FLLXT3108BE [INTEL]

Digital Transmission Interface, PBGA256;
FLLXT3108BE
型号: FLLXT3108BE
厂家: INTEL    INTEL
描述:

Digital Transmission Interface, PBGA256

文件: 总108页 (文件大小:1783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® LXT3108  
Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Preliminary Datasheet  
The Intel® LXT3108 is an octal 3.3 V Long/Short Haul (LH/SH) T1/E1/J1 Line Interface Unit  
(LIU). This flexible LIU allows for the design of T1/E1/J1 LH/SH multi-service cards with a  
single design and requires no external component changes and can be configured on a  
per-port basis through internal registers. Intel’s proven design makes the LXT3108 the perfect  
device for high-density T1/E1/J1 applications. To increase network reliability, the LXT3108  
incorporates a DSP-based architecture with features, such as Intel® Hitless Protection Switching  
(Intel® HPS) and Intel® Pulse Template Matching (Intel® PTM). The DSP-based architecture is  
less sensitive to power supply and temperature variations and allows the LIU to adapt to varying  
line conditions. Intel® HPS allows for the design of 1+1 redundant cards without the use of  
relays, and has the ability to switch from one card to another, without loss of frame  
synchronization. Intel® PTM software allows the transmitter to shape the output pulse to meet  
various board conditions, without the need to change any external components.  
Applications  
Voice-over-packet gateways  
Wireless base stations  
Integrated Multi-service Access Platforms Routers  
(IMAPs)  
Frame relay access devices  
Integrated Access Devices (IADs)  
Inverse multiplexing for ATM (IMA)  
CSU/DSU equipment  
Product Features  
Intel® HPS for 1+1 protection without  
On-chip Clock Adaptor (CLAD) that  
allows one master clock for T1/E1/J1  
applications (1X, 2X, 4X, or 8X T1 or E1  
clock)  
relays  
Intel® PTM software for pulse output  
adjustment through software without  
component or board change  
16-bit BPV/Excess Zero counters per port  
Interfaces with the Intel® IXF3208, Octal  
T1/E1/J1 Framer with Intel® On-chip  
Performance Report Messaging  
(Intel® On-Chip PRM)  
T1 (100 Ohm), E1 (75 and 120 Ohm), J1  
(110 Ohm) termination and LH/SH  
selectable per port through software  
without component change  
Receiver sensitivity exceeds 36 dB @ 772  
KHz and 38 dB @ 1024 KHz of cable  
attenuation providing margin for board and  
cable variations  
B8ZS/HDB3 encoders and decoders, and  
unipolar/bipolar I/O modes selectable per  
port  
Digital Jitter Attenuator (DJA) in either  
receive or transmit path  
Will substantially conform to publicly  
available specifications in ANSI T1.102,  
T1.403, and T1.408; ITU I.431, CTR12/13,  
G.703, G.736, G.775, and G.823;  
ETSI 300-166 and 300-233; and AT&T  
Pub 62411  
Available in a 17 x 17 mm 256 PBGA  
(LXT3108 BE), or 28 x 28 mm 208 QFP  
(LXT3108 HE) package  
3.3 V power supply with 5 V tolerant  
inputs  
Notice: This document contains preliminary information on new products in production. The  
specifications are subject to change without notice. Verify with your local Intel sales office that  
you have the latest datasheet before finalizing a design.  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® LXT3108 Octal T1/E1/J1 Long/Short Haul Line Interface Unit may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-  
4725, or by visiting Intel's website at http://www.intel.com.  
*Other names and brands may be claimed as the property of others.  
Copyright © Intel Corporation 2003  
2
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
Contents  
Contents  
1.0 Pin Assignments .........................................................................................................................13  
2.0 Signal Descriptions .....................................................................................................................15  
3.0 Intel® LXT3108 LIU Nomenclature..............................................................................................28  
4.0 Functional Description................................................................................................................29  
5.0 Port Descriptions.........................................................................................................................31  
6.0 Software Support.........................................................................................................................34  
7.0 Initialization..................................................................................................................................35  
7.1  
7.2  
CLAD Initialization ..............................................................................................................35  
Reset Operation..................................................................................................................35  
8.0 Power Supply Requirements......................................................................................................36  
8.1  
8.2  
5 V Tolerant I/O Pins ..........................................................................................................36  
Layout Considerations ........................................................................................................36  
8.2.1 Ground Plane.........................................................................................................36  
8.2.2 Analog Power Supply ............................................................................................37  
8.2.3 Digital Power Supply..............................................................................................37  
9.0 Transmitter...................................................................................................................................38  
9.1  
Transmit Line Interface .......................................................................................................39  
9.1.1 Transmit Impedance Termination ..........................................................................40  
9.1.2 Transmit Return Loss Performance.......................................................................40  
9.1.2.1 Intel® Pulse Template Matching (Intel® PTM)........................................41  
Transmit Digital Interface....................................................................................................42  
9.2.1 Transmit Idle Operation and Three-stating Drivers................................................42  
9.2  
10.0 Receiver........................................................................................................................................44  
10.1 Master Reference Clock .....................................................................................................44  
10.2 Receiver Digital Interface....................................................................................................44  
10.2.1 Receiver Idle Conditions........................................................................................44  
10.3 Receiver Line Interface.......................................................................................................45  
10.3.1 Receive Termination Impedance ...........................................................................45  
10.3.2 Programming the Intel® LXT3108..........................................................................45  
10.3.3 Guidelines for Programming the Intel® LXT3108 Receiver....................................46  
10.3.4 Receiver Operation with Transients.......................................................................46  
10.3.5 Receiver Sensitivity Programming.........................................................................46  
10.3.5.1 Receiver Monitor Mode..........................................................................47  
10.4 Receiver Status Information ...............................................................................................48  
11.0 Jitter Attenuation (JA).................................................................................................................49  
11.1 Digital Jitter Attenuator (DJA) Status..................................................................................49  
12.0 Network Control and Maintenance Functions ..........................................................................50  
12.1 Diagnostic Modes ...............................................................................................................50  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
3
Rev. Date: January 08, 2003  
Contents  
12.1.1 In-Band Network Loop Up or Down Code Generator/Detector..............................50  
12.1.2 Analog Loopback...................................................................................................50  
12.1.3 Digital Loopback ....................................................................................................51  
12.1.4 Remote Loopback..................................................................................................51  
12.1.5 Transmit All Ones (TAOS).....................................................................................52  
12.2 Line Coding.........................................................................................................................53  
12.2.1 Alternate Mark Inversion (AMI)..............................................................................54  
12.2.1.1 Bipolar with Eight Zero Substitution (B8ZS)...........................................54  
12.2.1.2 High Density Bipolar Three (HDB3).......................................................55  
12.3 Network Maintenance Functions ........................................................................................55  
12.3.1 Loss Of Signal (LOS).............................................................................................55  
12.3.1.1 Operation of USER LOS with Amplitude Detection ...............................57  
12.3.1.2 Operation of USER LOS with Marks Density Detection.........................58  
12.3.2 Alarm Indication Signal (AIS).................................................................................58  
12.3.3 NLOOP Status.......................................................................................................59  
12.3.3.1 T1 AMI/B8ZS BPVs ...............................................................................59  
12.3.3.2 E1 AMI/HDB3 BPVs...............................................................................59  
12.3.3.3 Excess Zeros (EXZ)...............................................................................60  
12.3.4 Monitoring BPV and EXZ Line Coding Violations..................................................60  
13.0 Host Interface...............................................................................................................................61  
13.1 Supported Processors and Connections............................................................................61  
13.1.1 MPC860.................................................................................................................61  
13.1.2 M68302* ................................................................................................................62  
13.1.3 Intel® i960®/i486TM ................................................................................................62  
13.2 Interrupts.............................................................................................................................63  
13.2.1 Interrupt Enabling ..................................................................................................63  
13.2.2 Interrupt Clearing...................................................................................................63  
14.0 Register Definitions.....................................................................................................................65  
14.1 Global Registers .................................................................................................................65  
14.2 Port Page Register Bank (PPRB).......................................................................................67  
15.0 JTAG Boundary Scan..................................................................................................................81  
15.1 Architecture.........................................................................................................................81  
15.2 TAP Controller....................................................................................................................81  
15.3 JTAG Register Description .................................................................................................84  
15.3.1 Boundary Scan Register (BSR).............................................................................84  
15.3.2 Device Identification Register (IDR).......................................................................84  
15.3.3 Bypass Register (BYR)..........................................................................................84  
15.3.4 Instruction Register (IR).........................................................................................84  
16.0 Test Specifications......................................................................................................................86  
16.1 Microprocessor Interface Timing Diagrams........................................................................97  
16.2 Referenced Standards......................................................................................................104  
17.0 Mechanical Specification..........................................................................................................105  
18.0 Glossary.....................................................................................................................................107  
4
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
Contents  
Figures  
1
2
3
4
5
6
7
8
9
Intel® LXT3108 LIU Block Diagram.............................................................................................11  
Intel® LXT3108 HE 208 Pin Assignment ....................................................................................13  
Intel® LXT3108 BE 256 Plastic Ball Grid Array (PBGA) Assignments........................................14  
T1/E1/J1 LIU Block Diagram ......................................................................................................29  
Intel® LXT3108 LIU Port Block Diagram.....................................................................................31  
Intel® LXT3108 LIU Port Circuit ..................................................................................................32  
Transmitter Circuit for Twisted Pair and Coaxial Cable..............................................................33  
Diode Protection Network When Inputs Power Up Before Supplies...........................................36  
50% AMI Encoding .....................................................................................................................38  
10 Typical Transmitter Interface Connections .................................................................................39  
11 T1, T1.102 Mask Templates.......................................................................................................41  
12 Transmit Interface Timing...........................................................................................................42  
13 TCLK Power Down Timing .........................................................................................................43  
14 Typical Receiver Interface ..........................................................................................................45  
15 Jitter Attenuation Loop ...............................................................................................................49  
16 Analog Loopback........................................................................................................................51  
17 Digital Loopback .........................................................................................................................51  
18 Remote Loopback.......................................................................................................................52  
19 TAOS Data Path.........................................................................................................................52  
20 TAOS with Digital Loopback.......................................................................................................52  
21 TAOS with Analog Loopback......................................................................................................53  
22 Interrupt Processing FlowChart ..................................................................................................64  
23 Intel® LXT3108 LIU JTAG Architecture.......................................................................................81  
24 JTAG State Diagram...................................................................................................................83  
25 Transmit Clock Timing Diagram .................................................................................................90  
26 Receive Clock Timing Diagram ..................................................................................................92  
27 Intel® LXT3108 LIU Output Jitter for CTR12/13 Applications .....................................................93  
28 JTAG Timing...............................................................................................................................93  
29 E1, G.703 Mask Templates ........................................................................................................94  
30 Intel® LXT3108 LIU Jitter Tolerance Performance......................................................................95  
31 Intel® LXT3108 LIU Jitter Transfer Performance ........................................................................96  
32 MPC860 Write Timing.................................................................................................................97  
33 MPC860 Read Timing ................................................................................................................98  
34 M68302 Write Timing..................................................................................................................99  
35 M68302 Read Timing ...............................................................................................................100  
36 Intel® i486TM/i960® Non-muxed Mode Write Timing.................................................................101  
37 Intel® i960® Muxed Mode Write Timing ....................................................................................101  
38 Intel® i486TM/i960® Non-muxed Mode Read Timing.................................................................102  
39 Intel® i960® Muxed Mode Read Timing....................................................................................103  
40 Intel® LXT3108 LIU 256 PBGA Mechanical Specification ........................................................105  
41 Intel® LXT3108 LIU 208 Pin QFP Mechanical Specifications ..................................................106  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
5
Rev. Date: January 08, 2003  
Contents  
Tables  
1
2
3
4
5
6
7
8
9
LXT3108 Pin Description............................................................................................................15  
CLAD Initialization Options.........................................................................................................35  
Transformer Specifications for the Intel® LXT3108 LIU..............................................................39  
Transmit Return Loss Specifications for Frequency Range and Magnitude ..............................40  
Powering Down the Transmitter with Static TCLK......................................................................43  
Programming Receiver Sensitivity..............................................................................................47  
Jitter Attenuation Specifications .................................................................................................49  
LOS Criteria for Intel® LXT3108 LIU...........................................................................................56  
LOS Register Configurations......................................................................................................56  
10 LOS Selection Defaults ..............................................................................................................56  
11 AIS Service Condition Variations................................................................................................58  
12 Excess Zero (EXZ) Definitions ...................................................................................................60  
13 Interfacing the Intel® LXT3108 LIU to the MPC860 Processor...................................................61  
14 Interfacing the Intel® LXT3108 LIU to the M68302 Processor....................................................62  
15 Intel® i960®/i486TM Mode ...........................................................................................................62  
16 Global Register Addresses.........................................................................................................65  
17 Port Page Select Register, CPS, 00h.........................................................................................66  
18 ID Register, ID, 01h ....................................................................................................................66  
19 Interrupt Port Register, ICR, 02h................................................................................................66  
20 CLAD Configuration Register1, 11h ...........................................................................................67  
21 Port Page Register Bank Addresses..........................................................................................68  
22 Port Master Control Page Register, 01h.....................................................................................69  
23 Port Receiver Enable Page Register, 02h..................................................................................69  
24 Transmit Control Page Register, 03h .........................................................................................70  
25 Receive Control Page Register, 04h ..........................................................................................71  
26 Termination Control Page Register, 05h ....................................................................................71  
27 Receiver Equalizer Status Zero Page Register, 06h ..................................................................71  
28 Receiver Equalizer Status One Page Register, 07h...................................................................72  
29 Receiver Equalizer Status Two Page Register, 08h...................................................................72  
30 LOS Window Page Register, 0Bh ..............................................................................................72  
31 LOS Set Threshold One Page Register, 0Ch.............................................................................73  
32 LOS Reset Threshold Two Page Register, 0Dh.........................................................................73  
33 Loopback Enable Page Register, 10h ........................................................................................74  
34 Interrupt Enable Page Register, 11h ..........................................................................................75  
35 Alarm Status One Page Register, 12h .......................................................................................76  
36 Interrupt Status Two Page Register, 13h ...................................................................................77  
37 Line Coding Control One Page Register, 1Ch............................................................................78  
38 JA Control Two Page Register, 1Dh...........................................................................................79  
39 DJA Corner Frequency Selection ...............................................................................................79  
40 BPV Counter High Byte Page Register, 1Eh..............................................................................79  
41 BPV Counter Low Byte Page Register, 1Fh...............................................................................79  
42 Receiver Activation Logic Control Page Register 33h...............................................................80  
43 Receiver Control Page Register 1, 34h......................................................................................80  
44 Transmit Coefficient Page Register Range, 40h-6Fh.................................................................80  
45 Receiver Control Page Register, 3Ch ........................................................................................80  
46 TAP State Description ................................................................................................................81  
47 Device Identification Register (IDR) ...........................................................................................84  
48 Instruction Register (IR)..............................................................................................................84  
49 Absolute Maximum Ratings........................................................................................................86  
6
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
Contents  
50 Recommended Operating Conditions.........................................................................................86  
51 Electrical Characteristics (Over Recommended Operating Conditions).....................................87  
52 E1 Transmitter Analog Characteristics .......................................................................................87  
53 E1 Receiver Analog Characteristics ...........................................................................................87  
54 T1 Transmitter Analog Characteristics .......................................................................................88  
55 T1 Receiver Analog Characteristics ...........................................................................................89  
56 Master and Transmit Clock Timing Characteristics ....................................................................89  
57 Jitter Attenuator Characteristics..................................................................................................91  
58 Receive Timing Characteristics for T1 Operation.......................................................................92  
59 Receive Timing Characteristics for E1 Operation.......................................................................92  
60 JTAG Timing Characteristics......................................................................................................93  
61 G.703 2.048 Mbps Pulse Mask Specifications ...........................................................................94  
62 T1.102 1.544 Mbps Pulse Mask Specifications..........................................................................94  
63 MPC860 Write Timing Characteristics........................................................................................97  
64 MPC860 Read Timing Characteristics........................................................................................98  
65 M68302 Write Timing Characteristics.........................................................................................99  
66 M68302 Read Timing Characteristics.......................................................................................100  
67 Intel® i486TM/i960® Write Timing Characteristics......................................................................102  
68 Intel® i486TM/i960® Read Timing Characteristics .....................................................................103  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
7
Rev. Date: January 08, 2003  
Contents  
Revision History  
Revision #: 008  
Revision Date: January 2003  
Page #  
Description  
62  
Updated the description in section 13.1.3  
Updated Table 45.  
Updated Table 51.  
80  
87  
Revision #: 007  
Revision Date: October 2002  
Page #  
Description  
1
Updated Product Features.  
Updated section: 10.3.2.  
Updated section: 10.3.3.  
45  
46  
Revision #: 006  
Revision Date: September 2002  
Page #  
Description  
45  
46  
Added new section: 10.3.2.  
Added new sections: 10.3.3 and 10.3.4.  
Adjusted Table 6: Maximum Receiver Sensitivity (dB), first four columns were -43, -40, -36,  
and -34. Last two columns were 2 and -43.  
47  
80  
Added Table 42.  
102  
Updated Figure 38.  
Revision #: 005  
Revision Date: August 2002  
Page #  
Description  
1
2
Receiver sensitivity exceeds 36 dB @ 772 KHz, was 43 dB.  
Updated Legal information.  
Modified Tables: 2, 5, 7, 9, 10, 18, 19, 20, 21, 23, 24, 25, 26, 27, 31, 32, 34 -38, 43, and 46.  
Removed Table 4.  
Added Footnote to Table 7.  
Modified sections 8.1, 9.22, 10.2, 10.2.1, 11.2.1, 13.2, 13.2.1, 13.2.1.1, 13.3.1, 13.3.1.1,  
13.3.1.2, and 13.3.4.  
8
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
Contents  
Revision #: 004  
Revision Date: May 2002  
Page #  
Description  
Modified Figures: 2, 3, 5, 6, 7, 10, 32, 33, 34, and 35.  
Modified Tables: 1, 4, 6, 8, 11, 12, 13, 14, 15, 18, 23, 24, 25, 26, 30, 44, 52, 63, 64, 66.  
Modified sections: 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 9.2, 10.1.2.1, 11.3.1, 11.3.2.1, 14.1.1, 14.1.2.  
Added Table 43.  
Revision #: 003  
Revision Date: January 2002  
Page #  
Description  
Modified Figures: 1 - 3, 5 - 7, 10, 14, 15, 32 - 36, and 38.  
Modified Tables: 1, 5, 9 - 11, 14 - 18, 20, 22, 23, 26, 29 - 31, 33 - 36, 39, 40, 45, 47, 48, 50 - 55,  
61 - 63, 65, and 66.  
Modified Sections: 8.1, 8.2, 9.0, 9.2.1, 10.1, 10.2, 10.2.1, 10.3.1, 10.3.2, 11.0, 12.1.5, 12.3.2,  
12.3.3.1, 12.3.3.2, 12.3.4, 13.0, 13.1, 13.2, 13.2.1, and 16.2.  
Deleted Section: 16.1 and 16.1.1.  
Deleted Tables: 58 - 61.  
Revision #: 002  
Revision Date: January 2001  
Page #  
Description  
Modified Pages: 1, 22 - 28, and 30.  
Modified Tables: 1, 2, 44 - 53.  
Modified Figures: 1-3, 5-7, 10, 11, 15, 26, 38 & 39.  
Modified: TOC, LOF and LOT.  
Deleted Tables: 58 - 61.  
Revision #: 001  
Revision Date: January 2001  
Page #  
Description  
Initial release.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
9
Rev. Date: January 08, 2003  
Contents  
This page intentionally left blank.  
10  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 1. Intel® LXT3108 LIU Block Diagram  
REMOTE LOOPBACK  
DIGITAL LOOPBACK  
ANALOG LOOPBACK  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
11  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
This page intentionally left blank.  
12  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
1.0  
Pin Assignments  
Figure 2. Intel® LXT3108 HE 208 Pin Assignment  
VCCIO .....53  
DVCC .....54  
DVSS .....55  
AVCC .....56  
RRING0 .....57  
RTIP0 .....58  
AVSS .....59  
TXVSS .....60  
TXVCC .....61  
TVSS .....62  
TRING0 .....63  
TTIP0 .....64  
TVSS .....65  
DVSS .....66  
DVCC .....67  
TVSS .....68  
TTIP1 .....69  
TRING1 .....70  
TVSS .....71  
TXVCC .....72  
TXVSS .....73  
AVSS .....74  
RTIP1 .....75  
RRING1 .....76  
AVCC .....77  
DVSS .....78  
DVCC .....79  
AVCC .....80  
RRING2 .....81  
RTIP2 .....82  
AVSS .....83  
TXVSS .....84  
TXVCC .....85  
TVSS .....86  
TRING2 .....87  
TTIP2 .....88  
TVSS .....89  
DVCC .....90  
DVSS .....91  
TVSS .....92  
TTIP3 .....93  
TRING3 .....94  
TVSS .....95  
TXVCC .....96  
TXVSS .....97  
AVSS .....98  
RTIP3 .....99  
RRING3 .....100  
AVCC .....101  
DVSS .....102  
DVCC .....103  
GNDIO .....104  
208..... GNDI0  
207..... DVCC  
206..... DVSS  
205..... AVCC  
204..... RRING7  
203..... RTIP7  
202..... AVSS  
201..... TXVSS  
200..... TXVCC  
199..... TVSS  
198..... TRING7  
197..... TTIP7  
196..... TVSS  
195..... DVSS  
194..... DVCC  
193..... TVSS  
192..... TTIP6  
191..... TRING6  
190..... TVSS  
189..... TXVCC  
188..... TXVSS  
187..... AVSS  
186..... RTIP6  
185..... RRING6  
184..... AVCC  
183..... DVSS  
182..... DVCC  
181..... AVCC  
180..... RRING5  
179..... RTIP5  
178..... AVSS  
177..... TXVSS  
176..... TXVCC  
175..... TVSS  
174..... TRING5  
173..... TTIP5  
172..... TVSS  
171..... DVCC  
170..... DVSS  
169..... TVSS  
168..... TTIP4  
167..... TRING4  
166..... TVSS  
165..... TXVCC  
164..... TXVSS  
163..... AVSS  
162..... RTIP4  
161..... RRING4  
160..... AVCC  
159..... DVSS  
158..... DVCC  
157..... INTR  
®
Intel  
LXT3108 HE  
(Top View)  
B0013-01  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
13  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 3. Intel® LXT3108 BE 256 Plastic Ball Grid Array (PBGA) Assignments  
1
2
3
RRING7  
VSS  
4
5
6
7
8
9
10 11 12 13 14 15 16  
TTIP7  
TTIP6 TXVCC AVCC  
RRING5 TTIP5  
TRING4 TXVCC  
AVCC  
INTR  
A7  
DVCC  
RW  
A4  
VCCIO DVCC  
TXVCC  
TTIP4  
TRING5  
VSS  
RRING4  
A
B
C
D
E
F
A
B
C
D
E
F
RPOS7 RNEG7  
RTIP7 TRING7 DVCC TRING6  
AVCC  
TXVCC  
DVCC  
VSS  
VSS  
VSS  
VSS  
DVCC  
RDY  
VSS  
VSS  
DS  
RTIP4  
RTIP6  
RTIP5  
ALE/  
MPI_CLK  
VSS  
VSS  
TPOS7 TNEG7 AVCC  
VSS  
VSS  
RRING6  
VSS  
VSS  
A5  
A3  
A1  
RNEG6  
RPOS6  
TNEG6  
RCLK7  
VSS  
VSS  
VSS  
RCLK6  
TCLK7  
TPOS6  
RNEG5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCCIO  
DB5  
A0  
DB7  
A6  
A2  
TCLK6 RPOS5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DB6  
VCCIO  
TNEG5  
RCLK5  
TPOS5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DB3  
DB0  
VSS  
DB1  
OE  
RCLK4  
VSS  
RPOS4  
TNEG4  
RNEG4 TCLK5  
G
H
J
G
H
J
TCLK4 TPOS4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DB4  
DB2  
VCCIO  
VSS  
VSS  
VSS  
RBIAS  
GND  
VCCIO RCLK3 RNEG3 RPOS3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VMOAT GND  
RNEG2 TCLK3 TNEG3  
VSS  
VSS  
TYPE1  
LOS5  
TPOS3  
K
T
K
L
CS  
VSS  
NC  
VSS  
VSS  
QVCC  
MCLK  
TYPE2  
LOS4  
TPOS2  
RPOS2 TCLK2  
RCLK2  
VSS  
VSS  
VSS  
L
VSS  
VSS  
VSS  
LOS6  
LOS1  
LOS2  
TCK  
TPOS1 RNEG1 RPOS1  
TNEG2  
M
N
P
R
T
M
N
P
R
T
RCLK1 RPOS0  
RNEG0 RCLK0  
VSS  
DVCC  
VSS  
AVCC  
LOS7  
LOS3  
VSS  
TNEG1  
LOS0  
TDI  
TCLK1 TNEG0 TCLK0  
VSS  
VSS  
VSS  
TXVCC RRING1 AVCC  
VSS  
TXVCC  
VSS  
RSTB  
DVCC  
TDO  
VSS  
TPOS0 VCCIO  
JRST  
RRING0  
AVCC  
TRING2  
TXVCC  
TXVCC  
RTIP0  
RTIP2  
DVCC  
TTIP2  
RTIP3  
TMS  
VSS  
TRING0 TTIP1  
RTIP1  
AVCC  
VSS  
DVCC  
DVCC  
DVCC TRING1  
TTIP3 TRING3 RRING3  
VCCIO  
TTIP0  
RRING2  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
B0014-01  
14  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
2.0  
Signal Descriptions  
Table 1. LXT3108 Pin Description (Sheet 1 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
1
A1  
VCCIO  
S
Power (I/O)  
Receive Positive Data/Receive Data Output (Port 7)  
Acts as the positive side of the  
bipolar data output pair, RPOS7  
and RNEG7, recovered from the  
line interface.  
RDATA7 digital framer interface pin  
acts as a single Non-Return-to-Zero  
(NRZ) output of the data recovered  
from the line interface.  
RPOS7 acts as an active high  
Non-Return-to-Zero (NRZ) receive  
data output. A High signal on RPOS7  
corresponds to receipt of a positive  
pulse on RTIP/RRING. A High signal  
on RNEG7 corresponds to receipt of  
a negative pulse on RTIP/RRING. As  
a default, this signal along with  
RNEG7 is valid on the falling edge of  
RCLK7. The LXT3108 can be  
RPOS7/  
RDATA7  
2
B1  
DO  
programmed to validate the RPOS7  
and RNEG7data on the rising edge of  
the RCLK7.  
NOTE: This rule applies to all ports  
(0 through 7).  
Receive Negative Data (Port 7)  
This digital framer interface pin acts  
as the negative side of the bipolar  
data output pair, RPOS7 and  
RNEG7, recovered from the  
line interface.  
RBPV7 indicates a receive BiPolar  
Violation (BPV). It goes High on  
receipt of a bipolar violation at the  
receiver. This is a NRZ output, valid  
by default on the falling edge of the  
RCLK. The clock edge validating this  
signal can be changed from falling  
edge to rising edge by software.  
RNEG7/  
RBPV7  
3
B2  
DO  
RNEG7 acts as an active high NRZ  
receive signal output. A High signal  
on RNEG7 corresponds to receipt of  
a negative pulse on RTIP/RRING.  
This signal along with RPOS7 is valid NOTE: This description applies to  
on the falling edge of RCLK7. ports 0 through 7.  
Receive Clock Output (Port 7): This digital framer interface pin provides the  
recovered clock from the signal received at RTIP7 and RRING7. Under LOS  
conditions, there is a transition from the RCLK7 signal (derived from the  
recovered data) to an internal clock (synthesized from the MCLK signal by  
CLock ADapter, or CLAD circuitry) at the RCLK7 output.  
4
D5  
RCLK7  
DO  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
15  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 2 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Transmit Positive Data/Transmit Data Input (Port 7)  
Digital framer interface pin acts as the TDATA7 acts as a single NRZ data  
positive side of the bipolar data input input controlling the signal  
pair, TPOS7 and TNEG7, which  
controls the signal transmitted to the  
line interface.  
transmitted to the line interface.  
TPOS7 is an active high NRZ input  
that operates together with TNEG7.  
TPOS7 starts the transmission of a  
positive pulse on TTIP7/TRING7,  
whereas TNEG7 starts the  
TPOS7/  
TDATA7  
5
C1  
DI  
transmission of a negative pulse on  
TTIP7/TRING7.  
TPOS7 TNEG7 Selection  
0
1
0
0
Space  
Positive Mark  
Negative  
Mark  
0
1
1
1
Space  
Transmit Negative Data (Port 7)  
This digital framer interface pin acts  
as the negative side of the bipolar  
data input pair, TPOS7 and TNEG7,  
which controls the signal transmitted  
to the line interface.  
Tie TNEG7 to ground in unipolar  
mode.  
6
C2  
TNEG7  
DI  
Transmit Clock Input (Port 7)  
During normal operation TCLK7 toggles at the line rate, which is 1.544 MHz  
for T1/J1 operation, and 2.048 MHz for E1 operation. TPOS7 and TNEG7, or  
TDATA7, are sampled on the falling edge of TCLK7.  
TCLK  
Operating Mode  
Clocked Normal operation  
Driver outputs three  
7
D4  
TCLK7  
DI  
L
stated, but powered on  
for redundancy.  
Driver outputs three  
stated and powered  
down for reduced  
power draw.  
H
NOTE: The Transmit All Ones (TAOS) generator uses MCLK as a timing  
reference. To ensure that the output frequency is within specification  
limits, MCLK must have the applicable stability.  
Receive Positive Data/Receive Data Output (Port 6)  
RPOS6 acts as the positive side of  
the bipolar data output pair, RPOS6  
and RNEG6, recovered from the line line interface.  
interface.  
RDATA6 acts as a single NRZ output  
of the data recovered from the  
RPOS6/  
RDATA6  
8
D3  
DO  
16  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 3 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Receive Negative Data (Port 6)  
RNEG6/  
RBPV6  
RNEG6 acts as the negative side of  
the bipolar data output pair, RPOS6  
and RNEG6, recovered from the  
line interface.  
RBPV6 indicates receive BPV for port  
6.  
9
D1  
DO  
Receive Clock Output (Port 6):This digital framer interface pin provides the  
recovered clock from the signal received at RTIP6 and RRING6. Under LOS  
conditions there is a transition from the RCLK6 signal (derived from the  
recovered data) to an internal clock (synthesized from the MCLK signal by  
CLAD circuitry) at the RCLK6 output.  
10  
11  
D2  
E4  
RCLK6  
DO  
DI  
Transmit Positive Data/Transmit Data Input (Port 6)  
TPOS6 acts as the positive side of  
the bipolar data input pair, TPOS6  
TDATA6 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS6/  
TDATA6  
and TNEG6, which controls the signal to the line interface.  
transmitted to the line interface.  
Transmit Negative Data (Port 6)  
TNEG6 acts as the negative side of  
the bipolar data input pair, TPOS6  
and TNEG6, which controls the signal  
transmitted to the line interface.  
Tie TNEG6 to ground in unipolar  
mode.  
12  
13  
14  
E3  
E1  
E2  
TNEG6  
TCLK6  
DI  
DI  
Transmit Clock Input (Port 6)  
Receive Positive Data/Receive Data Output (Port 5)  
RPOS5 acts as the positive side of  
the bipolar data output pair, RPOS5  
and RNEG5, recovered from the line interface.  
interface.  
RDATA5 acts as a single NRZ output  
of the data recovered from the line  
RPOS5/  
RDATA5  
DO  
Receive Negative Data (Port 5)  
RNEG5/  
RBPV5  
RNEG5 acts as the negative side of  
the bipolar data output pair, RPOS5  
and RNEG5, recovered from the line  
interface.  
RBPV5 indicates Receive BPV for  
port 5.  
15  
16  
17  
F4  
F1  
F3  
DO  
DO  
DI  
RCLK5  
Receive Clock Output (Port 5)  
Transmit Positive Data/Transmit Data Input (Port 5)  
TPOS5 acts as the positive side of  
the bipolar data input pair, TPOS5  
and TNEG5, which controls the signal to the line interface.  
TDATA5 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS5/  
TDATA5  
transmitted to the line interface.  
Transmit Negative Data (Port 5)  
TNEG5 acts as the negative side of  
the bipolar data input pair, TPOS5  
and TNEG5, which controls the signal  
transmitted to the line interface.  
Tie TNEG5 to ground in unipolar  
mode.  
18  
19  
20  
F2  
G4  
G1  
TNEG5  
TCLK5  
DI  
DI  
Transmit Clock Input (Port 5)  
Receive Positive Data/Receive Data Output (Port 4)  
RPOS4 acts as the positive side of  
the bipolar data output pair, RPOS4  
and RNEG4, recovered from the  
line interface.  
RDATA4 acts as a single NRZ output  
of the data recovered from the line  
interface.  
RPOS4/  
RDATA4  
DO  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
17  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 4 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Receive Negative Data (Port 4)  
RNEG4/  
RBPV4  
RNEG4 acts as the negative side of  
the bipolar data output pair, RPOS4  
and RNEG4, recovered from the line  
interface.  
RBPV4 indicates Receive BPV for  
port 4.  
21  
22  
23  
G3  
G2  
H4  
DO  
RCLK4  
DO Receive Clock Output (Port 4)  
Transmit Positive Data/Transmit Data Input (Port 4)  
TPOS4 acts as the positive side of  
the bipolar data input pair, TPOS4  
and TNEG4, which controls the signal to the line interface.  
TDATA4 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS4/  
TDATA4  
DI  
transmitted to the line interface.  
Transmit Negative Data (Port 4)  
TNEG4 acts as the negative side of  
the bipolar data input pair, TPOS4  
and TNEG4, which controls the signal  
transmitted to the line interface.  
Tie TNEG4 to ground in unipolar  
mode.  
24  
H1  
TNEG4  
DI  
25  
26  
27  
H3  
H2  
J1  
TCLK4  
GNDIO  
VCCIO  
DI  
S
Transmit Clock Input (Port 4)  
Ground (I/O)  
S
Power (I/O)  
Receive Positive Data/Receive Data Output (Port 3)  
RPOS3 acts as the positive side of  
the bipolar data output pair, RPOS3  
and RNEG3, recovered from the line interface.  
interface.  
RDATA3 acts as a single NRZ output  
of the data recovered from the line  
RPOS3/  
RDATA3  
28  
J4  
DO  
DO  
Receive Negative Data (Port 3)  
RNEG3/  
RBPV3  
RNEG3 acts as the negative side of  
the bipolar data output pair, RPOS3  
and RNEG3, recovered from the  
line interface.  
This output indicates Receive BPV  
for port 3.  
29  
30  
31  
J3  
J2  
K1  
RCLK3  
DO Receive Clock Output (Port 3)  
Transmit Positive Data/Transmit Data Input (Port 3)  
TPOS3 acts as the positive side of  
the bipolar data input pair, TPOS3  
and TNEG3, which controls the signal to the line interface.  
TDATA3 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS3/  
TDATA3  
DI  
transmitted to the line interface.  
Transmit Negative Data (Port 3)  
TNEG3 acts as the negative side of  
the bipolar data input pair, TPOS3  
and TNEG3, which controls the signal  
transmitted to the line interface.  
Tie TNEG3 to ground in unipolar  
mode.  
32  
33  
K4  
K3  
TNEG3  
TCLK3  
DI  
DI  
Transmit Clock Input (Port 3)  
Receive Positive Data/Receive Data Output (Port 2)  
RPOS2 acts as the positive side of  
the bipolar data output pair, RPOS2  
and RNEG2, recovered from the  
line interface.  
RDATA2 acts as a single NRZ output  
of the data recovered from the  
line interface.  
RPOS2/  
RDATA2  
34  
L1  
DO  
18  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 5 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Receive Negative Data (Port 2)  
RNEG2/  
RBPV2  
RNEG2 acts as the negative side of  
the bipolar data output pair, RPOS2  
and RNEG2, recovered from the line  
interface.  
This output indicates Receive BPV  
for port 2.  
35  
36  
37  
K2  
L4  
L3  
DO  
DO  
DI  
RCLK2  
Receive Clock Output (Port 2)  
Transmit Positive Data/Transmit Data Input (Port 2)  
TPOS2 acts as the positive side of  
the bipolar data input pair, TPOS2  
and TNEG2, which controls the signal to the line interface.  
TDATA2 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS2/  
TDATA2  
transmitted to the line interface.  
Transmit Negative Data (Port 2)  
TNEG2 acts as the negative side of  
the bipolar data input pair, TPOS2  
and TNEG2, which controls the signal  
transmitted to the line interface.  
Tie TNEG2 to ground in unipolar  
mode.  
38  
39  
40  
M1  
L2  
TNEG2  
TCLK2  
DI  
DI  
Transmit Clock Input (Port 2)  
Receive Positive Data/Receive Data Output (Port 1)  
RPOS1 acts as the positive side of  
the bipolar data output pair, RPOS1  
and RNEG1, recovered from the line line interface.  
interface.  
RDATA1 acts as a single NRZ output  
of the data recovered from the  
RPOS1/  
RDATA1  
M4  
DO  
Receive Negative Data (Port 1)  
RNEG1/  
RBPV1  
RNEG1 acts as the negative side of  
the bipolar data output pair, RPOS1  
and RNEG1, recovered from the line  
interface.  
This output indicates Receive BPV  
for port 0.  
41  
42  
43  
M3  
N1  
M2  
DO  
DO  
DI  
Receive Clock Output (Port 1): This digital framer interface pin provides the  
recovered clock from the signal received at RTIP1 and RRING1. Under LOS  
conditions there is a transition from the RCLK1 signal (derived from the  
recovered data) to an internal clock (synthesized from the MCLK signal by  
CLAD circuitry) at the RCLK1 output.  
RCLK1  
Transmit Positive Data/Transmit Data Input (Port 1)  
TPOS1 acts as the positive side of  
the bipolar data input pair, TPOS1  
and TNEG1, which controls the signal to the line interface.  
TDATA1 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS1/  
TDATA1  
transmitted to the line interface.  
Transmit Negative Data (Port 1)  
TNEG1 acts as the negative side of  
the bipolar data input pair, TPOS1  
and TNEG1, which controls the signal  
transmitted to the line interface.  
Tie TNEG1 to ground in unipolar  
mode.  
44  
45  
46  
N3  
P1  
N2  
TNEG1  
TCLK1  
DI  
DI  
Transmit Clock Input (Port 1)  
Receive Positive Data/Receive Data Output (Port 0)  
RPOS0 acts as the positive side of  
the bipolar data output pair, RPOS0  
and RNEG0, recovered from the line interface.  
interface.  
RDATA0 acts as a single NRZ output  
of the data recovered from the line  
RPOS0/  
RDATA0  
DO  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
19  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 6 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Receive Negative Data (Port 0)  
RNEG0/  
RBPV0  
RNEG0 acts as the negative side of  
the bipolar data output pair, RPOS0  
and RNEG0, recovered from the line  
interface.  
This output indicates Receive BPV  
for port 0.  
47  
N4  
DO  
Receive Clock Output (Port 0): This digital framer interface pin provides the  
recovered clock from the signal received at RTIP0 and RRING0. Under LOS  
48  
49  
N5  
R1  
RCLK0  
DO conditions there is a transition from the RCLK0 signal (derived from the  
recovered data) to an internal clock (synthesized from the MCLK signal by  
CLAD circuitry) at the RCLK0 output.  
Transmit Positive Data/Transmit Data Input (Port 0)  
TPOS0 acts as the positive side of  
the bipolar data input pair, TPOS0  
and TNEG0, which controls the signal to the line interface.  
TDATA0 acts as a single NRZ input  
data controlling the signal transmitted  
TPOS0/  
TDATA0  
DI  
DI  
transmitted to the line interface.  
Transmit Negative Data (Port 0)  
TNEG0 acts as the negative side of  
the bipolar data input pair, TPOS0  
and TNEG0, which controls the signal  
transmitted to the line interface.  
Tie TNEG0 to ground in unipolar  
mode.  
50  
P2  
TNEG0  
51  
52  
53  
54  
55  
56  
P3  
P4  
R2  
T1  
L6  
T3  
TCLK0  
GNDIO  
VCCIO  
DVCC  
DVSS  
AVCC  
DI  
S
S
S
S
S
Transmit Clock Input (Port 0)  
Ground (I/O)  
Power (I/O)  
Digital Power 3.3 V  
Digital Ground  
Analog Power 3.3 V  
Receive Ring Input (Port 0): RRING0 is one of the pair of inputs, RRING0/  
RTIP0, to the differential line receiver at the line interface for the port. Data  
and clock are recovered and output at the digital framer interface output pins.  
57  
58  
R3  
T4  
RRING0  
RTIP0  
AI  
AI  
Receive Tip Input (Port 0): RTIP0 is one of the pair of inputs, RRING0/  
RTIP0, to the differential line receiver at the line interface for the port. Data  
and clock are recovered and output at the digital framer interface output pins.  
59  
60  
61  
62  
P5  
P6  
P7  
N6  
AVSS  
TXVSS  
TXVCC  
TVSS  
S
S
S
S
Analog Ground  
Transmit Ground: Ground pin for transmit logic.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Ring Output (Port 0): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP0/TRING0. TTIP0/TRING0 will be  
in a high impedance state if the TCLK pin is static or if the OE pin is Low.  
TTIP0/TRING0 can be in a the high impedance state on a port-by-port basis  
by writing a ‘1’ to the TXPD bit in “Port Master Control Page Register, 01h” on  
page 69, or the OES bit in “Transmit Control Page Register, 03h” on page 70.  
Please refer to “Transmit Idle Operation and Three-stating Drivers” on  
page 42 for details.  
63  
64  
R5  
T5  
TRING0  
TTIP0  
AO  
AO  
Transmit Tip Output (Port 0): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP0/TRING0.  
20  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 7 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
65  
66  
67  
68  
N7  
T8  
T6  
N9  
TVSS  
DVSS  
DVCC  
TVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Digital Ground  
Digital Power 3.3 V  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Tip Output (Port 1): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP1/TRING1.  
69  
70  
R6  
T7  
TTIP1  
AO  
AO  
Transmit Ring Output (Port 1:. This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP1/TRING1.  
TRING1  
71  
72  
73  
74  
P10  
R4  
TVSS  
TXVCC  
TXVSS  
AVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Ground: Ground pin for transmit logic.  
Analog Ground  
P11  
G13  
Receive Tip Input (Port 1): RTIP1 is one of the pair of inputs, RRING1/  
RTIP1, to the differential line receiver at the line interface for the port.  
75  
76  
R7  
P8  
RTIP1  
AI  
AI  
Receive Ring Input (port 1): RRING1 is one of the pair of inputs, RRING1/  
RTIP1, to the differential line receiver at the line interface for the port.  
RRING1  
77  
78  
79  
80  
P9  
N10  
R11  
R8  
AVCC  
DVSS  
DVCC  
AVCC  
S
S
S
S
Analog Power 3.3 V  
Digital Ground  
Digital Power 3.3 V  
Analog Power 3.3 V  
Receive Ring Input (Port 2): RRING2 is one of the pair of inputs, RRING2/  
RTIP2, to the differential line receiver at the line interface for the port.  
81  
82  
T9  
R9  
RRING2  
RTIP2  
AI  
AI  
Receive Tip Input (port 2): RTIP2 is one of the pair of inputs, RRING2/  
RTIP2, to the differential line receiver at the line interface for the port.  
83  
84  
85  
86  
L5  
AVSS  
TXVSS  
TXVCC  
TVSS  
S
S
S
S
Analog Ground  
R12  
P12  
P13  
Transmit Ground: Ground pin for transmit logic.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Ring Output (Port 2): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP2/TRING2.  
87  
88  
R10  
T11  
TRING2  
TTIP2  
AO  
AO  
Transmit Tip Output (Port 2): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP2/TRING2.  
89  
90  
91  
92  
T15  
R14  
M11  
M12  
TVSS  
DVCC  
DVSS  
TVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Digital Power 3.3 V  
Digital Ground  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Tip Output (Port 3): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP3/TRING3.  
93  
94  
T12  
T13  
TTIP3  
AO  
AO  
Transmit Ring Output (Port 3): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP3/TRING3.  
TRING3  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
21  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 8 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
95  
96  
97  
98  
M10  
T10  
M7  
TVSS  
TXVCC  
TXVSS  
AVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Ground: Ground pin for transmit logic.  
Analog Ground  
M8  
Receive Tip Input (Port 3): RTIP3 is one of the pair of inputs, RRING3/  
RTIP3, to the differential line receiver at the line interface for the port.  
99  
R13  
T14  
RTIP3  
AI  
AI  
Receive Ring Input (Port 3): RRING3 is one of the pair of inputs, RRING3/  
RTIP3, to the differential line receiver at the line interface for the port.  
100  
RRING3  
101  
102  
103  
104  
105  
N11  
M6  
N8  
AVCC  
DVSS  
DVCC  
GNDIO  
VCCIO  
S
S
S
S
S
Analog Power 3.3 V  
Digital Ground  
Digital Power 3.3 V  
Ground (I/O)  
M5  
T16  
Power (I/O)  
JTAG Controller Reset Input: Input is used to reset the JTAG controller.  
JRST should be tied to ground through a 1K resistor if JTAG is not used. For  
systems that use JTAG, follow IEEE 1149 standards to initialize this device.  
106  
107  
108  
R16  
R15  
P16  
JRST  
TMS  
TDO  
DI  
DI  
JTAG Test Mode Select Input: Used to control the test logic state machine.  
Sampled on rising edge of TCK. TMS is pulled up internally and may be left  
disconnected.  
JTAG Data Output: During JTAG operation, TDO is Test Data Output for  
DO JTAG. Used for reading all serial configuration and test data from internal test  
logic. It is updated on falling edge of TCK.  
JTAG Data Input: TDI is Test Data input for JTAG. Used for loading serial  
109  
110  
P15  
N16  
TDI  
DI  
DI  
instructions and data into internal test logic. Sampled on rising edge of TCK.  
TDI is pulled up internally and may be left disconnected.  
JTAG Clock Input: TCK is clock input for JTAG. Connect to GND when not  
used.  
TCK  
Reset: RSTB is the reset pin for the LXT3108 octal LIU. One microsecond  
111  
P14  
RSTB  
DI  
after RSTB goes Low, the internal registers will be restored to their default  
values.  
Loss of Signal Output (Port 0): When the LOS0 output is High, it indicates a  
loss of signal at the port’s line interface receiver. LOS goes active after the  
incoming signal has insufficient transitions for a specified time interval, which  
112  
N15  
LOS0  
DO is determined by the page and global register settings. The LOS condition is  
cleared and the output pin returns to Low when the incoming signal has a  
sufficient number of transitions in a specified time interval, as determined by  
the register settings.  
113  
114  
115  
116  
117  
118  
119  
N14  
M16  
N13  
M15  
L16  
LOS1  
LOS2  
LOS3  
LOS4  
LOS5  
LOS6  
LOS7  
DO Loss of Signal Output (Port 1)  
DO Loss of Signal Output (Port 2)  
DO Loss of Signal Output (Port 3)  
DO Loss of Signal Output (Port 4)  
DO Loss of Signal Output (Port 5)  
DO Loss of Signal Output (Port 6)  
DO Loss of Signal Output (port 7)  
M14  
N12  
22  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 9 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
120  
L15  
TYPE2  
DI  
Microprocessor Type Select Inputs: These pins control which  
microprocessor interface is active:  
Type2Type1Microprocessor  
00MPC860, M68360  
01i960, i486  
121  
122  
K16  
L14  
TYPE1  
CS  
DI  
DI  
10M68302  
11Reserved  
Chip Select: This active Low input initiates each access to the parallel  
microprocessor interface. For each read or write operation, CS must transition  
from High to Low, and remain Low.  
Master Clock Input: MCLK is an independent, free-running reference clock.  
After initialization the frequency can be set to 8, 4, 2 or 1x of the T1/E1/J1  
frequency. Refer to CLAD Configuration Register (Address 11h) for MCLK  
frequency selection.  
This reference clock is used to generate several internal reference signals:  
123  
M13  
MCLK  
DI  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Generation of RCLK signal during a loss of signal condition.  
Reference clock during a blue alarm transmit all ones (TAOS) condition.  
Reference timing for the parallel processor wait state generation logic.  
124  
125  
126  
K15  
J16  
K14  
GND  
GND  
Ground  
Ground  
VMOAT  
AI  
AI  
Substrate Ground  
Resistor Bias Input: A 30.1 K , 1% ±100 PPM/°C, resistor must be  
connected from this pin to analog ground. The Panasonic ERJ-8ENF3012 V  
resistor is recommended.  
127  
J14  
RBIAS  
128  
129  
K13  
L13  
QVSS  
QVCC  
AI  
AI  
Ground for Analog Bias Circuit  
Power for Analog Bias Circuit. 3.3 V  
Output Driver Enable Input: If this pin is asserted low every port’s analog  
driver/transmitter output immediately enters a high impedance state to  
support redundancy applications without external mechanical relays. All other  
internal circuitry stays active. TTIP and TRING for each port can also be  
placed in the high impedance state individually by writing a ‘1’ to the TXPD bit  
in “Port Master Control Page Register, 01h” on page 69 or the OES bit in the  
“Transmit Control Page Register, 03h” on page 70. Please refer to “Transmit  
Idle Operation and Three-stating Drivers” on page 42 for details.  
130  
H16  
OE  
DI  
131  
132  
L12  
GNDIO  
VCCIO  
S
S
Ground (I/O)  
Power (I/O)  
H15  
133  
134  
135  
136  
H14  
G16  
J13  
DB0  
DB1  
DB2  
DB3  
DI/O Data Bus Input/Output. When a non-multiplexed microprocessor interface is  
selected, these pins function as a bi-directional 8-bit data bus. When a  
multiplexed microprocessor interface is selected, these pins carry both  
bi-directional 8-bit data and address inputs A0-A7.  
DI/O  
DI/O  
G14  
DI/O  
137  
138  
J15  
F16  
GNDIO  
VCCIO  
S
S
Ground (I/O)  
Power (I/O)  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
23  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 10 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
139  
140  
141  
142  
H13  
F14  
F15  
E16  
DB4  
DB5  
DB6  
DB7  
DI/O Data Bus Input/Output: When a non-multiplexed microprocessor interface is  
selected, these pins function as a bi-directional 8-bit data bus. When a  
multiplexed microprocessor interface is selected, these pins carry both bi-  
directional 8-bit data and address inputs A0 -A7.  
DI/O  
DI/O  
DI/O  
143  
144  
G15  
E14  
GNDIO  
VCCIO  
S
S
Ground (I/O)  
Power (I/O)  
145  
146  
147  
148  
149  
150  
151  
152  
E15  
D16  
F13  
D15  
C16  
D14  
E13  
C15  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
Address Bus Input: In non-multiplexed mode these inputs function as  
address input pins for the microprocessor bus.  
RW has one of two functions depending on the microprocessor interface  
selected by the TYPE1 and TYPE2 inputs.  
153  
154  
B16  
D13  
RW  
DS  
DI  
Read/Write Input (Motorola Mode).  
Write Enable Active Low Input (Intel mode).  
DS has one of two functions depending on the microprocessor interface  
selected by the TYPE1 and TYPE2 inputs.  
DII  
Data Strobe Input (Motorola Mode).  
Read Enable Active Low Input (Intel mode)  
RDY has one of two functions depending on the microprocessor interface  
selected by the TYPE1 and TYPE2 inputs.  
Data Transfer Acknowledge Output. (Motorola Mode).  
Ready Output (Intel mode).  
155  
D12  
RDY  
DO  
A Low signal on RDY during a read operation indicates that the information on  
the data bus is valid. A Low signal during a write operation acknowledges that  
a data transfer into the addressed register has been accepted (acknowledge  
signal).  
This pin has one of two functions depending on the microprocessor interface  
selected by the TYPE1 and TYPE2 inputs.  
Microprocessor Clock (Intel i486 Mode and Mot 860 mode).  
MPI_CLK/  
ALE  
MPI_CLK is used to input the microprocessor clock in the synchronous  
i486/ i960 and Mot 860 mode.  
156  
157  
C14  
B15  
DI  
Address Latch Enable Input (Intel Mode).  
The address on the multiplexed address/data bus is clocked into the  
device with the falling edge of ALE.  
Interrupt: This is an active Low output. If the corresponding interrupt enable  
bit is enabled, INTR goes Low to flag the microprocessor when the LXT3108  
changes state (see details in the interrupt handling section). The  
microprocessor interrupt input should be set to level triggering.  
INTR  
DO  
158  
159  
160  
A16  
E12  
A15  
DVCC  
DVSS  
AVCC  
S
S
S
Digital Power 3.3 V  
Digital Ground  
Analog Power 3.3 V  
24  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 11 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Receive Ring Input (Port 4): RRING4 is one of the pair of inputs, RRING4/  
RTIP4, to the differential line receiver at the line interface for the port.  
161  
162  
A14  
B14  
RRING4  
RTIP4  
AI  
AI  
Receive Tip Input (Port 4). RTIP4 is one of the pair of inputs, RRING4/RTIP4,  
to the differential line receiver at the line interface for the port.  
163  
164  
165  
166  
C13  
D11  
A13  
B13  
AVSS  
TXVSS  
TXVCC  
TVSS  
S
S
S
S
Analog Ground  
Transmit Ground: Ground pin for transmit logic.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Driver Ground. Ground pin for the output driver.  
Transmit Ring Output (Port 4): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP4/TRING4.  
167  
168  
A12  
A11  
TRING4  
TTIP4  
AO  
AO  
Transmit Tip Output (Port 4): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP4/TRING4.  
169  
170  
171  
172  
B12  
C11  
C12  
D10  
TVSS  
DVSS  
DVCC  
TVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Digital Ground  
Digital Power 3.3 V  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Tip Output (Port 5): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP5/TRING5.  
173  
174  
A10  
B11  
TTIP5  
AO  
AO  
Transmit Ring Output (Port 5): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP5/TRING5.  
TRING5  
175  
176  
177  
178  
E10  
A7  
TVSS  
TXVCC  
TXVSS  
AVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Ground. Ground pin for transmit logic.  
Analog Ground  
B10  
C10  
Receive Tip Input (Port 5): RTIP5 is one of the pair of inputs, RRING5/  
RTIP5, to the differential line receiver at the line interface for the port.  
179  
180  
C8  
A9  
RTIP5  
AI  
AI  
Receive Ring Input (Port 5): RRING5 is one of the pair of inputs, RRING5/  
RTIP5, to the differential line receiver at the line interface for the port.  
RRING5  
181  
182  
183  
184  
A8  
B6  
D6  
B9  
AVCC  
DVCC  
DVSS  
AVCC  
S
S
S
S
Analog Power 3.3 V  
Digital Power 3.3 V  
Digital Ground  
Analog Power 3.3 V  
Receive Ring Input (Port 6): RRING6 is one of the pair of inputs, RRING6/  
RTIP6, to the differential line receiver at the line interface for the port.  
185  
186  
C7  
B8  
RRING6  
RTIP6  
AI  
AI  
Receive Tip Input (Port 6): RTIP6 is one of the pair of inputs, RRING6/  
RTIP6, to the differential line receiver at the line interface for the port.  
187  
188  
189  
190  
D7  
E6  
C9  
B3  
AVSS  
TXVSS  
TXVCC  
TVSS  
S
S
S
S
Analog Ground  
Transmit Ground: Ground pin for transmit logic.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Driver Ground: Ground pin for the output driver.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
25  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 12 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Unipolar Mode  
Transmit Ring Output (Port 6): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP6/TRING6.  
191  
192  
B7  
A6  
TRING6  
TTIP6  
AO  
AO  
Transmit Tip Output (Port 6): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP6/TRING6.  
193  
194  
195  
196  
C4  
A2  
C5  
C6  
TVSS  
DVCC  
DVSS  
TVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Digital Power 3.3 V  
Digital Ground  
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Tip Output (Port 7): This is one of the pair of differential line driver  
outputs to the line interface pins, TTIP7/TRING7.  
197  
198  
A5  
B5  
TTIP7  
AO  
AO  
Transmit Ring Output (Port 7): This is one of the pair of differential line  
driver outputs to the line interface pins, TTIP7/TRING7.  
TRING7  
199  
200  
201  
202  
E5  
A4  
E8  
E7  
TVSS  
TXVCC  
TXVSS  
AVSS  
S
S
S
S
Transmit Driver Ground: Ground pin for the output driver.  
Transmit Power Supply: Power supply pin for the transmit logic, 3.3 V.  
Transmit Ground: Ground pin for transmit logic.  
Analog Ground  
Receive Tip Input (Port 7): RTIP7 is one of the pair of inputs, RRING7/  
RTIP7, to the differential line receiver at the line interface for the port.  
203  
204  
B4  
A3  
RTIP7  
AI  
AI  
Receive Ring Input (Port 7): RRING7 is one of the pair of inputs, RRING7/  
RTIP7, to the differential line receiver at the line interface for the port.  
RRING7  
205  
206  
207  
208  
C3  
E9  
AVCC  
DVSS  
DVCC  
GNDIO  
S
S
S
S
Analog Power 3.3 V  
Digital Ground  
D9  
Digital Power 3.3 V  
Ground (I/O)  
E11  
26  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 1. LXT3108 Pin Description (Sheet 13 of 13)  
Description  
QFP  
PBGA  
Symbol  
I/O  
Bipolar Mode  
Digital Power 3.3 V  
Unipolar Mode  
T2  
DVCC  
S
M9  
This Pin Must be Left Floating  
Ground  
D8, F5,  
F6, F7,  
F8, F9,  
F10, F11,  
F12, G5,  
G6, G7,  
G8, G9,  
G10,  
G11,  
G12, H5,  
H6, H7,  
H8, H9,  
H10,  
VSS  
S
H11,  
H12, J5,  
J6, J7,  
J8, J9,  
J10, J11,  
J12, K5,  
K6, K7,  
K8, K9,  
K10,K11,  
K12, L7,  
L8, L9,  
L10, L11,  
M8  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
27  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
3.0  
Intel® LXT3108 LIU Nomenclature  
The Intel® LXT3108 LIU is an octal device that supports up to eight T1/E1/J1 ports, which are  
numbered sequentially, beginning with zero (0) and ending with seven (7). In addition, a port is  
defined as the standard 4-wire receive/transmit pair of a T1/E1/J1 interface; port and channel are  
used interchangeably in this document, and all related documents.  
28  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
4.0  
Functional Description  
Each port consists of a transmitter and a receiver with a jitter attenuator switched between each  
path. Access to the host device is through a microprocessor parallel interface, configured in either  
Intel® or Motorola* mode. JTAG built-in test chains enable on-board verification of digital pins  
and functions.  
Figure 4. T1/E1/J1 LIU Block Diagram  
TCLK  
Transmit PLL  
TTIP  
TRING  
TPOS  
TNEG  
Transmit DAC  
Transmit DSP/Control  
Analog  
Loopback  
Switchable  
DJA  
Remote  
Loopback  
RPOS  
RNEG  
RCLK  
Internal  
Line  
Termination  
RTIP  
Analog  
Noise  
Filter  
Line  
Equalizer  
Timing/Data  
Recovery  
ADC  
AGC  
RRING  
Clock  
Generator  
MCLK  
ENABLE  
LOS  
Activation/  
Control Logic  
LOS  
Each of the eight transmitters consists of:  
A current mode output driver  
A second-order charge pump Phase Lock Loop (PLL)  
A simple digital Finite Infinite Response (FIR) filter  
A switched-current Digital to Analog Converter (DAC)  
Each of the eight receivers’ Analog Front Ends (AFE) consists of:  
An Automatic Gain Control (AGC) amplifier  
An anti-aliasing filter  
An Analog to Digital Converter (ADC)  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
29  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
The digital section consists of:  
A digital noise filter  
A root-f equalizer  
A decision feedback equalizer  
A timing recovery  
An adaptation control logic, as shown in Figure 4 on page 29.  
Note: A ROM is used to store coefficients and settings for the receiver digital filters.  
The programmer controls overall device operation of the LXT3108 LIU through global registers.  
Each individual LIU is separately controlled by a set of Port Page Registers (PPRs). There are eight  
sets of PPRs, one for each port. However, it is also possible to write to all ports at the same time in  
the case where all ports need to be set up with the same configuration.  
The LXT3108 LIU jitter attenuator enhances compatibility with the existing network by complying  
with jitter control standards The jitter performance of the LXT3108 LIU conforms to the stringent  
specifications of AT&T* Pub. 62411 and ITU* TBR12/13. The jitter attenuator is completely  
digital and does not require an external crystal. The LXT3108 LIU has the capability to insert a  
Jitter Attenuator (JA) in either the transmit or receive data path individually for each port.  
30  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
5.0  
Port Descriptions  
The Intel® LXT3108 LIU is a port-by-port programmable, fully integrated eight-port with jitter  
attenuator, as well as network control and maintenance functions. Each LXT3108 LIU port is  
suitable for mixed LH or SH, T1/E1/J1 telecommunications applications allowing full-duplex  
transmission of digital data over existing cable installations. Under microprocessor control and  
with a single MCLK source, each port can individually operate:  
At either T1/J1 or E1 line rates  
At separate line termination impedance settings  
With default or programmable transmit signal  
With preset or customized receiver sensitivity  
With the jitter attenuator in either the transmit or receive path, or disabled  
With or without zero (0) suppression line coding  
Figure 5. Intel® LXT3108 LIU Port Block Diagram  
Transmitter  
TCLK  
TPOS  
TNEG  
TTIP  
TRING  
JA*  
Network Control and  
Maintenance  
RCLK  
RPOS  
RNEG  
RTIP  
RRING  
Receiver  
*Jitter Attenuator in either  
transmitter or receiver path.  
Can be disabled.  
An eight-bit wide data bus conveys commands from a microprocessor to each port individually, or  
to all ports at the same time by a two-step process.  
1. Writing the port number to the global register described in Table 17, “Port Page Select  
Register, CPS, 00h” on page 66 chooses the port.  
2. The next read or write operation can then reach one of the 32 Port Page Registers (PPRs)  
adjusting preset port parameters. Besides the PPRs, the designer can also access 48 ATWG  
registers, as described in Table 44, “Transmit Coefficient Page Register Range, 40h-6Fh” on  
page 80.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
31  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
The LXT3108 LIU is fully T1/E1/J1 selectable without the need to change any external  
components for twisted pair applications, allowing the development of a single board design to  
support T1 and E1 designs. The J1 line rate and transformer configuration are the same for T1 and  
J1 cable.  
The line interface to the cables is through standard T1 and E1 telecommunications transformers  
and resistors. Each front-end interfaces with two twisted pairs: one pair for transmit, and one pair  
for receive. These two pairs comprise a digital data loop for full duplex operation.  
Figure 6. Intel® LXT3108 LIU Port Circuit  
VCC  
Intel®  
1 CT:1  
TTIP  
LXT3108  
Port  
C1  
100pF  
Tx Line  
R1  
1K  
1
TRING  
1 CT:1  
RTIP  
Rx Line  
121  
RRING  
A9933-01  
1. Actual values of R1 and C1 may vary depending on design.  
Framed or unframed data clocked by TCLK to TPOS/TNEG or TDATA inputs activates the  
wave-shaping and line driver circuits. The port’s transmitter will drive T1 or E1 lines from TTIP  
and TRING pins out to standard telecommunications T1 or E1 transformers. The line driver can  
handle both LH and SH lines for T1/E1/J1.  
Preset and programmable pulse shaping suits both LH and SH environments. Each port provides  
eight built-in equalization settings for SH applications and six line build outs for LH applications.  
In addition, the Intel® PTM software allows the transmitter performance to be tuned for a wide  
variety of line conditions or special applications. The PTM software provides eight bits of  
amplitude resolution and either 15 (T1) or 16 (E1) phases of time resolution for up to three Unit  
Intervals (UI). The combination of proven preset wave-shaping settings and the PTM software  
means the designer has increased flexibility in meeting the design challenges of copper interfaces.  
A simplified transmitter circuit configuration offers:  
Port-by-port programmable line impedance matching.  
Reduced port component count.  
Current limiting for short-circuits.  
By programming the internal transmitter termination, matching the line impedance requires no  
component changes for twisted pair and coaxial cable applications, as shown in Figure 7.  
32  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 7. Transmitter Circuit for Twisted Pair and Coaxial Cable  
Tx Line  
75  
VCC  
1
TTIP  
C1  
100 pF  
R1  
1K  
100 / 120  
TRING  
1 CT:1:0.8  
A9934-01  
NOTE: 1. Actual values of R1 and C1 may vary depending on design.  
Trimming each port’s transmitter circuit components to a single transformer and a capacitor  
increases design flexibility. The transmitter’s current mode driver is self-limiting to provide  
built-in short circuit protection. Efficient and flexible line circuit configuration increases designer  
options and maintains line protection.  
A single mandatory clock reference, MCLK, shared between all eight clock recovery circuits,  
enables each receiver in the Intel® LXT3108 LIU to recover the clock and data signals from the  
line interface. When selected, after smoothing the recovered signals through the jitter attenuator,  
RCLK clocks out RDATA or RPOS/RNEG at the port’s digital framer interface. Each port’s  
receiver dynamic range is from 0 to -36 dB for E1 operation and 0 to -36 dB for T1 operation. This  
translates to cable reach of at least 2.1 kilometers on 0.63 mm cables (E1) and at least 6000 feet on  
22 AWG cables (T1).  
The analog AMI waveform from the E1, T1, or J1 line is transformer-coupled into the port’s RTIP  
and RRING pins through the LXT3108 LIU’s internal receive termination. This programmable  
input termination can select between 100, 110, or 120  applications, eliminating the need to  
change external components for twisted-pair cable. The designer has the option of selecting by  
software the internal receive line termination, or bypassing this option with external terminating  
resistors (see Figure 7 for operating 75  cable for more information).  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
33  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
6.0  
Software Support  
The Intel® LXT3108 LIU comes with a complete set of software support. The various software  
modules allow the user to:  
Configure the device through a Graphical User Interface (GUI)—The Intel® LXT3108  
LIU GUI software allows you to configure the LXT3108 LIU without having to worry about  
which bits to set in a particular register. Configuration of the LXT3108 LIU can be  
accomplished by a series of mouse clicks within the GUI. Configurations can be saved as a  
series of LXT3108 LIU API messages, which can be used by client applications. Additionally,  
the LXT3108 LIU GUI allows the user to monitor the performance of the device, as well as  
poll the interrupts.  
Develop customized applications using the LXT3108 LIU Application Programming  
Interface (API)—The LXT3108 LIU API is an open source, ANSI C standard library that  
allows you to develop custom applications for communicating with the device. Programming  
with the API improves development time by relieving the programmer of having to know the  
register specifics of the LXT3108 LIU. The LXT3108 LIU API complies with the Intel® IXA  
architecture for compatibility with other Intel® communication building blocks.  
Fine-tune the pulse shape of the device using the Intel® Pulse Template Matching  
(Intel® PTM) software—The Intel® PTM software provides a graphical view of the  
transmitting pulse shape (T1, J1 or E1) that the LXT3108 LIU generates. PTM allows you to  
adjust the pulse shape to fit its respective template, without having to manually manipulate  
register settings. The PTM software, through the use of graphical controls, automatically  
adjusts the register settings of the LXT3108 LIU. This simplifies the process of fine-tuning the  
pulse shape and leads to faster development time.  
34  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
7.0  
Initialization  
During power up, the Power-On-Reset (POR) circuit initiates a reset sequence after the power  
supply reaches threshold of approximately 60% of V . On crossing this threshold, the device  
CC  
begins a 32 ms reset cycle to calibrate internal phase lock loops. During power-up, an internal  
reset, resets all register default values, status, and state machines for Loss of Signal (LOS) and AIS.  
Note: MCLK is mandatory and must be present at power on for chip operation.  
7.1  
CLAD Initialization  
As a first step after the LXT3108 has powered up, it is required to initialize the CLAD  
Configuration Register (Addr: 0x11). The value written into this register depends on the frequency  
of the MCLK input signal. The following table can be used for programming the CLAD register  
(refer to Table 20, “CLAD Configuration Register1, 11h” on page 67).  
Table 2. CLAD Initialization Options  
MCLK Input1  
Value to be written to CLAD (Addr: 0x11) after power on reset.  
8x E1 clock  
4x E1 clock  
2x E1 clock  
1x E1 clock  
8x T1 clock  
4x T1 clock  
2x T1 clock  
1x T1 clock  
80h  
88h  
84h  
8Ch  
90h  
98h  
94h  
9Ch  
1. E1 clock is 2.048 MHz and T1 clock is 1.544 MHz.  
7.2  
Reset Operation  
The Intel® LXT3108 LIU can be reset in two ways:  
1. Writing to the reset bit as shown in the “Port Page Select Register, CPS, 00h” on page 66. This  
soft reset initiates a 32 ms reset cycle.  
2. Asserting the reset pin RSTB low—The reset pulse width must be a minimum of 1 ms. It is  
recommended to wait for another 32 ms after the reset pulse is de-asserted before performing  
any read/write access to the port registers. The operation sets all LXT3108 registers to their  
default values, including the CLAD Configuration Register1, 11h on page 67.  
Caution: During the reset cycle, users should not access the internal registers (register values are undefined).  
Furthermore, the reset bit does not initialize the CLAD Configuration Register1, 11h on page 67.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
35  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
8.0  
Power Supply Requirements  
8.1  
5 V Tolerant I/O Pins  
All digital input pins will tolerate 5.0 volts and are compatible with TTL logic. The 5.0 V-tolerance  
of the Intel® LXT3108 LIU is only applicable when the 3.3 V (nominal) supplies are present.  
Caution: Keep digital input pins less than 2 volts above the analog and digital supplies. In addition, external  
devices such as pull-up resistors, TTL logic, microprocessors, and system-bus peripherals are  
potential sources of 5 V signals to the digital pins. Power-cycling and power-supply failure can  
potentially cause situations where the Intel® LXT3108 LIU is powered down, while external 5 V  
devices are powered up. When the power supply is not guaranteed to prevent this situation, a diode  
network can be used as shown in Figure 8. The diodes must be capable of handling the entire load  
capacity of either the 3.3 V or 5 V supply, whichever is greater.  
Figure 8. Diode Protection Network When Inputs Power Up Before Supplies  
5 V Supply  
3.3 V Supply  
Should the 5 V supply fail, it be will held up to around 2.6 V by the 3.3 V supply. In the event that  
the 3.3 V supply fails, it will be held up to around 2.9 V by the 5 V supply. Each of these conditions  
is safe for the 5 V tolerant pins.  
8.2  
Layout Considerations  
This section identifies recommended practice for layout and decoupling of power and ground  
planes.  
Caution: Long-term reliability of this device might be compromised when these guidelines are not followed.  
8.2.1  
Ground Plane  
Connect all ground pins to a solid ground plane with the shortest possible path to minimize  
inductive effects. All pins with names containing: GND, VSS, or SUB are ground pins. Also,  
connect the VMOAT pin to the ground plane.  
36  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
8.2.2  
Analog Power Supply  
The analog supply pins listed below require a 3.3 V (nominal) supply, which should be filtered  
separately from the digital supply:  
TXVCC  
AVCC  
QVCC  
Connect all analog pins to a wide PCB trace, and connect one end of the PCB trace to the power  
plane. Bypass capacitors from the ground plane to the analog supply trace should be placed as close  
as possible to the following pins:  
A 0.082 µF capacitor between each TXVCC pin and ground.  
A 0.082 µF capacitor between each AVCC pin and ground.  
A 0.082 µF capacitor between each DVCC pin and ground.  
Caution: To prevent excessive current through the device, due to one of the supplies failing or sequential  
power-cycling, connect back to the original analog and digital power sources (your original power  
supply).  
8.2.3  
Digital Power Supply  
Connect digital power supply pins, I/O power, and DVCC to a solid power plane with the shortest  
possible path. Place four 0.01 µF bypass capacitors, one per side (as close as possible) to the Intel®  
LXT3108 LIU to filter the ground and power planes of the circuit board. In addition, the circuit  
board must contain 10 µF tantalum and 0.01 µF ceramic capacitors where power is supplied to the  
board.  
Caution: To prevent excessive current through the device, due to one of the supplies failing or  
sequential power-cycling, connect back to the original analog and digital power sources (your  
original power).  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
37  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
9.0  
Transmitter  
Each of the eight ports’ transmitters offers several features when interfacing with the framer  
device’s port transmitter signals TCLK and TDATA or TPOS/TNEG. With TCLK clocking at the  
line rate and TDATA or TPOS/TNEG carrying digital traffic, the line driver will output a T1/E1/J1  
signal through a center tapped 1:1 transformer to the transmit cable pair.  
The eight low-power transmitters of the LXT3108 LIU are identical. Along with fourteen  
pre-programmed pulse shapes, as shown in Table 24, “Transmit Control Page Register, 03h” on  
page 70, the designer may choose the PTM software to tailor pulse shapes to the application. The  
PTM implements 48 8-bit registers described in Table 44, “Transmit Coefficient Page Register  
Range, 40h-6Fh” on page 80 that customizes the AMI transmit waveform. The user must assert bit  
zero, ATWG_EN, of Transmit Control Page Register, 03h on page 70, to enable this feature.  
The analog current driver uses programmable internal resistive feedback to synthesize an output  
impedance of either 100, 110, or 120  for twisted-pair applications. The impedance is  
programmable through the port page register in Table 26, “Termination Control Page Register,  
05h” on page 71. When TCLK is not supplied, the transmitter remains powered down and the  
TTIP/TRING outputs are held in a high impedance state. All eight transmitters can be  
simultaneously three-stated by setting the OE pin low. Also, the programmer can set the port’s  
output enable control bit to individually three-state port transmitters as shown in “Transmit  
Control Page Register, 03h” on page 70. Please refer to Section 9.2.1, “Transmit Idle Operation and  
Three-stating Drivers” on page 42 for more details.  
Transmit data is clocked serially into the device at TPOS/TNEG in the bipolar mode or at TDATA  
in the unipolar mode. The transmit clock (TCLK) supplies the input synchronization. Unipolar I/O  
is selected by setting the appropriate bits, as described in Table 37, “Line Coding Control One Page  
Register, 1Ch” on page 78. The transmitter samples TPOS/TNEG or TDATA inputs on the falling  
edge of TCLK. Refer to the Test Specifications Section, Table 56, “Master and Transmit Clock  
Timing Characteristics” on page 89, for MCLK and TCLK timing characteristics.  
Figure 9. 50% AMI Encoding  
TTIP  
Bit Cell  
1
1
0
TRING  
38  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
9.1  
Transmit Line Interface  
Each of the eight transmitters has pre-programmed and preset pulse shapes suited for driving T1  
and E1 twisted-pair cables in LH or SH applications. The signal from TTIP and TRING of each  
port is coupled to a 1:1 center-tapped transformer, as shown in Figure 10.  
Figure 10. Typical Transmitter Interface Connections  
VCC  
1 CT:1  
TTIP  
Tx Line  
1
C1  
100pF  
R1  
1K  
TRING  
A9935-01  
NOTE:  
1. Actual values of R1 and C1 may vary depending on design.  
The 1:1 center-tapped transformer is readily available in many packages, as shown in Table 3.  
Table 3. Transformer Specifications for the Intel® LXT3108 LIU  
Primary  
Inductance  
µH  
Leakage  
Inductance  
µH  
Interwinding  
Capacitance  
pF  
Dielectric1  
Breakdown  
V
DCR  
(maximum)  
Frequency  
MHz  
Tx/Rx  
Turns Ratio  
(minimum)  
(max)  
(max)  
(minimum)  
0.70 pri  
1.20 sec  
2
Tx  
Rx  
1.544/2.048  
1.544/2.048  
1 CT:1  
1:1  
600  
600  
0.80  
1.10  
60  
60  
1500 VRMS  
1.10 pri  
1.10 sec  
2
1500 VRMS  
1. Some ETSI applications may require a 2.3 kV dielectric breakdown voltage.  
2. Some applications require transformers with center tap on the line side of the transformer (LH applications with DC current in  
the E1/T1 loop).  
Programmers can control the following from the Port Page Register Bank:  
Matching line impedance of the transmitter in, as described in Termination Control Page  
Register, 05h” on page 71.  
LH or SH pulse shape, as described in “Transmit Control Page Register, 03h” on page 70.  
T1 or E1 port line clock rate, as described in “Port Master Control Page Register, 01h” on  
page 69.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
39  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
9.1.1  
Transmit Impedance Termination  
The Intel® LXT3108 LIU’s transmitter will synthesize its output impedance to match either a 100  
, a 110 , or a 120  line as set by the TXTERM bits in “Termination Control Page Register,  
05h” on page 71.  
Note: For 75  E1 coax applications, set the termination to 120  and use a 1 CT: 0.8 transformer. Refer  
to Figure 7 for more information.  
Preset pulse shaping controls the transmit pulse equalization to determine the transmitted pulse  
shape as shown in Table 24, “Transmit Control Page Register, 03h” on page 70. For the port to  
accurately produce the desired pulse, software must:  
Set T1 or E1 line clock rate in Port Master Control Page Register, 01h.  
Set transmit line termination in Termination Control Page Register, 05h.  
Load preset pulse shape setting in Transmit Control Page Register, 03h.  
9.1.2  
Transmit Return Loss Performance  
The LXT3108 LIU transmitter will meet the applicable standard for transmit return loss, but there  
are several requirements. Because transmit return loss depends on the match between transmitter  
circuit output impedance and the characteristic cable impedance, ITU limits the reflections due to  
mismatch by specifying minimum transmit return loss. Currently, ANSI currently does not specify  
this parameter. To compare T1 performance to E1 performance, the ITU standard is adapted to  
show a similar T1 minimum return loss. This is a benchmark that might be suitable for some T1  
applications.  
By appropriate software control of the internal transmit impedance in Termination Control Page  
Register, 05h, the transmit return loss will be maximized. There are two standards that can be  
checked for minimum transmit return loss:  
E1 line rate, ITU G.703 recommends ETSI 300166.  
T1 line rate, 0 dB is the standard; however, ETSI 300166 can be adapted to 1.544 MHz, as  
shown in Table 4.  
Table 4. Transmit Return Loss Specifications for Frequency Range and Magnitude  
Transmit Return Loss  
Frequency  
T1/E1  
Actual  
Performance  
(in dB)  
Band  
ETS 300 166  
Notes  
51-102 KHz  
16  
9
6 dB  
8 dB  
ITU G.703  
specification  
102-2048 KHz  
E1  
T1  
Test with 215-1  
2048 - 3072 KHz  
9
8 dB  
HDB3 encoded  
signal pattern  
39-77 KHz  
77-1544 KHz  
15  
12  
9
6 dB  
8 dB  
8 dB  
Test with QRSS  
pattern.  
1544 - 2316 KHz  
40  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 11. T1, T1.102 Mask Templates  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-1.00  
-0.50  
0.00  
0.50  
1.00  
1.50  
-0.20  
-0.40  
-0.60  
Time [UI]  
9.1.2.1  
Intel® Pulse Template Matching (Intel® PTM)  
Each transmit baud, or UI is divided into either 16 (E1) or 15 (T1) sub-phases. The pulse amplitude  
during each phase is described by an 8-bit, 2’s complement, byte. Thus, each pulse can be  
described with a timing resolution of T/16 and an amplitude resolution of Full Scale/128. Up to 48  
transmit bytes can be used, allowing each shaped pulse to extend up to three baud. Typically, SH  
pulses use only 15 or 16 bytes, although all 48 bytes are available. LH pulse shaping may extend up  
to three baud.  
To use the PTM, two operations must take place:  
1. The desired 8-bit values must be loaded into the Intel® LXT3108 LIU’s local memory. This  
can be done through a host API at the application level or on the register level. The coding is  
2’s complement from +127 to -127 where a code of +127 creates a full scale pulse at the  
output. Each LSB is approximately 1/127 of FS. Care must be taken by the users, as it is  
possible to create invalid pulse shapes either by mis-coding or by saturating the DAC.  
2. After the bytes are loaded, assert ATWG_EN by loading value “01h”, as shown in “Transmit  
Control Page Register, 03h” on page 70.  
These settings are maintained as long as power is applied to the device and reset is not asserted.  
They can be overwritten at any time and are not lost when the transmitter is powered-down as  
shown in Figure 13 on page 43. The contents of the local memory are lost when power is removed  
from the chip and initialized to zeros (0’s) when reset is asserted.  
Caution: Do not assert ATWG_EN if the contents of the local memory has not been properly initialized.  
The Intel® PTM® software can be used on the Intel® Evaluation System (IXF3208D) or ported to  
customer board for adjustment to the output signal. The Intel® PTM® software simplifies the  
process of modifying the output signal by handling all of the register manipulation for you.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
41  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
9.2  
Transmit Digital Interface  
Input data for transmission onto the line is clocked serially into the device at the TCLK rate. TPOS  
and TNEG are the bipolar data inputs, and TDATA accepts unipolar data. Software controls how  
input data passes through:  
The jitter attenuator, according to “JA Control Two Page Register, 1Dh” on page 79.  
The B8ZS/HDB3 encoder, according to “Line Coding Control One Page Register, 1Ch” on  
page 78.  
Data is clocked on the falling edge of TCLK as shown in Figure 12, “Transmit Interface  
Timing” on page 42.  
Figure 12. Transmit Interface Timing  
V
TCLK  
t
sut  
t
ht  
TPOS  
TNEG  
9.2.1  
Transmit Idle Operation and Three-stating Drivers  
When the transmitter is not being used, the designer conserves power by powering down the driver  
circuit. There are two ways to power down the transmitter:  
1. Set bit five, Transmit Clock Detect Enable in the Transmit Control Register 03h to 0 and hold  
TCLK input High for 16 clock cycles.  
2. Assert the TXPD bit in “Port Master Control Page Register, 01h” on page 69, in software.  
In this state, TTIP and TRING are at high impedance, and all of the analog circuitry associated  
with the transmitter is turned off. After restarting TCLK or clearing the TXPD bit, it may take  
several milliseconds for the transmitter to achieve steady state performance.  
For redundancy applications, it is required to three-state the redundant transmitter while leaving the  
active transmitter circuitry turned on. In this case, there are two ways to three-state the transmitter:  
1. Set the OE pin low, which affects all eight ports at the same time.  
2. Set the OES bit high in “Transmit Control Page Register, 03h” on page 70. In this case, the  
transmitter three-state is done on a per port basis.  
In this three-state mode, TTIP and TRING will enter a high impedance state. However, in this state  
the transmitter will remain powered up. This will allow two transmitters to be connected in parallel  
for redundancy applications.  
42  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 5. Powering Down the Transmitter with Static TCLK  
TXCLK  
Effect  
Transmitter enters Powered-down State. TTIP and TRING enter  
high_impedence state.  
TXCLK = 1 > 16 MCLK cycles OR TXPD = 1  
TXCLK = 0 > 16 MCLK cycles  
TTIP and TRING enter high-impedance state.  
Figure 13. TCLK Power Down Timing  
MCLK  
TCLK  
16 MCLK cycles  
Tx  
Power  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
43  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
10.0  
Receiver  
The eight receivers in the LXT3108 LIU are identical and operate independently. The following  
paragraphs describe the operation of one receiver. The receiver is coupled to the line through a 1:1  
transformer. The input common mode level is set on-chip. Recovered data is presented at the port’s  
RPOS/RNEG or RDATA pins. The recovered clock is present at the port’s RCLK pin. Upon loss of  
signal, RCLK is derived from MCLK. Refer to the test specification section for receiver timing.  
10.1  
Master Reference Clock  
The MCLK input to the LXT3108 LIU requires Master Clock (MCLK) for operation. This clock is  
used by the on-chip Clock Adapter (CLAD). The MCLK can be one of the following: 1x, 2x, 4x,  
8x (T1 or E1). The LXT3108 LIU requires only one clock (e.g., 2.408 MHz) for all modes (T1/E1/  
J1). The on-chip CLAD configuration is specified in CLAD_CONFIG1 register in Table 20.  
Data and timing recovery circuits provide input jitter tolerance shown significant improvement  
over the requirements set by AT&T Pub 62411 and ITU G.823. See the Test Specifications section  
Table 49 through Table 59 and Figure 25 through 31 for more information.  
10.2  
Receiver Digital Interface  
The recovered data goes to the Loss of Signal (LOS) Monitor, and through the Alarm Indication  
Signal (AIS, Blue Alarm) Monitor. Received data may go through either the B8ZS or HDB3  
decoder or neither. Finally, the data is sent to the framer either as unipolar or bipolar data on the  
RDATA or RPOS/RNEG pins, and the recovered clock drives the RCLK pin. Received data is  
clocked out of the LIU on the active edge of RCLK. The user can specify either the rising or falling  
edge of RCLK for clocking out data on RDATA or RPOS/RNEG. The receiver LOS function  
monitors the received signal level and indicates when the signal drops below the levels given in  
Table 6. In the unipolar mode, the RNEG output indicates received BPV. BPVs are also counted in  
the internal BPV counter when BPV count is enabled. Refer to “Monitoring BPV and EXZ Line  
Coding Violations” on page 60 for more information.  
10.2.1  
Receiver Idle Conditions  
The receiver is idle under either of the following conditions:  
When the RXPD bit described in “Port Master Control Page Register, 01h” on page 69 is set.  
When bit 0 in RENEN register described in “Port Receiver Enable Page Register, 02h” on  
page 69 is set to 0. This bit puts the receiver into a reset when set to 0.  
In the powered down condition, the RPOS, RNEG, and RDATA are not defined. The RCLK signal  
stays at 1.544 MHz +/- 32ppm when the LIU port is configured in T1 or J1 mode. The RCLK  
signal stays at 2.048 MHz +/- 50ppm when the LIU port is configured in E1 mode.  
44  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
10.3  
Receiver Line Interface  
The LXT3108 LIU Receiver Line Interface provides:  
Programmable line termination, as described in Termination Control Page Register, 05h” on  
page 71.  
Programmable sensitivity, as described in “Receive Control Page Register, 04h” on page 71.  
Monitor mode, as described in Receive Control Page Register, 04h.  
The LXT3108 LIU internally terminates the input line for twisted pair applications with a  
combination of a single external resistor and programming the termination register to match the  
line impedance. An advanced DSP- based receiver provides equalization and timing recovery for  
signals with up to -36dB of cable loss (E1) or -36dB of cable loss (T1) in the presence of input  
noise and jitter as specified in ANSI T1.408. The receiver provides up to -36 dB of sensitivity @  
1024 KHz (E1) or up to 36 dB of sensitivity @ 772 KHz (T1) in steps of approximately 2 db under  
software control as described in Receive Control Page Register, 04h.  
Note: Component changes are not required, as these features provide industry standard performance.  
10.3.1  
Receive Termination Impedance  
The receiver is coupled to the line through a 1:1 transformer. In E1 mode, the receiver input  
impedance is high (above 10 K).  
Figure 14. Typical Receiver Interface  
1:1  
RTIP  
Rx LINE  
 2 Ω  
RRING  
For E1 120 , the receiver termination is set by the parallel combination of a precision 121  ± ± 1±  
external resistor and the internal impedance. Figure 14 shows a typical receiver interface. The total  
input impedance can be set by the user by setting the appropriate bits in register RXTERM, address  
05h, in the page registers. For T1 100±Ω, the internal resistor value is 580  ± ±ꢀ1.±For J1 110 Ω,±  
the internal resistor value is 1200  ± ±ꢀ1.±For E1 120 Ω, the internal resistance has a value of  
10 ΚΩ±or higher.  
10.3.2  
Programming the Intel® LXT3108  
The LXT3108 is programmed using registers defined in this datasheet, or by using the available  
Design Assistant CD-ROM.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
45  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
10.3.3  
Guidelines for Programming the Intel® LXT3108 Receiver  
To help ensure reliable operation, use the following sequence:  
1. Program the page port registers for desired mode of operation (T1, E1, LH, SH, 100 , 120 ,  
and so on.)  
2. Write the value 40h into Receiver Activation Logic Control register 33h.  
3. Write the value 11h into Receiver Control Page Register register 3Ch.  
4. Write the value 01h into page port register x02h, which enables the receiver.  
Note: If enabling the receiver is not the last step (instruction) in receiver programming, receiver failure is  
likely.  
10.3.4  
Receiver Operation with Transients  
The LXT3108 receiver is initialized when a signal is detected on the line. When the operator  
connects a cable to the port or a relay switches the line this signal may have transients. It usually  
takes several milliseconds for the transients to go away and for the signal to the receiver to  
stabilize. Transients distort the signal applied to the receiver. As a result, the receiver will require a  
second initialization to acquire the valid (transients-free) signal.  
The second receiver initialization should be done upon detection of LOS Cleared (an interrupt is  
generated for LOS clear) using the following sequence:  
Disable the receiver (write 00h into register 2h).  
Wait at least 3 RCLK cycles.  
Enable the receiver (write 01h into register 2h).  
This operation will result in LOS declare, because the data to LOS logic is all zeros during receiver  
initialization. After this initialization is completed another LOS clear will occur providing a good  
signal is applied to this port. This (second) LOS clear indicates that the receiver operates reliably.  
This is the normal initialization procedure for the LXT3108. In addition to the Interrupts being  
generated, the LOS status register (RX Equalizer Status 2, 08h) should also be checked. Interrupt  
Servicing is further described in Section 13.2, “Interrupts” on page 63.  
10.3.5  
Receiver Sensitivity Programming  
Under some conditions it may be desirable to limit the sensitivity of the receiver. This can be done  
by programing “Receive Control Page Register, 04h” on page 71. This limits the range of the  
receiver equalizer to the approximate values shown in Table 6. The designer selects the affected  
port (as described in the “Port Page Select Register, CPS, 00h” on page 66) for all ports  
simultaneously, or for each port individually.  
46  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 6. Programming Receiver Sensitivity  
RXCON  
RX[4:0] hex  
Maximum Receiver  
Sensitivity (dB)a  
Maximum Receiver  
Sensitivity (dB)  
T1/E1  
T1/E1  
00  
01  
-36  
-35  
-35  
-34  
-34  
-32  
-30  
-28  
-26  
-24  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-36  
-34  
-32  
-30  
-28  
-26  
-24  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
E1  
T1  
-6  
10  
-4  
11  
-2  
12  
-6  
0
13  
-4  
-36  
-36  
-36  
14  
-2  
15 - 1F  
-36  
a.  
The numbers in Maximum Receiver Sensitivity Columns (in dB) represent an approximation of the maximum cable attenu-  
ation the receiver can work with. For example, when RXCON bits [4:0] is 06H the receiver will work reliably with approxi-  
mately 30dB of 22AWG cable in E1 mode and approximately 24dB of cable (22AWG) in T1 mode.  
10.3.5.1  
Receiver Monitor Mode  
The receive equalizer of the Intel® LXT3108 LIU can be used in Monitor Mode applications.  
Monitor Mode applications require a resistive attenuation of the signal in addition to a small  
amount of cable attenuation (less than 6 dB). Asserting the MON bit in “Receive Control Page  
Register, 04h” on page 71 configures the device to work in its Monitor Mode. The device must be  
in its LH receiver mode for Monitor Mode which, is controlled by the RXSH bit in Receive Control  
Page Register, 04h.  
With the device in Monitor Mode, the receive equalizer handles signals attenuated resistively by 20  
to 30 dB, plus 0 to 6 dB of cable attenuation for both E1 and T1 applications.  
Note: The receiver in the T1 Monitoring Mode complies with G.824 jitter standard.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
47  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
10.4  
Receiver Status Information  
The status of the receiver can be monitored though “Receiver Equalizer Status Zero Page Register,  
06h” on page 71, while equalizer settings can be checked with “Receiver Equalizer Status One  
Page Register, 07h” on page 72 and “Receiver Equalizer Status Two Page Register, 08h” on  
page 72. Receiver Equalizer Status Two Page Register, 08h contains status bits that indicate LOS.  
The contents of Receiver Equalizer Status Zero Page Register, 06hand Receiver Equalizer Status  
One Page Register, 07h can be used to estimate the line attenuation, which can be translated to line  
length.  
48  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
11.0  
Jitter Attenuation (JA)  
A digital Jitter Attenuation Loop (JAL) combined with an Elastic Store (ES) FIFO provides Jitter  
attenuation. The FIFO depth is selectable for either 32 or 64-bits, through “JA Control Two Page  
Register, 1Dh” on page 79. The JAL is internal and does not require an external crystal or a high-  
frequency (higher than line rate) reference clock. The JA can be placed in either the receive or  
transmit data path. The JA Control Two Page Register, 1Dh selects JA enabled or disabled, and  
selects either the receive or the transmit path.  
Figure 15. Jitter Attenuation Loop  
TPOS  
TPOSo  
RPOS  
RPOSi  
TNEG  
TNEGo  
RNEG  
FIFO  
RNEGi  
IN CK  
OUT CK  
TCLK  
TCLK  
RCLK  
IN  
OUT  
DPLL  
RCLKi  
1.544/2.048 MHz  
x 32  
The FIFO is a 32 x 2-bit or 64 x 2-bit register (selected by the register x1D). Data is clocked into  
the FIFO with the associated clock signal (TCLK or RCLK) and clocked out of the FIFO with the  
de-jittered JAL clock, as seen in Figure 15. When the FIFO is within two bits of overflowing or  
underflowing, the FIFO adjusts the output clock by 1/8 of a bit period. The Jitter Attenuator  
produces a delay of up to 16 or 32-bits in the associated path. Please refer to Test Specifications for  
details. This advanced digital jitter attenuator meets the latest jitter attenuation specifications  
shown in Table 7.  
Table 7. Jitter Attenuation Specifications  
T1  
E1  
AT&T Pub 62411  
GR-253-CORE  
TR-TSY-000009  
ITU-T G.736  
ETSI CTR12/13  
11.1  
Digital Jitter Attenuator (DJA) Status  
DJA status detection for both underflow and overflow conditions is reported in “Alarm Status One  
Page Register, 12h” on page 76. Two maskable processor interrupts for the DJA are controlled by  
“Interrupt Enable Page Register, 11h” on page 75. Details about both types of DJA interrupt status  
are reported in “Interrupt Status Two Page Register, 13h” on page 77.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
49  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
12.0  
Network Control and Maintenance Functions  
12.1  
Diagnostic Modes  
The LXT3108 LIU offers the following diagnostic modes:  
Network Loop (NLOOP) Code Generator/Detector.  
Analog loopback (ALOOP) digital transmitter to analog transmitter/receiver pins back to  
digital receiver pins.  
Remote loopback (RLOOP) analog receiver to analog transmitter pins.  
Digital loopback (DLOOP) digital transmitter to digital receiver pins.  
Transmit All Ones (TAOS) signal sent by transmitter driver to line.  
The LXT3108 LIU offers three loopback modes for diagnostic purposes: Analog, Remote, and  
Digital Loopback. Network Loop codes activate Remote Loopback from a pattern contained in the  
signal traffic passing through the LIU receiver. Loopbacks are selected by writing to the  
appropriate port’s ALOOP bit in “Port Master Control Page Register, 01h” on page 69, or DLOOP,  
NLOOP, or RLOOP bits in “Loopback Enable Page Register, 10h” on page 74. The Transmit All  
Ones control bit is set in “Transmit Control Page Register, 03h” on page 70.  
12.1.1  
In-Band Network Loop Up or Down Code Generator/Detector  
The LXT3108 can transmit in-band Network Loop Up or Loop Down codes. The Loop Up code is  
00001. The Loop Down code is 001.  
A Loop Up or Loop Down code transmission occurs when the respective bits in the Loopback  
Loopback Enable Page Register, 10h on page 74, are set.  
Network Loopback (NLOOP) can be initiated only when the Network Loopback detect function is  
enabled. Writing a “1” to the NLOOP bit in Loopback Enable Page Register, 10h enables this  
mode.  
With NLOOP detection enabled, the receiver looks for the NLOOP data patterns (00001 = enable,  
001 = disable) in the input data stream. When the receiver detects an NLOOP enable data pattern  
repeated for a minimum of five seconds, the device enables RLOOP. The device responds to both  
framed and unframed NLOOP patterns. Once NLOOP detection is enabled at the chip and  
activated by the appropriate data pattern, it is identical to Remote Loopback (RLOOP). NLOOP is  
disabled by receiving the 001 pattern for five seconds, or by activating RLOOP or ALOOP, or by  
disabling NLOOP detection in software.  
12.1.2  
Analog Loopback  
Analog Loopback (ALOOP) exercises the maximum number of functional blocks. ALOOP  
operation disconnects the RTIP/RRING signal path inputs from the line and routes the transmit  
outputs back into the receive inputs. This tests the transmitter, receiver and timing recovery  
sections. The ALOOP function overrides all other loopback modes. When analog loopback is  
selected the receive line is still terminated by the internal termination. When selected, the  
transmitter outputs (TTIP and TRING) are connected internally to the receiver inputs (RTIP and  
50  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
RRING), as shown in Figure 16. Data and clock are output at RCLK, RPOS, and RNEG pins for  
the corresponding LIU. Note that signals on the RTIP and RRING pins are ignored during analog  
loopback. The ALOOP bit is in Loopback Enable Page Register, 10h.  
Figure 16. Analog Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
12.1.3  
Digital Loopback  
When digital loopback is selected, the transmit clock and data inputs (TCLK, TPOS and TNEG)  
are looped back and are output on the RCLK, RPOS and RNEG pins (see Figure 17). The data  
presented on TCLK, TPOS and TNEG is also output on the TTIP and TRING pins.  
Note: Signals on the RTIP and RRING pins are ignored during digital loopback.  
Figure 17. Digital Loopback  
MCLK  
TAOS Mode  
Timing &  
Control  
TTIP  
TCLK  
TPOS  
TNEG  
JA*  
JA*  
TRING  
(ALL 1s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
12.1.4  
Remote Loopback  
During remote loopback as shown in Figure 18, the RTIP and RRING inputs are routed to the  
transmit circuits and are output on the TTIP and TRING pins.  
Note: Input signals on the TCLK, TPOS, and TNEG pins are ignored during remote loopback.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
51  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 18. Remote Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
Timing &  
Control  
JA*  
JA*  
TRING  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
RRING  
* If Enabled  
12.1.5  
Transmit All Ones (TAOS)  
The TAOS mode is set by asserting the TAOS bit in Transmit Control Page Register, 03h. Note  
that the TAOS generator uses MCLK as a timing reference. To assure that the output frequency is  
within specification limits, MCLK must have the applicable stability as shown in Table 56,  
“Master and Transmit Clock Timing Characteristics” on page 89.  
Both DLOOP and ALOOP modes function correctly with TAOS active. However, RLOOP is  
inhibited when TAOS mode is active.  
Figure 19. TAOS Data Path  
MCLK  
TAOS mode  
Timing &  
Control  
TTIP  
TCLK  
TPOS  
TNEG  
TRING  
(ALL 1s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
Figure 20. TAOS with Digital Loopback  
MCLK  
TAOS Active  
Timing  
&
TTIP  
TCLK  
TPOS  
TNEG  
Control  
TRING  
(ALL 1s)  
RCLK  
RTIP  
Timing  
Recovery  
RPOS  
RNEG  
RRING  
* If Enabled  
52  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 21. TAOS with Analog Loopback  
MCLK  
TAOS Mode  
Timing &  
Control  
TCLK  
TPOS  
TNEG  
TTIP  
TRING  
(ALL 1s)  
RCLK  
RPOS  
RNEG  
RTIP  
Timing  
Recovery  
JA*  
RRING  
* If Enabled  
12.2  
Line Coding  
This section describes the Intel® LXT3108 LIU functionality related to line coding and monitoring.  
The LIU’s digital framer interface performs two functions:  
1. Provides a bipolar or unipolar interface to a framer.  
2. Offers line coding and decoding of AMI, B8ZS and HDB3.  
The LIU digital framer interface can be operated in one of two functional modes as described in  
Table 37, “Line Coding Control One Page Register, 1Ch” on page 78:  
BIPOLAR—Digital Positive/Negative/Clock signals, indicating signal polarity.  
UNIPOLAR—Digital Data/Clock, indicating NRZ data.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
53  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
12.2.1  
Alternate Mark Inversion (AMI)  
(per: ITU G.703)  
AMI is a Return-to-Zero (RZ) format where a binary “one” (mark) is represented by either a  
positive or negative going pulse and a binary “zero” (space) is represented by the absence of a  
pulse. The LXT3108 LIU supports two standards for maximum number of consecutive zeros and  
minimum ones density. The standards are ANSI T1.403 and FCC Part 68.318.  
Note: AMI coding—No specific methods are used to suppress excess zeros in the signal. In addition, the  
AMI coding alone does not provide any method of ensuring compliance to mark/space  
requirements.  
ANSI T1.403:  
— No more than 15 consecutive zeros.  
— At least N ones in each and every time window of 8*(N+1) bits, where N = 1 through 23.  
FCC Part 68.318:  
— No more than 80 consecutive zeros.  
— An average ones density of at least 12.5%.  
Note: Table 37, “Line Coding Control One Page Register, 1Ch” on page 78 offers line coding options.  
Each consecutive pulse should alternate in polarity (for example, a positive pulse should always be  
followed by a negative pulse; a negative pulse should always be followed by a positive pulse),  
regardless of the number of intervening spaces between the two pulses.  
Two consecutive pulses of the same polarity are known as a bipolar violation (BPV). The  
LXT3108 LIU actively monitors the line signal and provides a count of detected BPVs for  
performance monitoring purposes. By definition, all T1 line signals use basic AMI line coding.  
However, because T1 receivers rely on the presence of marks in the signal to recover clocking,  
various standards specify maximum space and minimum mark density requirements.  
12.2.1.1  
Bipolar with Eight Zero Substitution (B8ZS)  
(per: ANSI T1.102)  
The LXT3108 LIU allows separately controlled transmit and receive B8ZS encoding/decoding for  
each port at T1 line rate described in “Line Coding Control One Page Register, 1Ch” on page 78.  
The LXT3108 LIU performs both B8ZS coding (on the T1 transmitted signal) and B8ZS decoding  
(on the T1 received signal). Received BPVs that are part of the B8ZS pattern are not counted as  
BPV errors in the coding error counter.  
B8ZS overcomes limitations of ZCS and allows for the support of clear port (64 kbps) data. It is  
compatible with all standard T1 framing formats. In B8ZS coding, eight consecutive zeros in the  
T1 data stream will be replaced by the B8ZS substitution pattern of “000VB0VB” in which “V” is  
an intentional BiPolar Violation (BPV) and “B” is a valid bipolar mark. Note that the polarity of the  
BPVs and marks depends upon the polarity of the last mark before the “eighth zero” occurs. This  
substitution is made regardless of where the eight consecutive zeros occur in the data stream,  
including framing, signaling, and alarm bits. As opposed to ZCS, which operates on data within a  
DS0 port, B8ZS coding can occur across frame boundaries.  
54  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
12.2.1.2  
High Density Bipolar Three (HDB3)  
(per: ITU G.703)  
The LXT3108 LIU allows separately controlled transmit and receive HDB3 encoding for each port  
at E1 line rates described in “Line Coding Control One Page Register, 1Ch” on page 78.  
Receive side HDB3 decoding is selected by setting the decoding bit in Line Coding Control One  
Page Register, 1Ch. Similarly, transmit side HDB3 encoding is selected by setting the encoding bit  
in Line Coding Control One Page Register, 1Ch. Received BPVs that are part of the HDB3 pattern  
are not counted as BPVs in the coding violation error counter.  
In HDB3 coding, four consecutive zeros in the E1 data stream will be replaced by the HDB3  
substitution pattern of either “000V” or “B00V, in which “V” is an intentional bipolar violation  
(BPV) and “B” is a valid bipolar mark. This limits the maximum number of consecutive spaces to  
three. The choice of substitution pattern is made so that the number of B pulses between  
consecutive V pulses is odd (for example, successive V pulses are of alternate polarity). This  
substitution is made regardless of where the four consecutive zeros occur in the data stream,  
including framing, signaling, and alarm bits. The LXT3108 LIU performs both HDB3 coding on  
the E1 transmitted signal and HDB3 decoding on the E1 received signal.  
12.3  
Network Maintenance Functions  
12.3.1  
Loss Of Signal (LOS)  
While LOS appears at each port’s LOS pin, it can be detected by software reading the LOS bit in  
the “Receiver Equalizer Status Two Page Register, 08h” on page 72. A maskable processor  
interrupt controlled by “Interrupt Enable Page Register, 11h” on page 75 is available. Details about  
LOS interrupt status are reported in “Interrupt Status Two Page Register, 13h” on page 77.  
Depending on whether the port is configured for T1 or E1 service, the LOS will be cleared when  
required marks (ones) density is met after the detection of LOS.  
Each receiver has a multi-function LOS detector that is used to meet ITU T1.231 or G.775  
requirements for T1 or E1 systems. The default values are given in Table 10. These detectors  
monitor both the received signal amplitude and the received marks density according to Table 8.  
The user may change these values by setting the USR_LOS bit in “Port Master Control Page  
Register, 01h” on page 69. When this bit is set, the desired LOS Window, LOS Set, and LOS Reset  
values must be programmed for proper LOS operation.  
Three user registers are provided for customizing the received marks density LOS detector. Users  
can select:  
The number of consecutive spaces that must be received to declare LOS in “LOS Window  
Page Register, 0Bh” on page 72.  
The number of marks that must be received within that window to clear LOS “LOS Set  
Threshold One Page Register, 0Ch” on page 73.  
The number of consecutive zeros that, when received while LOS is asserted, will continue to  
re-assert LOS in “LOS Reset Threshold Two Page Register, 0Dh” on page 73.  
These detectors monitor both the received signal amplitude and the received marks density  
according to Table 8.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
55  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Note: For E1 SH operation the LOS operates based on the peak received amplitude during a fixed  
window. For G.775 the window length can be programmed by LOS Window Page Register, 0Bh. A  
minimum data density of 1 in 16 is required to clear LOS.  
Table 8. LOS Criteria for Intel® LXT3108 LIU  
Standard  
T1.231  
LOS Declared  
LOS Cleared  
No pulse transitions for 175 consecutive  
clock cycles  
12.5% mark density in 175 clock cycles  
and less than 100 consecutive zeros  
Less than 20dB, and 12.5% mark density  
in a 32-bit window, and less than 15  
consecutive zeros  
More than 26dB below nominal output  
level, for 1544-bit periods  
T1 ITU I.431  
E1 G.775  
Less than12dB, and 12.5% mark density  
in a 32-bit window, and less than 15  
consecutive zeros  
More than 18dB below nominal output  
level, for 32-bit periods  
Less than 15dB, and 12.5% mark density  
in a 32-bit window, and less than 15  
consecutive zeros  
More than 18dB below nominal output  
level, for 2048-bit periods  
E1 ITU I.431  
Less than 15dB, and 12.5% mark density  
in a 32-bit window, and less than 15  
consecutive zeros  
More than 18dB below nominal output  
level, for 2048-bit periods  
E1 ETSI 300 233  
E1 long haul  
No pulse transitions for 175 consecutive  
clock cycles  
12.5% mark density in a 32-bit window,  
and less than 15 consecutive zeros  
Table 9. LOS Register Configurations  
Reg addr: 01H (master)  
04H (rxcon)  
LOS Criteria  
Description  
bit-4  
bit-3  
I431  
bit-0  
bit-7  
rxah  
usr_los  
E1/T1  
0
0
0
0
0
1
0
1
0
0
1
1
x
x
1
x
T1.231  
I.431  
Marks density detection  
Amplitude detection  
Amplitude detection  
Amplitude detection  
G.775  
I.431/ETSI  
Marks density detection  
(same criteria as T1.231)  
0
0
1
0
E1 long haul  
1
1
0
1
x
x
x
x
User LOS 1  
User LOS 2  
Marks density detection  
Amplitude detection  
NOTE:  
1. x: don’t care.  
.
Table 10. LOS Selection Defaults  
Number of Spaces in  
Window to Reset the LOS  
Counter  
Number of Marks in  
Window to Clear LOS  
T1/E1  
Window Size  
T1  
E1  
175  
32  
21  
4
100  
16  
56  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
The receiver monitor loads a digital counter at the RCLK frequency. The counter will increment  
each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the  
operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is  
replaced by MCLK at the RCLK output with a minimum amount of phase errors. (MCLK is  
required for receive operation.) When the LOS condition is cleared, the LOS flag is reset and  
another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will be high  
during the entire LOS detection period for that port.  
12.3.1.1  
Operation of USER LOS with Amplitude Detection  
In some applications you might be required to customize the LOS criteria. This criteria might differ  
from those listed in Table 9. This type of customized LOS is called “User LOS” and it includes two  
criterion:  
1. LOS with Amplitude Detection.  
2. User LOS with Marks Density detection.  
For practical reasons, the User LOS with amplitude detection will be available for signals on the  
line with amplitude at 1 V and below:  
LOS will be declared when the received signal level is below the LOSTHRES1 x 4m V level  
for evaluation period of time specified in the LOS Window Page Register, 0Bh on page 72.  
LOSTHRES1 x 4m V creates so called LOS set threshold and it is called LOSSET. LOS is  
asserted when input signal drops below LOSSET limit.  
LOS will be cleared when the received signal is above the LOSTHRES2 x 4mV threshold.  
This voltage level is called LOSCLR. The LOS will be cleared when the input signal to the  
receiver is above LOSCLR level. The receiver makes the decision using marks density criteria  
of at least 12.5% marks density in 32-bit period. This limits options for the value in the LOS  
Window Page Register, 0Bh on page 72 to be 04h or higher. Refer to Tables 22, 30, 31, and 32  
for more details.  
Examples of user LOS with Amplitude Detection, include:  
LOS declaration: Input signal amplitude (peak differential) <89m V for 400-bit period.  
LOS clearance: Input signal amplitude (peak differential) > 190m V.  
Register settings calculation:  
Step 1: Reg 0Bh = 400/8 =50dec = 32h  
Step 2: Reg 0Ch = 89/4 = 22dec = 16h  
Step 3: Reg 0dh = 190/4 = 47dec = 2Fh  
Caution: The above register settings must be done before enabling the receiver. Incorrectly setting the  
register value may incur improper receiver operation. The LOS actual declaration/clearance levels  
might deviate from the set values. Therefore, users might need to adjust the register values for  
desired levels.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
57  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
12.3.1.2  
Operation of USER LOS with Marks Density Detection  
LOS will be declared when no marks has been received during the evaluation period specified in  
the LOS Window Page Register, 0Bh on page 72. The value in the LOS Window Page Register,  
0Bh on page 72 should be 20h or higher.  
LOS will be cleared when during the LOS evaluation period, the number of consecutive zeros  
(spaces) is less than MAXZERO (listed in the LOS Set Threshold One Page Register, 0Ch on  
page 73 and the number of marks is more than MINMARKS—Reg. 0Dh). Refer to Tables 22, 30,  
31, and 32 for more details.  
Examples of User LOS with Marks Density Detection, include:  
LOS declaration: no marks for 200-bit period minimum  
LOS clear: in 200-bit period, maximum number of consecutive zeros is <40 and minimum  
number of marks >30. This will give the following register settings:  
step1: Reg 0Bh = 200dec = C8h  
step2: Reg 0Ch = 40dec = 28h  
step3: Reg 0Dh = 30dec = 1Eh  
12.3.2  
Alarm Indication Signal (AIS)  
Alarm Indication Signal reports all ones signal received at the RTIP and RRING pins. Once AIS is  
detected, the port status flag is set in “Alarm Status One Page Register, 12h” on page 76. A  
maskable processor interrupt controlled by “Interrupt Enable Page Register, 11h” on page 75 is  
available. Details about AIS interrupt status are reported in “Interrupt Status Two Page Register,  
13h” on page 77. Depending on whether the port is configured for T1 or E1 service, the AIS will be  
cleared for the appropriate zeros density after the detection of AIS, as described in Table 11.  
.
Table 11. AIS Service Condition Variations  
Maximum number of spaces  
within the window to declare  
AIS.  
Number of Spaces in Window to  
Clear AIS  
T1/E1  
Window Size  
T1  
E1  
3 ms.  
9
3
8
2
512-bit  
(per: ETSI 300233)  
E1 AIS is declared when less than three spaces (for example, 2 or less zeros) are detected in a 250  
µsec period of data (512-bit window). This condition should be reliably detected in the presence of  
a 1.0E-03-bit Error Rate (BER), implying that a framed all-ones pattern will not be mistaken as an  
AIS.  
58  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
(per ITU G.775)  
E1 AIS is detected when less than three spaces are detected in two consecutive 512-bit wide  
windows. The AIS is cleared when three or more zeros are detected in two consecutive 512-bit  
wide windows.  
(per: ANSI T1.231)  
T1 AIS (Blue Alarm) is declared when less than nine spaces (for example, 8 or less zeros) are  
detected in a 8192-bit wide window. When AIS is detected, the appropriate bit in the AIS status  
register is set and a microprocessor interrupt is generated (unless masked). AIS is cleared when 9  
or more zeros are detected in a 8192-bit wide window.  
12.3.3  
NLOOP Status  
With NLOOP detection enabled in “Loopback Enable Page Register, 10h” on page 74, the receiver  
looks for the NLOOP data patterns (00001 = enable, 001 = disable) in the input data stream. When  
the receiver detects an NLOOP enable data pattern repeated for a minimum of five seconds, the  
device enables RLOOP and the port status flag is set in “Alarm Status One Page Register, 12h” on  
page 76. The device responds to both framed and unframed NLOOP patterns. NLOOP is cleared  
by:  
Receiving the 001 pattern for five seconds.  
Activating RLOOP in “Loopback Enable Page Register, 10h” on page 74 or ALOOP in “Port  
Master Control Page Register, 01h” on page 69.  
Disabling NLOOP detection in Loopback Enable Page Register, 10h.  
A maskable processor interrupt for NLOOP is controlled by “Interrupt Enable Page Register, 11h”  
on page 75. Details about NLOOP interrupt status are reported in “Interrupt Status Two Page  
Register, 13h” on page 77.  
12.3.3.1  
T1 AMI/B8ZS BPVs  
In T1 service, only one type of T1 BPV line coding violation is used:  
A Bipolar Violation (BPV) is defined as any two consecutive pulses (marks) of the same  
polarity with AMI coded bit stream. BPVs that are part of the B8ZS zero-substitution coding  
will not be reported—All other BPVs are reported and counted.  
The LXT3108 LIU actively monitors the line signal for this type of coding violation and  
increments the BPV counter for performance monitoring purposes. BPVs detected in the  
receive direction are also reported on RNEG/RBPV output, when the LIU is configured in the  
unipolar mode of operation.  
12.3.3.2  
E1 AMI/HDB3 BPVs  
Two basic types of E1 line coding violations are defined as:  
1. ITU G.703—A BiPolar Violation (BPV) is defined as any two consecutive pulses (marks) of  
the same polarity with AMI coded bit stream.  
2. ITU O.161—An HDB3 coding violation is defined as the occurrence of two consecutive BPVs  
of the same polarity that are not part of the HDB3 zero substitution coding.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
59  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
The LXT3108 LIU actively monitors the line signal for both types coding violations and  
increments the BPV counter for performance monitoring purposes. Receive BPVs are also reported  
on the RNEG/RBPV output, when the LIU operates in unipolar mode.  
12.3.3.3  
Excess Zeros (EXZ)  
The definition of an EXZ depends upon the line coding format, as defined in Table 12. The line  
signal is monitored for any violations of the maximum space rule as set in “Line Coding Control  
One Page Register, 1Ch” on page 78. When selected, EXZ occurrences increment the BPV counter  
for performance monitoring purposes.  
Table 12. Excess Zero (EXZ) Definitions  
Coding  
Method  
EXZ Definition  
(ANSI)  
EXZ Definition  
(FCC)  
Any string with greater than 80 consecutive  
zeros  
AMI  
Any string greater than 15 consecutive zeros  
Any string greater than 3 consecutive zeros  
Any string greater than 8 consecutive zeros  
Any string with greater than 3 consecutive  
zeros  
HDB3  
B8ZS  
Any string with greater than 8 consecutive  
zeros  
12.3.4  
Monitoring BPV and EXZ Line Coding Violations  
BPV and EXZ line coding violations are reported on signal traffic received at RTIP and RRING  
pins. Once a BPV or EXZ condition is detected, the port status flag is set in “Alarm Status One  
Page Register, 12h” on page 76. The Intel® LXT3108 LIU has two registers that form a 16-bit  
counter for each port to monitor BPVs and excess zeros. The counter mode is set by bits 7 through  
5 in Line Coding Control One Page Register, 1Ch. The counter can be enabled to count both BPVs  
and excess zeros or, for troubleshooting purposes, to count either BPVs or Excess Zeros only.  
These counters, BPV Counter High Byte Page Register, 1Eh and BPV Counter Low Byte Page  
Register, 1Fh, will increment when there is a valid code violation. The counter has a shadow  
register that is updated at one second intervals. This is done with an internal one second timer. The  
one second timer is based on the RCLK. Each port uses its own one second timer. The user should  
read the 16-bit shadow register (addr 1Eh and 1Fh) for BPV count accumulated during the previous  
one second time frame. The count value stored in the shadow register can be read by the host.  
Note: It is recommended to read Application Note “Making Modifications to Embedded software to  
precisely count bipolar violations” before implementing BPV Monitoring feature. This application  
note is available on Intel web site under the LXT3108 documentation.  
60  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
13.0  
Host Interface  
The microprocessor interface is used to relay configuration, control, status, and data information  
between the LXT3108 LIU and an external microprocessor or micro controller.  
The microprocessor interface supports MPC860/M68360 (memory like bus), M68302 (standard  
Motorola bus), the i960®/i486TM processor bus. 8-bit address and data buses are supported.  
Non-multiplexed address and data busses are supported. The user selects the processor type by  
tying the MPI_TYPE 1 and 2 pins appropriately. The processor interface can operate up to a bus  
cycle of 33 Mhz. The MPC860 requires five wait states and the i960® CPU also requires five wait  
states. Handshaking and automatic wait state generation are supported. The latency of processor  
access is fixed so the use of the wait state signal is optional.  
The LXT3108 LIU provides extensive interrupt support. All interrupts are independently  
maskable—One interrupt output is provided.  
13.1  
Supported Processors and Connections  
The LXT3108 LIU supports direct connection to the MPC860, M68360, M68302 (M68000*  
family), i486TM, and i960® processors. The user selects the type of processor by tying the TYPEx  
pins to the appropriate GND and V connections. The connections between the processor pins and  
cc  
the MPI_TYPE programming are defined as below.  
13.1.1  
MPC860  
The LXT3108 LIU host interface address and data pins follow the MPC860 endian fashion. The  
LXT3108 LIU requires five wait states from the microprocessor in order to satisfy its internal  
timing.  
.
Table 13. Interfacing the Intel® LXT3108 LIU to the MPC860 Processor  
Intel® LXT3108 LIU  
Intel® LXT3108 LIU Pin  
Motorola MPC860 Pin  
I/O  
TYPE1 = 0  
TYPE2 = 0  
DB(7:0) a  
AD(7:0) b  
CS  
i
-
-
I
I/O  
D(31:24)  
A(31:24)  
CS  
I
I
DS  
I
TS  
RW  
I
R/W#  
CLK  
TA  
MPI_CLK/ALE  
RDY  
I
O
a.  
b.  
Bits: DB0, AD0, are the MSB bits.  
Bits: DB0, AD0, are the MSB bits.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
61  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
13.1.2  
M68302*  
The M68302 (or the M68000 family) is supported in this mode. Notice that DTACK is not used in  
this case. The user is required to generate their own internal wait states when needed. The number  
of wait states needed depends on the clock frequency of the microprocessor. When clock frequency  
of 16.67 MHz is used, no wait states are needed. When 20 MHz or 25 MHz clock is used, one wait  
state is needed.  
Table 14. Interfacing the Intel® LXT3108 LIU to the M68302 Processor  
Intel® LXT3108 LIU  
Intel® LXT3108 LIU Pin  
I/O  
Motorola M68302 Pin  
TYPE1 = 0  
TYPE2 = 1  
DB(7:0)  
I
-
I
-
I/O  
D(7:0)  
A(7:0)  
CS  
AD(7:0)  
I
I
I
I
I
CS  
DS  
LDS  
R/W#  
-
RW  
MPI_CLK/ALE = 1  
13.1.3  
Intel® i960®/i486TM  
The Intel® i960®/i486TM family is supported in this mode. This is a synchronous bus interface with  
the timing being derived from the MPI_CLK input. Internally, all operations will be performed on  
the next cycle after ADS is asserted—Five wait states are required.  
The Intel® i960®/i486TM can operate in Muxed and Non-Muxed mode. For Muxed mode of  
operation, the address and data busses of the LXT3108 should be connected together externally to  
the device.  
Table 15. Intel® i960®/i486TM Mode  
Pin  
i960®/i486TM  
TYPE1  
TYPE2  
DB0  
1
0
D0  
DB1  
D1  
DB7  
D7  
AD0  
A0  
AD7  
A7  
CS  
CS  
DS  
ADS  
W/R#  
CLKO1  
READY  
RW  
MPI_CLK  
RDY  
62  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
13.2  
Interrupts  
There are four interrupt sources:  
1. Status change in the Loss of Signal (LOS) bit of Receiver Equalizer Status Two Page Register,  
08h—The Intel® LXT3108 LIU’s analog/digital LOS processor continuously monitors the  
receiver signal and updates the specific LOS status bit to indicate presence or absence of a  
LOS condition.  
2. Status change in the AIS (Alarm Indication Signal) bit of Alarm Status One Page Register,  
12h—The Intel® LXT3108 LIU’s receiver monitors the incoming data stream and updates the  
specific AIS status bit to indicate presence or absence of an AIS condition.  
3. Status change in NLOOP (Network Loop Code) bit of Alarm Status One Page Register, 12h.  
4. Elastic Store overflow or underflow (DJA overflow or underflow) bits of Alarm Status One  
Page Register, 12h.—The Intel® LXT3108 LIU jitter attenuator updates these based on DJA  
response to jitter on incoming signal.  
13.2.1  
Interrupt Enabling  
The LXT3108 LIU provides a latched interrupt output (INT). An interrupt occurs any time there is  
a transition on any enabled bit in the Interrupt Status Register (Addr. 13h.). Writing a logic “1” into  
the enable register will enable the respective bit in the respective Interrupt status register to  
generate an interrupt. The power-on default value is all zeros. The setting of the interrupt enable bit  
does not affect the operation of the status registers.  
When there is a transition on any enabled bit in a status register, the associated bit of the interrupt  
status register is set and an interrupt is generated (when one is not already pending). When an  
interrupt occurs, the INT pin is asserted Low. The output stage of the INT pin consists only of a  
pull-down device.  
13.2.2  
Interrupt Clearing  
Reading register 13h (Interrupt Status Register) clears the corresponding interrupt with the rising  
edge of the read or data strobe. When there are no pending interrupts left INT pin will go back  
high. Refer to Figure 22, “Interrupt Processing FlowChart” on page 64 for more details.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
63  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 22. Interrupt Processing FlowChart  
Start  
No  
Enable  
Interrupts?  
Disable  
Interrups?  
No  
Yes  
Yes  
Write "1" into corresponding  
interrupt bit in reg 11h  
Write "0" into corresponding  
interrupt bit in reg. 11h  
No  
Does interrupt  
conditions exist?  
Yes  
Pin INT* goes Low  
Read reg. ISR at addr. 02h  
for port#  
Read interrupt status Register(ISR), addr 13h  
for each port that shows an interrupt.  
Pin INT* on the device goes High when  
interrupts on all ports are cleared.  
DJAx, NLOOP, AIS  
LOS  
Which Interrupt  
condition exists?  
Read reg. 12h to  
get status of DJAx,  
NLOOP and AIS  
Read reg. 08h to  
get status of LOS  
Is DJAx,  
NLOOP or AIS  
active?  
No  
No  
Is LOS active?  
DJAx, NLOOP or  
AIS condition  
cleared  
Yes  
LOS Cleared  
Yes  
DJAx, NLOOP or  
AIS condition  
exists  
LOS condition  
exists  
64  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
14.0  
Register Definitions  
Since the Intel® LXT3108 LIU has both global registers and Page Port Registers (PPRs), the first  
subsection covers the global registers and the second subsection covers the PPRs. The global  
registers control parameters affecting operation for the entire device. One set of PPR registers  
controls parameters affecting operation for a single port. Of the nine sets of PPR registers, there is  
one for each of the eight ports and there is an additional set that controls all eight ports at the same  
time.  
Because global registers are programmed differently than PPRs, this section describes the  
differences:  
Access a global register by reading or writing directly to the global register address. This is a  
single operation to read or write a global register. The CPS register must be set to 00h first.  
Access PPRs by writing to a global register, Port Page Select (CPS) at address 00h, with the  
selected port number. Immediately following this action, access the PPR for the selected port  
by reading or writing to the chosen PPR address. This is a double operation, one write access  
to the PPS with the port number followed by a single read or write to a PPR.  
14.1  
Global Registers  
This subsection is organized with a summary of the global registers in Table 16 followed by a  
descriptive listing of each global register starting at Table 17 on page 66 and ending at Table 44 on  
page 80. Table 16 includes the global register names and addresses for the LXT3108 LIU.  
Table 16. Global Register Addresses  
Binary Address  
A7-A0  
Name  
Symbol  
HEX Address  
Mode  
Port Page Select Register  
ID Register  
CPS  
00000000  
00000001  
00000010  
00010001  
00  
01  
W
R
ID  
ICR  
Interrupt Port Register  
CLAD Configuration Register 1  
02  
R
CLAD_CONFIG1  
11H  
R/W  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
65  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 17. Port Page Select Register, CPS, 00h  
Bit  
Name  
Bit  
Function  
Soft-reset, set bit 7 for device software reset. Bit 7 automatically clears itself on  
reset. Soft-reset, resets all ports, and the entire device except for the CLAD circuitry.  
Only a hardware reset or power up reset can reset the CLAD.  
7
6:4  
Not used  
Bits 3:0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Index/Page  
Selects Global Register Page  
Selects Page 1 - control registers for Port 0  
Selects Page 2 - control registers for Port 1  
Selects Page 3 - control registers for Port 2  
Selects Page 4 - control registers for Port 3  
Selects Page 5 - control registers for Port 4  
Selects Page 6 - control registers for Port 5  
Selects Page 7 - control registers for Port 6  
Selects Page 8 - control registers for Port 7  
Selects write to all page control registers at one time.  
PS4-PS0  
7:0  
(Write Only  
Registers)  
3:0  
1000  
1001  
NOTE: Writing to this register selects the index to the page for individual port control registers.  
Table 18. ID Register, ID, 01h  
Bit  
Name  
Function  
This register contains a unique revision code and is mask programmed. For rev. B2 silicon  
the value of this register is B2h, for B3 silicon rev. the value is B3h.  
7:0  
ID7-ID0  
Table 19. Interrupt Port Register, ICR, 02h  
Bit  
Name  
Function  
This register is read by the CPU when an interrupt has occurred. Value in this register  
identifies the port (or ports) on which the interrupt (or interrupts) was generated.  
A “1” indicates that an interrupt occurred in the respective port.  
Bit 0 = 1, interrupt occurred on Port 0.  
Bit 1 = 1, interrupt occurred on Port 1.  
Bit 2 = 1, interrupt occurred on Port 2.  
Bit 3 = 1, interrupt occurred on Port 3.  
Bit 4 = 1, interrupt occurred on Port 4.  
Bit 5 = 1, interrupt occurred on Port 5.  
Bit 6 = 1, interrupt occurred on Port 6.  
Bit 7 = 1, interrupt occurred on Port 7.  
7:0  
ICR7-ICR0  
66  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 20. CLAD Configuration Register1, 11h  
Address  
Description  
Name  
Status  
Bit  
Function  
This bit initializes the CLAD. Default for this bit is “0”. It  
must be set to “1” for CLAD to work. In the event that a  
“0” is written into this bit by accident during operation,  
the CLAD will stop working. A hardware Reset (pull  
CLAD_PSRST  
7
RSTB pin low) must follow and the CLAD has to be  
re-initialized.  
CLAD_PWDN  
CLAD_CSSEL  
6
5
RESERVED - write as “0”  
RESERVED - write as “0”  
MCLK definition bit. When set, clock applied to MCLK  
pin must be T1- based. When clear (default) MCLK  
must be E1- based  
CLAD Configuration  
Register 1  
(CLAD_CONFIG1)  
CLAD_OT1E1  
4
11h3  
R/W  
MCLK definition bits. Bits 4,3, and 2 define MCLK  
frequency  
00 = 8x (T1 or E1) (default)  
10 = 4x (T1 or E1)  
DIV<1:0>  
3:2  
01 = 2x (T1 or E1)  
11 = 1x (T1 or E1)  
CLAD_TFB  
1
0
RESERVED - write as “0”  
RESERVED - write as “0”  
CLAD_TRST  
NOTES:  
1. Upon reset, restored default value is 00h.  
2. In the event that an accidental write of 1 during normal operation into any of the RESERVED bits occurs, a hardware RESET  
must be applied and followed by CLAD initialization.  
3. This register is not affected by the soft reset bit. The CLAD configuration register should only be written after reset operation  
initiated by the RSTB pin or after device power up.  
14.2  
Port Page Register Bank (PPRB)  
Each of the eight LIU ports in the Intel® LXT3108 LIU has independent register control available  
through its Port Page Register Bank. Reading or writing to each bank of registers is a two-step  
process:  
1. Select the port by writing the port number to the global register Port Page Select (CPS),  
address 00h.  
2. Program the selected PPRB register or read its status.  
There is an additional mode where all eight ports can be set up to the identical settings by first  
writing to address 00h with a value of 09h. Table 21 on page 68 provides an overview of the PPRB  
structure for each port’s LIU. Each port in the LXT3108 LIU has an individual PPRB. The registers  
in the port bank structure are descriptively listed in the range of Table 22 on page 69 through Table  
44 on page 80.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
67  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 21. Port Page Register Bank Addresses  
Binary Address  
Name  
Port Master Control  
Symbol  
Address  
Mode  
A7-A0  
MASTER  
RENEN  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
0000 1000  
0000 1011  
0000 1100  
0000 1101  
0001 0000  
0001 0001  
0001 0010  
0001 0011  
0001 1100  
0001 1101  
0001 1110  
0001 1111  
0011011  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
0Bh  
0Ch  
0Dh  
10h  
11h  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Port Receiver Enable  
Transmit Control  
TXCON  
Receiver Control  
RXCON  
Termination Control  
TERM  
RX Equalizer Status 0  
RX Equalizer Status 1  
RX Equalizer Status 2  
LOS Window  
RXSTATUS0  
RXSTATUS1  
RXSTATUS2  
LOSWINLEN  
LOSTHRES1  
LOSTHRES2  
LER  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
LOS Set Threshold  
LOS Reset Threshold  
Loopback Enable Register  
Interrupt Enable Register  
Alarm Status Register 1  
Interrupt Status Register 2  
Control Register 1  
IER  
SR1  
12h  
13h  
1Ch  
1Dh  
1Eh  
1F  
SR2  
R
CR1  
R/W  
R/W  
R
Control Register 2  
CR2  
BPV counter High Byte  
BPV counter Low Byte  
Receiver activation logic control  
Receiver Control Register 1  
Receiver Control Page Register  
Transmit Pulse Shape Coefficients  
BPVCTRHB  
BPVCTRLB  
RALC  
R
33h  
34h  
3Ch  
40h-6Fh  
R/W  
R/W  
W
RWFCTRL  
RWFCTRL  
TXCOEF  
00110100  
0011 1100  
R/W  
68  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 22. Port Master Control Page Register, 01h  
Address  
Description  
Name  
Status  
Bit  
Description  
7
6
5
Reserved; write as “0”  
TXPD, “1” powers down transmitter circuitry.  
RXPD, “1” powers down receiver circuitry.  
BIt 4 Bit 3  
0
1
This registers setting enables LOS criteria  
as defined in I.431 standard. Refer toTable  
9 for more details.  
1
0
This register setting enables USER LOS  
with Marks Density Detection (criteria for  
“Digital LOS”). Refer to Tables 9, 30, 31,  
and 32 for more details.  
Port Master  
Control  
4, 3  
01h  
MASTER  
R/W  
1
0
1
0
This register setting enables USER LOS  
with Amplitude Detection (criteria for  
“Analog LOS”). Refer to Tables 9, 30, 31,  
and 32 for more details.  
This option must be considered in context  
with settings of bit 0 and register 04h.  
Refer to Table 9 for details.  
2
1
Reserved; write as “0”  
ALOOP, 1” enable analog loopback diagnostic mode  
T1E1, “0” enables T1, 1.544 MHz operation, while “1”  
enables E1, 2.048 MHz operation  
0
NOTE: Upon reset, restored default value is 0h.  
G25  
Table 23. Port Receiver Enable Page Register, 02h  
Address  
Description  
Name  
Status Function  
This register enables or disables the receiver on per port basis.  
The receiver has to be enabled for proper LIU operation.  
When bit 0 is set to 0, port receiver is disabled.  
When bit 0 is set to 1, port receiver is enabled.  
This register is used to perform two important functions:  
1. To start the receiver—This function is a part of device  
configuration. It is recommended to set this register to 00h,  
configure the receiver at first (parameters such as T1 or E1,  
impedance, and so on.) and to set this register to 01h as the  
last step in receiver configuration.  
Port Receiver  
Enable  
02h  
RENEN  
R/W  
2. To perform receiver restart upon receiver failure—For a  
successful receiver restart (reinitialization) it is required to write  
00h into this register, wait at least 3 RCLK cycles and write  
01h into this register. Receiver restart does not change receiver  
configuration.  
NOTE: Upon reset, restored default value is 0h.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
69  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 24. Transmit Control Page Register, 03h  
Address  
Description  
Name  
Status Bit  
Function  
7
Transmit All Ones enable (TAOS) when this bit is set to 1.  
Transmit output high impedance (OES) is enabled when  
this bit is set to 1. In this setting the driver of this port is  
powered up and its output is in high impedance mode.  
This is a typical configuration for HPS application.  
6
5
NOTE: Set this bit to 0 for normal LIU operation.  
Transmit Clock Detect Enable  
TCLK presence detection is enabled when this bit is set to  
zero. When the TCLK is stopped (no transitions) for more  
than 16 cycles the transmitter on this port is powered  
down.  
NOTE: Write 1 to disable TCLK detection.  
Bits  
4:1  
Decode bits 4 to 0 for pre-programmed pulse  
shapes.  
T1 SH 0-133 ft. Write this value for T1, SH  
application and expected cable in front of  
the transmitter to be 0-133 ft.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
T1 SH 134 -266 ft.  
T1 SH 267 - 399 ft.  
T1 SH 400 -533 ft.  
T1 SH 534 - 655 ft.  
T1 0dB LH  
03h  
Transmit Control  
TXCON  
R/W  
T1 LH -7.5 dB  
T1 LH -15 dB  
T1 LH -22.5 dB  
E1 SH 75  
E1 SH 120  
E1 LH 75  
E1 LH 120  
J1  
4:1  
Not used  
Not used  
Bit 0 controls ATWG operation. ATWG is enabled when it  
is set to 1. Normal operation is with ATWG being disabled  
(write 0 into this bit).  
0
NOTE: Upon reset, restored default value is 0h.  
70  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 25. Receive Control Page Register, 04h  
Address  
Description  
Name  
Status  
Bit  
Function  
Set this bit to 1 for T1/E1 SH operation. Set to 0 for all  
other modes of operation.  
RXSH  
7
Set this bit to 1 for Monitoring Mode. For Monitoring Mode  
bit 7 of this register (RXSH) must be set to 0.  
MON_MOD  
RXCON  
6
5
Not used  
04h  
Receiver Control  
R/W  
bits 4 to 0 select receiver sensitivity in dB.  
For Short Haul operation set bits[4:0] to 0 or don’t  
care.  
Bits  
4:0  
For Monitoring Mode set bits[4:0] to 0 or “don’t care.”  
For Long Haul Mode bits [4:0] define receiver  
sensitivity. Refer to Table 6 for more details.  
Table 26. Termination Control Page Register, 05h  
Address  
Description  
Name  
Status  
Bit  
Function  
Bits  
7:6  
Bits 7 and 6 select transmit termination  
0
100  
110  
120  
120  
7:6  
5:2  
1:0  
1
2
3
Termination  
Control TX/RX  
05h  
TERM  
R/W  
Bit 5 through 2 are not assigned  
Bits  
1:0  
Bits 1 and 0 select receiver termination  
0
1
2
3
100  
110  
120  
100  
NOTE: Upon reset, restored default value is 0h.  
Table 27. Receiver Equalizer Status Zero Page Register, 06h  
Address  
Description  
Name  
Status  
Bit  
Function  
RX Equalizer  
Status0  
06h  
RXSTATUS0  
R
7:0  
Reserved  
NOTE: Upon reset, restored default value is 0h.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
71  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 28. Receiver Equalizer Status One Page Register, 07h  
Address  
Description  
Name  
Status  
Bit  
Function  
7:4  
Reserved  
RX Equalizer  
Status1  
07h  
RXSTATUS1  
R
Decode AGC state settings. Bits 0 through 3 can be used  
to determine the cable/attenuation length.  
3:0  
NOTE: Upon reset, restored default value is 0h.  
Table 29. Receiver Equalizer Status Two Page Register, 08h  
Address  
Description  
Name  
Status  
Bit  
Function  
7:5  
Reserved  
LOS status bit, 1 = LOS has occurred. 0 = LOS cleared.  
A change in the LOS status will generate a LOS interrupt  
if LOS interrupt is enabled.  
4
RX Equalizer  
Status 2  
08h  
RXSTATUS2  
R
3
2
1
0
Not used  
Reserved  
Reserved  
Reserved  
NOTE: Upon reset, restored default value is 0h.  
Table 30. LOS Window Page Register, 0Bh  
Address  
Description  
Name  
Status  
Function  
LOS Window for User  
Programmed LOS. Two  
modes of operation are  
available:  
Evaluation window for LOS detection.  
1. User LOS with Amplitude  
Detection. Refer to Table  
22.  
Value in this register specifies Evaluation period for LOS  
declaration. The actual evaluation time (in UI or baud) is  
eight times the value specified in the register.  
0Bh  
LOSWINLEN R/W  
2. User LOS with Marks  
Density Detection.  
In User LOS with Amplitude Detection the actual  
evaluation time (in UI or baud) for LOS declaration  
is LOSWINLEN x 8UI.  
In User LOS with Marks Density Detection the actual time  
for both LOS declare and LOS clear is LOSWINLEN  
x 1UI.  
NOTE: Upon reset, restored default value is 0h.  
72  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 31. LOS Set Threshold One Page Register, 0Ch  
Address  
Description  
Name  
Status  
Function  
This register controls two functions:  
1. User LOS with Amplitude Detection. Refer to Table  
22. User LOS with Amplitude Detection works only for  
line signal below 1 V. In this mode the value in this  
register represents the maximum level of the received  
signal (multiply the register decimal value by 4mv) to  
declare LOS. This variable is named LOSSET.  
LOSSET must be less or equal than LOSCLR  
(defined in Table 32).  
LOS Set  
Threshold  
0Ch  
LOSTHRES1  
R/W  
2. User LOS with Marks Density Detection. Refer to  
Table 22. In this mode the value in this register  
represents the upper limit of the number of  
consecutive zeros allowed during evaluation time  
(specified in the LOS Window Page Register, 0Bh),  
before digital LOS is cleared. This variable is named  
MAXZERO.  
NOTE: Upon reset, restored default value is 0h.  
Table 32. LOS Reset Threshold Two Page Register, 0Dh  
Address  
Description  
Name  
Status  
Function  
This register controls two functions:  
1. User LOS with Amplitude Detection. Refer to Table 22.  
In this mode the value in register 0Dh represents the minimum  
level of the received signal (multiply the register decimal value  
by 4mv) to clear Analog LOS. This variable is named LOSCLR.  
LOSCLR must be larger than or equal to LOS declare  
threshold (LOSSET).  
LOS Reset  
Threshold  
0Dh  
LOSTHRES2  
R/W  
2. User LOS with Marks Density Detection (digital LOS). Refer to  
Table 22. In this mode the register value represents the  
minimum number of marks required to clear digital LOS. This  
variable is named MINMARKS.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
73  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 33. Loopback Enable Page Register, 10h  
Address  
Description  
Name  
Status  
Bit  
Function  
Bit 7 inverts the RCLK, when set to 1.  
This bit controls the RCLK qualifying edge for RPOS/  
RNEG/RDATA. In default Bit 7 is 0 and the data is  
clocked out from the LIU on RPOS/RNEG/RDATA with  
falling edge of the RCLK.  
7
When bit 7 is set to 1 the RPOS/RNEG/RDATA is clocked  
on the rising edge of RCLK.  
6, 5  
4
Reserved: write as “0”  
DLOOP, Digital, Loopback is enabled this bit is set to 1.  
NOTE: Write 0 to disable DLOOP.  
Transmit Network Loop Down code is enabled when this  
bit is set to 1.  
Loopback  
Enable Register  
10h  
LER  
R/W  
3
NOTE: Write 0 to disable Transmit Loop Down code  
Transmit Network Loop Up code is enabled when this bit  
is set to 1.  
2
1
0
NOTE: Write 0 to disable Transmit Loop Up code  
NLOOP, Network Loopback detection is enabled when  
this bit is set to ‘1’.  
RLOOP, Remote loopback is enabled when this bit is set  
to ‘1’.  
NOTE: Write 0 into this bit to disable RLOOP.  
NOTE: Upon reset, restored default value is 0h.  
74  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 34. Interrupt Enable Page Register, 11h  
Address  
Description  
Name  
Status  
Bit  
Function  
7:5  
Reserved: write as “0”  
DJA Underflow Interrupt Enable. When this bit is set to 1,  
an interrupt will be generated when DJA Underflow  
occurs.  
4
3
NOTE: Write 0 to mask this interrupt  
DJA Overflow Interrupt Enable. When this bit is set to 1,  
an interrupt will be generated when DJA overflow occurs.  
NOTE: Write 0 to mask this interrupt  
NLOOP detection Interrupt Enable. This bit enables  
NLOOP detection interrupt when set to 1. The device  
responds to two different NLOOP codes; loop up and  
loop down.  
Interrupt Enable  
Register  
11h  
IER  
R/W  
2
NOTE: Write 0 to disable NLOOP detection interrupt.  
AIS Interrupt Enable. AIS interrupt will be generated  
when this bit is set to 1 and AIS is received on this port.  
1
0
NOTE: Write 0 to disable AIS interrupt  
LOS Interrupt Enable. LOS interrupt will be generated  
when this bit is set to 1 and LOS occurs.  
NOTE: Write 0 into this bit to disable LOS interrupt.  
NOTE: Upon reset, restored default value is 0h.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
75  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 35. Alarm Status One Page Register, 12h  
Address  
Description  
Name  
Status  
Bit  
Function  
7:4  
Bits 7 to 4 not used.  
DJA overflow status bit. 1 = DJA overflow has occurred.  
0 = No oveflow in DJA.  
3
2
A change in the status of this bit will generate DJA  
Overflow Interrupt if enabled.  
DJA underflow status bit:  
1 = DJA underflow has occurred.  
0 = No underflow in DJA.  
A change in the status of this bit will generate DJA  
Underflow Interrupt if enabled.  
NLOOP detection status bit:  
NLOOP detection works only after bit 1 in register  
10h is set to 1.  
Alarm Status  
Register 1  
12h  
SR1  
R
This bit is 1 when Loop up code is detected and it  
remains in this status until Loop down code is  
detected.  
1
Loop down code detection will terminate the  
loopback and clear this bit.  
Each transition of this bit results in an Interrupt if  
enabled.  
AIS (All Ones) detection status:  
1 = All Ones data pattern is detected. The device will  
generate an AIS interrupt if enabled.  
0
0 = data pattern different than All Ones.  
A transition in the status of this bit results in AIS  
interrupt generation if enabled.  
NOTE: Upon reset, restored default value is 0h.  
76  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 36. Interrupt Status Two Page Register, 13h  
Address  
Description  
Name  
Status  
Bit  
Function  
7:5  
Bits 7 to 5 not used.  
LOS interrupt status:  
1 = LOS Interrupt is generated. Reading this bit by  
CPU will clear this interrupt.  
4
3
2
1
0
0 = Interrupt cleared or no interrupt.  
DJA overflow interrupt status:  
1 = DJA underflow Interrupt is generated. Reading  
this bit by CPU will clear this interrupt.  
0 = Interrupt cleared or no interrupt.  
DJA underflow interrupt status:  
Interrupt Status  
Register 2  
13h  
SR2  
R
1 = DJA underflow Interrupt is generated. Reading  
this bit by CPU will clear this interrupt.  
0 = Interrupt cleared or no interrupt.  
NLOOP interrupt status:  
1 = NLOOP Interrupt is generated. Reading this bit  
by CPU will clear this interrupt.  
0 = Interrupt cleared or no interrupt.  
AIS interrupt status:  
1 = AIS Interrupt is generated. Reading this bit by  
CPU will clear this interrupt.  
0 = Interrupt cleared or no interrupt.  
NOTE: Upon reset, restored default value is 0h.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
77  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 37. Line Coding Control One Page Register, 1Ch  
Address  
Description  
Name  
Status  
Bit  
Function  
Excess Zeros mode. This bit defines criterion for  
excess zeros detection.  
0 = Excess Zeros criterion are defined by ANSI  
(see Table 13)  
7
1 = Excess Zeros criterion are defined by FCC  
(see Table 13 for more information)  
Bits  
6:5  
Decode bits 6 to 5 selecting BPV Counter  
mode  
Enable counting of both BPVs and  
Excess Zero  
0h  
6:5  
1h  
2h  
3h  
Enable counting of BPVs only  
Enable counting of Excess Zeros only  
Invalid code  
E1AIS_Sel. This bit selects AIS standard (refer to  
Chapter 12.0, “Alarm Indication Signal (AIS)” for more  
information).  
4
0 = AIS complies with ITU G.775  
1 = ETSI 300233  
1Ch  
Control Register 1  
CR1  
R/W  
Transmit B8ZS/HDB3 enable  
3
2
0 = AMI encoder is enabled  
1 = HDB3/B8ZS encoder is enabled  
Receive B8ZS/HDB3 enable  
0 = AMI decoder is enabled  
1 = HDB3/B8ZS decoder is enabled  
Transmit Unipolar/Bipolar select  
0 = Bipolar Mode is enabled in the transmit  
direction  
1
0
1 = Unipolar Mode is enabled in the transmit  
direction. Data is transmitted as TXDATA, not  
TPOS/TNEG.  
Receive Unipolar/Bipolar select  
0 = Bipolar Mode is enabled in the receive  
direction  
1 = Unipolar Mode is enabled in the receive  
direction. The receive data is output on RXDATA  
not on RPOS/RNEG lines.  
NOTE: Upon reset, restored default value is 0h.  
78  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 38. JA Control Two Page Register, 1Dh  
Address  
Description  
Name  
Status  
Bit  
Function  
JARES  
JARST  
JAJC  
7
6
5
1 = reset DJA’s elastic store  
1 = completely reset DJA  
0=jamming enabled, 1=jamming disabled  
DJA depth select, 0 = 32-bits, 1 = 64-bits, bits 2, 3,  
and 4 determine the DJA corner frequency.  
ES64  
4
3
2
JABW1, bits 2, 3, and 4 determine the DJA corner  
frequency. Refer to Table 39.  
1Dh  
Control Register 2  
R/W  
JABW1  
JABW0  
JABW0, bits 2, 3, and 4 determine the DJA corner  
frequency. Refer to Table 39.  
JA transmit or  
receive path  
1
0
0 = JA in receive path; 1 = JA in transmit path  
1 = JA enable  
JA enable  
NOTE: Upon reset, restored default value is 0h.  
Table 39. DJA Corner Frequency Selectiona  
JA Control Register  
Bit 4  
JA Control Register  
Bit 3  
JA Control Register  
Bit 2  
DJA Corner  
Frequency  
T1/E1 Mode  
T1  
T1  
T1  
T1  
T1  
T1  
E1  
E1  
0
0
0
1
1
1
0
1
0
0
1
0
0
1
x
x
0
1
x
0
1
x
x
x
3
6
14  
3
6
8
3
3
a.  
“don’t care”  
Table 40. BPV Counter High Byte Page Register, 1Eh  
Address  
Description  
Name  
Status Function  
High byte of the 16-bit BPV counter shadow register  
BPV counter  
high byte  
1Eh  
BPVCTRHB  
R
NOTE: Upon reset, restored default value is 0h.  
Table 41. BPV Counter Low Byte Page Register, 1Fh  
Address  
Description  
Name  
Status Function  
Low byte of the 16-bit BPV counter shadow register  
BPV counter low  
byte  
1Fh  
BPVCTRLB  
R
NOTE: Upon reset, restored default value is 0h.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
79  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 42. Receiver Activation Logic Control Page Register 33h  
Address  
Description  
Name  
Status Function  
Receiver  
Activation Logic  
Control  
This register controls receiver activation logic. Users must write a  
value of 40h into this register.  
33h  
RALC  
R/W  
Table 43. Receiver Control Page Register 1, 34h  
Address  
Description  
Name  
Status Function  
Write value 00h into this register during receiver configuration  
procedure. This ensures that RCLK stability stays within required  
industry limits (2.048 MHz +/- 50ppm for E1 and 1.5544 MHz +/-  
32ppm for T1) under LOS conditions. This register must be written  
before receiver is enabled.  
Receiver  
Settings  
34h  
RWFCTRL 1  
R/W  
NOTE: Upon reset, restored default value is 06h.  
Table 44. Transmit Coefficient Page Register Range, 40h-6Fh  
Address  
Description  
Name  
Status Function  
Address  
48 8-bit TX filter coefficients. Allows the user to modify  
three Unit Intervals of the transmit signal.  
Transmit  
Coefficients for  
pulse shaping  
40-4F  
R/W  
Register Controlling coefficients for UI #1  
Register Controlling coefficients for UI #2  
Register Controlling coefficients for UI #3  
40-6F  
TXCOEF  
50-5F  
60-6F  
NOTE: Upon reset, restored default value is 0h.  
NOTE: In some cases, register 4D hex needs to be set to value FE hex (default values is FB hex) to compensate for distortion in  
the undershoot section of the DSX-1 Pulse. This applies only to 0-133 ft. selection in T1 Short Haul mode.  
Table 45. Receiver Control Page Register, 3Ch  
Address  
Description  
Name  
Status Function  
Write value 11h to enhance receiver performance. This register  
must be written before receiver is enabled. This is a write only  
register.  
Receiver  
Settings  
3Ch  
RWFCTRL  
W
NOTE: Upon reset, restored default value is 0h.  
80  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
15.0  
JTAG Boundary Scan  
The LXT3108 LIU supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan allows  
easy access to the interface pins for board testing purposes.  
15.1  
Architecture  
Figure 23 represents the LXT3108 LIU basic JTAG architecture:  
Figure 23. Intel® LXT3108 LIU JTAG Architecture  
Boundry Scan Data Register  
BSR  
Analog Port Scan Register  
ASR  
Device Identification Register  
MUX  
TDO  
TDI  
IDR  
Bypass Register  
BYR  
Instruction Register  
IR  
TCK  
TAP  
Controller  
TMS  
TRST  
The LXT3108 LIU JTAG architecture includes a TAP Test Access Port Controller, data registers  
and an instruction register. The following paragraphs describe these blocks in detail.  
15.2  
TAP Controller  
The TAP controller is a 16-state synchronous state machine controlled by the TMS input and  
clocked by TCK (see Figure 24). The TAP controls whether the LXT3108 LIU is in reset mode,  
receiving an instruction, receiving data, transmitting data or in an idle state. Table 46 describes  
each of the states represented in Figure 24.  
.
Table 46. TAP State Description (Sheet 1 of 2)  
State  
Description  
In this state the test logic is disabled. The device is set to normal operation mode. While  
in this state, the instruction register is set to the ICODE instruction.  
Test Logic Reset  
Run -Test/Idle  
Capture - DR  
Shift - DR  
The TAP controller stays in this state as long as TMS is low. Used to perform tests.  
The Boundary Scan Data Register (BSR) is loaded with input pin data.  
Shifts the selected test data registers by one stage toward its serial output.  
Data is latched into the parallel output of the BSR when selected.  
Update - DR  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
81  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 46. TAP State Description (Sheet 2 of 2)  
State  
Description  
Capture - IR  
Shift - IR  
Used to load the instruction register with a fixed instruction.  
Shifts the instruction register by one stage.  
Update - IR  
Loads a new instruction into the instruction register.  
Pause - IR  
Pause - DR  
Momentarily pauses shifting of data through the data/instruction registers.  
Exit1 - IR  
Exit1 - DR  
Exit2 - IR  
Exit2 - DR  
Temporary states that can be used to terminate the scanning process.  
82  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 24. JTAG State Diagram  
1
TEST-LOGIC  
RESET  
0
0
1
1
1
RUN TEST/IDLE  
SELECT-DR  
SELECT-IR  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
0
SHIFT-DR  
SHIFT-IR  
1
1
1
0
1
0
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
PAUSE-IR  
1
1
0
0
EXIT2-DR  
EXIT2-IR  
1
0
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
83  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
15.3  
JTAG Register Description  
The following paragraphs describe each of the registers represented in Figure 23.  
15.3.1  
Boundary Scan Register (BSR)  
The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply  
and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register.  
Bidirectional pins or three-statable pins require more than one position in the register. Data into the  
BSR is shifted in LSB first.  
15.3.2  
Device Identification Register (IDR)  
The IDR register provides access to the manufacturer number, part number and the LXT3108 LIU  
revision. The register is arranged per IEEE 1149.1 and is represented in Table 47. Data into the IDR  
is shifted in LSB first.  
Table 47. Device Identification Register (IDR)  
Bit #  
Value  
Comments  
Revision Number “B2”  
0010  
0011  
31 - 28  
Revision Number “B3”  
27 - 12  
11 - 1  
0
0000110000100100  
Part Number = 3108  
Manufacturer ID  
Set to “1”  
00000001001  
1
15.3.3  
15.3.4  
Bypass Register (BYR)  
The Bypass Register is a 1-bit register that allows direct connection between the TDI input and the  
TDO output.  
Instruction Register (IR)  
The IR is a 3-bit shift register that loads the instruction to be performed. The instructions are  
shifted LSB first. Table 48 shows the valid instruction codes and the corresponding instruction  
description.  
Table 48. Instruction Register (IR) (Sheet 1 of 2)  
Instruction  
Code #  
Comments  
Connects the BSR to TDI and TDO. Input pins values are loaded  
into the BSR. Output pins values are loaded from the BSR.  
EXTEST  
000  
Connects the ASR to TDI and TDO. Allows voltage forcing/  
sensing through AT1 and AT2.  
INTEST_ANALOG  
010  
84  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 48. Instruction Register (IR) (Sheet 2 of 2)  
Instruction  
Code #  
Comments  
Connects the BSR to TDI and TDO. The normal path between the  
Intel® LXT3108 LIU logic and the I/O pins is maintained. The BSR  
is loaded with the signals in the I/O pins.  
SAMPLE/PRELOAD  
100  
IDCODE  
BYPASS  
110  
111  
Connects the IDR to the TDO pin.  
Serial data from the TDI input is passed to the TDO output through  
the 1-bit Bypass Register.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
85  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
16.0  
Test Specifications  
Table 49. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Unit  
TXVCC, AVCC,  
QVCC, VCCIO  
DC supply (reference to GND)  
-0.5  
3.6  
V
Input voltage, RTIP/RRING  
VRX  
VIN  
GND - 0.5  
VCCIO + 0.5  
V
V
Input voltage, any digital pin  
Input current, any pin  
GND-0.5  
5.5  
10  
IIN  
-
mA  
°C  
Storage temperature  
TSTG  
θJA  
θJA  
VIN  
-65  
150  
16  
Thermal Resistance, junction to ambient, QFP  
Thermal Resistance, junction to ambient, PBGA  
ESD voltage, any pin1, 2  
°C/W  
°C/W  
V
17.7  
2000  
Caution: Operation at these limits may permanently damage the device. Normal operation at these extremes not guaranteed.  
1. Human body model.  
2. This is a design target and not a product specification.  
Table 50. Recommended Operating Conditions  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
TXVCC,  
AVCC,  
QVCC,  
VCCIO  
DC supply  
3.135  
3.3  
3.465  
V
3.3 V +/- 5%  
Ambient operating temperature  
SH  
TA  
PD  
PD  
PD  
PD  
PD  
PD  
-40  
85  
2.95  
2.3  
2.5  
° C  
W
W
W
W
W
W
2.5  
1.9  
2.1  
1.8  
2.4  
1.9  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
T1  
Total  
power  
LH  
dissipation2  
2.8  
2.25  
SH/  
LH  
E1  
25  
27.5  
30  
For T1 mode.  
For J1 mode.  
Recommended line load to TTIP/  
TRING3  
RL  
For E1, 120 Ω±twisted pair.  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Power dissipation specifications include power to the load and power dissipated on the device.  
3. This is the load applied directly to the transmitter (TTIP/TRING). The load on the line-side is 100 ±for T1 110 ±for J1, and  
120 ±E1.  
86  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 51. Electrical Characteristics (Over Recommended Operating Conditions)  
Parameter  
High level input voltage1  
Sym  
Min  
Typ  
Max  
Unit  
Test Conditions  
VIH  
VIL  
2
5
0.8  
VCCIO  
0.4  
10  
V
V
In idle and power down  
Low level input voltage1  
Output High voltage2  
VOH  
VOL  
IDDQ  
ILL  
2.4  
V
Iout = 400 µ A  
Output Low voltage2  
V
Iout = 2.0 mA  
Quiescent current  
µA  
µA  
µA  
µA  
ns  
Input leakage current  
50  
Three-state leakage current (all outputs)  
TTIP/TRING leakage current  
Rise time on the signal on digital I/Os  
I3L  
10  
ITR  
8.3  
10  
In idle and power down  
1 pF load  
TR  
1. Intel® LXT3108 LIU interface via CMOS logic levels.  
2. Output drivers will output TTL logic levels.  
Table 52. E1 Transmitter Analog Characteristics  
Parameter  
Sym  
Min.  
Typ.  
Max.  
Unit  
Test Condition  
Internal transmitter impedance tolerance  
3
5
%
Matching line load  
Output pulse  
120 Ω±Twisted pair  
amplitude  
2.7  
3.0  
3.3  
0.3  
V
V
Tested at the line side  
Peak voltage of a  
120 Ω±Twisted pair  
space  
-0.3  
0
Transmit amplitude variation with supply  
Difference between pulse sequences  
±0.5  
±1  
200  
%
mV  
dB  
dB  
For 17 consecutive pulses  
Transmit return loss 51 kHz to 102 kHz  
6
8
16  
12  
120 Ω±twisted pair  
102 kHz to 2.048 MHz  
cable. Measured  
with PRBS  
pattern.1  
2.048 MHz to 3.072 MHz  
8
10  
dB  
Transmit intrinsic jitter; 20 Hz to 100 kHz  
.025  
500  
500  
.05  
550  
550  
UI  
ns  
ns  
Tx path TCLK is jitter free  
Bipolar mode  
Transmit path delay  
500  
500  
JA Disabled, encoders are  
disabled.  
Unipolar mode  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
Table 53. E1 Receiver Analog Characteristics (Sheet 1 of 2)  
Parameter  
Sym  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
@1024 kHz  
Permissible cable attenuation  
38  
dB  
dB  
Receiver  
sensitivity  
@ 1024 kHz  
(E1 line loss)  
(E1 SH/12 dB)  
(E1 LH/36 dB)  
13.6  
15  
Receiver sensitivity  
@ 1024 kHz  
38  
39  
dB  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
87  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 53. E1 Receiver Analog Characteristics (Sheet 2 of 2)  
Parameter  
Sym  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
Per G.703, O.151 @ 6 dB  
cable Attenuation  
Signal to noise interference margin  
S/I  
16  
dB  
1 Hz  
37  
1.5  
0.2  
UI  
UI  
Low limit  
G.823 recommendation  
Cable Attenuation is 6 dB  
input jitter  
tolerance 2  
20 Hz to 2.4 kHz  
100 kHz  
UI  
Differential receiver input impedance  
Common mode input impedance to ground  
51 kHz - 102 kHz  
Input return  
102 - 2048 kHz  
loss2  
10  
3.5  
14  
22  
19  
0.06  
5
12  
3.8  
k  
M  
dB  
dB  
dB  
UI  
@1.024 MHz  
12  
18  
14  
2048 kHz - 3072 kHz  
Receive intrinsic jitter, RCLK output  
0.1  
6
Wide band jitter  
Bipolar mode  
Receivepath  
UI  
JA disabled, decoder  
disabled.  
delay  
Unipolar mode  
5
6
UI  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
Table 54. T1 Transmitter Analog Characteristics (Sheet 1 of 2)  
Parameter  
Sym  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
Internal transmitter impedance tolerance  
Output pulse amplitude  
± 3  
3.0  
± 5  
3.6  
%
V
Matching line load  
2.4  
Measured at the DSX  
Peak voltage of a space  
-0.15  
+0.15  
V
Transmit amplitude variation with power  
supply  
±0.5  
±1  
%
Difference between pulse sequences  
Pulse width variation at half amplitude1  
200  
20  
mV  
ns  
For 17 consecutive  
pulses, GR-499-CORE  
mA  
RMS  
Line-side short circuit current (T1)  
10Hz - 8 KHz  
80  
100  
0.025  
0.025  
0.05  
UIpk-pk  
UIpk-pk  
UIpk-pk  
UIpk-pk  
8KHz - 40 KHz  
Jitter added by  
AT&T Pub 62411  
TCLK is jitter free  
Transmitter2  
10Hz - 40 KHz  
Wide Band  
0.05  
Output power  
T1.102 - 1993  
levels3  
@ 772 KHz  
12.6  
17.9  
dBm  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
3. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1’s pattern.  
88  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 54. T1 Transmitter Analog Characteristics (Sheet 2 of 2)  
Parameter  
Sym  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
39 KHz - 77 KHz  
77- 1544 KHz  
6
8
10  
13  
dB  
dB  
dB  
ns  
Transmit Return  
Loss 2  
1544 KHz - 2316KHz  
Bipolar mode  
8
11  
600  
600  
650  
650  
700  
700  
JA disabled, encoders  
are disabled.  
Transmit path delay  
Unipolar mode  
ns  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
3. Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1’s pattern.  
Table 55. T1 Receiver Analog Characteristics  
Parameter  
Sym  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
@ 772 KHz  
Permissible cable attenuation  
36  
36  
dB  
dB  
Receiver  
(T1 SH/12 dB)  
13.6  
sensitivity  
@ 772 kHz  
(T1 line loss)  
Receiver sensitivity  
@ 772 kHz (T1 line loss)  
(T1 LH/36 dB)  
40  
dB  
Signal to noise interference margin  
S/I  
16  
138  
28  
0.4  
14  
dB  
UI  
1 Hz  
Low limit  
input jitter  
10 Hz to 300 Hz  
UI  
AT&T Pub. 62411  
@772 kHz  
tolerance 2  
10 KHz to 100 KHz  
UI  
Differential receiver input impedance  
Common mode input impedance to ground  
39 KHz - 77KHz  
Input return  
77- 1544 KHz  
loss1  
600  
3.5  
21  
26  
20  
630  
3.8  
M  
dB  
dB  
dB  
12  
18  
14  
1544 KHz - 2316 KHz  
Wide band jitter, JA is  
disabled.  
Receive intrinsic jitter, RCLK output2  
0.03  
0.05  
UI  
Bipolar mode  
Receive  
55  
66  
UI  
UI  
JA disabled  
path delay  
Unipolar mode  
TBD  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
Table 56. Master and Transmit Clock Timing Characteristics  
Parameter  
Master clock frequency2  
Sym  
Min  
Typ1  
Max  
Unit  
Notes  
Must be  
supplied  
MCLK  
1.544  
16.384  
MHz  
Master clock tolerance  
Master clock duty cycle  
MCLKt  
MCLKd  
±50  
ppm  
%
40  
60  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. MCLK frequency options are listed in Table 2 on page 35.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
89  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 56. Master and Transmit Clock Timing Characteristics  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Notes  
T1 Transmit clock frequency  
E1 Transmit clock frequency  
Transmit clock tolerance  
TCLK  
TCLK  
TCLKt  
TCLKd  
Tsut  
1.544  
MHz  
MHz  
ppm  
%
2.048  
±50  
90  
Transmit clock duty cycle  
10  
10  
10  
TPOS/TNEG to TCLK setup time  
TCLK to TPOS/TNEG hold time  
ns  
Tht  
ns  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. MCLK frequency options are listed in Table 2 on page 35.  
Figure 25. Transmit Clock Timing Diagram  
TCLK  
Tsut  
Tht  
TPOS  
TNEG  
90  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 57. Jitter Attenuator Characteristics  
Parameter  
Min.  
Typ.1  
Max.  
Unit  
Test Condition  
32bit  
FIFO  
2.5  
Hz  
JACF=0  
JACF=1  
JACF=0  
JACF=1  
64bit  
FIFO  
3.5  
2.5  
3.5  
3
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
E1 jitter attenuator 3dB  
corner frequency  
32bit  
FIFO  
64bit  
FIFO  
32bit  
FIFO  
Sinusoidal jitter modulation  
64bit  
FIFO  
3
T1 jitter attenuator 3dB  
corner frequency  
32bit  
FIFO  
6
64bit  
FIFO  
6
E1  
T1  
3.5  
6
Hz  
Hz  
Jitter attenuator 3dB corner frequency2  
32bit  
FIFO  
16  
32  
24  
56  
UI  
UI  
UI  
UI  
Delay through the Jitter attenuator  
only.  
Data latency  
64bit  
FIFO  
32bit  
FIFO  
Input jitter tolerance before FIFO  
overflow or underflow  
64bit  
FIFO  
@ 3 Hz  
-0.5  
-0.5  
+19.5  
+19.5  
0
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
@ 40 Hz  
E1 jitter  
ITU-T G.736  
attenuation3  
@ 400 Hz  
@ 100 KHz  
@ 1 Hz  
@ 20 Hz  
0
T1 jitter  
attenuation  
@ 1 KHz  
33.3  
40  
AT&T Pub. 62411  
@ 1.4 KHz  
@ 70 KHz  
40  
(See  
Note 3)  
Output jitter in remote loopback2  
UI  
ETSI CTR12/13 Output jitter  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Guaranteed by design and other correlation methods.  
3. See Figure 27, “Intel® LXT3108 LIU Output Jitter for CTR12/13 Applications” on page 93.  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
91  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 58. Receive Timing Characteristics for T1 Operation  
Parameter  
Receive clock duty cycle 2, 3  
Sym  
Min  
Typ1  
Max  
Unit  
RLCKd  
tPW  
40  
50  
60  
%
ns  
ns  
ns  
ns  
ns  
T1 Receive clock pulse width 2, 3  
T1 Receive clock pulse width High  
T1 Receive clock pulse width Low1,3  
RPOS/RNEG to RCLK rising time  
RCLK rising to RPOS/RNEG hold time  
648  
324  
324  
274  
274  
tPWH  
tPWL  
tSUR  
tHR  
260  
388  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are  
for worst case jitter conditions.  
3. Worst case conditions guaranteed by design only.  
Table 59. Receive Timing Characteristics for E1 Operation  
Parameter  
E1 Receive clock duty cycle 2, 3  
Sym  
Min  
Typ1  
Max  
Unit  
RLCKd  
tPW  
40  
50  
60  
%
ns  
ns  
ns  
ns  
ns  
E1 Receive clock pulse width 2, 3  
E1 Receive clock pulse width High  
E1 Receive clock pulse width Low1,3  
RPOS/RNEG to RCLK rising time  
RCLK rising to RPOS/RNEG hold time  
488  
244  
244  
194  
194  
tPWH  
tPWL  
tSUR  
tHR  
195  
293  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are  
for worst case jitter conditions.  
3. Worst case conditions guaranteed by design only.  
Figure 26. Receive Clock Timing Diagram  
tPW  
RCLK  
tPWH  
tSUR  
tPWL  
tHR  
RPOS  
RNEG  
RCLK_INV = 0 (bit 7 in reg. 10h = 0)  
tSUR  
tHR  
RPOS  
RNEG  
RCLK _INV = 1 (bit 7 in reg. 10h = 1  
92  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 27. Intel® LXT3108 LIU Output Jitter for CTR12/13 Applications  
0.2  
0.15  
0.1  
Minimum CTR12/13 Performance Requirement  
Intel® LXT3108 LIU Typical Performance  
0.05  
0
10 Hz  
20 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
B0015-01  
Figure 28. JTAG Timing  
tCYC  
TCK  
tSUR  
tHT  
TMS  
TDI  
tDOD  
TDO  
Table 60. JTAG Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Conditions  
Cycle time  
Tcyc  
Tsut  
Tht  
200  
50  
50  
-
ns  
ns  
ns  
ns  
J-TMS/J-TDI to J-TCK rising edge time  
J-CLK rising to J-TMS/L-TDI hold time  
J-TCLK falling to J-TDO valid  
Tdod  
50  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
93  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 61. G.703 2.048 Mbps Pulse Mask Specifications  
Cable  
Parameter  
Unit  
TWP  
Coax  
Test load impedance  
120  
3.0  
75  
V
Nominal peak mark voltage  
2.37  
Nominal peak space voltage  
0 ±0.30  
244  
0 ±0.237  
244  
V
Nominal pulse width  
ns  
%
%
Ratio of positive and negative pulse amplitudes at center of pulse  
Ratio of positive and negative pulse amplitudes at nominal half amplitude  
95-105  
95-105  
95-105  
95-105  
Figure 29. E1, G.703 Mask Templates  
Table 62. T1.102 1.544 Mbps Pulse Mask Specifications  
Cable  
Parameter  
Unit  
TWP  
Test load impedance  
100  
3.0  
V
Nominal peak mark voltage  
Nominal peak space voltage  
Nominal pulse width  
0 ±0.15  
324  
V
ns  
%
Ratio of positive and negative pulse amplitudes  
95-105  
94  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 30. Intel® LXT3108 LIU Jitter Tolerance Performance  
1000 UI  
TBD  
Intel®  
LXT3108 LIU  
100 UI  
10 UI  
28 UI @  
4.9 Hz  
AT&T 62411, Dec 1990 (T1)  
18 UI @  
1.8 Hz  
28 UI @  
300 Hz  
GR-499-CORE, Dec 1995 (T1)  
5 UI @  
500 Hz  
ITU G.823, Mar 1993 (E1)  
1 UI  
1.5 UI @  
2.4 kHz  
1.5 UI @  
20 Hz  
0.4 UI @  
10 kHz  
0.2 UI @  
18 kHz  
0.1 UI @  
8 kHz  
0.1 UI  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
B0342-01  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
95  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 31. Intel® LXT3108 LIU Jitter Transfer Performance  
E1  
10 dB  
ITU G.736 Template  
0.5 dB @ 3 Hz  
0.5 dB @ 40 Hz  
0 dB  
-10 dB  
-19.5 dB @ 20 kHz  
-19.5 dB @ 400 Hz  
-20 dB  
-30 dB  
Intel® LXT3108 LIU  
-40 dB  
-60 dB  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
B0343-01  
T1  
10 dB  
0 dB  
0 dB @ 20 Hz  
0.1 dB @ 20 Hz  
0.5 dB @ 350 Hz  
0 dB @ 1 Hz  
AT&T Pub 62411  
GR-253 CORE  
TR-TSY-000009  
-6 dB @ 2 Hz  
-10 dB  
-20 dB  
-30 dB  
-33.3 dB @ 1 kHz  
Intel®  
LXT3108 LIU  
-33.7 dB @ 2.5 kHz  
-40 dB @ 1.4 kHz  
-40 dB @ 70 kHz  
-49.2 dB @ 15 kHz  
-40 dB  
-60 dB  
-60 dB @ 57 Hz  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
B0344-01  
96  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
16.1  
Microprocessor Interface Timing Diagrams  
Figure 32. MPC860 Write Timing  
Table 63. MPC860 Write Timing Characteristics  
Symbol  
Parameter  
Min.  
Max  
Unit  
Tadrs  
Tadrh  
Tadss  
Tadsh  
Trws  
Tcss  
Address setup to clock  
Address hold from clock  
TS# setup to clock  
15  
13  
6
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
TS# hold from clock  
2
--  
R/W# setup to clock  
10  
5
--  
CS# setup to clock  
--  
Trwh  
Tds  
R/W# and CS# hold from clock  
Data setup to clock  
0
--  
7
--  
Tdh  
Data hold from clock  
clock to TA# asserted  
clock to TA# deasserted  
16  
12  
12  
--  
Trdys  
Trdyh  
16  
16  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
97  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 33. MPC860 Read Timing  
Table 64. MPC860 Read Timing Characteristics  
Symbol  
Tadrsr  
Parameter  
Min.  
Max  
Unit  
Address setup to clock  
Address hold from clock  
TS# setup to clock  
10  
10  
6
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tadrhr  
Tadss  
Tadsh  
Trwsr  
Tcss  
--  
TS# hold from clock  
R/W# setup to clock  
CS# setup to clock  
2
--  
8
--  
5
--  
Trwh  
R/W#, CS hold to clock  
clock to data valid  
0
--  
Tdd  
--  
41  
26  
23  
16  
16  
Tdhwr  
Tdhcs  
Trdys  
Trdyh  
Data hold from R/W#  
Data hold from CS#  
clock to TA# asserted  
clock to TA# deasserted  
18  
16  
12  
12  
98  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 34. M68302 Write Timing  
Table 65. M68302 Write Timing Characteristics  
Symbol  
Parameter  
Min.  
Max  
Unit  
Tadss  
Tadsh  
Trdss  
Address setup to LDS asserted  
Address hold from LDS asserted  
R/W# setup to LDS asserted  
R/W# hold from LDS asserted  
Data setup to LDS asserted  
Data hold from LDS asserted  
LDS minimum width  
-8  
44  
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Trdsh  
0
Tddss  
Tddsh  
Tdsmin  
Tcsdss  
Tcsdsh  
-17  
46  
60  
3
CS to DS setup  
CS to DS hold  
4
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
99  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 35. M68302 Read Timing  
Table 66. M68302 Read Timing Characteristics  
Symbol  
Parameter  
Min.  
Max  
Unit  
Tadss  
Tadsh  
Trdss  
Address setup to LDS asserted  
Address hold from LDS assserted  
R/W# setup to LDS asserted  
R/W# hold from LDS asserted  
LDS low to data valid  
24  
41  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
--  
Trdsh  
Tdsdd  
Tdsdh  
Tdsmin  
0
--  
--  
71  
--  
Data hold from LDS deasserted  
LDS minimum width  
17  
71  
--  
100  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 36. Intel® i486TM/i960® Non-muxed Mode Write Timing  
CLK (MPI_CLK)  
Tadrh  
Tadrs  
ADR (AD)  
Tadsh  
Tadss  
ADS# (DS)  
W/R# (RW)  
CS# (CS)  
Trws  
Trwh  
Trws  
Trwh  
Tdh  
Tds  
Data (D(7:0))  
RDY# (RDY)  
Trdyh  
Trdys  
Figure 37. Intel® i960® Muxed Mode Write Timing  
CLK (MPI_CLK)  
Tadrh  
Tadrs  
Tdh  
Tds  
AD (AD)  
Tadsh  
Tadss  
ADS# (DS)  
W/R# (RW)  
CS# (CS)  
Trws  
Trws  
Trwh  
Trwh  
Trdyh  
Trdys  
RDY# (RDY)  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
101  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Table 67. Intel® i486TM/i960® Write Timing Characteristics  
Symbol  
Parameter  
Min.  
Max  
Unit  
Tadrs  
Tadrh  
Tadss  
Tadsh  
Trws  
Trwh  
Tds  
Address setup to clock  
Address hold from clock  
ADS setup to clock  
7
5
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
--  
ADS hold from clock  
2
--  
W/R# and CS# setup to clock  
W/R# and CS# hold from clock  
Data setup to clock  
10  
0
--  
--  
7
--  
Tdh  
Data hold from clock  
16  
13  
13  
--  
Trdys  
Trdyh  
clock to READY# asserted  
clock to READY# deasserted  
16  
16  
Figure 38. Intel® i486TM/i960® Non-muxed Mode Read Timing  
102  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 39. Intel® i960® Muxed Mode Read Timing  
CLK (MPI_CLK)  
Tadrh  
Tadrs  
Tdd  
AD (AD)  
Tadsh  
Tadss  
ADS# (DS)  
W/R# (RW)  
CS# (CS)  
Tdhwr  
Tdhcs  
Trwh  
Trwsr  
Trwsr  
Trwh  
Trdys  
Trdyh  
RDY# (RDY)  
Table 68. Intel® i486TM/i960® Read Timing Characteristics  
Symbol  
Parameter  
Min.  
Max  
Unit  
Tadrs  
Tadrh  
Tadss  
Tadsh  
Trwsr  
Trwh  
Address setup to clock  
Address hold from clock  
ADS setup to clock  
7
5
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
--  
ADS hold from clock  
2
--  
W/R# and CS setup to clock  
W/R# and CS hold from clock  
clock to Data valid  
8
--  
0
--  
Tdd  
--  
41  
27  
24  
16  
16  
Tdhwr  
Tdhcs  
Trdys  
Trdyh  
Data hold from R/W#  
18  
16  
13  
13  
Data hold from CS#  
clock to READY# asserted  
clock to READY# deasserted  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
103  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
16.2  
Referenced Standards  
AT&T Pub 62411 Accunet T1.5 Service  
Bellcore TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives  
Bellcore GR-253-CORE SONET Transport Systems Common Generic Criteria  
Bellcore GR-499-CORE Transport Systems Generic Requirements  
ANSI T1.102 - 199X Digital Hierarchy Electrical Interface  
ANSI T1.231 -1993 Digital Hierarchy Layer 1 In-Service Digital Transmission Performance  
Monitoring  
ETSI CTR12/13 Business TeleCommunications (BTC): 2048 Kbps Digital Unstructured/  
Structured Leased Line.  
ETS 300166 Physical and Electrical Characteristics  
G.703 Physical/electrical characteristics of hierarchical digital interfaces  
G.735 Characteristics of Primary PCM multiplex equipment operating at 2048 kbps and offering  
digital access at 384 kbps and/or synchronous digital access at 64 kbps  
G.736 Characteristics of a synchronous digital multiplex equipment operating at 2048 kbps  
G.742 General Aspects of Digital Transmission Systems  
G.772  
Protected Monitoring Points provided on Digital Transmission Systems  
G.775 Loss of signal (LOS) and alarm indication (AIS) defect detection and clearance criteria  
G.783 Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks  
G.823  
The control of jitter and wander within digital networks which are based on the 2048  
kbps hierarchy  
O.161 In - service code violations monitors for digital systems. Blue Book Fasc.IV.4  
BAPT220 Short Circuit Current Requirements  
ITU I.431Primary Rate ISDN User-Network Interface - Layer 1  
ETS 300 233Integrated Services Digital Network (ISDN); Access digital section for ISDN primary  
rate.  
104  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
17.0  
Mechanical Specification  
Figure 40. Intel® LXT3108 LIU 256 PBGA Mechanical Specification  
17.00 ±0.10  
7.00 REF  
1.00 REF  
15.00  
PIN #A1  
CORNER  
1.00  
PIN #A1  
CORNER  
A
B
C
D
E
F
PIN #A1 ID  
0.50  
7.00  
REF  
1.00  
G
H
J
17.00  
±0.10  
15.00 ±0.05  
K
L
M
N
P
R
T
16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
1.00 REF  
TOP VIEW  
BOTTOM VIEW  
1.80  
MAX  
0.70  
±0.05  
NOTE:  
1. ALL DIMENSIONS IN MILLIMETERS.  
0.35  
MIN  
2. ALL DIMENSIONS AND TOLERANCES  
CONFORM TO ASME Y 14.5M-1994.  
3. TOLERANCE = ± 0.05 UNLESS  
SPECIFIED OTHERWISE.  
0.56  
± 0.04  
SEATING PLANE  
SIDE VIEW  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
105  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
Figure 41. Intel® LXT3108 LIU 208 Pin QFP Mechanical Specifications  
Millimeters  
Dim  
D
Min  
Max  
D1  
A
-
4.10  
-
A1  
A2  
0.25  
3.20  
3.60  
0.27  
e
b
0.17  
E1  
E
D
30.30  
27.70  
30.30  
27.70  
30.90  
28.30  
30.90  
28.30  
D1  
E
e
/
2
E1  
e
.50 BASIC  
1.30 REF  
L
0.50  
0.75  
θ2  
L1  
θ1  
θ2  
θ3  
L1  
0°  
5°  
5°  
7°  
A2  
A
16°  
16°  
θ
A1  
θ3  
b
L
106  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
18.0  
Glossary  
Term Categories  
Term  
ADC  
Term Definition  
Analog to Digital Converter  
AFE  
Analog Front End  
AGC  
Automatic Gain Control  
ATWG  
Arbitrary Transmit Wave Generation  
BPV  
BSR  
BYR  
CLAD  
DAC  
DJA  
DSP  
FIR  
Bi-Polar Violation  
Boundary Scan Register  
BYpass Register  
CLock ADapter  
Digital to Analog Converter  
Digital Jitter Attenuator  
Digital Signal Processor  
Finite Infinite Response  
Graphical User Interface  
Intel® Hitless Protection Switching, Intel® HPS  
Integrated Access Devices  
Device Identification Register  
Integrated Multi-service Access Platforms  
Instruction Register  
GUI  
HPS  
IADs  
IDR  
IMAPs  
IR  
JTAG  
LIU  
Joint Test Action Group  
Line Interface Unit  
LH  
Long Haul  
LH/SH  
LOS  
NRZ  
PBGA  
Long/Short Haul  
Loss Of Signal  
Non-Return-to-Zero  
Plastic Ball Grid Array  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
107  
Rev. Date: January 08, 2003  
LXT3108 LIU Octal T1/E1/J1 Long/Short Haul Line Interface Unit  
POR  
PPR  
PPRB  
PPS  
Power On Reset  
Port Page Register  
Port Page Register Bank  
Port Page Select  
PTM  
QFP  
SH  
Intel® Pulse Template Matching, Intel® PTM  
Quad Flat Pack  
Short Haul  
TBD  
TAOS  
UI  
To Be Determined  
Transmit All Ones  
Unit Interval  
108  
Preliminary Datasheet  
Document Number: 249543  
Revision #: 008  
Rev. Date: January 08, 2003  

相关型号:

FLLXT384BE

Digital Transmission Interface, CEPT PCM-30/E-1, PBGA160
INTEL

FLLXT384BE.B1

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PBGA160, 13 X 13MM, BGA-160
INTEL

FLLXT384BEB1

PCM Transceiver, 1-Func, CMOS, PBGA160, 13 X 13MM, BGA-160
INTEL

FLLXT385BE

Telecom IC, CMOS, PBGA160
INTEL

FLLXT971ABC.A4

Ethernet Transceiver, PBGA64, PLASTIC, TPBGA-64
INTEL

FLLXT971ABC.A4SE000

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABC.A4SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABCA4

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

FLLXT971ABE.A4

Ethernet Transceiver, PBGA64, PLASTIC, TPBGA-64
INTEL

FLLXT971ABE.A4SE000

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABE.A4SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PBGA64, PLASTIC, BGA-64
INTEL

FLLXT971ABEA4

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL