
bank 1 or a maximum of 19 transmitter channels in I/O banks 1 and 2. The  
Quartus II software may also merge receiver and transmitter PLLs when  
a receiver is driving a transmitter. In this case, one fast PLL can drive both  
the maximum numbers of receiver and transmitter channels.  
Table 2–21. EP2S15 Device Differential Channels  
Note (1)  
Center Fast PLLs  
Transmitter/  
Receiver  
Total  
Channels  
Package  
PLL 1  
PLL 2  
PLL 3  
PLL 4  
484-pin FineLine BGA  
Transmitter  
38 (2)  
(3)  
10  
19  
11  
21  
10  
19  
11  
21  
9
9
10  
19  
11  
21  
10  
19  
11  
21  
19  
10  
21  
9
19  
10  
21  
9
Receiver  
42 (2)  
(3)  
672-pin FineLine BGA  
Transmitter  
Receiver  
38 (2)  
(3)  
19  
10  
21  
19  
10  
21  
42 (2)  
(3)  
Table 2–22. EP2S30 Device Differential Channels  
Note (1)  
Center Fast PLLs  
Transmitter/  
Receiver  
Total  
Channels  
Package  
PLL 1  
PLL 2  
PLL 3  
PLL 4  
484-pin FineLine BGA  
Transmitter  
38 (2)  
(3)  
10  
19  
11  
21  
16  
29  
17  
31  
9
9
10  
19  
11  
21  
16  
29  
17  
31  
19  
10  
21  
13  
29  
14  
31  
19  
10  
21  
13  
29  
14  
31  
Receiver  
42 (2)  
(3)  
672-pin FineLine BGA  
Transmitter  
Receiver  
58 (2)  
(3)  
62 (2)  
(3)  
Altera Corporation  
May 2007  
2–97  
Stratix II Device Handbook, Volume 1  
High-Speed Differential I/O with DPA Support  
Table 2–23. EP2S60 Differential Channels  
Note (1)  
Center Fast PLLs  
Corner Fast PLLs (4)  
Transmitter/  
Receiver Channels  
Total  
Package  
PLL 1 PLL 2 PLL 3 PLL 4 PLL 7 PLL 8 PLL 9 PLL 10  
484-pin  
FineLine BGA  
Transmitter  
Receiver  
38 (2)  
(3)  
10  
19  
11  
21  
16  
29  
17  
31  
21  
42  
21  
42  
9
9
10  
19  
11  
21  
16  
29  
17  
31  
21  
42  
21  
42  
10  
-
9
-
9
-
10  
-
19  
10  
21  
13  
29  
14  
31  
21  
42  
21  
42  
19  
10  
21  
13  
29  
14  
31  
21  
42  
21  
42  
42 (2)  
(3)  
11  
-
10  
-
10  
-
11  
-
672-pin  
FineLine BGA  
Transmitter  
Receiver  
58 (2)  
(3)  
16  
-
13  
-
13  
-
16  
-
62 (2)  
(3)  
17  
-
14  
-
14  
-
17  
-
1,020-pin  
FineLine BGA  
Transmitter  
Receiver  
84 (2)  
(3)  
21  
-
21  
-
21  
-
21  
-
84 (2)  
(3)  
21  
-
21  
-
21  
-
21  
-
Table 2–24. EP2S90 Differential Channels  
Note (1)  
Center Fast PLLs  
Corner Fast PLLs (4)  
Transmitter/  
Receiver Channels  
Total  
Package  
PLL 1 PLL 2 PLL 3 PLL 4 PLL 7 PLL 8 PLL 9 PLL 10  
484-pinHybrid Transmitter  
FineLine BGA  
38 (2)  
(3)  
10  
19  
11  
21  
16  
32  
17  
34  
23  
45  
23  
46  
30  
59  
30  
59  
9
9
10  
19  
11  
21  
16  
32  
17  
34  
23  
45  
23  
46  
30  
59  
30  
59  
-
-
-
-
-
-
-
-
-
-
19  
10  
21  
16  
32  
17  
34  
22  
45  
24  
46  
29  
59  
29  
59  
19  
10  
21  
16  
32  
17  
34  
22  
45  
24  
46  
29  
59  
29  
59  
Receiver  
42 (2)  
(3)  
-
-
-
-
-
-
780-pin  
FineLine BGA  
Transmitter  
Receiver  
64 (2)  
(3)  
-
-
-
-
-
-
-
-
68 (2)  
(3)  
-
-
-
-
-
-
1,020-pin  
FineLine BGA  
Transmitter  
Receiver  
90 (2)  
(3)  
23  
-
22  
-
22  
-
23  
-
94 (2)  
(3)  
23  
-
24  
-
24  
-
23  
-
1,508-pin  
FineLine BGA  
Transmitter  
Receiver  
118 (2)  
(3)  
30  
-
29  
-
29  
-
30  
-
118 (2)  
(3)  
30  
-
29  
-
29  
-
30  
-
2–98  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–25. EP2S130 Differential Channels  
Note (1)  
Center Fast PLLs  
Corner Fast PLLs (4)  
Transmitter/  
Receiver Channels  
Total  
Package  
PLL 1 PLL 2 PLL 3 PLL 4 PLL 7 PLL 8 PLL 9 PLL 10  
780-pin  
FineLine BGA  
Transmitter  
Receiver  
64 (2)  
(3)  
16  
32  
17  
34  
22  
44  
23  
46  
37  
78  
37  
78  
16  
32  
17  
34  
22  
44  
23  
46  
41  
78  
41  
78  
16  
32  
17  
34  
22  
44  
23  
46  
41  
78  
41  
78  
16  
32  
17  
34  
22  
44  
23  
46  
37  
78  
37  
78  
-
-
-
-
-
-
-
-
68 (2)  
(3)  
-
-
-
-
-
-
1,020-pin  
FineLine BGA  
Transmitter  
Receiver  
88 (2)  
(3)  
22  
-
22  
-
22  
-
22  
-
92 (2)  
(3)  
23  
-
23  
-
23  
-
23  
-
1,508-pin  
FineLine BGA  
Transmitter  
Receiver  
156 (2)  
(3)  
37  
-
41  
-
41  
-
37  
-
156 (2)  
(3)  
37  
-
41  
-
41  
-
37  
-
Table 2–26. EP2S180 Differential Channels  
Note (1)  
Center Fast PLLs  
Corner Fast PLLs (4)  
Transmitter/  
Receiver Channels  
Total  
Package  
PLL 1 PLL 2 PLL 3 PLL 4 PLL 7 PLL 8 PLL 9 PLL 10  
1,020-pin  
FineLine BGA  
Transmitter  
Receiver  
88 (2)  
(3)  
22  
44  
23  
46  
37  
78  
37  
78  
22  
44  
23  
46  
41  
78  
41  
78  
22  
44  
23  
46  
41  
78  
41  
78  
22  
44  
23  
46  
37  
78  
37  
78  
22  
-
22  
-
22  
-
22  
-
92 (2)  
(3)  
23  
-
23  
-
23  
-
23  
-
1,508-pin  
FineLine BGA  
Transmitter  
Receiver  
156 (2)  
(3)  
37  
-
41  
-
41  
-
37  
-
156 (2)  
(3)  
37  
-
41  
-
41  
-
37  
-
Notes to Tables 2–21 to 2–26:  
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used  
as data channels.  
(2) This is the maximum number of channels the PLLs can directly drive.  
(3) This is the maximum number of channels if the device uses cross bank channels from the adjacent center PLL.  
(4) The channels accessible by the center fast PLL overlap with the channels accessible by the corner fast PLL.  
Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and  
4 with the number of channels accessible by PLLs 7, 8, 9, and 10.  
Altera Corporation  
May 2007  
2–99  
Stratix II Device Handbook, Volume 1  
High-Speed Differential I/O with DPA Support  
Dedicated Circuitry with DPA Support  
Stratix II devices support source-synchronous interfacing with LVDS or  
HyperTransport signaling at up to 1 Gbps. Stratix II devices can transmit  
or receive serial channels along with a low-speed or high-speed clock.  
The receiving device PLL multiplies the clock by an integer factor W = 1  
through 32. For example, a HyperTransport technology application  
where the data rate is 1,000 Mbps and the clock rate is 500 MHz would  
require that W be set to 2. The SERDES factor J determines the parallel  
data width to deserialize from receivers or to serialize for transmitters.  
The SERDES factor J can be set to 4, 5, 6, 7, 8, 9, or 10 and does not have to  
equal the PLL clock-multiplication W value. A design using the dynamic  
phase aligner also supports all of these J factor values. For a J factor of 1,  
the Stratix II device bypasses the SERDES block. For a J factor of 2, the  
Stratix II device bypasses the SERDES block, and the DDR input and  
output registers are used in the IOE. Figure 2–58 shows the block diagram  
of the Stratix II transmitter channel.  
Figure 2–58. Stratix II Transmitter Channel  
Data from R4, R24, C4, or  
direct link interconnect  
+
Up to 1 Gbps  
10  
10  
Dedicated  
Transmitter  
Interface  
Local  
Interconnect  
diffioclk  
load_en  
refclk  
Fast  
PLL  
Regional or  
global clock  
Each Stratix II receiver channel features a DPA block for phase detection  
and selection, a SERDES, a synchronizer, and a data realigner circuit. You  
can bypass the dynamic phase aligner without affecting the basic source-  
synchronous operation of the channel. In addition, you can dynamically  
switch between using the DPA block or bypassing the block via a control  
signal from the logic array. Figure 2–59 shows the block diagram of the  
Stratix II receiver channel.  
2–100  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Stratix II Architecture  
Figure 2–59. Stratix II Receiver Channel  
Data to R4, R24, C4, or  
direct link interconnect  
+
Up to 1 Gbps  
D
Q
Data Realignment  
Circuitry  
10  
data  
retimed_data  
Dedicated  
Receiver  
Interface  
DPA  
Synchronizer  
DPA_clk  
Eight Phase Clocks  
8
diffioclk  
load_en  
refclk  
Fast  
PLL  
Regional or  
global clock  
An external pin or global or regional clock can drive the fast PLLs, which  
can output up to three clocks: two multiplied high-speed clocks to drive  
the SERDES block and/or external pin, and a low-speed clock to drive the  
logic array. In addition, eight phase-shifted clocks from the VCO can feed  
to the DPA circuitry.  
f
For more information on the fast PLL, see the PLLs in Stratix II &  
Stratix II GX Devices chapter in volume 2 of the Stratix II Device Handbook  
or the Stratix II GX Device Handbook.  
The eight phase-shifted clocks from the fast PLL feed to the DPA block.  
The DPA block selects the closest phase to the center of the serial data eye  
to sample the incoming data. This allows the source-synchronous  
circuitry to capture incoming data correctly regardless of the channel-to-  
channel or clock-to-channel skew. The DPA block locks to a phase closest  
to the serial data phase. The phase-aligned DPA clock is used to write the  
data into the synchronizer.  
The synchronizer sits between the DPA block and the data realignment  
and SERDES circuitry. Since every channel utilizing the DPA block can  
have a different phase selected to sample the data, the synchronizer is  
needed to synchronize the data to the high-speed clock domain of the  
data realignment and the SERDES circuitry.  
Altera Corporation  
May 2007  
2–101  
Stratix II Device Handbook, Volume 1  
High-Speed Differential I/O with DPA Support  
For high-speed source synchronous interfaces such as POS-PHY 4,  
Parallel RapidIO, and HyperTransport, the source synchronous clock rate  
is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is  
necessary for these protocols since the source synchronous clock does not  
provide a byte or word boundary since the clock is one half the data rate,  
not one eighth. The Stratix II device’s high-speed differential I/O  
circuitry provides dedicated data realignment circuitry for user-  
controlled byte boundary shifting. This simplifies designs while saving  
ALM resources. You can use an ALM-based state machine to signal the  
shift of receiver byte boundaries until a specified pattern is detected to  
indicate byte alignment.  
Fast PLL & Channel Layout  
The receiver and transmitter channels are interleaved such that each I/O  
bank on the left and right side of the device has one receiver channel and  
one transmitter channel per LAB row. Figure 2–60 shows the fast PLL and  
channel layout in the EP2S15 and EP2S30 devices. Figure 2–61 shows the  
fast PLL and channel layout in the EP2S60 to EP2S180 devices.  
Figure 2–60. Fast PLL & Channel Layout in the EP2S15 & EP2S30 Devices Note (1)  
4
4
LVDS  
Clock  
DPA  
Clock  
DPA  
Clock  
LVDS  
Clock  
Quadrant  
Quadrant  
4
4
2
2
2
2
Fast  
PLL 1  
Fast  
PLL 4  
Fast  
PLL 2  
Fast  
PLL 3  
Quadrant  
Quadrant  
LVDS  
Clock  
DPA  
Clock  
DPA  
Clock  
LVDS  
Clock  
4
4
Note to Figure 2–60:  
(1) See Table 2–21 for the number of channels each device supports.  
2–102  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Figure 2–61. Fast PLL & Channel Layout in the EP2S60 to EP2S180 Devices Note (1)  
Fast  
Fast  
PLL 7  
PLL 10  
2
2
4
4
LVDS  
Clock  
DPA  
Clock  
DPA  
Clock  
LVDS  
Clock  
Quadrant  
Quadrant  
4
4
2
2
2
Fast  
PLL 1  
Fast  
PLL 4  
Fast  
PLL 2  
Fast  
PLL 3  
2
LVDS  
Clock  
DPA  
Clock  
DPA  
Clock  
LVDS  
Clock  
Quadrant  
Quadrant  
4
4
2
2
Fast  
PLL 8  
Fast  
PLL 9  
Note to Figure 2–61:  
(1) See Tables 2–22 through 2–26 for the number of channels each device supports.  
Altera Corporation  
2–103  
May 2007  
Stratix II Device Handbook, Volume 1  
Document Revision History  
Table 2–27 shows the revision history for this chapter.  
Document  
Revision History  
Table 2–27. Document Revision History (Part 1 of 2)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
May 2007, v4.3 Updated “Clock Control Block” section.  
Updated note in the “Clock Control Block” section.  
Deleted Tables 2-11 and 2-12.  
Updated notes to:  
Figure 2–41  
Figure 2–42  
Figure 2–43  
Figure 2–45  
Updated notes to Table 2–18.  
Moved Document Revision History to end of the chapter.  
Updated Table 2–18 with note.  
August 2006,  
v4.2  
April 2006,  
v4.1  
Updated Table 2–13.  
Added parallel on-  
chip termination  
description and  
specification.  
Changed RCLK  
names to match the  
Quartus II software in  
Table 2–13.  
Removed Note 2 from Table 2–16.  
Updated “On-Chip Termination” section and Table 2–19 to  
include parallel termination with calibration information.  
Added new “On-Chip Parallel Termination with Calibration”  
section.  
Updated Figure 2–44.  
December  
2005, v4.0  
Updated “Clock Control Block” section.  
July 2005, v3.1  
Updated HyperTransport technology information in Table 2–18.  
Updated HyperTransport technology information in  
Figure 2–57.  
Added information on the asynchronous clear signal.  
May 2005, v3.0  
Updated “Functional Description” section.  
Updated Table 2–3.  
Updated “Clock Control Block” section.  
Updated Tables 2–17 through 2–19.  
Updated Tables 2–20 through 2–22.  
Updated Figure 2–57.  
March 2005,  
2.1  
Updated “Functional Description” section.  
Updated Table 2–3.  
2–104  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Stratix II Architecture  
Table 2–27. Document Revision History (Part 2 of 2)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
January 2005,  
v2.0  
Updated the “MultiVolt I/O Interface” and “TriMatrix Memory”  
sections.  
Updated Tables 2–3, 2–17, and 2–19.  
October 2004,  
v1.2  
Updated Tables 2–9, 2–16, 2–26, and 2–27.  
July 2004, v1.1  
Updated note to Tables 2–9 and 2–16.  
Updated Tables 2–16, 2–17, 2–18, 2–19, and 2–20.  
Updated Figures 2–41, 2–42, and 2–57.  
Removed 3 from list of SERDES factor J.  
Updated “High-Speed Differential I/O with DPA Support”  
section.  
In “Dedicated Circuitry with DPA Support” section, removed  
XSBI and changed RapidIO to Parallel RapidIO.  
February2004, Added document to the Stratix II Device Handbook.  
v1.0  
Altera Corporation  
May 2007  
2–105  
Stratix II Device Handbook, Volume 1  
Document Revision History  
2–106  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
3. Configuration & Testing  
SII51003-4.2  
All Stratix® II devices provide Joint Test Action Group (JTAG)  
boundary-scan test (BST) circuitry that complies with the IEEE  
Std. 1149.1. JTAG boundary-scan testing can be performed either before  
or after, but not during configuration. Stratix II devices can also use the  
JTAG port for configuration with the Quartus® II software or hardware  
using either Jam Files (.jam) or Jam Byte-Code Files (.jbc).  
IEEE Std. 1149.1  
JTAG Boundary-  
Scan Support  
Stratix II devices support IOE I/O standard setting reconfiguration  
through the JTAG BST chain. The JTAG chain can update the I/O  
standard for all input and output pins any time before or during user  
mode through the CONFIG_IO instruction. You can use this capability  
for JTAG testing before configuration when some of the Stratix II pins  
drive or receive from other devices on the board using voltage-referenced  
standards. Because the Stratix II device may not be configured before  
JTAG testing, the I/O pins may not be configured for appropriate  
electrical standards for chip-to-chip communication. Programming those  
I/O standards via JTAG allows you to fully test I/O connections to other  
devices.  
A device operating in JTAG mode uses four required pins, TDI,TDO, TMS,  
and TCK, and one optional pin, TRST. The TCKpin has an internal weak  
pull-down resistor, while the TDI,TMSand TRSTpins have weak internal  
pull-ups. The JTAG input pins are powered by the 3.3-V VCCPD pins. The  
TDO output pin is powered by the VCCIO power supply of bank 4.  
Stratix II devices also use the JTAG port to monitor the logic operation of  
the device with the SignalTap® II embedded logic analyzer. Stratix II  
devices support the JTAG instructions shown in Table 3–1.  
1
Stratix II, Stratix, Cyclone® II, and Cyclone devices must be  
within the first 17 devices in a JTAG chain. All of these devices  
have the same JTAG controller. If any of the Stratix II, Stratix,  
Cyclone II, or Cyclone devices are in the 18th of further position,  
they fail configuration. This does not affect SignalTap II.  
The Stratix II device instruction register length is 10 bits and the  
USERCODEregister length is 32 bits. Tables 3–2 and 3–3 show the  
boundary-scan register length and device IDCODE information for  
Stratix II devices.  
Altera Corporation  
May 2007  
3–1  
IEEE Std. 1149.1 JTAG Boundary-Scan Support  
Table 3–1. Stratix II JTAG Instructions  
JTAG Instruction  
Instruction Code  
Description  
Allows a snapshot of signals at the device pins to be captured and  
examined during normal device operation, and permits an initial  
data pattern to be output at the device pins. Also used by the  
SignalTap II embedded logic analyzer.  
SAMPLE/PRELOAD 00 0000 0101  
Allows the external circuitry and board-level interconnects to be  
tested by forcing a test pattern at the output pins and capturing test  
results at the input pins.  
EXTEST(1)  
BYPASS  
00 0000 1111  
11 1111 1111 Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation.  
USERCODE  
00 0000 0111 Selects the 32-bit USERCODEregister and places it between the  
TDI and TDOpins, allowing the USERCODEto be serially shifted  
out of TDO.  
IDCODE  
00 0000 0110 Selects the IDCODEregister and places it between TDIand TDO,  
allowing the IDCODEto be serially shifted out of TDO.  
HIGHZ (1)  
00 0000 1011 Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation, while  
tri-stating all of the I/O pins.  
CLAMP (1)  
00 0000 1010 Places the 1-bit bypass register between the TDIand TDOpins,  
which allows the BST data to pass synchronously through selected  
devices to adjacent devices during normal device operation while  
holding I/O pins to a state defined by the data in the boundary-scan  
register.  
ICR instructions  
Used when configuring a Stratix II device via the JTAG port with a  
USB Blaster, MasterBlaster™, ByteBlasterMV™, or ByteBlaster II  
download cable, or when using a .jam or .jbc via an embedded  
processor or JRunner.  
PULSE_NCONFIG  
00 0000 0001 Emulates pulsing the nCONFIGpin low to trigger reconfiguration  
even though the physical pin is unaffected.  
Allows configuration of I/O standards through the JTAG chain for  
JTAG testing. Can be executed before, during, or after  
CONFIG_IO (2)  
00 0000 1101  
configuration. Stops configuration if executed during configuration.  
Once issued, the CONFIG_IOinstruction holds nSTATUSlow to  
reset the configuration device. nSTATUSis held low until the IOE  
configuration register is loaded and the TAP controller state  
machine transitions to the UPDATE_DRstate.  
SignalTap II  
instructions  
Monitors internal device operation with the SignalTap II embedded  
logic analyzer.  
Notes to Table 3–1:  
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.  
(2) For more information on using the CONFIG_IOinstruction, see the MorphIO: An I/O Reconfiguration Solution for  
Altera Devices White Paper.  
3–2  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Configuration & Testing  
The Quartus II software has an Auto Usercode feature where you can  
choose to use the checksum value of a programming file as the JTAG user  
code. If selected, the checksum is automatically loaded to the USERCODE  
register. Turn on the Auto Usercode option by clicking Device & Pin  
Options, then General, in the Settings dialog box (Assignments menu).  
Table 3–2. Stratix II Boundary-Scan Register Length  
Device  
Boundary-Scan Register Length  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
1,140  
1,692  
2,196  
2,748  
3,420  
3,948  
Table 3–3. 32-Bit Stratix II Device IDCODE  
IDCODE (32 Bits) (1)  
Device  
Version  
ManufacturerIdentity(11  
Part Number (16 Bits)  
LSB (1 Bit) (2)  
(4 Bits)  
0000  
0000  
0001  
0000  
0000  
0000  
Bits)  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
0010 0000 1001 0001  
0010 0000 1001 0010  
0010 0000 1001 0011  
0010 0000 1001 0100  
0010 0000 1001 0101  
0010 0000 1001 0110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
000 0110 1110  
1
1
1
1
1
1
Notes to Table 3–3:  
(1) The most significant bit (MSB) is on the left.  
(2) The IDCODE'sleast significant bit (LSB) is always 1.  
1
Stratix, Stratix II, Cyclone, and Cyclone II devices must be  
within the first 17 devices in a JTAG chain. All of these devices  
have the same JTAG controller. If any of the Stratix, Stratix II,  
Cyclone, and Cyclone II devices are in the 18th or after they fail  
configuration. This does not affect SignalTap II.  
Altera Corporation  
May 2007  
3–3  
Stratix II Device Handbook, Volume 1  
SignalTap II Embedded Logic Analyzer  
f
For more information on JTAG, see the following documents:  
The IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing for Stratix II &  
Stratix II GX Devices chapter of the Stratix II Device Handbook,  
Volume 2 or the Stratix II GX Device Handbook, Volume 2  
Jam Programming & Test Language Specification  
Stratix II devices feature the SignalTap II embedded logic analyzer, which  
monitors design operation over a period of time through the IEEE  
Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed  
without bringing internal signals to the I/O pins. This feature is  
particularly important for advanced packages, such as FineLine BGA®  
packages, because it can be difficult to add a connection to a pin during  
the debugging process after a board is designed and manufactured.  
SignalTap II  
Embedded Logic  
Analyzer  
The logic, circuitry, and interconnects in the Stratix II architecture are  
configured with CMOS SRAM elements. Altera® FPGA devices are  
reconfigurable and every device is tested with a high coverage  
production test program so you do not have to perform fault testing and  
can instead focus on simulation and design verification.  
Configuration  
Stratix II devices are configured at system power-up with data stored in  
an Altera configuration device or provided by an external controller (e.g.,  
a MAX® II device or microprocessor). Stratix II devices can be configured  
using the fast passive parallel (FPP), active serial (AS), passive serial (PS),  
passive parallel asynchronous (PPA), and JTAG configuration schemes.  
The Stratix II device’s optimized interface allows microprocessors to  
configure it serially or in parallel, and synchronously or asynchronously.  
The interface also enables microprocessors to treat Stratix II devices as  
memory and configure them by writing to a virtual memory location,  
making reconfiguration easy.  
In addition to the number of configuration methods supported, Stratix II  
devices also offer the design security, decompression, and remote system  
upgrade features. The design security feature, using configuration  
bitstream encryption and AES technology, provides a mechanism to  
protect your designs. The decompression feature allows Stratix II FPGAs  
to receive a compressed configuration bitstream and decompress this  
data in real-time, reducing storage requirements and configuration time.  
The remote system upgrade feature allows real-time system upgrades  
from remote locations of your Stratix II designs. For more information,  
see “Configuration Schemes” on page 3–7.  
3–4  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
May 2007  
Configuration & Testing  
Operating Modes  
The Stratix II architecture uses SRAM configuration elements that require  
configuration data to be loaded each time the circuit powers up. The  
process of physically loading the SRAM data into the device is called  
configuration. During initialization, which occurs immediately after  
configuration, the device resets registers, enables I/O pins, and begins to  
operate as a logic device. The I/O pins are tri-stated during power-up,  
and before and during configuration. Together, the configuration and  
initialization processes are called command mode. Normal device  
operation is called user mode.  
SRAM configuration elements allow Stratix II devices to be reconfigured  
in-circuit by loading new configuration data into the device. With real-  
time reconfiguration, the device is forced into command mode with a  
device pin. The configuration process loads different configuration data,  
reinitializes the device, and resumes user-mode operation. You can  
perform in-field upgrades by distributing new configuration files either  
within the system or remotely.  
PORSELis a dedicated input pin used to select POR delay times of 12 ms  
or 100 ms during power-up. When the PORSELpin is connected to  
ground, the POR time is 100 ms; when the PORSELpin is connected to  
VCC, the POR time is 12 ms.  
The nIOPULLUPpin is a dedicated input that chooses whether the  
internal pull-ups on the user I/O pins and dual-purpose configuration  
I/O pins (nCSO, ASDO, DATA[7..0], nWS, nRS, RDYnBSY, nCS, CS,  
RUnLU, PGM[2..0], CLKUSR, INIT_DONE, DEV_OE, DEV_CLR) are on or  
off before and during configuration. A logic high (1.5, 1.8, 2.5, 3.3 V) turns  
off the weak internal pull-ups, while a logic low turns them on.  
Stratix II devices also offer a new power supply, VCCPD, which must be  
connected to 3.3 V in order to power the 3.3-V/2.5-V buffer available on  
the configuration input pins and JTAG pins. VCCPD applies to all the JTAG  
input pins (TCK, TMS, TDI, and TRST) and the configuration input pins  
when VCCSELis connected to ground. See Table 3–4 for more information  
on the pins affected by VCCSEL.  
The VCCSELpin allows the VCCIO setting (of the banks where the  
configuration inputs reside) to be independent of the voltage required by  
the configuration inputs. Therefore, when selecting the VCCIO, the VIL and  
VIH levels driven to the configuration inputs do not have to be a concern.  
Altera Corporation  
May 2007  
3–5  
Stratix II Device Handbook, Volume 1  
Configuration  
The PLL_ENApin and the configuration input pins (Table 3–4) have a  
dual buffer design: a 3.3-V/2.5-V input buffer and a 1.8-V/1.5-V input  
buffer. The VCCSELinput pin selects which input buffer is used. The 3.3-  
V/2.5-V input buffer is powered by VCCPD, while the 1.8-V/1.5-V input  
buffer is powered by VCCIO. Table 3–4 shows the pins affected by VCCSEL.  
Table 3–4. Pins Affected by the Voltage Level at VCCSEL  
VCCSEL = HIGH (connected  
to VCCPD  
VCCSEL = LOW (connected  
to GND)  
Pin  
)
nSTATUS(when  
used as an input)  
nCONFIG  
CONF_DONE  
(when used as an  
input)  
DATA[7..0]  
nCE  
DCLK(when used  
as an input)  
1.8/1.5-V input buffer is  
selected. Input buffer is  
powered by VCCIO of the I/O  
bank.  
3.3/2.5-V input buffer is  
selected. Input buffer is  
CS  
powered by VCCPD  
.
nWS  
nRS  
nCS  
CLKUSR  
DEV_OE  
DEV_CLRn  
RUnLU  
PLL_ENA  
VCCSELis sampled during power-up. Therefore, the VCCSELsetting  
cannot change on the fly or during a reconfiguration. The VCCSELinput  
buffer is powered by VCCINT and must be hardwired to VCCPD or ground.  
A logic high VCCSELconnection selects the 1.8-V/1.5-V input buffer, and  
a logic low selects the 3.3-V/2.5-V input buffer. VCCSELshould be set to  
comply with the logic levels driven out of the configuration device or  
MAX® II/microprocessor.  
If you need to support configuration input voltages of 3.3 V/2.5 V, you  
should set the VCCSELto a logic low; you can set the VCCIO of the I/O  
bank that contains the configuration inputs to any supported voltage. If  
3–6  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Configuration & Testing  
you need to support configuration input voltages of 1.8 V/1.5 V, you  
should set the VCCSELto a logic high and the VCCIO of the bank that  
contains the configuration inputs to 1.8 V/1.5 V.  
f
For more information on multi-volt support, including information on  
using TDOand nCEOin multi-volt systems, refer to the Stratix II  
Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Configuration Schemes  
You can load the configuration data for a Stratix II device with one of five  
configuration schemes (see Table 3–5), chosen on the basis of the target  
application. You can use a configuration device, intelligent controller, or  
the JTAG port to configure a Stratix II device. A configuration device can  
automatically configure a Stratix II device at system power-up.  
You can configure multiple Stratix II devices in any of the five  
configuration schemes by connecting the configuration enable (nCE) and  
configuration enable output (nCEO) pins on each device.  
Stratix II FPGAs offer the following:  
Configuration data decompression to reduce configuration file  
storage  
Design security using configuration data encryption to protect your  
designs  
Remote system upgrades for remotely updating your Stratix II  
designs  
Table 3–5 summarizes which configuration features can be used in each  
configuration scheme.  
Table 3–5. Stratix II Configuration Features (Part 1 of 2)  
Configuration  
Configuration Method  
Scheme  
RemoteSystem  
Upgrade  
Design Security Decompression  
FPP  
MAX II device or microprocessor and  
flash device  
v(1)  
v(1)  
v
Enhanced configuration device  
Serial configuration device  
v(2)  
v
v
v(3)  
v
AS  
PS  
v
v
MAX II device or microprocessor and  
flash device  
v
Enhanced configuration device  
v
v
v
v
v
Download cable (4)  
Altera Corporation  
May 2007  
3–7  
Stratix II Device Handbook, Volume 1  
Configuration  
Table 3–5. Stratix II Configuration Features (Part 2 of 2)  
Configuration  
Configuration Method  
Scheme  
RemoteSystem  
Upgrade  
Design Security Decompression  
PPA  
MAX II device or microprocessor and  
flash device  
v
JTAG  
Download cable (4)  
MAX II device or microprocessor and  
flash device  
Notes for Table 3–5:  
(1) In these modes, the host system must send a DCLKthat is 4× the data rate.  
(2) The enhanced configuration device decompression feature is available, while the Stratix II decompression feature  
is not available.  
(3) Only remote update mode is supported when using the AS configuration scheme. Local update mode is not  
supported.  
(4) The supported download cables include the Altera USB Blaster universal serial bus (USB) port download cable,  
MasterBlaster serial/USB communications cable, ByteBlaster II parallel port download cable, and the  
ByteBlasterMV parallel port download cable.  
f
See the Configuring Stratix II & Stratix II GX Devices chapter in volume 2  
of the Stratix II Device Handbook or the Stratix II GX Device Handbook for  
more information about configuration schemes in Stratix II and  
Stratix II GX devices.  
Device Security Using Configuration Bitstream Encryption  
Stratix II FPGAs are the industry’s first FPGAs with the ability to decrypt  
a configuration bitstream using the Advanced Encryption Standard  
(AES) algorithm. When using the design security feature, a 128-bit  
security key is stored in the Stratix II FPGA. To successfully configure a  
Stratix II FPGA that has the design security feature enabled, it must be  
configured with a configuration file that was encrypted using the same  
128-bit security key. The security key can be stored in non-volatile  
memory inside the Stratix II device. This non-volatile memory does not  
require any external devices, such as a battery back-up, for storage.  
3–8  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Configuration & Testing  
1
An encryption configuration file is the same size as a non-  
encryption configuration file. When using a serial configuration  
scheme such as passive serial (PS) or active serial (AS),  
configuration time is the same whether or not the design  
security feature is enabled. If the fast passive parallel (FPP)  
scheme us used with the design security or decompression  
feature, a 4× DCLKis required. This results in a slower  
configuration time when compared to the configuration time of  
an FPGA that has neither the design security, nor  
decompression feature enabled. For more information about  
this feature, refer to AN 341: Using the Design Security Feature in  
Stratix II Devices. Contact your local Altera sales representative  
to request this document.  
Device Configuration Data Decompression  
Stratix II FPGAs support decompression of configuration data, which  
saves configuration memory space and time. This feature allows you to  
store compressed configuration data in configuration devices or other  
memory, and transmit this compressed bit stream to Stratix II FPGAs.  
During configuration, the Stratix II FPGA decompresses the bit stream in  
real time and programs its SRAM cells.  
Stratix II FPGAs support decompression in the FPP (when using a  
MAX II device/microprocessor and flash memory), AS and PS  
configuration schemes. Decompression is not supported in the PPA  
configuration scheme nor in JTAG-based configuration.  
Remote System Upgrades  
Shortened design cycles, evolving standards, and system deployments in  
remote locations are difficult challenges faced by modern system  
designers. Stratix II devices can help effectively deal with these  
challenges with their inherent re-programmability and dedicated  
circuitry to perform remote system updates. Remote system updates help  
deliver feature enhancements and bug fixes without costly recalls, reduce  
time to market, and extend product life.  
Stratix II FPGAs feature dedicated remote system upgrade circuitry to  
facilitate remote system updates. Soft logic (Nios® processor or user logic)  
implemented in the Stratix II device can download a new configuration  
image from a remote location, store it in configuration memory, and direct  
the dedicated remote system upgrade circuitry to initiate a  
reconfiguration cycle. The dedicated circuitry performs error detection  
during and after the configuration process, recovers from any error  
condition by reverting back to a safe configuration image, and provides  
Altera Corporation  
May 2007  
3–9  
Stratix II Device Handbook, Volume 1  
Configuration  
error status information. This dedicated remote system upgrade circuitry  
avoids system downtime and is the critical component for successful  
remote system upgrades.  
RSC is supported in the following Stratix II configuration schemes: FPP,  
AS, PS, and PPA. RSC can also be implemented in conjunction with  
advanced Stratix II features such as real-time decompression of  
configuration data and design security using AES for secure and efficient  
field upgrades.  
f
f
See the Remote System Upgrades With Stratix II & Stratix II GX Devices  
chapter in volume 2 of the Stratix II Device Handbook or the Stratix II GX  
Device Handbook for more information about remote configuration in  
Stratix II devices.  
Configuring Stratix II FPGAs with JRunner  
JRunner is a software driver that configures Altera FPGAs, including  
Stratix II FPGAs, through the ByteBlaster II or ByteBlasterMV cables in  
JTAG mode. The programming input file supported is in Raw Binary File  
(.rbf) format. JRunner also requires a Chain Description File (.cdf)  
generated by the Quartus II software. JRunner is targeted for embedded  
JTAG configuration. The source code is developed for the Windows NT  
operating system (OS), but can be customized to run on other platforms.  
For more information on the JRunner software driver, see the JRunner  
Software Driver: An Embedded Solution to the JTAG Configuration White  
Paper and the source files on the Altera web site (www.altera.com).  
Programming Serial Configuration Devices with SRunner  
A serial configuration device can be programmed in-system by an  
external microprocessor using SRunner. SRunner is a software driver  
developed for embedded serial configuration device programming that  
can be easily customized to fit in different embedded systems. SRunner is  
able to read a .rpd file (Raw Programming Data) and write to the serial  
configuration devices. The serial configuration device programming time  
using SRunner is comparable to the programming time when using the  
Quartus II software.  
f
f
For more information about SRunner, see the SRunner: An Embedded  
Solution for EPCS Programming White Paper and the source code on the  
Altera web site at www.altera.com.  
For more information on programming serial configuration devices, see  
the Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet in the  
Configuration Handbook.  
3–10  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Configuration & Testing  
Configuring Stratix II FPGAs with the MicroBlaster Driver  
TM  
The MicroBlaster software driver supports an RBF programming input  
file and is ideal for embedded FPP or PS configuration. The source code  
is developed for the Windows NT operating system, although it can be  
customized to run on other operating systems. For more information on  
the MicroBlaster software driver, see the Configuring the MicroBlaster Fast  
Passive Parallel Software Driver White Paper or the Configuring the  
MicroBlaster Passive Serial Software Driver White Paper on the Altera web  
site (www.altera.com).  
PLL Reconfiguration  
The phase-locked loops (PLLs) in the Stratix II device family support  
reconfiguration of their multiply, divide, VCO-phase selection, and  
bandwidth selection settings without reconfiguring the entire device. You  
can use either serial data from the logic array or regular I/O pins to  
program the PLL’s counter settings in a serial chain. This option provides  
considerable flexibility for frequency synthesis, allowing real-time  
variation of the PLL frequency and delay. The rest of the device is  
functional while reconfiguring the PLL.  
f
See the PLLs in Stratix II & Stratix II GX Devices chapter in volume 2 of  
the Stratix II Device Handbook or the Stratix II GX Device Handbook for  
more information on Stratix II PLLs.  
Stratix II devices include a diode-connected transistor for use as a  
temperature sensor in power management. This diode is used with an  
external digital thermometer device. These devices steer bias current  
through the Stratix II diode, measuring forward voltage and converting  
this reading to temperature in the form of an 8-bit signed number (7 bits  
plus sign). The external device's output represents the junction  
temperature of the Stratix II device and can be used for intelligent power  
management.  
Temperature  
Sensing Diode  
(TSD)  
The diode requires two pins (tempdiodepand tempdioden) on the  
Stratix II device to connect to the external temperature-sensing device, as  
shown in Figure 3–1. The temperature sensing diode is a passive element  
and therefore can be used before the Stratix II device is powered.  
Altera Corporation  
May 2007  
3–11  
Stratix II Device Handbook, Volume 1  
Temperature Sensing Diode (TSD)  
Figure 3–1. External Temperature-Sensing Diode  
Stratix II Device  
Temperature-Sensing  
Device  
tempdiodep  
tempdioden  
Table 3–6 shows the specifications for bias voltage and current of the  
Stratix II temperature sensing diode.  
Table 3–6. Temperature-Sensing Diode Electrical Characteristics  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
IBIAS high  
80  
8
100  
10  
120  
12  
μA  
μA  
V
IBIAS low  
VBP - VBN  
VBN  
0.3  
0.9  
0.7  
V
Series resistance  
3
Ω
3–12  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Configuration & Testing  
The temperature-sensing diode works for the entire operating range, as  
shown in Figure 3–2.  
Figure 3–2. Temperature vs. Temperature-Sensing Diode Voltage  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
100 μA Bias Current  
10 μA Bias Current  
Voltage  
(Across Diode)  
–55  
–30  
–5  
20  
45  
70  
95  
120  
Temperature (˚C)  
The temperature sensing diode is a very sensitive circuit which can be  
influenced by noise coupled from other traces on the board, and possibly  
within the device package itself, depending on device usage. The  
interfacing device registers temperature based on milivolts of difference  
as seen at the TSD. Switching I/O near the TSD pins can affect the  
temperature reading. Altera recommends you take temperature readings  
during periods of no activity in the device (for example, standby mode  
where no clocks are toggling in the device), such as when the nearby I/Os  
are at a DC state, and disable clock networks in the device.  
Stratix II devices offer on-chip circuitry for automated checking of single  
event upset (SEU) detection. Some applications that require the device to  
operate error free at high elevations or in close proximity to Earth’s North  
or South Pole require periodic checks to ensure continued data integrity.  
The error detection cyclic redundancy check (CRC) feature controlled by  
Automated  
Single Event  
Upset (SEU)  
Detection  
Altera Corporation  
May 2007  
3–13  
Stratix II Device Handbook, Volume 1  
Document Revision History  
the Device & Pin Options dialog box in the Quartus II software uses a  
32-bit CRC circuit to ensure data reliability and is one of the best options  
for mitigating SEU.  
You can implement the error detection CRC feature with existing circuitry  
in Stratix II devices, eliminating the need for external logic. For Stratix II  
devices, CRC is computed by the device during configuration and  
checked against an automatically computed CRC during normal  
operation. The CRC_ERRORpin reports a soft error when configuration  
SRAM data is corrupted, triggering device reconfiguration.  
Custom-Built Circuitry  
Dedicated circuitry is built in the Stratix II devices to perform error  
detection automatically. This error detection circuitry in Stratix II devices  
constantly checks for errors in the configuration SRAM cells while the  
device is in user mode. You can monitor one external pin for the error and  
use it to trigger a re-configuration cycle. You can select the desired time  
between checks by adjusting a built-in clock divider.  
Software Interface  
In the Quartus II software version 4.1 and later, you can turn on the  
automated error detection CRC feature in the Device & Pin Options  
dialog box. This dialog box allows you to enable the feature and set the  
internal frequency of the CRC between 400 kHz to 50 MHz. This controls  
the rate that the CRC circuitry verifies the internal configuration SRAM  
bits in the FPGA device.  
For more information on CRC, refer to AN 357: Error Detection Using CRC  
in Altera FPGA Devices.  
Table 3–7 shows the revision history for this chapter.  
Document  
Revision History  
Table 3–7. Document Revision History (Part 1 of 2)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
May 2007, v4.2 Moved Document Revision History section to the end  
of the chapter.  
Updated the Temperature Sensing Diode (TSD)”  
section.  
3–14  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
Configuration & Testing  
Table 3–7. Document Revision History (Part 2 of 2)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
April 2006,  
v4.1  
Updated “Device Security Using Configuration  
Bitstream Encryption” section.  
December  
2005, v4.0  
Updated “Software Interface” section.  
May 2005, v3.0  
Updated “IEEE Std. 1149.1 JTAG Boundary-Scan  
Support” section.  
Updated “Operating Modes” section.  
January 2005, Updated JTAG chain device limits.  
v2.1  
January 2005, Updated Table 3–3.  
v2.0  
July 2004, v1.1  
Added “Automated Single Event Upset (SEU)  
Detection” section.  
Updated “Device Security Using Configuration  
Bitstream Encryption” section.  
Updated Figure 3–2.  
February2004, Added document to the Stratix II Device Handbook.  
v1.0  
Altera Corporation  
May 2007  
3–15  
Stratix II Device Handbook, Volume 1  
Document Revision History  
3–16  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
4. Hot Socketing &  
Power-On Reset  
SII51004-3.2  
Stratix® II devices offer hot socketing, which is also known as hot plug-in  
or hot swap, and power sequencing support without the use of any  
external devices. You can insert or remove a Stratix II board in a system  
during system operation without causing undesirable effects to the  
running system bus or the board that was inserted into the system.  
The hot socketing feature also removes some of the difficulty when you  
use Stratix II devices on printed circuit boards (PCBs) that also contain a  
mixture of 5.0-, 3.3-, 2.5-, 1.8-, 1.5- and 1.2-V devices. With the Stratix II hot  
socketing feature, you no longer need to ensure a proper power-up  
sequence for each device on the board.  
The Stratix II hot socketing feature provides:  
Board or device insertion and removal without external components  
or board manipulation  
Support for any power-up sequence  
Non-intrusive I/O buffers to system buses during hot insertion  
This chapter also discusses the power-on reset (POR) circuitry in Stratix II  
devices. The POR circuitry keeps the devices in the reset state until the  
VCC is within operating range.  
Stratix II devices offer hot socketing capability with all three features  
listed above without any external components or special design  
requirements. The hot socketing feature in Stratix II devices allows:  
Stratix II  
Hot-Socketing  
Specifications  
The device can be driven before power-up without any damage to  
the device itself.  
I/O pins remain tri-stated during power-up. The device does not  
drive out before or during power-up, thereby affecting other buses in  
operation.  
Signal pins do not drive the VCCIO, VCCPD, or VCCINT power supplies.  
External input signals to I/O pins of the device do not internally  
power the VCCIO or VCCINT power supplies of the device via internal  
paths within the device.  
Altera Corporation  
May 2007  
4–1  
Stratix II Hot-Socketing Specifications  
Devices Can Be Driven Before Power-Up  
You can drive signals into the I/O pins, dedicated input pins and  
dedicated clock pins of Stratix II devices before or during power-up or  
power-down without damaging the device. Stratix II devices support any  
power-up or power-down sequence (VCCIO, VCCINT, and VCCPD) in order  
to simplify system level design.  
I/O Pins Remain Tri-Stated During Power-Up  
A device that does not support hot-socketing may interrupt system  
operation or cause contention by driving out before or during power-up.  
In a hot socketing situation, Stratix II device's output buffers are turned  
off during system power-up or power-down. Stratix II device also does  
not drive out until the device is configured and has attained proper  
operating conditions.  
Signal Pins Do Not Drive the VCCIO, VCCINT or VCCPD Power  
Supplies  
Devices that do not support hot-socketing can short power supplies  
together when powered-up through the device signal pins. This irregular  
power-up can damage both the driving and driven devices and can  
disrupt card power-up.  
Stratix II devices do not have a current path from I/O pins, dedicated  
input pins, or dedicated clock pins to the VCCIO, VCCINT, or VCCPD pins  
before or during power-up. A Stratix II device may be inserted into (or  
removed from) a powered-up system board without damaging or  
interfering with system-board operation. When hot-socketing, Stratix II  
devices may have a minimal effect on the signal integrity of the  
backplane.  
1
You can power up or power down the VCCIO, VCCINT, and VCCPD  
pins in any sequence. The power supply ramp rates can range  
from 100 μs to 100 ms. All VCC supplies must power down  
within 100 ms of each other to prevent I/O pins from driving  
out. During hot socketing, the I/O pin capacitance is less than 15  
pF and the clock pin capacitance is less than 20 pF. Stratix II  
devices meet the following hot socketing specification.  
The hot socketing DC specification is: | IIOPIN | < 300 μA.  
The hot socketing AC specification is: | IIOPIN | < 8 mA for 10 ns or  
less.  
4–2  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Hot Socketing & Power-On Reset  
IIOPIN is the current at any user I/O pin on the device. This specification  
takes into account the pin capacitance, but not board trace and external  
loading capacitance. Additional capacitance for trace, connector, and  
loading needs must be considered separately. For the AC specification,  
the peak current duration is 10 ns or less because of power-up transients.  
For more information, refer to the Hot-Socketing & Power-Sequencing  
Feature & Testing for Altera Devices white paper.  
A possible concern regarding hot-socketing is the potential for latch-up.  
Latch-up can occur when electrical subsystems are hot-socketed into an  
active system. During hot-socketing, the signal pins may be connected  
and driven by the active system before the power supply can provide  
current to the device's VCC and ground planes. This condition can lead to  
latch-up and cause a low-impedance path from VCC to ground within the  
device. As a result, the device extends a large amount of current, possibly  
causing electrical damage. Nevertheless, Stratix II devices are immune to  
latch-up when hot-socketing.  
The hot socketing feature turns off the output buffer during the power-up  
event (either VCCINT, VCCIO, or VCCPD supplies) or power down. The hot-  
socket circuit will generate an internal HOTSCKTsignal when either  
VCCINT, VCCIO, or VCCPD is below threshold voltage. The HOTSCKTsignal  
will cut off the output buffer to make sure that no DC current (except for  
weak pull up leaking) leaks through the pin. When VCC ramps up very  
slowly, VCC is still relatively low even after the POR signal is released and  
the configuration is finished. The CONF_DONE, nCEO, and nSTATUSpins  
fail to respond, as the output buffer can not flip from the state set by the  
hot socketing circuit at this low VCC voltage. Therefore, the hot socketing  
circuit has been removed on these configuration pins to make sure that  
they are able to operate during configuration. It is expected behavior for  
these pins to drive out during power-up and power-down sequences.  
Hot Socketing  
Feature  
Implementation  
in Stratix II  
Devices  
Each I/O pin has the following circuitry shown in Figure 4–1.  
Altera Corporation  
May 2007  
4–3  
Stratix II Device Handbook, Volume 1  
Hot Socketing Feature Implementation in Stratix II Devices  
Figure 4–1. Hot Socketing Circuit Block Diagram for Stratix II Devices  
Power On  
Reset  
Monitor  
Output  
Weak  
Pull-Up  
R
Output Enable  
Resistor  
Voltage  
Tolerance  
Control  
Hot Socket  
PAD  
Output  
Pre-Driver  
Input Buffer  
to Logic Array  
The POR circuit monitors VCCINT voltage level and keeps I/O pins tri-  
stated until the device is in user mode. The weak pull-up resistor (R) from  
the I/O pin to VCCIO is present to keep the I/O pins from floating. The  
3.3-V tolerance control circuit permits the I/O pins to be driven by 3.3 V  
before VCCIO and/or VCCINT and/or VCCPD are powered, and it prevents  
the I/O pins from driving out when the device is not in user mode. The  
hot socket circuit prevents I/O pins from internally powering VCCIO  
,
VCCINT, and VCCPD when driven by external signals before the device is  
powered.  
Figure 4–2 shows a transistor level cross section of the Stratix II device  
I/O buffers. This design ensures that the output buffers do not drive  
when VCCIO is powered before VCCINT or if the I/O pad voltage is higher  
than VCCIO. This also applies for sudden voltage spikes during hot  
insertion. There is no current path from signal I/O pins to VCCINT or VCCIO  
or VCCPD during hot insertion. The VPAD leakage current charges the 3.3-V  
tolerant circuit capacitance.  
4–4  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
May 2007  
Hot Socketing & Power-On Reset  
Figure 4–2. Transistor Level Diagram of FPGA Device I/O Buffers  
V
Logic Array  
Signal  
PAD  
(1)  
(2)  
V
CCIO  
n+  
n+  
p+  
p+  
n-well  
n+  
p-well  
p-substrate  
Notes to Figure 4–2:  
(1) This is the logic array signal or the larger of either the VCCIO or VPAD signal.  
(2) This is the larger of either the VCCIO or VPAD signal.  
Stratix II devices have a POR circuit to keep the whole device system in  
reset state until the power supply voltage levels have stabilized during  
power-up. The POR circuit monitors the VCCINT, VCCIO, and VCCPD voltage  
levels and tri-states all the user I/O pins while VCC is ramping up until  
normal user levels are reached. The POR circuitry also ensures that all  
eight I/O bank VCCIO voltages, VCCPD voltage, as well as the logic array  
VCCINT voltage, reach an acceptable level before configuration is  
triggered. After the Stratix II device enters user mode, the POR circuit  
continues to monitor the VCCINT voltage level so that a brown-out  
condition during user mode can be detected. If there is a VCCINT voltage  
sag below the Stratix II operational level during user mode, the POR  
circuit resets the device.  
Power-On Reset  
Circuitry  
When power is applied to a Stratix II device, a power-on-reset event  
occurs if VCC reaches the recommended operating range within a certain  
period of time (specified as a maximum VCC rise time). The maximum  
VCC rise time for Stratix II device is 100 ms. Stratix II devices provide a  
dedicated input pin (PORSEL) to select POR delay times of 12 or 100 ms  
during power-up. When the PORSELpin is connected to ground, the POR  
time is 100 ms. When the PORSELpin is connected to VCC, the POR time  
is 12 ms.  
Altera Corporation  
May 2007  
4–5  
Stratix II Device Handbook, Volume 1  
Document Revision History  
Table 4–1 shows the revision history for this chapter.  
Document  
Revision History  
Table 4–1. Document Revision History  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
May 2007, v3.2 Moved the Document Revision History section to the  
end of the chapter.  
April 2006,  
v3.1  
Updated “Signal Pins Do Not Drive the VCCIO,  
VCCINT or VCCPD Power Supplies” section.  
Updated hot socketing AC  
specification.  
May 2005, v3.0  
Updated “Signal Pins Do Not Drive the VCCIO,  
VCCINT or VCCPD Power Supplies” section.  
Removed information on ESD protection.  
January 2005, Updated input rise and fall time.  
v2.1  
January 2005, Updated the “Hot Socketing Feature Implementation in  
v2.0  
Stratix II Devices”, “ESD Protection”, and “Power-On  
Reset Circuitry” sections.  
July 2004, v1.1  
Updated all tables.  
Added tables.  
February2004, Added document to the Stratix II Device Handbook.  
v1.0  
4–6  
Altera Corporation  
May 2007  
Stratix II Device Handbook, Volume 1  
5. DC & Switching  
Characteristics  
SII51005-4.5  
Stratix® II devices are offered in both commercial and industrial grades.  
Industrial devices are offered in -4 speed grades and commercial devices  
are offered in -3 (fastest), -4, -5 speed grades.  
Operating  
Conditions  
Tables 5–1 through 5–32 provide information about absolute maximum  
ratings, recommended operating conditions, DC electrical characteristics,  
and other specifications for Stratix II devices.  
Absolute Maximum Ratings  
Table 5–1 contains the absolute maximum ratings for the Stratix II device  
family.  
Table 5–1. Stratix II Device Absolute Maximum Ratings  
Notes (1), (2), (3)  
Symbol  
VCCINT  
VCCIO  
Parameter  
Conditions  
Minimum  
–0.5  
Maximum  
1.8  
Unit  
V
Supply voltage  
With respect to ground  
With respect to ground  
With respect to ground  
With respect to ground  
Supply voltage  
Supply voltage  
–0.5  
4.6  
V
VCCPD  
VCCA  
–0.5  
4.6  
V
Analog power supply for  
PLLs  
–0.5  
1.8  
V
VCCD  
VI  
Digital power supply for PLLs With respect to ground  
DC input voltage (4)  
–0.5  
–0.5  
–25  
–65  
–55  
1.8  
4.6  
40  
V
V
IOUT  
TSTG  
TJ  
DC output current, per pin  
mA  
°C  
°C  
Storage temperature  
Junction temperature  
No bias  
150  
125  
BGA packages under bias  
Notes to Tables 5–1  
(1) See the Operating Requirements for Altera Devices Data Sheet.  
(2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device  
operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.  
(3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.  
(4) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle.  
The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input  
currents less than 100 mA and periods shorter than 20 ns.  
Altera Corporation  
April 2011  
5–1  
Operating Conditions  
Table 5–2. Maximum Duty Cycles in Voltage Transitions  
Maximum  
Duty Cycles  
Symbol  
Parameter  
Condition  
Unit  
VI  
Maximum duty cycles  
in voltage transitions  
VI = 4.0 V  
VI = 4.1 V  
VI = 4.2 V  
VI = 4.3 V  
VI = 4.4 V  
VI = 4.5 V  
100  
90  
50  
30  
17  
10  
%
%
%
%
%
%
Recommended Operating Conditions  
Table 5–3 contains the Stratix II device family recommended operating  
conditions.  
Table 5–3. Stratix II Device Recommended Operating Conditions (Part 1 of 2)  
Note (1)  
Symbol  
VCCINT  
VCCIO  
Parameter  
Conditions  
Minimum Maximum Unit  
Supply voltage for internal logic  
100 μs risetime 100 ms (3)  
100 μs risetime 100 ms (3), (6)  
1.15  
1.25  
V
V
Supply voltage for input and  
output buffers, 3.3-V operation  
3.135  
(3.00)  
3.465  
(3.60)  
Supply voltage for input and  
output buffers, 2.5-V operation  
100 μs risetime 100 ms (3)  
100 μs risetime 100 ms (3)  
2.375  
2.625  
V
V
V
V
V
Supply voltage for input and  
output buffers, 1.8-V operation  
1.71  
1.89  
Supply voltage for output buffers, 100 μs risetime 100 ms (3)  
1.5-V operation  
1.425  
1.14  
1.575  
1.26  
Supply voltage for input and  
output buffers, 1.2-V operation  
100 μs risetime 100 ms (3)  
VCCPD  
Supply voltage for pre-drivers as 100 μs risetime 100 ms (4)  
well as configuration and JTAG  
3.135  
3.465  
I/O buffers.  
VCCA  
VCCD  
VI  
Analog power supply for PLLs  
Digital power supply for PLLs  
Input voltage (see Table 5–2)  
Output voltage  
100 μs risetime 100 ms (3)  
100 μs risetime 100 ms (3)  
(2), (5)  
1.15  
1.15  
–0.5  
0
1.25  
1.25  
4.0  
V
V
V
V
VO  
VCCIO  
5–2  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–3. Stratix II Device Recommended Operating Conditions (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Minimum Maximum Unit  
TJ  
Operating junction temperature  
For commercial use  
For industrial use  
For military use (7)  
0
85  
°C  
°C  
°C  
–40  
–55  
100  
125  
Notes to Table 5–3:  
(1) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.  
(2) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle.  
The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input  
currents less than 100 mA and periods shorter than 20 ns.  
(3) Maximum VCC rise time is 100 ms, and VCC must rise monotonically from ground to VCC  
.
(4) VCCPD must ramp-up from 0 V to 3.3 V within 100 μs to 100 ms. If VC CPD is not ramped up within this specified  
time, your Stratix II device does not configure successfully. If your system does not allow for a VCCPD ramp-up time  
of 100 ms or less, you must hold nCONFIGlow until all power supplies are reliable.  
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT, VCCPD, and VCCIO  
are powered.  
(6) VC CIO maximum and minimum conditions for PCI and PCI-X are shown in parentheses.  
(7) For more information, refer to the Stratix II Military Temperature Range Support technical brief.  
DC Electrical Characteristics  
Table 5–4 shows the Stratix II device family DC electrical characteristics.  
Table 5–4. Stratix II Device DC Operating Conditions (Part 1 of 2)  
Symbol Parameter Conditions  
Note (1)  
Minimum Typical Maximum Unit  
II  
IOZ  
Input pin leakage current VI = VCCIOmax to 0 V (2)  
–10  
–10  
10  
10  
μA  
μA  
Tri-stated I/O pin  
leakage current  
VO = VCCIOmax to 0 V (2)  
ICCINT0 VCCINT supply current  
(standby)  
VI = ground, no  
load, no toggling  
inputs  
EP2S15  
0.25  
0.30  
0.50  
0.62  
0.82  
1.12  
2.2  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
A
A
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
A
TJ = 25° C  
A
A
A
ICCPD0  
VCCPD supply current  
(standby)  
VI = ground, no  
load, no toggling  
inputs  
TJ = 25° C,  
VCCPD = 3.3V  
mA  
mA  
mA  
mA  
mA  
mA  
2.7  
3.6  
4.3  
5.4  
6.8  
Altera Corporation  
April 2011  
5–3  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–4. Stratix II Device DC Operating Conditions (Part 2 of 2)  
Note (1)  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum Unit  
ICCI00  
VCCIO supply current  
(standby)  
VI = ground, no  
load, no toggling  
inputs  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
25  
35  
50  
75  
90  
1
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
50  
mA  
mA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
TJ = 25° C  
RCONF (4) Value of I/O pin pull-up  
resistor before and  
Vi = 0; VCCIO = 3.3 V  
Vi = 0; VCCIO = 2.5 V  
Vi = 0; VCCIO = 1.8 V  
Vi = 0; VCCIO = 1.5 V  
Vi = 0; VCCIO = 1.2 V  
10  
15  
30  
40  
50  
70  
during configuration  
100  
150  
170  
2
Recommended value of  
I/O pin external  
pull-downresistorbefore  
and during configuration  
Notes to Table 5–4:  
(1) Typical values are for TA = 25°C, VCCINT = 1.2 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.  
(2) This value is specified for normal device operation. The value may vary during power-up. This applies for all  
VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).  
(3) Maximum values depend on the actual TJ and design utilization. See the Excel-based PowerPlay Early Power  
Estimator (available at www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum  
values. See the section “Power Consumption” on page 5–20 for more information.  
(4) Pin pull-up resistance values are lower if an external source drives the pin higher than VCCIO  
.
I/O Standard Specifications  
Tables 5–5 through 5–32 show the Stratix II device family I/O standard  
specifications.  
Table 5–5. LVTTL Specifications (Part 1 of 2)  
Symbol  
VCCIO (1)  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Conditions  
Minimum  
3.135  
1.7  
Maximum  
3.465  
4.0  
Unit  
V
V
VIL  
–0.3  
0.8  
V
VOH  
IOH = –4 mA (2)  
2.4  
V
5–4  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–5. LVTTL Specifications (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
Maximum  
Unit  
VOL  
Low-level output voltage  
IOL = 4 mA (2)  
0.45  
V
Notes to Tables 5–5:  
(1) Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard,  
JESD8-B.  
(2) This specification is supported across all the programmable drive strength settings available for this I/O standard  
as shown in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–6. LVCMOS Specifications  
Symbol  
VCCIO (1)  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Conditions  
Minimum  
3.135  
1.7  
Maximum  
3.465  
4.0  
Unit  
V
V
VIL  
–0.3  
0.8  
V
VOH  
VCCIO = 3.0,  
V
CCIO – 0.2  
V
IOH = –0.1 mA (2)  
VOL  
Low-level output voltage  
VCCIO = 3.0,  
0.2  
V
IOL = 0.1 mA (2)  
Notes to Table 5–6:  
(1) Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard,  
JESD8-B.  
(2) This specification is supported across all the programmable drive strength available for this I/O standard as  
shown in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–7. 2.5-V I/O Specifications  
Symbol  
VCCIO (1)  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Conditions  
Minimum  
2.375  
1.7  
Maximum  
2.625  
4.0  
Unit  
V
V
VIL  
–0.3  
0.7  
V
IOH = –1mA (2)  
IOL = 1 mA (2)  
2.0  
V
VOH  
VOL  
Low-level output voltage  
0.4  
V
Notes to Table 5–7:  
(1) Stratix II devices VCC IO voltage level support of 2.5 -5% is narrower than defined in the Normal Range of the  
EIA/JEDEC standard.  
(2) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Altera Corporation  
April 2011  
5–5  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–8. 1.8-V I/O Specifications  
Symbol  
VCCIO (1)  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Conditions  
Minimum  
1.71  
Maximum  
1.89  
Unit  
V
0.65 × VCCIO  
–0.30  
2.25  
V
VIL  
0.35 × VCCIO  
V
VOH  
IOH = –2 mA (2)  
IOL = 2 mA (2)  
VCCIO – 0.45  
V
VOL  
0.45  
V
Notes to Table 5–8:  
(1) The Stratix II device family’s VC CIO voltage level support of 1.8 -5% is narrower than defined in the Normal  
Range of the EIA/JEDEC standard.  
(2) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–9. 1.5-V I/O Specifications  
Symbol  
VCCIO (1)  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Conditions  
Minimum  
1.425  
Maximum  
1.575  
Unit  
V
0.65 × VCCIO  
–0.30  
VCCIO + 0.30  
0.35 × VCCIO  
V
VIL  
V
VOH  
IOH = –2 mA (2)  
IOL = 2 mA (2)  
0.75 × VCCIO  
V
VOL  
0.25 × VCCIO  
V
Notes to Table 5–9:  
(1) The Stratix II device family’s VC CIO voltage level support of 1.5 -5% is narrower than defined in the Normal  
Range of the EIA/JEDEC standard.  
(2) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Figures 5–1 and 5–2 show receiver input and transmitter output  
waveforms, respectively, for all differential I/O standards (LVDS,  
LVPECL, and HyperTransport technology).  
5–6  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Figure 5–1. Receiver Input Waveforms for Differential I/O Standards  
Single-Ended Waveform  
Positive Channel (p) = V  
IH  
V
ID  
Negative Channel (n) = V  
Ground  
IL  
V
CM  
Differential Waveform  
V
ID  
p n = 0 V  
V
ID  
Figure 5–2. Transmitter Output Waveforms for Differential I/O Standards  
Single-Ended Waveform  
Positive Channel (p) = V  
OH  
V
OD  
Negative Channel (n) = V  
Ground  
OL  
V
CM  
Differential Waveform  
V
OD  
p n = 0 V  
V
OD  
Altera Corporation  
April 2011  
5–7  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–10. 2.5-V LVDS I/O Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum Unit  
VCCIO  
I/O supply voltage for left and  
right I/O banks (1, 2, 5, and  
6)  
2.375  
2.500  
2.625  
V
VID  
Input differential voltage  
swing (single-ended)  
100  
350  
900  
mV  
VICM  
VOD  
Input common mode voltage  
200  
250  
1,250  
1,800  
450  
mV  
mV  
Output differential voltage  
(single-ended)  
RL = 100 Ω  
RL = 100 Ω  
VOCM  
RL  
Output common mode  
voltage  
1.125  
90  
1.375  
110  
V
Receiver differential input  
discrete resistor (external to  
Stratix II devices)  
100  
Ω
Table 5–11. 3.3-V LVDS I/O Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum Unit  
VCCIO (1)  
I/O supply voltage for top  
and bottom PLL banks (9,  
10, 11, and 12)  
3.135  
3.300  
3.465  
V
VID  
Input differential voltage  
swing (single-ended)  
100  
350  
900  
mV  
VICM  
VOD  
Input common mode voltage  
200  
250  
1,250  
1,800  
710  
mV  
mV  
Output differential voltage  
(single-ended)  
RL = 100 Ω  
RL = 100 Ω  
VOCM  
RL  
Output common mode  
voltage  
840  
90  
1,570  
110  
mV  
Receiver differential input  
discrete resistor (external to  
Stratix II devices)  
100  
Ω
Note to Table 5–11:  
(1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by VCCINT, not VCCIO  
The PLL clock output/feedback differential buffers are powered by VCC_PLL_OUT. For differential clock  
output/feedback operation, VCC_PLL_OUTshould be connected to 3.3 V.  
.
5–8  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–12. LVPECL Specifications  
Symbol  
VCCIO (1)  
VID  
Parameter  
Conditions  
Minimum  
3.135  
Typical  
3.300  
600  
Maximum Unit  
I/O supply voltage  
3.465  
1,000  
V
Input differential voltage  
swing (single-ended)  
300  
mV  
VICM  
VOD  
Input common mode voltage  
1.0  
2.5  
V
Output differential voltage  
(single-ended)  
RL = 100 Ω  
RL = 100 Ω  
525  
970  
mV  
VOCM  
RL  
Output common mode  
voltage  
1,650  
90  
2,250  
110  
mV  
Receiver differential input  
resistor  
100  
Ω
Note to Table 5–12:  
(1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by VCCINT, not VCCIO  
The PLL clock output/feedback differential buffers are powered by VCC_PLL_OUT. For differential clock  
output/feedback operation, VCC_PLL_OUTshould be connected to 3.3 V.  
.
Table 5–13. HyperTransport Technology Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum Unit  
VCCIO  
I/O supply voltage for left and  
right I/O banks (1, 2, 5, and 6)  
2.375  
2.500  
2.625  
V
VID  
Input differential voltage swing RL = 100 Ω  
300  
600  
900  
mV  
(single-ended)  
VICM  
VOD  
Input common mode voltage  
RL = 100 Ω  
RL = 100 Ω  
385  
400  
600  
600  
845  
820  
mV  
mV  
Output differential voltage  
(single-ended)  
Δ VOD  
Change in VOD between high  
and low  
RL = 100 Ω  
75  
mV  
VOCM  
Output common mode voltage RL = 100 Ω  
440  
90  
600  
100  
780  
50  
mV  
mV  
Δ VOCM  
Change in VOCM between high RL = 100 Ω  
and low  
RL  
Receiver differential input  
resistor  
110  
Ω
Table 5–14. 3.3-V PCI Specifications (Part 1 of 2)  
Symbol  
VCCIO  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Conditions  
Minimum  
3.0  
Typical  
Maximum Unit  
3.3  
3.6  
V
V
0.5 × VCCIO  
VCCIO + 0.5  
Altera Corporation  
April 2011  
5–9  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–14. 3.3-V PCI Specifications (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
Minimum  
–0.3  
Typical  
Typical  
Maximum Unit  
VIL  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.3 × VCCIO  
V
V
V
VOH  
VOL  
IOUT = –500 μA  
IOUT = 1,500 μA  
0.9 × VCCIO  
0.1 × VCCIO  
Table 5–15. PCI-X Mode 1 Specifications  
Symbol  
VCCIO  
VIH  
Parameter  
Output supply voltage  
High-level input voltage  
Low-level input voltage  
Input pull-up voltage  
Conditions  
Minimum  
3.0  
Maximum Unit  
3.6  
V
V
V
V
V
V
0.5 × VCCIO  
–0.30  
VCCIO + 0.5  
0.35 × VCCIO  
VIL  
VIPU  
0.7 × VCCIO  
0.9 × VCCIO  
VOH  
High-level output voltage  
Low-level output voltage  
IOUT = –500 μA  
IOUT = 1,500 μA  
VOL  
0.1 × VCCIO  
Table 5–16. SSTL-18 Class I Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Conditions  
Minimum  
1.71  
Typical  
1.80  
Maximum Unit  
Output supply voltage  
Reference voltage  
1.89  
0.945  
V
V
V
V
V
V
V
V
V
0.855  
0.900  
VREF  
VTT  
Termination voltage  
VREF – 0.04  
VREF + 0.125  
VREF + 0.04  
V
V
V
V
IH (DC)  
IL (DC)  
IH (AC)  
IL (AC)  
High-level DC input voltage  
Low-level DC input voltage  
High-level AC input voltage  
Low-level AC input voltage  
High-level output voltage  
Low-level output voltage  
VREF – 0.125  
VREF – 0.25  
VTT – 0.475  
VREF + 0.25  
VTT + 0.475  
VOH  
VOL  
IOH = –6.7 mA (1)  
IOL = 6.7 mA (1)  
Note to Table 5–16:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
5–10  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–17. SSTL-18 Class II Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Output supply voltage  
Reference voltage  
Termination voltage  
Conditions  
Minimum  
1.71  
Typical  
1.80  
Maximum Unit  
1.89  
0.945  
V
V
V
V
V
V
V
V
V
0.855  
0.900  
VREF  
VTT  
VREF – 0.04  
VREF + 0.125  
VREF + 0.04  
V
V
V
V
IH (DC) High-level DC input voltage  
IL (DC) Low-level DC input voltage  
IH (AC) High-level AC input voltage  
IL (AC) Low-level AC input voltage  
VREF – 0.125  
VREF – 0.25  
0.28  
VREF + 0.25  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = –13.4 mA (1) VCCIO – 0.28  
IOL = 13.4 mA (1)  
Note to Table 5–17:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–18. SSTL-18 Class I & II Differential Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
1.71  
Typical  
Maximum  
Unit  
V
VCCIO  
Output supply voltage  
1.80  
1.89  
VSWING DC differential input voltage  
(DC)  
0.25  
V
VX (AC) AC differential input cross  
point voltage  
(VCCIO/2) – 0.175  
0.5  
(VCCIO/2) + 0.175  
V
V
VSWING AC differential input voltage  
(AC)  
VISO  
Input clock signal offset  
voltage  
0.5 × VCCIO  
200  
V
ΔVISO  
Input clock signal offset  
voltage variation  
mV  
V
VOX  
(AC)  
AC differential cross point  
voltage  
(VCCIO/2) – 0.125  
(VCCIO/2) + 0.125  
Altera Corporation  
April 2011  
5–11  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–19. SSTL-2 Class I Specifications  
Symbol  
VCCIO  
VTT  
Parameter  
Conditions  
Minimum  
2.375  
Typical  
2.500  
VREF  
Maximum Unit  
Output supply voltage  
Termination voltage  
2.625  
VREF + 0.04  
1.313  
V
V
V
V
V
V
V
V
V
VREF – 0.04  
1.188  
VREF  
Reference voltage  
1.250  
V
V
IH (DC)  
IL (DC)  
High-level DC input voltage  
Low-level DC input voltage  
High-level AC input voltage  
Low-level AC input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.18  
–0.30  
3.00  
VREF – 0.18  
VIH (AC)  
VIL (AC)  
VOH  
VREF + 0.35  
VREF - 0.35  
VTT – 0.57  
IOH = –8.1 mA (1)  
IOL = 8.1 mA (1)  
VTT + 0.57  
VOL  
Note to Table 5–19:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–20. SSTL-2 Class II Specifications  
Symbol  
VCCIO  
VTT  
Parameter  
Conditions  
Minimum  
2.375  
Typical  
2.500  
VREF  
Maximum Unit  
Output supply voltage  
Termination voltage  
2.625  
V
V
V
V
V
V
V
V
V
VREF – 0.04  
1.188  
VREF + 0.04  
1.313  
VREF  
Reference voltage  
1.250  
V
V
IH (DC)  
IL (DC)  
High-level DC input voltage  
Low-level DC input voltage  
High-level AC input voltage  
Low-level AC input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.18  
–0.30  
VCCIO + 0.30  
VREF – 0.18  
VIH (AC)  
VIL (AC)  
VOH  
VREF + 0.35  
VREF - 0.35  
VTT – 0.76  
IOH = –16.4 mA (1) VTT + 0.76  
IOL = 16.4 mA (1)  
VOL  
Note to Table 5–20:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
5–12  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–21. SSTL-2 Class I & II Differential Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
2.375  
Typical  
Maximum  
Unit  
V
VCCIO  
Output supply voltage  
2.500  
2.625  
VSWING DC differential input voltage  
(DC)  
0.36  
V
VX (AC) AC differential input cross  
point voltage  
(VCCIO/2) – 0.2  
0.7  
(VCCIO/2) + 0.2  
V
V
VSWING AC differential input voltage  
(AC)  
VISO  
Input clock signal offset  
voltage  
0.5 × VCCIO  
200  
V
ΔVISO  
Input clock signal offset  
voltage variation  
mV  
V
VOX  
(AC)  
AC differential output cross  
point voltage  
(VCCIO/2) – 0.2  
(VCCIO/2) + 0.2  
Table 5–22. 1.2-V HSTL Specifications  
Symbol  
VCCIO  
Parameter  
Output supply voltage  
Reference voltage  
Conditions  
Minimum  
Typical  
Maximum  
1.26  
Unit  
V
1.14  
1.20  
VREF  
0.48 × VCCIO 0.50 × VCCIO  
VREF + 0.08  
–0.15  
0.52 × VCCIO  
VCCIO + 0.15  
VREF – 0.08  
VCCIO + 0.24  
VREF – 0.15  
VCCIO + 0.15  
VREF – 0.15  
V
V
V
V
V
IH (DC) High-level DC input voltage  
V
IL (DC) Low-level DC input voltage  
IH (AC) High-level AC input voltage  
IL (AC) Low-level AC input voltage  
V
VREF + 0.15  
–0.24  
V
V
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 8 mA  
VREF + 0.15  
–0.15  
V
IOH = –8 mA  
V
Altera Corporation  
April 2011  
5–13  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–23. 1.5-V HSTL Class I Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Conditions  
Minimum  
1.425  
Typical  
1.500  
0.750  
0.750  
Maximum Unit  
Output supply voltage  
Input reference voltage  
Termination voltage  
1.575  
0.788  
0.788  
V
V
V
V
V
V
V
V
V
0.713  
VTT  
0.713  
V
V
V
V
IH (DC)  
IL (DC)  
IH (AC)  
IL (AC)  
DC high-level input voltage  
DC low-level input voltage  
AC high-level input voltage  
AC low-level input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.1  
–0.3  
VREF – 0.1  
VREF – 0.2  
0.4  
VREF + 0.2  
VOH  
VOL  
IOH = 8 mA (1)  
IOH = –8 mA (1)  
VCCIO – 0.4  
Note to Table 5–23:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–24. 1.5-V HSTL Class II Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Conditions  
Minimum  
1.425  
Typical  
1.500  
0.750  
0.750  
Maximum Unit  
Output supply voltage  
Input reference voltage  
Termination voltage  
1.575  
0.788  
0.788  
V
V
V
V
V
V
V
V
V
0.713  
VTT  
0.713  
V
V
V
V
IH (DC)  
IL (DC)  
IH (AC)  
IL (AC)  
DC high-level input voltage  
DC low-level input voltage  
AC high-level input voltage  
AC low-level input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.1  
–0.3  
VREF – 0.1  
VREF – 0.2  
0.4  
VREF + 0.2  
VOH  
VOL  
IOH = 16 mA (1)  
IOH = –16 mA (1)  
VCCIO – 0.4  
Note to Table 5–24:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
5–14  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–25. 1.5-V HSTL Class I & II Differential Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
1.425  
0.2  
Typical  
Maximum Unit  
VCCIO  
I/O supply voltage  
1.500  
1.575  
V
V
V
V
V
DIF (DC) DC input differential voltage  
CM (DC) DC common mode input  
voltage  
0.68  
0.90  
V
V
DIF (AC) AC differential input voltage  
0.4  
V
V
OX (AC) AC differential cross point  
voltage  
0.68  
0.90  
Table 5–26. 1.8-V HSTL Class I Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Conditions  
Minimum  
1.71  
Typical  
1.80  
Maximum Unit  
Output supply voltage  
Input reference voltage  
Termination voltage  
1.89  
0.95  
0.95  
V
V
V
V
V
V
V
V
V
0.85  
0.90  
VTT  
0.85  
0.90  
V
V
V
V
IH (DC)  
IL (DC)  
IH (AC)  
IL (AC)  
DC high-level input voltage  
DC low-level input voltage  
AC high-level input voltage  
AC low-level input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.1  
–0.3  
VREF – 0.1  
VREF – 0.2  
0.4  
VREF + 0.2  
VOH  
VOL  
IOH = 8 mA (1)  
IOH = –8 mA (1)  
VCCIO – 0.4  
Note to Table 5–26:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Altera Corporation  
April 2011  
5–15  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–27. 1.8-V HSTL Class II Specifications  
Symbol  
VCCIO  
VREF  
Parameter  
Conditions  
Minimum  
1.71  
Typical  
1.80  
Maximum Unit  
Output supply voltage  
Input reference voltage  
Termination voltage  
1.89  
0.95  
0.95  
V
V
V
V
V
V
V
V
V
0.85  
0.90  
VTT  
0.85  
0.90  
V
V
V
V
IH (DC)  
IL (DC)  
IH (AC)  
IL (AC)  
DC high-level input voltage  
DC low-level input voltage  
AC high-level input voltage  
AC low-level input voltage  
High-level output voltage  
Low-level output voltage  
VREF + 0.1  
–0.3  
VREF – 0.1  
VREF – 0.2  
0.4  
VREF + 0.2  
VOH  
VOL  
IOH = 16 mA (1)  
IOH = –16 mA (1)  
VCCIO – 0.4  
Note to Table 5–27:  
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown  
in the Stratix II Architecture chapter in volume 1 of the Stratix II Device Handbook.  
Table 5–28. 1.8-V HSTL Class I & II Differential Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
1.71  
Typical  
Maximum  
1.89  
Unit  
V
VCCIO  
I/O supply voltage  
1.80  
V
V
DIF (DC) DC input differential voltage  
0.2  
VCCIO + 0.6 V  
1.12  
V
CM (DC) DC common mode input  
voltage  
0.78  
V
V
V
DIF (AC) AC differential input voltage  
0.4  
VCCIO + 0.6 V  
0.90  
V
V
OX (AC) AC differential cross point  
voltage  
0.68  
5–16  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Bus Hold Specifications  
Table 5–29 shows the Stratix II device family bus hold specifications.  
Table 5–29. Bus Hold Parameters  
VCCIO Level  
1.8 V  
Parameter Conditions  
Unit  
μA  
1.2 V  
1.5 V  
2.5 V  
3.3 V  
Min  
Max  
Min Max Min Max Min  
Max Min Max  
Low  
V
IN > VIL  
22.5  
25.0  
30.0  
50.0  
70.0  
sustaining  
current  
(maximum)  
High  
V
IN < VIH  
–22.5  
–25.0  
–30.0  
–50.0  
–70.0  
μA  
sustaining  
current  
(minimum)  
Low  
overdrive  
current  
0 V < VIN  
VCCIO  
<
120  
–120  
0.95  
160  
–160  
1.00  
200  
–200  
1.07  
300  
500  
μA  
High  
overdrive  
current  
0 V < VIN  
VCCIO  
<
–300  
–500 μA  
Bus-hold  
trip point  
0.45  
0.50  
0.68  
0.70  
1.70 0.80 2.00  
V
On-Chip Termination Specifications  
Tables 5–30 and 5–31 define the specification for internal termination  
resistance tolerance when using series or differential on-chip termination.  
Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 1 of 2)  
Notes (1), 2  
Resistance Tolerance  
Symbol  
Description  
Conditions  
Commercial  
Max  
Industrial  
Max  
Unit  
25-Ω RS Internal series termination with  
calibration (25-Ω setting)  
VCCIO = 3.3/2.5 V  
5
10  
%
3.3/2.5  
Internal series termination without VCCIO = 3.3/2.5 V  
30  
30  
%
calibration (25-Ω setting)  
Altera Corporation  
April 2011  
5–17  
Stratix II Device Handbook, Volume 1  
Operating Conditions  
Table 5–30. Series On-Chip Termination Specification for Top & Bottom I/O Banks (Part 2 of 2)  
Notes (1), 2  
Resistance Tolerance  
Symbol  
Description  
Conditions  
Commercial  
Max  
Industrial  
Max  
Unit  
50-Ω RS Internal series termination with  
calibration (50-Ω setting)  
VCCIO = 3.3/2.5 V  
5
10  
30  
30  
10  
30  
10  
30  
15  
10  
36  
15  
10  
50  
15  
%
3.3/2.5  
Internal series termination without VCCIO = 3.3/2.5 V  
calibration (50-Ω setting)  
30  
30  
5
%
%
%
%
%
%
%
%
%
%
%
%
%
50-Ω RT Internal parallel termination with  
calibration (50-Ω setting)  
VCCIO = 1.8 V  
VCCIO = 1.8 V  
2.5  
25-Ω RS Internal series termination with  
calibration (25-Ω setting)  
1.8  
Internal series termination without VCCIO = 1.8 V  
calibration (25-Ω setting)  
30  
5
50-Ω RS Internal series termination with  
calibration (50-Ω setting)  
VCCIO = 1.8 V  
1.8  
Internal series termination without VCCIO = 1.8 V  
calibration (50-Ω setting)  
30  
10  
8
50-Ω RT Internal parallel termination with  
calibration (50-Ω setting)  
VCCIO = 1.8 V  
VCCIO = 1.5 V  
1.8  
50−Ω RS Internal series termination with  
calibration (50-Ω setting)  
1.5  
Internal series termination without VCCIO = 1.5 V  
calibration (50-Ω setting)  
36  
10  
8
50-Ω RT Internal parallel termination with  
calibration (50-Ω setting)  
VCCIO = 1.5 V  
VCCIO = 1.2 V  
1.5  
50−Ω RS Internal series termination with  
calibration (50-Ω setting)  
1.2  
Internal series termination without VCCIO = 1.2 V  
calibration (50-Ω setting)  
50  
10  
50-Ω RT Internal parallel termination with  
calibration (50-Ω setting)  
VCCIO = 1.2 V  
1.2  
Notes for Table 5–30:  
(1) The resistance tolerances for calibrated SOCT and POCT are for the moment of calibration. If the temperature or  
voltage changes over time, the tolerance may also change.  
(2) On-chip parallel termination with calibration is only supported for input pins.  
5–18  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–31. Series & Differential On-Chip Termination Specification for Left & Right I/O Banks  
Resistance Tolerance  
Commercial Industrial  
Symbol  
Description  
Conditions  
Unit  
Max  
Max  
25-Ω RS  
3.3/2.5  
Internal series termination without  
calibration (25-Ω setting)  
VCCIO = 3.3/2.5 V  
VCCIO = 3.3/2.5/1.8 V  
VCCIO = 1.5 V  
30  
30  
%
50-Ω RS  
3.3/2.5/1.8  
Internal series termination without  
calibration (50-Ω setting)  
30  
36  
20  
30  
36  
25  
%
%
%
50-Ω RS 1.5 Internal series termination without  
calibration (50-Ω setting)  
RD  
VCCIO = 2.5 V  
Internal differential termination for  
LVDS or HyperTransport technology  
(100-Ω setting)  
Pin Capacitance  
Table 5–32 shows the Stratix II device family pin capacitance.  
Table 5–32. Stratix II Device Capacitance  
Symbol  
Note (1)  
Parameter  
Typical  
5.0  
Unit  
pF  
CIOTB  
CIOLR  
Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8.  
Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-  
speed differential receiver and transmitter pins.  
6.1  
pF  
CCLKTB  
6.0  
pF  
Input capacitance on top/bottom clock input pins: CLK[4..7]and  
CLK[12..15].  
CCLKLR  
6.1  
3.3  
pF  
pF  
Input capacitance on left/right clock inputs: CLK0, CLK2, CLK8, CLK10.  
CCLKLR+  
Input capacitance on left/right clock inputs: CLK1, CLK3, CLK9, and  
CLK11.  
COUTFB  
Input capacitance on dual-purpose clock output/feedback pins in PLL  
banks 9, 10, 11, and 12.  
6.7  
pF  
Note to Table 5–32:  
(1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement  
accuracy is within 0.5pF  
Altera Corporation  
April 2011  
5–19  
Stratix II Device Handbook, Volume 1  
Power Consumption  
Altera® offers two ways to calculate power for a design: the Excel-based  
PowerPlay Early Power Estimator power calculator and the Quartus® II  
PowerPlay Power Analyzer feature.  
Power  
Consumption  
The interactive Excel-based PowerPlay Early Power Estimator is typically  
used prior to designing the FPGA in order to get an estimate of device  
power. The Quartus II PowerPlay Power Analyzer provides better  
quality estimates based on the specifics of the design after place-and-  
route is complete. The Power Analyzer can apply a combination of user-  
entered, simulation-derived and estimated signal activities which,  
combined with detailed circuit models, can yield very accurate power  
estimates.  
In both cases, these calculations should only be used as an estimation of  
power, not as a specification.  
f
For more information about PowerPlay tools, refer to the PowerPlay Early  
Power Estimator User Guide and the PowerPlay Early Power Estimator and  
PowerPlay Power Analyzer chapters in volume 3 of the Quartus II  
Handbook.  
The PowerPlay Early Power Estimator is available on the Altera web site  
at www.altera.com. See Table 5–4 on page 5–3 for typical ICC standby  
specifications.  
TM  
TM  
The DirectDrive technology and MultiTrack interconnect ensure  
predictable performance, accurate simulation, and accurate timing  
analysis across all Stratix II device densities and speed grades. This  
section describes and specifies the performance, internal timing, external  
timing, and PLL, high-speed I/O, external memory interface, and JTAG  
timing specifications.  
Timing Model  
All specifications are representative of worst-case supply voltage and  
junction temperature conditions.  
1
The timing numbers listed in the tables of this section are  
extracted from the Quartus II software version 5.0 SP1.  
Preliminary & Final Timing  
Timing models can have either preliminary or final status. The Quartus II  
software issues an informational message during the design compilation  
if the timing models are preliminary. Table 5–33 shows the status of the  
Stratix II device timing models.  
5–20  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
April 2011  
DC & Switching Characteristics  
Preliminary status means the timing model is subject to change. Initially,  
timing numbers are created using simulation results, process data, and  
other known parameters. These tests are used to make the preliminary  
numbers as close to the actual timing parameters as possible.  
Final timing numbers are based on actual device operation and testing.  
These numbers reflect the actual performance of the device under  
worst-case voltage and junction temperature conditions.  
Table 5–33. Stratix II Device Timing Model Status  
Device  
EP2S15  
EP2S30  
EP2S60  
EP2S90  
EP2S130  
EP2S180  
Preliminary  
Final  
v
v
v
v
v
v
I/O Timing Measurement Methodology  
Altera characterizes timing delays at the worst-case process, minimum  
voltage, and maximum temperature for input register setup time (tSU  
)
and hold time (tH). The Quartus II software uses the following equations  
to calculate tSU and tH timing for Stratix II devices input signals.  
tSU = + data delay from input pin to input register  
+ micro setup time of the input register  
– clock delay from input pin to input register  
tH = – data delay from input pin to input register  
+ micro hold time of the input register  
+ clock delay from input pin to input register  
Figure 5–3 shows the setup and hold timing diagram for input registers.  
Altera Corporation  
April 2011  
5–21  
Stratix II Device Handbook, Volume 1  
Timing Model  
Figure 5–3. Input Register Setup & Hold Timing Diagram  
Input Data Delay  
micro t  
micro t  
SU  
H
Input Clock Delay  
For output timing, different I/O standards require different baseline  
loading techniques for reporting timing delays. Altera characterizes  
timing delays with the required termination for each I/O standard and  
with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the  
timing is specified up to the output pin of the FPGA device. The  
Quartus II software calculates the I/O timing for each I/O standard with  
a default baseline loading as specified by the I/O standards.  
The following measurements are made during device characterization.  
Altera measures clock-to-output delays (tCO) at worst-case process,  
minimum voltage, and maximum temperature (PVT) for default loading  
conditions shown in Table 5–34. Use the following equations to calculate  
clock pin to output pin timing for Stratix II devices.  
tCO from clock pin to I/O pin = delay from clock pad to I/O output  
register + IOE output register clock-to-output delay + delay from  
output register to output pin + I/O output delay  
txz/tzx from clock pin to I/O pin = delay from clock pad to I/O  
output register + IOE output register clock-to-output delay + delay  
from output register to output pin + I/O output delay + output  
enable pin delay  
Simulation using IBIS models is required to determine the delays on the  
PCB traces in addition to the output pin delay timing reported by the  
Quartus II software and the timing model in the device handbook.  
1. Simulate the output driver of choice into the generalized test setup,  
using values from Table 5–34.  
2. Record the time to VMEAS  
.
3. Simulate the output driver of choice into the actual PCB trace and  
load, using the appropriate IBIS model or capacitance value to  
represent the load.  
5–22  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
4. Record the time to VMEAS  
.
5. Compare the results of steps 2 and 4. The increase or decrease in  
delay should be added to or subtracted from the I/O Standard  
Output Adder delays to yield the actual worst-case propagation  
delay (clock-to-output) of the PCB trace.  
The Quartus II software reports the timing with the conditions shown in  
Table 5–34 using the above equation. Figure 5–4 shows the model of the  
circuit that is represented by the output timing of the Quartus II software.  
Figure 5–4. Output Delay Timing Reporting Setup Modeled by Quartus II  
V
TT  
V
CCIO  
Output  
Output  
R
C
p
n
T
L
R
S
Output  
Output  
Buffer  
R
D
V
MEAS  
GND  
GND  
Notes to Figure 5–4:  
(1) Output pin timing is reported at the output pin of the FPGA device. Additional  
delays for loading and board trace delay need to be accounted for with IBIS model  
simulations.  
(2) VCCPD is 3.085 V unless otherwise specified.  
(3) VCCINT is 1.12 V unless otherwise specified.  
Figures 5–5 and 5–6 show the measurement setup for output disable and  
output enable timing.  
Altera Corporation  
April 2011  
5–23  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–34. Output Timing Measurement Methodology for Output Pins  
Notes (1), (2), (3)  
Measurement  
Point  
Loading and Termination  
I/O Standard  
RS (Ω)  
RD (Ω)  
RT (Ω) VCCIO (V) VTT (V) CL (pF)  
VMEAS (V)  
LVTTL (4)  
3.135  
3.135  
2.375  
1.710  
1.425  
2.970  
2.970  
2.325  
2.325  
1.660  
1.660  
1.660  
1.660  
1.375  
1.375  
1.140  
2.325  
2.325  
1.660  
1.660  
1.375  
1.375  
1.660  
1.660  
2.325  
2.325  
3.135  
0
0
0
0
0
10  
10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.5675  
1.5675  
1.1875  
0.855  
0.7125  
1.485  
1.485  
1.1625  
1.1625  
0.83  
LVCMOS (4)  
2.5 V (4)  
1.8 V (4)  
1.5 V (4)  
PCI (5)  
PCI-X (5)  
SSTL-2 Class I  
25  
25  
25  
25  
50  
25  
50  
50  
25  
50  
25  
50  
25  
50  
25  
1.123  
1.123  
0.790  
0.790  
0.790  
0.790  
0.648  
0.648  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.2-V HSTL with OCT  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential SSTL-18 Class II  
1.5-V Differential HSTL Class I  
1.5-V Differential HSTL Class II  
1.8-V Differential HSTL Class I  
1.8-V Differential HSTL Class II  
LVDS  
0.83  
0.83  
0.83  
0.6875  
0.6875  
0.570  
1.1625  
1.1625  
0.83  
50  
50  
25  
50  
25  
50  
50  
25  
50  
25  
50  
25  
50  
25  
1.123  
1.123  
0.790  
0.790  
0.648  
0.648  
0.790  
0.790  
0.83  
0.6875  
0.6875  
0.83  
50  
25  
0.83  
100  
100  
100  
1.1625  
1.1625  
1.5675  
HyperTransport  
LVPECL  
Notes to Table 5–34:  
(1) Input measurement point at internal node is 0.5 × VCCINT  
.
(2) Output measuring point for VMEAS at buffer output is 0.5 × VCCIO  
.
(3) Input stimulus edge rate is 0 to VCC in 0.2 ns (internal signal) from the driver preceding the I/O buffer.  
(4) Less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V with less than 30-mV ripple  
(5) VCCPD = 2.97 V, less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V  
5–24  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Figure 5–5. Measurement Setup for txz  
Note (1)  
t
, Driving High to Tristate  
XZ  
Enable  
Disable  
OE  
Din  
OE  
Dout  
½ V  
CCINT  
“1”  
100 mv  
Din  
100 Ω  
Dout  
GND  
t
hz  
t
, Driving Low to Tristate  
XZ  
Enable  
Disable  
OE  
½ V  
CCINT  
100 Ω  
OE  
Din  
Dout  
Din  
“0”  
t
lz  
V
CCIO  
Dout  
100 mv  
Note to Figure 5–5:  
(1) VCCINT is 1.12 V for this measurement.  
Altera Corporation  
April 2011  
5–25  
Stratix II Device Handbook, Volume 1  
Timing Model  
Figure 5–6. Measurement Setup for tzx  
t
, Tristate to Driving High  
ZX  
Disable Enable  
½ V  
CCINT  
OE  
Din  
OE  
Din  
Dout  
“1”  
1 MΩ  
t
Dout  
zh  
½ V  
CCIO  
t
, Tristate to Driving Low  
ZX  
Disable Enable  
½ V  
CCINT  
OE  
Din  
1 MΩ  
Dout  
OE  
Din  
“0”  
½ V  
t
CCIO  
zl  
Dout  
Table 5–35 specifies the input timing measurement setup.  
Table 5–35. Timing Measurement Methodology for Input Pins (Part 1 of 2)  
Notes (1)(4)  
Measurement Conditions  
I/O Standard  
Measurement Point  
VMEAS (V)  
VCCIO (V)  
VREF (V)  
Edge Rate (ns)  
LVTTL (5)  
3.135  
3.135  
2.375  
1.710  
1.425  
2.970  
2.970  
2.325  
2.325  
1.660  
1.660  
1.660  
3.135  
3.135  
2.375  
1.710  
1.425  
2.970  
2.970  
2.325  
2.325  
1.660  
1.660  
1.660  
1.5675  
1.5675  
1.1875  
0.855  
0.7125  
1.485  
1.485  
1.1625  
1.1625  
0.83  
LVCMOS (5)  
2.5 V (5)  
1.8 V (5)  
1.5 V (5)  
PCI (6)  
PCI-X (6)  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.163  
1.163  
0.830  
0.830  
0.830  
0.83  
0.83  
5–26  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–35. Timing Measurement Methodology for Input Pins (Part 2 of 2)  
Notes (1)(4)  
Measurement Conditions  
I/O Standard  
Measurement Point  
VCCIO (V)  
VREF (V)  
VMEAS (V)  
Edge Rate (ns)  
1.8-V HSTL Class II  
1.660  
1.375  
1.375  
1.140  
2.325  
2.325  
1.660  
1.660  
1.375  
1.375  
1.660  
1.660  
2.325  
2.325  
3.135  
0.830  
0.688  
0.688  
0.570  
1.163  
1.163  
0.830  
0.830  
0.688  
0.688  
0.830  
0.830  
1.660  
1.375  
1.375  
1.140  
2.325  
2.325  
1.660  
1.660  
1.375  
1.375  
1.660  
1.660  
0.100  
0.400  
0.100  
0.83  
0.6875  
0.6875  
0.570  
1.1625  
1.1625  
0.83  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.2-V HSTL with OCT  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential SSTL-18 Class II  
1.5-V Differential HSTL Class I  
1.5-V Differential HSTL Class II  
1.8-V Differential HSTL Class I  
1.8-V Differential HSTL Class II  
LVDS  
0.83  
0.6875  
0.6875  
0.83  
0.83  
1.1625  
1.1625  
1.5675  
HyperTransport  
LVPECL  
Notes to Table 5–35:  
(1) Input buffer sees no load at buffer input.  
(2) Input measuring point at buffer input is 0.5 × VCCIO  
.
(3) Output measuring point is 0.5 × VCC at internal node.  
(4) Input edge rate is 1 V/ns.  
(5) Less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V with less than 30-mV ripple  
(6) VCCPD = 2.97 V, less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V  
Performance  
Table 5–36 shows Stratix II performance for some common designs. All  
performance values were obtained with the Quartus II software  
compilation of library of parameterized modules (LPM), or MegaCore®  
functions for the finite impulse response (FIR) and fast Fourier transform  
(FFT) designs.  
Altera Corporation  
April 2011  
5–27  
Stratix II Device Handbook, Volume 1  
Timing Model  
1
The performance numbers in Table 5–36 are extracted from the  
Quartus II software version 5.1 SP1.  
Table 5–36. Stratix II Performance Notes (Part 1 of 6)  
Note (1)  
Resources Used  
Performance  
-4  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-5  
Applications  
DSP  
Speed Speed  
Speed Speed Unit  
Grade Grade  
Blocks Grade Grade  
(2)  
(3)  
LE  
16-to-1 multiplexer (4)  
32-to-1 multiplexer (4)  
16-bit counter  
21  
38  
16  
64  
0
0
0
0
0
1
0
0
0
0
0
654.87  
625.0  
523.83  
460.4 MHz  
519.21 473.26 464.25 384.17 MHz  
566.57 538.79 489.23 421.05 MHz  
244.31 232.07 209.11 181.38 MHz  
500.00 476.19 434.02 373.13 MHz  
64-bit counter  
TriMatrix Simpledual-portRAM  
Memory  
M512  
block  
32 × 18 bit  
FIFO 32 x 18 bit  
22  
0
1
1
0
0
500.00 476.19 434.78 373.13 MHz  
540.54 515.46 469.48 401.60 MHz  
TriMatrix Simpledual-portRAM  
Memory  
M4K  
block  
128 x 36 bit (8)  
True dual-port RAM  
128 × 18 bit (8)  
0
22  
0
1
1
1
1
0
0
0
0
540.54 515.46 469.48 401.60 MHz  
530.22 499.00 469.48 401.60 MHz  
475.28 453.30 413.22 354.10 MHz  
475.28 453.30 413.22 354.10 MHz  
FIFO  
128 × 36 bit  
Simpledual-portRAM  
128 × 36 bit (9)  
True dual-port RAM  
0
128 × 18 bit (9)  
5–28  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–36. Stratix II Performance Notes (Part 2 of 6)  
Note (1)  
Resources Used  
Performance  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-4  
-5  
Applications  
DSP  
Blocks Grade Grade  
(2) (3)  
Speed Speed  
Speed Speed Unit  
Grade Grade  
TriMatrix Single port  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
349.65 333.33 303.95 261.09 MHz  
420.16 400.00 364.96 313.47 MHz  
349.65 333.33 303.95 261.09 MHz  
354.60 337.83 307.69 263.85 MHz  
420.16 400.00 364.96 313.47 MHz  
349.65 333.33 303.95 261.09 MHz  
364.96 347.22 317.46 271.73 MHz  
420.16 400.00 364.96 313.47 MHz  
359.71 342.46 313.47 268.09 MHz  
364.96 347.22 317.46 271.73 MHz  
Memory  
M-RAM  
block  
RAM 4K × 144 bit  
Simple dual-port  
RAM 4K × 144 bit  
True dual-port  
RAM 4K × 144 bit  
Single port  
RAM 8K × 72 bit  
Simple dual-port  
RAM 8K × 72 bit  
True dual-port  
RAM 8K × 72 bit  
Single port  
RAM 16K × 36 bit  
Simple dual-port  
RAM 16K × 36 bit  
True dual-port  
RAM 16K × 36 bit  
Single port  
RAM 32K × 18 bit  
Simple dual-port  
RAM 32K × 18 bit  
420.16  
400.0  
364.96 313.47 MHz  
True dual-port  
RAM 32K × 18 bit  
359.71 342.46 313.47 268.09 MHz  
364.96 347.22 317.46 271.73 MHz  
Single port  
RAM 64K × 9 bit  
Simple dual-port  
RAM 64K × 9 bit  
420.16  
400.0  
364.96 313.47 MHz  
True dual-port  
359.71 342.46 313.47 268.09 MHz  
RAM 64K × 9 bit  
Altera Corporation  
April 2011  
5–29  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–36. Stratix II Performance Notes (Part 3 of 6)  
Note (1)  
Resources Used  
Performance  
-4  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-5  
Applications  
DSP  
Blocks Grade Grade  
(2) (3)  
Speed Speed  
Speed Speed Unit  
Grade Grade  
DSP  
block  
9 × 9-bit multiplier (5)  
0
0
0
0
1
1
430.29 409.16 373.13 320.10 MHz  
410.17 390.01 356.12 305.06 MHz  
18 × 18-bit  
multiplier (5)  
18 × 18-bit  
multiplier (7)  
0
0
0
0
1
1
1
1
4
9
450.04 428.08 391.23 335.12 MHz  
250.00 238.15 217.48 186.60 MHz  
410.17 390.01 356.12 305.06 MHz  
410.17 390.01 356.12 305.06 MHz  
259.06 240.61 217.15 185.01 MHz  
398.72 364.03 355.23 306.37 MHz  
36 × 36-bit  
multiplier (5)  
36 × 36-bit multiplier  
(6)  
0
0
18-bit, four-tap FIR  
filter  
0
0
Larger  
designs  
8-bit,16-tap parallel  
FIR filter  
58  
2976  
0
8-bit, 1024-point,  
streaming, three  
22  
multipliers and five  
adders FFT function  
8-bit, 1024-point,  
streaming, four  
multipliers and two  
adders FFT function  
2781  
984  
22  
5
12  
3
398.56 409.16 347.22 311.13 MHz  
425.17 365.76 346.98 292.39 MHz  
8-bit, 1024-point,  
single output, one  
parallel FFT engine,  
burst,threemultipliers  
and five adders FFT  
function  
8-bit, 1024-point,  
single output, one  
parallel FFT engine,  
burst, four multipliers  
and two adders FFT  
function  
919  
5
4
427.53 378.78 357.14 307.59 MHz  
5–30  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–36. Stratix II Performance Notes (Part 4 of 6)  
Note (1)  
Resources Used  
Performance  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-4  
-5  
Applications  
DSP  
Blocks Grade Grade  
(2) (3)  
Speed Speed  
Speed Speed Unit  
Grade Grade  
Larger  
designs  
8-bit, 1024-point,  
single output, two  
parallel FFT engines,  
burst, three multiplier  
and five adders FFT  
function  
1725  
1594  
2361  
2165  
3996  
3604  
10  
10  
10  
10  
14  
14  
6
430.29 401.92 373.13 319.08 MHz  
422.65 407.33 373.13 329.10 MHz  
315.45 342.81 325.73 284.25 MHz  
373.13 369.54 317.96 256.14 MHz  
378.50 367.10 332.33 288.68 MHz  
391.38 361.14 340.25 280.89 MHz  
8-bit, 1024-point,  
single output, two  
parallel FFT engines,  
burst, four multipliers  
and two adders FFT  
function  
8
8-bit, 1024-point,  
quadrant output, one  
parallel FFT engine,  
burst,threemultipliers  
and five adders FFT  
function  
9
8-bit, 1024-point,  
quadrant output, one  
parallel FFT engine,  
burst, four multipliers  
and two adders FFT  
function  
12  
18  
24  
8-bit, 1024-point,  
quadrant output, two  
parallel FFT engines,  
burst,threemultipliers  
and five adders FFT  
function  
8-bit, 1024-point,  
quadrant output, two  
parallel FFT engines,  
burst, four multipliers  
and two adders FFT  
function  
Altera Corporation  
April 2011  
5–31  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–36. Stratix II Performance Notes (Part 5 of 6)  
Note (1)  
Resources Used  
Performance  
-4  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-5  
Applications  
DSP  
Blocks Grade Grade  
(2) (3)  
Speed Speed  
Speed Speed Unit  
Grade Grade  
Larger  
designs  
8-bit, 1024-point,  
quadrant output, four  
parallel FFT engines,  
burst,threemultipliers  
and five adders FFT  
function  
6850  
6067  
2730  
2534  
4358  
3966  
28  
28  
18  
18  
30  
30  
36  
48  
9
334.11 345.66 308.54 276.31 MHz  
367.91 349.04 327.33 268.24 MHz  
387.44 388.34 364.56 306.84 MHz  
419.28 369.66 364.96 307.88 MHz  
396.51 378.07 340.13 291.29 MHz  
389.71 398.08 356.53 280.74 MHz  
8-bit, 1024-point,  
quadrant output, four  
parallel FFT engines,  
burst, four multipliers  
two adders FFT  
function  
8-bit, 1024-point,  
quadrant output, one  
parallel FFT engine,  
buffered burst, three  
multipliersandadders  
FFT function  
8-bit, 1024-point,  
12  
18  
24  
quadrant output, one  
parallel FFT engine,  
buffered burst, four  
multipliers and two  
adders FFT function  
8-bit, 1024-point,  
quadrant output, two  
parallel FFT engines,  
buffered burst, three  
multipliers five adders  
FFT function  
8-bit, 1024-point,  
quadrant output, two  
parallel FFT engines,  
buffered burst four  
multipliers and two  
adders FFT function  
5–32  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–36. Stratix II Performance Notes (Part 6 of 6)  
Note (1)  
Resources Used  
Performance  
-3  
-3  
TriMatrix  
ALUTs Memory  
Blocks  
-4  
-5  
Applications  
DSP  
Blocks Grade Grade  
(2) (3)  
Speed Speed  
Speed Speed Unit  
Grade Grade  
Larger  
designs  
8-bit, 1024-point,  
7385  
60  
60  
36  
359.58 352.98 312.01 278.00 MHz  
quadrant output, four  
parallel FFT engines,  
buffered burst, three  
multipliers five adders  
FFT function  
8-bit, 1024-point,  
6601  
48  
371.88 355.74 327.86 277.62 MHz  
quadrant output, four  
parallel FFT engines,  
buffered burst, four  
multipliers and two  
adders FFT function  
Notes for Table 5–36:  
(1) These design performance numbers were obtained using the Quartus II software version 5.0 SP1.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(4) This application uses registered inputs and outputs.  
(5) This application uses registered multiplier input and output stages within the DSP block.  
(6) This application uses registered multiplier input, pipeline, and output stages within the DSP block.  
(7) This application uses registered multiplier input with output of the multiplier stage feeding the accumulator or  
subtractor within the DSP block.  
(8) This application uses the same clock source that is globally routed and connected to ports A and B.  
(9) This application uses locally routed clocks or differently sourced clocks for ports A and B.  
Altera Corporation  
April 2011  
5–33  
Stratix II Device Handbook, Volume 1  
Timing Model  
Internal Timing Parameters  
See Tables 5–37 through 5–42 for internal timing parameters.  
Table 5–37. LE_FF Internal Timing Microparameters  
-3 Speed  
Grade (1)  
-3 Speed  
Grade (2)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(3)  
Min  
(3)  
Min  
(4)  
Min  
(3)  
Max  
Max  
Max  
Max  
tSU  
LE register setup time before  
clock  
90  
95  
104  
104  
121  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tH  
LE register hold time after clock 149  
157  
62  
172  
172  
200  
62  
tCO  
LE register clock-to-output  
delay  
62  
94  
99  
59  
62  
109  
127  
tCLR  
tPRE  
tCLKL  
tCLKH  
tLUT  
tADDER  
Minimum clear pulse width  
Minimum preset pulse width  
Minimum clock low time  
Minimum clock high time  
204  
204  
612  
612  
162  
354  
214  
214  
642  
642  
162  
354  
234  
234  
273  
273  
820  
820  
162  
354  
234  
234  
703  
703  
703  
703  
378  
619  
397  
650  
162  
170  
435  
712  
507  
829  
354  
372  
Notes to Table 5–37:  
(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
5–34  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–38. IOE Internal Timing Microparameters  
-3 Speed  
-3 Speed  
Grade (2)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Grade (1)  
Symbol  
Parameter  
Unit  
Min  
Min  
(3)  
Min  
Min  
Max  
Max  
Max  
Max  
(3)  
(4)  
(3)  
tSU  
IOE input and output  
register setup time  
before clock  
122  
128  
140  
140  
163  
ps  
ps  
ps  
tH  
IOE input and output  
register hold time after  
clock  
72  
75  
82  
82  
96  
tCO  
IOE input and output  
register clock-to-  
output delay  
101  
169  
101  
177  
97  
101  
194  
101  
226  
tPIN2COMBOUT_R Row input pin to IOE  
combinational output  
410  
428  
760  
787  
410  
428  
798  
825  
391  
410  
873  
904  
410 1,018 ps  
428 1,054 ps  
tPIN2COMBOUT_C Column input pin to  
IOE combinational  
408  
428  
output  
tCOMBIN2PIN_R  
Row IOE data input to 1,101 2,026 1,101 2,127 1,049 2,329 1,101 2,439 ps  
combinational output  
pin  
1,101  
tCOMBIN2PIN_C  
Column IOE data  
input to combinational  
output pin  
991 1,854 991 1,946 944 2,131 991 2,246 ps  
991  
tCLR  
Minimum clear pulse  
width  
200  
200  
600  
600  
210  
210  
630  
630  
229  
229  
268  
268  
804  
804  
ps  
ps  
ps  
ps  
tPRE  
Minimum preset pulse  
width  
229  
229  
tCLKL  
tCLKH  
Minimum clock low  
time  
690  
690  
Minimum clock high  
time  
690  
690  
Notes to Table 5–38:  
(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
Altera Corporation  
April 2011  
5–35  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–39. DSP Block Internal Timing Microparameters (Part 1 of 2)  
-3 Speed  
Grade (1)  
-3 Speed  
Grade (2)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
Max  
(3)  
Min  
Max  
(3)  
Min  
(4)  
Min  
(3)  
Max  
Max  
tSU  
Input, pipeline, and  
output register setup  
time before clock  
50  
52  
57  
57  
67  
ps  
ps  
ps  
tH  
Input, pipeline, and  
output register hold  
time after clock  
180  
189  
206  
206  
241  
0
tCO  
Input, pipeline, and  
output register clock-  
to-output delay  
0
0
0
0
0
0
0
0
tINREG2PIPE9  
tINREG2PIPE18  
tINREG2PIPE36  
Input register to DSP 1,312 2,030 1,312 2,030 1,250 2,334 1,312 2,720 ps  
block pipeline register  
in 9 × 9-bit mode  
1,312  
Input register to DSP 1,302 2,010 1,302 2,110 1,240 2,311 1,302 2,693 ps  
block pipeline register  
in 18 × 18-bit mode  
1,302  
Input register to DSP 1,302 2,010 1,302 2,110 1,240 2,311 1,302 2,693 ps  
block pipeline register  
in 36 × 36-bit mode  
1,302  
tPIPE2OUTREG2ADD DSP block pipeline  
register to output  
924 1,450 924 1,522 880 1,667 924 1,943 ps  
924  
register delay in two-  
multipliers adder  
mode  
tPIPE2OUTREG4ADD DSP block pipeline  
register to output  
1,134 1,850 1,134 1,942 1,080 2,127 1,134 2,479 ps  
1,134  
register delay in four-  
multipliers adder  
mode  
tPD9  
Combinational input  
to output delay for  
9 × 9  
2,100 2,880 2,100 3,024 2,000 3,312 2,100 3,859 ps  
2,100  
tPD18  
tPD36  
tCLR  
Combinational input  
to output delay for  
18 × 18  
2,110 2,990 2,110 3,139 2,010 3,438 2,110 4,006 ps  
2,110  
Combinational input  
to output delay for  
36 × 36  
2,939 4,450 2,939 4,672 2,800 5,117 2,939 5,962 ps  
2,939  
Minimum clear pulse 2,212  
width  
2,322  
2,543  
2,543  
2,964  
ps  
5–36  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–39. DSP Block Internal Timing Microparameters (Part 2 of 2)  
-3 Speed  
Grade (1)  
-3 Speed  
Grade (2)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
Max  
(3)  
Min  
Max  
(3)  
Min  
(4)  
Min  
(3)  
Max  
Max  
tCLKL  
tCLKH  
Minimum clock low  
time  
1,190  
1,249  
1,368  
1,368  
1,594  
ps  
ps  
Minimum clock high  
time  
1,190  
1,249  
1,368  
1,368  
1,594  
Notes to Table 5–39:  
(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
Table 5–40. M512 Block Internal Timing Microparameters (Part 1 of 2)  
Note (1)  
-3 Speed  
Grade (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
(5)  
Min  
(4)  
Max  
Max  
Max  
Max  
tM512RC  
Synchronous read cycle 2,089 2,318 2,089 2.433 1,989 2,664 2,089 3,104 ps  
time  
2,089  
tM512WERESU  
tM512WEREH  
tM512DATASU  
tM512DATAH  
Write or read enable  
setup time before clock  
22  
203  
22  
23  
213  
23  
25  
25  
29  
272  
29  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Write or read enable  
hold time after clock  
233  
233  
Data setup time before  
clock  
25  
25  
Data hold time after  
clock  
203  
22  
213  
23  
233  
233  
272  
29  
tM512WADDRSU Write address setup  
time before clock  
25  
25  
tM512WADDRH Write address hold time  
after clock  
203  
22  
213  
23  
233  
233  
272  
29  
tM512RADDRSU Read address setup  
time before clock  
25  
25  
tM512RADDRH  
Read address hold time  
after clock  
203  
213  
233  
233  
272  
Altera Corporation  
April 2011  
5–37  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–40. M512 Block Internal Timing Microparameters (Part 2 of 2)  
Note (1)  
-3 Speed  
Grade (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
(5)  
Min  
(4)  
Max  
Max  
Max  
Max  
tM512DATACO1 Clock-to-output delay  
when using output  
298  
478  
298  
501  
284  
298  
548  
298  
640  
ps  
registers  
tM512DATACO2 Clock-to-output delay  
without output registers  
2,102 2,345 2,102 2,461 2,003 2,695 2,102 3,141 ps  
2,102  
tM512CLKL  
tM512CLKH  
tM512CLR  
Minimum clock low time 1,315  
1,380  
1,380  
151  
1,512  
1,512  
1,762  
1,762  
192  
ps  
ps  
ps  
Minimum clock high time 1,315  
1,512  
1,512  
Minimum clear pulse  
width  
144  
165  
165  
Notes to Table 5–40:  
(1) FMAX of M512 block obtained using the Quartus II software does not necessarily equal to 1/TM512RC.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
Table 5–41. M4K Block Internal Timing Microparameters (Part 1 of 2) Note (1)  
-3 Speed  
Grade (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
(5)  
Min  
(4)  
Max  
Max  
Max  
Max  
tM4KRC  
Synchronous read cycle 1,462 2,240 1,462 2,351 1,393 2,575 1,462 3,000 ps  
time  
1,462  
tM4KWERESU  
tM4KWEREH  
tM4KBESU  
tM4KBEH  
Write or read enable  
setup time before clock  
22  
203  
22  
23  
213  
23  
25  
25  
29  
272  
29  
ps  
ps  
ps  
ps  
Write or read enable  
hold time after clock  
233  
233  
Byte enable setup time  
before clock  
25  
25  
Byte enable hold time  
after clock  
203  
213  
233  
233  
272  
5–38  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–41. M4K Block Internal Timing Microparameters (Part 2 of 2) Note (1)  
-3 Speed  
Grade (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
(5)  
Min  
(4)  
Max  
Max  
Max  
Max  
tM4KDATAASU  
tM4KDATAAH  
A port data setup time  
before clock  
22  
23  
25  
25  
29  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
A port data hold time  
after clock  
203  
22  
213  
23  
233  
233  
272  
29  
tM4KADDRASU A port address setup  
time before clock  
25  
25  
tM4KADDRAH  
tM4KDATABSU  
tM4KDATABH  
A port address hold time 203  
after clock  
213  
23  
233  
233  
272  
29  
B port data setup time  
before clock  
22  
203  
22  
25  
25  
B port data hold time  
after clock  
213  
23  
233  
233  
272  
29  
tM4KRADDRBSU B port address setup  
time before clock  
25  
25  
tM4KRADDRBH B port address hold time 203  
after clock  
213  
334  
233  
233  
272  
334  
tM4KDATACO1  
Clock-to-output delay  
when using output  
registers  
334  
524  
549  
319  
334  
601  
701  
tM4KDATACO2  
(6)  
Clock-to-output delay  
without output registers  
1,616 2,453 1,616 2,574 1,540 2,820 1,616 3,286 ps  
1,616  
tM4KCLKH  
tM4KCLKL  
tM4KCLR  
Minimum clock high time 1,250  
1,312  
1,312  
151  
1,437  
1,437  
1,675  
1,675  
192  
ps  
ps  
ps  
Minimum clock low time 1,250  
1,437  
1,437  
Minimum clear pulse  
width  
144  
165  
165  
Notes to Table 5–41:  
(1) FMAX of M4K Block obtained using the Quartus II software does not necessarily equal to 1/TM4KRC.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
(6) Numbers apply to unpacked memory modes, true dual-port memory modes, and simple dual-port memory modes  
that use locally routed or non-identical sources for the A and B port registers.  
Altera Corporation  
April 2011  
5–39  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–42. M-RAM Block Internal Timing Microparameters (Part 1 of 2)  
Note (1)  
-4 Speed  
-3 Speed  
-3 Speed  
-5 Speed  
Grade  
Grade (2)  
Grade (3)  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
Min  
(4)  
Max  
Max  
Max  
Max  
(5)  
tMEGARC  
Synchronous read cycle 1,866 2,774 1,866 2,911 1,777 3,189 1,777 3,716 ps  
time  
1,866  
1,866  
tMEGAWERESU Write or read enable  
setup time before clock  
144  
39  
151  
40  
165  
165  
192  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tMEGAWEREH  
tMEGABESU  
tMEGABEH  
Write or read enable  
hold time after clock  
44  
44  
52  
67  
Byte enable setup time  
before clock  
50  
52  
57  
57  
Byte enable hold time  
after clock  
39  
40  
44  
44  
52  
tMEGADATAASU A port data setup time  
before clock  
50  
52  
57  
57  
67  
tMEGADATAAH  
A port data hold time  
after clock  
243  
589  
255  
618  
253  
52  
279  
279  
325  
789  
322  
67  
tMEGAADDRASU A port address setup  
time before clock  
677  
677  
tMEGAADDRAH A port address hold time 241  
after clock  
277  
277  
tMEGADATABSU B port setup time before  
clock  
50  
57  
57  
tMEGADATABH  
B port hold time after  
clock  
243  
589  
255  
618  
253  
480  
279  
279  
325  
789  
322  
480  
tMEGAADDRBSU B port address setup  
time before clock  
677  
677  
tMEGAADDRBH B port address hold time 241  
after clock  
277  
277  
tMEGADATACO1 Clock-to-output delay  
when using output  
480  
715  
749  
457  
480  
821  
957  
registers  
tMEGADATACO2 Clock-to-output delay  
without output registers  
1,950 2,899 1,950 3,042 1,857 3,332 1,950 3,884 ps  
1,950  
tMEGACLKL  
Minimum clock low time 1,250  
1,312  
1,437  
1,437  
1,675  
ps  
5–40  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–42. M-RAM Block Internal Timing Microparameters (Part 2 of 2)  
Note (1)  
-3 Speed  
Grade (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Symbol  
Parameter  
Unit  
Min  
(4)  
Min  
(4)  
Min  
(5)  
Min  
(4)  
Max  
Max  
Max  
Max  
tMEGACLKH  
tMEGACLR  
Minimum clock high  
time  
1,250  
1,312  
1,437  
1,437  
1,675  
ps  
ps  
Minimum clear pulse  
width  
144  
151  
165  
165  
192  
Notes to Table 5–42:  
(1) FMAX of M-RAM Block obtained using the Quartus II software does not necessarily equal to 1/TMEGARC.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade  
devices offer the industrial temperature grade.  
(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second  
number is the minimum timing parameter for commercial devices.  
Stratix II Clock Timing Parameters  
See Tables 5–43 through 5–67 for Stratix II clock timing parameters.  
Table 5–43. Stratix II Clock Timing Parameters  
Symbol  
Parameter  
tCIN  
Delay from clock pad to I/O input register  
Delay from clock pad to I/O output register  
Delay from PLL inclkpad to I/O input register  
Delay from PLL inclkpad to I/O output register  
tCOUT  
tPLLCIN  
tPLLCOUT  
Altera Corporation  
April 2011  
5–41  
Stratix II Device Handbook, Volume 1  
Timing Model  
EP2S15 Clock Timing Parameters  
Tables 5–44 though 5–47 show the maximum clock timing parameters for  
EP2S15 devices.  
Table 5–44. EP2S15 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.445  
Commercial  
1.512  
tCIN  
2.487  
2.245  
0.336  
0.094  
2.848  
2.570  
0.373  
0.095  
3.309  
2.985  
0.424  
0.1  
ns  
ns  
ns  
ns  
tCOUT  
1.288  
1.347  
tPLLCIN  
tPLLCOUT  
0.104  
0.102  
-0.053  
-0.063  
Table 5–45. EP2S15 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.419  
Commercial  
1.487  
tCIN  
2.456  
2.214  
0.326  
0.084  
2.813  
3.273  
ns  
ns  
ns  
ns  
tCOUT  
1.262  
1.322  
2.535  
0.363  
0.085  
2.949  
0.414  
0.09  
tPLLCIN  
tPLLCOUT  
0.094  
0.092  
-0.063  
-0.073  
Table 5–46. EP2S15 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.232  
Commercial  
1.288  
tCIN  
2.144  
2.140  
-0.007  
-0.011  
2.454  
2.450  
-0.021  
-0.025  
2.848  
2.843  
-0.037  
-0.042  
ns  
ns  
ns  
ns  
tCOUT  
1.237  
1.293  
tPLLCIN  
tPLLCOUT  
-0.109  
-0.104  
-0.122  
-0.117  
5–42  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–47. EP2S15 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.206  
Commercial  
1.262  
tCIN  
2.113  
2.109  
-0.023  
-0.027  
2.422  
2.418  
-0.038  
-0.042  
2.815  
2.810  
-0.056  
-0.061  
ns  
ns  
ns  
ns  
tCOUT  
1.211  
1.267  
tPLLCIN  
tPLLCOUT  
-0.125  
-0.12  
-0.138  
-0.133  
EP2S30 Clock Timing Parameters  
Tables 5–48 through 5–51 show the maximum clock timing parameters  
for EP2S30 devices.  
Table 5–48. EP2S30 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.553  
Commercial  
1.627  
tCIN  
2.639  
2.397  
0.225  
-0.017  
3.025  
2.747  
0.248  
-0.03  
3.509  
3.185  
0.28  
ns  
ns  
ns  
ns  
tCOUT  
1.396  
1.462  
tPLLCIN  
tPLLCOUT  
0.114  
0.113  
-0.043  
-0.052  
-0.044  
Table 5–49. EP2S30 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.539  
Commercial  
1.613  
tCIN  
2.622  
2.380  
0.209  
-0.033  
3.008  
2.730  
0.229  
-0.049  
3.501  
3.177  
0.267  
-0.057  
ns  
ns  
ns  
ns  
tCOUT  
1.382  
1.448  
tPLLCIN  
tPLLCOUT  
0.101  
0.098  
-0.056  
-0.067  
Altera Corporation  
April 2011  
5–43  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–50. EP2S30 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.304  
Commercial  
1.184  
tCIN  
1.966  
1.962  
2.251  
2.247  
2.616  
2.611  
ns  
ns  
ns  
ns  
tCOUT  
1.309  
1.189  
tPLLCIN  
tPLLCOUT  
-0.135  
-0.13  
–0.158  
–0.153  
–0.208  
–0.212  
–0.254  
–0.258  
–0.302  
–0.307  
Table 5–51. EP2S30 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.289  
Commercial  
1.352  
tCIN  
2.238  
2.234  
-0.169  
-0.173  
2.567  
2.563  
-0.205  
-0.209  
2.990  
2.985  
-0.254  
-0.259  
ns  
ns  
ns  
ns  
tCOUT  
1.294  
1.357  
tPLLCIN  
tPLLCOUT  
-0.14  
-0.154  
-0.135  
-0.149  
EP2S60 Clock Timing Parameters  
Tables 5–52 through 5–55 show the maximum clock timing parameters  
for EP2S60 devices.  
Table 5–52. EP2S60 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.681  
Commercial  
1.762  
tCIN  
2.945  
2.703  
0.279  
0.037  
3.381  
3.103  
0.311  
0.033  
3.931  
3.607  
0.348  
0.024  
ns  
ns  
ns  
ns  
tCOUT  
1.524  
1.597  
tPLLCIN  
tPLLCOUT  
0.066  
0.064  
-0.091  
-0.101  
5–44  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–53. EP2S60 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.658  
Commercial  
1.739  
tCIN  
2.920  
2.678  
0.278  
0.036  
3.350  
3.072  
0.304  
0.026  
3.899  
3.575  
0.355  
0.031  
ns  
ns  
ns  
ns  
tCOUT  
1.501  
1.574  
tPLLCIN  
tPLLCOUT  
0.06  
0.057  
-0.097  
-0.108  
Table 5–54. EP2S60 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.463  
Commercial  
1.532  
tCIN  
2.591  
2.587  
-0.079  
-0.083  
2.972  
2.968  
-0.099  
-0.103  
3.453  
3.448  
-0.128  
-0.133  
ns  
ns  
ns  
ns  
tCOUT  
1.468  
1.537  
tPLLCIN  
tPLLCOUT  
-0.153  
-0.148  
-0.167  
-0.162  
Table 5–55. EP2S60 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.439  
Commercial  
1.508  
tCIN  
2.562  
2.558  
-0.083  
-0.087  
2.940  
2.936  
-0.107  
-0.111  
3.421  
3.416  
-0.126  
-0.131  
ns  
ns  
ns  
ns  
tCOUT  
1.444  
1.513  
tPLLCIN  
tPLLCOUT  
-0.161  
-0.156  
-0.174  
-0.169  
Altera Corporation  
April 2011  
5–45  
Stratix II Device Handbook, Volume 1  
Timing Model  
EP2S90 Clock Timing Parameters  
Tables 5–56 through 5–59 show the maximum clock timing parameters  
for EP2S90 devices.  
Table 5–56. EP2S90 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.768  
Commercial  
1.850  
tCIN  
3.033  
2.791  
0.125  
-0.117  
3.473  
3.195  
0.129  
-0.149  
4.040  
3.716  
0.144  
-0.18  
ns  
ns  
ns  
ns  
tCOUT  
1.611  
1.685  
tPLLCIN  
tPLLCOUT  
-0.127  
-0.284  
-0.117  
-0.282  
Table 5–57. EP2S90 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.783  
Commercial  
1.868  
tCIN  
3.058  
2.816  
0.115  
-0.127  
3.502  
3.224  
0.119  
-0.159  
4.070  
3.746  
0.134  
-0.19  
ns  
ns  
ns  
ns  
tCOUT  
1.626  
1.703  
tPLLCIN  
tPLLCOUT  
-0.137  
-0.294  
-0.127  
-0.292  
Table 5–58. EP2S90 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.566  
Commercial  
1.638  
tCIN  
2.731  
2.727  
-0.178  
-0.182  
3.124  
3.120  
-0.218  
-0.222  
3.632  
3.627  
-0.264  
-0.269  
ns  
ns  
ns  
ns  
tCOUT  
1.571  
1.643  
tPLLCIN  
tPLLCOUT  
-0.326  
-0.321  
-0.326  
-0.321  
5–46  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–59. EP2S90 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.585  
Commercial  
1.658  
tCIN  
2.757  
2.753  
-0.193  
-0.197  
3.154  
3.150  
-0.235  
-0.239  
3.665  
3.660  
-0.278  
-0.283  
ns  
ns  
ns  
ns  
tCOUT  
1.590  
1.663  
tPLLCIN  
tPLLCOUT  
-0.341  
-0.336  
-0.341  
-0.336  
EP2S130 Clock Timing Parameters  
Tables 5–60 through 5–63 show the maximum clock timing parameters  
for EP2S130 devices.  
Table 5–60. EP2S130 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.889  
Commercial  
1.981  
tCIN  
3.405  
3.151  
0.226  
-0.028  
3.722  
3.444  
0.242  
-0.036  
4.326  
4.002  
0.277  
-0.047  
ns  
ns  
ns  
ns  
tCOUT  
1.732  
1.816  
tPLLCIN  
tPLLCOUT  
0.105  
0.106  
-0.052  
-0.059  
Table 5–61. EP2S130 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.907  
Commercial  
1.998  
tCIN  
3.420  
3.166  
0.276  
0.022  
3.740  
3.462  
0.296  
0.018  
4.348  
4.024  
0.338  
0.014  
ns  
ns  
ns  
ns  
tCOUT  
1.750  
1.833  
tPLLCIN  
tPLLCOUT  
0.134  
0.136  
-0.023  
-0.029  
Altera Corporation  
April 2011  
5–47  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–62. EP2S130 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.680  
Commercial  
1.760  
tCIN  
3.070  
3.066  
-0.12  
3.351  
3.347  
-0.138  
-0.142  
3.892  
3.887  
-0.168  
-0.173  
ns  
ns  
ns  
ns  
tCOUT  
1.685  
1.765  
tPLLCIN  
tPLLCOUT  
-0.113  
-0.108  
-0.124  
-0.119  
-0.124  
Table 5–63. EP2S130 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.690  
Commercial  
1.770  
tCIN  
3.075  
3.071  
-0.075  
-0.079  
3.362  
3.358  
-0.089  
-0.093  
3.905  
3.900  
-0.11  
ns  
ns  
ns  
ns  
tCOUT  
1.695  
1.775  
tPLLCIN  
tPLLCOUT  
-0.087  
-0.082  
-0.097  
-0.092  
-0.115  
EP2S180 Clock Timing Parameters  
Tables 5–64 through 5–67 show the maximum clock timing parameters  
for EP2S180 devices.  
Table 5–64. EP2S180 Column Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
2.001  
Commercial  
2.095  
tCIN  
3.643  
3.389  
0.053  
-0.201  
3.984  
3.706  
0.046  
-0.232  
4.634  
4.310  
0.048  
-0.276  
ns  
ns  
ns  
ns  
tCOUT  
1.844  
1.930  
tPLLCIN  
tPLLCOUT  
-0.307  
-0.464  
-0.297  
-0.462  
5–48  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–65. EP2S180 Column Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
2.003  
Commercial  
2.100  
tCIN  
3.652  
3.398  
0.053  
-0.201  
3.993  
3.715  
0.054  
-0.224  
4.648  
4.324  
0.058  
-0.266  
ns  
ns  
ns  
ns  
tCOUT  
1.846  
1.935  
tPLLCIN  
tPLLCOUT  
-0.3  
-0.29  
-0.457  
-0.455  
Table 5–66. EP2S180 Row Pins Regional Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.759  
Commercial  
1.844  
tCIN  
3.273  
3.269  
-0.317  
-0.321  
3.577  
3.573  
-0.353  
-0.357  
4.162  
4.157  
-0.414  
-0.419  
ns  
ns  
ns  
ns  
tCOUT  
1.764  
1.849  
tPLLCIN  
tPLLCOUT  
-0.542  
-0.537  
-0.541  
-0.536  
Table 5–67. EP2S180 Row Pins Global Clock Timing Parameters  
Minimum Timing  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Parameter  
Unit  
Grade  
Industrial  
1.763  
Commercial  
1.850  
tCIN  
3.285  
3.281  
-0.319  
-0.323  
3.588  
3.584  
-0.355  
-0.359  
4.176  
4.171  
-0.42  
ns  
ns  
ns  
ns  
tCOUT  
1.768  
1.855  
tPLLCIN  
tPLLCOUT  
-0.542  
-0.537  
-0.542  
-0.537  
-0.425  
Altera Corporation  
April 2011  
5–49  
Stratix II Device Handbook, Volume 1  
Timing Model  
Clock Network Skew Adders  
The Quartus II software models skew within dedicated clock networks  
such as global and regional clocks. Therefore, intra-clock network skew  
adder is not specified. Table 5–68 specifies the clock skew between any  
two clock networks driving registers in the IOE.  
Table 5–68. Clock Network Specifications  
Name  
Description  
Min  
Typ  
Max  
Unit  
Clock skew adder  
EP2S15, EP2S30,  
EP2S60 (1)  
Inter-clock network, same side  
Inter-clock network, entire chip  
50  
ps  
ps  
100  
Clock skew adder  
EP2S90 (1)  
Inter-clock network, same side  
Inter-clock network, entire chip  
Inter-clock network, same side  
Inter-clock network, entire chip  
Inter-clock network, same side  
Inter-clock network, entire chip  
55  
110  
63  
ps  
ps  
ps  
ps  
ps  
ps  
Clock skew adder  
EP2S130 (1)  
125  
75  
Clock skew adder  
EP2S180 (1)  
150  
Note to Table 5–68:  
(1) This is in addition to intra-clock network skew, which is modeled in the Quartus II software.  
5–50  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
IOE Programmable Delay  
See Tables 5–69 and 5–70 for IOE programmable delay.  
Table 5–69. Stratix II IOE Programmable Delay on Column Pins  
Note (1)  
Minimum  
Timing (2)  
-3 Speed  
-4 Speed  
Grade  
-5 Speed  
Grade  
Grade (3)  
Min Max  
Available  
Settings  
Parameter  
Paths Affected  
Min  
Max  
Min  
Max  
Min  
Max  
Offset Offset Offset Offset Offset Offset Offset Offset  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
Input delay from Pad to I/O  
8
64  
2
0
0
1,696  
1,781  
0
0
2,881  
3,025  
0
3,313  
0
3,860  
pin to internal  
cells  
dataout to logic  
array  
Input delay from Pad toI/O input  
0
0
1,955  
2,053  
0
0
3,275  
3,439  
0
0
0
3,766  
575  
0
0
0
4,388  
670  
pin to input  
register  
register  
Delay from  
I/O output  
0
0
316  
332  
0
0
500  
525  
output register  
to output pin  
register to pad  
Output enable  
pin delay  
tXZ, tZX  
2
0
0
305  
320  
0
0
483  
507  
556  
647  
Notes to Table 5–69:  
(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the  
latest version of the Quartus II software.  
(2) The first number is the minimum timing parameter for industrial devices. The second number is the minimum  
timing parameter for commercial devices.  
(3) The first number applies to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. The second number  
applies to -3 speed grade EP2S130 and EP2S180 devices.  
Altera Corporation  
April 2011  
5–51  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–70. Stratix II IOE Programmable Delay on Row Pins  
Note (1)  
Minimum  
Timing (2)  
-3 Speed  
Grade (3)  
-4 Speed  
Grade  
-5 Speed  
Grade  
Available  
Settings  
Parameter  
Paths Affected  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Offset Offset Offset Offset Offset Offset Offset Offset  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
Input delay from Pad to I/O  
8
64  
2
0
0
1,697  
1,782  
0
0
2,876  
3,020  
0
3,308  
0
3,853  
pin to internal  
cells  
dataout to logic  
array  
Input delay from Pad to I/O input  
0
0
1,956  
2,054  
0
0
3,270  
3,434  
0
0
0
3,761  
575  
0
0
0
4,381  
670  
pin to input  
register  
register  
Delay from  
I/O output  
0
0
316  
332  
0
0
525  
525  
output register  
to output pin  
register to pad  
Output enable  
pin delay  
tXZ, tZX  
2
0
0
305  
320  
0
0
507  
507  
556  
647  
Notes to Table 5–70:  
(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the  
latest version of the Quartus II software.  
(2) The first number is the minimum timing parameter for industrial devices. The second number is the minimum  
timing parameter for commercial devices.  
(3) The first number applies to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. The second number  
applies to -3 speed grade EP2S130 and EP2S180 devices.  
Default Capacitive Loading of Different I/O Standards  
See Table 5–71 for default capacitive loading of different I/O standards.  
Table 5–71. Default Loading of Different I/O Standards for Stratix II (Part 1  
of 2)  
I/O Standard  
CapacitiveLoad Unit  
LVTTL  
LVCMOS  
2.5 V  
0
0
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
0
1.8 V  
0
1.5 V  
0
PCI  
10  
10  
0
PCI-X  
SSTL-2 Class I  
5–52  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
Table 5–71. Default Loading of Different I/O Standards for Stratix II (Part 2  
of 2)  
I/O Standard  
CapacitiveLoad Unit  
SSTL-2 Class II  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
SSTL-18 Class I  
SSTL-18 Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.2-V HSTL with OCT  
Differential SSTL-2 Class I  
Differential SSTL-2 Class II  
Differential SSTL-18 Class I  
Differential SSTL-18 Class II  
1.5-V Differential HSTL Class I  
1.5-V Differential HSTL Class II  
1.8-V Differential HSTL Class I  
1.8-V Differential HSTL Class II  
LVDS  
HyperTransport  
LVPECL  
Altera Corporation  
April 2011  
5–53  
Stratix II Device Handbook, Volume 1  
Timing Model  
I/O Delays  
See Tables 5–72 through 5–76 for I/O delays.  
Table 5–72. I/O Delay Parameters  
Symbol  
Parameter  
tDIP  
Delay from I/O datain to output pad  
tOP  
Delay from I/O output register to output pad  
Delay from input pad to I/O dataout to core  
Delay from input pad to I/O input register  
tPCOUT  
tPI  
Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 1 of 3)  
Minimum Timing  
-3Speed -3Speed  
-4Speed -5Speed  
I/O Standard  
Parameter  
Grade  
Grade  
(3)  
Unit  
Grade  
Grade  
Industrial Commercial  
(2)  
LVTTL  
tPI  
674  
408  
684  
418  
747  
481  
749  
483  
674  
408  
507  
241  
507  
241  
543  
277  
543  
277  
560  
294  
707  
428  
717  
438  
783  
504  
786  
507  
707  
428  
530  
251  
530  
251  
569  
290  
569  
290  
587  
308  
1223  
787  
1282  
825  
1405  
904  
1637  
1054  
1619  
1036  
1829  
1246  
1922  
1339  
1637  
1054  
1094  
511  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
2.5 V  
1210  
774  
1269  
812  
1390  
889  
1.8 V  
1366  
930  
1433  
976  
1570  
1069  
1650  
1149  
1405  
904  
1.5 V  
1436  
1000  
1223  
787  
1506  
1049  
1282  
825  
LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
818  
857  
939  
382  
400  
438  
818  
857  
939  
1094  
511  
tPCOUT  
382  
400  
438  
SSTL-18 Class I tPI  
tPCOUT  
SSTL-18 Class II tPI  
tPCOUT  
tPI  
tPCOUT  
898  
941  
1031  
530  
1201  
618  
462  
484  
898  
941  
1031  
530  
1201  
618  
462  
484  
1.5-V HSTL  
Class I  
993  
1041  
584  
1141  
640  
1329  
746  
557  
5–54  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 2 of 3)  
Minimum Timing  
-3Speed -3Speed  
-4Speed -5Speed  
I/O Standard  
Parameter  
Grade  
Grade  
Unit  
Grade  
Grade  
Industrial Commercial  
(2)  
(3)  
1041  
584  
941  
484  
941  
484  
1273  
816  
1273  
816  
857  
400  
1.5-V HSTL  
Class II  
tPI  
560  
294  
543  
277  
543  
277  
679  
413  
679  
413  
507  
241  
587  
308  
569  
290  
569  
290  
712  
433  
712  
433  
530  
251  
993  
557  
898  
462  
898  
462  
1214  
778  
1214  
778  
818  
382  
1141  
640  
1329  
746  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
1.8-V HSTL  
Class I  
1031  
530  
1201  
618  
1.8-V HSTL  
Class II  
1031  
530  
1201  
618  
PCI  
1395  
894  
1625  
1042  
1625  
1042  
1094  
511  
PCI-X  
1395  
894  
Differential  
SSTL-2 Class I  
(1)  
939  
tPCOUT  
438  
Differential  
SSTL-2 Class II  
(1)  
tPI  
507  
241  
530  
251  
818  
382  
857  
400  
939  
438  
1094  
511  
ps  
ps  
tPCOUT  
Differential  
SSTL-18 Class I  
(1)  
tPI  
543  
277  
569  
290  
898  
462  
941  
484  
1031  
530  
1201  
618  
ps  
ps  
tPCOUT  
Differential  
SSTL-18 Class II  
(1)  
tPI  
543  
277  
569  
290  
898  
462  
941  
484  
1031  
530  
1201  
618  
ps  
ps  
tPCOUT  
1.8-V Differential tPI  
543  
277  
543  
277  
560  
294  
560  
294  
569  
290  
569  
290  
587  
308  
587  
308  
898  
462  
898  
462  
993  
557  
993  
557  
941  
484  
1031  
530  
1201  
618  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
HSTL Class I (1)  
tPCOUT  
1.8-V Differential tPI  
941  
1031  
530  
1201  
618  
HSTL Class II (1)  
tPCOUT  
484  
1.5-V Differential tPI  
1041  
584  
1141  
640  
1329  
746  
HSTL Class I (1)  
tPCOUT  
1.5-V Differential tPI  
1041  
584  
1141  
640  
1329  
746  
HSTL Class II (1)  
tPCOUT  
Altera Corporation  
April 2011  
5–55  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 3 of 3)  
Minimum Timing  
-3Speed -3Speed  
-4Speed -5Speed  
I/O Standard  
Parameter  
Grade  
Grade  
(3)  
Unit  
Grade  
Grade  
Industrial Commercial  
(2)  
1.2-V HSTL  
tPI  
645  
379  
677  
398  
1194  
758  
1252  
795  
-
-
-
-
ps  
ps  
tPCOUT  
Notes for Table 5–73:  
(1) These I/O standards are only supported on DQS pins.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 1 of 2)  
Minimum Timing  
-3Speed -3Speed  
-4Speed -5Speed  
I/O Standard  
Parameter  
Grade  
Grade  
(2)  
Unit  
Grade  
Grade  
Industrial Commercial  
(1)  
LVTTL  
tPI  
715  
391  
726  
402  
788  
464  
792  
468  
715  
391  
547  
223  
547  
223  
577  
253  
577  
253  
602  
278  
749  
410  
761  
422  
827  
488  
830  
491  
749  
410  
573  
234  
573  
234  
605  
266  
605  
266  
631  
292  
1287  
760  
1350  
798  
1477  
873  
1723  
1018  
1704  
999  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
2.5 V  
1273  
746  
1335  
783  
1461  
857  
1.8 V  
1427  
900  
1497  
945  
1639  
1035  
1720  
1116  
1477  
873  
1911  
1206  
2006  
1301  
1723  
1018  
1176  
471  
1.5 V  
1498  
971  
1571  
1019  
1350  
798  
LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
1287  
760  
879  
921  
1008  
404  
352  
369  
879  
921  
1008  
404  
1176  
471  
tPCOUT  
352  
369  
SSTL-18 Class I tPI  
tPCOUT  
SSTL-18 Class II tPI  
tPCOUT  
tPI  
tPCOUT  
960  
1006  
454  
1101  
497  
1285  
580  
433  
960  
1006  
454  
1101  
497  
1285  
580  
433  
1.5-V HSTL  
Class I  
1056  
529  
1107  
555  
1212  
608  
1413  
708  
5–56  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 2 of 2)  
Minimum Timing  
-3Speed -3Speed  
-4Speed -5Speed  
I/O Standard  
Parameter  
Grade  
Grade  
Unit  
Grade  
Grade  
Industrial Commercial  
(1)  
(2)  
1107  
555  
1006  
454  
1006  
454  
994  
442  
994  
442  
1.5-V HSTL  
Class II  
tPI  
602  
278  
577  
253  
577  
253  
515  
191  
515  
191  
631  
292  
605  
266  
605  
266  
540  
201  
540  
201  
1056  
529  
960  
433  
960  
433  
948  
421  
948  
421  
1212  
608  
1413  
708  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
tPCOUT  
tPI  
1.8-V HSTL  
Class I  
1101  
497  
1285  
580  
1.8-V HSTL  
Class II  
1101  
497  
1285  
580  
LVDS  
1088  
484  
1269  
564  
HyperTransport  
1088  
484  
1269  
564  
tPCOUT  
Notes for Table 5–74:  
(1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 1 of 8)  
Minimum Timing  
-3  
-3  
-4  
-5  
Drive  
Strength  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Industrial Commercial  
(4)  
LVTTL  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1178  
1198  
1041  
1061  
976  
1236  
1258  
1091  
1113  
1024  
1046  
998  
2351  
2417  
2036  
2102  
2036  
2102  
1893  
1959  
1787  
1853  
1788  
1854  
2467  
2537  
2136  
2206  
2136  
2206  
1986  
2056  
1875  
1945  
1876  
1946  
2702  
2778  
2340  
2416  
2340  
2416  
2176  
2252  
2054  
2130  
2055  
2131  
2820  
2910  
2448  
2538  
2448  
2538  
2279  
2369  
2154  
2244  
2156  
2246  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
16 mA  
20 mA  
996  
951  
971  
1020  
976  
931  
951  
998  
24 mA  
(1)  
924  
969  
944  
991  
Altera Corporation  
April 2011  
5–57  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 2 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
LVCMOS  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1041  
1061  
952  
972  
926  
946  
933  
953  
921  
941  
909  
929  
1004  
1024  
955  
975  
934  
954  
918  
938  
1091  
1113  
999  
2036  
2102  
1786  
1852  
1720  
1786  
1693  
1759  
1677  
1743  
1659  
1725  
2063  
2129  
1841  
1907  
1742  
1808  
1679  
1745  
2136  
2206  
1874  
1944  
1805  
1875  
1776  
1846  
1759  
1829  
1741  
1811  
2165  
2235  
1932  
2002  
1828  
1898  
1762  
1832  
2340  
2416  
2053  
2129  
1977  
2053  
1946  
2022  
1927  
2003  
1906  
1982  
2371  
2447  
2116  
2192  
2002  
2078  
1929  
2005  
2448  
2538  
2153  
2243  
2075  
2165  
2043  
2133  
2025  
2115  
2003  
2093  
2480  
2570  
2218  
2308  
2101  
2191  
2027  
2117  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
1021  
971  
12 mA  
16 mA  
20 mA  
993  
978  
1000  
965  
987  
24 mA  
(1)  
954  
976  
2.5 V  
4 mA  
8 mA  
12 mA  
1053  
1075  
1001  
1023  
980  
1002  
962  
16 mA  
(1)  
984  
5–58  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 3 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
1.8 V  
2 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1042  
1062  
1047  
1067  
974  
994  
976  
996  
933  
953  
934  
954  
1023  
1043  
963  
983  
966  
986  
926  
946  
913  
933  
896  
916  
876  
896  
877  
897  
872  
892  
1093  
1115  
1098  
1120  
1022  
1044  
1024  
1046  
978  
2904  
2970  
2248  
2314  
2024  
2090  
1947  
2013  
1882  
1948  
1833  
1899  
2505  
2571  
2023  
2089  
1923  
1989  
1878  
1944  
1715  
1781  
1672  
1738  
1609  
1675  
1598  
1664  
1596  
1662  
3048  
3118  
2359  
2429  
2124  
2194  
2043  
2113  
1975  
2045  
1923  
1993  
2629  
2699  
2123  
2193  
2018  
2088  
1970  
2040  
1799  
1869  
1754  
1824  
1688  
1758  
1676  
1746  
1674  
1744  
3338  
3414  
2584  
2660  
2326  
2402  
2238  
2314  
2163  
2239  
2107  
2183  
2879  
2955  
2325  
2401  
2210  
2286  
2158  
2234  
1971  
2047  
1921  
1997  
1849  
1925  
1836  
1912  
1834  
1910  
3472  
3562  
2698  
2788  
2434  
2524  
2343  
2433  
2266  
2356  
2209  
2299  
3002  
3092  
2433  
2523  
2315  
2405  
2262  
2352  
2041  
2131  
1991  
2081  
1918  
2008  
1905  
1995  
1903  
1993  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4 mA  
6 mA  
8 mA  
10 mA  
1000  
979  
12 mA  
(1)  
1001  
1073  
1095  
1009  
1031  
1012  
1034  
971  
1.5 V  
2 mA  
4 mA  
6 mA  
8 mA (1) tOP  
tDIP  
993  
SSTL-2 Class I 8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
957  
979  
12 mA  
(1)  
940  
962  
SSTL-2 Class II 16 mA  
918  
940  
20 mA  
919  
941  
24 mA  
(1)  
915  
937  
Altera Corporation  
April 2011  
5–59  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 4 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
SSTL-18  
Class I  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
909  
929  
914  
934  
894  
914  
898  
918  
891  
911  
883  
903  
894  
914  
890  
910  
890  
910  
912  
932  
917  
937  
896  
916  
900  
920  
892  
912  
953  
975  
958  
980  
937  
959  
942  
964  
936  
958  
925  
947  
937  
959  
933  
955  
933  
955  
956  
978  
962  
984  
940  
962  
944  
966  
936  
958  
1690  
1756  
1656  
1722  
1640  
1706  
1638  
1704  
1626  
1692  
1597  
1663  
1578  
1644  
1585  
1651  
1583  
1649  
1608  
1674  
1595  
1661  
1586  
1652  
1591  
1657  
1585  
1651  
1773  
1843  
1737  
1807  
1721  
1791  
1718  
1788  
1706  
1776  
1675  
1745  
1655  
1725  
1663  
1733  
1661  
1731  
1687  
1757  
1673  
1743  
1664  
1734  
1669  
1739  
1663  
1733  
1942  
2018  
1903  
1979  
1885  
1961  
1882  
1958  
1869  
1945  
1835  
1911  
1813  
1889  
1821  
1897  
1819  
1895  
1848  
1924  
1833  
1909  
1823  
1899  
1828  
1904  
1821  
1897  
2012  
2102  
1973  
2063  
1954  
2044  
1952  
2042  
1938  
2028  
1904  
1994  
1882  
1972  
1890  
1980  
1888  
1978  
1943  
2033  
1928  
2018  
1917  
2007  
1923  
2013  
1916  
2006  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
SSTL-18  
Class II  
8 mA  
16 mA  
18 mA  
20 mA  
(1)  
1.8-V HSTL  
Class I  
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
5–60  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 5 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
1.8-V HSTL  
Class II  
16 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
877  
897  
879  
899  
879  
899  
912  
932  
917  
937  
899  
919  
900  
920  
893  
913  
881  
901  
884  
904  
886  
906  
958  
978  
1028  
1048  
1028  
1048  
919  
941  
921  
943  
921  
943  
956  
978  
961  
983  
943  
965  
943  
965  
937  
959  
924  
946  
927  
949  
929  
951  
1004  
1026  
1082  
1104  
1082  
1104  
1385  
1451  
1394  
1460  
1402  
1468  
1607  
1673  
1588  
1654  
1590  
1656  
1592  
1658  
1590  
1656  
1431  
1497  
1439  
1505  
1450  
1516  
1602  
1668  
1956  
2022  
1956  
2022  
1453  
1523  
1462  
1532  
1471  
1541  
1686  
1756  
1666  
1736  
1668  
1738  
1670  
1740  
1668  
1738  
1501  
1571  
1510  
1580  
1521  
1591  
1681  
1751  
2051  
2121  
2051  
2121  
1591  
1667  
1602  
1678  
1611  
1687  
1847  
1923  
1825  
1901  
1827  
1903  
1829  
1905  
1827  
1903  
1644  
1720  
1654  
1730  
1666  
1742  
-
1680  
1770  
1691  
1781  
1700  
1790  
1942  
2032  
1920  
2010  
1922  
2012  
1924  
2014  
1922  
2012  
1734  
1824  
1744  
1834  
1757  
1847  
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
18 mA  
20 mA  
(1)  
1.5-V HSTL  
Class I  
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
(1)  
1.5-V HSTL  
Class II  
16 mA  
18 mA  
20 mA  
(1)  
1.2-V HSTL  
PCI  
-
-
2244  
2320  
2244  
2320  
2070  
2160  
2070  
2160  
PCI-X  
Altera Corporation  
April 2011  
5–61  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 6 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
Differential  
SSTL-2 Class I  
8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
913  
933  
896  
916  
876  
896  
877  
897  
872  
892  
909  
929  
914  
934  
894  
914  
898  
918  
891  
911  
883  
903  
894  
914  
890  
910  
890  
910  
957  
979  
940  
962  
918  
940  
919  
941  
915  
937  
953  
975  
958  
980  
937  
959  
942  
964  
936  
958  
925  
947  
937  
959  
933  
955  
933  
955  
1715  
1781  
1672  
1738  
1609  
1675  
1598  
1664  
1596  
1662  
1690  
1756  
1656  
1722  
1640  
1706  
1638  
1704  
1626  
1692  
1597  
1663  
1578  
1644  
1585  
1651  
1583  
1649  
1799  
1869  
1754  
1824  
1688  
1758  
1676  
1746  
1674  
1744  
1773  
1843  
1737  
1807  
1721  
1791  
1718  
1788  
1706  
1776  
1675  
1745  
1655  
1725  
1663  
1733  
1661  
1731  
1971  
2047  
1921  
1997  
1849  
1925  
1836  
1912  
1834  
1910  
1942  
2018  
1903  
1979  
1885  
1961  
1882  
1958  
1869  
1945  
1835  
1911  
1813  
1889  
1821  
1897  
1819  
1895  
2041  
2131  
1991  
2081  
1918  
2008  
1905  
1995  
1903  
1993  
2012  
2102  
1973  
2063  
1954  
2044  
1952  
2042  
1938  
2028  
1904  
1994  
1882  
1972  
1890  
1980  
1888  
1978  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
Differential  
SSTL-2 Class II  
Differential  
SSTL-18  
Class I  
6 mA  
8 mA  
10 mA  
12 mA  
8 mA  
Differential  
SSTL-18  
Class II  
16 mA  
18 mA  
20 mA  
5–62  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 7 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
1.8-V  
Differential  
HSTL Class I  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
912  
932  
917  
937  
896  
916  
900  
920  
892  
912  
877  
897  
879  
899  
879  
899  
912  
932  
917  
937  
899  
919  
900  
920  
893  
913  
956  
978  
962  
984  
940  
962  
944  
966  
936  
958  
919  
941  
921  
943  
921  
943  
956  
978  
961  
983  
943  
965  
943  
965  
937  
959  
1608  
1674  
1595  
1661  
1586  
1652  
1591  
1657  
1585  
1651  
1385  
1451  
1394  
1460  
1402  
1468  
1607  
1673  
1588  
1654  
1590  
1656  
1592  
1658  
1590  
1656  
1687  
1757  
1673  
1743  
1664  
1734  
1669  
1739  
1663  
1733  
1453  
1523  
1462  
1532  
1471  
1541  
1686  
1756  
1666  
1736  
1668  
1738  
1670  
1740  
1668  
1738  
1848  
1924  
1833  
1909  
1823  
1899  
1828  
1904  
1821  
1897  
1591  
1667  
1602  
1678  
1611  
1687  
1847  
1923  
1825  
1901  
1827  
1903  
1829  
1905  
1827  
1903  
1943  
2033  
1928  
2018  
1917  
2007  
1923  
2013  
1916  
2006  
1680  
1770  
1691  
1781  
1700  
1790  
1942  
2032  
1920  
2010  
1922  
2012  
1924  
2014  
1922  
2012  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
6 mA  
8 mA  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
4 mA  
1.8-V  
Differential  
HSTL Class II  
1.5-V  
Differential  
HSTL Class I  
6 mA  
8 mA  
10 mA  
12 mA  
Altera Corporation  
April 2011  
5–63  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 8 of 8)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(3)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(4)  
1.5-V  
Differential  
HSTL Class II  
16 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
881  
924  
946  
927  
949  
929  
951  
1431  
1497  
1439  
1505  
1450  
1516  
1501  
1571  
1510  
1580  
1521  
1591  
1644  
1720  
1654  
1730  
1666  
1742  
1734  
1824  
1744  
1834  
1757  
1847  
ps  
ps  
901  
884  
904  
886  
906  
18 mA  
20 mA  
Notes to Table 5–75:  
(1) This is the default setting in the Quartus II software.  
(2) These I/O standards are only supported on DQS pins.  
(3) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(4) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
Table 5–76. Stratix II I/O Output Delay for Row Pins (Part 1 of 3)  
Minimum Timing  
-3  
-3  
-4  
-5  
Drive  
Strength  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Industrial Commercial  
(3)  
LVTTL  
4 mA  
8 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1267  
1225  
1144  
1102  
1091  
1049  
1144  
1102  
1044  
1002  
1328  
1285  
1200  
1157  
1144  
1101  
1200  
1157  
1094  
1051  
2655  
2600  
2113  
2058  
2081  
2026  
2113  
2058  
1853  
1798  
2786  
2729  
2217  
2160  
2184  
2127  
2217  
2160  
1944  
1887  
3052  
2989  
2429  
2366  
2392  
2329  
2429  
2366  
2130  
2067  
3189  
3116  
2549  
2476  
2512  
2439  
2549  
2476  
2243  
2170  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
12 mA  
(1)  
LVCMOS  
4 mA  
8 mA (1) tOP  
tDIP  
5–64  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–76. Stratix II I/O Output Delay for Row Pins (Part 2 of 3)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(3)  
2.5 V  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
1128  
1086  
1030  
988  
1183  
1140  
1080  
1037  
1061  
1018  
1253  
1210  
1242  
1199  
1131  
1088  
1100  
1057  
1213  
1170  
1106  
1063  
1050  
1007  
992  
2091  
2036  
1872  
1817  
1775  
1720  
2954  
2899  
2294  
2239  
2039  
1984  
1942  
1887  
2530  
2475  
2020  
1965  
1759  
1704  
1581  
1526  
1709  
1654  
1648  
1593  
1633  
1578  
1615  
1560  
2194  
2137  
1964  
1907  
1862  
1805  
3100  
3043  
2407  
2350  
2140  
2083  
2038  
1981  
2655  
2598  
2120  
2063  
1846  
1789  
1659  
1602  
1793  
1736  
1729  
1672  
1713  
1656  
1694  
1637  
2403  
2340  
2152  
2089  
2040  
1977  
3396  
3333  
2637  
2574  
2344  
2281  
2232  
2169  
2908  
2845  
2322  
2259  
2022  
1959  
1817  
1754  
1964  
1901  
1894  
1831  
1877  
1814  
1856  
1793  
2523  
2450  
2265  
2192  
2151  
2078  
3542  
3469  
2763  
2690  
2462  
2389  
2348  
2275  
3041  
2968  
2440  
2367  
2104  
2031  
1897  
1824  
2046  
1973  
1975  
1902  
1958  
1885  
1937  
1864  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
8 mA  
12 mA  
(1)  
1012  
970  
1.8 V  
2 mA  
4 mA  
6 mA  
1196  
1154  
1184  
1142  
1079  
1037  
1049  
1007  
1158  
1116  
1055  
1013  
1002  
960  
8 mA (1) tOP  
tDIP  
1.5 V  
2 mA  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
SSTL-2 Class I 8 mA  
SSTL-2 Class II 16 mA  
947  
(1)  
905  
949  
SSTL-18  
Class I  
4 mA  
6 mA  
8 mA  
990  
1038  
995  
948  
994  
1042  
999  
952  
970  
1018  
975  
928  
10 mA  
(1)  
974  
1021  
978  
932  
Altera Corporation  
April 2011  
5–65  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–76. Stratix II I/O Output Delay for Row Pins (Part 3 of 3)  
Minimum Timing  
Drive  
-3  
-3  
-4  
-5  
Speed Speed  
Grade Grade  
(2)  
I/O Standard  
Parameter  
Speed Speed Unit  
Grade Grade  
Strength  
Industrial Commercial  
(3)  
1.8-V HSTL  
Class I  
4 mA  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
tOP  
tDIP  
972  
930  
975  
933  
958  
916  
962  
920  
953  
911  
970  
928  
974  
932  
960  
918  
1018  
976  
1005  
963  
1019  
976  
1610  
1555  
1580  
1525  
1576  
1521  
1567  
1512  
1566  
1511  
1591  
1536  
1579  
1524  
1572  
1517  
1723  
1668  
1723  
1668  
1689  
1632  
1658  
1601  
1653  
1596  
1644  
1587  
1643  
1586  
1669  
1612  
1657  
1600  
1649  
1592  
1808  
1751  
1808  
1751  
1850  
1787  
1816  
1753  
1811  
1748  
1801  
1738  
1800  
1737  
1828  
1765  
1815  
1752  
1807  
1744  
1980  
1917  
1980  
1917  
1956  
1883  
1920  
1847  
1916  
1843  
1905  
1832  
1904  
1831  
1933  
1860  
1919  
1846  
1911  
1838  
2089  
2016  
2089  
2016  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
6 mA  
8 mA  
10 mA  
1022  
979  
1004  
961  
1008  
965  
12 mA  
(1)  
999  
956  
1.5-V HSTL  
Class I  
4 mA  
6 mA  
1018  
975  
1021  
978  
8 mA (1) tOP  
1006  
963  
tDIP  
tOP  
tDIP  
tOP  
LVDS  
1067  
1024  
1053  
1010  
HyperTransport  
tDIP  
Notes to Table 5–76:  
(1) This is the default setting in the Quartus II software.  
(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.  
(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.  
Maximum Input & Output Clock Toggle Rate  
Maximum clock toggle rate is defined as the maximum frequency  
achievable for a clock type signal at an I/O pin. The I/O pin can be a  
regular I/O pin or a dedicated clock I/O pin.  
5–66  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
The maximum clock toggle rate is different from the maximum data bit  
rate. If the maximum clock toggle rate on a regular I/O pin is 300 MHz,  
the maximum data bit rate for dual data rate (DDR) could be potentially  
as high as 600 Mbps on the same I/O pin.  
Table 5–77 specifies the maximum input clock toggle rates. Table 5–78  
specifies the maximum output clock toggle rates at 0pF load. Table 5–79  
specifies the derating factors for the output clock toggle rate for a non 0pF  
load.  
To calculate the output toggle rate for a non 0pF load, use this formula:  
The toggle rate for a non 0pF load  
= 1000 / (1000/ toggle rate at 0pF load + derating factor * load value  
in pF /1000)  
For example, the output toggle rate at 0pF load for SSTL-18 Class II 20mA  
I/O standard is 550 MHz on a -3 device clock output pin. The derating  
factor is 94ps/pF. For a 10pF load the toggle rate is calculated as:  
1000 / (1000/550 + 94 × 10 /1000) = 363 (MHz)  
Tables 5–77 through 5–79 show the I/O toggle rates for Stratix II  
devices.  
Table 5–77. Maximum Input Toggle Rate on Stratix II Devices (Part 1 of 2)  
Column I/O Pins (MHz) Row I/O Pins (MHz)  
Dedicated Clock Inputs  
(MHz)  
Input I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
LVTTL  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
450  
450  
450  
450  
450  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
450  
450  
450  
450  
450  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
400  
400  
400  
400  
400  
500  
500  
500  
500  
500  
500  
500  
2.5-V LVTTL/CMOS  
1.8-V LVTTL/CMOS  
1.5-V LVTTL/CMOS  
LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.8-V HSTL Class I  
Altera Corporation  
April 2011  
5–67  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–77. Maximum Input Toggle Rate on Stratix II Devices (Part 2 of 2)  
Dedicated Clock Inputs  
(MHz)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz)  
Input I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
1.8-V HSTL Class II  
PCI (1)  
500  
500  
500  
280  
500  
500  
500  
500  
-
500  
450  
450  
-
500  
500  
500  
500  
500  
500  
280  
500  
500  
500  
500  
-
500  
400  
400  
-
-
-
-
-
-
-
-
-
-
-
-
-
PCI-X (1)  
1.2-V HSTL (2)  
Differential SSTL-2 Class I  
500  
500  
500  
500  
(1), (3)  
Differential SSTL-2 Class II  
(1), (3)  
500  
500  
500  
500  
500  
500  
500  
-
500  
500  
500  
500  
500  
500  
500  
-
500  
500  
500  
500  
500  
500  
500  
-
-
-
-
500  
500  
500  
500  
500  
500  
500  
717  
500  
500  
500  
500  
500  
500  
500  
717  
500  
500  
500  
500  
500  
500  
500  
640  
Differential SSTL-18 Class I  
(1), (3)  
-
-
-
Differential SSTL-18 Class II  
(1), (3)  
-
-
-
1.8-V Differential HSTL  
Class I (1), (3)  
-
-
-
1.8-V Differential HSTL  
Class II (1), (3)  
-
-
-
1.5-V Differential HSTL  
Class I (1), (3)  
-
-
-
-
-
-
1.5-V Differential HSTL  
Class II (1), (3)  
HyperTransport technology  
520  
520  
420  
(4)  
LVPECL (1)  
LVDS (5)  
-
-
-
-
-
-
-
-
-
-
520  
-
-
520  
-
-
420  
-
450  
717  
450  
450  
717  
450  
400  
640  
400  
LVDS (6)  
Notes to Table 5–77:  
(1) Row clock inputs don’t support PCI, PCI-X, LVPECL, and differential HSTL and SSTL standards.  
(2) 1.2-V HSTL is only supported on column I/O pins.  
(3) Differential HSTL and SSTL standards are only supported on column clock and DQS inputs.  
(4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins.  
(5) These numbers apply to I/O pins and dedicated clock pins in the left and right I/O banks.  
(6) These numbers apply to dedicated clock pins in the top and bottom I/O banks.  
5–68  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 1 of 5)  
Note (1)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz) Clock Outputs (MHz)  
Drive  
Strength  
I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
3.3-V LVTTL  
4 mA  
8 mA  
270  
435  
580  
720  
875  
1,030  
290  
565  
790  
1,020  
1,066  
1,100  
230  
430  
630  
930  
120  
285  
450  
660  
905  
1,131  
244  
470  
550  
625  
400  
400  
350  
400  
400  
225  
355  
475  
594  
700  
794  
250  
480  
710  
925  
985  
1,040  
194  
380  
575  
845  
109  
250  
390  
570  
805  
1,040  
200  
370  
430  
495  
300  
400  
350  
350  
400  
210  
325  
420  
520  
610  
670  
230  
440  
670  
875  
935  
1,000  
180  
380  
550  
820  
104  
230  
360  
520  
755  
990  
180  
325  
375  
420  
300  
350  
300  
350  
350  
270  
225  
210  
270  
435  
580  
720  
875  
225  
355  
475  
594  
700  
210  
325  
420  
520  
610  
670  
230  
440  
670  
875  
935  
435  
355  
325  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
580  
475  
420  
-
-
-
-
-
-
-
290  
565  
-
-
250  
480  
-
-
230  
440  
-
1,030 794  
3.3-V LVCMOS  
290  
565  
790  
250  
480  
710  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
-
-
-
1,020 925  
1,066 985  
-
-
-
-
-
-
1,100 1,040 1,000  
2.5-V  
LVTTL/LVCMOS  
230  
430  
630  
-
194  
380  
575  
-
180  
380  
550  
-
230  
430  
630  
930  
120  
285  
450  
660  
905  
194  
380  
575  
845  
109  
250  
390  
570  
805  
180  
380  
550  
820  
104  
230  
360  
520  
755  
8 mA  
12 mA  
16 mA  
2 mA  
1.8-V  
LVTTL/LVCMOS  
120  
285  
450  
660  
-
109  
250  
390  
570  
-
104  
230  
360  
520  
-
4 mA  
6 mA  
8 mA  
10 mA  
12 mA  
2 mA  
-
-
-
1,131 1,040 990  
1.5-V  
LVTTL/LVCMOS  
244  
470  
-
200  
370  
-
180  
325  
-
244  
470  
550  
625  
400  
400  
350  
400  
400  
200  
370  
430  
495  
300  
400  
350  
350  
400  
180  
325  
375  
420  
300  
350  
300  
350  
350  
4 mA  
6 mA  
8 mA  
-
-
-
SSTL-2 Class I  
SSTL-2 Class II  
8 mA  
-
-
-
12 mA  
16 mA  
20 mA  
24 mA  
400  
350  
-
350  
350  
-
350  
300  
-
-
-
-
Altera Corporation  
April 2011  
5–69  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 2 of 5)  
Note (1)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz) Clock Outputs (MHz)  
Drive  
Strength  
I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
SSTL-18 Class I  
4 mA  
6 mA  
200  
350  
450  
500  
700  
200  
400  
450  
550  
300  
500  
650  
700  
700  
500  
550  
650  
350  
500  
700  
700  
700  
600  
650  
700  
400  
400  
350  
400  
400  
150  
250  
300  
400  
550  
200  
350  
400  
500  
300  
450  
600  
650  
700  
500  
500  
550  
300  
500  
650  
700  
700  
600  
600  
650  
300  
400  
350  
350  
400  
150  
200  
300  
400  
400  
150  
350  
400  
450  
300  
450  
600  
600  
650  
450  
500  
550  
300  
450  
600  
650  
700  
550  
600  
600  
300  
350  
300  
350  
350  
200  
350  
450  
500  
-
150  
250  
300  
400  
-
150  
200  
300  
400  
-
200  
350  
450  
500  
650  
200  
400  
450  
550  
300  
500  
650  
700  
700  
500  
550  
550  
350  
500  
700  
700  
700  
600  
650  
700  
400  
400  
350  
400  
400  
150  
250  
300  
400  
550  
200  
350  
400  
500  
300  
450  
600  
650  
700  
500  
500  
550  
300  
500  
650  
700  
700  
600  
600  
650  
300  
400  
350  
350  
400  
150  
200  
300  
400  
400  
150  
350  
400  
450  
300  
450  
600  
600  
650  
450  
500  
550  
300  
450  
600  
650  
700  
550  
600  
600  
300  
350  
300  
350  
350  
8 mA  
10 mA  
12 mA  
8 mA  
SSTL-18 Class II  
-
-
-
16 mA  
18 mA  
20 mA  
4 mA  
-
-
-
-
-
-
-
-
-
1.8-V HSTL  
Class I  
300  
500  
650  
700  
700  
-
300  
450  
600  
650  
700  
-
300  
450  
600  
600  
650  
-
6 mA  
8 mA  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
4 mA  
1.8-V HSTL  
Class II  
-
-
-
-
-
-
1.5-V HSTL  
Class I  
350  
500  
700  
-
300  
500  
650  
-
300  
450  
600  
-
6 mA  
8 mA  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
8 mA  
-
-
-
1.5-V HSTL  
Class II  
-
-
-
-
-
-
-
-
-
Differential  
SSTL-2 Class I (3)  
400  
400  
350  
350  
-
300  
400  
350  
350  
-
300  
350  
300  
297  
-
12 mA  
16 mA  
20 mA  
24 mA  
Differential  
SSTL-2 Class II  
(3)  
5–70  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 3 of 5)  
Note (1)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz) Clock Outputs (MHz)  
Drive  
Strength  
I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Differential  
SSTL-18 Class I  
(3)  
4 mA  
6 mA  
200  
350  
450  
500  
700  
200  
400  
450  
550  
300  
500  
650  
700  
700  
500  
550  
650  
350  
500  
700  
700  
700  
600  
650  
700  
1,000  
1,000  
-
150  
250  
300  
400  
550  
200  
350  
400  
500  
300  
450  
600  
650  
700  
500  
500  
550  
300  
500  
650  
700  
700  
600  
600  
650  
790  
790  
-
150  
200  
300  
400  
400  
150  
350  
400  
450  
300  
450  
600  
600  
650  
450  
500  
550  
300  
450  
600  
650  
700  
550  
600  
600  
670  
670  
-
200  
150  
150  
200  
350  
450  
500  
650  
200  
400  
450  
550  
300  
500  
650  
700  
700  
500  
550  
550  
350  
500  
700  
700  
700  
600  
650  
700  
150  
250  
300  
400  
550  
200  
350  
400  
500  
300  
450  
600  
650  
700  
500  
500  
550  
300  
500  
650  
700  
700  
600  
600  
650  
150  
200  
300  
400  
400  
150  
350  
400  
450  
300  
450  
600  
600  
650  
450  
500  
550  
300  
450  
600  
650  
700  
550  
600  
600  
670  
670  
300  
-
350  
250  
200  
8 mA  
450  
300  
300  
10 mA  
12 mA  
8 mA  
500  
400  
400  
350  
350  
297  
Differential  
SSTL-18 Class II  
(3)  
-
-
-
16 mA  
18 mA  
20 mA  
4 mA  
-
-
-
-
-
-
-
-
-
1.8-V Differential  
HSTL Class I (3)  
-
-
-
6 mA  
-
-
-
8 mA  
-
-
-
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
4 mA  
-
-
-
-
-
-
1.8-V Differential  
HSTL Class II (3)  
-
-
-
-
-
-
-
-
-
1.5-V Differential  
HSTL Class I (3)  
-
-
-
6 mA  
-
-
-
8 mA  
-
-
-
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
-
-
-
-
-
-
1.5-V Differential  
HSTL Class II (3)  
-
-
-
-
-
-
-
-
-
-
-
-
3.3-V PCI  
3.3-V PCI-X  
LVDS (6)  
1,000 790  
1,000 790  
-
-
-
500  
500  
500  
500  
500  
500  
450  
-
400  
-
HyperTransport  
technology (4), (6)  
LVPECL (5)  
3.3-V LVTTL  
2.5-V LVTTL  
-
-
-
-
-
-
450  
400  
350  
400  
400  
350  
300  
350  
300  
OCT 50 Ω  
OCT 50 Ω  
400  
350  
400  
350  
350  
300  
400  
350  
400  
350  
350  
300  
Altera Corporation  
April 2011  
5–71  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 4 of 5)  
Note (1)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz) Clock Outputs (MHz)  
Drive  
Strength  
I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
1.8-V LVTTL  
OCT 50 Ω  
OCT 50 Ω  
OCT 50 Ω  
OCT 50 Ω  
OCT 25 Ω  
OCT 50 Ω  
700  
350  
550  
600  
600  
560  
550  
280  
600  
550  
350  
450  
500  
550  
400  
500  
-
450  
300  
400  
500  
500  
350  
450  
-
700  
350  
550  
600  
600  
590  
-
550  
350  
450  
500  
550  
400  
-
450  
300  
400  
500  
500  
350  
-
700  
350  
550  
600  
600  
450  
550  
280  
600  
550  
350  
450  
500  
550  
400  
500  
-
450  
300  
400  
500  
500  
350  
450  
-
3.3-V LVCMOS  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II OCT 25 Ω  
1.2-V HSTL (2)  
OCT 50 Ω  
OCT 50 Ω  
-
-
-
1.5-V HSTL  
Class I  
550  
500  
600  
550  
500  
550  
500  
1.8-V HSTL  
Class I  
OCT 50 Ω  
OCT 25 Ω  
OCT 50 Ω  
OCT 25 Ω  
OCT 50 Ω  
OCT 25 Ω  
650  
500  
600  
600  
560  
550  
650  
500  
600  
600  
500  
500  
550  
400  
500  
600  
500  
550  
600  
450  
500  
500  
350  
450  
600  
450  
500  
650  
-
600  
-
600  
-
650  
500  
600  
600  
560  
550  
650  
500  
600  
600  
500  
500  
550  
400  
500  
600  
500  
550  
600  
450  
500  
500  
350  
450  
600  
450  
500  
1.8-V HSTL  
Class II  
Differential  
SSTL-2 Class I  
600  
600  
590  
-
500  
550  
400  
-
500  
500  
350  
-
Differential  
SSTL-2 Class II  
Differential  
SSTL-18 Class I  
Differential  
SSTL-18 Class II  
1.8-V Differential OCT 50 Ω  
HSTL Class I  
650  
-
600  
-
600  
-
1.8-V Differential OCT 25 Ω  
HSTL Class II  
1.5-V Differential OCT 50 Ω  
600  
550  
500  
HSTL Class I  
5–72  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 5 of 5)  
Note (1)  
Column I/O Pins (MHz)  
Row I/O Pins (MHz) Clock Outputs (MHz)  
Drive  
Strength  
I/O Standard  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
1.2-V Differential OCT 50 Ω  
280  
-
-
-
-
-
280  
-
-
HSTL  
Notes to Table 5–78:  
(1) The toggle rate applies to 0-pF output load for all I/O standards except for LVDS and HyperTransport technology  
on row I/O pins. For LVDS and HyperTransport technology on row I/O pins, the toggle rates apply to load from  
0 to 5pF.  
(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4, 7, and 8.  
(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.  
(4) HyperTransport technology is only supported on row I/O and row dedicated clock input pins.  
(5) LVPECL is only supported on column clock pins.  
(6) Refer to Tables 5–81 through 5–91 if using SERDES block. Use the toggle rate values from the clock output column  
for PLL output.  
Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 1 of 5)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Drive  
Strength  
I/O Standard  
Column I/O Pins  
Row I/O Pins  
-4  
Dedicated Clock Outputs  
-3  
-4  
-5  
-3  
-5  
-3  
-4  
-5  
3.3-V LVTTL  
4 mA  
8 mA  
478  
260  
213  
136  
138  
134  
377  
206  
141  
108  
83  
510  
333  
247  
197  
187  
177  
391  
212  
145  
111  
88  
510  
333  
247  
197  
187  
177  
391  
212  
145  
111  
88  
478  
510  
510  
466  
291  
211  
166  
154  
143  
377  
178  
115  
86  
510  
333  
247  
197  
187  
177  
391  
212  
145  
111  
88  
510  
333  
247  
197  
187  
177  
391  
212  
145  
111  
88  
260  
333  
333  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
213  
247  
247  
-
-
-
-
-
-
-
377  
206  
-
-
391  
212  
-
-
391  
212  
-
3.3-V LVCMOS  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
-
-
-
-
-
-
79  
65  
72  
72  
-
-
-
74  
72  
72  
2.5-V  
LVTTL/LVCMOS  
387  
163  
142  
120  
427  
224  
203  
182  
427  
224  
203  
182  
387  
163  
142  
-
427  
224  
203  
-
427  
224  
203  
-
391  
170  
152  
134  
427  
224  
203  
182  
427  
224  
203  
182  
8 mA  
12 mA  
16 mA  
Altera Corporation  
April 2011  
5–73  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 2 of 5)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Drive  
Strength  
I/O Standard  
Column I/O Pins  
Row I/O Pins  
-4  
Dedicated Clock Outputs  
-3  
-4  
-5  
-3  
-5  
-3  
-4  
-5  
1.8-V  
LVTTL/LVCMOS  
2 mA  
4 mA  
951  
405  
261  
223  
194  
174  
652  
333  
182  
135  
364  
163  
118  
99  
1421  
516  
325  
274  
236  
209  
963  
347  
247  
194  
680  
207  
147  
122  
116  
570  
380  
282  
220  
175  
206  
160  
130  
127  
680  
207  
147  
122  
116  
1421  
516  
325  
274  
236  
209  
963  
347  
247  
194  
680  
207  
147  
122  
116  
570  
380  
282  
220  
175  
206  
160  
130  
127  
680  
207  
147  
122  
116  
951  
405  
261  
223  
-
1421  
516  
325  
274  
-
1421  
516  
325  
274  
-
904  
393  
253  
224  
199  
180  
618  
270  
198  
155  
350  
188  
94  
1421  
516  
325  
274  
236  
209  
963  
347  
247  
194  
680  
207  
147  
122  
116  
570  
380  
282  
220  
175  
206  
160  
130  
127  
680  
207  
147  
122  
116  
1421  
516  
325  
274  
236  
209  
963  
347  
247  
194  
680  
207  
147  
122  
116  
570  
380  
282  
220  
175  
206  
160  
130  
127  
680  
207  
147  
122  
116  
6 mA  
8 mA  
10 mA  
12 mA  
2 mA  
-
-
-
1.5-V  
LVTTL/LVCMOS  
652  
333  
-
963  
347  
-
963  
347  
-
4 mA  
6 mA  
8 mA  
-
-
-
SSTL-2 Class I  
SSTL-2 Class II  
8 mA  
364  
163  
118  
-
680  
207  
147  
-
680  
207  
147  
-
12 mA  
16 mA  
20 mA  
24 mA  
4 mA  
87  
91  
-
-
-
85  
SSTL-18 Class I  
SSTL-18 Class II  
458  
305  
225  
167  
129  
173  
150  
120  
109  
364  
163  
118  
99  
458  
305  
225  
167  
-
570  
380  
282  
220  
-
570  
380  
282  
220  
-
505  
336  
248  
190  
148  
155  
140  
110  
94  
6 mA  
8 mA  
10 mA  
12 mA  
8 mA  
-
-
-
16 mA  
18 mA  
20 mA  
8 mA  
-
-
-
-
-
-
-
-
-
SSTL-2 Class I  
SSTL-2 Class II  
364  
163  
118  
-
680  
207  
147  
-
680  
207  
147  
-
350  
188  
94  
12 mA  
16 mA  
20 mA  
24 mA  
87  
91  
-
-
-
85  
5–74  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 3 of 5)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Drive  
Strength  
I/O Standard  
Column I/O Pins  
Row I/O Pins  
-4  
Dedicated Clock Outputs  
-3  
-4  
-5  
-3  
-5  
-3  
-4  
-5  
SSTL-18 Class I  
4 mA  
6 mA  
458  
305  
225  
167  
129  
173  
150  
120  
109  
245  
164  
123  
110  
97  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
458  
570  
570  
505  
336  
248  
190  
148  
155  
140  
110  
94  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
305  
380  
380  
8 mA  
225  
282  
282  
10 mA  
12 mA  
8 mA  
167  
220  
220  
-
-
-
SSTL-18 Class II  
-
-
-
16 mA  
18 mA  
20 mA  
4 mA  
-
-
-
-
-
-
-
-
-
1.8-V HSTL  
Class I  
245  
282  
282  
229  
153  
114  
108  
104  
99  
6 mA  
164  
188  
188  
8 mA  
123  
140  
140  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
4 mA  
110  
124  
124  
97  
110  
110  
1.8-V HSTL  
Class II  
101  
98  
-
-
-
-
-
-
93  
93  
-
-
-
88  
1.5-V HSTL  
Class I  
168  
112  
84  
196  
131  
99  
196  
131  
99  
168  
196  
196  
188  
125  
95  
196  
131  
99  
196  
131  
99  
6 mA  
112  
131  
131  
8 mA  
84  
-
99  
-
99  
-
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
8 mA  
87  
98  
98  
90  
98  
98  
86  
98  
98  
-
-
-
87  
98  
98  
1.5-V HSTL  
Class II  
95  
101  
100  
101  
680  
207  
147  
122  
116  
101  
100  
101  
680  
207  
147  
122  
116  
-
-
-
96  
101  
100  
101  
680  
207  
147  
122  
116  
101  
100  
101  
680  
207  
147  
122  
116  
95  
-
-
-
101  
104  
350  
188  
94  
94  
-
-
-
Differential  
SSTL-2 Class II  
(3)  
364  
163  
118  
99  
-
-
-
12 mA  
16 mA  
20 mA  
24 mA  
-
-
-
-
-
-
-
-
-
87  
91  
-
-
-
85  
Altera Corporation  
April 2011  
5–75  
Stratix II Device Handbook, Volume 1  
Timing Model  
Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 4 of 5)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Drive  
Strength  
I/O Standard  
Column I/O Pins  
Row I/O Pins  
-4  
Dedicated Clock Outputs  
-3  
-4  
-5  
-3  
-5  
-3  
-4  
-5  
Differential  
SSTL-18 Class I  
(3)  
4 mA  
6 mA  
458  
305  
225  
167  
129  
173  
150  
120  
109  
245  
164  
123  
110  
97  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
505  
336  
248  
190  
148  
155  
140  
110  
94  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
570  
380  
282  
220  
175  
206  
160  
130  
127  
282  
188  
140  
124  
110  
104  
102  
99  
8 mA  
10 mA  
12 mA  
8 mA  
Differential  
SSTL-18 Class II  
(3)  
16 mA  
18 mA  
20 mA  
4 mA  
1.8-V Differential  
HSTL Class I (3)  
229  
153  
114  
108  
104  
99  
6 mA  
8 mA  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
4 mA  
1.8-V Differential  
HSTL Class II (3)  
101  
98  
93  
93  
88  
1.5-V Differential  
HSTL Class I (3)  
168  
112  
84  
196  
131  
99  
196  
131  
99  
188  
125  
95  
196  
131  
99  
196  
131  
99  
6 mA  
8 mA  
10 mA  
12 mA  
16 mA  
18 mA  
20 mA  
87  
98  
98  
90  
98  
98  
86  
98  
98  
87  
98  
98  
1.5-V Differential  
HSTL Class II (3)  
95  
101  
100  
101  
177  
177  
-
101  
100  
101  
177  
177  
-
96  
101  
100  
101  
177  
177  
134  
101  
100  
101  
177  
177  
134  
95  
101  
104  
143  
143  
134  
94  
3.3-V PCI  
3.3-V PCI-X  
LVDS  
134  
134  
-
155 (1)  
155 (1)  
-
155  
(1)  
155  
(1)  
HyperTransport  
technology  
-
-
-
-
-
-
155  
(1)  
155  
(1)  
-
-
-
LVPECL (4)  
-
-
134  
134  
134  
5–76  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 5 of 5)  
Maximum Output Clock Toggle Rate Derating Factors (ps/pF)  
Drive  
Strength  
I/O Standard  
Column I/O Pins  
Row I/O Pins  
Dedicated Clock Outputs  
-3  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
3.3-V LVTTL  
OCT  
50 Ω  
133  
207  
151  
300  
157  
121  
56  
152  
152  
133  
152  
152  
147  
152  
152  
2.5-V LVTTL  
OCT  
50 Ω  
274  
165  
316  
171  
134  
101  
123  
110  
-
274  
165  
316  
171  
134  
101  
123  
110  
-
207  
151  
300  
157  
121  
56  
274  
165  
316  
171  
134  
101  
123  
-
274  
165  
316  
171  
134  
101  
123  
-
235  
153  
263  
174  
77  
274  
165  
316  
171  
134  
101  
123  
110  
-
274  
165  
316  
171  
134  
101  
123  
110  
95  
1.8-V LVTTL  
OCT  
50 Ω  
3.3-V LVCMOS  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.2-V HSTL (2)  
OCT  
50 Ω  
OCT  
50 Ω  
OCT  
50 Ω  
OCT  
25 Ω  
58  
OCT  
50 Ω  
100  
61  
100  
-
106  
59  
OCT  
25 Ω  
OCT  
95  
-
-
-
-
50 Ω  
Notes to Table 5–79:  
(1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads  
larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result.  
For a load less than or equal to 5 pF, refer to Table 5–78 for output toggle rates.  
(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.  
(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.  
(4) LVPECL is only supported on column clock outputs.  
Duty cycle distortion (DCD) describes how much the falling edge of a  
clock is off from its ideal position. The ideal position is when both the  
clock high time (CLKH) and the clock low time (CLKL) equal half of the  
clock period (T), as shown in Figure 5–7. DCD is the deviation of the  
non-ideal falling edge from the ideal falling edge, such as D1 for the  
falling edge A and D2 for the falling edge B (Figure 5–7). The maximum  
DCD for a clock is the larger value of D1 and D2.  
Duty Cycle  
Distortion  
Altera Corporation  
April 2011  
5–77  
Stratix II Device Handbook, Volume 1  
Duty Cycle Distortion  
Figure 5–7. Duty Cycle Distortion  
Ideal Falling Edge  
CLKH = T/2  
CLKL = T/2  
D1  
D2  
Falling Edge A  
Falling Edge B  
Clock Period (T)  
DCD expressed in absolution derivation, for example, D1 or D2 in  
Figure 5–7, is clock-period independent. DCD can also be expressed as a  
percentage, and the percentage number is clock-period dependent. DCD  
as a percentage is defined as  
(T/2 – D1) / T (the low percentage boundary)  
(T/2 + D2) / T (the high percentage boundary)  
DCD Measurement Techniques  
DCD is measured at an FPGA output pin driven by registers inside the  
corresponding I/O element (IOE) block. When the output is a single data  
rate signal (non-DDIO), only one edge of the register input clock (positive  
or negative) triggers output transitions (Figure 5–8). Therefore, any DCD  
present on the input clock signal or caused by the clock input buffer or  
different input I/O standard does not transfer to the output signal.  
Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs  
IOE  
NOT  
DFF  
PRN  
OUTPUT  
inst1  
output  
D
Q
INPUT  
VCC  
clk  
CLRN  
inst  
5–78  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
However, when the output is a double data rate input/output (DDIO)  
signal, both edges of the input clock signal (positive and negative) trigger  
output transitions (Figure 5–9). Therefore, any distortion on the input  
clock and the input clock buffer affect the output DCD.  
Figure 5–9. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs  
IOE  
V
CC DFF  
D
PRN  
Q
INPUT  
VCC  
clk  
CLRN  
inst2  
OUTPUT  
output  
DFF  
D
PRN  
Q
GND  
NOT  
inst8  
CLRN  
inst3  
When an FPGA PLL generates the internal clock, the PLL output clocks  
the IOE block. As the PLL only monitors the positive edge of the reference  
clock input and internally re-creates the output clock signal, any DCD  
present on the reference clock is filtered out. Therefore, the DCD for a  
DDIO output with PLL in the clock path is better than the DCD for a  
DDIO output without PLL in the clock path.  
Tables 5–80 through 5–87 give the maximum DCD in absolution  
derivation for different I/O standards on Stratix II devices. Examples are  
also provided that show how to calculate DCD as a percentage.  
Table 5–80. Maximum DCD for Non-DDIO Output on Row I/O Pins (Part 1  
of 2)  
Note (1)  
Maximum DCD for Non-DDIO Output  
Row I/O Output  
Standard  
-3 Devices  
-4 & -5 Devices  
Unit  
3.3-V LVTTTL  
3.3-V LVCMOS  
2.5 V  
245  
125  
105  
275  
155  
135  
ps  
ps  
ps  
Altera Corporation  
April 2011  
5–79  
Stratix II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–80. Maximum DCD for Non-DDIO Output on Row I/O Pins (Part 2  
of 2) Note (1)  
Maximum DCD for Non-DDIO Output  
Row I/O Output  
Standard  
-3 Devices  
-4 & -5 Devices  
Unit  
1.8 V  
180  
165  
115  
95  
180  
195  
145  
125  
85  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
1.8-V HSTL Class I  
1.5-V HSTL Class I  
55  
80  
100  
115  
80  
85  
LVDS/  
55  
HyperTransport  
technology  
Note to Table 5–80:  
(1) The DCD specification is based on a no logic array noise condition.  
Here is an example for calculating the DCD as a percentage for a  
non-DDIO output on a row I/O on a -3 device:  
If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum  
DCD is 95 ps (see Table 5–80). If the clock frequency is 267 MHz, the clock  
period T is:  
T = 1/ f = 1 / 267 MHz = 3.745 ns = 3745 ps  
To calculate the DCD as a percentage:  
(T/2 – DCD) / T = (3745ps/2 – 95ps) / 3745ps = 47.5% (for low  
boundary)  
(T/2 + DCD) / T = (3745ps/2 + 95ps) / 3745ps = 52.5% (for high  
boundary)  
5–80  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
Therefore, the DCD percentage for the 267 MHz SSTL-2 Class II  
non-DDIO row output clock on a –3 device ranges from 47.5% to 52.5%.  
Table 5–81. Maximum DCD for Non-DDIO Output on Column I/O  
Pins  
Note (1)  
Column I/O Output  
Standard I/O  
Standard  
Maximum DCD for Non-DDIO Output  
Unit  
-3 Devices  
-4 & -5 Devices  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5 V  
190  
140  
125  
80  
220  
175  
155  
110  
215  
135  
130  
115  
100  
110  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1.8 V  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
185  
105  
100  
90  
70  
1.8-V HSTL  
Class I  
80  
1.8-V HSTL  
Class II  
80  
85  
50  
110  
115  
80  
ps  
ps  
ps  
1.5-V HSTL  
Class I  
1.5-V HSTL  
Class II  
1.2-V HSTL (2)  
170  
55  
-
ps  
ps  
LVPECL  
80  
Notes to Table 5–81:  
(1) The DCD specification is based on a no logic array noise condition.  
(2) 1.2-V HSTL is only supported in -3 devices.  
Altera Corporation  
April 2011  
5–81  
Stratix II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–82. Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path for -3  
Devices  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock Port  
(No PLL in Clock Path)  
Row DDIO Output I/O  
Standard  
LVDS/  
Unit  
TTL/CMOS  
SSTL-2  
2.5 V  
SSTL/HSTL HyperTransport  
Technology  
3.3 & 2.5 V 1.8 & 1.5 V  
1.8 & 1.5 V  
3.3 V  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5 V  
260  
210  
195  
150  
255  
175  
170  
155  
150  
150  
180  
380  
330  
315  
265  
370  
295  
290  
275  
270  
270  
180  
145  
100  
85  
145  
100  
85  
110  
65  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
75  
1.8 V  
85  
85  
120  
105  
70  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
1.8-V HSTL Class I  
1.5-V HSTL Class I  
140  
65  
140  
65  
60  
60  
75  
55  
50  
90  
60  
60  
95  
55  
55  
90  
LVDS/ HyperTransport  
technology  
180  
180  
180  
Notes to Table 5–82:  
(1) The information in Table 5–82 assumes the input clock has zero DCD.  
(2) The DCD specification is based on a no logic array noise condition.  
Here is an example for calculating the DCD in percentage for a DDIO  
output on a row I/O on a -3 device:  
If the input I/O standard is SSTL-2 and the DDIO output I/O standard is  
SSTL-2 Class II, the maximum DCD is 60 ps (see Table 5–82). If the clock  
frequency is 267 MHz, the clock period T is:  
T = 1/ f = 1 / 267 MHz = 3.745 ns = 3745 ps  
Calculate the DCD as a percentage:  
(T/2 – DCD) / T = (3745ps/2 – 60ps) / 3745ps = 48.4% (for low  
boundary)  
(T/2 + DCD) / T = (3745 ps/2 + 60 ps) / 3745ps = 51.6% (for high  
boundary)  
5–82  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
Therefore, the DCD percentage for the 267 MHz SSTL-2 Class II DDIO  
row output clock on a –3 device ranges from 48.4% to 51.6%.  
Table 5–83. Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path for -4 & -5  
Devices  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO Clock  
Port (No PLL in the Clock Path)  
Row DDIO Output I/O  
Standard  
LVDS/  
Unit  
TTL/CMOS  
SSTL-2  
2.5 V  
SSTL/HSTL HyperTransport  
Technology  
3.3/2.5 V  
1.8/1.5 V  
1.8/1.5 V  
3.3 V  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5 V  
440  
390  
375  
325  
430  
355  
350  
335  
330  
330  
180  
495  
450  
430  
385  
490  
410  
405  
390  
385  
390  
180  
170  
120  
105  
90  
160  
110  
95  
105  
75  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
90  
1.8 V  
100  
155  
75  
135  
100  
85  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
1.8-V HSTL Class I  
1.5-V HSTL Class I  
160  
85  
80  
70  
90  
65  
65  
105  
110  
105  
180  
60  
70  
60  
70  
LVDS/ HyperTransport  
technology  
180  
180  
Notes to Table 5–83:  
(1) Table 5–83 assumes the input clock has zero DCD.  
(2) The DCD specification is based on a no logic array noise condition.  
Table 5–84. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -3  
Devices (Part 1 of 2)  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO  
Clock Port (No PLL in the Clock Path)  
DDIO Column Output I/O  
Standard  
1.2-V  
HSTL  
Unit  
TTL/CMOS  
SSTL-2  
SSTL/HSTL  
3.3/2.5 V  
1.8/1.5 V  
2.5 V  
1.8/1.5 V  
1.2 V  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5 V  
260  
210  
195  
380  
330  
315  
145  
100  
85  
145  
100  
85  
145  
100  
85  
ps  
ps  
ps  
Altera Corporation  
April 2011  
5–83  
Stratix II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–84. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -3  
Devices (Part 2 of 2)  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO  
Clock Port (No PLL in the Clock Path)  
DDIO Column Output I/O  
Standard  
1.2-V  
HSTL  
Unit  
TTL/CMOS  
SSTL-2  
SSTL/HSTL  
3.3/2.5 V  
1.8/1.5 V  
2.5 V  
1.8/1.5 V  
1.2 V  
1.8 V  
150  
255  
175  
170  
155  
140  
150  
150  
150  
125  
240  
180  
265  
370  
295  
290  
275  
260  
270  
270  
270  
240  
360  
180  
85  
140  
65  
85  
140  
65  
85  
140  
65  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.2-V HSTL  
60  
60  
60  
55  
50  
50  
70  
70  
70  
60  
60  
60  
60  
60  
60  
55  
55  
55  
85  
85  
85  
155  
180  
155  
180  
155  
180  
LVPECL  
Notes to Table 5–84:  
(1) Table 5–84 assumes the input clock has zero DCD.  
(2) The DCD specification is based on a no logic array noise condition.  
Table 5–85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5  
Devices (Part 1 of 2)  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO  
Clock Port (No PLL in the Clock Path)  
DDIO Column Output I/O  
Standard  
Unit  
TTL/CMOS  
SSTL-2  
2.5 V  
SSTL/HSTL  
1.8/1.5 V  
3.3/2.5 V  
1.8/1.5 V  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5 V  
440  
390  
375  
325  
430  
355  
350  
495  
450  
430  
385  
490  
410  
405  
170  
120  
105  
90  
160  
110  
95  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1.8 V  
100  
155  
75  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
160  
85  
80  
70  
5–84  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5  
Devices (Part 2 of 2)  
Notes (1), (2)  
Maximum DCD Based on I/O Standard of Input Feeding the DDIO  
Clock Port (No PLL in the Clock Path)  
DDIO Column Output I/O  
Standard  
Unit  
TTL/CMOS  
SSTL-2  
2.5 V  
SSTL/HSTL  
1.8/1.5 V  
3.3/2.5 V  
1.8/1.5 V  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.2-V HSTL  
335  
320  
330  
330  
330  
330  
420  
180  
390  
375  
385  
385  
390  
360  
470  
180  
65  
70  
65  
80  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
60  
70  
60  
70  
60  
70  
90  
100  
165  
180  
155  
180  
LVPECL  
Notes to Table 5–85:  
(1) Table 5–85 assumes the input clock has zero DCD.  
(2) The DCD specification is based on a no logic array noise condition.  
Table 5–86. Maximum DCD for DDIO Output on Row I/O Pins with PLL in the  
Clock Path (Part 1 of 2)  
Note (1)  
Maximum DCD (PLL Output Clock Feeding  
DDIO Clock Port)  
Row DDIO Output I/O  
Standard  
Unit  
-3 Device  
-4 & -5 Device  
3.3-V LVTTL  
3.3-V LVCMOS  
2.5V  
110  
65  
105  
75  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
75  
90  
1.8V  
85  
100  
100  
75  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
1.8-V HSTL Class I  
1.5-V HSTL Class I  
105  
65  
60  
50  
50  
70  
65  
70  
55  
70  
Altera Corporation  
April 2011  
5–85  
Stratix II Device Handbook, Volume 1  
Duty Cycle Distortion  
Table 5–86. Maximum DCD for DDIO Output on Row I/O Pins with PLL in the  
Clock Path (Part 2 of 2)  
Note (1)  
Maximum DCD (PLL Output Clock Feeding  
DDIO Clock Port)  
Row DDIO Output I/O  
Standard  
Unit  
-3 Device  
-4 & -5 Device  
LVDS/ HyperTransport  
technology  
180  
180  
ps  
Note to Table 5–86:  
(1) The DCD specification is based on a no logic array noise condition.  
Table 5–87. Maximum DCD for DDIO Output on Column I/O with PLL in the  
Clock Path Note (1)  
Maximum DCD (PLL Output Clock Feeding  
DDIO Clock Port)  
Column DDIO Output I/O  
Standard  
Unit  
-3 Device  
-4 & -5 Device  
3.3-V LVTTL  
145  
100  
85  
160  
110  
95  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3.3-V LVCMOS  
2.5V  
1.8V  
85  
100  
155  
75  
1.5-V LVCMOS  
SSTL-2 Class I  
SSTL-2 Class II  
SSTL-18 Class I  
SSTL-18 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1.5-V HSTL Class I  
1.5-V HSTL Class II  
1.2-V HSTL  
140  
65  
60  
70  
50  
65  
70  
80  
60  
70  
60  
70  
55  
70  
85  
100  
-
155  
180  
LVPECL  
180  
Notes to Table 5–87:  
(1) The DCD specification is based on a no logic array noise condition.  
(2) 1.2-V HSTL is only supported in -3 devices.  
5–86  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–88 provides high-speed timing specifications definitions.  
High-Speed I/O  
Specifications  
Table 5–88. High-Speed Timing Specifications & Definitions  
High-Speed Timing Specifications  
Definitions  
tC  
High-speed receiver/transmitter input and output clock period.  
High-speed receiver/transmitter input and output clock frequency.  
Deserialization factor (width of parallel data bus).  
PLL multiplication factor.  
fHSCLK  
J
W
tRISE  
Low-to-high transmission time.  
tFALL  
High-to-low transmission time.  
Timing unit interval (TUI)  
The timing budget allowed for skew, propagation delays, and data  
sampling window. (TUI = 1/(Receiver Input Clock Frequency ×  
Multiplication Factor) = tC/w).  
fHSDR  
Maximum/minimum LVDS data transfer rate (fHSDR = 1/TUI), non-DPA.  
Maximum/minimum LVDS data transfer rate (fHSDRDPA = 1/TUI), DPA.  
fHSDRDPA  
Channel-to-channel skew (TCCS)  
The timing difference between the fastest and slowest output edges,  
including tCO variation and clock skew. The clock is included in the TCCS  
measurement.  
Sampling window (SW)  
The period of time during which the data must be valid in order to capture  
it correctly. The setup and hold times determine the ideal strobe position  
within the sampling window.  
Input jitter  
Output jitter  
tDUTY  
Peak-to-peak input jitter on high-speed PLLs.  
Peak-to-peak output jitter on high-speed PLLs.  
Duty cycle on high-speed transmitter output clock.  
Lock time for high-speed transmitter and receiver PLLs.  
tLOCK  
Table 5–89 shows the high-speed I/O timing specifications for -3 speed  
grade Stratix II devices.  
Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 1 of 2)  
Symbol Conditions  
Notes (1), (2)  
-3 Speed Grade  
Unit  
Min Typ Max  
fHSCLK (clock frequency) W = 2 to 32 (LVDS, HyperTransport technology)  
16  
520  
MHz  
(3)  
fHSCLK = fHSDR / W  
W = 1 (SERDES bypass, LVDS only)  
W = 1 (SERDES used, LVDS only)  
16  
500  
717  
MHz  
MHz  
150  
Altera Corporation  
April 2011  
5–87  
Stratix II Device Handbook, Volume 1  
High-Speed I/O Specifications  
Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 2 of 2)  
Notes (1), (2)  
-3 Speed Grade  
Symbol  
Conditions  
Unit  
Min Typ Max  
fHSDR (data rate)  
J = 4 to 10 (LVDS, HyperTransport technology)  
J = 2 (LVDS, HyperTransport technology)  
J = 1 (LVDS only)  
150  
(4)  
(4)  
150  
-
1,040  
760  
500  
1,040  
200  
-
Mbps  
Mbps  
Mbps  
Mbps  
ps  
fHSDRDPA (DPA data rate) J = 4 to 10 (LVDS, HyperTransport technology)  
TCCS  
All differential standards  
All differential standards  
SW  
330  
ps  
Output jitter  
Output tRISE  
Output tFALL  
tDUTY  
190  
160  
180  
55  
ps  
All differential I/O standards  
All differential I/O standards  
ps  
ps  
45  
50  
%
DPA run length  
DPA jitter tolerance  
DPA lock time  
6,400  
UI  
Data channel peak-to-peak jitter  
0.44  
UI  
Standard  
Training  
Pattern  
Transition  
Density  
Numberof  
repetitions  
SPI-4  
0000000000  
1111111111  
10%  
256  
Parallel Rapid I/O  
Miscellaneous  
00001111  
10010000  
10101010  
01010101  
25%  
50%  
256  
256  
256  
256  
100%  
Notes to Table 5–89:  
(1) When J = 4 to 10, the SERDES block is used.  
(2) When J = 1 or 2, the SERDES block is bypassed.  
(3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 input clock  
frequency × W 1,040.  
(4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and  
the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not  
have a minimum toggle rate.  
5–88  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–90 shows the high-speed I/O timing specifications for -4 speed  
grade Stratix II devices.  
Table 5–90. High-Speed I/O Specifications for -4 Speed Grade  
Symbol Conditions  
Notes (1), (2)  
-4 Speed Grade  
Min Typ Max  
Unit  
fHSCLK (clock frequency) W = 2 to 32 (LVDS, HyperTransport technology)  
16  
520  
MHz  
(3)  
fHSCLK = fHSDR / W  
W = 1 (SERDES bypass, LVDS only)  
W = 1 (SERDES used, LVDS only)  
J = 4 to 10 (LVDS, HyperTransport technology)  
J = 2 (LVDS, HyperTransport technology)  
J = 1 (LVDS only)  
16  
150  
150  
(4)  
500  
717  
1,040  
760  
500  
1,040  
200  
-
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
ps  
fHSDR (data rate)  
(4)  
fHSDRDPA (DPA data rate) J = 4 to 10 (LVDS, HyperTransport technology)  
150  
-
TCCS  
All differential standards  
All differential standards  
SW  
330  
ps  
Output jitter  
Output tRISE  
Output tFALL  
tDUTY  
190  
160  
180  
55  
ps  
All differential I/O standards  
All differential I/O standards  
ps  
ps  
45  
50  
%
DPA run length  
DPA jitter tolerance  
DPA lock time  
6,400  
UI  
Data channel peak-to-peak jitter  
0.44  
UI  
Standard  
Training  
Pattern  
Transition  
Density  
Numberof  
repetitions  
SPI-4  
0000000000  
1111111111  
10%  
256  
Parallel Rapid I/O  
00001111  
10010000  
10101010  
01010101  
25%  
50%  
256  
256  
256  
256  
Miscellaneous  
100%  
Notes to Table 5–90:  
(1) When J = 4 to 10, the SERDES block is used.  
(2) When J = 1 or 2, the SERDES block is bypassed.  
(3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 input clock  
frequency × W 1,040.  
(4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and  
the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not  
have a minimum toggle rate.  
Altera Corporation  
April 2011  
5–89  
Stratix II Device Handbook, Volume 1  
High-Speed I/O Specifications  
Table 5–91 shows the high-speed I/O timing specifications for -5 speed  
grade Stratix II devices.  
Table 5–91. High-Speed I/O Specifications for -5 Speed Grade  
Notes (1), (2)  
-5 Speed Grade  
Min Typ Max  
Symbol  
Conditions  
Unit  
fHSCLK (clock frequency) W = 2 to 32 (LVDS, HyperTransport technology)  
16  
420  
MHz  
(3)  
fHSCLK = fHSDR / W  
W = 1 (SERDES bypass, LVDS only)  
W = 1 (SERDES used, LVDS only)  
J = 4 to 10 (LVDS, HyperTransport technology)  
J = 2 (LVDS, HyperTransport technology)  
J = 1 (LVDS only)  
16  
150  
150  
(4)  
500  
640  
840  
700  
500  
840  
200  
-
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
ps  
fHSDR (data rate)  
(4)  
fHSDRDPA (DPA data rate) J = 4 to 10 (LVDS, HyperTransport technology)  
150  
-
TCCS  
All differential I/O standards  
All differential I/O standards  
SW  
440  
ps  
Output jitter  
Output tRISE  
Output tFALL  
tDUTY  
190  
290  
290  
55  
ps  
All differential I/O standards  
All differential I/O standards  
ps  
ps  
45  
50  
%
DPA run length  
DPA jitter tolerance  
DPA lock time  
6,400  
UI  
Data channel peak-to-peak jitter  
0.44  
UI  
Standard  
Training  
Pattern  
Transition  
Density  
Numberof  
repetitions  
SPI-4  
0000000000  
1111111111  
10%  
256  
Parallel Rapid I/O  
Miscellaneous  
00001111  
10010000  
10101010  
01010101  
25%  
50%  
256  
256  
256  
256  
100%  
Notes to Table 5–91:  
(1) When J = 4 to 10, the SERDES block is used.  
(2) When J = 1 or 2, the SERDES block is bypassed.  
(3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 input clock  
frequency × W 1,040.  
(4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and  
the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not  
have a minimum toggle rate.  
5–90  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Tables 5–92 and 5–93 describe the Stratix II PLL specifications when  
operating in both the commercial junction temperature range (0 to 85 °C)  
and the industrial junction temperature range (–40 to 100 °C).  
PLL Timing  
Specifications  
Table 5–92. Enhanced PLL Specifications (Part 1 of 2)  
Name  
Description  
Min  
2
Typ  
Max  
500  
420  
Unit  
MHz  
MHz  
fIN  
Input clock frequency  
fINPFD  
Input frequency to the  
PFD  
2
fINDUTY  
Input clock duty cycle  
40  
40  
60  
60  
%
%
fEINDUTY  
External feedback  
input clock duty cycle  
tINJITTER  
Input or external  
feedback clock input  
jitter tolerance in  
terms of period jitter.  
Bandwidth ≤  
0.5  
1.0  
ns (p-p)  
ns (p-p)  
0.85 MHz  
Input or external  
feedback clock input  
jitter tolerance in  
terms of period jitter.  
Bandwidth >  
0.85 MHz  
tOUTJITTER  
tFCOMP  
fOUT  
Dedicated clock  
output period jitter  
ps or mUI  
(p-p)  
250 ps for 100 MHz outclk  
25 mUI for < 100 MHz outclk  
External feedback  
compensation time  
10  
ns  
Output frequency for  
internal global or  
regional clock  
1.5  
(2)  
550.0  
MHz  
tOUTDUTY  
Duty cycle for external  
clock output (when set  
to 50%).  
45  
50  
55  
%
fSCANCLK  
Scanclk frequency  
100  
MHz  
ns  
tCONFIGPLL  
Time required to  
reconfigure scan  
chains for enhanced  
PLLs  
174/fSCANCLK  
fOUT_EXT  
PLL external clock  
output frequency  
1.5  
(2)  
550.0 (1)  
MHz  
Altera Corporation  
April 2011  
5–91  
Stratix II Device Handbook, Volume 1  
PLL Timing Specifications  
Table 5–92. Enhanced PLL Specifications (Part 2 of 2)  
Name  
Description  
Min  
Typ  
Max  
Unit  
tLOCK  
Time required for the  
PLL to lock from the  
time it is enabled or  
the end of device  
configuration  
0.03  
1
ms  
tDLOCK  
Time required for the  
PLL to lock  
1
ms  
dynamically after  
automatic clock  
switchover between  
two identical clock  
frequencies  
fSWITCHOVER  
Frequency range  
where the clock  
switchover performs  
properly  
4
500  
MHz  
fCLBW  
fVCO  
PLL closed-loop  
bandwidth  
0.13  
300  
1.20  
16.90  
1,040  
MHz  
MHz  
PLL VCO operating  
range for –3 and –4  
speed grade devices  
PLL VCO operating  
range for –5 speed  
grade devices  
300  
840  
MHz  
fSS  
Spread-spectrum  
modulation frequency  
30  
150  
0.6  
kHz  
%
% spread  
Percent down spread  
for a given clock  
frequency  
0.4  
0.5  
tPLL_PSERR  
tARESET  
Accuracy of PLL  
phase shift  
15  
ps  
ns  
ns  
Minimum pulse width  
on aresetsignal.  
10  
tARESET_RECONFIG Minimum pulse width  
on the aresetsignal  
when using PLL  
500  
reconfiguration. Reset  
the PLL after  
scandonegoes  
high.  
Notes to Table 5–92:  
(1) Limited by I/O fMA X. See Table 5–78 on page 5–69 for the maximum. Cannot exceed fOUT specification.  
(2) If the counter cascading feature of the PLL is utilized, there is no minimum output clock frequency.  
5–92  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–93. Fast PLL Specifications  
Name Description  
Min  
Typ  
Max  
Unit  
fIN  
Input clock frequency (for -3 and -4 speed  
grade devices)  
16.08  
717  
MHz  
Input clock frequency (for -5 speed grade  
devices)  
16.08  
640  
MHz  
fINPFD  
Input frequency to the PFD  
Input clock duty cycle  
16.08  
40  
500  
60  
MHz  
%
fINDUTY  
tINJITTER  
Input clock jitter tolerance in terms of period  
jitter. Bandwidth 2 MHz  
0.5  
1.0  
ns (p-p)  
Input clock jitter tolerance in terms of period  
jitter. Bandwidth > 2 MHz  
ns (p-p)  
MHz  
fVCO  
Upper VCO frequency range for –3 and –4  
speed grades  
300  
300  
150  
150  
1,040  
840  
Upper VCO frequency range for –5 speed  
grades  
MHz  
Lower VCO frequency range for –3 and –4  
speed grades  
520  
MHz  
Lower VCO frequency range for –5 speed  
grades  
420  
MHz  
fOUT  
4.6875  
150  
550  
1,040  
(1)  
MHz  
MHz  
MHz  
PLL output frequency to GCLKor RCLK  
PLL output frequency to LVDS or DPA clock  
fOUT_IO  
PLL clock output frequency to regular I/O  
pin  
4.6875  
fSCANCLK  
Scanclk frequency  
100  
MHz  
ns  
tCONFIGPLL  
Time required to reconfigure scan chains  
for fast PLLs  
75/fSCANCLK  
fCLBW  
tLOCK  
PLL closed-loop bandwidth  
1.16  
5.00  
0.03  
28.00  
1.00  
MHz  
ms  
Time required for the PLL to lock from the  
time it is enabled or the end of the device  
configuration  
tPLL_PSERR  
Accuracy of PLL phase shift  
15  
ps  
ns  
ns  
tARESET  
10  
Minimum pulse width on aresetsignal.  
tARESET_RECONFIG  
500  
Minimum pulse width on the aresetsignal  
when using PLL reconfiguration. Reset the  
PLL after scandonegoes high.  
Note to Table 5–93:  
(1) Limited by I/O fMA X. See Table 5–77 on page 5–67 for the maximum.  
Altera Corporation  
April 2011  
5–93  
Stratix II Device Handbook, Volume 1  
External Memory Interface Specifications  
Tables 5–94 through 5–101 contain Stratix II device specifications for the  
dedicated circuitry used for interfacing with external memory devices.  
External  
Memory  
Interface  
Table 5–94. DLL Frequency Range Specifications  
Specifications  
Resolution  
(Degrees)  
Frequency Mode  
Frequency Range  
0
1
2
3
100 to 175  
150 to 230  
30  
22.5  
30  
200 to 310  
240 to 400 (–3 speed grade)  
240 to 350 (–4 and –5 speed grades)  
36  
36  
Table 5–95 lists the maximum delay in the fast timing model for the  
Stratix II DQS delay buffer. Multiply the number of delay buffers that you  
are using in the DQS logic block to get the maximum delay achievable in  
your system. For example, if you implement a 90° phase shift at 200 MHz,  
you use three delay buffers in mode 2. The maximum achievable delay  
from the DQS block is then 3 × .416 ps = 1.248 ns.  
Table 5–95. DQS Delay Buffer Maximum Delay in Fast Timing Model  
Maximum Delay Per Delay Buffer  
Frequency Mode  
Unit  
(Fast Timing Model)  
0
0.833  
0.416  
ns  
ns  
1, 2, 3  
Table 5–96. DQS Period Jitter Specifications for DLL-Delayed Clock  
(tDQS_JITTER) Note (1)  
Number of DQS Delay Buffer  
Commercial  
Industrial  
Unit  
Stages (2)  
1
2
3
4
80  
110  
130  
180  
210  
ps  
ps  
ps  
ps  
110  
130  
160  
Notes to Table 5–96:  
(1) Peak-to-peak period jitter on the phase shifted DQS clock.  
(2) Delay stages used for requested DQS phase shift are reported in your project’s  
Compilation Report in the Quartus II software.  
5–94  
Altera Corporation  
Stratix II Device Handbook, Volume 1  
April 2011  
DC & Switching Characteristics  
Table 5–97. DQS Phase Jitter Specifications for DLL-Delayed Clock  
(tDQS PHASE_JITTER) Note (1)  
Number of DQS Delay  
Buffer Stages (2)  
DQS Phase Jitter  
Unit  
1
2
3
4
30  
60  
ps  
ps  
ps  
ps  
90  
120  
Notes to Table 5–97:  
(1) Peak-to-peak phase jitter on the phase shifted DDS clock (digital jitter is caused  
by DLL tracking).  
(2) Delay stages used for requested DQS phase shift are reported in your project’s  
Compilation Report in the Quartus II software.  
Table 5–98. DQS Phase-Shift Error Specifications for DLL-Delayed Clock (tDQS_PSERR)  
(1)  
Number of DQS Delay Buffer Stages (2) –3 Speed Grade –4 Speed Grade –5 Speed Grade  
Unit  
1
2
3
4
25  
50  
30  
60  
35  
70  
ps  
ps  
ps  
ps  
75  
90  
105  
140  
100  
120  
Notes to Table 5–98:  
(1) This error specification is the absolute maximum and minimum error. For example, skew on three delay buffer  
stages in a C3 speed grade is 75 ps or 37.5 ps.  
(2) Delay stages used for requested DQS phase shift are reported in your project’s Compilation Report in the  
Quartus II software.  
Table 5–99. DQS Bus Clock Skew Adder Specifications  
(tDQS_CLOCK_SKEW_ADDER)  
Mode  
DQS Clock Skew Adder  
Unit  
×4 DQ per DQS  
×9 DQ per DQS  
×18 DQ per DQS  
×36 DQ per DQS  
40  
70  
75  
95  
ps  
ps  
ps  
ps  
Note to Table 5–99:  
(1) This skew specification is the absolute maximum and minimum skew. For  
example, skew on a ×4 DQ group is 40 ps or 20 ps.  
Altera Corporation  
April 2011  
5–95  
Stratix II Device Handbook, Volume 1  
JTAG Timing Specifications  
Table 5–100. DQS Phase Offset Delay Per Stage  
Notes (1), (2), (3)  
Max Unit  
Speed Grade  
Min  
-3  
-4  
-5  
9
9
9
14  
14  
15  
ps  
ps  
ps  
Notes to Table 5–100:  
(1) The delay settings are linear.  
(2) The valid settings for phase offset are -64 to +63 for frequency mode 0 and -32 to  
+31 for frequency modes 1, 2, and 3.  
(3) The typical value equals the average of the minimum and maximum values.  
Table 5–101. DDIO Outputs Half-Period Jitter  
Name Description  
Notes (1), (2)  
Max  
Unit  
tOUTHALFJITTER Half-period jitter (PLL driving DDIO outputs) 200  
ps  
Notes to Table 5–101:  
(1) The worst-case half period is equal to the ideal half period subtracted by the DCD  
and half-period jitter values.  
(2) The half-period jitter was characterized using a PLL driving DDIO outputs.  
Figure 5–10 shows the timing requirements for the JTAG signals.  
JTAG Timing  
Specifications  
Figure 5–10. Stratix II JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
t JCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPXZ  
tJPZX  
tJPCO  
5–96  
Stratix II Device Handbook, Volume 1  
Altera Corporation  
April 2011  
DC & Switching Characteristics  
Table 5–102 shows the JTAG timing parameters and values for Stratix II  
devices.  
Table 5–102. Stratix II JTAG Timing Parameters & Values  
Symbol  
tJCP  
Parameter  
TCKclock period  
Min  
30  
13  
13  
3
Max Unit  
ns  
ns  
ns  
ns  
ns  
tJCH  
TCKclock high time  
tJCL  
TCKclock low time  
tJPSU  
tJPH  
JTAG port setup time  
JTAG port hold time  
5
tJPCO  
tJPZX  
tJPXZ  
JTAG port clock to output  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
11 (1)  
14 (1)  
14 (1)  
ns  
ns  
ns  
Note to Table 5–102:  
(1) A 1 ns adder is required for each VCC IO voltage step down from 3.3 V. For  
example, tJPCO = 12 ns if VC CIO of the TDO I/O bank = 2.5 V, or 13 ns if it equals  
1.8 V.  
Table 5–103 shows the revision history for this chapter.  
Document  
Revision History  
Table 5–103. Document Revision History (Part 1 of 3)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
April 2011, v4.5 Updated Table 5–3.  
Added operating junction temperature  
for military use.  
July 2009, v4.4  
May 2007, v4.3  
Updated Table 5–92.  
Updated the spread spectrum  
modulation frequency (fSS) from  
(100 kHz–500 kHz) to  
(30 kHz–150 kHz).  
Updated RCONF in Table 5–4.  
Updated fIN (min) in Table 5–92.  
Updated fIN and fINPFD in Table 5–93.  
Moved the Document Revision History section to the  
end of the chapter.  
Altera Corporation  
April 2011  
5–97  
Stratix II Device Handbook, Volume 1  
Document Revision History  
Table 5–103. Document Revision History (Part 2 of 3)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
August, 2006,  
v4.2  
Updated Table 5–73, Table 5–75, Table 5–77,  
Table 5–78, Table 5–79, Table 5–81, Table 5–85, and  
Table 5–87.  
April 2006, v4.1  
Updated Table 5–3.  
Updated Table 5–11.  
Updated Figures 5–8 and 5–9.  
Changed 0.2 MHz to 2 MHz in  
Table 5–93.  
Added new spec for half period  
jitter (Table 5–101).  
Added support for PLL clock  
switchover for industrial  
temperature range.  
Changed fINPFD (min) spec from  
4 MHz to 2 MHz in Table 5–92.  
Fixed typo in tOUTJITTER  
specification in Table 5–92.  
Updated VDIF AC & DC max  
specifications in Table 5–28.  
Updated minimum values for tJCH  
tJCL, and tJPSU in Table 5–102.  
Update maximum values for tJPCO  
tJPZX, and tJPXZ in Table 5–102.  
Added parallel on-chip termination information to  
“On-Chip Termination Specifications” section.  
Updated Tables 5–28, 5–30,5–31, and 5–34.  
Updated Table 5–78, Tables 5–81 through 5–90,  
and Tables 5–92, 5–93, and 5–98.  
Updated “PLL Timing Specifications” section.  
Updated “External Memory Interface  
Specifications” section.  
Added Tables 5–95 and 5–101.  
Updated “JTAG Timing Specifications” section,  
including Figure 5–10 and Table 5–102.  
,
,
December 2005,  
v4.0  
Updated “External Memory Interface  
Specifications” section.  
Updated timing numbers throughout chapter.  
July 2005, v3.1  
Updated HyperTransport technology information in  
Table 5–13.  
Updated “Timing Model” section.  
Updated “PLL Timing Specifications” section.  
Updated “External Memory Interface  
Specifications” section.  
May 2005, v3.0  
Updated tables throughout chapter.  
Updated “Power Consumption” section.  
Added various tables.  
Replaced “Maximum Input & Output Clock Rate”  
section with “Maximum Input & Output Clock Toggle  
Rate” section.  
Added “Duty Cycle Distortion” section.  
Added “External Memory Interface Specifications”  
section.  
March 2005,  
v2.2  
Updated tables in “Internal Timing Parameters”  
section.  
January 2005,  
v2.1  
Updated input rise and fall time.  
5–98  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
DC & Switching Characteristics  
Table 5–103. Document Revision History (Part 3 of 3)  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
January 2005,  
v2.0  
Updated the “Power Consumption” section.  
Added the “High-Speed I/O Specifications” and  
“On-Chip Termination Specifications” sections.  
Removed the ESD Protection Specifications  
section.  
Updated Tables 5–3 through 5–13, 5–16 through  
5–18, 5–21, 5–35, 5–39, and 5–40.  
Updated tables in “Timing Model” section.  
Added Tables 5–30 and 5–31.  
October 2004,  
v1.2  
Updated Table 5–3.  
Updated introduction text in the “PLL Timing  
Specifications” section.  
July 2004, v1.1  
Re-organized chapter.  
Added typical values and COUTFB to Table 5–32.  
Added undershoot specification to Note (4) for  
Tables 5–1 through 5–9.  
Added Note (1) to Tables 5–5 and 5–6.  
Added VID and VICM to Table 5–10.  
Added “I/O Timing Measurement Methodology”  
section.  
Added Table 5–72.  
Updated Tables 5–1 through 5–2 and Tables 5–24  
through 5–29.  
February 2004, Added document to the Stratix II Device Handbook.  
v1.0  
Altera Corporation  
April 2011  
5–99  
Stratix II Device Handbook, Volume 1  
Document Revision History  
5–100  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  
6. Reference & Ordering  
Information  
SII51006-2.2  
Stratix® II devices are supported by the Altera® Quartus® II design  
software, which provides a comprehensive environment for system-on-a-  
programmable-chip (SOPC) design. The Quartus II software includes  
HDL and schematic design entry, compilation and logic synthesis, full  
simulation and advanced timing analysis, SignalTap® II logic analyzer,  
and device configuration. See the Quartus II Handbook for more  
information on the Quartus II software features.  
Software  
The Quartus II software supports the Windows XP/2000/NT/98, Sun  
Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also  
supports seamless integration with industry-leading EDA tools through  
the NativeLink® interface.  
Device pin-outs for Stratix II devices are available on the Altera web site  
at (www.altera.com).  
Device Pin-Outs  
Figure 6–1 describes the ordering codes for Stratix II devices. For more  
information on a specific package, refer to the Package Information for  
Stratix II & Stratix II GX Devices chapter in volume 2 of the Stratix II Device  
Handbook or the Stratix II GX Device Handbook.  
Ordering  
Information  
Altera Corporation  
April 2011  
6–1  
Document Revision History  
Figure 6–1. Stratix II Device Packaging Ordering Information  
EP2S  
90  
F
1508  
C
7
ES  
Family Signature  
Optional Suffix  
EP2S: Stratix II  
Indicates specific device options or  
shipment method.  
ES: Engineering sample  
Device Type  
15  
30  
Speed Grade  
3, 4, or 5, with 3 being the fastest  
60  
90  
130  
180  
Operating Temperature  
C: Commercial temperature (t = 0  
°
C to 85  
°
C)  
C)  
J
I: Industrial temperature (t = -40  
°
C to 100°  
J
Military temperature (t = -55  
°
C to 125  
°
C) (1)  
J
Package Type  
Pin Count  
Number of pins for a particular FineLine BGA package  
F: FineLine BGA  
H: Hybrid FineLine BGA  
Note to Figure 6–1:  
(1) Applicable to I4 devices. For more information, refer to the Stratix II Military Temperature Range Support technical  
brief.  
Table 6–1 shows the revision history for this chapter.  
Document  
Revision History  
Table 6–1. Document Revision History  
Date and  
Document  
Version  
Changes Made  
Summary of Changes  
April 2011,  
v2.2  
Updated Figure 6–1.  
Added operating junction temperature  
for military use.  
May 2007,  
v2.1  
Moved the Document Revision History section to the end  
of the chapter.  
January  
2005, v2.0  
Contact information was removed.  
October  
2004, v1.1  
Updated Figure 6–1.  
February  
Added document to the Stratix II Device Handbook.  
2004, v1.0  
6–2  
Altera Corporation  
April 2011  
Stratix II Device Handbook, Volume 1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY