GD16555B/622-68AB [INTEL]

ATM/SONET/SDH IC, Bipolar, PQFP68,;
GD16555B/622-68AB
型号: GD16555B/622-68AB
厂家: INTEL    INTEL
描述:

ATM/SONET/SDH IC, Bipolar, PQFP68,

ATM 异步传输模式
文件: 总20页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 Gbit/s  
Transmitter MUX  
with Re-timing  
GD16555B  
Preliminary  
General Description  
Features  
l
GD16555B is a 9.95328 Gbit/s transmit-  
ter chip for use in SDH STM-64 and  
SONET OC-192 optical communication  
systems.  
The output of the MUX stage is retimed  
by the 10 GHz clock and the output  
driver is a Current Mode Logic (CML)  
output with internal 50 termination re-  
sistors.  
On-chip low noise 10 GHz VCO with  
a wide tuning range.  
l
Automated capture of the VCO  
frequency by a true phase and  
frequency detector.  
GD16555B integrates all the main func-  
tions of the transmitter, which is clock  
generation, PLL circuits and multiplexer  
in a single monolithic IC. Hence only an  
external loop filter is required.  
The 16 bit wide parallel input interface is  
differential CML with 50 internal load  
termination, and with a 622 MHz clock  
output mastering the timing at the STM-4  
interface. The phase of the output clock  
is selected in four phases: 0°, 90°, 180°,  
and 270° by two select pins.  
l
Retiming of MUX stage output with  
10 GHz clock.  
l
Clock failure detection NLDET.  
The main functions of GD16555B are  
shown in the figure below. The clock  
generation is made on-chip by a low  
noise and tuneable 10 GHz VCO. The  
VCO centre frequency is controlled by a  
PLL with an external loop filter, allowing  
the user to control the loop characteristic.  
l
16:1 MUX with differential 622 Mbit/s  
CML data input.  
GD16555B is manufactured in a Silicon  
Bipolar process.  
l
CML data input with 50 internal  
load termination.  
GD16555B uses a single -5.2 V supply  
voltage.  
l
622 MHz clock output for counter  
clocking.  
The clock synchronisation is controlled  
by the Phase and Frequency Detector  
with a 155 MHz or 622 MHz reference  
clock input (package bonding option).  
The power dissipation is 2 W, typical.  
l
Clock output is selectable in four  
phases: 0°, 90°, 180°, or 270°.  
GD16555B is delivered in a Multi Layer  
Ceramic (MLC) package, with internal  
high-speed 50 transmission lines.  
l
GD16555B multiplexes a 16 bit parallel  
622 Mbit/s interface into a serial  
9.9553 Gbit/s data stream.  
155 MHz or 622 MHz reference clock  
input (package bonding option).  
All high-speed signals is bonded with  
GiGA’s proprietary Flexguide® Bonding  
Technique.  
l
Single supply operation: -5.2 V  
l
Low Power dissipation: 2 W (typ.).  
l
Silicon Bipolar process.  
DI0  
DIN0  
FF  
l
68 pin Multi Layer Ceramic (MLC)  
package.  
Flexguide  
OUT  
16:1  
Parallel  
Input Data  
OUTN  
Multiplexer  
l
DI15  
DIN15  
CKOUT  
CKOUTN  
Flexguide® Bonding Technique.  
NLDET  
Timing  
Control  
SEL1  
SEL2  
Phase  
PCLT  
POUT  
Frequency  
Applications  
Detector  
VCO  
PHIGH  
l
VCTL  
Telecommunication systems:  
PLOW  
SDH STM-64  
SONET OC-192.  
VCUR  
(only /155 vers.)  
l
l
Fibre optic test equipment.  
TCK  
S
E
L
3
(*)  
R
E
F
C
K
R
E
F
C
K
N
VDD VDDO VDDA VEE  
(*) = Package Bonding Option  
Submarime transmission systems.  
Functional Details  
The main function of GD16555B is as  
transmitter in STM-64 and SONET  
OC-192 optical communication systems.  
with 50 internal resistors. The 16 bits  
are multiplexed starting with DI0,  
DI1...DI15.  
should always be terminated as shown in  
Figure 1 also even though they are not  
actively used in the PLL.  
It integrates:  
u
All CML inputs have 50 internal termi-  
nation resistors to a separated power pin  
(VCMLT). With VCMLT connected to 0 V  
all inputs are configured as CML inputs  
(high/low equal 0/-0.4 V) or with VCMLT  
connected to –2 V all inputs are confi-  
gured as ECL compatible inputs (high/  
low equal -0.8/ -1.8 V). With ECL inputs  
the maximum current out of VCMLT is  
400 mA and proper de- coupling of  
VCMLT is required.  
POUT is a high impendance input and  
will be destroyed if connected directly  
(low-ohmic, <25 k) to -3.6 V to 0 V.  
Voltage Controlled Oscillator (VCO)  
Phase and Frequency Detector (PFD)  
u
u
16:1 Multiplexer  
Re-timing of output data.  
u
The Outputs  
VCO  
The 10 Gbit/s output driver is internal ter-  
minated with 50 resistors to 0 V and  
bonded with Flexguides from the die to  
the package edge. This bonding tech-  
nique insures a true 50 transmission  
line environment from the outside edge  
of the package through the package to  
the die. The output should be terminated  
externally with 50 at the receive end  
and should be used differential. Both  
OUT and OUTN are best terminated with  
the same load resistor e.g. 50 , an  
asymmetrically loading will decrease the  
performance of the output due to refle-  
ctions. When terminated externally with  
The VCO is an LC-type differential  
10 GHz oscillator controlled by pin VCTL  
and with a tuning range of ±5 %. The  
VCO and the clock divider circuit gener-  
ates the clock signal and load pulses  
needed for multiplexing. It also generates  
the output clock (CKOUT/ CKOUTN) and  
the clock used in the phase and fre-  
quency detector.  
The select inputs (SEL1-2 and TCK) are  
low-speed inputs, that can be connected  
directly to the supply rails (0 / -5.2 V).  
Loop Filter  
With the VCTL voltage at -3 V the VCO  
frequency is fixed at 9.953 GHz and by  
changing the voltage from 0 to –5.2 V the  
frequency is controlled from 9 GHz to  
10.2 GHz (See VCO Measurements on  
page 17). The modulation bandwidth of  
VCTL is 90 MHz.  
The external loop filter is made using an  
operational amplifier connected to output  
pins (PHIGH and PLOW). The character-  
istics of the phase lock loop are con-  
trolled by the loop filter components  
hence the op-amp is designed as an inte-  
grator by a feedback capacitor and a re-  
sistor. The gain-bandwidth of the op-amp  
need to be larger than the required PLL  
bandwidth in order not to limit it. The rec-  
ommended op-amp is Analog Devices  
(AD8042) with a gain-bandwidth of  
160 MHz sufficient for PLL bandwidths  
up to 50 MHz. The op-amp is used single  
supplied by -5.2 V. See Figure 1 for ap-  
plication information.  
50 , the output voltage is 650 mVPP  
.
Both outputs OUT/OUTN are not ESD  
protected and extra precautions should  
be taken when handling the outputs (the  
internal 50 resistor provides some  
ESD hardness making the input low im-  
pedance).  
PFD  
The PFD is made with digital set/reset  
cells giving it a true phase and frequency  
characteristic. The reference clock  
(REFCK/REFCKN) to the PFD is 155 or  
622 MHz (package bonding option, two  
different product numbers).  
The clock outputs (CKOUT/N) are differ-  
ential open collector outputs with a 8 mA  
output current. They are terminated ex-  
ternally with a resistor (R) to 0 V and the  
output voltage swing is  
The phase information from the PFD is  
high frequency pulses at output pins  
(PHIGH and PLOW). They are open col-  
lector outputs with an 8 mA current drive  
and are terminated externally by 220 Ω  
to 0 V. A pre-filtering of the phase pulses  
are applied by a parallel 10 pF capacitor.  
V = -50 × 8 mA = -400 mV with R = 50 .  
Increasing the resistor increases the out-  
put voltage swing and reduces the band-  
width.  
A No Lock DETection signal (NLDET) is  
provided as a status signal of the PLL. It  
compares the VCO clock with the refer-  
ence clock and is high whenever they dif-  
fer. Using NLDET the situation of clock  
failure, i.e. loss of signal can be detected.  
Counter Clocking Timing  
The reference clock input has 50 inter-  
nal termination resistors to pin VCMLT  
and should be used differential.  
The PCB layout of the external loop filter  
and the connecting lines to PHIGH,  
PLOW and VCTL are critical for the jitter  
performance of the component. The art-  
work for the op-amp and the passive  
components should be placed very close  
to the pins of GD16555B in order to have  
connecting lines as short as possible.  
Ideally the loop filter components are  
placed on the opposite side of the PCB  
directly underneath GD16555B. For more  
layout suggestions see the 10 Gbit/s  
evaluation board GD90244/255.  
When the counter clocking timing is used  
to control the timing between GD16555B  
and the system ASIC, the output clock  
(CKOUT/CKOUTN) is feed to the system  
ASIC and clocks valid output data from  
the ASIC into GD16555B. For easy inter-  
facing of the system ASIC, the output  
clock is selectable in four phases (0°,  
90°, 180° or 270°) by SEL1-2. The maxi-  
mum variation in the round trip delay  
should be less than 1.1 ns when using  
the counter clocking timing. This leaves  
0.5 ns of valid data time for the  
GD16555B . The roundtrip delay is the  
total delay from clock in, to data out of  
the system ASIC and the board delay for  
clock and data. The setup and hold times  
between CKOUT and input data are  
specified for all four phases (see AC  
Characteristics on page 14). The valid  
time (e.g. the period of time where the in-  
The PLL will synchronize the 10 GHz  
VCO to the external reference clock.  
Noise from the reference clock, within the  
PLL bandwidth will be multiplied and  
added to the 10 Gbit/s output by the di-  
vider ratio between VCO and reference  
clock i.e. N = 16 / 64 or in terms of noise  
as 20Log(16) = 24 dB or 36 dB. A low  
noise reference clock with high frequency  
stability is required in order to fulfill the  
ITU-T jitter requirements.  
Alternatively the phase information is  
also available at output pins (PCTL and  
POUT) and they can be used with an ex-  
ternal passive loop filter in applications  
with a low PLL bandwidth (< 1 MHz) in-  
stead of the above recommended active  
loop filter. The PCTL and POUT pins  
Inputs  
The parallel input interface is 622 Mbit/s  
differential Current Mode Logic (CML)  
Data Sheet Rev. 04  
GD16555B  
Page 2 of 20  
put data is not allowed to change) is  
given by adding the setup and hold  
times. The setup time is defined positive  
before the rising edge of CKOUT. The  
hold time is defined positive after the ris-  
ing edge.  
Package  
the opposite side of the component with  
very short connections to the pins of  
GD16555B. The 100 resistors and  
10 pF capacitor connected from PHIGH  
and PLOW to 0 V should be placed very  
close to the package pin no. 50 and 53.  
GD16555B is packaged in a 68 pin Multi  
Layer Ceramic package with internal  
50 transmission lines. The package is  
a cavity-down type, which gives effective  
cooling using the mounted heat  
spreader.  
If the variation is bigger than 1.1 ns an-  
other type of different clocking timing is  
needed e.g. forward clocking timing.  
The environment around the loop filter  
and the 10 Gbit/s outputs is noise sensi-  
tive and no noise generating lines are  
allowed in this area.  
The 10 Gbit/s outputs are bonded with  
GiGA’s Flexguide® Bonding Technique.  
These are flexible 50 transmission  
lines bonded from the die to the internal  
package pin. With the use of Flexguide®  
distortion free transmission is ensured  
throughout the package.  
It is recommended to use all data inputs  
differential for best performance.  
The power supply to GD16555B should  
be separated from other noise generation  
components on the board and de-cou-  
pled as shown on Figure 2. DC-DC con-  
verters are only allowed on the same  
board if proper noise filtering is applied.  
Forward Clocking Timing  
With the forward clocking timing both the  
data and the clock is applied to  
External Circuits  
GD16555B with the clock as a reference  
clock input (REFCK/REFCKN). See AC  
Characteristics on page 15. It is impor-  
tant for the jitter performance that the  
clock is clean with no spurious frequency  
noise and no noise injection from data  
transitions. If the clock is generated from  
a CMOS ASIC an additional PLL is  
needed to clean up the clock before be-  
ing applied as reference to GD16555B.  
When using GD16555B with forward  
clocking, the 622 MHz reference clock  
option should be ordered.  
Thermal Condition  
The main external circuits needed to  
make GD16555B work as a 10 Gbit/s  
transmitter IC with re-timing and multi-  
plexer are:  
The component dissipates 2.0 W with a  
–5.2 V voltage supply and need forced  
cooling with a heat sink thermally con-  
nected to the heat spreader. The thermal  
connection should ensure the case tem-  
perature in the range from 0 to 70 °C with  
the given ambient conditions e.g. tempe-  
rature and air flow.  
u
An active loop filter with op-amp  
A reference clock at 155 MHz or  
u
622 MHz with high frequency stability  
Pull up resistors and de-coupling ca-  
pacitors  
u
Mounting and Layout of PCB Power Noise Rejection  
The component can be mounted on a  
standard FR4 epoxy printed circuit board  
when special attention is taken in the lay-  
out and in the mounting of the compo-  
nent.  
In a noisy environment special attention  
must be taken as described above to op-  
timize the jitter performance and to re-  
duce the input sensitivity penalty from  
injected noise. The Power Supply Rejec-  
tion Ratio (PSRR) is improved by adding  
a serial resistor (3.3 k) and capacitor  
(33 nF) from the positive input of the  
op-amp to the power pin (VEE) as shown  
in Figure 1.  
The Output Voltage Control  
For the GD16555B version with a  
155 MHz reference clock (GD16555B/  
155-XX) a control signal (VCUR) is avail-  
able at pin 41.  
It is important for the performance of the  
component that the leads of pin OUT and  
OUTN (10 Gbit/s outputs) are made very  
short (<1 mm) when mounted on the  
board. Best way to make the leads short  
are to cut a hole in the PCB and to mount  
the component inside the hole. The  
length of the two critical leads is reduced  
to less than 0.5 mm whereas the rest of  
the leads are kept at 2 - 4 mm in order  
for mechanical stability. On the back side  
the head spreader on the package is  
thermally mounted to a metal block with  
heat sink compound (see paragraph  
“Mounting of Component on PCB” on  
page 18).  
By controlling the voltage at VCUR the  
DC output voltage at OUT/OUTN is ad-  
justed in the range form 0.1 V to 0.8 V.  
The VCUR can be operated from 0 V to  
VEE.  
For the GD16555B version with a  
622 MHz reference clock (GD16555B/  
622-XX) the control signal (VCUR) is not  
available at pin 41.  
GD16555B versus GD16255A  
GD16555B is plug compatible and offers  
the same or even better performance  
compared with GD16255A. The pinouts  
and the configurations of I/O´s are the  
same except of the three differences as  
described below:  
In cases where the above mounting tech-  
nical is not applicable, the component  
can be mounted directly on the board  
with bend leads accepting longer leads  
for the 10 Gbit/s outputs. The component  
is available with straight leads and with  
gull wing leads (see the package outline  
drawings on page 19).  
u
No RESET pin  
SEL 1/2 do not affect the timing rela-  
u
tion between the reference clock and  
the internal sampling of input data.  
The values of one resistor and capa-  
In the layout of the PCB the 10 Gbit/s in-  
puts are connected with 50 Micro Strip  
Lines (MSL) to the high- speed connec-  
tor. The MSL should be as short as pos-  
sible (< 30 mm) with a plain and solid  
ground plan below. The layout artwork  
for the loop filter is placed preferable on  
u
citor in the recommended loop filter.  
Data Sheet Rev. 04  
GD16555B  
Page 3 of 20  
Application  
1
0V  
0V  
VDDO / 51  
VDD  
0V  
TCK / 45  
VCMLT  
0V  
0V  
50MSL  
50MSL  
SEL1 / 54  
SEL2 / 56  
61 / DI0  
622 Mbit/s  
CML Driver  
-5.2V  
0V  
62 / DIN0  
50MSL  
50MSL  
39 / DI15  
622 Mbit/s  
CML Driver  
50MSL  
VDD  
OUT / 42  
40 / DIN15  
10 Gbit/s  
Output  
OUTN / 44  
50MSL  
50MSL  
50MSL  
15 / CKOUT  
16 / CKOUTN  
50Ω  
50Ω  
VDD  
100nF  
100nF  
50MSL  
50MSL  
59 / NLDET  
REFCK / 57  
RECKN / 58  
330  
100nF  
VDD  
500Ω  
500Ω  
47 / PCTL  
49 / POUT  
-5.2V  
100100nF  
3.3kΩ  
0V  
53 / PLOW  
50 / PHIGH  
VCTL / 46  
VEE 17/34/52  
33nF  
-5.2V  
3.3kΩ  
0V  
1kΩ  
1kΩ  
+
AD8042  
-
0.1µF  
10pF  
-5.2V  
220Ω  
1kΩ  
0.1µF  
1kΩ  
0V  
0V  
Figure 1. Application Information  
2
Pin4  
Pin9  
Pin1  
Pin14  
Pin21  
Pin26  
Pin31  
Pin36  
Pin43  
Pin48  
Pin55  
Pin60  
Pin65  
VDD  
VEE  
C
C
C
C
C
C
C
C
C
C
C
C
C
10µF  
Pin51  
Pin35  
Pin18  
Pin68  
VDDO  
VEE  
VDDA  
10µF  
VCMLT  
VEE  
C
C
C
C
10µF  
C is 10nF parallel with 100pF.  
VEE pins 17/34/52  
Figure 2. De-coupling Supply  
Data Sheet Rev. 04  
GD16555B  
Page 4 of 20  
 
10 Gbit/s Output Interface  
GD16555B  
0V  
Driver  
50  
50Ω  
OUT  
50MSL  
OUTN  
-5.2V  
Figure 3. 10 Gbit/s Outputs (OUT/OUTN), DC Coupled  
GD16555B  
0V  
Driver  
50Ω  
50Ω  
OUT  
100nF  
OUTN  
50MSL  
-5.2V  
Figure 4. 10 Gbit/s Outputs (OUT/OUTN), AC Coupled  
Data Sheet Rev. 04  
GD16555B  
Page 5 of 20  
622 Mbit/s Output Interface  
GD16544 or  
GD16555B  
0V  
50  
50MSL  
8mA  
-5.2V  
Figure 5. Open Collector Output  
Open collector outputs should always be terminated at the receiver end, preferably 50 .  
0V  
GD16544 or  
GD16555B  
100nF  
120  
(-1V)  
50Ω  
0V  
ECL 100k/10k  
-5.2V  
MC100EL16  
MC10EL16  
8mA  
-5.2V  
Figure 6. ECL 100k or 10k Output.  
ECL 100k or 10k output using ECL driver MC100EL16/ MC10EL16.  
GD16544 or  
0V  
GD16555B  
95Ω  
50/ 75MSL  
-1.0V (high)  
-1.6V (low)  
365Ω  
-5.2V  
8mA  
-5.2V  
Figure 7. ECL Compatible Output  
ECL compatible output with a voltage swing of 600 mV (single-ended) or 1200 mV (differential).  
Data Sheet Rev. 04  
GD16555B  
Page 6 of 20  
0V  
GD16544 or  
GD16555B  
100nF  
120  
(-1V)  
50Ω  
+3.3V  
LVPECL 100k/10k  
-5.2V  
MC100LVEL90  
MC10LVEL90  
8mA  
-5.2V  
Figure 8. Low Voltage PECL Output  
Low voltage PECL output using PECL driver MC100LVEL90/ MC10LVEL90.  
GD16544 or  
GD16555B  
+3.3V  
+3.3V  
500Ω  
LVDS Input  
50MSL  
100Ω  
500Ω  
+3.3V  
0V  
8mA  
-5.2V  
Figure 9. LVDS Compatible Output  
Reference Clock Input  
0V  
GD16555B  
0V  
0V  
VCMLT  
-5.2V  
50  
50Ω  
220Ω  
REFCK  
REFCKN  
100nF  
220Ω  
-5.2V  
-5.2V  
Figure 10. Reference Clock Input (REFCK/REFCKN), Differential AC Coupled.  
Data Sheet Rev. 04  
GD16555B  
Page 7 of 20  
622 Mbit/s Input Interface  
0V  
GD16555B  
0V  
0V  
VCMLT  
50  
50Ω  
CML Driver  
50MSL  
-5.2V  
Figure 11. CML input interface with a 0/-0.4 V input voltage swing (DC coupled) by connecting VCMLT to 0 V.  
0V  
GD16555B  
0V  
0V  
VCMLT  
50Ω  
50Ω  
CML or LVDS  
Output Driver  
100nF  
50MSL  
220Ω  
-5.2V  
-5.2V  
Figure 12. CML or LVDS input interface with a 0/-0.4 V input voltage swing (AC coupled) by connecting VCMLT to 0 V.  
Data Sheet Rev. 04  
GD16555B  
Page 8 of 20  
Pin List  
Mnemonic:  
Pin No.:  
Pin Type:  
Description:  
DI0,  
DI1,  
DI2,  
DI3,  
DI4,  
DI5,  
DI6,  
DI7,  
DI8,  
DI9,  
DIN0  
61, 62  
63, 64  
66, 67  
2, 3  
CML In  
Data input, differential 622 Mbit/s. Multiplexed to serial output  
starting with DI0, DI1...DI15.  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
DIN8  
DIN9  
5, 6  
7, 8  
10, 11  
12, 13  
19, 20  
22, 23  
24, 25  
27, 28  
29, 30  
32, 33  
36, 37  
39, 40  
DI10, DIN10  
DI11, DIN11  
DI12, DIN12  
DI13, DIN13  
DI14, DIN14  
DI15, DIN15  
REFCK, REFCKN  
57, 58  
CML In  
ECL In  
Reference clock input, differential 155 MHz or 622 MHz (package  
bonding option).  
SEL1, SEL2  
54, 56  
Select the phase of CKOUT.  
SEL1 SEL2  
0
1
0
1
0
0
1
1
TD=0°  
TD=90°  
TD=180°  
TD=270°  
OUT, OUTN  
42, 44  
15, 16  
CML Out  
Data output, differential 10 Gbit/s. No internal ESD output pro-  
tection.  
CKOUT, CKOUTN  
Open Collector  
Clock output, differential 622 MHz. Should always be terminated  
with a resistor.  
PCTL, POUT  
47, 49  
50, 53  
Analogue Out/In Phase-Frequency detector outputs.  
PHIGH, PLOW  
Open Collector  
Phase-Frequency detector outputs. Should always be terminated  
with 50 to VDD.  
VCTL  
46  
59  
Analogue In  
VCO input voltage control.  
NLDET  
Open Collector  
No Lock DETect output. Should always be terminated with a re-  
sistor.  
TCK  
45  
51  
ECL In  
PWR  
PWR  
PWR  
Connect to VDD. Used for test purpose.  
VCO Ground 0 V. For test purpose connect to VEE.  
CML input resistor termination voltage.  
Digital Ground 0 V.  
VDDO  
VCMLT  
VDD  
18, 68  
4, 9, 14, 21, 26, 31,  
38, 43, 48, 55, 60,  
65  
VDDA  
VEE  
1, 35  
17, 34, 52  
41  
PWR  
PWR  
PLL Ground 0 V.  
-5.2 V Digital supply voltage.  
VCUR  
NC  
Analogue In  
Output voltage control in GD16555B/155-XX versions.  
Connect to VEE in GD16555B/622-XX versions.  
41  
Data Sheet Rev. 04  
GD16555B  
Page 9 of 20  
Package Pinout  
18  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
VCMLT  
VCMLT  
DIN2  
DI2  
19  
DI8  
20  
DIN8  
21  
VDD  
VDD  
22  
DI9  
DIN1  
DI1  
23  
DIN9  
24  
DI10  
DIN0  
DI0  
25  
DIN10  
26  
VDD  
VDD  
27  
DI11  
NLDET  
REFCKN  
REFCK  
SEL2  
VDD  
28  
DIN11  
29  
DI12  
30  
DIN12  
31  
VDD  
32  
DI13  
SEL1  
PLOW  
VEE  
33  
DIN13  
34  
VEE  
Figure 13. Package Pinout, Top View  
Note:  
VDD = Cavity  
Data Sheet Rev. 04  
GD16555B  
Page 10 of 20  
Maximum Ratings  
These are the limits beyond which the component may be damaged.  
All voltages in table are referred to VDD/VDDA.  
All currents are defined positive out of the pin.  
VDD is 0 V or GND  
Symbol:  
VEE  
Characteristic:  
Conditions:  
MIN.:  
TYP.:  
MAX.:  
-6  
UNIT:  
V
Negative Supply  
0
VCMLT  
VO CML  
IO CML  
VI CML  
II CML  
POUT  
CML Resistor Termination Voltage  
CML Output Voltage  
CML Output Current  
CML Input Voltage  
CML Input Current  
POUT Voltage  
0
+0.7  
VEE  
V
0
0
V
Note 1  
Note 1  
-12  
mA  
V
VCMLT -1.5  
-25  
0.5  
25  
mA  
V
VEE  
-3.6  
+125  
+150  
TJ  
Junction Temperature  
Storage Temperature  
-55  
oC  
oC  
TS  
-65  
Note 1: Nominal supply voltages.  
Data Sheet Rev. 04  
GD16555B  
Page 11 of 20  
DC Characteristics  
TCASE = 0 °C to 70 °C.  
All voltages in table are referred to VDD.  
All currents are defined positive out of pin.  
VDD is 0 V or GND  
Symbol:  
VEE  
Characteristic:  
Conditions:  
MIN.:  
-5.0  
0
TYP.:  
MAX.:  
-5.4  
-2  
UNIT:  
V
Negative Supply Voltage  
-5.2  
VCMLT  
CML Resistor Termination Voltage  
Supply Current  
Note 4  
V
IEE  
330  
-0.1  
-0.25  
-1.0  
-1.6  
-0.05  
-0.3  
-0.1  
-7  
400  
0
480  
+0.1  
-1.0  
-0.5  
-2.0  
+0.05  
-0.5  
+0.1  
-9  
mA  
V
VIH CML  
VIL CML  
VIH ECL  
VIL ECL  
VOH OC  
VOL OC  
IOH OC  
CML Input Voltage High, (50 Input)  
CML Input Voltage Low, (50 Input)  
ECL Input Voltage High, (50 Input)  
ECL Input Voltage Low, (50 Input)  
Open Collector Output Voltage High  
Open Collector Output Voltage Low  
Open Output Current High  
VCMLT = 0V, Note 3  
VCMLT = 0V, Note 3  
VCMLT = -2V, Note 3  
VCMLT = -2V, Note 3  
Note 1, 5  
-0.4  
-0.8  
-1.8  
0
V
V
V
V
Note 1, 5  
-0.4  
0
V
VCMLT = 0V, 50Input  
VCMLT = 0V, 50Input  
Note 1, 10 MHz  
Note 1, 10 MHz  
Note 1  
mA  
mA  
V
IOL OC  
Open Output Current Low  
-8  
VOH OUT  
VOL OUT  
IOH OUT  
IOL OUT  
VIH SEL1-2, TCK  
VIL SEL1-2, TCK  
RIN CML  
OUT/OUTN Voltage High  
-0.1  
-0.6  
-0.05  
-0.7  
0
+0.05  
-0.8  
OUT/OUTN Voltage Low  
V
OUT/OUTN Current High  
mA  
mA  
V
OUT/OUTN Current Low  
Note 1  
-14  
SEL1-2 and TCK Input Voltage High  
SEL1-2 and TCK Input Voltage Low  
CML Input Resistor Termination  
Note 2  
0
VEE + 2  
VEE + 0.8  
50  
Note 2  
VEE  
V
DC  
45  
55  
Note 1: Output externally terminated by 50 to 0 V.  
Note 2: SEL1-2 and TCK can be connected directly to VDD or VEE.  
Note 3: DI0/DIN0 to DI15/DIN15 are internally terminated by 50 to VCMLT  
.
Note 4: The CML inputs can be configured as ECL compatible by connecting VCMLT to -2 V, hence all data inputs and REFCK/  
REFCKN have to be ECL.  
Note 5: All open collector outputs should be terminated with a resistor to VDD even though they are not used.  
Data Sheet Rev. 04  
GD16555B  
Page 12 of 20  
AC Characteristics, General  
TCASE = 0 °C to 70 °C, VEE = -5.2 V.  
Symbol:  
Characteristic:  
Conditions:  
MIN.:  
TYP.:  
MAX.:  
UNIT:  
JTRF  
Jitter transfer  
12 kHz < F < 2 MHz  
Note 1  
0.1  
dB  
JGEN  
Jitter generation  
12 kHz < F < 80 MHz  
Note 1  
0.1  
UIPP  
VOUT  
10 Gbit/s output voltage  
Note 4  
600  
200  
650  
100  
-10  
mVPP  
mVPP  
dB  
VI,CML  
G OUT  
F REFCK  
CML input voltage sensitivity  
OUT/OUTN output reflection coefficient Note 2  
REFCK/REFCKN frequency, stability FREF = 155 MHz, Note 3  
-10  
45  
45  
+10  
55  
ppm  
%
D CYCLE, CKOUT/N CKOUT/CKOUTN duty cycle  
Differential  
D CYCLE, REFCK  
F MAX, REFCK  
REFCK duty cycle  
55  
%
Maximum REFCK frequency  
622 MHz reference option  
635  
MHz  
Note 1: Measured with the recommended loop filter in the GD90244/255 evaluation board (1 UI = 100 ps).  
Note 2: From DC to 6 GHz, measured on the GD90244/255 evaluation board. Depends on lead length, board, soldering, etc. of  
the component.  
Note 3: 622 MHz is provided as a package bonding option.  
Note 4: VEE = -5.2 V. Measured on the GD90244/255 evaluation board with the compound component mounted in a high speed  
socket.  
Data Sheet Rev. 04  
GD16555B  
Page 13 of 20  
AC Characteristics, Counter Clocking Timing  
TCASE = 0 °C to 70 °C, VEE = -5.2 V.  
GD16555B  
ASIC System  
DI0  
Shift  
Register  
16 bit @ 622 Mbit/s  
DI15  
Differential Clock 622 MHz  
CKOUT  
CKOUTN  
Figure 14. Counter Clocking Timing.  
CKOUT  
DI0-15  
Tsd  
Thd  
Tsc  
Thc  
Tsb  
Thb  
Tsa  
Tha  
Figure 15. Timing relation between input data and output clock.  
Symbol:  
Tsa  
Characteristic:  
Conditions:  
MIN.:  
60  
TYP.:  
100  
MAX.:  
200  
UNIT:  
ps  
DI0-15 setup before CKOUT  
DI0-15 hold from CKOUT  
DI0-15 setup before CKOUT  
DI0-15 hold from CKOUT  
DI0-15 setup before CKOUT  
DI0-15 hold from CKOUT  
DI0-15 setup before CKOUT  
DI0-15 hold from CKOUT  
SEL1,2: 0,0; Note 1  
SEL1,2: 0,0; Note 1  
SEL1,2: 1,1; Note 1  
SEL1,2: 1,1; Note 1  
SEL1,2: 0,1; Note 1  
SEL1,2: 0,1; Note 1  
SEL1,2: 1,0; Note 1  
SEL1,2: 1,0; Note 1  
Tha  
0
10  
50  
ps  
Tsb  
460  
-400  
860  
-800  
1260  
-1200  
500  
600  
ps  
Thb  
-390  
900  
-350  
1000  
-750  
1400  
-1150  
ps  
Tsc  
ps  
Thc  
-790  
1300  
-1190  
ps  
Tsd  
ps  
Thd  
ps  
Note 1: Setup time is defined positive before the falling edge of CKOUT and the hold time is defined positive after the falling  
edge of CKOUT.  
Data Sheet Rev. 04  
GD16555B  
Page 14 of 20  
AC Characteristics, Forward Clocking Timing  
TCASE = 0 °C to 70 °C, VEE = -5.2 V.  
GD16555B  
ASIC System  
DI0  
Shift  
Register  
16 bit @ 622 Mbit/s  
DI15  
Differential Reference  
Clock 622 MHz  
REFCK  
PLL  
REFCKN  
Figure 16. Forward Clocking Timing.  
REFCK  
DI0-15  
TS,RF  
TH,RF  
Figure 17. Timing relation between input data and reference clock.  
Symbol:  
TS,RF  
Characteristic:  
Conditions:  
MIN.:  
100  
TYP.:  
MAX.:  
UNIT:  
ps  
DI0-15 setup before REFCK  
DI0-15 hold from REFCK  
VEE = -5.2V, TC=70°, Note 1, 2  
VEE = -5.2V, TC=70°, Note 1, 2  
TH,RF  
250  
ps  
Note 1: 622 MHz reference clock option.  
Note 2: Setup time is defined positive before the falling edge of CKOUT and the hold time is defined positive after the falling  
edge of CKOUT.  
Data Sheet Rev. 04  
GD16555B  
Page 15 of 20  
Jitter Transfer Measurement  
Figure 18. Jitter transfer curve when connected with the recommended loop filter (see Figure 1) on the evaluation board  
GD90244/255. The case temperature -5 °C to 85 °C and power supply -5.0 V and -5.4 V.  
Data Sheet Rev. 04  
GD16555B  
Page 16 of 20  
VCO Measurement  
Figure 19. VCO tuning curves.  
The tuning curves are measured at -5 °C and 85 °C and at supply voltages of -5 V and -5.4 V.  
Data Sheet Rev. 04  
GD16555B  
Page 17 of 20  
Mounting of Component on PCB  
50 MSL  
Heat sink compound  
0.5 mm  
2 - 4 mm  
PCB  
GD16555B  
SMA  
Connector  
Metal Block  
Figure 20. Example 1.  
Mounting of the component inside a hole in the PCB with short leads for the 10 GBit/s inputs. The headspreader is down side to-  
wards the metal side for best cooling of the component.  
Heat sink  
Heat sink compound  
50 MSL  
GD16555B  
PCB  
Loop Filter  
SMA  
Connector  
Figure 21. Example 2.  
Mounting of the component on the PCB with bend leads (gullwings) The headspreader is thermal mounted to a heat sink.  
Data Sheet Rev. 04  
GD16555B  
Page 18 of 20  
Package Outline  
0.056" +- 0.006"  
0.086" +- 0.01"  
17  
0.750" +- 0.007" SQ  
Pin 1  
18  
68  
52  
34  
35  
51  
0.010"  
0.950" +- 0.02" SQ  
0.040"  
Figure 22. Package with Straight Leads (68AB)  
Figure 23. Package with Gullwings Leads (68BA)  
Data Sheet Rev. 04  
GD16555B  
Page 19 of 20  
Device Marking  
GD16555B-<Option>  
<Mask ID><Lot ID>  
WWYY  
GD16555B  
Figure 24. Device marking, bottom and top view  
Ordering Information  
To order, please specify as shown below:  
Product Name:  
Reference Clock:  
Package Type:  
Case Temperature Range:  
0...70oC  
GD16555B/155-68AB  
155 MHz  
622 MHz  
155 MHz  
622 MHz  
68 pin Straight Lead,  
Multi Layer Ceramic, (MLC)  
GD16555B/622-68AB  
GD16555B/155-68BA  
GD16555B/622-68BA  
68 pin Straight Lead,  
Multi Layer Ceramic, (MLC)  
0...70oC  
0...70oC  
0...70oC  
68 pin Gullwing Lead,  
Multi Layer Ceramic, (MLC)  
68 pin Gullwing Lead,  
Multi Layer Ceramic, (MLC)  
GD16555B, Data Sheet Rev. 04 - Date: 24 September 1999  
Distributor:  
The information herein is assumed to be  
reliable. GIGA assumes no responsibility  
for the use of this information, and all such  
information shall be at the users own risk.  
Prices and specifications are subject to  
change without notice. No patent rights or  
licenses to any of the circuits described  
herein are implied or granted to any third  
party. GIGA does not authorise or warrant  
any GIGA Product for use in life support  
devices and/or systems.  
Mileparken 22, DK-2740 Skovlunde  
Denmark  
Telephone : +45 4492 6100  
Telefax  
E-mail  
Web site  
: +45 4492 5900  
: sales@giga.dk  
: http://www.giga.dk  
Please check our Internet web site  
for latest version of this data sheet.  
Copyright © 1999 GIGA A/S  
All rights reserved  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY