EP3CLS200F780C8N [INTEL]

Field Programmable Gate Array, 198464 CLBs, 450MHz, 198464-Cell, CMOS, PBGA780, LEAD FREE, FBGA-780;
EP3CLS200F780C8N
型号: EP3CLS200F780C8N
厂家: INTEL    INTEL
描述:

Field Programmable Gate Array, 198464 CLBs, 450MHz, 198464-Cell, CMOS, PBGA780, LEAD FREE, FBGA-780

时钟 栅 可编程逻辑
文件: 总32页 (文件大小:760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2. Cyclone III LS Device Datasheet  
July 2012  
CIII52002-1.4  
CIII52002-1.4  
This chapter describes the electric characteristics, switching characteristics, and I/O  
timing for Cyclone® III LS devices. A glossary is also included for your reference.  
Electrical Characteristics  
The following sections provide information about the absolute maximum ratings,  
recommended operating conditions, DC characteristics, and other specifications for  
Cyclone III LS devices.  
Operating Conditions  
When Cyclone III LS devices are implemented in a system, they are rated according to  
a set of defined parameters. To maintain the highest possible performance and  
reliability of Cyclone III LS devices, you must consider the operating requirements in  
this chapter. Cyclone III LS devices are offered in commercial and industrial grades.  
Commercial devices are offered in –7 (fastest) and –8 speed grades. Industrial devices  
are offered only in –7 speed grade.  
1
1
In this chapter, a prefix associated with the operating temperature range is attached to  
the speed grades—commercial with a “C” prefix; industrial with an “I” prefix. For  
example, commercial devices are described as C7 and C8 per respective speed grades.  
Industrial devices are described as I7.  
Absolute Maximum Ratings  
Absolute maximum ratings define the maximum operating conditions for  
Cyclone III LS devices. The values are based on experiments conducted with the  
device and theoretical modeling of breakdown and damage mechanisms. The  
functional operation of the device is not implied at these conditions. Table 2–1 lists the  
absolute maximum ratings for Cyclone III LS devices.  
Conditions beyond those listed in Table 2–1 may cause permanent damage to the  
device. Additionally, device operation at the absolute maximum ratings for extended  
periods of time may have adverse effects on the device. All parameters representing  
voltages are measured with respect to ground.  
Table 2–1. Cyclone III LS Devices Absolute Maximum Ratings (1) (Part 1 of 2)  
Symbol  
VCCINT  
Parameter  
Supply voltage for internal logic  
Supply voltage for output buffers  
Min  
–0.5  
–0.5  
Max  
1.8  
Unit  
V
VCCIO  
3.9  
V
© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos  
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as  
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its  
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and  
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service  
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying  
on any published information and before placing orders for products or services.  
ISO  
9001:2008  
Registered  
Cyclone III Device Handbook  
Volume 2  
July 2012  
Subscribe  
2–2  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
Table 2–1. Cyclone III LS Devices Absolute Maximum Ratings (1) (Part 2 of 2)  
Symbol  
VCCA  
VCCD_PLL  
Parameter  
Min  
–0.5  
–0.5  
Max  
3.75  
1.8  
Unit  
V
Supply (analog) voltage for PLL regulator  
Supply (digital) voltage for PLL  
V
Battery back-up power supply for design  
security volatile key register  
(2)  
VCCBAT  
–0.5  
3.75  
V
VI  
DC input voltage  
–0.5  
–25  
3.95  
40  
V
IOUT  
DC output current, per pin  
mA  
Electrostatic discharge voltage using the human  
body model  
VESDHBM  
VESDCDM  
2000  
500  
V
V
Electrostatic discharge voltage using the  
charged device model  
TSTG  
TJ  
Storage temperature  
–65  
–40  
150  
125  
°C  
°C  
Operating junction temperature  
Notes to Table 2–1:  
(1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the  
power supply.  
(2) VCCBAT is tied to Power-on reset (POR). If the VCCBAT is below 1.2 V, the device will not power up.  
Maximum Allowed Overshoot or Undershoot Voltage  
During transitions, input signals may overshoot to the voltage listed in Table 2–2 and  
undershoot to –2.0 V for a magnitude of currents less than 100 mA and for periods  
shorter than 20 ns.  
Table 2–2 lists the maximum allowed input overshoot voltage and the duration of the  
overshoot voltage as a percentage over the lifetime of the device. The maximum  
allowed overshoot duration is specified as percentage of high-time over the lifetime of  
the device.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–3  
Electrical Characteristics  
1
A DC signal is equivalent to 100% of the duty cycle. For example, a signal that  
overshoots to 4.2 V can only be at 4.2 V for 10.74% over the lifetime of the device; for a  
device lifetime of 10 years, this is equivalent to 10.74% of ten years, which is 12.89  
months.  
Table 2–2. Cyclone III LS Devices Maximum Allowed Overshoot During Transitions over a 10-Year  
Time Frame  
Symbol  
Parameter  
Condition  
VI = 3.95 V  
VI = 4.0 V  
Overshoot Duration as % of High Time  
Unit  
%
%
%
%
%
%
%
%
%
%
%
%
%
%
100  
95.67  
55.24  
31.97  
18.52  
10.74  
6.23  
VI = 4.05 V  
VI = 4.10 V  
VI = 4.15 V  
VI = 4.20 V  
VI = 4.25 V  
VI = 4.30 V  
VI = 4.35 V  
VI = 4.40 V  
VI = 4.45 V  
VI = 4.50 V  
VI = 4.60 V  
VI = 4.70 V  
AC Input  
Voltage  
Vi  
3.62  
2.1  
1.22  
0.71  
0.41  
0.14  
0.047  
Figure 2–1 shows the methodology to determine the overshoot duration. In this  
example, overshoot voltage is shown in red and is present on the input pin of the  
Cyclone III LS device at over 4.1 V but below 4.2 V. From Table 2–1, for an overshoot  
of 4.1 V, the percentage of high time for the overshoot can be as high as 31.97% over a  
10-year period. Percentage of high time is calculated as ([delta T]/T) × 100. This  
10-year period assumes the device is always turned on with 100% I/O toggle rate and  
50% duty cycle signal. For lower I/O toggle rates and situations in which the device is  
in an idle state, lifetimes are increased.  
Figure 2–1. Cyclone III LS Devices Overshoot Duration  
4.2 V  
4.1 V  
3.3 V  
ΔT  
T
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–4  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
Recommended Operating Conditions  
This section lists the functional operation limits for AC and DC parameters for  
Cyclone III LS devices.  
The steady-state voltage and current values expected from Cyclone III LS devices are  
provided in Table 2–3. All supplies must be strictly monotonic without plateaus.  
Table 2–3. Cyclone III LS Devices Recommended Operating Conditions (1), (2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(3)  
VCCINT  
Supply voltage for internal logic  
1.15  
1.2  
1.25  
V
Supply voltage for output buffers, 3.3-V  
operation  
3.135  
2.85  
3.3  
3.0  
2.5  
1.8  
1.5  
1.2  
3.465  
3.15  
V
V
V
V
V
V
Supply voltage for output buffers, 3.0-V  
operation  
Supply voltage for output buffers, 2.5-V  
operation  
2.375  
1.71  
2.625  
1.89  
(3), (7)  
VCCIO  
Supply voltage for output buffers, 1.8-V  
operation  
Supply voltage for output buffers, 1.5-V  
operation  
1.425  
1.14  
1.575  
1.26  
Supply voltage for output buffers, 1.2-V  
operation  
(3)  
VCCA  
Supply (analog) voltage for PLL regulator  
Supply (digital) voltage for PLL  
2.375  
1.15  
2.5  
1.2  
2.625  
1.25  
V
V
(3)  
VCCD_PLL  
Battery back-up power supply for design  
security volatile key register  
(4)  
VCCBAT  
1.2  
3.0  
3.3  
V
VI  
Input voltage  
–0.5  
0
3.6  
VCCIO  
85  
V
VO  
Output voltage  
V
For commercial use  
0
°C  
°C  
TJ  
Operating junction temperature  
Power supply ramptime  
For industrial use  
–40  
50 µs  
50 µs  
100  
(5)  
Standard POR  
50 ms  
3 ms  
tRAMP  
IDiode  
(6)  
Fast POR  
Magnitude of DC current across  
PCI-clamp diode when enabled  
10  
mA  
Notes to Table 2–3:  
(1) VCCIO for all I/O banks must be powered up during device operation. All VCCA pins must be powered to 2.5 V (even when you do not use phase  
locked-loops [PLLs}), and must be powered up and powered down at the same time.  
(2) VCCD_PLL must always be connected to VCCINT through a decoupling capacitor and ferrite bead.  
(3) VCC must rise monotonically.  
(4) VCCBAT is tied to POR. If the VCCBAT is below 1.2 V, the device will not power up.  
(5) POR time for Standard POR ranges from 50 to 200 ms. Each individual power supply must reach the recommended operating range within  
50 ms.  
(6) POR time for Fast POR ranges from 3 to 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.  
(7) All input buffers are powered by the VCCIO supply.  
DC Characteristics  
This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT)  
tolerance, and bus hold specifications for Cyclone III LS devices.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–5  
Electrical Characteristics  
Supply Current  
Supply current is the current the device draws after the device is configured with no  
inputs or outputs toggling and no activity in the device. Use the Excel-based Early  
Power Estimator (EPE) to get the supply current estimates for your design because  
these currents vary largely with the resources you use. Table 2–4 lists the I/O pin  
leakage current for Cyclone III LS devices.  
f
For more information about power estimation tools, refer to the PowerPlay Early Power  
Estimator User Guide and the PowerPlay Power Analysis chapter in the Quartus II  
Handbook.  
Table 2–4. Cyclone III LS Devices I/O Pin Leakage Current (1), (2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
II  
Input Pin Leakage Current VI = VCCIOMAX to 0 V  
Tri-stated I/O Pin Leakage VO = VCCIOMAX to 0  
–10  
10  
A  
IOZ  
–10  
10  
A  
Current  
V
Notes to Table 2–4:  
(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all  
CCIO settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).  
V
(2) The 10 A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be  
observed when the diode is on.  
Bus Hold  
Bus hold retains the last valid logic state after the source driving it either enters the  
high impedance state or is removed. Each I/O pin has an option to enable bus hold in  
user mode. Bus hold is always disabled in configuration mode.  
Table 2–5 lists the bus hold specifications for Cyclone III LS devices. Also listed are the  
input pin capacitances and OCT tolerance specifications.  
Table 2–5. Cyclone III LS Devices Bus Hold Parameters (1)  
V
CCIO (V)  
Parameter  
Condition  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
Unit  
Min Max Min  
Max Min Max Min Max Min Max Min Max  
Bus-hold  
low,  
sustaining  
current  
VIN > VIL  
(maximum)  
8
12  
–12  
30  
–30  
50  
–50  
70  
–70  
70  
–70  
A  
A  
Bus-hold  
high,  
sustaining  
current  
VIN < VIL  
(minimum)  
–8  
Bus-hold  
low,  
overdrive  
current  
0 V < VIN  
VCCIO  
<
125  
175  
200  
300  
500  
500 A  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–6  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
Table 2–5. Cyclone III LS Devices Bus Hold Parameters (1)  
V
CCIO (V)  
Parameter  
Condition  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
Unit  
Min Max Min  
Max Min Max Min Max Min Max Min Max  
Bus-hold  
high,  
overdrive  
current  
0 V < VIN  
VCCIO  
<
–125  
–175  
–200  
–300  
–500  
–500 A  
Bus-hold  
trip point  
0.3  
0.9 0.375 1.125 0.68 1.07 0.7  
1.7 0.8 2.0 0.8 2.0  
V
Note to Table 2–5:  
(1) Bus-hold trip points are based on calculated input voltages from the JEDEC standard.  
OCT Specifications  
Table 2–6 lists the variation of OCT without calibration across process, temperature,  
and voltage (PVT).  
Table 2–6. Cyclone III LS Devices Series OCT without Calibration Specifications  
Resistance Tolerance  
Description  
V
CCIO (V)  
Unit  
Commercial Max  
Industrial Max  
3.0  
2.5  
1.8  
1.5  
1.2  
30  
30  
40  
50  
50  
40  
40  
50  
50  
50  
%
%
%
%
%
Series OCT without  
calibration  
OCT calibration is automatically performed at device power-up for OCT enabled  
I/Os.  
Table 2–7 lists the OCT calibration accuracy at device power-up.  
Table 2–7. Cyclone III LS Devices Series OCT with Calibration at Device Power-Up Specifications  
Calibration Accuracy  
Description  
V
CCIO (V)  
Unit  
Commercial Max  
Industrial Max  
3.0  
2.5  
1.8  
1.5  
1.2  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
%
%
%
%
%
Series Termination with  
power-up calibration  
OCT resistance may vary with the variation of temperature and voltage after  
power-up calibration. Use Table 2–8 and Equation 2–1 to determine the final OCT  
resistance considering the variations after power-up calibration.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–7  
Electrical Characteristics  
Table 2–8 lists the percentage change of the OCT resistance with voltage and  
temperature.  
Table 2–8. Cyclone III LS Devices OCT Variation After Calibration at Device Power-Up (1)  
Nominal Voltage  
dR/dT (%/°C)  
0.262  
dR/dV (%/mV)  
–0.026  
3.0  
2.5  
1.8  
1.5  
1.2  
0.234  
–0.039  
0.219  
–0.086  
0.199  
–0.136  
0.161  
–0.288  
Note to Table 2–8:  
(1) Use this table to calculate the final OCT resistance with the variation of temperature and voltage.  
(1), (2), (3), (4), (5), (6)  
Equation 2–1.  
(7)  
RV = (V2 – V1) × 1000 × dR/dV –––––  
(8)  
RT = (T2 – T1) × dR/dT –––––  
(9)  
For Rx < 0; MFx = 1/ (|Rx|/100 + 1) –––––  
(10)  
For Rx > 0; MFx = Rx/100 + 1 –––––  
(11)  
MF = MFV × MFT –––––  
(12)  
Rfinal = Rinitial × MF –––––  
Notes to Equation 2–1:  
(1) T2 is the final temperature.  
(2) T1 is the initial temperature.  
(3) MF is multiplication factor.  
(4) Rfinal is final resistance.  
(5) Rinitial is initial resistance.  
(6) Subscript × refers to both V and T.  
(7) RV is variation of resistance with voltage.  
(8) RT is variation of resistance with temperature.  
(9) dR/dT is the percentage change of resistance with temperature.  
(10) dR/dV is the percentage change of resistance with voltage.  
(11) V2 is final voltage.  
(12) V1 is the initial voltage.  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–8  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
Example 2–1 shows you how to calculate the change of 50 I/O impedance from  
25°C at 3.0 V to 85°C at 3.15 V.  
Example 2–1.  
RV = (3.15 – 3) × 1000 × –0.026 = –3.83  
RT = (85 – 25) × 0.262 = 15.72  
Because RV is negative,  
MFV = 1 / (3.83/100 + 1) = 0.963  
Because RT is positive,  
MFT = 15.72/100 + 1 = 1.157  
MF = 0.963 × 1.157 = 1.114  
R
final = 50 × 1.114 = 55.71   
Pin Capacitance  
Table 2–9 lists the pin capacitance for Cyclone III LS devices.  
Table 2–9. Cyclone III LS Devices Pin Capacitance  
Typical – Typical –  
Symbol  
Parameter  
Unit  
QFP  
FBGA  
CIOTB  
CIOLR  
Input capacitance on top/bottom I/O pins  
Input capacitance on left/right I/O pins  
7
6
5
pF  
pF  
7
Input capacitance on left/right I/O pins with true LVDS  
output  
CLVDSLR  
8
21  
23  
7
7
21  
23  
6
pF  
pF  
pF  
pF  
pF  
CVREFLR  
Input capacitance on left/right dual-purpose VREFpin  
when used as VREF or user I/O pin  
(1)  
CVREFTB  
Input capacitance on top/bottom dual-purpose VREF  
pin when used as VREF or user I/O pin  
(1)  
Input capacitance on top/bottom dedicated clock input  
pins  
CCLKTB  
CCLKLR  
Input capacitance on left/right dedicated clock input  
pins  
6
5
Note to Table 2–9:  
(1) When you use the VREFpin as a regular input or output, you can expect a reduced performance of toggle rate and  
CO due to higher pin capacitance.  
t
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–9  
Electrical Characteristics  
Internal Weak Pull-Up and Weak Pull-Down Resistor  
Table 2–10 lists the weak pull-up and pull-down resistor values for Cyclone III LS  
devices.  
Table 2–10. Cyclone III LS Devices Internal Weak Pull-Up Weak and Pull-Down Resistor (1)  
Symbol  
Parameter  
Conditions  
Min  
7
Typ  
25  
28  
35  
57  
82  
143  
19  
22  
25  
35  
50  
Max  
41  
Unit  
(2), (3)  
VCCIO = 3.3 V 5%  
k  
k  
k  
k  
k  
k  
k  
k  
k  
k  
k  
(2), (3)  
(2), (3)  
(2), (3)  
(2), (3)  
(2), (3)  
(4)  
V
V
CCIO = 3.0 V 5%  
CCIO = 2.5 V 5%  
7
47  
Value of I/O pin pull-up resistor before  
and during configuration, as well as  
user mode if the programmable  
pull-up resistor option is enabled  
8
61  
R_PU  
VCCIO = 1.8 V 5%  
10  
13  
19  
6
108  
163  
351  
30  
V
V
V
V
V
V
V
CCIO = 1.5 V 5%  
CCIO = 1.2 V 5%  
CCIO = 3.3 V 5%  
CCIO = 3.0 V 5%  
CCIO = 2.5 V 5%  
CCIO = 1.8 V 5%  
CCIO = 1.5 V 5%  
(4)  
6
36  
Value of I/O pin pull-down resistor  
before and during configuration  
(4)  
R_PD  
6
43  
(4)  
7
71  
(4)  
8
112  
Notes to Table 2–10:  
(1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available  
for JTAG TCK.  
(2) Pin pull-up resistance values may be lower if an external source drives the pin higher than VCCIO  
.
(3) R_PU = (VCCIO – VI)/IR_PU  
Minimum condition: –40°C; VCCIO = VCC + 5%, VI = VCC + 5% – 50 mV;  
Typical condition: 25°C; VCCIO = VCC, VI = 0 V;  
Maximum condition: 125°C; VCCIO = VCC – 5%, VI = 0 V; in which VI refers to the input voltage at the I/O pin.  
(4) R_PD = VI/IR_PD  
Minimum condition: –40°C; VCCIO = VCC + 5%, VI = 50 mV;  
Typical condition: 25°C; VCCIO = VCC, VI = VCC – 5%;  
Maximum condition: 125°C; VCCIO = VCC – 5%, VI = VCC – 5%; in which VI refers to the input voltage at the I/O pin.  
Hot Socketing  
Table 2–11 lists the hot-socketing specifications for Cyclone III LS devices.  
Table 2–11. Cyclone III Devices LS Hot-Socketing Specifications  
Symbol  
Parameter  
DC current per I/O pin  
AC current per I/O pin  
Maximum  
IIOPIN(DC)  
IIOPIN(AC)  
300 A  
(1)  
8 mA  
Note to Table 2–11:  
(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is I/O pin  
capacitance and dv/dt is the slew rate.  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–10  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
Schmitt Trigger Input  
Cyclone III LS devices support Schmitt trigger input on TDI  
CONF_DONE, and DCLKpins. A Schmitt trigger feature introduces  
,
TMS, TCK, nSTATUS,  
nCONFIG, nCE,  
hysteresis to the input signal for improved noise immunity, especially for signals with  
a slow edge rate. Table 2–12 lists the hysteresis specifications across supported VCCIO  
range for Schmitt trigger inputs in Cyclone III LS devices.  
Table 2–12. Hysteresis Specifications for Schmitt Trigger Input in Cyclone III LS Devices  
Symbol  
Parameter  
Conditions  
Minimum  
200  
Typical  
Maximum  
Unit  
mV  
mV  
mV  
mV  
VCCIO = 3.3 V  
V
V
CCIO = 2.5 V  
CCIO = 1.8 V  
200  
Hysteresis for Schmitt trigger  
input  
VSCHMITT  
140  
VCCIO = 1.5 V  
110  
I/O Standard Specifications  
The following tables list input voltage sensitivities (VIH and VIL), output voltage  
(VOH and VOL), and current drive characteristics (IOH and IOL) for various I/O  
standards supported by Cyclone III LS devices.  
Table 2–13 through Table 2–18 provide Cyclone III LS devices I/O standard  
specifications.  
Table 2–13. Cyclone III LS Devices Single-Ended I/O Standard Specifications (1)  
VCCIO (V)  
Typ  
VIL (V)  
Max Min Max  
VIH (V)  
Max  
VOL (V)  
VOH (V)  
IOL  
IOH  
I/O Standard  
(mA) (mA)  
Min  
Min  
1.7  
1.7  
1.7  
1.7  
Max  
0.45  
0.2  
Min  
2.4  
(2)  
3.3-V LVTTL  
3.135 3.3 3.465  
3.135 3.3 3.465  
0.8  
0.8  
0.8  
0.8  
3.6  
4
2
4
–4  
–2  
(2)  
(2)  
3.3-V LVCMOS  
3.6  
VCCIO – 0.2  
2.4  
(2)  
3.0-V LVTTL  
2.85  
2.85  
3.0  
3.0  
3.15 –0.3  
3.15 –0.3  
VCCIO + 0.3  
VCCIO + 0.3  
0.45  
0.2  
–4  
3.0-V LVCMOS  
VCCIO – 0.2 0.1  
–0.1  
2.5-V LVTTL and  
LVCMOS  
2.375 2.5 2.625 –0.3  
1.71 1.8 1.89 –0.3  
1.425 1.5 1.575 –0.3  
0.7  
1.7  
3.6  
0.4  
2.0  
1
2
2
2
–1  
–2  
(2)  
1.8-V LVTTL and  
LVCMOS  
0.35* 0.65*  
VCCIO VCCIO  
VCCIO  
0.45  
2.25  
0.45  
0.35* 0.65*  
VCCIO VCCIO  
0.25 *  
VCCIO  
0.75 *  
VCCIO  
1.5-V LVCMOS  
1.2-V LVCMOS  
PCI  
VCCIO + 0.3  
VCCIO + 0.3  
–2  
0.35* 0.65*  
VCCIO VCCIO  
0.25 *  
VCCIO  
0.75 *  
VCCIO  
1.14  
2.85  
2.85  
1.2  
3.0  
3.0  
1.26 –0.3  
–2  
0.30* 0.50*  
VCCIO VCCIO  
3.15  
3.15  
VCCIO + 0.3 0.1 * VCCIO 0.9 * VCCIO 1.5  
VCCIO + 0.3 0.1 * VCCIO 0.9 * VCCIO 1.5  
–0.5  
–0.5  
0.35* 0.50*  
VCCIO VCCIO  
PCI-X  
Notes to Table 2–13:  
(1) AC load CL = 10 pF.  
(2) For more information about interfacing Cyclone III LS devices with 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS I/O standards,  
refer to AN 447: Interfacing Cyclone III and Cyclone iV Devices with 3.3/3.0/2.5-V LVTTL and LVCMOS I/O Systems.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–11  
Electrical Characteristics  
Table 2–14. Cyclone III LS Devices Single-Ended SSTL and HSTL I/O Reference Voltage Specifications (4)  
(3)  
V
CCIO (V)  
VREF (V)  
Typ  
VTT (V)  
Typ  
I/O  
Standard  
Min  
Typ Max  
Min  
Max  
Min  
Max  
SSTL-2  
Class I, II  
VREF  
0.04  
VREF  
0.04  
+
2.375 2.5 2.625  
1.7 1.8 1.9  
1.19  
1.25  
0.9  
1.31  
VREF  
VREF  
0.9  
SSTL-18  
Class I, II  
VREF  
0.04  
VREF  
0.04  
+
0.833  
0.85  
0.71  
0.969  
0.95  
HSTL-18  
Class I, II  
1.71 1.8 1.89  
1.425 1.5 1.575  
0.9  
0.85  
0.71  
0.95  
0.79  
HSTL-15  
Class I, II  
0.75  
0.79  
0.75  
0.48 * VCCIO  
(1)  
(2)  
(1)  
(2)  
0.5 * VCCIO  
0.5 * VCCIO  
0.52 * VCCIO  
0.53 * VCCIO  
(1)  
HSTL-12  
Class I, II  
0.5 *  
VCCIO  
1.14 1.2 1.26  
0.47 * VCCIO  
(2)  
Notes to Table 2–14:  
(1) The value shown refers to the DC input reference voltage, VREF(DC)  
(2) The value shown refers to the AC input reference voltage, VREF(AC)  
(3) VTT of the transmitting device must track VREF of the receiving device.  
(4) For an explanation of the terms used in Table 2–14, refer to “Glossary” on page 2–26.  
.
.
Table 2–15. Cyclone III LS Devices Single-Ended SSTL and HSTL I/O Standards Signal Specifications  
VIL(DC) (V)  
Min Max  
VREF  
VIH(DC) (V)  
Max  
VIL(AC) (V)  
Min Max  
VREF  
VIH(AC) (V)  
Min Max  
VOL (V) VOH (V)  
Max Min  
I/O  
IOL  
IOH  
Standard  
(mA) (mA)  
Min  
SSTL-2  
Class I  
VREF  
0.18  
+
VREF  
0.35  
+
VTT  
0.57  
VTT +  
0.57  
8.1  
16.4 –16.4  
6.7 –6.7  
13.4 –13.4  
–8.1  
0.18  
0.35  
SSTL-2  
Class II  
VREF  
0.18  
VREF  
0.18  
+
VREF  
VREF  
0.35  
+
VTT  
0.76  
VTT  
0.76  
+
0.35  
SSTL-18  
Class I  
VREF  
0.125  
VREF  
+
VREF  
VREF  
0.25  
+
VTT  
0.475  
VTT +  
0.475  
0.125  
0.25  
SSTL-18  
Class II  
VREF  
0.125  
VREF  
+
VREF  
VREF  
0.25  
+
VCCIO  
0.28  
0.28  
0.4  
0.4  
0.4  
0.4  
0.125  
0.25  
HSTL-18  
Class I  
VREF  
0.1  
VREF  
0.1  
+
+
+
+
+
VREF  
0.2  
VREF  
0.2  
+
VCCIO  
0.4  
8
16  
8
–8  
–16  
–8  
HSTL-18  
Class II  
VREF  
0.1  
VREF  
0.1  
VREF  
0.2  
VREF  
0.2  
+
+
+
+
VCCIO  
0.4  
HSTL-15  
Class I  
VREF  
0.1  
VREF  
0.1  
VREF  
0.2  
VREF  
0.2  
VCCIO  
0.4  
HSTL-15  
Class II  
VREF  
0.1  
VREF  
0.1  
VREF  
0.2  
VREF  
0.2  
VCCIO  
0.4  
16  
8
–16  
–8  
HSTL-12  
Class I  
VREF  
0.08  
VREF  
VREF  
VREF  
VCCIO  
+
+
0.25 × 0.75 ×  
VCCIO VCCIO  
–0.15  
–0.15  
VCCIO + 0.15 –0.24  
VCCIO + 0.15 –0.24  
0.08  
VREF  
0.08  
0.15  
0.15  
0.24  
HSTL-12  
Class II  
VREF  
0.08  
+
VREF  
VREF  
+
VCCIO  
0.24  
0.25 × 0.75 ×  
VCCIO VCCIO  
14  
–14  
0.15  
0.15  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–12  
Chapter 2: Cyclone III LS Device Datasheet  
Electrical Characteristics  
f
For more information about receiver input and transmitter output waveforms, and for  
other differential I/O standards, refer to the High-Speed Differential Interfaces in  
Cyclone III Devices chapter.  
Table 2–16. Cyclone III LS Devices Differential SSTL I/O Standard Specifications (1)  
VSwing(DC)  
(V)  
VSwing(AC)  
VCCIO (V)  
VX(AC) (V)  
Typ  
VOX(AC) (V)  
Typ Max  
(V)  
I/O Standard  
Min Typ Max Min Max  
Min  
Max  
Min Max  
Min  
SSTL-2  
Class I, II  
V
+ 0.2  
CCIO/2  
VCCI VCCIO/2 –  
V
CCIO/2  
2.375 2.5 2.625 0.36 VCCIO VCCIO/2 – 0.2  
VCCIO/2 –  
0.7  
0.5  
0.125  
+ 0.125  
O
SSTL-18  
Class I, II  
V
CCIO/2  
VCCI VCCIO/2 –  
V
CCIO/2  
1.7  
1.8 1.90 0.25 VCCIO  
0.175  
+ 0.175  
0.125  
+ 0.125  
O
Note to Table 2–16:  
(1) Differential SSTL requires a VREF input.  
Table 2–17. Cyclone III LS Devices Differential HSTL I/O Standard Specifications (1)  
VCCIO (V)  
VDIF(DC) (V)  
VX(AC) (V)  
Typ  
VCM(DC) (V)  
VDIF(AC) (V)  
I/O Standard  
Min Typ Max Min Max  
Min  
Max  
Min  
Typ  
Max  
Min Max  
HSTL-18  
Class I, II  
1.71 1.8 1.89 0.2  
1.425 1.5 1.575 0.2  
0.85  
0.95  
0.85  
0.95  
0.4  
0.4  
0.3  
HSTL-15  
Class I, II  
0.71  
0.79  
0.71  
0.79  
HSTL-12  
Class I, II  
0.48 *  
VCCIO  
0.52 * 0.48 *  
VCCIO VCCIO  
0.52 *  
VCCIO  
0.48 *  
VCCIO  
1.14 1.2 1.26 0.16 VCCIO  
Note to Table 2–17:  
(1) Differential HSTL requires a VREF input.  
Table 2–18. Differential I/O Standard Specifications (1) (Part 1 of 2)  
(2)  
(2)  
V
CCIO (V)  
VID (mV)  
VICM (V)  
VOD (mV)  
VOS (V)  
I/O  
Standard  
Min Typ Max Min Max Min  
Condition  
Max Min Typ Max Min Typ Max  
0
DMAX500 Mbps 1.85  
LVPECL  
(Row  
I/Os)  
500 Mbps DMAX  
700 Mbps  
2.375 2.5 2.625 100  
2.375 2.5 2.625 100  
2.375 2.5 2.625 100  
0.5  
1.85  
1.6  
(3)  
1
0
DMAX > 700 Mbps  
D
MAX 500 Mbps 1.85  
LVPECL  
(Column  
500 Mbps DMAX  
700 Mbps  
0.5  
1.85  
1.6  
(3)  
I/Os)  
1
0
D
D
MAX > 700 Mbps  
MAX 500 Mbps 1.85  
LVDS  
(Row  
I/Os)  
500 Mbps DMAX  
700 Mbps  
0.5  
1
1.85 247  
1.6  
600 1.125 1.25 1.375  
D
MAX > 700 Mbps  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–13  
Electrical Characteristics  
Table 2–18. Differential I/O Standard Specifications (1) (Part 2 of 2)  
(2)  
(2)  
VCCIO (V)  
VID (mV)  
VICM (V)  
VOD (mV)  
VOS (V)  
I/O  
Standard  
Min Typ Max Min Max Min  
Condition  
Max Min Typ Max Min Typ Max  
0
DMAX 500 Mbps 1.85  
LVDS  
(Column  
I/Os)  
500 Mbps DMAX  
700 Mbps  
2.375 2.5 2.625 100  
0.5  
1
1.85 247  
1.6  
600 1.125 1.25 1.35  
D
MAX > 700 Mbps  
BLVDS  
(Row  
I/Os)  
2.375 2.5 2.625 100  
2.375 2.5 2.625 100  
(4)  
BLVDS  
(Column  
(4)  
I/Os)  
mini-LVDS  
(Row  
2.375 2.5 2.625  
2.375 2.5 2.625  
2.375 2.5 2.625  
2.375 2.5 2.625  
2.375 2.5 2.625  
2.375 2.5 2.625  
300  
300  
600  
600  
1.0  
1.0  
0.5  
0.5  
0.5  
0.5  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.5  
1.5  
1.4  
1.4  
(5)  
I/Os)  
mini-LVDS  
(Column  
(5)  
I/Os)  
RSDS  
(Row  
I/Os)  
100 200 600  
100 200 600  
100 200 600  
100 200 600  
(5)  
RSDS  
(Column  
(5)  
I/Os)  
PPDS  
(Row  
I/Os)  
(5)  
PPDS  
(Column  
(5)  
I/Os)  
Notes to Table 2–18:  
(1) For an explanation of the terms used in Table 2–18, refer to “Transmitter Output Waveform” in “Glossary” on page 2–26.  
(2) RL range: 90 RL 110 .  
(3) The LVPECL input standard is only supported at clock input. The output standard is not supported.  
(4) There is no fixed VICM, VOD, and VOS specification for BLVDS. They are dependent on the system topology.  
(5) Mini-LVDS, RSDS, and PPDS standards are only supported at output pins of Cyclone III LS devices.  
Power Consumption  
Use the following methods to estimate power for your design:  
The Excel-based EPE  
The Quartus II® PowerPlay power analyzer feature  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–14  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
Use the interactive Excel-based EPE before designing your device to get a magnitude  
estimate of the device power. The Quartus II PowerPlay power analyzer provides  
better quality estimates based on the specifics of the design after place-and-route is  
complete. The PowerPlay power analyzer can apply a combination of user-entered,  
simulation-derived, and estimated signal activities which, combined with detailed  
circuit models, can yield very accurate power estimates.  
f
For more information about power estimation tools, refer to the Early Power Estimator  
User Guide and the PowerPlay Power Analysis chapter in volume 3 of the Quartus II  
Handbook.  
Switching Characteristics  
This section describes performance characteristics of the core and periphery blocks for  
Cyclone III LS devices.  
Core Performance Specifications  
Table 2–19 through Table 2–25 describe the core performance specifications for  
Cyclone III LS devices.  
Clock Tree Specifications  
Table 2–19 lists the clock tree specifications for Cyclone III LS devices.  
Table 2–19. Cyclone III LS Devices Clock Tree Performance  
Performance  
Device  
Unit  
C7  
C8  
I7  
EP3CLS70  
EP3CLS100  
EP3CLS150  
EP3CLS200  
437.5  
437.5  
437.5  
437.5  
402  
402  
402  
402  
437.5  
437.5  
437.5  
437.5  
MHz  
MHz  
MHz  
MHz  
PLL Specifications  
Table 2–20 lists the PLL specifications for Cyclone III LS devices when operating in  
the commercial junction temperature range (0°C to 85°C) and the industrial junction  
temperature range (-40°C to 100°C). For more information about the PLL block, refer  
to “PLL Block” in “Glossary” on page 2–26.  
Table 2–20. Cyclone III LS Devices PLL Specifications (4) (Part 1 of 2)  
Symbol  
Parameter  
Min  
5
Typ  
Max  
450  
325  
1300  
60  
Unit  
MHz  
MHz  
MHz  
%
(1)  
fIN  
fINPFD  
Input clock frequency  
PFD input frequency  
5
(6)  
fVCO  
PLL internal VCO operating range  
600  
40  
fINDUTY  
Input clock duty cycle  
Input clock cycle-to-cycle jitter for FINPFD 100 MHz  
Input clock cycle-to-cycle jitter for FINPFD < 100 MHz  
0.15  
750  
UI  
(5)  
tINJITTER_CCJ  
ps  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–15  
Switching Characteristics  
Table 2–20. Cyclone III LS Devices PLL Specifications (4) (Part 2 of 2)  
Symbol  
Parameter  
PLL output frequency  
Min  
Typ  
Max  
Unit  
fOUT_EXT (external clock  
450  
MHz  
(1)  
output)  
PLL output frequency (–7 speed grade)  
PLL output frequency (–8 speed grade)  
450  
MHz  
MHz  
fOUT (to global clock)  
402.5  
Duty cycle for external clock output (when set to  
50%)  
tOUTDUTY  
tLOCK  
45  
50  
55  
1
%
Time required to lock from end of device  
configuration  
ms  
Time required to lock dynamically (after switchover,  
reconfiguring any non-post-scale counters/delays or  
areset is deasserted)  
tDLOCK  
1
ms  
Dedicated clock output period jitter FOUT 100 MHz  
300  
30  
ps  
(3)  
tOUTJITTER_PERIOD_DEDCLK  
FOUT < 100 MHz  
mUI  
Dedicated clock output cycle-to-cycle jitter  
300  
ps  
(3)  
FOUT 100 MHz  
tOUTJITTER_CCJ_DEDCLK  
F
OUT < 100 MHz  
10  
30  
650  
75  
mUI  
ps  
Regular I/O period jitter FOUT 100 MHz  
OUT < 100 MHz  
Regular I/O cycle-to-cycle jitter FOUT 100 MHz  
OUT < 100 MHz  
(3)  
tOUTJITTER_PERIOD_IO  
F
mUI  
ps  
650  
75  
(3)  
tOUTJITTER_CCJ_IO  
F
mUI  
ps  
tPLL_PSERR  
tARESET  
Accuracy of PLL phase shift  
50  
Minimum pulse width on areset signal.  
ns  
scanclk  
cycles  
(2)  
tCONFIGPLL  
Time required to reconfigure scan chains for PLLs  
3.5  
fSCANCLK  
scanclkfrequency  
100  
MHz  
Notes to Table 2–20:  
(1) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O  
standard.  
(2) With 100-MHz scanclkfrequency.  
(3) Peak-to-peak jitter with a probability level of 10–12 (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies  
to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.  
(4) VCCD_PLL must be connected to VCCINT through the decoupling capacitor and ferrite bead.  
(5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less  
than 200 ps.  
(6) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO  
post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the fVCO specification.  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–16  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
Embedded Multiplier Specifications  
Table 2–21 lists the embedded multiplier specifications for Cyclone III LS devices.  
Table 2–21. Cyclone III LS Devices Embedded Multiplier Specifications  
EP3CLS70, EP3CLS100,  
Resources Used  
EP3CLS150, and EP3CLS200  
Performance  
Mode  
Unit  
Number of Multipliers  
C7 and I7  
300  
C8  
9 × 9-bit multiplier  
1
1
260  
200  
MHz  
MHz  
18 × 18-bit multiplier  
250  
Memory Block Specifications  
Table 2–22 lists the M9K memory block and logic element (LE) specifications for  
Cyclone III LS devices.  
Table 2–22. Cyclone III LS Devices Memory Block Performance Specifications  
EP3CLS70, EP3CLS100,  
EP3CLS150, and EP3CLS200  
Performance  
Resources Used  
Memory  
Mode  
Unit  
M9K  
Memory  
LEs  
C7 and I7  
C8  
FIFO 256 × 36  
47  
0
1
1
1
1
274  
274  
274  
274  
238  
238  
238  
238  
MHz  
MHz  
MHz  
MHz  
Single-port 256 × 36  
M9K Block  
Simple dual-port 256 × 36 CLK  
True dual port 512 × 18 single CLK  
0
0
Configuration and JTAG Specifications  
Table 2–23 lists the configuration mode specifications for Cyclone III LS devices.  
Table 2–23. Cyclone III LS Devices Configuration Mode Specifications  
Programming Mode  
Passive Serial (PS)  
Fast Passive Parallel (FPP)  
DCLK fMAX  
133  
Unit  
MHz  
MHz  
100  
Table 2–24 lists the active configuration mode specifications for Cyclone III LS  
devices.  
Table 2–24. Cyclone III LS Devices Active Configuration Mode Specifications  
Programming Mode  
Active Serial (AS)  
DCLK Range  
Unit  
20 to 40  
MHz  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–17  
Switching Characteristics  
Table 2–25 lists the JTAG timing parameters and values for Cyclone III LS devices.  
Table 2–25. Cyclone III LS Devices JTAG Timing Parameters (1)  
Symbol  
tJCP  
Parameter  
Min  
40  
20  
20  
2
Max  
16  
15  
15  
25  
25  
25  
Unit  
TCK clock period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCH  
TCK clock high time  
TCK clock low time  
tJCL  
tJPSU_TDI JTAG port setup time for TDI  
tJPSU_TMS JTAG port setup time for TMS  
3
tJPH  
JTAG port hold time  
10  
5
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output (2)  
JTAG port high impedance to valid output (2)  
JTAG port valid output to high impedance (2)  
Capture register setup time  
Capture register hold time  
10  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
Update register high impedance to valid output  
Update register valid output to high impedance  
Notes to Table 2–25:  
(1) For more information, refer to “JTAG Waveform” in “Glossary” on page 2–26.  
(2) The specification shown is for the 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For the 1.8-V  
LVTTL/LVCMOS and the 1.5-V LVCMOS, the JTAG port clock to output time is 16 ns.  
Periphery Performance  
This section describes periphery performance, including high-speed I/O, external  
memory interface, and IOE programmable delay.  
I/O performance supports several systems interfacing, for example, the high-speed  
I/O interface, external memory interface, and PCI/PCI-X bus interface. I/O using  
SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM  
interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using  
general purpose I/O standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are  
capable of typical 200 MHz interfacing frequency with 10 pF load.  
1
Actual achievable frequency depends on design- and system-specific factors. Perform  
HSPICE/IBIS simulations based on your specific design and system setup to  
determine the maximum achievable frequency in your system.  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–18  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
High-Speed I/O Specification  
Table 2–26 through Table 2–31 list the high-speed I/O timing for Cyclone III LS  
devices. For more information about the definitions of high-speed timing  
specifications, refer to “Glossary” on page 2–26.  
Table 2–26. Cyclone III LS Devices RSDS Transmitter Timing Specification (1), (2)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Typ  
Max  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
Min  
5
Typ  
Max  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
5
5
fHSCLK  
(input clock  
frequency)  
5
5
5
5
5
5
5
5
100  
80  
70  
40  
20  
10  
45  
311  
100  
80  
70  
40  
20  
10  
45  
311  
311  
311  
311  
311  
Device operation  
in Mbps  
311  
311  
311  
311  
311  
311  
tDUTY  
55  
55  
TCCS  
200  
200  
ps  
Output jitter  
(peak to peak)  
500  
550  
ps  
ps  
20 – 80%,  
tRISE  
500  
500  
C
LOAD = 5 pF  
20 – 80%,  
tFALL  
500  
1
500  
1
ps  
CLOAD = 5 pF  
(3)  
tLOCK  
ms  
Notes to Table 2–26:  
(1) Applicable for true RSDS and Emulated RSDS with three-resistor network transmitters.  
(2) True RSDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6). Emulated RSDS with three-resistor network  
transmitter is supported at the output pin of all I/O banks.  
(3) tLOCK is the time required for the PLL to lock from the end of device configuration.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–19  
Switching Characteristics  
Table 2–27. Cyclone III LS Devices Emulated RSDS with One-Resistor Network Transmitter Timing  
Specifications (1)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Typ  
Max  
85  
Min  
5
Typ  
Max  
85  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
5
85  
5
85  
f
HSCLK (input  
clock  
frequency)  
5
85  
5
85  
5
85  
5
85  
5
85  
5
85  
5
170  
170  
170  
170  
170  
170  
170  
55  
5
170  
170  
170  
170  
170  
170  
170  
55  
100  
80  
70  
40  
20  
10  
45  
100  
80  
70  
40  
20  
10  
45  
Device  
operation in  
Mbps  
tDUTY  
TCCS  
200  
200  
ps  
Output jitter  
(peak to  
peak)  
500  
550  
ps  
ps  
20 – 80%,  
tRISE  
500  
500  
C
LOAD = 5 pF  
20 – 80%,  
tFALL  
500  
1
500  
1
ps  
C
LOAD = 5 pF  
(2)  
tLOCK  
ms  
Notes to Table 2–27:  
(1) Emulated RSDS with one-resistor network transmitter is supported at the output pin of all I/O banks.  
(2) tLOCK is the time required for the PLL to lock from the end of device configuration.  
Table 2–28. Cyclone III LS Devices Mini-LVDS Transmitter Timing Specification (1), (2) (Part 1 of 2)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Typ  
Max  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
Min  
5
Typ  
Max  
155.5  
155.5  
155.5  
155.5  
155.5  
311  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
5
5
5
5
f
HSCLK (input  
clock frequency)  
5
5
5
5
5
5
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–20  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
Table 2–28. Cyclone III LS Devices Mini-LVDS Transmitter Timing Specification (1), (2) (Part 2 of 2)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
100  
80  
Typ  
Max  
311  
311  
311  
311  
311  
311  
55  
Min  
100  
80  
Typ  
Max  
311  
311  
311  
311  
311  
311  
55  
×10  
×8  
×7  
×4  
×2  
×1  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
70  
70  
Device operation  
in Mbps  
40  
40  
20  
20  
10  
10  
tDUTY  
45  
45  
TCCS  
200  
200  
ps  
Output jitter  
(peak to peak)  
500  
550  
ps  
ps  
20 – 80%,  
LOAD = 5 pF  
20 – 80%,  
tRISE  
500  
500  
C
tFALL  
500  
1
500  
1
ps  
C
LOAD = 5 pF  
(3)  
tLOCK  
ms  
Notes to Table 2–28:  
(1) Applicable for true and emulated mini-LVDS with three-resistor network transmitter.  
(2) True mini-LVDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6). Emulated mini-LVDS with three-resistor  
network transmitter is supported at the output pin of all I/O banks.  
(3) tLOCK is the time required for the PLL to lock from the end of device configuration.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–21  
Switching Characteristics  
Table 2–29. Cyclone III LS Devices True LVDS Transmitter Timing Specifications (1)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Max  
370  
370  
370  
370  
370  
Min  
5
Max  
320  
320  
320  
320  
320  
402.5  
640  
640  
640  
640  
640  
402.5  
55  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
5
5
5
5
f
HSCLK (input  
clock frequency)  
5
5
5
5
5
402.5  
740  
740  
740  
740  
740  
402.5  
55  
5
100  
80  
70  
40  
20  
10  
45  
100  
80  
70  
40  
20  
10  
45  
HSIODR  
tDUTY  
TCCS  
200  
200  
ps  
Output jitter  
(peak to peak)  
500  
1
550  
1
ps  
(2)  
tLOCK  
ms  
Notes to Table 2–29:  
(1) True LVDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6).  
(2) tLOCK is the time required for the PLL to lock from the end of device configuration.  
Table 2–30. Cyclone III LS Devices Emulated LVDS with Three-Resistor Network Transmitter  
Timing Specifications (1) (Part 1 of 2)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Max  
320  
320  
320  
320  
320  
Min  
5
Max  
275  
275  
275  
275  
275  
402.5  
550  
550  
550  
550  
550  
402.5  
55  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
5
5
5
5
f
HSCLK (input  
clock frequency)  
5
5
5
5
5
402.5  
640  
640  
640  
640  
640  
402.5  
55  
5
100  
80  
70  
40  
20  
10  
45  
100  
80  
70  
40  
20  
10  
45  
HSIODR  
tDUTY  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–22  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
Table 2–30. Cyclone III LS Devices Emulated LVDS with Three-Resistor Network Transmitter  
Timing Specifications (1) (Part 2 of 2)  
C7 and I7  
C8  
Symbol  
TCCS  
Modes  
Unit  
Min  
Max  
Min  
Max  
200  
200  
ps  
ps  
Output jitter  
(peak to peak)  
500  
1
550  
1
(2)  
tLOCK  
ms  
Notes to Table 2–30:  
(1) Emulated LVDS with three-resistor network transmitter is supported at the output pin of all I/O banks.  
(2) tLOCK is the time required for the PLL to lock from the end of device configuration.  
Table 2–31. Cyclone III LS Devices LVDS Receiver Timing Specifications (1)  
C7 and I7  
C8  
Symbol  
Modes  
Unit  
Min  
5
Max  
370  
370  
370  
370  
370  
Min  
5
Max  
320  
320  
320  
320  
320  
402.5  
640  
640  
640  
640  
640  
402.5  
400  
×10  
×8  
×7  
×4  
×2  
×1  
×10  
×8  
×7  
×4  
×2  
×1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
Mbps  
%
5
5
5
5
f
HSCLK (input  
clock frequency)  
5
5
5
5
5
402.5  
740  
5
100  
80  
70  
40  
20  
10  
100  
80  
70  
40  
20  
10  
740  
740  
HSIODR  
SW  
740  
740  
402.5  
400  
Input jitter  
tolerance  
500  
1
550  
1
ps  
ps  
(2)  
tLOCK  
Notes to Table 2–31:  
(1) True LVDS receiver is supported at all banks.  
(2) tLOCK is the time required for the PLL to lock from the end of device configuration.  
External Memory Interface Specifications  
Cyclone III LS devices support external memory interfaces up to 200 MHz. The  
external memory interfaces for Cyclone III LS devices are auto-calibrating and easy to  
implement.  
Table 2–32 and Table 2–33 list the external memory interface specifications for  
Cyclone III LS devices and are useful when performing memory interface timing  
analysis.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–23  
Switching Characteristics  
f
For more information about external memory system performance specifications,  
board design guidelines, timing analysis, simulation, and debugging information,  
refer to Literature: External Memory Interfaces.  
Table 2–32. FPGA Sampling Window (SW) Requirement—Read Side (1)  
Column I/Os (ps)  
Memory Standard  
Row I/Os (ps)  
Wraparound Mode (ps)  
Setup  
Hold  
Setup  
Hold  
Setup  
Hold  
C7  
C8  
I7  
DDR2 SDRAM  
DDR SDRAM  
QDRII SRAM  
705  
675  
900  
650  
620  
845  
770  
795  
910  
715  
740  
855  
985  
970  
930  
915  
1085  
1030  
DDR2 SDRAM  
DDR SDRAM  
QDRII SRAM  
785  
800  
720  
740  
990  
930  
915  
870  
855  
1115  
1185  
1210  
1055  
1125  
1150  
1050  
1065  
1005  
DDR2 SDRAM  
DDR SDRAM  
765  
745  
945  
710  
690  
890  
855  
880  
955  
800  
825  
900  
1040  
1000  
1130  
985  
945  
QDRII SRAM  
1075  
Note to Table 2–32:  
(1) Column I/Os refer to top and bottom I/Os. Row I/Os refer to right and left I/Os. Wraparound mode refers to the combination of column and row  
I/Os.  
Table 2–33. Cyclone III LS Devices Transmitter Channel-to-Channel Skew (TCCS)—Write Side (1) (Part 1 of 2)  
Column I/Os (ps)  
Row I/Os (ps)  
Wraparound Mode (ps)  
Memory Standard  
I/O Standard  
Lead  
Lag  
Lead  
Lag  
Lead  
Lag  
C7  
SSTL-18 Class I  
SSTL-18 Class II  
SSTL-2 Class I  
915  
1025  
880  
410  
545  
340  
380  
450  
570  
915  
1025  
880  
410  
545  
340  
380  
450  
570  
1015  
1125  
980  
510  
645  
440  
480  
550  
670  
DDR2 SDRAM  
DDR SDRAM  
QDRII SRAM  
SSTL-2 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1010  
910  
1010  
910  
1010  
1010  
1110  
1010  
1010  
C8  
SSTL-18 Class I  
SSTL-18 Class II  
SSTL-2 Class I  
1040  
1180  
1010  
1160  
1040  
1190  
440  
600  
360  
410  
490  
630  
1040  
1180  
1010  
1160  
1040  
1190  
440  
600  
360  
410  
490  
630  
1140  
1280  
1110  
1260  
1140  
1290  
540  
700  
460  
510  
590  
730  
DDR2 SDRAM  
DDR SDRAM  
QDRII SRAM  
SSTL-2 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–24  
Chapter 2: Cyclone III LS Device Datasheet  
Switching Characteristics  
Table 2–33. Cyclone III LS Devices Transmitter Channel-to-Channel Skew (TCCS)—Write Side (1) (Part 2 of 2)  
Column I/Os (ps)  
Row I/Os (ps)  
Wraparound Mode (ps)  
Memory Standard  
I/O Standard  
Lead  
Lag  
Lead  
Lag  
Lead  
Lag  
I7  
SSTL-18 Class I  
SSTL-18 Class II  
SSTL-2 Class I  
961  
1076  
924  
431  
572  
357  
399  
473  
599  
961  
1076  
924  
431  
572  
357  
399  
473  
599  
1061  
1176  
1024  
1161  
1056  
1161  
531  
672  
457  
499  
573  
699  
DDR2 SDRAM  
DDR SDRAM  
SSTL-2 Class II  
1.8-V HSTL Class I  
1.8-V HSTL Class II  
1061  
956  
1061  
956  
QDRII SRAM  
1061  
1061  
Note to Table 2–33:  
(1) Column I/O banks refer to top and bottom I/Os. Row I/O banks refer to right and left I/Os. Wraparound mode refers to the combination of column  
and row I/Os.  
Table 2–34 lists the Cyclone III LS devices memory ouput clock jitter specifications.  
Table 2–34. Cyclone III LS Devices Memory Output Clock Jitter Specifications (1), (2)  
Parameter  
Clock period jitter  
Symbol  
tJIT (per)  
Min  
–125  
–200  
–150  
Max  
125  
200  
150  
Unit  
ps  
Cycle-to-cycle period jitter  
Duty cycle jitter  
t
JIT (cc)  
JIT (duty)  
ps  
t
ps  
Notes to Table 2–34:  
(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.  
(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global  
clock network.  
Duty Cycle Distortion Specification  
Table 2–35 lists the worst case duty cycle distortion for Cyclone III LS devices.  
Table 2–35. Duty Cycle Distortion on Cyclone III LS Devices I/O Pins (1), (2)  
C7, I7  
C8  
Symbol  
Output Duty Cycle  
Unit  
Min  
Max  
Min  
Max  
45  
55  
45  
55  
%
Notes to Table 2–35:  
(1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and I/O element  
(IOE) driving the dedicated and general purpose I/O pins.  
(2) Cyclone III LS devices meet the DCD specifications at the maximum output toggle rate for each combination of  
the I/O standard and current strength.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–25  
Switching Characteristics  
OCT Calibration Timing Specification  
Table 2–36 lists the duration of calibration for series OCT with calibration at device  
power-up for Cyclone III LS devices.  
Table 2–36. Cyclone III LS Devices Timing Specification for Series OCT with Calibration at Device  
(1)  
Power-Up  
Symbol  
Description  
Maximum  
Unit  
Duration of series OCT with  
calibration at device power-up  
tOCTCAL  
20  
µs  
Note to Table 2–36:  
(1) OCT calibration takes place after device configuration, before entering user mode.  
IOE Programmable Delay  
Table 2–37 and Table 2–38 list the IOE programmable delay for Cyclone III LS devices.  
(1), (2)  
Table 2–37. Cyclone III LS Devices IOE Programmable Delay on the Column Pins  
Max Offset  
Slow Corner  
C8  
Number  
of  
setting  
Min  
Offset  
Parameter  
Paths Affected  
Fast Corner  
I7 C7  
Unit  
C7  
I7  
Input delay from the pin to the  
internal cells  
Pad to I/O  
dataout to core  
7
8
2
0
0
0
1.211 1.314 2.339 2.416 2.397  
1.203 1.307 2.387 2.540 2.430  
0.518 0.559 1.065 1.151 1.082  
ns  
ns  
ns  
Input delay from the pin to the  
input register  
Pad to I/O input  
register  
Delay from the output register to I/O output  
the output pin  
register to pad  
Input delay from the  
dual-purpose clock pin to the  
fan-out destinations  
Pad to global  
clock network  
12  
0
0.533 0.56 1.077 1.182 1.087  
ns  
Notes to Table 2–37:  
(1) The incremental values for the settings are generally linear. For the exact values of each setting, use the latest version of the Quartus II software.  
(2) The minimum and maximum offset timing numbers refer to the 0 setting available in the Quartus II software.  
Table 2–38. Cyclone III LS Devices IOE Programmable Delay on Row Pins (1), (2)  
Max Offset  
Number  
Min  
Offset  
Parameter  
Paths Affected  
of  
Fast Corner  
I7 C7  
Slow Corner  
C8  
Unit  
setting  
C7  
I7  
Input delay from the pin to the  
internal cells  
Pad to I/O  
dataout to core  
7
8
2
0
0
0
1.209 1.314 2.352 2.514 2.432  
1.207 1.312 2.402 2.558 2.447  
0.549 0.595 1.135 1.226 1.151  
ns  
ns  
ns  
Input delay from the pin to the  
input register  
Pad to I/O input  
register  
Delay from the output register to I/O output  
the output pin  
register to pad  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–26  
Chapter 2: Cyclone III LS Device Datasheet  
I/O Timing  
Table 2–38. Cyclone III LS Devices IOE Programmable Delay on Row Pins (1), (2)  
Max Offset  
Number  
Min  
Parameter  
Paths Affected  
of  
Fast Corner  
I7 C7  
Slow Corner  
C8  
Unit  
Offset  
setting  
C7  
I7  
Input delay from the  
dual-purpose clock pin to the  
fan-out destinations  
Pad to global  
clock network  
12  
0
0.52 0.54 1.052 1.16 1.061  
ns  
Notes to Table 2–38:  
(1) The incremental values for the settings are generally linear. For the exact values of each setting, use the latest version of the Quartus II software.  
(2) The minimum and maximum offset timing numbers refer to the 0 setting available in the Quartus II software.  
I/O Timing  
DirectDrive technology and MultiTrack interconnect ensure predictable performance,  
accurate simulation, and accurate timing analysis across all Cyclone III LS device  
densities and speed grades.  
Use the following methods to determine I/O timing:  
The Excel-based I/O timing  
The Quartus II Timing Analyzer  
Excel-based I/O timing provides pin timing performance for each device density and  
speed grade. The data is typically used before designing the FPGA to get a timing  
budget estimation as part of the link timing analysis. The Quartus II Timing Analyzer  
provides a more accurate and precise I/O timing data based on the specifics of the  
design after place-and-route is complete.  
f
f
For more information about the Excel-based I/O timing spreadsheet, refer to the  
Cyclone III Devices Literature page on the Altera website.  
All specifications are representative of worst-case supply voltage and junction  
temperature conditions. Altera characterizes timing delays at the worst-case process,  
minimum voltage, and maximum temperature for input register setup time (tSU) and  
hold time (tH).  
For more information about timing delay from the FPGA output to the receiving  
device for system-timing analysis, refer to AN 366: Understanding I/O Output Timing  
for Altera Devices.  
Glossary  
Table 2–39 lists the glossary for this chapter.  
Table 2–39. Glossary (Part 1 of 6)  
Letter  
Term  
Definitions  
A
B
C
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–27  
Glossary  
Table 2–39. Glossary (Part 2 of 6)  
Letter  
Term  
Definitions  
D
E
F
fHSCLK  
GCLK  
High-speed I/O Block: High-speed receiver and transmitter input and output clock frequency.  
Input pin directly to the global clock network.  
G
H
GCLK PLL  
HSIODR  
Input pin to the global clock network through the PLL.  
High-speed I/O Block: Maximum and minimum LVDS data transfer rate (HSIODR = 1/TUI).  
VIH  
Input Waveforms  
for the SSTL  
Differential I/O  
Standard  
I
VSWING  
VREF  
VIL  
TMS  
TDI  
tJCP  
tJPSU_TDI  
tJPSU_TMS  
tJCH  
t JCL  
tJPH  
TCK  
TDO  
J
JTAG Waveform  
tJPXZ  
tJPZX  
tJPCO  
tJSSU  
tJSH  
Signal  
to be  
Captured  
tJSZX  
tJSCO  
tJSXZ  
Signal  
to be  
Driven  
K
L
M
N
O
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–28  
Chapter 2: Cyclone III LS Device Datasheet  
Glossary  
Table 2–39. Glossary (Part 3 of 6)  
Letter  
Term  
Definitions  
The following block diagram highlights the PLL specification parameters.  
CLKOUT Pins  
fOUT_EXT  
Switchover  
CLK  
fIN  
fINPFD  
N
fVCO  
VCO  
PFD  
CP  
LF  
fOUT  
GCLK  
Counters  
Core Clock  
C0..C4  
P
Q
PLL Block  
Phase tap  
M
Key  
Reconfigurable in User Mode  
RL  
Receiver differential input discrete resistor (external to the Cyclone III LS device)  
Receiver Input Waveform for LVDS and LVPECL Differential Standards  
Single-Ended Waveform  
Positive Channel (p) = V  
IH  
VID  
Negative Channel (n) = V  
Ground  
IL  
V
CM  
Receiver Input  
Waveform  
R
Differential Input Waveform  
VID  
0 V  
VID  
p - n  
RSKM (Receiver  
input skew  
margin)  
High-speed I/O Block: The total margin left after accounting for the sampling window and  
TCCS. RSKM = (TUI – SW – TCCS) / 2  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–29  
Glossary  
Table 2–39. Glossary (Part 4 of 6)  
Letter  
Term  
Definitions  
VCCIO  
VOH  
VIH AC  
(
)
VIH(DC)  
VREF  
VIL(DC)  
VIL(AC  
)
Single-ended  
Voltage  
referenced I/O  
Standard  
VOL  
VSS  
S
The JEDEC standard for SSTl and HSTL I/O standards defines both the AC and DC input signal  
values.  
The AC values indicate the voltage levels at which the receiver must meet its timing  
specifications.  
The DC values indicate the voltage levels at which the final logic state of the receiver is  
unambiguously defined.  
After the receiver input crosses the AC value, the receiver changes to the new logic state. The  
new logic state is then maintained as long as the input stays beyond the DC threshold. This  
approach is intended to provide predictable receiver timing in the presence of input waveform  
ringing.  
High-speed I/O Block: The period of time during which the data must be valid to capture it  
correctly. The setup and hold times determine the ideal strobe position in the sampling  
window.  
SW (Sampling  
Window)  
tC  
High-speed receiver and transmitter input and output clock period.  
TCCS (Channel-  
High-speed I/O Block: The timing difference between the fastest and slowest output edges,  
to-channel-skew) including tCO variation and clock skew. The clock is included in the TCCS measurement.  
tcin  
tCO  
Delay from the clock pad to the I/O input register.  
Delay from the clock pad to the I/O output.  
tcout  
tDUTY  
tFALL  
tH  
Delay from the clock pad to the I/O output register.  
High-speed I/O Block: Duty cycle on the high-speed transmitter output clock.  
Signal high-to-low transition time (80 to 20%).  
Input register hold time.  
T
Timing Unit  
Interval (TUI)  
High-speed I/O block: The timing budget allowed for skew, propagation delays, and the data  
sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = tC/w).  
tINJITTER  
Period jitter on the PLL clock input.  
tOUTJITTER_DEDCLK  
tOUTJITTER_IO  
tpllcin  
Period jitter on the dedicated clock output driven by a PLL.  
Period jitter on the general purpose I/O driven by a PLL.  
Delay from the PLL inclk pad to the I/O input register.  
Delay from the PLL inclk pad to the I/O output register.  
tpllcout  
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–30  
Chapter 2: Cyclone III LS Device Datasheet  
Glossary  
Table 2–39. Glossary (Part 5 of 6)  
Letter  
Term  
Definitions  
Transmitter output waveforms for the LVDS, mini-LVDS, PPDS, and RSDS differential I/O  
standards  
Single-Ended Waveform  
Positive Channel (p) = VOH  
VOD  
Negative Channel (n) = VOL  
V
os  
Transmitter  
Ground  
Output Waveform  
Differential Waveform (Mathematical Function of Positive & Negative Channel)  
VOD  
0 V  
VOD  
p n (1)  
tRISE  
tSU  
Signal low-to-high transition time (20–80%).  
Input register setup time.  
U
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  
Chapter 2: Cyclone III LS Device Datasheet  
2–31  
Glossary  
Table 2–39. Glossary (Part 6 of 6)  
Letter  
Term  
VCM(DC)  
Definitions  
DC common mode input voltage.  
AC differential Input Voltage—The minimum AC input differential voltage required for  
switching.  
VDIF(AC)  
DC differential Input Voltage—The minimum DC input differential voltage required for  
switching.  
VDIF(DC)  
VICM  
Input Common Mode Voltage—The common mode of the differential signal at the receiver.  
Input differential Voltage Swing—The difference in voltage between the positive and  
complementary conductors of a differential transmission at the receiver.  
VID  
Voltage Input High—The minimum positive voltage applied to the input that is accepted by  
the device as a logic high.  
VIH  
VIH(AC)  
VIH(DC)  
High-level AC input voltage.  
High-level DC input voltage.  
Voltage Input Low—The maximum positive voltage applied to the input that is accepted by  
the device as a logic low.  
VIL  
VIL (AC)  
VIL (DC)  
VIN  
Low-level AC input voltage.  
Low-level DC input voltage.  
DC input voltage.  
Output Common Mode Voltage—The common mode of the differential signal at the  
transmitter.  
VOCM  
VOD  
V
Output differential Voltage Swing—The difference in voltage between the positive and  
complementary conductors of a differential transmission at the transmitter. VOD = VOH – VOL.  
Voltage Output High—The maximum positive voltage from an output that the device  
considers will be accepted as the minimum positive high level.  
VOH  
Voltage Output Low—The maximum positive voltage from an output that the device considers  
will be accepted as the maximum positive low level.  
VOL  
VOS  
Output offset voltage—VOS = (VOH + VOL) / 2.  
AC differential Output cross point voltage—The voltage at which the differential output signals  
must cross.  
VOX (AC)  
VREF  
Reference voltage for the SSTL and HSTL I/O standards.  
AC input reference voltage for the SSTL and HSTL I/O standards. VREF(AC) = VREF(DC) + noise.  
VREF (AC)  
VREF (DC)  
VSWING (AC)  
The peak-to-peak AC noise on VREF must not exceed 2% of VREF(DC)  
.
DC input reference voltage for the SSTL and HSTL I/O standards.  
AC differential Input Voltage—AC Input differential voltage required for switching. Refer to  
Input Waveforms for the SSTL Differential I/O Standard.  
DC differential Input Voltage—DC Input differential voltage required for switching. Refer to  
Input Waveforms for the SSTL Differential I/O Standard.  
VSWING (DC)  
VTT  
Termination voltage for the SSTL and HSTL I/O standards.  
AC differential Input cross point Voltage—The voltage at which the differential input signals  
must cross.  
VX (AC)  
W
X
Y
Z
July 2012 Altera Corporation  
Cyclone III Device Handbook  
Volume 2  
2–32  
Chapter 2: Cyclone III LS Device Datasheet  
Document Revision History  
Document Revision History  
Table 2–40 lists the revision history for this document.  
Table 2–40. Document Revision History  
Date  
Version  
Changes  
Updated minimum fHSCLK value to 5 MHz.  
July 2012  
1.4  
Updated absolute maximum TJ to 125 °C in Table 2–1.  
Finalized all preliminary information.  
Updated “Supply Current” on page 2–5, “Periphery Performance” on page 2–17, and  
“External Memory Interface Specifications” on page 2–22.  
December 2011  
1.3  
Updated Table 2–1, Table 2–3, Table 2–13, Table 2–16, Table 2–17, Table 2–20, and  
Table 2–25.  
Updated Table 2–19 through Table 2–34, Table 2–37, and Table 2–38.  
Updated the “Periphery Performance” on page 2–17 section.  
Minor changes to the text.  
December 2009  
1.2  
July 2009  
June 2009  
1.1  
1.0  
Minor edit to the hyperlinks.  
Initial release.  
Cyclone III Device Handbook  
Volume 2  
July 2012 Altera Corporation  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY