FC80960HT60SL2G2 [INTEL]

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor; 80960HA / HD / HT的32位高性能超标量处理器
FC80960HT60SL2G2
型号: FC80960HT60SL2G2
厂家: INTEL    INTEL
描述:

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
80960HA / HD / HT的32位高性能超标量处理器

文件: 总102页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960HA/HD/HT 32-Bit High-Performance  
Superscalar Processor  
Data Sheet  
Advance Information  
Product Features  
32-Bit Parallel Architecture  
Load/Store Architecture  
3.3 V Supply Voltage  
—5 V Tolerant Inputs  
—Sixteen 32-Bit Global Registers  
—Sixteen 32-Bit Local Registers  
TTL Compatible Outputs  
Guarded Memory Unit  
—Provides Memory Protection  
User/Supervisor Read/Write/Execute  
32-Bit Demultiplexed Burst Bus  
—Per-Byte Parity Generation/Checking  
Address Pipelining Option  
—1.28 Gbyte Internal Bandwidth  
(80 MHz)  
—On-Chip Register Cache  
Processor Core Clock  
—80960HA is 1x Bus Clock  
—80960HD is 2x Bus Clock  
—80960HT is 3x Bus Clock  
—Fully Programmable Wait State  
Generator  
—Supports 8-, 16- or 32-Bit Bus Widths  
Binary Compatible with Other 80960  
Processors  
—160 Mbyte/s External Bandwidth  
(40 MHz)  
Issue Up To 150 Million Instructions per  
Second  
High-Speed Interrupt Controller  
Up to 240 External Interrupts  
High-Performance On-Chip Storage  
—16 Kbyte Four-Way Set-Associative  
Instruction Cache  
31 Fully Programmable Priorities  
—Separate, Non-maskable Interrupt Pin  
Dual On-Chip 32-Bit Timers  
—8 Kbyte Four-Way Set-Associative Data  
Cache  
Auto Reload Capability and One-Shot  
—CLKIN Prescaling, ÷1, 2, 4 or 8  
—JTAG Support - IEEE 1149.1 Compliant  
—2 Kbyte General Purpose RAM  
—Separate 128-Bit Internal Paths For  
Instructions/Data  
Notice: This document contains information on products in the sampling and initial production  
phases of development. The specifications are subject to change without notice. Verify with your  
local Intel sales office that you have the latest datasheet before finalizing a design.  
Order Number: 272495-007  
July, 1998  
80960HA/HD/HT  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 80960HA/HD/HT may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 1998  
*Third-party brands and names are the property of their respective owners.  
Advance Information Datasheet  
80960HA/HD/HT  
Contents  
1.0  
2.0  
About This Document ..............................................................................................1  
Intel’s 80960Hx Processor......................................................................................1  
2.1  
2.2  
The i960® Processor Family.................................................................................2  
Key 80960Hx Features..........................................................................................2  
2.2.1 Execution Architecture .............................................................................2  
2.2.2 Pipelined, Burst Bus .................................................................................2  
2.2.3 On-Chip Caches and Data RAM ..............................................................3  
2.2.4 Priority Interrupt Controller .......................................................................3  
2.2.5 Guarded Memory Unit..............................................................................3  
2.2.6 Dual Programmable Timers .....................................................................4  
2.2.7 Processor Self Test..................................................................................4  
Instruction Set Summary.......................................................................................5  
2.3  
3.0  
4.0  
5.0  
Package Information.................................................................................................6  
3.1  
3.2  
Pin Descriptions ....................................................................................................7  
80960Hx Mechanical Data ..................................................................................12  
3.2.1 80960Hx PGA Pinout .............................................................................12  
3.2.2 80960Hx PQ4 Pinout..............................................................................18  
Package Thermal Specifications.........................................................................23  
Heat Sink Adhesives ...........................................................................................26  
PowerQuad4 Plastic Package.............................................................................26  
Stepping Register Information.............................................................................26  
Sources for Accessories......................................................................................28  
3.3  
3.4  
3.5  
3.6  
3.7  
Electrical Specifications........................................................................................29  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Absolute Maximum Ratings.................................................................................29  
Operating Conditions...........................................................................................29  
Recommended Connections...............................................................................30  
VCC5 Pin Requirements (VDIFF).........................................................................30  
VCCPLL Pin Requirements.................................................................................31  
DC Specifications................................................................................................32  
AC Specifications ................................................................................................34  
4.7.1 AC Test Conditions ................................................................................37  
AC Timing Waveforms ........................................................................................38  
4.8  
Bus Waveforms.........................................................................................................46  
5.1  
5.2  
80960Hx Boundary Scan Chain..........................................................................76  
Boundary Scan Description Language Example.................................................80  
Advance Information Datasheet  
iii  
80960HA/HD/HT  
Figures  
1
80960Hx Block Diagram .......................................................................................1  
80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down) ...............12  
80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)...............13  
80960Hx 208-Pin PQ4 Pinout .............................................................................18  
Measuring 80960Hx PGA Case Temperature ....................................................23  
80960Hx Device Identification Register ..............................................................26  
VCC5 Current-Limiting Resistor..........................................................................30  
AC Test Load ......................................................................................................37  
CLKIN Waveform ................................................................................................38  
Output Delay Waveform......................................................................................38  
Output Delay Waveform......................................................................................38  
Output Float Waveform .......................................................................................39  
Input Setup and Hold Waveform .........................................................................39  
NMI, XINT7:0 Input Setup and Hold Waveform ..................................................39  
Hold Acknowledge Timings.................................................................................40  
Bus Backoff (BOFF) Timings ..............................................................................40  
TCK Waveform....................................................................................................41  
Input Setup and Hold Waveforms for TBSIS1 and TBSIH1 ....................................41  
Output Delay and Output Float for TBSOV1 and TBSOF1......................................42  
Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 ....................42  
Input Setup and Hold Waveform for TBSIS2 and TBSIH2 ......................................42  
Rise and Fall Time Derating at 85°C and Minimum VCC ....................................43  
ICC Active (Power Supply) vs. Frequency ...........................................................43  
ICC Active (Thermal) vs. Frequency ....................................................................44  
Output Delay or Hold vs. Load Capacitance .......................................................44  
Output Delay vs. Temperature ............................................................................45  
Output Hold Times vs. Temperature ...................................................................45  
Output Delay vs. VCC ..........................................................................................45  
Cold Reset Waveform .........................................................................................46  
Warm Reset Waveform.......................................................................................47  
Entering ONCE Mode .........................................................................................48  
Non-Burst, Non-Pipelined Requests without Wait States ...................................49  
Non-Burst, Non-Pipelined Read Request with Wait States.................................50  
Non-Burst, Non-Pipelined Write Request with Wait States.................................51  
Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus.................52  
Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus......................53  
Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus .................54  
Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus ......................55  
Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus......................56  
Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus........................57  
Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus.................58  
Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus......................59  
Burst, Pipelined Read Request without Wait States, 32-Bit Bus.........................60  
Burst, Pipelined Read Request with Wait States, 32-Bit Bus..............................61  
Burst, Pipelined Read Request with Wait States, 8-Bit Bus................................62  
Burst, Pipelined Read Request with Wait States, 16-Bit Bus..............................63  
Using External READY........................................................................................64  
Terminating a Burst with BTERM........................................................................65  
BREQ and BSTALL Operation............................................................................66  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
iv  
Advance Information Datasheet  
80960HA/HD/HT  
50  
BOFF Functional Timing. BOFF occurs during a burst or  
non-burst data cycle........................................................................................... 67  
HOLD Functional Timing.................................................................................... 68  
LOCK Delays HOLDA Timing ............................................................................ 69  
FAIL Functional Timing....................................................................................... 69  
A Summary of Aligned and Unaligned Transfers for 32-Bit Regions ................. 70  
A Summary of Aligned and Unaligned Transfers for 16-Bit Bus ........................ 72  
A Summary of Aligned and Unaligned Transfers for 8-Bit Bus .......................... 73  
Idle Bus Operation.............................................................................................. 74  
Bus States.......................................................................................................... 75  
51  
52  
53  
54  
56  
57  
58  
59  
Tables  
1
2
3
4
5
6
7
8
80960Hx Product Description................................................................................1  
Fail Codes For BIST (bit 7 = 1) .............................................................................4  
Remaining Fail Codes (bit 7 = 0)...........................................................................4  
80960Hx Instruction Set........................................................................................5  
80960HA/HD/HT Package Types and Speeds .....................................................6  
Pin Description Nomenclature...............................................................................7  
80960Hx Processor Family Pin Descriptions ........................................................8  
80960Hx 168-Pin PGA Pinout — Signal Name Order ........................................14  
80960Hx 168-Pin PGA Pinout — Pin Number Order..........................................16  
80960Hx PQ4 Pinout — Signal Name Order ......................................................19  
80960Hx PQ4 Pinout — Pin Number Order........................................................21  
Maximum TA at Various Airflows in °C (PGA Package Only)..............................24  
80960Hx 168-Pin PGA Package Thermal Characteristics..................................24  
Maximum TA at Various Airflows in °C (PQ4 Package Only) ..............................25  
80960Hx 208-Pin PQ4 Package Thermal Characteristics ..................................25  
Fields of 80960Hx Device ID...............................................................................27  
80960Hx Device ID Model Types........................................................................27  
Device ID Version Numbers for Different Steppings ...........................................27  
Operating Conditions...........................................................................................29  
VDIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V)...............30  
80960Hx DC Characteristics...............................................................................32  
80960Hx AC Characteristics ...............................................................................34  
AC Characteristics Notes ....................................................................................36  
80960Hx Boundary Scan Test Signal Timings....................................................36  
80960Hx Boundary Scan Chain..........................................................................76  
Data Sheet Version -006 to -007 Revision History..............................................96  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Advance Information Datasheet  
v
80960HA/HD/HT  
1.0  
About This Document  
This document describes the parametric performance of Intel’s 80960Hx embedded superscalar  
microprocessors. Detailed descriptions for functional topics — other than parametric performance  
— are published in the i960® Hx Microprocessor User’s Guide (272484).  
In this document, “80960Hx” and “i960 Hx processor” refer to the products described in Table 1.  
Throughout this document, information that is specific to each is clearly indicated.  
Figure 1. 80960Hx Block Diagram  
Guarded Memory Unit  
Instruction Prefetch Queue  
Control  
JTAG Port  
Timers  
Instruction Cache  
Memory Region Configuration  
Bus Controller  
16 Kbyte, Four-Way Set-Associative  
Address  
Data  
128-Bit Cache Bus  
Bus Request Queues  
Interrupt  
Port  
Programmable  
Interrupt Controller  
Parallel Instruction Scheduler  
Data Cache  
8 Kbyte, Four-Way Set-Associative  
Multiply/Divide Unit  
Execution Unit  
Data RAM - 2 Kbyte  
Memory-Side  
Machine Bus  
Register-Side  
Machine Bus  
Register Cache - 5 to 15 sets  
Six-Port Register File  
Address Generation Unit  
64-bit SRC1 Bus 32-bit Base Bus  
64-bit SRC2 Bus 128-bit Load Bus  
128-bit Store Bus  
64-bit DST Bus  
2.0  
Intel’s 80960Hx Processor  
Intel’s 80960Hx processor provides new performance levels while maintaining backward  
compatibility (pin1 and software) with the i960 CA/CF processor. This newest member of the family  
of i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs that  
meet multiple price and performance points. This is accomplished by providing processors that can  
run at the bus speed or faster using Intel’s clock multiplying technology (Table 1).The 80960Hx core  
is capable of issuing 150 million instructions per second, using a sophisticated instruction scheduler  
that allows the processor to sustain a throughput of two instructions every core clock, with a peak  
performance of three instructions per clock. The 80960Hx-series comprises three processors, which  
differ in the ratio of core clock speed to external bus speed.  
Table 1. 80960Hx Product Description  
Product  
80960HA  
Core  
1x  
Voltage  
Operating Frequency (bus/core)  
*
3.3 V  
25/25, 33/33, 40/40  
16/32, 25/50, 33/66, 40/80  
20/60, 25/75  
*
80960HD  
2x  
3x  
3.3 V  
*
80960HT  
3.3 V  
*Processor inputs are 5 V tolerant.  
1. The 80960Hx is not “drop-in” compatible in an 80960Cx-based system. Customers can design systems that accept either 80960Hx or Cx  
processors.  
Advance Information Datasheet  
1
 
 
80960HA/HD/HT  
In addition to expanded clock frequency options, the 80960Hx provides essential enhancements for  
an emerging class of high-performance embedded applications. Features include a larger  
instruction cache, data cache, and data RAM than any other 80960 processor to date. It also boasts  
a 32-bit demultiplexed and pipelined burst bus, fast interrupt mechanism, guarded memory unit,  
wait state generator, dual programmable timers, ONCE and IEEE 1149.1-compliant boundary scan  
test and debug support, and new instructions.  
®
2.1  
The i960 Processor Family  
The i960 processor family is a 32-bit RISC architecture created by Intel to serve the needs of  
embedded applications. The embedded market includes applications as diverse as industrial  
automation, avionics, image processing, graphics and communications.  
Because all members of the i960 processor family share a common core architecture, i960  
applications are code-compatible. Each new processor in the family adds its own special set of  
functions to the core to satisfy the needs of a specific application or range of applications in the  
embedded market.  
2.2  
Key 80960Hx Features  
2.2.1  
Execution Architecture  
Independent instruction paths inside the processor allow the execution of multiple, out-of-sequence  
instructions per clock. Register and resource scoreboarding interlocks maintain the logical integrity  
of sequential instructions that are being executed in parallel. To sustain execution of multiple  
instructions in each clock cycle, the processor decodes multiple instructions in parallel and  
simultaneously issues these instructions to parallel processing units. The various processing units  
are then able to independently access instruction operands in parallel from a common register set.  
Local Register Cache integrated on-chip provides automatic register management on call/return  
instructions. Upon a call instruction, the processor allocates a set of local registers for the called  
procedure, then stores the registers for the previous procedure in the on-chip register cache. As  
additional procedures are called, the cache stores the associated registers such that the most recently  
called procedure is the first available by the next return (ret) instruction. The processor can store up to  
fifteen register sets, after which the oldest sets are stored (spilled) into external memory.  
The 80960Hx supports the 80960 architecturally-defined branch prediction mechanism. This  
allows many branches to execute with no pipeline break. With the 80960Hx’s efficient pipeline, a  
branch can take as few as zero clocks to execute. The maximum penalty for an incorrect prediction  
is two core clocks.  
2.2.2  
Pipelined, Burst Bus  
A 32-bit high performance bus controller interfaces the 80960Hx core to the external memory and  
peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at a  
40 MHz external bus clock frequency). A key advantage of this design is its versatility. The user  
can independently program the physical and logical attributes of system memory. Physical  
attributes include wait state profile, bus width, and parity. Logical attributes include cacheability  
and Big or Little Endian byte order. Internally programmable wait states and 16 separately  
configurable physical memory regions allow the processor to interface with a variety of memory  
2
Advance Information Datasheet  
80960HA/HD/HT  
subsystems with minimum system complexity. To reduce the effect of wait states, the bus design is  
decoupled from the core. This lets the processor execute instructions while the bus performs  
memory accesses independently.  
The Bus Controller’s key features include:  
Demultiplexed, Burst Bus to support most efficient DRAM access modes  
Address Pipelining to reduce memory cost while maintaining performance  
32-, 16- and 8-bit modes to facilitate I/O interfacing  
Full internal wait state generation to reduce system cost  
Little and Big Endian support  
Unaligned Access support implemented in hardware  
Three-deep request queue to decouple the bus from the core  
Independent physical and logical address space characteristics  
2.2.3  
2.2.4  
On-Chip Caches and Data RAM  
As shown in Figure 1, the 80960Hx provides generous on-chip cache and storage features to  
decouple CPU execution from the external bus. The processor includes a 16 Kbyte instruction  
cache, an 8 Kbyte data cache and 2 Kbytes of Data RAM. The caches are organized as 4-way set  
associative. Stores that hit the data cache are written through to memory. The data cache performs  
write allocation on cache misses. A fifteen-set stack frame cache allows the processor to rapidly  
allocate and deallocate local registers. All of the on-chip RAM sustains a 4-word (128-bit) access  
every clock cycle.  
Priority Interrupt Controller  
The interrupt unit provides the mechanism for the low latency and high throughput interrupt  
service essential for embedded applications. A priority interrupt controller provides full  
programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 17  
core clocks. The controller supports 31 priority levels. Interrupts are prioritized and signaled within  
10 core clocks of the request. If the interrupt has a higher priority than the processor priority, the  
context switch to the interrupt routine would typically complete in another 7 bus clocks.  
External agents post interrupts via the 8-bit external interrupt port. The Interrupt unit also handles  
the two internal sources from the Timers. Interrupts can be level- or edge-triggered.  
2.2.5  
Guarded Memory Unit  
The Guarded Memory Unit (GMU) provides memory protection without the address translation  
found in Memory Management Units. The GMU contains two memory protection schemes: one  
prevents illegal memory accesses, the other detects memory access violations. Both signal a fault  
to the processor. The programmable protection modes are: user read, write or execute; and  
supervisor read, write or execute.  
Advance Information Datasheet  
3
80960HA/HD/HT  
2.2.6  
Dual Programmable Timers  
The processor provides two independent 32-bit timers, with four programmable clock rates. The  
user configures the timers via the Timer Unit registers. These registers are memory-mapped within  
the 80960Hx, addressable on 32-bit boundaries. The timers have a single-shot mode and  
auto-reload capabilities for continuous operation. Each timer has an independent interrupt request  
to the processor’s interrupt controller.  
2.2.7  
Processor Self Test  
When a system error is detected, the FAIL pin is asserted, a fail code message is driven onto the  
address bus, and the processor stops execution at the point of failure. The only way to resume  
normal operation is to perform a RESET operation. Because System Error generation can occur  
sometime after the bus confidence test and even after initialization during normal processor  
operation, the FAIL pin is HIGH (logic “1”) before the detection of a System Error.  
The processor uses only one read bus-transaction to signal the fail code message; the address of the  
bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 to 0 contain a  
mask recording the possible failures. Bit 7, when set to 1, indicates that the mask contains failures  
from the internal Built-In Self-Test (BIST); when 0, the mask indicates other failures.  
Ignore reserved bits 0 and 1. Also ignore bits 5 and 6 when bit 7 is clear (=0).  
The mask is shown in Table 2 and Table 3.  
Table 2. Fail Codes For BIST (bit 7 = 1)  
Bit  
When Set:  
6
5
4
3
2
1
0
On-chip Data-RAM failure detected by BIST.  
Internal Microcode ROM failure detected by BIST.  
Instruction cache failure detected by BIST.  
Data cache failure detected by BIST.  
Local-register cache or processor core failure detected by BIST.  
Reserved. Always zero.  
Reserved. Always zero.  
Table 3. Remaining Fail Codes (bit 7 = 0)  
Bit  
When Set:  
6
5
4
3
2
1
0
Reserved. Always one.  
Reserved. Always one.  
A data structure within the IMI is not aligned to a word boundary.  
A System Error during normal operation has occurred.  
The Bus Confidence test has failed.  
Reserved. Always zero.  
Reserved. Always zero.  
4
Advance Information Datasheet  
 
 
80960HA/HD/HT  
2.3  
Instruction Set Summary  
Table 4 summarizes the 80960Hx instruction set by logical groupings.  
Table 4. 80960Hx Instruction Set  
Data Movement  
Arithmetic  
Logical  
Bit / Bit Field / Byte  
Add  
Subtract  
Multiply  
And  
Set Bit  
Divide  
Not And  
And Not  
Or  
Clear Bit  
Remainder  
Modulo  
Not Bit  
Load  
Alter Bit  
Store  
Shift  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Move  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
Rotate  
Load Address  
Conditional Select  
Or Not  
(2)  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
(2)  
Byte Swap  
Nand  
(2)  
Conditional Add  
(2)  
Conditional Subtract  
Comparison  
Compare  
Branch  
Call/Return  
Fault  
Conditional Compare  
Call  
Compare and Increment  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call Extended  
Call System  
Return  
Compare and Decrement  
Conditional Fault  
(2)  
Compare Byte  
Synchronize Faults  
(2)  
Compare Short  
Branch and Link  
Test Condition Code  
Check Bit  
Debug  
Processor Mgmt  
Atomic  
Cache Control  
Flush Local Registers  
Modify Arithmetic  
Controls  
Modify Trace Controls  
Mark  
Instruction Cache  
Control  
Atomic Add  
(1,2)  
Modify Process Controls  
Atomic Modify  
(1,2)  
Data Cache Control  
Force Mark  
Interrupt Enable/  
(1,2)  
Disable  
(1)  
System Control  
NOTES:  
1. 80960Hx extensions to the 80960 core instruction set.  
2. 80960Hx extensions to the 80960Cx instruction set.  
Advance Information Datasheet  
5
 
80960HA/HD/HT  
3.0  
Package Information  
This section describes the pins, pinouts and thermal characteristics for the 80960Hx in the 168-pin  
ceramic Pin Grid Array (PGA) package, 208-pin PowerQuad2* (PQ4). For complete package  
specifications and information, see the Intel Packaging Handbook (Order# 240800).  
The 80960HA/HD/HT is offered with eigth speeds and two package types (Table 5). Both the  
168-pin ceramic Pin Grid Array (PGA) and the 208-pin PowerQuad2* (PQ4) devices are specified  
for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 85°C.  
Table 5. 80960HA/HD/HT Package Types and Speeds  
Core Speed  
Bus Speed  
(MHz)  
Package/Name  
Device  
Order #  
(MHz)  
25  
33  
40  
A80960HA25 S L2GX  
A80960HA33 S L2GY  
A80960HA40 S L2GZ  
A80960HD32 S L2GG  
A80960HD50 S L2GH  
A80960HD66 S L2GJ  
A80960HD80 S L2GK  
A80960HT60  
80960HA  
32  
50  
66  
80  
60  
75  
16  
25  
33  
40  
20  
25  
168L PGA  
80960HD  
80960HT  
80960HA  
A80960HT75 S L2GP  
25  
33  
40  
FC80960HA25 S L2GU  
FC80960HA33 S L2GV  
FC80960HA40 S L2GW  
FC80960HD32 S L2GL  
FC80960HD50 S L2GM  
FC80960HD66 S L2GN  
FC80960HD80 S L2LZ  
FC80960HT60 S L2G2  
FC80960HT75 S L2GT  
32  
50  
66  
80  
60  
75  
16  
25  
33  
40  
20  
25  
208L PQFP  
(also known as PQ4)  
80960HD  
80960HT  
6
Advance Information Datasheet  
 
 
80960HA/HD/HT  
3.1  
Pin Descriptions  
This section defines the 80960Hx pins. Table 6 presents the legend for interpreting the pin  
descriptions in Table 7. All pins float while the processor is in the ONCE mode, except TDO,  
which can be driven active according to normal JTAG specifications.  
Table 6. Pin Description Nomenclature  
Symbol  
Description  
I
O
I/O  
-
Input only pin.  
Output only pin.  
Pin can be input or output.  
Pin must be connected as indicated for proper device functionality.  
Synchronous edge sensitive input. This input must meet the setup and hold times relative to  
CLKIN to ensure proper operation of the processor.  
S(E)  
S(L)  
Synchronous level sensitive input. This input must meet the setup and hold times relative to  
CLKIN to ensure proper operation of the processor.  
A(E)  
A(L)  
Asynchronous edge-sensitive input.  
Asynchronous level-sensitive input.  
While the processor bus is in the HOLD state (HOLDA asserted), the pin:  
H(1) is driven to V  
H(0) is driven to V  
H(Z) floats  
CC  
SS  
H(...)  
B(...)  
R(...)  
H(Q) continues to be a valid output  
While the processor is in the bus backoff state (BOFF asserted), the pin:  
B(1) is driven to V  
B(0) is driven to V  
B(Z) floats  
CC  
SS  
B(Q) continues to be a valid output  
While the processor’s RESET pin is asserted, the pin:  
R(1) is driven to V  
R(0) is driven to V  
R(Z) floats  
CC  
SS  
R(Q) continues to be a valid output  
Advance Information Datasheet  
7
 
80960HA/HD/HT  
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 1 of 4)  
Name  
Type  
Description  
ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most  
significant address bit and A2 is the least significant. During a bus access, A31:2  
identify all external addresses to word (4-byte) boundaries. The byte enable  
signals indicate the selected byte in each word. During burst accesses, A3 and A2  
increment to indicate successive addresses.  
O
H(Z)  
B(Z)  
R(Z)  
A31:2  
I/O  
DATA BUS carries 32, 16, or 8-bit data quantities depending on bus width  
configuration. The least significant bit of the data is carried on D0 and the most  
significant on D31. The lower 8 data lines (D7:0) are used when the bus is  
configured for 8-bit data. When configured for 16-bit data, D15:0 are used.  
S(L)  
H(Z)  
B(Z)  
R(Z)  
D31:0  
DATA PARITY carries parity information for the data bus. Each parity bit is  
assigned a group of 8 data bus pins as follows:  
I/O  
DP3 generates/checks parity for D31:24  
DP2 generates/checks parity for D23:16  
DP1 generates/checks parity for D15:8  
DP0 generates/checks parity for D7:0  
S(L)  
H(Z)  
B(Z)  
R(Z)  
DP3:0  
PCHK  
Parity information is generated for a processor write cycle and is checked for a  
processor read cycle. Parity checking and polarity are programmable. Parity  
generation/checking is only performed for the size of the data accessed.  
O
PARITY CHECK indicates the result of a parity check operation. An asserted  
PCHK indicates that the previous bus read access resulted in a parity check error.  
H(Q)  
B(Q)  
R(1)  
BYTE ENABLES select which of the four bytes addressed by A31:2 are active  
during a bus access. Byte enable encoding is dependent on the bus width of the  
memory region accessed:  
32-bit bus:  
BE3 enables D31:24  
BE2 enables D23:16  
BE1 enables D15:8  
BE0 enables D7:0  
O
H(Z)  
B(Z)  
R(1)  
16-bit bus:  
BE3:0  
BE3 becomes Byte High Enable (enables D15:8)  
BE2 is not used (state is undefined)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Byte Low Enable (enables D7:0)  
8-bit bus:  
BE3 is not used (state is undefined)  
BE2 is not used (state is undefined)  
BE1 Address Bit 1 (A1)  
BE0 Address Bit 0 (A0)  
WRITE/READ is low for read accesses and high for write accesses. W/R  
becomes valid during the address phase of a bus cycle and remains valid until the  
end of the cycle for non-pipelined accesses. For pipelined accesses, W/R  
changes state when the next address is presented.  
O
H(Z)  
B(Z)  
R(0)  
W/R  
D/C  
0= Read  
1= Write  
O
DATA/CODE indicates that a bus access is a data access or an instruction  
access. D/C has the same timing as W/R.  
H(Z)  
B(Z)  
R(0)  
0 = Code  
1 = Data  
8
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 2 of 4)  
Name  
Type  
Description  
SUPERVISOR ACCESS indicates whether the current bus access originates from  
a request issued while in supervisor mode or user mode. SUP can be used by the  
memory subsystem to isolate supervisor code and data structures from  
non-supervisor access.  
O
H(Z)  
B(Z)  
R(1)  
SUP  
0 = Supervisor Mode  
1 = User Mode  
O
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
ADS is asserted for the first clock of a bus access.  
H(Z)  
B(Z)  
R(1)  
ADS  
READY, when enabled for a memory region, is asserted by the memory  
subsystem to indicate the completion of a data transfer. READY is used to  
indicate that read data on the bus is valid, or that a write transfer has completed.  
READY works in conjunction with the internal wait state generator to  
accommodate various memory speeds. READY is sampled after any programmed  
wait states:  
I
READY  
S(L)  
During each data cycle of a burst access  
During the data cycle of a non-burst access  
BURST TERMINATE, when enabled for a memory region, is asserted by the  
memory subsystem to terminate a burst access in progress. When BTERM is  
asserted, the current burst access is terminated and another address cycle  
occurs.  
I
BTERM  
WAIT  
S(L)  
O
WAIT indicates the status of the internal wait-state generator. WAIT is asserted  
H(Z)  
B(Z)  
R(1)  
when the internal wait state generator generates N  
, N  
, N  
and N  
WAD  
RAD  
WDD RDD  
wait states. WAIT can be used to derive a write data strobe.  
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses after the internal wait-state  
generator reaches zero. BLAST remains active as long as wait states are inserted  
via the READY pin. BLAST becomes inactive after the final data transfer in a bus  
cycle.  
O
H(Z)  
B(Z)  
R(1)  
BLAST  
DT/R  
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is  
used with DEN to provide control for data transceivers connected to the data bus.  
DT/R is driven low to indicate the processor expects data (a read cycle). DT/R is  
driven high when the processor is “transmitting” data (a store cycle). DT/R only  
changes state when DEN is high.  
O
H(Z)  
B(Z)  
R(0)  
0 = Data Receive  
1 = Data Transmit  
DATA ENABLE indicates data transfer cycles during a bus access. DEN is  
asserted at the start of the first data cycle in a bus access and de-asserted at the  
end of the last data cycle. DEN remains asserted for an entire bus request, even  
when that request spans several bus accesses. For example, a ldq instruction  
starting at an unaligned quad word boundary is one bus request spanning at least  
two bus accesses. DEN remains asserted throughout all the accesses (including  
ADS states) and de-asserts when the Iqd instruction request is satisfied. DEN is  
used with DT/R to provide control for data transceivers connected to the data bus.  
DEN remains asserted for sequential reads from pipelined memory regions.  
O
H(Z)  
B(Z)  
R(1)  
DEN  
BUS LOCK indicates that an atomic read-modify-write operation is in progress.  
LOCK may be used by the memory subsystem to prevent external agents from  
accessing memory that is currently involved in an atomic operation (e.g., a  
semaphore). LOCK is asserted in the first clock of an atomic operation and  
de-asserted when BLAST is deasserted in the last bus cycle.  
O
H(Z)  
B(Z)  
R(1)  
LOCK  
Advance Information Datasheet  
9
80960HA/HD/HT  
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 3 of 4)  
Name  
Type  
Description  
HOLD REQUEST signals that an external agent requests access to the  
processor’s address, data, and control buses. When HOLD is asserted, the  
processor:  
I
Completes the current bus request.  
HOLD  
S(L)  
Asserts HOLDA and floats the address, data, and control buses.  
When HOLD is deasserted, the HOLDA pin is deasserted and the processor  
reassumes control of the address, data, and control pins.  
O
HOLD ACKNOWLEDGE indicates to an external master that the processor has  
relinquished control of the bus. The processor grants HOLD requests and enters  
the HOLDA state while the RESET pin is asserted.  
H(1)  
B(0)  
R(Q)  
HOLDA  
BOFF  
HOLDA is never granted while LOCK is asserted.  
BUS BACKOFF forces the processor to immediately relinquish control of the bus  
on the next clock cycle. When READY/BTERM is enabled and:  
When BOFF is asserted, the address, data, and control buses are floated on the  
next clock cycle and the current access is aborted.  
I
S(L)  
When BOFF is deasserted, the processor resumes by regenerating the aborted  
bus access.  
See Figure 16 on page 40 for BOFF timing requirements.  
O
BUS REQUEST indicates that a bus request is pending in the bus controller.  
BREQ does not indicate whether or not the processor is stalled. See BSTALL for  
processor stall status. BREQ can be used with BSTALL to indicate to an external  
bus arbiter the processor’s bus ownership requirements.  
H(Q)  
B(Q)  
R(0)  
BREQ  
O
BUS STALL indicates that the processor has stalled pending the result of a  
request in the bus controller. When BSTALL is asserted, the processor must  
regain bus ownership to continue processing (i.e., it can no longer execute strictly  
out of on-chip cache memory).  
H(Q)  
B(Q)  
R(0)  
BSTALL  
CYCLE TYPE indicates the type of bus cycle currently being started or processor  
state. CT3:0 encoding follows:  
Cycle Type  
ADSCT3:0  
Program-initiated access using 8-bit bus  
Program-initiated access using 16-bit bus  
Program-initiated access using 32-bit bus  
Event-initiated access using 8-bit bus  
Event-initiated access using 16-bit bus  
Event-initiated access using 32-bit bus  
Reserved  
00000  
00001  
00010  
00100  
00101  
00110  
00X11  
01XXX  
1XXXX  
O
H(Z)  
B(Z)  
R(Z)  
CT3:0  
Reserved for future products  
Reserved  
EXTERNAL INTERRUPT pins are used to request interrupt service. These pins  
can be configured in three modes:  
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated  
inputs can be programmed to be level (low or high) or edge (rising or falling)  
sensitive.  
I
XINT7:0  
A(E)  
A(L)  
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt  
pins are level sensitive in this mode.  
Mixed Mode: The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act  
as the five most significant bits of a vectored source. The least significant bits of  
the vectored source are set to “010” internally.  
I
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
NMI is the highest priority interrupt source. NMI is falling edge triggered.  
NMI  
A(E)  
10  
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 4 of 4)  
Name  
Type  
Description  
CLOCK INPUT provides the time base for the 80960Hx. All internal circuitry is  
synchronized to CLKIN. All input and output timings are specified relative to  
CLKIN.  
CLKIN  
I
For the 80960HD, the 2x internal clock is derived by multiplying the CLKIN  
frequency by 2. For the 80960HT, the 3x internal clock is derived by multiplying  
the CLKIN frequency by 3.  
RESET forces the device into reset. RESET causes all external and internal  
signals to return to their reset state (if defined). The rising edge of RESET starts  
the processor boot sequence.  
I
RESET  
STEST  
A(L)  
I
SELF TEST, when asserted during the rising edge of RESET, causes the  
processor to execute its built in self-test.  
S(L)  
FAIL indicates a failure of the processor’s built-in self-test performed during  
initialization. FAIL is asserted immediately out of reset and toggles during self-test  
to indicate the status of individual tests. If self-test passes, FAIL is de-asserted  
and the processor branches to the user’s initialization code. When self-test fails,  
the FAIL pin asserts and the processor ceases execution.  
O
H(Q)  
B(Q)  
R(0)  
FAIL  
ON-CIRCUIT EMULATION control: the processor samples this pin during reset. If  
it is asserted low at the end of reset, the processor enters ONCE mode. In ONCE  
mode, the processor stops all clocks and floats all output pins except the TDO pin.  
ONCE  
I
ONCE uses an internal pull-up resistor; see R definition in Table 21 “80960Hx  
PU  
DC Characteristics” on page 32. Pull this pin high when not in use.  
TEST CLOCK provides the clocking function for IEEE 1149.1 Boundary Scan  
testing.  
TCK  
TDI  
I
I
TEST DATA INPUT is the serial input pin for IEEE 1149.1 Boundary Scan testing.  
TDI uses an internal pull-up resistor; see R definition in Table 21 “80960Hx DC  
PU  
Characteristics” on page 32.  
TEST DATA OUTPUT is the serial output pin for IEEE 1149.1 Boundary Scan  
testing. ONCE does not disable this pin.  
TDO  
O
TEST RESET asynchronously resets the Test Access Port (TAP) controller. TRST  
must be held low at least 10,000 clock cycles after power-up. One method is to  
provide TRST with a separate power-on-reset circuit. TRST includes an internal  
TRST  
TMS  
I
I
pull-up resistor; see R definition in Table 21 “80960Hx DC Characteristics” on  
PU  
page 32. Pull this pin low when not in use.  
TEST MODE SELECT is sampled at the rising edge of TCK. TCK controls the  
sequence of TAP controller state changes for IEEE 1149.1 Boundary Scan  
testing. TMS uses an internal pull-up resistor; see R definition in Table 21  
PU  
“80960Hx DC Characteristics” on page 32.  
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O  
buffers. Connect this signal to +5 V for use with inputs which exceed 3.3 V. When  
all inputs are from 3.3 V components, connect this signal to 3.3 V.  
VCC5  
I
I
VCCPLL  
PLL VOLTAGE is the +3.3 VDC analog input for the PLL.  
VOLTAGE DETECT signal allows external system logic to distinguish between a  
5 V 80960Cx processor and the 3.3 V 80960Hx processor. This signal is active  
low for a 3.3 V 80960Hx (it is high impedance for 5 V 80960Cx). This pin is  
available only on the PGA version.  
VOLDET  
O
0 = 80960Hx  
1 = 80960Cx  
Advance Information Datasheet  
11  
 
 
 
80960HA/HD/HT  
3.2  
80960Hx Mechanical Data  
3.2.1  
80960Hx PGA Pinout  
Figure 2 depicts the complete 80960Hx PGA pinout as viewed from the top side of the component  
(i.e., pins facing down). Figure 3 shows the complete 80960Hx PGA pinout as viewed from the  
pin-side of the package (i.e., pins facing up). Table 9 lists the 80960Hx pin names with package  
location. See Section 4.3, “Recommended Connections” on page 30 for specifications and  
recommended connections.  
Figure 2. 80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down)  
S
R
Q
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
1
2
D25  
D29  
D24  
D27  
D21  
D23  
D26  
D19  
D20  
D22  
D17  
D18  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D6  
D7  
D4  
D0  
D5  
D2  
NC  
D3  
BOFF  
V
SS  
V
V
V
V
D1 STEST FAIL  
CC  
SS  
CC  
SS  
CC  
SS  
CC  
3
3
READY D31  
V
CC  
V
V
V
V
V
V
V
CC  
ONCE DP1  
DP0  
DP2  
SS  
SS  
SS  
4
4
V
DP3  
HOLDA BTERM D28  
SS  
5
5
HOLD D30  
BE3  
VCC5 TCK VOLDET  
6
6
V
V
TMS  
CC  
TRST  
TDI  
CC  
BE2  
ADS  
7
7
V
V
V
V
V
CC  
SS  
SS  
CC  
BE1  
8
8
A80960Hx  
V
CC  
SS  
V
V
V
V
V
PCHK  
TDO  
NC  
BLAST  
SS  
SS  
SS  
SS  
9
9
V
SS  
V
DEN  
W/R  
BE0  
CC  
M
© 19xx  
i
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
V
V
V
VCCPLL  
CC  
SS  
SS  
NC  
V
V
XXXXXXXX SS  
CC  
CTO  
CT1  
CC  
DT/R  
V
WAIT BSTALL SUP  
D/C BREQ A30  
SS  
CC  
CLKIN  
NC  
NC  
CT2  
CT3  
LOCK A29  
A28  
V
CC  
A31  
A27  
A26  
A23  
A24  
A21  
A20  
A19  
V
CC  
V
V
V
V
V
V
V
V
V
V
CC  
NMI XINT4 XINT0 XINT1  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A16  
V
A13  
V
A7  
A8  
V
A4  
A2  
A3  
CC  
CC  
CC  
CC  
CC  
XINT6 XINT3 RESET  
XINT7 XINT5 XINT2  
A25  
A22  
A18  
A17  
A15  
A14  
A12  
A11  
A10  
A9  
A6  
A5  
S
R
Q
P
N
M
L
K
J
H
G
F
E
D
C
B
A
12  
Advance Information Datasheet  
 
80960HA/HD/HT  
Figure 3. 80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
1
2
1
2
V
BOFF  
D3  
D1  
D5  
D2  
NC  
D7  
D4  
D0  
D8  
D6  
D9  
D11  
D10  
D12  
D13  
D15  
D14  
D16  
D17  
D18  
D19  
D20  
D22  
D21  
D23  
D26  
D24  
D27  
D25  
D29  
SS  
FAIL  
STEST  
V
V
V
V
CC  
CC  
SS  
CC  
SS  
CC  
SS  
3
3
DP0  
DP2  
DP1 ONCE  
DP3  
V
V
V
V
V
V
V
V
CC  
D31 READY  
CC  
SS  
SS  
SS  
4
4
V
SS  
D28 BTERM HOLDA  
D30 HOLD BE3  
5
5
VOLDET TCK VCC5  
6
6
TRST  
TDI  
V
TMS  
CC  
SS  
V
V
ADS  
BE2  
BE1  
CC  
7
7
V
V
CC  
V
V
SS  
CC  
8
8
TDO  
NC  
PCHK  
V
V
V
V
BLAST  
DEN  
SS  
SS  
SS  
SS  
CC  
Package Lid  
9
9
V
CC  
BE0  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
V
VCCPLL  
SS  
NC  
V
V
V
W/R  
SS  
SS  
CC  
CT0  
CT1  
V
V
V
V
V
CC  
DT/R  
CC  
CC  
SS  
SS  
SUP BSTALL WAIT  
A30 BREQ D/C  
CT2  
CT3  
NC  
NC  
CLKIN  
V
A28  
A24  
A21  
A29  
A26  
A23  
LOCK  
A31  
CC  
XINT1 XINT0 XINT4 NMI  
V
V
V
V
V
V
V
V
V
V
V
CC  
A20  
A19  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
RESET XINT3 XINT6  
XINT2 XINT5 XINT7  
A2  
A4  
V
A7  
V
A13  
V
A16  
A27  
CC  
CC  
CC  
CC  
CC  
A3  
A5  
A6  
A8  
A9  
A10  
A11  
A12  
A14  
A15  
A17  
A18  
A22  
A25  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
Advance Information Datasheet  
13  
80960HA/HD/HT  
Table 8. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 1 of 2)  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
A2  
A3  
D16  
D17  
E16  
E17  
F17  
G16  
G17  
H17  
J17  
ADS  
BE0  
BE1  
BE2  
BE3  
BLAST  
BOFF  
BREQ  
BSTALL  
BTERM  
CLKIN  
CT0  
CT1  
CT2  
CT3  
D/C  
R6  
R9  
S7  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
DEN  
DP0  
DP1  
DP2  
DP3  
DT/R  
FAIL  
L2  
L1  
LOCK  
NC  
S14  
A9  
A4  
M1  
N1  
N2  
P1  
P2  
Q1  
P3  
Q2  
R1  
S1  
Q3  
R2  
Q4  
S2  
Q5  
R3  
S9  
A3  
B3  
A4  
B4  
S11  
A2  
NC  
A10  
B13  
B14  
D3  
A5  
S6  
NC  
A6  
S5  
NC  
A7  
S8  
NC  
A8  
B1  
NMI  
D15  
C3  
A9  
R13  
R12  
R4  
C13  
A11  
A12  
A13  
A14  
S13  
E3  
ONCE  
PCHK  
READY  
RESET  
STEST  
SUP  
TCK  
TDI  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
B8  
K17  
L17  
L16  
M17  
N17  
N16  
P17  
Q17  
P16  
P15  
Q16  
R17  
R16  
Q15  
S17  
R15  
S16  
Q14  
R14  
Q13  
S15  
S3  
A16  
B2  
Q12  
B5  
A7  
TDO  
TMS  
TRST  
A8  
D0  
B6  
D1  
C2  
D2  
C1  
E2  
A6  
D2  
V
V
V
V
V
V
V
V
V
V
V
V
B7  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D3  
B9  
D4  
B11  
B12  
C6  
D5  
D1  
F2  
D6  
D7  
E1  
C14  
E15  
F3  
D8  
F1  
D9  
G1  
H2  
H1  
J1  
D10  
D11  
D12  
D13  
F16  
G2  
HOLD  
HOLDA  
R5  
S4  
H16  
J2  
K1  
14  
Advance Information Datasheet  
80960HA/HD/HT  
Table 8. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 2 of 2)  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
V
V
V
V
V
V
V
V
V
V
V
V
J16  
K2  
VCCPLL  
VOLDET  
B10  
A5  
V
V
V
V
V
V
V
V
V
V
V
V
V
H3  
H15  
J3  
V
V
Q10  
Q11  
S10  
S12  
B15  
A15  
A17  
B16  
C15  
B17  
C16  
C17  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
K16  
M2  
V
V
V
V
V
V
V
V
V
V
V
A1  
W/R  
WAIT  
XINT0  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
XINT6  
XINT7  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
C4  
J15  
K3  
M16  
N3  
C7  
C8  
K15  
L3  
N15  
Q6  
C9  
C10  
C11  
C12  
F15  
G3  
L15  
M3  
M15  
Q7  
R7  
R8  
R10  
R11  
C5  
Q8  
VCC5  
G15  
Q9  
Advance Information Datasheet  
15  
80960HA/HD/HT  
Table 9. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 1 of 2)  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
A1  
A2  
V
B14  
B15  
B16  
B17  
C1  
NC  
XINT0  
XINT3  
XINT5  
D3  
E15  
E16  
E17  
F1  
V
K15  
K16  
K17  
L1  
V
SS  
CC  
SS  
FAIL  
DP0  
A4  
V
CC  
A3  
A5  
D8  
D6  
A11  
D15  
D14  
A4  
DP2  
A5  
VOLDET  
TRST  
TDI  
F2  
L2  
A6  
C2  
D1  
F3  
V
L3  
V
V
CC  
SS  
SS  
A7  
C3  
ONCE  
F15  
F16  
F17  
G1  
V
L15  
L16  
L17  
M1  
SS  
CC  
A8  
TDO  
NC  
C4  
V
V
A13  
A12  
D16  
SS  
A9  
C5  
VCC5  
A6  
D9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
NC  
C6  
V
CC  
CT0  
C7  
V
V
V
V
V
V
G2  
V
M2  
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CT1  
C8  
G3  
V
M3  
V
V
SS  
SS  
SS  
SS  
CC  
CT2  
C9  
G15  
G16  
G17  
H1  
V
M15  
M16  
M17  
N1  
CT3  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
D1  
A7  
A8  
V
XINT1  
RESET  
XINT2  
BOFF  
STEST  
DP1  
A14  
D17  
D18  
D11  
D10  
CLKIN  
H2  
N2  
V
H3  
V
V
N3  
V
V
CC  
SS  
SS  
CC  
CC  
CC  
B2  
XINT4  
XINT6  
XINT7  
D5  
H15  
H16  
H17  
J1  
N15  
N16  
N17  
P1  
B3  
V
A16  
A15  
D19  
D20  
D22  
A20  
A19  
A17  
D21  
D23  
D26  
B4  
DP3  
A9  
D12  
B5  
TCK  
B6  
TMS  
D2  
D2  
J2  
V
P2  
CC  
B7  
V
D3  
NC  
J3  
V
V
P3  
CC  
SS  
SS  
CC  
B8  
PCHK  
D15  
D16  
D17  
E1  
NMI  
A2  
J15  
J16  
J17  
K1  
P15  
P16  
P17  
Q1  
B9  
V
V
CC  
B10  
B11  
B12  
B13  
VCCPLL  
A3  
A10  
D13  
V
V
D7  
CC  
CC  
E2  
D4  
K2  
V
Q2  
CC  
NC  
E3  
D0  
K3  
V
Q3  
SS  
16  
Advance Information Datasheet  
80960HA/HD/HT  
Table 9. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 2 of 2)  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
PGA  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
Q4  
Q5  
D28  
D30  
Q16  
Q17  
R1  
A21  
A18  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
S1  
V
S6  
BE2  
BE1  
CC  
BSTALL  
BREQ  
A29  
S7  
Q6  
V
V
V
V
V
V
D24  
S8  
BLAST  
DEN  
W/R  
CC  
SS  
SS  
SS  
SS  
SS  
Q7  
R2  
D27  
S9  
Q8  
R3  
D31  
A26  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
Q9  
R4  
BTERM  
HOLD  
ADS  
A23  
DT/R  
WAIT  
D/C  
Q10  
Q11  
Q12  
Q13  
Q14  
Q15  
R5  
A22  
R6  
D25  
SUP  
A30  
A28  
A24  
R7  
V
V
S2  
D29  
LOCK  
A31  
CC  
CC  
R8  
S3  
READY  
HOLDA  
BE3  
R9  
BE0  
S4  
A27  
R10  
V
S5  
A25  
CC  
Advance Information Datasheet  
17  
80960HA/HD/HT  
3.2.2  
80960Hx PQ4 Pinout  
Figure 4. 80960Hx 208-Pin PQ4 Pinout  
PIN 105  
PIN 104  
PIN 156  
PIN 157  
VSS  
VCC  
A31  
VSS  
VCC  
NMI  
XINT7  
XINT6  
XINT5  
XINT4  
VSS  
VCC  
BREQ  
LOCK  
VSS  
SUP  
D/C  
VCC  
VSS  
VSS  
VCC  
VCC  
XINT3  
XINT2  
XINT1  
XINT0  
VSS  
BSTALL  
WAIT  
VCC  
VSS  
DT/R  
VCC  
W/R  
VCC  
VSS  
RESET  
CLKIN  
VCC  
DEN  
VCCPLL  
VSS  
BLAST  
®
BE0  
BE1  
VCC  
VSS  
VCC  
CT3  
CT2  
CT1  
i960  
BE2  
BE3  
ADS  
VCC  
VSS  
CT0  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
FC80960Hx  
TDO  
PCHK  
VSS  
HOLDA  
VCC  
TDI  
XXXXXXXX SS  
VSS  
HOLD  
TMS  
TRST  
READY  
BTERM  
VCC  
M
© 19xx  
TCK  
VSS  
i
VCC  
VCC5  
VSS  
VSS  
D31  
D30  
D29  
D28  
VCC  
VCC  
VSS  
D27  
D26  
D25  
D24  
VSS  
VCC  
VSS  
VCC  
DP3  
DP2  
VCC  
VSS  
DP0  
DP1  
STEST  
PIN 53  
PIN 208  
PIN 1  
PIN 52  
18  
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 10. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 1 of 2)  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
A2  
A3  
151  
150  
147  
146  
145  
144  
141  
140  
139  
138  
135  
134  
133  
132  
127  
126  
125  
124  
121  
120  
119  
118  
113  
112  
111  
110  
107  
106  
105  
104  
77  
BE0  
BE1  
BE2  
BE3  
BLAST  
BOFF  
BREQ  
BSTALL  
BTERM  
CLKIN  
CT0  
CT1  
CT2  
CT3  
D/C  
83  
82  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
DEN  
DP0  
DP1  
DP2  
DP3  
DT/R  
FAIL  
39  
40  
41  
42  
45  
50  
51  
52  
54  
55  
56  
57  
61  
62  
63  
64  
85  
206  
207  
203  
202  
89  
5
PCHK  
READY  
RESET  
STEST  
SUP  
189  
68  
174  
208  
97  
194  
191  
188  
192  
193  
1
A4  
79  
A5  
78  
A6  
84  
A7  
10  
TCK  
A8  
100  
91  
TDI  
A9  
TDO  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
ADS  
67  
TMS  
175  
183  
182  
181  
180  
96  
TRST  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
4
9
11  
17  
19  
25  
31  
33  
38  
44  
46  
49  
59  
60  
66  
71  
74  
76  
81  
87  
D0  
12  
D1  
13  
D2  
14  
D3  
15  
D4  
20  
D5  
21  
D6  
22  
D7  
23  
D8  
26  
D9  
27  
D10  
D11  
D12  
D13  
D14  
D15  
28  
29  
HOLD  
HOLDA  
LOCK  
NMI  
ONCE  
69  
72  
99  
159  
6
34  
35  
36  
37  
Advance Information Datasheet  
19  
 
 
80960HA/HD/HT  
Table 10. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 2 of 2)  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
92  
V
V
V
V
V
187  
196  
199  
201  
204  
197  
177  
2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
70  
73  
V
V
V
V
V
V
V
V
V
V
V
164  
170  
172  
178  
184  
186  
190  
195  
198  
200  
205  
88  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
95  
101  
102  
109  
115  
117  
123  
128  
131  
137  
143  
149  
153  
154  
158  
165  
171  
173  
176  
179  
185  
75  
80  
86  
VCC5  
93  
VCCPLL  
94  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
98  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
3
103  
108  
114  
116  
122  
129  
130  
136  
142  
148  
152  
155  
156  
157  
7
8
16  
18  
24  
30  
32  
43  
47  
48  
53  
58  
65  
W/R  
WAIT  
XINT0  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
XINT6  
XINT7  
90  
169  
168  
167  
166  
163  
162  
161  
160  
20  
Advance Information Datasheet  
80960HA/HD/HT  
Table 11. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 1 of 2)  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
1
V
V
V
V
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
V
V
V
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
D28  
D29  
D30  
D31  
91  
92  
BSTALL  
CC  
SS  
SS  
CC  
CC  
SS  
CC  
2
V
CC  
3
93  
V
V
SS  
SS  
CC  
4
D12  
D13  
D14  
D15  
94  
5
FAIL  
V
95  
V
SS  
CC  
6
ONCE  
V
96  
D/C  
7
V
V
V
BTERM  
READY  
HOLD  
97  
SUP  
SS  
SS  
CC  
8
V
98  
V
SS  
CC  
9
D16  
D17  
D18  
D19  
99  
LOCK  
BREQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
BOFF  
V
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
SS  
CC  
V
V
V
V
CC  
CC  
CC  
D0  
D1  
D2  
D3  
HOLDA  
V
V
V
V
SS  
SS  
CC  
SS  
CC  
V
A31  
A30  
A29  
A28  
D20  
V
SS  
CC  
V
V
V
V
V
V
SS  
CC  
SS  
CC  
CC  
SS  
SS  
CC  
V
V
V
ADS  
BE3  
BE2  
V
SS  
CC  
V
D4  
D5  
D6  
D7  
D21  
D22  
D23  
V
A27  
A26  
A25  
A24  
SS  
CC  
V
BE1  
BE0  
V
SS  
V
D24  
D25  
D26  
D27  
BLAST  
DEN  
V
SS  
CC  
SS  
CC  
V
V
D8  
D9  
V
V
SS  
CC  
SS  
CC  
V
V
D10  
D11  
V
V
V
W/R  
DT/R  
WAIT  
A23  
A22  
A21  
SS  
CC  
CC  
V
SS  
Advance Information Datasheet  
21  
 
80960HA/HD/HT  
Table 11. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 2 of 2)  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
PQ4  
Pin  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
A20  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
V
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
V
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
V
CC  
CC  
CC  
V
A7  
XINT3  
XINT2  
XINT1  
XINT0  
TDO  
SS  
CC  
V
A6  
A5  
A4  
PCHK  
A19  
A18  
A17  
A16  
V
SS  
TDI  
TMS  
TRST  
TCK  
V
V
SS  
CC  
SS  
CC  
V
V
V
A3  
A2  
V
CC  
SS  
CC  
V
V
V
V
SS  
SS  
CC  
SS  
CC  
V
RESET  
CLKIN  
V
SS  
CC  
CC  
V
V
V
VCC5  
A15  
A14  
A13  
A12  
V
V
CC  
SS  
CC  
V
V
V
VCCPLL  
V
SS  
SS  
SS  
CC  
V
V
SS  
CC  
SS  
CC  
V
V
V
V
CT3  
CT2  
CT1  
CT0  
DP3  
DP2  
SS  
CC  
V
NMI  
A11  
A10  
A9  
XINT7  
XINT6  
XINT5  
XINT4  
V
CC  
V
SS  
V
DP0  
DP1  
SS  
CC  
A8  
V
V
V
V
SS  
STEST  
SS  
SS  
22  
Advance Information Datasheet  
 
80960HA/HD/HT  
3.3  
Package Thermal Specifications  
The 80960Hx is specified for operation when TC (case temperature) is within the range of  
0°C–85°C. TC may be measured in any environment to determine whether the 80960Hx is within  
the specified operating range. Measure the case temperature at the center of the top surface,  
opposite the pins. Refer to Figure 5.  
TA (ambient temperature) is calculated from θCA (thermal resistance from case to ambient) using  
the equation:  
T
= T – P*θ  
C CA  
A
Table 12 shows the maximum TA allowable (without exceeding TC) at various airflows and  
operating frequencies (fCLKIN).  
Note that TA is greatly improved by attaching fins or a heatsink to the package. P (maximum power  
consumption) is calculated by using the typical ICC as tabulated in Section 4.6, “DC  
Specifications” on page 32 and VCC of 3.3 V.  
Figure 5. Measuring 80960Hx PGA Case Temperature  
Measure PGA/PQ4 temperature at  
center of top surface  
Advance Information Datasheet  
23  
 
80960HA/HD/HT  
Table 12. Maximum TA at Various Airflows in °C (PGA Package Only)  
Airflow-ft/min (m/sec)  
f
0
200  
400  
600  
800  
1000  
CLKIN  
(MHz)  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.07)  
25  
33  
40  
69  
63  
59  
74  
70  
67  
78  
75  
73  
79  
77  
75  
80  
79  
77  
80  
79  
77  
T
with  
A
Heatsink*  
Core  
1X Bus  
Clock  
T
25  
33  
40  
64  
56  
50  
67  
62  
56  
71  
67  
63  
74  
70  
67  
75  
72  
69  
76  
74  
71  
A
without  
Heatsink  
16  
25  
33  
40  
68  
58  
49  
41  
73  
66  
60  
55  
77  
73  
69  
65  
79  
75  
71  
68  
80  
77  
74  
72  
80  
77  
74  
72  
T
with  
A
Heatsink*  
Core  
2X Bus  
Clock  
16  
25  
33  
40  
62  
49  
38  
27  
66  
56  
46  
38  
71  
62  
55  
48  
73  
66  
60  
55  
75  
68  
63  
58  
76  
71  
66  
62  
T
A
without  
Heatsink  
T
with  
20  
25  
53  
45  
63  
58  
71  
67  
73  
70  
76  
73  
76  
73  
A
Heatsink*  
Core  
3X Bus  
Clock  
T
A
20  
25  
43  
33  
51  
42  
58  
51  
63  
58  
66  
61  
68  
64  
without  
Heatsink  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
Table 13. 80960Hx 168-Pin PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01) (2.03) (3.07) (4.06) (5.07)  
θ Junction-to-Case  
(Case measured as  
shown in Figure 5)  
θ
JA  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
θ
JC  
θ Case-to-Ambient  
(No Heatsink)  
17  
13  
14  
9
11  
6
9
5
8
4
7
4
θ Case-to-Ambient  
(With Heatsink)*  
NOTES:  
1. This table applies to 80960Hx PGA plugged into socket or soldered directly to board.  
2. θ = θ + θ  
JA  
JC  
CA  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
24  
Advance Information Datasheet  
80960HA/HD/HT  
Table 14. Maximum TA at Various Airflows in °C (PQ4 Package Only)  
Airflow-ft/min (m/sec)  
f
0
200  
400  
600  
800  
1000  
CLKIN  
(MHz)  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.07)  
25  
33  
40  
71  
67  
63  
76  
74  
71  
79  
77  
75  
79  
77  
75  
80  
79  
77  
80  
79  
77  
T
with  
A
Heatsink*  
Core  
1X Bus  
Clock  
T
25  
33  
40  
70  
65  
61  
73  
68  
65  
75  
72  
69  
75  
72  
69  
76  
74  
71  
76  
74  
71  
A
without  
Heatsink  
16  
25  
33  
40  
71  
62  
55  
48  
76  
71  
66  
62  
79  
75  
71  
68  
79  
75  
71  
68  
80  
77  
74  
72  
80  
77  
74  
72  
T
with  
A
Heatsink*  
Core  
2X Bus  
Clock  
16  
25  
33  
40  
69  
60  
52  
42  
72  
64  
57  
51  
75  
68  
63  
58  
75  
68  
63  
58  
76  
71  
66  
62  
76  
71  
66  
62  
T
A
without  
Heatsink  
T
with  
20  
25  
58  
51  
68  
64  
73  
70  
73  
70  
76  
73  
76  
73  
A
Heatsink*  
Core  
3X Bus  
Clock  
T
A
20  
25  
56  
48  
61  
55  
66  
61  
66  
61  
68  
64  
68  
64  
without  
Heatsink  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
Table 15. 80960Hx 208-Pin PQ4 Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01) (2.03) (3.07) (4.06) (5.07)  
θ Junction-to-Case  
(Case measured as  
shown in Figure 5)  
θ
JA  
1
1
1
1
1
1
θ
JC  
θ Case-to-Ambient  
(No Heatsink)  
12  
11  
10  
7
8
5
8
5
7
4
7
4
θ Case-to-Ambient  
(With Heatsink)*  
NOTES:  
1. This table applies to 80960Hx PQ4 plugged into socket or soldered directly to board.  
2. θ = θ + θ  
JA  
JC  
CA  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
Advance Information Datasheet  
25  
 
 
80960HA/HD/HT  
3.4  
3.5  
Heat Sink Adhesives  
Intel recommends silicone-based adhesives to attach heat sinks to the PGA package. There is no  
particular recommendation concerning the PQ4 package.  
PowerQuad4 Plastic Package  
The 80960Hx family is available in an improved version of the common 208-lead SQFP plastic  
package called the PowerQuad4* (PQ4). The PQ4 package dimensions and lead pitch are identical  
to the SQFP package and the former PQ2 package, so the PQ4 fits into the same board footprint.  
The advantage of the PQ4 package is the superior thermal conductivity that allows the plastic  
version of the 80960Hx to operate with the same 0-85°C temperature specifications as the more  
expensive ceramic PGA package.  
The PQ4 package integrates a copper heat sink within the package to dissipate heat effectively. See  
Table 14 and Table 15.  
3.6  
Stepping Register Information  
The memory-mapped register at FF008710H contains the 80960Hx Device ID. The ID is identical  
to the ID obtained from a JTAG Query. Figure 6 defines the current 80960Hx Device IDs. The  
value for device identification is compliant with the IEEE 1149.1 specification and Intel standards.  
Table 16 describes the fields of the device ID.  
Figure 6. 80960Hx Device Identification Register  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
1
0
0
0
1
0
0
0
0 1 0  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
26  
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 16. Fields of 80960Hx Device ID  
Field  
Version  
Value  
See Table 18  
Definition  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
V
1 = 3.3 V device  
CC  
00 0100  
(Indicates i960 CPU)  
Product Type  
Generation Type  
Model  
Designates type of product.  
0010 = H-series  
See Table 17  
Indicates the generation (or series) the product belongs to.  
Indicates member within a series and specific model  
information.  
000 0000 1001  
(Indicates Intel)  
Manufacturer ID  
Manufacturer ID assigned by IEEE.  
Table 17. 80960Hx Device ID Model Types  
Device  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
‘1’  
CC  
80960HA  
80960HD  
80960HT  
1
000100  
000100  
000100  
0010  
0010  
0010  
00000  
00001  
00010  
00000001001  
00000001001  
00000001001  
1
1
1
See  
1
Table 18  
1
Table 18. Device ID Version Numbers for Different Steppings  
Stepping  
Version  
A0  
0000  
0001  
0001  
0010  
A1  
A2  
B0, B2  
This data sheet applies to the B2 stepping.  
Advance Information Datasheet  
27  
 
 
80960HA/HD/HT  
3.7  
Sources for Accessories  
The following is a list of suggested sources for 80960Hx accessories. This is neither an  
endorsement nor a warranty of the performance of any of the listed products and/or companies.  
Sockets  
3M Textool Test and Interconnection Products  
6801 River Place Blvd. MS 130-3N-29  
Austin, TX 78726-9000  
(800) 328-0411 FAX: (800) 932-9373  
Concept Mfg, Inc. (Decoupling Sockets)  
400 Walnut St. Suite 609  
Redwood City, CA 94063  
(415) 365-1162 FAX: (415) 365-1164  
Heatsinks/Fins  
Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(972) 243-4321 FAX: (972) 241-4656  
Wakefield Engineering, Inc.  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900 FAX: (617) 246-0874  
Aavid Thermal Technologies, Inc.  
One Kool Path  
Laconia, NH 03247-0400  
(603) 523-3400  
28  
Advance Information Datasheet  
80960HA/HD/HT  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Storage Temperature  
–65 ºC to +150 ºC  
–65oC to +110oC  
–0.5 V to + 4.6 V  
Case Temperature Under Bias  
Supply Voltage with respect to V  
SS  
Voltage on VCC5 with respect to V  
–0.5 V to + 6.5 V  
SS  
Voltage on Other Pins with respect to V  
–0.5 V to VCC5 + 0.5 V  
SS  
Notice: This document contains information on products in the sampling and initial  
production phases of development. It is valid for the devices indicated in the  
revision history. The specifications within this data sheet are subject to change  
without notice. Verify with your local Intel sales office that you have the latest  
data sheet before finalizing a design.  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause  
permanent damage. These are stress ratings only. Operation beyond the  
“Operating Conditions” is not recommended and extended exposure beyond the  
“Operating Conditions” may affect device reliability.  
4.2  
Operating Conditions  
Table 19. Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
V
Supply Voltage  
3.15  
3.15  
16  
3.45  
5.5  
40  
V
CC  
VCC5  
Input Protection Bias  
V
f
f
f
1xcore  
2xcore  
3xcore  
Input Clock Frequency - 1x Core (80960HA)  
Input Clock Frequency - 2x Core (80960HD)  
Input Clock Frequency - 3x Core (80960HT)  
Case Temp Under Bias (PGA and PQ4 Packages)  
MHz  
MHz  
MHz  
CLKIN  
CLKIN  
CLKIN  
16  
40  
16  
25  
o
T
0
85  
C
C
Advance Information Datasheet  
29  
 
 
80960HA/HD/HT  
4.3  
Recommended Connections  
Power and ground connections must be made to multiple VCC and VSS (GND) pins. Every  
80960Hx-based circuit board should include power (VCC) and ground (VSS) planes for power  
distribution. Every VCC pin must be connected to the power plane; every VSS pin must be connected to  
the ground plane. Pins identified as “NC” —no connect pins—must not be connected in the system.  
Liberal decoupling capacitance should be placed near the 80960Hx. The processor can cause transient  
power surges when its output buffers transition, particularly when connected to large capacitive loads.  
Low inductance capacitors and interconnects are recommended for best high-frequency electrical  
performance. Inductance can be reduced by shortening the board traces between the processor and  
decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages  
offer the lowest possible inductance.  
For reliable operation, always connect unused inputs to an appropriate signal level. In particular,  
any unused interrupt (XINT7:0, NMI) input should be connected to VCC through a pull-up resistor,  
as should BTERM if not used. Pull-up resistors should be in the range of 20 Kfor each pin tied  
high. If READY or HOLD are not used, the unused input should be connected to ground. N.C. pins  
must always remain unconnected.  
4.4  
VCC5 Pin Requirements (V  
)
DIFF  
In mixed-voltage systems that drive 80960Hx processor inputs in excess of 3.3 V, the VCC5 pin must  
be connected to the system’s 5 V supply. To limit current flow into the VCC5 pin, there is a limit to  
the voltage differential between the VCC5 pin and the other VCC pins. The voltage differential  
between the 80960Hx VCC5 pin and its 3.3 V VCC pins should never exceed 2.25 V. This limit  
applies to power-up, power-down, and steady-state operation. Table 20 outlines this requirement.  
Meeting this requirement ensures proper operation and guarantees that the current draw into the  
VCC5 pin does not exceed the ICC5 specification.  
If the voltage difference requirements cannot be met due to system design limitations, an alternate  
solution may be employed. As shown in Figure 7, a minimum of 100 series resistor may be used  
to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5 pin  
does not exceed the maximum rating for this pin.  
Figure 7. VCC5 Current-Limiting Resistor  
+5 V (±0.25 V)  
VCC5 Pin  
100 Ω  
(±5%, 0.5 W)  
This resistor is not necessary in systems that can guarantee the VDIFF specification.  
In 3.3 V-only systems and systems that drive 80960Hx pins from 3.3 V logic, connect the VCC5  
pin directly to the 3.3 V VCC plane.  
Table 20. VDIFF Specification for Dual Power Supply Requirements (3.3 V, 5 V)  
Sym  
Parameter  
VCC5-V  
Min Max Units  
2.25  
Notes  
VCC5 input should not exceed V by more than 2.25 V during  
CC  
CC  
V
V
DIFF  
Difference  
power-up and power-down, or during steady-state operation.  
30  
Advance Information Datasheet  
 
 
 
80960HA/HD/HT  
4.5  
VCCPLL Pin Requirements  
If the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any time,  
including the power up and power down sequences, excessive currents can permanently damage  
on-chip electrostatic discharge (ESD) protection diodes. The damage can accumulate over  
multiple episodes.  
Pragmatically, this problem only occurs when the VCCPLL and VCC pins are driven by separate  
power supplies or voltage regulators. Applications that use one power supply for VCCPLL and  
VCC are not typically at risk. Verify that your application does not allow the VCCPLL voltage to  
exceed VCC by 0.5 V.  
The VCCPL low-pass filter recommended in the Developer’s Manual does not promote this  
problem.  
Advance Information Datasheet  
31  
 
80960HA/HD/HT  
4.6  
DC Specifications  
Table 21. 80960Hx DC Characteristics (Sheet 1 of 2)  
Per the conditions described in Section 4.3, “Recommended Connections” on page 30.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
V
Input Low Voltage  
Input High Voltage  
– 0.3  
2.0  
+0.8  
V
V
IL  
VCC5 + 0.3  
IH  
Output Low Voltage  
0.4  
0.2  
I
I
= 3 mA  
= 100 µA  
OL  
OL  
V
V
V
OL  
All outputs except FAIL  
V
V
Output Low Voltage FAIL pin  
Output High Voltage  
0.4  
I
= 5 mA  
OL  
OL  
2.4  
V
V
I
I
= –3 mA  
= –100 µA  
OH  
OH  
OH  
V
– 0.2  
CC  
Input Leakage Current  
Non-Test Inputs  
I
I
1
µA  
µA  
0 V V  
IN CC  
LI  
-1  
TDI, TMS, TRST and ONCE  
-110  
V
= 0 V  
IN  
Output Leakage Current  
Non-Test Outputs  
TDO pin  
1
5
µA  
µA  
0.45 V  
0.45 V  
V  
LO  
OUT  
CC  
V  
OUT  
CC  
80960HA 25  
579  
765  
927  
33  
40  
I
Active  
80960HD 32  
631  
985  
1300  
1578  
CC  
(Power  
Supply)  
50  
66  
80  
mA (4,5)  
80960HT 60  
75  
1165  
1455  
80960HA 25  
392  
518  
628  
33  
40  
80960HD 32  
413  
645  
851  
I
Active  
CC  
50  
66  
80  
mA (4,6)  
(Thermal)  
1034  
80960HT 60  
75  
752  
938  
80960HA 25  
330  
436  
528  
33  
40  
I
Test  
80960HD 32  
382  
595  
785  
955  
CC  
(Reset  
Mode)  
50  
66  
80  
mA (7,8)  
80960HT 60  
75  
702  
878  
I
Test  
CC  
(ONCE  
mode)  
25  
mA (7)  
32  
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 21. 80960Hx DC Characteristics (Sheet 2 of 2)  
Per the conditions described in Section 4.3, “Recommended Connections” on page 30.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
I
CC5  
80960HA  
80960HD  
80960HT  
200  
200  
200  
Current  
on the  
VCC5 Pin  
µA  
(9)  
Input Capacitance for:  
C
F
= 1 MHz (10)  
PQ4  
PGA  
12  
12  
pF  
pF  
IN  
C
Output Capacitance of each  
output pin  
C
C
12  
12  
pF  
pF  
F
F
= 1 MHz (3,10)  
= 1 MHz (10)  
OUT  
I/O  
C
C
I/O Pin Capacitance  
Internal Pull-Up Resistance  
for ONCE, TMS, TDI and  
TRST  
R
30  
65  
100  
kΩ  
PU  
NOTES:  
1. I Maximum is measured at worst case frequency, V , and temperature, with device operating and  
CC  
CC  
outputs loaded to the test conditions described in Section 4.7.1, “AC Test Conditions” on page 37.  
2. I Typical is not tested.  
CC  
3. Output Capacitance is the capacitive load of a floating output.  
4. Measured with device operating and outputs loaded to the test conditions in Figure 8 “AC Test Load” on  
page 37. Input signals rise to V and fall to V  
.
CC  
SS  
5. I Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using  
CC  
one of the worst case instruction mixes with V = 3.45 V. This parameter is characterized but not tested.  
CC  
6. I Active (Thermal) value is provided for your system’s thermal management. Typical I is measured with  
CC  
CC  
V
= 3.3 V and temperature = 25°C. This parameter is characterized but not tested.  
CC  
7. I Test (Power modes) refers to the I values that are tested when the 80960HA/HD/HT is in Reset mode  
CC  
CC  
or ONCE mode with V = 3.45 V.  
CC  
8. Worst case is V = 3.45 V, 0°C.  
CC  
9. I  
is tested at V = 3.0 V, VCC5 = 5.25 V.  
CC5  
CC  
10.Pin capacitance is characterized, but not tested.  
Advance Information Datasheet  
33  
80960HA/HD/HT  
4.7  
AC Specifications  
Table 22. 80960Hx AC Characteristics (Sheet 1 of 2)  
Per conditions in Section 4.2, “Operating Conditions” on page 29 and Section 4.7.1, “AC Test Conditions” on page 37.  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock (1,7)  
CLKIN Frequency  
CLKIN Period  
80960HA  
80960HD  
80960HT  
16  
16  
16  
40  
40  
25  
MHz  
MHz  
MHz  
T
T
F
80960HA  
80960HD  
80960HT  
25  
25  
40  
62.5  
62.5  
62.5  
ns  
ns  
ns  
T
T
CLKIN Period Stability  
CLKIN High Time  
CLKIN Low Time  
-250  
8
+250  
ps  
ns  
(11)  
(11)  
CS  
CH  
80960HA  
80960HD  
80960HT  
8
8
8
ns  
ns  
ns  
T
(11)  
CL  
T
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
4
4
ns  
ns  
(11)  
(11)  
CR  
CF  
Synchronous Outputs (1,2,3,6)  
Output Valid Delay and Output Hold for all  
outputs except DT/R, BLAST and BREQ for  
3.3 V and 5 V inputs and I/Os.  
T
, T  
1.5  
9.5  
ns  
OV1 OH1  
Output Valid Delay and Output Hold for DT/R  
80960HA  
80960HD  
80960HT 5T/6 + 1.5  
T/2 + 1.5  
3T/4 + 1.5  
T/2 + 9.5  
3T/4 + 9.5  
5T/6 + 9.5  
ns  
ns  
ns  
T
, T  
OV2 OH2  
T
, T  
Output Valid Delay and Output Hold for BLAST  
1.5  
0.5  
1.5  
1.5  
9
9
ns  
ns  
OV3 OH3  
T
, T  
Output Valid Delay and Output Hold for BREQ  
Output Valid Delay and Output Hold for A3:2  
Output Float for all outputs  
OV4 OH4  
T
, T  
8.5  
9
OV5 OH5  
T
ns  
(11)  
OF  
Synchronous Inputs (1,7,8,9)  
Input Setup for all inputs except READY, BTERM,  
HOLD, and BOFF  
T
2.5  
2.5  
6
ns  
ns  
ns  
IS1  
Input Hold for all inputs except READY, BTERM,  
HOLD, and BOFF  
T
IH1  
Input Setup for READY, BTERM, HOLD, and  
BOFF  
T
IS2  
NOTE: See Table 23 “AC Characteristics Notes” on page 36 for all notes related to AC specifications.  
34  
Advance Information Datasheet  
 
80960HA/HD/HT  
Table 22. 80960Hx AC Characteristics (Sheet 2 of 2)  
Per conditions in Section 4.2, “Operating Conditions” on page 29 and Section 4.7.1, “AC Test Conditions” on page 37.  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Hold for READY, BTERM, HOLD, and  
BOFF  
T
2.5  
ns  
IH2  
Relative Output Timings (1,2,3,6,10)  
T
A31:2 Valid to ADS Rising  
T – 5  
T – 5  
T + 5  
T + 5  
T + 5  
T + 5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(10)  
(10)  
AVSH1  
T
BE3:0, W/R, SUP, D/C Valid to ADS Rising  
A31:2 Valid to DEN Falling  
AVSH2  
T
T – 5  
(10)  
AVEL1  
T
BE3:0, W/R, SUP Valid to DEN Falling  
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
T – 5  
(10)  
AVEL2  
T
-5  
(10)  
NLQV  
DVNH  
NLNH  
NHQX  
EHTV  
T
T
T
T
-5 + N*T  
-4 + N*T  
5 + N*T  
4 + N*T  
(4,10)  
(4,10)  
(5,10)  
(10)  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
-5 + (N+1)*T 5 + (N+1)*T  
T/2 – 5  
Infinite  
DT/R Valid to DEN Falling  
80960HA  
80960HD  
80960HT  
T/2 – 4  
T/4 – 4  
T/6 – 4  
ns  
ns  
ns  
T
(10)  
TVEL  
Relative Input Timings (1,7,10)  
T
T
T
T
XINT7:0, NMI Input Setup  
XINT7:0, NMI Input Hold  
RESET Input Setup  
6
2.5  
3
ns  
ns  
ns  
ns  
(9)  
(9)  
(8)  
(8)  
IS7  
IH7  
IS8  
IH8  
RESET Input Hold  
T/4 + 1  
NOTE: See Table 23 “AC Characteristics Notes” on page 36 for all notes related to AC specifications.  
Advance Information Datasheet  
35  
80960HA/HD/HT  
Table 23. AC Characteristics Notes  
NOTES:  
1. See Section 4.8, “AC Timing Waveforms” on page 38 for waveforms and definitions.  
2. See Figure 25 “Output Delay or Hold vs. Load Capacitance” on page 44 for capacitive derating information  
for output delays and hold times.  
3. See Figure 22 “Rise and Fall Time Derating at 85°C and Minimum V ” on page 43 for capacitive derating  
CC  
information for rise and fall times.  
4. Where N is the number of N  
, N  
, N  
or N  
wait states that are programmed in the Bus  
WDD  
RAD  
RDD  
WAD  
Controller Region Table. WAIT never goes active when there are no wait states in an access.  
5. N = Number of wait states inserted with READY.  
6. These specifications are guaranteed by the processor.  
7. These specifications must be met by the system for proper operation of the processor.  
8. RESET is an asynchronous input that has no required setup and hold time for proper operation. However,  
to guarantee the device exits the reset mode synchronized to a particular clock edge, the rising edge of  
RESET must meet setup and hold times to the rising edge of the CLKIN.  
9. The interrupt pins are synchronized internally by the 80960Hx. They have no required setup or hold times  
for proper operation. These pins are sampled by the interrupt controller every clock and must be active for  
at least two consecutive CLKIN rising edges when asserting them asynchronously. To guarantee  
recognition at a particular clock edge, the setup and hold times shown must be met.  
10.Relative Output timings are not tested.  
11.Not tested.  
12.The processor minimizes changes to the bus signals when transitioning from a bus cycle to an idle bus for  
the following signals: A31:4, SUP, CT3:0, D/C, LOCK, W/R, BE3:0.  
Table 24. 80960Hx Boundary Scan Test Signal Timings  
Symbol  
Parameter  
TCK Frequency  
Min  
0
Max  
8
Units  
MHz  
ns  
Notes  
T
T
T
T
T
T
T
BSF  
TCK Period  
125  
40  
Infinite  
BSC  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
ns  
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
BSCH  
BSCL  
BSCR  
BSCF  
BSIS1  
40  
ns  
8
8
ns  
ns  
2.0 V to 0.8 V (1)  
Input Setup to TCK —  
TDI, TMS  
8
ns  
ns  
T
Input Hold from TCK —  
TDI, TMS  
BSIH1  
10  
3
T
T
T
TDO Valid Delay  
TDO Float Delay  
30  
36  
ns  
ns  
BSOV1  
BSOF1  
BSOV2  
(1)  
All Outputs (Non-Test)  
Valid Delay  
Relative to TCK  
3
30  
36  
ns  
ns  
T
T
T
All Outputs (Non-Test)  
Float Delay  
Relative to TCK (1)  
BSOF2  
BSIS2  
BSIH2  
Input Setup to TCK - All  
Inputs (Non-Test)  
8
ns  
ns  
Input Hold from TCK - All  
Inputs (Non-Test)  
10  
NOTE:  
1. Not tested.  
36  
Advance Information Datasheet  
80960HA/HD/HT  
4.7.1  
AC Test Conditions  
AC values are derived using the 50 pF load shown in Figure 8. Figure 25 “Output Delay or Hold vs.  
Load Capacitance” on page 44, shows how timings vary with load capacitance. Input waveforms  
(except for CLKIN) are assumed to have a rise and fall time of 2 ns from 0.8 V to 2.0 V.  
Figure 8. AC Test Load  
Output Pin  
CL  
CL = 50 pF for all signals  
Advance Information Datasheet  
37  
 
80960HA/HD/HT  
4.8  
AC Timing Waveforms  
Figure 9. CLKIN Waveform  
T
T
CR  
CF  
2.0 V  
1.5 V  
0.8 V  
T
CH  
T
CL  
T
Figure 10. Output Delay Waveform  
1.5 V  
Min  
1.5 V  
CLKIN  
TOV1  
Max  
Outputs:  
A31:2, D31:0 write only,  
DP3:0 write only  
PCHK, BE3:0, W/R, D/C,  
SUP, ADS, DEN,  
TOH1  
1.5 V  
1.5 V  
LOCK, HOLDA, BREQ, BSTALL,  
CT3:0, FAIL, WAIT, BLAST  
Figure 11. Output Delay Waveform  
1.5 V  
1.5 V  
CLKIN  
TOV2  
TOH2  
Max  
1.5 V  
Min  
DT/R  
1.5 V  
38  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 12. Output Float Waveform  
1.5 V  
1.5 V  
CLKIN  
Outputs:  
A31:2, D31:0 write only,  
DP3:0 write only  
TOF  
Max  
Min  
PCHK, BE3:0, W/R, D/C,  
SUP, ADS, DEN,  
LOCK, HOLDA,  
CT3:0, WAIT, BLAST, DT/R  
Figure 13. Input Setup and Hold Waveform  
CLKIN  
1.5 V  
1.5 V  
TIH  
1.5 V  
TIS  
Min  
Min  
Inputs:  
READY, HOLD, BTERM,  
Valid  
BOFF, D31:0 on reads,  
DP3:0 on reads, RESET  
Figure 14. NMI, XINT7:0 Input Setup and Hold Waveform  
A
B
A
CLKIN  
1.5 V  
1.5 V  
1.5 V  
TIH  
TIS  
Min  
Min  
NMI, XINT7:0  
1.5 V  
Valid  
1.5 V  
NOTE: A and B edges are established by de-assertion of RESET. See Figure 29 “Cold Reset Waveform” on page 46.  
Advance Information Datasheet  
39  
80960HA/HD/HT  
Figure 15. Hold Acknowledge Timings  
CLKIN  
1.5 V  
1.5 V  
1.5 V  
TIH  
Min  
TIH  
TIS  
TIS  
Min  
Min  
Min  
1.5 V  
1.5 V  
1.5 V  
HOLD  
TOV1  
Min  
TOV1  
Max  
Max  
TOH1  
1.5 V  
TOH1  
Min  
HOLDA  
1.5 V  
1.5 V  
T
T
— OUTPUT DELAY - The maximum output delay is referred to as the Output Valid Delay (T ).  
O
V
O
H
O
V
The minimum output delay is referred to as the Output Hold (T ).  
OH  
T
T
— INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window  
IS IH  
during which synchronous inputs must be stable for correct processor operation.  
Figure 16. Bus Backoff (BOFF) Timings  
1.5 V  
1.5 V  
1.5 V  
CLKIN  
TIS  
TIS  
TIH  
TIH  
BOFF  
1.5 V  
1.5 V  
1.5 V  
40  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 17. TCK Waveform  
T
T
BSCR  
BSCF  
2.0 V  
1.5 V  
0.8 V  
T
BSCH  
T
BSCL  
T
BSC  
Figure 18. Input Setup and Hold Waveforms for TBSIS1 and TBSIH1  
1.5 V  
1.5 V  
1.5 V  
TCLK  
TBSIH1  
TBSIS1  
Inputs:  
TMS  
TDI  
1.5 V  
Valid  
1.5 V  
Advance Information Datasheet  
41  
80960HA/HD/HT  
Figure 19. Output Delay and Output Float for TBSOV1 and TBSOF1  
TCK  
1.5 V  
1.5 V  
1.5 V  
TBSOV1  
TBSOF1  
Valid  
1.5 V  
TDO  
Figure 20. Output Delay and Output Float Waveform for TBSOV2 and TBSOF2  
TCK  
1.5 V  
1.5 V  
1.5 V  
TBSOV2  
TBSOF2  
Non-Test  
Outputs  
Valid  
1.5 V  
Figure 21. Input Setup and Hold Waveform for TBSIS2 and TBSIH2  
1.5 V  
1.5 V  
1.5 V  
TCK  
TBSIH2  
TBSIS2  
Non-Test  
Inputs  
Valid  
1.5 V  
1.5 V  
42  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 22. Rise and Fall Time Derating at 85°C and Minimum VCC  
5
4
3
2.0 to 0.8 V  
0.8 to 2.0 V  
2
1
50pF  
100pF  
150pF  
CL (pF)  
Figure 23. ICC Active (Power Supply) vs. Frequency  
1800  
1600  
1400  
1200  
1000  
800  
HA  
HD  
HT  
600  
400  
200  
0
0
10  
20  
30  
40  
CLKIN Frequency (MHz)  
Advance Information Datasheet  
43  
 
80960HA/HD/HT  
Figure 24. ICC Active (Thermal) vs. Frequency  
1400  
1200  
1000  
800  
HA  
HD  
HT  
600  
400  
200  
10  
20  
30  
40  
CLKIN Frequency (MHz)  
Figure 25. Output Delay or Hold vs. Load Capacitance  
nom + 10  
5.5 V Input Signals  
3.3 V Input Signals  
nom + 5  
nom  
50  
100  
150  
CL (pF)  
44  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 26. Output Delay vs. Temperature  
Processor Case Temperature (°C)  
0°C  
85°C  
nom - 0.0  
nom - 0.1  
nom - 0.2  
nom - 0.3  
nom - 0.4  
nom - 0.5  
Figure 27. Output Hold Times vs. Temperature  
Processor Case Temperature (°C)  
0°C  
85°C  
nom + 0.5  
nom + 0.4  
nom + 0.3  
nom + 0.2  
nom + 0.1  
nom + 0  
Figure 28. Output Delay vs. VCC  
nom + 0.5  
nom + 0.3  
nom + 0.1  
-nom + 0.1  
-nom + 0.3  
-nom + 0.5  
3.15  
3.45  
VCC (volts)  
Advance Information Datasheet  
45  
80960HA/HD/HT  
5.0  
Bus Waveforms  
Figure 29. Cold Reset Waveform  
~
~
46  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 30. Warm Reset Waveform  
Advance Information Datasheet  
47  
80960HA/HD/HT  
Figure 31. Entering ONCE Mode  
48  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 32. Non-Burst, Non-Pipelined Requests without Wait States  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
4-0  
29  
Disabled  
0
OFF  
0
0
00  
0
X
x
Enabled  
1
Disabled  
0
X
xx  
0
0000  
0
0
00  
Value  
00000  
00000  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
D
A
D
A
D
CLKIN  
ADS  
A31:2, SUP,  
D/C, BE3:0,  
LOCK, CT3:0  
Valid  
Valid  
Valid  
W/R  
BLAST  
DT/R  
DEN  
WAIT  
D31:0,  
DP3:0  
In  
Out  
In  
PCHK  
Advance Information Datasheet  
49  
80960HA/HD/HT  
Figure 33. Non-Burst, Non-Pipelined Read Request with Wait States  
PMCON  
External  
Ready  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
NRAD  
4-0  
N
Function  
Bit  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
Disabled  
0
OFF  
0
X
xxxxx  
X
xx  
Disabled  
0
X
x
Enabled  
1
X
xx  
1
3
X
xx  
Value  
0001  
00011  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
D
1
3
A
2
1
CLKIN  
ADS  
A31:2, BE3:0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
D/C, SUP,  
LOCK, CT3:0  
Valid  
WAIT  
D31:0,  
DP3:0  
In  
PCHK  
50  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 34. Non-Burst, Non-Pipelined Write Request with Wait States  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
OFF  
0
X
xxxxx  
3
Disabled  
0
X
x
Enabled  
1
Disabled  
0
X
xx  
1
X
xxxxx  
X
xx  
Value  
00011  
0001  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
3
2
1
D
1
A
CLKIN  
ADS  
A31:2,  
BE3:0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
D/C, SUP,  
LOCK, CT3:0  
Valid  
WAIT  
D31:0,  
DP3:0  
Out  
PCHK  
Advance Information Datasheet  
51  
80960HA/HD/HT  
Figure 35. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
N
Function  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
Bit  
29  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
OFF  
0
X
xxxxx  
X
xx  
Enabled  
1
X
x
Enabled  
1
Disabled  
0
32-Bit  
10  
0
0
0
00  
Value  
0000  
00000  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
D
D
D
D
A
CLKIN  
ADS  
A31:4, SUP,  
CT3:0,D/C,  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
00  
01  
10  
11  
WAIT  
D31:0,  
DP3:0  
In1  
In2  
In3  
In0  
PCHK  
52  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 36. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
4-0  
29  
OFF  
0
X
xxxxx  
X
xx  
X
x
Enabled  
1
Disabled Enabled  
32-Bit  
10  
1
0001  
2
1
01  
Value  
1
0
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
2
1
D
1
D
1
D
1
D
1
A
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
Valid  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
WAIT  
00  
01  
10  
11  
D31:0,  
DP3:0  
In2  
In3  
In0  
In1  
PCHK  
Advance Information Datasheet  
53  
80960HA/HD/HT  
Figure 37. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
N
Function  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
OFF  
0
0
0
00  
Enabled  
1
X
x
Enabled  
1
Disabled  
0
32-Bit  
10  
0
0000  
X
xxxxx  
X
xx  
Value  
00000  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
D
D
D
A
A
D
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
Valid  
W/R  
BLAST  
DT/R  
DEN  
00  
01  
10  
11  
A3:2  
WAIT  
D31:0,  
DP3:0  
Out1  
Out0  
Out2  
Out3  
PCHK  
54  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 38. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
OFF  
0
32-bit  
10  
2
1
01  
X
x
Enabled  
1
Disabled Enabled  
1
X
xxxxx  
X
xx  
Value  
00010  
1
0
0001  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
2
1
D
1
D
1
D
1
D
1
A
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
Valid  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
WAIT  
00  
01  
10  
11  
D31:0,  
DP3:0  
Out3  
Out2  
Out0  
Out1  
PCHK  
Advance Information Datasheet  
55  
80960HA/HD/HT  
Figure 39. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
N
Function  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
Bit  
29  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
OFF  
0
X
xxxxx  
X
xx  
Enabled  
1
X
x
Enabled  
1
Disabled  
0
16-Bit  
01  
1
0001  
2
1
01  
Value  
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
2
1
D
1
D
1
D
1
D
1
A
CLKIN  
ADS  
SUP, CT3:0,  
D/C, LOCK,  
Valid  
A31:4, BE3/BHE,  
BE0/BLE  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
A3:2 = 00 or 10  
A3:2 = 01 or 11  
BE1/A1  
WAIT  
D15:0  
A1=1  
D15:0  
A1=0  
D15:0  
A1=1  
D15:0  
A1=0  
D31:0,  
DP3:0  
PCHK  
56  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 40. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
OFF  
0
8-Bit  
00  
X
xxxxx  
X
xx  
Enabled  
1
X
x
Enabled  
1
Disabled  
0
1
0001  
2
1
01  
Value  
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A
2
1
D
1
D
1
D
1
D
1
A
CLKIN  
ADS  
SUP, CT3:0,  
D/C, LOCK,  
A31:4  
Valid  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
A3:2 = 00, 01, 10 or 11  
BE1/A1,  
BE0/A0  
A1:0 = 00  
A1:0 = 01  
A1:0 = 10  
A1:0 =11  
WAIT  
D7:0  
Byte 1  
D7:0  
Byte 2  
D7:0  
Byte 3  
D7:0  
Byte 0  
D31:0,  
DP3:0  
PCHK  
Advance Information Datasheet  
57  
80960HA/HD/HT  
Figure 41. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
32-Bit  
10  
X
xxxxx  
X
xx  
X
xx  
X
x
Enabled  
1
X
x
Disabled  
0
X
0
Value  
xxxx  
00000  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A''''  
D'''  
A'  
D
A''  
D'  
A'''  
D''  
A
D''''  
2
1
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
LOCK  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
W/R  
A3:2  
BE3:0  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
IN  
D31:0,  
DP3:0  
IN  
D
IN  
D'  
IN  
D''  
IN  
D'''  
D''''  
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin.  
2. Pipelined reads conclude, non-pipelined requests begin.  
58  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 42. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
32-Bit  
10  
X
xxxxx  
X
xx  
X
xx  
Disabled  
0
X
x
Enabled  
1
X
x
X
1
Value  
xxxx  
00001  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A'  
D
1
A
1
1
'
D
2
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
LOCK  
Valid  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
W/R  
A3:2  
BE3:0  
Valid  
D31:0,  
DP3:0  
IN  
D
IN  
D'  
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin  
2. Pipelined reads conclude, non-pipelined requests begin  
Advance Information Datasheet  
59  
80960HA/HD/HT  
Figure 43. Burst, Pipelined Read Request without Wait States, 32-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
N
Function  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
32-Bit  
10  
X
xxxxx  
X
xx  
0
00  
Enabled  
1
X
x
Enabled  
1
X
x
X
0
Value  
xxxx  
00000  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
1
2
A
D
D
D
A'  
D'  
D'  
D
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
In-  
Valid  
Valid  
Valid  
W/R  
In-  
Valid  
A3:2  
00  
01  
10  
11  
Valid  
Valid  
IN  
D
IN  
D
IN  
D
IN  
D
IN  
D
IN  
D
D31:0,  
DP3:0  
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin  
2. Pipelined reads conclude, non-pipelined requests begin  
60  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 44. Burst, Pipelined Read Request with Wait States, 32-Bit Bus  
PMCON  
Function  
External  
Ready  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
NRAD  
4-0  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
32-Bit  
10  
X
xxxxx  
2
X
xx  
1
01  
Enabled  
1
X
x
Enabled  
1
X
x
X
Value  
xxxx  
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A'  
D
1
A
2
1
D
1
D
1
D
1
2
1
D'  
2
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
In-  
valid  
Valid  
Valid  
In-  
valid  
W/R  
A3:2  
In-  
valid  
00  
01  
10  
11  
Valid  
D31:0,  
DP3:0  
IN  
D
IN  
D
IN  
D
IN  
D'  
IN  
D
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin.  
2. Pipelined reads conclude, non-pipelined requests begin.  
Advance Information Datasheet  
61  
80960HA/HD/HT  
Figure 45. Burst, Pipelined Read Request with Wait States, 8-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
Function  
Burst  
28  
N
RDD  
N
N
N
WAD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
8-Bit  
00  
X
xxxxx  
2
X
xx  
1
01  
X
x
Enabled  
1
X
x
Enabled  
1
X
Value  
xxxx  
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
A'  
D
2
D'  
A
2
1
D
1
D
1
D
1
2
1
1
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
LOCK  
In-  
valid  
Valid  
Valid  
In-  
W/R  
A3:2  
valid  
In-  
valid  
A3:2 = 00, 01, 10, or 11  
Valid  
BE1/A1,  
BE0/A0  
In-  
valid  
A1:0 = 00  
A1:0 = 01 A1:0 = 10 A1:0 = 11  
Valid  
D31:0,  
DP3:0  
D7:0  
Byte 1  
D7:0  
D'  
D7:0  
Byte 0  
D7:0  
Byte 2  
D7:0  
Byte 3  
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin  
2. Pipelined reads conclude, non-pipelined requests begin  
62  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 46. Burst, Pipelined Read Request with Wait States, 16-Bit Bus  
PMCON  
External  
Pipe-  
Lining  
Parity  
Enable  
Bus  
Width  
Odd  
Ready  
NRAD  
4-0  
N
Function  
Burst  
28  
N
N
N
WAD  
RDD  
XDA  
WDD  
Parity  
Control  
Bit  
24  
23-22  
21  
20  
19-16  
15-14  
12-8  
7-6  
29  
ON  
1
16-Bit  
01  
X
xxxxx  
2
X
xx  
1
01  
Enabled  
1
X
x
Enabled  
1
X
x
X
Value  
xxxx  
00010  
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.  
1
2
A'  
D
A
2
1
D
1
D
1
D
1
2
1
D'  
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE0/BLC,  
BE3/BHE,  
LOCK  
In-  
valid  
Valid  
Valid  
In-  
valid  
W/R  
In-  
valid  
A3:2 = 00 or 10  
A3:2 = 01 or 11  
Valid  
Valid  
A3:2  
In-  
valid  
BE1/A1  
D15:0  
A1=1  
D15:0  
A1=0  
D15:0  
A1=0  
D15:0  
D'  
D15:0  
A1=1  
D31:0,  
DP3:0  
WAIT  
BLAST  
DT/R  
DEN  
PCHK  
1. Non-pipelined request concludes, pipelined reads begin  
2. Pipelined reads conclude, non-pipelined requests begin  
Advance Information Datasheet  
63  
80960HA/HD/HT  
Figure 47. Using External READY  
Quad-Word Read Request  
NRAD = 0, NRDD = 0, NXDA = 0  
Ready Enabled  
Quad-Word Write Request  
NWAD = 1, NWDD = 0, NWDA = 0  
Ready Enabled  
A
1
D
D
D
D
A
1
2
D
1
D
1
D
1
D
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
Valid  
Valid  
W/R  
BLAST  
DT/R  
DEN  
READY  
BTERM  
A3:2  
00  
01 10  
11  
00  
01  
10  
11  
WAIT  
D31:0,  
DP3:0  
D0 D1 D2 D3  
D0  
D1  
D2  
D3  
PCHK  
NOTE: Pipelining must be disabled to use READY.  
64  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 48. Terminating a Burst with BTERM  
Quad-Word Read Request  
NRAD = 0, NRDD = 0, NRDA = 0  
Ready Enabled  
A
D
1
A
D
1
A
D
1
D
1
CLKIN  
ADS  
A31:4, SUP,  
CT3:0, D/C,  
BE3:0, LOCK  
Valid  
W/R  
BLAST  
DT/R  
DEN  
READY  
BTERM  
See Note  
A3:2  
00  
01  
10  
11  
WAIT  
D31:0,  
DP3:0  
D1  
D2  
D3  
D0  
PCHK  
Note: READY adds memory access time to data transfers, whether or not the  
bus access is a burst access. BTERM interrupts a bus access, whether or not  
the bus access has more data transfers pending. Either the READY signal or  
the BTERM signal terminates a bus access when the signal is asserted during  
the last (or only) data transfer of the bus access.  
Advance Information Datasheet  
65  
80960HA/HD/HT  
Figure 49. BREQ and BSTALL Operation  
CLKIN  
ADS  
BLAST  
BREQ  
BSTALL  
The processor can stall (BSTALL asserted) even with an empty bus queue (BREQ deasserted).  
Depending on the instruction stream and memory wait states, the two signals can be separated by  
several CLKIN cycles.  
Bus arbitration logic that logically “ANDs” BSTALL and BREQ will not correctly grant the bus to  
the processor in all stall cases, potentially degrading processor performance.  
Do not logically “AND” BSTALL and BREQ together in arbitration logic. Instead, the simplest  
bus arbitration should logically “OR” BSTALL and BREQ to determine the processor’s bus  
ownership requirements.  
More sophisticated arbitration should recognize the priority nature of these two signals. Using a  
traffic light analogy, BREQ is a “yellow light” warning of a possible processor stall and BSTALL  
is a “red light” indicating a stall in progress.  
66  
Advance Information Datasheet  
 
80960HA/HD/HT  
Figure 50. BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle.  
BOFF Mode  
A
D
A
CLKIN  
Regenerate ADS  
ADS  
BLAST  
READY  
Burst  
Non-Burst  
May Change  
BOFF  
Resume Request  
Suspend Request  
A31:2, SUP,  
CT3:0, D/C,  
BE3:0, WAIT,  
DEN, DT/R  
DP3:0 & D31:0,  
(WRITES)  
Valid  
Valid  
PCHK  
Begin Request  
End Request  
BOFF may be asserted to suspend request  
BOFF may not  
be asserted  
BOFF may not  
be asserted  
Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0  
Advance Information Datasheet  
67  
80960HA/HD/HT  
Figure 51. HOLD Functional Timing  
Word Read  
Request  
Word Read Request  
=1, NXDA=1  
Hold State  
N
=0,  
=0  
Hold State  
N
RAD  
RAD  
N
XDA  
CLKIN  
ADS  
A31:2, SUP,  
CT3:0, D/C,  
BE3:0, WAIT,  
DEN, DT/R  
Valid  
Valid  
BLAST  
LOCK  
HOLD  
HOLDA  
68  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 52. LOCK Delays HOLDA Timing  
CLKIN  
ADS  
W/R  
BLAST  
LOCK  
HOLD  
HOLDA  
Figure 53. FAIL Functional Timing  
RESET  
(Bus Test)  
Pass  
(Internal Self-Test)  
Pass  
FAIL  
Fail  
Fail  
113 Cycles  
94 Cycles  
257,517 Cycles  
128,761 Cycles  
30 Cycles  
80960HA:  
80960HD:  
80960HT:  
15 Cycles  
10 Cycles  
85,840 Cycles  
90 Cycles  
Advance Information Datasheet  
69  
80960HA/HD/HT  
Figure 54. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions  
0
0
4
8
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
1
2
Short Request (Aligned)  
Short Requests (Unaligned)  
Short Request (Aligned)  
Short-Word  
Load/Store  
Byte, Byte Requests  
Word Request (Aligned)  
Trey, Byte, Requests  
Word  
Load/Store  
Short, Short Requests  
Byte, Trey, Requests  
One Double-Word Burst (Aligned)  
Trey, Byte, Trey, Byte, Requests  
Short, Short, Short, Short Requests  
Byte, Trey, Byte, Trey, Requests  
Word, Word Requests  
Double-Word  
Load/Store  
One Double-Word  
Request (Aligned)  
NOTES:  
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes  
adjacent requests to occur for full words to the same address.  
70  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 55. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued)  
0
4
8
12  
16  
20  
24  
Byte Offset  
Word Offset  
0
1
2
3
4
5
6
One Three-Word  
Request (Aligned)  
Trey, Byte, Trey, Byte,  
Trey, Byte Requests  
Short, Short, Short, Short  
Short, Short, Short Requests  
Triple-Word  
Load/Store  
Byte, Trey, Byte, Trey, Byte, Trey Requests  
Word, Word,  
Word Requests  
Word, Word,  
Word Requests  
Word,  
Word,  
Word  
Requests  
One Four-Word  
Request (Aligned)  
Trey, Byte, Trey, Byte, Trey, Byte  
Trey, Byte Requests  
8 Short Requests  
Quad-Word  
Load/Store  
Byte, Trey, Byte, Trey,  
Byte, Trey, Byte, Trey, Requests  
4 Word  
Requests  
4 Word  
Requests  
NOTES:  
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes  
adjacent requests to occur for full words to the same address.  
Advance Information Datasheet  
71  
80960HA/HD/HT  
Figure 56. A Summary of Aligned and Unaligned Transfers for 16-Bit Bus  
0
0
4
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
1
Short  
Byte, Byte  
Short  
Short  
16-Bit Bus  
Byte, Byte  
Two Shor t Burst  
Byte, Short, Byte  
Word  
(Short)*2  
16-Bit Bus  
Byte, Short, Byte  
Two Short Burst  
Four Short Burst  
(Byte, Short, Byte) *2  
(Short) *4  
Double Word  
16-Bit Bus  
(Byte, Short, Byte)*2  
(Two Short Burst)*2  
Four Short Burst  
Four Short Burst, Two Short Burst  
(Byte, Short, Byte) *3  
(Short) *6  
Triple Word  
16-Bit Bus  
(Byte, Short, Byte) *3  
(Two Short Burst) *3  
(Two Short Burst) *3  
(Four Short Burst)*2  
(Byte, Short, Byte) *4  
(Short) *8  
(Byte, Short, Byte) *4  
(Two Short Burst)*4  
(Two Short Burst) *4  
Quad Word  
16-Bit Bus  
72  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 57. A Summary of Aligned and Unaligned Transfers for 8-Bit Bus  
Byte Offset  
Word Offset  
0
0
4
8
2
12  
3
16  
4
20  
5
24  
6
1
Two Byte Burst  
Two Byte Burst  
Short  
8-Bit Bus  
Two Byte Burst  
Byte, Byte  
Four Byte Burst  
Three Byte Burst, Byte  
(Two Byte Burst)*2  
Word  
8-Bit Bus  
Byte, Three Byte Burst  
Four Byte Burst  
(Four Byte Burst) *2  
(Three Byte Burst, Byte)*2  
(Two Byte Burst) *4  
Double Word  
8-Bit Bus  
(Byte, Three Byte Burst) *2  
(Four Byte Burst) *2  
(Four Byte Burst) *2  
(Four Byte Burst)*3  
(Three Byte Burst, Byte)*3  
(Two Byte Burst) *6  
Triple Word  
8-Bit Bus  
(Byte, Three Byte Burst) *3  
(Four Byte Burst)*3  
(Four Byte Burst)*3  
(Four Byte Burst)*4  
(Three Byte Burst, Byte)*4  
(Two Byte Burst) *8  
Quad Word  
16-Bit Bus  
(Byte, Three Byte Burst) *4  
(Four Byte Burst)*4  
(Four Byte Burst) *4  
Advance Information Datasheet  
73  
80960HA/HD/HT  
Figure 58. Idle Bus Operation  
Read Request  
=2, N =0  
Write Request  
=2, N = 0  
Idle Bus  
(not in Hold Acknowledge state)  
N
RAD  
XDA  
N
WAD  
XDA  
Ready Disabled  
Ready Disabled  
CLKIN  
ADS  
A31:4, SUP, D/C,  
BE3:0, CT3:0  
Valid  
Valid  
Valid  
Valid  
LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
Valid  
Valid  
WAIT  
D31:0  
Out  
In  
READY,  
BTERM  
PCHK  
74  
Advance Information Datasheet  
80960HA/HD/HT  
Figure 59. Bus States  
Tb  
BOFF  
W CNT > 1  
d
BOFF  
Tdw3  
BOFF  
Ta  
W CNT = 1  
d
!BOFF and READY and !BLAST or  
!BOFF  
!BOFF and BTERM and !BLAST or !BOFF and  
READ and N > 0 or  
rdd  
!HOLD and BLAST and REQUEST and N  
= 0  
XDA  
WRITE and N  
> 0  
wdd  
Td1  
!BOFF and READ and N = 0  
rdd  
and !BLAST or !BOFF and  
!BOFF and READ and N = 0 or  
rad  
!RESET and  
!HOLD and  
REQUEST  
!BOFF and WRITE and N  
= 0  
wad  
WRITE and N  
READY!  
= 0 and !BLAST or  
wdd  
READ and N > 0 or  
rad  
WRITE and N  
> 0  
wad  
!BOFF and  
BLAST and  
N
> 0  
xda  
Taw2  
W CNT = 1  
a
Trw4  
W CNT > 1  
x
W CNT > 1  
a
!BOFF and !HOLD and  
= 0  
!HOLD and W CNT=1  
x
N
xda  
BLAST and  
and REQUEST  
and !REQUEST  
To  
!BOFF and  
W CNT=1 and  
x
RESET and  
!ONCE  
HOLD and BLAST  
and N = 0  
xda  
HOLD  
!HOLD and W CNT=1  
x
and !REQUEST  
ONCE and  
RESET  
HOLD  
KEY:  
To = ONCE  
Ti = IDLE  
Ti  
HOLD  
Th  
Th = HOLD  
Ta = ADDRESS  
Td = DATA  
!HOLD  
Tb = BOFF’ed  
Taw= address to data wait  
Tdw= data to data wait  
RESET  
Tdw= data to address wait  
REQUEST= One or more  
requests in the bus queue.  
READ= The current  
access is a read.  
WRITE= The current  
access is a write.  
NOTE:  
1. When the PMCON for the region has External Ready Control enabled, wait states are inserted as  
long as READY and BTERM are de-asserted. When Read Pipelining is enabled, the Ta state of the  
subsequent read access is concurrent with the last data cycle of the access. Because External  
Ready Control is disabled for Read Pipelining, the address cycle occurs during BLAST.  
2. W CNT is decremented during T  
a
aw  
3. W CNT is decremented during T  
d
dw  
4. W CNT is decremented during T  
x
rw  
Advance Information Datasheet  
75  
80960HA/HD/HT  
5.1  
80960Hx Boundary Scan Chain  
Table 25. 80960Hx Boundary Scan Chain (Sheet 1 of 4)  
#
BOUNDARY SCAN CELL  
CELL TYPE  
COMMENT  
DP3  
DP2  
DP0  
DP1  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Input  
STEST  
FAILBAR  
Output  
Enable for FAILBAR, BSTALL and  
BREQ  
Control  
ONCEBAR  
Input  
BOFFBAR  
Input  
D0  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Control  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Enable for DP(3:0) and D(31:0)  
D8  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
NOTES:  
1. Cell#1 connects to TDO and cell #112 connects to TDI.  
2. All outputs are three-state.  
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0”  
three-states the output.  
76  
Advance Information Datasheet  
80960HA/HD/HT  
Table 25. 80960Hx Boundary Scan Chain (Sheet 2 of 4)  
#
BOUNDARY SCAN CELL  
CELL TYPE  
COMMENT  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Input  
BTERMBAR  
RDYBAR  
Appears as READYBAR in BSDL  
file.  
Input  
HOLD  
Input  
HOLDA  
Output  
Control  
Output  
Enable for HOLDA control  
ADSBAR  
Appears as BEBAR(3:0) in BSDL  
file.  
BE3BAR  
Output  
BE2BAR  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Control  
Output  
Output  
Output  
Output  
BE1BAR  
BE0BAR  
BLASTBAR  
DENBAR  
WRRDBAR  
DTRBAR  
Appears as WRBAR in BSDL file.  
Enable for DTRBAR  
WAITBAR  
BSTALL  
DATACODBAR  
USERSUPBAR  
Appears as DCBAR in BSDL file.  
Appears as SUPBAR in BSDL file.  
Enable for ADSBAR, BEBAR,  
BLASTBAR, DENBAR, WRRDBAR,  
WAITBAR, DCBAR, SUPBAR and  
LOCKBAR,  
Control  
NOTES:  
1. Cell#1 connects to TDO and cell #112 connects to TDI.  
2. All outputs are three-state.  
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0”  
three-states the output.  
Advance Information Datasheet  
77  
80960HA/HD/HT  
Table 25. 80960Hx Boundary Scan Chain (Sheet 3 of 4)  
#
BOUNDARY SCAN CELL  
LOCKBAR  
CELL TYPE  
Output  
COMMENT  
BREQ  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Control  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
A31  
A30  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
Enable for A(31:0) and CT(3:0)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
NMIBAR  
NOTES:  
1. Cell#1 connects to TDO and cell #112 connects to TDI.  
2. All outputs are three-state.  
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0”  
three-states the output.  
78  
Advance Information Datasheet  
80960HA/HD/HT  
Table 25. 80960Hx Boundary Scan Chain (Sheet 4 of 4)  
#
BOUNDARY SCAN CELL  
XINT7BAR  
CELL TYPE  
Input  
COMMENT  
Appears as XINTBAR(7:0) in  
BSDL file.  
XINT6BAR  
XINT5BAR  
XINT4BAR  
XINT3BAR  
XINT2BAR  
XINT1BAR  
XINT0BAR  
RESETBAR  
CLKIN  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
CT3  
Output  
Output  
Output  
Output  
Appears as CT(3:0) in BSDL file.  
CT2  
CT1  
CT0  
Appears as PCHKBAR in BSDL  
file.  
PCHK  
Output  
Control  
PCHK enable  
NOTES:  
1. Cell#1 connects to TDO and cell #112 connects to TDI.  
2. All outputs are three-state.  
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0”  
three-states the output.  
Advance Information Datasheet  
79  
80960HA/HD/HT  
5.2  
Boundary Scan Description Language Example  
Boundary-Scan Description Language (BSDL) example 14-2 meets the de facto standard means of  
describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 1 of 8)  
-- Copyright Intel Corp. 1995  
- - ***************************************************************************  
- - Intel Corporation makes no warranty for the use of its products and assumes no  
responsibility for any errors which may appear in this document nor does it make  
a commitment to update the information contained herein.  
- - ***************************************************************************  
- - Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto standard  
means of describing essential features of ANSI/IEEE 1149.1-1990 compliant  
devices. This language is under consideration by the IEEE for formal inclusion  
within a supplement to the 1149.1-1990 standard. The generation of the supplement  
entails an extensive IEEE review and a formal acceptance balloting procedure  
which may change the resultant form of the language. Be aware that this process  
may extend well into 1993, and at this time the IEEE does not endorse or hold an  
opinion on the language.  
- - ***************************************************************************  
--  
-- i960(R) Processor BSDL Model  
80  
Advance Information Datasheet  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 2 of 8)  
-- Project code HA  
-- File **NOT** verified electrically  
-- ------------------------------------------------  
-- Rev 0.7  
-- Rev 0.6  
-- Rev 0.5  
-- Rev 0.4  
-- Rev 0.3  
-- Rev 0.2  
-- Rev 0.1  
-- Rev 0.0  
18 Dec 1995 Updated for A-1 stepping.  
08 Dec 1994  
21 Nov 1994  
31 Oct 1994  
26 July 1994  
22 June 1994  
16 Mar 1994  
30 Aug 1993  
entity Ha_Processor is  
generic(PHYSICAL_PIN_MAP : string:= “PGA”);  
port (A  
ADSBAR  
BEBAR  
: out  
: out  
: out  
bit_vector(2 to 31);  
bit;  
bit_vector(0 to 3);  
BLASTBAR : out  
bit;  
BOFFBAR  
BREQ  
: in  
bit;  
: out  
: out  
bit;  
BSTALL  
bit;  
BTERMBAR : in  
bit;  
CT  
: out  
: in  
bit_vector(0 to 3);  
CLKIN  
D
bit;  
: inout  
: out  
: inout  
: out  
: out  
: out  
: in  
bit_vector(0 to 31);  
DENBAR  
DP  
bit;  
bit_vector(0 to 3);  
DTRBAR  
DCBAR  
FAILBAR  
HOLD  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
bit;  
HOLDA  
LOCKBAR  
NMIBAR  
ONCEBAR  
PCHKBAR  
: out  
: out  
: in  
: in  
: out  
READYBAR : in  
RESETBAR : in  
STEST  
: in  
Advance Information Datasheet  
81  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 3 of 8)  
SUPBAR  
TCK  
: out  
: in  
bit;  
bit;  
TDI  
: in  
bit;  
TDO  
: out  
: in  
bit;  
TMS  
bit;  
TRST  
: in  
bit;  
WAITBAR  
WRBAR  
XINTBAR  
: out  
: out  
: in  
bit;  
bit;  
bit_vector(0 to 7);  
FIVEVREF : linkage bit;  
VCCPLL  
VOLTDET  
VCC1  
: linkage bit;  
: out bit;  
: linkage bit_vector(0 to 23);  
: linkage bit_vector(0 to 20);  
: linkage bit_vector(0 to 25);  
: linkage bit_vector(0 to 22);  
: linkage bit_vector(0 to 4)  
VCC2  
VSS1  
VSS2  
NC  
);  
use STD_1149_1_1990.all;  
use i960ha_a.all;  
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP;  
constant PGA:PIN_MAP_STRING :=  
“A  
: (D16, D17, E16, E17, F17, G16, G17, H17, J17,”&  
K17, L17, L16, M17, N17, N16, P17, Q17, P16,”&  
P15, Q16, R17, R16, Q15, S17, R15, S16, Q14, ”&  
R14, Q13, S15),  
: R06,”&  
: (R09, S07, S06, S05),”&  
“ADSBAR  
“BEBAR  
“BLASTBAR : S08,”&  
“BOFFBAR  
“BREQ  
: B01,”&  
: R13,”&  
: R12,”&  
“BSTALL  
“BTERMBAR : R04,”&  
“CT  
: (A11, A12, A13, A14),”&  
: C13,”&  
“CLKIN  
82  
Advance Information Datasheet  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 4 of 8)  
“D  
: (E03, C02, D02, C01, E02, D01, F02, E01, F01,”&  
G01, H02, H01, J01, K01, L02, L01, M01, N01,”&  
N02, P01, P02, Q01, P03, Q02, R01, S01, Q03,”&  
R02, Q04, S02, Q05, R03),”&  
“DENBAR  
“DP  
: S09,”&  
: (A03, B03, A04, B04),”&  
: S11,”&  
“DTRBAR  
“DCBAR  
“FAILBAR  
“HOLD  
“HOLDA  
“LOCKBAR  
“NMIBAR  
“ONCEBAR  
“PCHKBAR  
: S13,”&  
: A02,”&  
: R05,”&  
: S04,”&  
: S14,”&  
: D15,”&  
: C03,”&  
: B08,”&  
“READYBAR : S03,”&  
“RESETBAR : A16,”&  
“STEST  
“SUPBAR  
“TCK  
: B02,”&  
: Q12,”&  
: B05,”&  
“TDI  
: A07,”&  
“TDO  
: A08,”&  
“TMS  
: B06,”&  
“TRST  
: A06,”&  
“WAITBAR  
“WRBAR  
“ XINTBAR  
: S12,”&  
: S10,”&  
: (B15, A15, A17, B16, C15, B17, C16, C17),”&  
“FIVEVREF : C05,”&  
“VOLTDET  
: A05,”&  
“VCCPLL  
: B10,”&  
“ VCC1  
: (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,”&  
B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,”&  
R07, R08, R10, R11),”&  
“ VSS1  
: (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,”&  
C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,”&  
J15, K15, L15, M15, A01, C04),”&  
: (A09, A10, B13, B14, D03)”;  
“NC  
Advance Information Datasheet  
83  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 5 of 8)  
attribute Tap_Scan_In  
attribute Tap_Scan_Mode of TMS  
attribute Tap_Scan_Out of TDO  
of TDI  
: signal is true;  
: signal is true;  
: signal is true;  
attribute Tap_Scan_Reset of TRST : signal is true;  
attribute Tap_Scan_Clock of TCK  
: signal is (66.0e6, BOTH);  
attribute Instruction_Length of Ha_Processor: entity is 4;  
attribute Instruction_Opcode of Ha_Processor: entity is  
“BYPASS  
“EXTEST  
“SAMPLE  
“IDCODE  
“RUBIST  
“CLAMP  
(1111),” &  
(0000),” &  
(0001),” &  
(0010),” &  
(0111),” &  
(0100),” &  
(1000),” &  
(1011, 1100)”;  
“HIGHZ  
“Reserved  
attribute Instruction_Capture of Ha_Processor: entity is “0001”;  
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;  
attribute Idcode_Register of Ha_Processor: entity is  
“0010”  
&
--version,  
“1000100001000000”  
“00000001001”  
“1”;  
&
--part number  
&
--manufacturers identity  
--required by the standard  
attribute Register_Access of Ha_Processor: entity is  
“Runbist[32]  
“Bypass  
(RUBIST),” &  
(CLAMP, HIGHZ)”;  
{***************************************************************************}  
{
{
The first cell, cell 0, is closest to TDO  
}
}
BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock  
{***************************************************************************}  
84  
Advance Information Datasheet  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 6 of 8)  
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”;  
attribute Boundary_Length of Ha_Processor: entity is 112;  
attribute Boundary_Register of Ha_Processor: entity is  
“0 (CBSC_1, DP(3),  
“1 (CBSC_1, DP(2),  
“2 (CBSC_1, DP(0),  
“3 (CBSC_1, DP(1),  
bidir,  
bidir,  
bidir,  
bidir,  
input,  
X,  
17, 1, Z),”  
&
&
&
&
X,  
17, 1, Z),”  
X,  
17, 1, Z),”  
X,  
17, 1, Z),”  
“4 (BC_4,  
“5 (BC_1,  
“6 (BC_1,  
“7 (BC_4,  
“8 (BC_4,  
STEST,  
FAILBAR,  
*,  
X),”  
&
output3, X,  
6, 1, Z),”  
&
control, 1),”  
&
&
&
ONCEBAR,  
BOFFBAR,  
input,  
input,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
X),”  
X),”  
“9 (CBSC_1, D(0),  
“10 (CBSC_1, D(1),  
“11 (CBSC_1, D(2),  
“12 (CBSC_1, D(3),  
“13 (CBSC_1, D(4),  
“14 (CBSC_1, D(5),  
“15 (CBSC_1, D(6),  
“16 (CBSC_1, D(7),  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
&
&
&
&
&
&
&
&
“17 (BC_1,  
*,  
control, 1),”  
&
“18 (CBSC_1, D(8),  
“19 (CBSC_1, D(9),  
“20 (CBSC_1, D(10),  
“21 (CBSC_1, D(11),  
“22 (CBSC_1, D(12),  
“23 (CBSC_1, D(13),  
“24 (CBSC_1, D(14),  
“25 (CBSC_1, D(15),  
“26 (CBSC_1, D(16),  
“27 (CBSC_1, D(17),  
“28 (CBSC_1, D(18),  
“29 (CBSC_1, D(19),  
“30 (CBSC_1, D(20),  
“31 (CBSC_1, D(21),  
“32 (CBSC_1, D(22),  
“33 (CBSC_1, D(23),  
“34 (CBSC_1, D(24),  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
Advance Information Datasheet  
85  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 7 of 8)  
“35 (CBSC_1, D(25),  
“36 (CBSC_1, D(26),  
“37 (CBSC_1, D(27),  
“38 (CBSC_1, D(28),  
“39 (CBSC_1, D(29),  
“40 (CBSC_1, D(30),  
“41 (CBSC_1, D(31),  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
input,  
input,  
input,  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
&
&
&
&
&
&
&
“42 (BC_4,  
“43 (BC_4,  
“44 (BC_4,  
“45 (BC_1,  
“46 (BC_1,  
“47 (BC_1,  
“48 (BC_1,  
“49 (BC_1,  
“50 (BC_1,  
“51 (BC_1,  
“52 (BC_1,  
“53 (BC_1,  
“54 (BC_1,  
“55 (BC_1,  
“56 (BC_1,  
“57 (BC_1,  
“58 (BC_1,  
“59 (BC_1,  
“60 (BC_1,  
“61 (BC_1,  
“62 (BC_1,  
“63 (BC_1,  
“64 (BC_1,  
“65 (BC_1,  
“66 (BC_1,  
“67 (BC_1,  
“68 (BC_1,  
“69 (BC_1,  
“70 (BC_1,  
“71 (BC_1,  
BTERMBAR,  
X),”  
X),”  
X),”  
&
&
&
READYBAR,  
HOLD,  
HOLDA,  
*,  
output3, X, 46, 1, Z),”  
control, 1),”  
&
&
ADSBAR,  
BEBAR(3),  
BEBAR(2),  
BEBAR(1),  
BEBAR(0),  
BLASTBAR,  
DENBAR,  
WRBAR,  
DTRBAR,  
*,  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 56, 1, Z),”  
&
&
&
&
&
&
&
&
&
control, 1),”  
&
WAITBAR,  
BSTALL,  
DCBAR,  
SUPBAR,  
*,  
output3, X, 61, 1, Z),”  
output3, X, 6, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
&
&
&
&
control, 1),”  
&
LOCKBAR,  
BREQ,  
output3, X, 61, 1, Z),”  
output3, X, 6, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
A(31),  
A(30),  
A(29),  
A(28),  
A(27),  
A(26),  
A(25),  
A(24),  
“72 (BC_1, A(23),  
“73 (BC_1, A(22),  
&
&
86  
Advance Information Datasheet  
80960HA/HD/HT  
Example 1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 8 of 8)  
“74 (BC_1, A(21),  
“75 (BC_1, A(20),  
“76 (BC_1, A(19),  
“77 (BC_1, A(18),  
“78 (BC_1, A(17),  
“79 (BC_1, A(16),  
“80 (BC_1, *,  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
&
&
control, 1),”  
&
“81 (BC_1, A(15),  
“82 (BC_1, A(14),  
“83 (BC_1, A(13),  
“84 (BC_1, A(12),  
“85 (BC_1, A(11),  
“86 (BC_1, A(10),  
“87 (BC_1, A(9),  
“88 (BC_1, A(8),  
“89 (BC_1, A(7),  
“90 (BC_1, A(6),  
“91 (BC_1, A(5),  
“92 (BC_1, A(4),  
“93 (BC_1, A(3),  
“94 (BC_1, A(2),  
“95 (BC_4, NMIBAR,  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
&
&
&
&
input,  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
&
&
&
&
&
&
&
&
&
&
&
“96 (BC_4, XINTBAR(7), input,  
“97 (BC_4, XINTBAR(6), input,  
“98 (BC_4, XINTBAR(5), input,  
“99 (BC_4, XINTBAR(4), input,  
“100(BC_4, XINTBAR(3), input,  
“101(BC_4, XINTBAR(2), input,  
“102(BC_4, XINTBAR(1), input,  
“103(BC_4, XINTBAR(0), input,  
“104(BC_4, RESETBAR,  
“105(BC_4, CLKIN,  
“106(BC_1, CT(3),  
“107(BC_1, CT(2),  
“108(BC_1, CT(1),  
“109(BC_1, CT(0),  
“110(BC_1, PCHKBAR,  
“111(BC_1, *,  
input,  
input,  
output3, X, 80, 1, Z),”  
&
&
&
&
&
output3, X,  
output3, X,  
output3, X,  
80, 1, Z),”  
80, 1, Z),”  
80, 1, Z),”  
output3, X, 111, 1, Z),”  
control, 1)”;  
end Ha_Processor;  
Advance Information Datasheet  
87  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 1 of 8)  
-- Copyright Intel Corporation 1995, 1996  
-- *****************************************************************************  
-- Intel Corporation makes no warranty for the use of its products and assumes no  
responsibility for any errors which may appear in this document nor does it make  
a commitment to update the information contained herein.  
-- *****************************************************************************  
-- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto  
-- standard means of describing essential features of ANSI/IEEE 1149.1-1990  
compliant devices. This language is under consideration by the IEEE for formal  
inclusion within a supplement to the 1149.1-1990 standard. The generation of the  
supplement entails an extensive IEEE review and a formal acceptance balloting  
procedure which may change the resultant form of the language. Be aware that this  
process may extend well into 1993, and at this time the IEEE does not endorse or  
hold an opinion on the language.  
-- i960(R) Processor BSDL Model  
-- Project code HA  
-- File **NOT** verified electrically  
-- -----------------------------------------------  
-- Rev 0.8  
-- Rev 0.7  
-- Rev 0.6  
-- Rev 0.5  
-- Rev 0.4  
-- Rev 0.3  
-- Rev 0.2  
-- Rev 0.1  
-- Rev 0.0  
4 Apr 1996 Changed for PQ2 Package  
18 Dec 1995 Updated for A-1 stepping.  
08 Dec 1994  
21 Nov 1994  
31 Oct 1994  
26 July 1994  
22 June 1994  
16 Mar 1994  
30 Aug 1993  
88  
Advance Information Datasheet  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 2 of 8)  
entity Ha_Processor is  
generic(PHYSICAL_PIN_MAP : string:= “PQ2”);  
port (A  
ADSBAR  
BEBAR  
: out  
: out  
: out  
bit_vector(2 to 31);  
bit;  
bit_vector(0 to 3);  
BLASTBAR : out  
bit;  
BOFFBAR  
BREQ  
: in  
bit;  
: out  
: out  
bit;  
BSTALL  
bit;  
BTERMBAR : in  
bit;  
CT  
: out  
: in  
bit_vector(0 to 3);  
CLKIN  
D
bit;  
: inout  
: out  
: inout  
: out  
: out  
: out  
: in  
bit_vector(0 to 31);  
DENBAR  
DP  
bit;  
bit_vector(0 to 3);  
DTRBAR  
DCBAR  
FAILBAR  
HOLD  
bit;  
bit;  
bit;  
bit;  
HOLDA  
LOCKBAR  
NMIBAR  
ONCEBAR  
PCHKBAR  
: out  
: out  
: in  
bit;  
bit;  
bit;  
: in  
bit;  
: out  
bit;  
READYBAR : in  
RESETBAR : in  
bit;  
bit;  
STEST  
SUPBAR  
TCK  
: in  
bit;  
: out  
: in  
bit;  
bit;  
TDI  
: in  
bit;  
TDO  
: out  
: in  
bit;  
TMS  
bit;  
TRST  
: in  
bit;  
WAITBAR  
WRBAR  
XINTBAR  
: out  
: out  
: in  
bit;  
bit;  
bit_vector(0 to 7);  
FIVEVREF : linkage bit;  
VCCPLL  
: linkage bit;  
Advance Information Datasheet  
89  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 3 of 8)  
VCC1  
VCC2  
VSS1  
VSS2  
: linkage bit_vector(0 to 23);  
: linkage bit_vector(0 to 23);  
: linkage bit_vector(0 to 23);  
: linkage bit_vector(0 to 23)  
);  
use STD_1149_1_1990.all;  
use i960ha_a.all;  
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP;  
constant PQ2:PIN_MAP_STRING :=  
“A  
: (151, 150, 147, 146, 145, 144, 141, 140, 139, 138,”&  
135, 134, 133, 132, 127, 126, 125, 124, 121, 120,”&  
119, 118, 113, 112, 111, 110, 107, 106, 105, 104),”&  
: 77,”&  
“ADSBAR  
“BEBAR  
: (83, 82, 79, 78),”&  
“BLASTBAR : 84,”&  
“BOFFBAR  
“BREQ  
: 10,”&  
: 100,”&  
: 91,”&  
“BSTALL  
“BTERMBAR : 67,”&  
“CT  
: (183, 182, 181, 180),”&  
“CLKIN  
“D  
: 175,”&  
: (12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29,”&  
34, 35, 36, 37, 39, 40, 41, 42, 45, 50, 51, 52,”&  
54, 55, 56, 57, 61, 62, 63, 64),”&  
“DENBAR  
“DP  
: 85,”&  
: (206, 207, 203, 202),”&  
: 89,”&  
“DTRBAR  
“DCBAR  
“FAILBAR  
“HOLD  
“HOLDA  
“LOCKBAR  
“NMIBAR  
: 96,”&  
: 5,”&  
: 69,”&  
: 72,”&  
: 99,”&  
: 159,”&  
90  
Advance Information Datasheet  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 4 of 8)  
“ONCEBAR  
“PCHKBAR  
: 6,”&  
: 189,”&  
“READYBAR : 68,”&  
“RESETBAR : 174,”&  
“STEST  
“SUPBAR  
“TCK  
: 208,”&  
: 97,”&  
: 194,”&  
“TDI  
: 191,”&  
“TDO  
: 188,”&  
“TMS  
: 192,”&  
“TRST  
: 193,”&  
“WAITBAR  
“WRBAR  
“XINTBAR  
: 90,”&  
: 88,”&  
: (169, 168, 167, 166, 163, 162, 161, 160),”&  
“FIVEVREF : 197,”&  
“VCCPLL  
: 177,”&  
“VCC1  
: (1, 4, 9, 11, 17, 19, 25, 31, 33, 38, 44, 46,”&  
49, 59, 60, 66, 71, 74, 76, 81, 87, 92, 95, 101),”&  
: (102, 109, 115, 117, 123, 128, 131, 137, 143, 149,”&  
153, 154, 158, 165, 171, 173, 176, 179, 185, 187,”&  
196, 199, 201, 204),”&  
“VCC2  
“VSS1  
: (2, 3, 7, 8, 16, 18, 24, 30, 32, 43, 47, 48,”&  
53, 58, 65, 70, 73, 75, 80, 86, 93, 94, 98, 103),”&  
: (108, 114, 116, 122, 129, 130, 136, 142, 148, 152,”&  
155, 156, 157, 164, 170, 172, 178, 184, 186, 190,”&  
195, 198, 200, 205)”;  
“VSS2  
attribute Tap_Scan_In  
attribute Tap_Scan_Mode of TMS  
attribute Tap_Scan_Out of TDO  
of TDI  
: signal is true;  
: signal is true;  
: signal is true;  
attribute Tap_Scan_Reset of TRST : signal is true;  
attribute Tap_Scan_Clock of TCK  
: signal is (66.0e6, BOTH);  
attribute Instruction_Length of Ha_Processor: entity is 4;  
attribute Instruction_Opcode of Ha_Processor: entity is  
Advance Information Datasheet  
91  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 5 of 8)  
“BYPASS  
“EXTEST  
“SAMPLE  
“IDCODE  
“RUBIST  
“CLAMP  
(1111),” &  
(0000),” &  
(0001),” &  
(0010),” &  
(0111),” &  
(0100),” &  
(1000),” &  
(1011, 1100)”;  
“HIGHZ  
“Reserved  
attribute Instruction_Capture of Ha_Processor: entity is “0001”;  
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;  
attribute Idcode_Register of Ha_Processor: entity is  
“0001” & version,  
“1000100001000000”  
“00000001001”& manufacturers identity  
“1”; required by the standard  
&
part number  
attribute Register_Access of Ha_Processor: entity is  
“Runbist[32]  
“Bypass  
(RUBIST),” &  
(CLAMP, HIGHZ)”;  
*******************************************************************************  
{
{
The first cell, cell 0, is closest to TDO  
}
}
BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock  
*******************************************************************************  
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”;  
attribute Boundary_Length of Ha_Processor: entity is 112;  
attribute Boundary_Register of Ha_Processor: entity is  
“0 (CBSC_1, DP(3),  
“1 (CBSC_1, DP(2),  
“2 (CBSC_1, DP(0),  
“3 (CBSC_1, DP(1),  
“4 (BC_4, STEST,  
“5 (BC_1, FAILBAR,  
bidir,  
bidir,  
bidir,  
bidir,  
input,  
X,  
17, 1, Z),”  
17, 1, Z),”  
17, 1, Z),”  
17, 1, Z),”  
&
&
&
&
&
X,  
X,  
X,  
X),”  
output3, X,  
6, 1, Z),”  
&
92  
Advance Information Datasheet  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 6 of 8)  
“6 (BC_1,  
“7 (BC_4,  
“8 (BC_4,  
*,  
control, 1),”  
&
&
&
ONCEBAR,  
BOFFBAR,  
input,  
input,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
X),”  
X),”  
“9 (CBSC_1, D(0),  
“10 (CBSC_1, D(1),  
“11 (CBSC_1, D(2),  
“12 (CBSC_1, D(3),  
“13 (CBSC_1, D(4),  
“14 (CBSC_1, D(5),  
“15 (CBSC_1, D(6),  
“16 (CBSC_1, D(7),  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
&
&
&
&
&
&
&
&
“17 (BC_1,  
*,  
control, 1),”  
&
“18 (CBSC_1, D(8),  
“19 (CBSC_1, D(9),  
“20 (CBSC_1, D(10),  
“21 (CBSC_1, D(11),  
“22 (CBSC_1, D(12),  
“23 (CBSC_1, D(13),  
“24 (CBSC_1, D(14),  
“25 (CBSC_1, D(15),  
“26 (CBSC_1, D(16),  
“27 (CBSC_1, D(17),  
“28 (CBSC_1, D(18),  
“29 (CBSC_1, D(19),  
“30 (CBSC_1, D(20),  
“31 (CBSC_1, D(21),  
“32 (CBSC_1, D(22),  
“33 (CBSC_1, D(23),  
“34 (CBSC_1, D(24),  
“35 (CBSC_1, D(25),  
“36 (CBSC_1, D(26),  
“37 (CBSC_1, D(27),  
“38 (CBSC_1, D(28),  
“39 (CBSC_1, D(29),  
“40 (CBSC_1, D(30),  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
bidir,  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
X, 17, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
Advance Information Datasheet  
93  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 7 of 8)  
“41 (CBSC_1, D(31),  
“42 (BC_4, BTERMBAR,  
“43 (BC_4, READYBAR,  
“44 (BC_4, HOLD,  
“45 (BC_1, HOLDA,  
“46 (BC_1, *,  
bidir,  
input,  
input,  
input,  
X, 17, 1, Z),”  
&
X),”  
X),”  
X),”  
&
&
&
output3, X, 46, 1, Z),”  
control, 1),”  
&
&
“47 (BC_1, ADSBAR,  
“48 (BC_1, BEBAR(3),  
“49 (BC_1, BEBAR(2),  
“50 (BC_1, BEBAR(1),  
“51 (BC_1, BEBAR(0),  
“52 (BC_1, BLASTBAR,  
“53 (BC_1, DENBAR,  
“54 (BC_1, WRBAR,  
“55 (BC_1, DTRBAR,  
“56 (BC_1, *,  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 56, 1, Z),”  
&
&
&
&
&
&
&
&
&
control, 1),”  
&
“57 (BC_1, WAITBAR,  
“58 (BC_1, BSTALL,  
“59 (BC_1, DCBAR,  
“60 (BC_1, SUPBAR,  
“61 (BC_1, *,  
output3, X, 61, 1, Z),”  
output3, X, 6, 1, Z),”  
output3, X, 61, 1, Z),”  
output3, X, 61, 1, Z),”  
&
&
&
&
control, 1),”  
&
“62 (BC_1, LOCKBAR,  
“63 (BC_1, BREQ,  
“64 (BC_1, A(31),  
“65 (BC_1, A(30),  
“66 (BC_1, A(29),  
“67 (BC_1, A(28),  
“68 (BC_1, A(27),  
“69 (BC_1, A(26),  
“70 (BC_1, A(25),  
“71 (BC_1, A(24),  
“72 (BC_1, A(23),  
“73 (BC_1, A(22),  
“74 (BC_1, A(21),  
“75 (BC_1, A(20),  
output3, X, 61, 1, Z),”  
output3, X, 6, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
&
&
&
&
94  
Advance Information Datasheet  
80960HA/HD/HT  
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 Package Example (Sheet 8 of 8)  
“76 (BC_1, A(19),  
“77 (BC_1, A(18),  
“78 (BC_1, A(17),  
“79 (BC_1, A(16),  
“80 (BC_1, *,  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
control, 1),”  
&
“81 (BC_1, A(15),  
“82 (BC_1, A(14),  
“83 (BC_1, A(13),  
“84 (BC_1, A(12),  
“85 (BC_1, A(11),  
“86 (BC_1, A(10),  
“87 (BC_1, A(9),  
“88 (BC_1, A(8),  
“89 (BC_1, A(7),  
“90 (BC_1, A(6),  
“91 (BC_1, A(5),  
“92 (BC_1, A(4),  
“93 (BC_1, A(3),  
“94 (BC_1, A(2),  
“95 (BC_4, NMIBAR,  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
&
&
&
&
&
&
&
&
&
&
&
&
&
&
input,  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
X),”  
&
&
&
&
&
&
&
&
&
&
&
“96 (BC_4, XINTBAR(7), input,  
“97 (BC_4, XINTBAR(6), input,  
“98 (BC_4, XINTBAR(5), input,  
“99 (BC_4, XINTBAR(4), input,  
“100(BC_4, XINTBAR(3), input,  
“101(BC_4, XINTBAR(2), input,  
“102(BC_4, XINTBAR(1), input,  
“103(BC_4, XINTBAR(0), input,  
“104(BC_4, RESETBAR,  
“105(BC_4, CLKIN,  
“106(BC_1, CT(3),  
“107(BC_1, CT(2),  
“108(BC_1, CT(1),  
“109(BC_1, CT(0),  
“110(BC_1, PCHKBAR,  
“111(BC_1, *,  
input,  
input,  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 80, 1, Z),”  
output3, X, 111,1, Z),”  
control, 1)”;  
&
&
&
&
&
end Ha_Processor;  
Advance Information Datasheet  
95  
80960HA/HD/HT  
Table 26. Data Sheet Version -006 to -007 Revision History  
Section  
Description  
Entire data sheet  
Formatted in new template.  
Revised “1.2 Gbyte Internal Bandwith (75 MHz) to  
“1.28 Gbyte ... (80 MHz)”.  
“32-Bit Parallel Architecture” on page 1  
Copyright Page  
Updated legal text.  
Section 3.0, “Package Information” on page 6  
Added paaragraph two and Table 5.  
Corrected minor typeset and spacing errors.  
BREQ; Revised description.  
Table 7 “80960Hx Processor Family Pin Descriptions”  
on page 8  
ONCE; last sentence, changed “low” to “high”.  
TDI and TMS; removed last sentence, “Pull this pin  
low when not in use.”  
Figure 2 “80960Hx 168-Pin PGA Pinout — View from  
Top (Pins Facing Down)” on page 12  
Added insert package marking diagram.  
Added insert package marking diagram.  
Figure 4 “80960Hx 208-Pin PQ4 Pinout” on page 18  
Table 10 “80960Hx PQ4 Pinout — Signal Name  
Order” on page 19  
Corrected TDO (“O” was zero) and revised  
alphabetical ordering.  
Table 11 “80960Hx PQ4 Pinout — Pin Number Order” Corrected TDO (“O” was zero) and revised  
on page 21  
alphabetical ordering.  
Revised “V ” to “VCC5” for “Voltage on Other Pins  
....  
CC  
Section 4.1, “Absolute Maximum Ratings” on page 29  
Section 4.5, “VCCPLL Pin Requirements” on page 31 Added section.  
Added footnote (1) to “I ” notes column for “TDO”  
LO  
pin.  
Table 21 “80960Hx DC Characteristics” on page 32  
Table 22 “80960Hx AC Characteristics” on page 34  
Added footnote (10) to “C , C  
and C ” pin.  
IN  
OUT  
I/O  
Added overbars where required.  
Modified “T  
V and 5 V.  
” to list separate specifications for 3.3  
DVNH  
Modified “T  
, T  
and T  
” to reflect specific  
TVEL  
OV2 OH2  
80960HA, 80960HD and 80960HT values.  
Figure 23 “I Active (Power Supply) vs. Frequency”  
on page 43  
CC  
Changed “5” to “0” on “CLKIN Frequency” axis.  
Figure 49 “BREQ and BSTALL Operation” on page 66 Added figure and following text.  
96  
Advance Information Datasheet  

相关型号:

FC80960HT75

32-BIT, 75MHz, RISC PROCESSOR, PQFP208, POWER, PLASTIC, SQFP-208
ROCHESTER

FC80960HT75

RISC Microprocessor, 32-Bit, 75MHz, MOS, PQFP208, POWER, PLASTIC, SQFP-208
INTEL

FC80960HT75SL2GT

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

FC80TAAAF3.579545

Series - Fundamental Quartz Crystal, 3.579545MHz Nom,
FOX

FC80TAAAF5.0

Series - Fundamental Quartz Crystal, 5MHz Nom,
FOX

FC80TAAAF50.0

Series - Fundamental Quartz Crystal, 50MHz Nom,
FOX

FC80TAALA25.0

Parallel - 3Rd Overtone Quartz Crystal, 25MHz Nom,
FOX

FC80TAALA60.0

Parallel - 5Th Overtone Quartz Crystal, 60MHz Nom,
FOX

FC80TAALD6.0

Parallel - Fundamental Quartz Crystal, 6MHz Nom,
FOX

FC80TAALE10.0

Parallel - Fundamental Quartz Crystal, 10MHz Nom,
FOX

FC80TAAMC123.0

Parallel - 3Rd Overtone Quartz Crystal, 123MHz Nom,
FOX

FC80TAAMC8.0

Parallel - Fundamental Quartz Crystal, 8MHz Nom,
FOX