GD80960JF-16 [INTEL]

EMBEDDED 32-BIT MICROPROCESSOR; 嵌入式32位微处理器
GD80960JF-16
型号: GD80960JF-16
厂家: INTEL    INTEL
描述:

EMBEDDED 32-BIT MICROPROCESSOR
嵌入式32位微处理器

微处理器
文件: 总78页 (文件大小:825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960JA/JF/JD/JT 3.3 V EMBEDDED  
32-BIT MICROPROCESSOR  
Advance Information Datasheet  
Product Features  
Pin/Code Compatible with all 80960Jx  
On-Chip Data RAM  
Processors  
—1 Kbyte Critical Variable Storage  
—Single-Cycle Access  
High-Performance Embedded Architecture  
—One Instruction/Clock Execution  
3.3 V Supply Voltage  
—Core Clock Rate is:  
—5 V Tolerant Inputs  
80960JA/JF 1x the Bus Clock  
80960JD 2x the Bus Clock  
80960JT 3x the Bus Clock  
TTL Compatible Outputs  
High Bandwidth Burst Bus  
—32-Bit Multiplexed Address/Data  
—Programmable Memory Configuration  
—Selectable 8-, 16-, 32-Bit Bus Widths  
—Supports Unaligned Accesses  
—Big or Little Endian Byte Ordering  
High-Speed Interrupt Controller  
31 Programmable Priorities  
Eight Maskable Pins plus NMI  
Up to 240 Vectors in Expanded Mode  
Two On-Chip Timers  
Load/Store Programming Model  
—Sixteen 32-Bit Global Registers  
—Sixteen 32-Bit Local Registers (8 sets)  
—Nine Addressing Modes  
—User/Supervisor Protection Model  
Two-Way Set Associative Instruction  
Cache  
—80960JA - 2 Kbyte  
80960JF/JD - 4 Kbyte  
—80960JT - 16 Kbyte  
—Programmable Cache-Locking  
Mechanism  
Independent 32-Bit Counting  
—Clock Prescaling by 1, 2, 4 or 8  
lnternal Interrupt Sources  
Direct Mapped Data Cache  
—80960JA - 1 Kbyte  
Halt Mode for Low Power  
80960JF/JD - 2 Kbyte  
IEEE 1149.1 (JTAG) Boundary Scan  
80960JT - 4 Kbyte  
Compatibility  
Packages  
Write Through Operation  
On-Chip Stack Frame Cache  
—Seven Register Sets Can Be Saved  
—Automatic Allocation on Call/Return  
132-Lead Pin Grid Array (PGA)  
132-Lead Plastic Quad Flat Pack  
(PQFP)  
—196-Ball Mini Plastic Ball Grid Array  
(MPBGA)  
—0-7 Frames Reserved for High-Priority  
Interrupts  
Notice: This document contains information on products in the sampling and initial production  
phases of development. The specifications are subject to change without notice. Verify with your  
local Intel sales office that you have the latest datasheet before finalizing a design.  
Order Number: 273159-001  
March, 1998  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 80960JA/JF/JD/JT 3.3 V Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 1998  
*Third-party brands and names are the property of their respective owners.  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Contents  
1.0  
2.0  
Introduction..................................................................................................................7  
80960Jx Overview......................................................................................................7  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
80960 Processor Core ..........................................................................................9  
Burst Bus.............................................................................................................10  
Timer Unit............................................................................................................10  
Priority Interrupt Controller ..................................................................................10  
Instruction Set Summary.....................................................................................11  
Faults and Debugging .........................................................................................11  
Low Power Operation..........................................................................................11  
Test Features ......................................................................................................12  
Memory-Mapped Control Registers ....................................................................12  
Data Types and Memory Addressing Modes ......................................................12  
3.0  
4.0  
Package Information...............................................................................................14  
3.1  
Pin Descriptions ..................................................................................................16  
3.1.1 Functional Pin Definitions.......................................................................16  
3.1.2 80960Jx 132-Lead PGA Pinout..............................................................22  
3.1.3 80960Jx 132-Lead PQFP Pinout............................................................26  
3.1.4 80960Jx 196-Ball MPBGA Pinout ..........................................................29  
Package Thermal Specifications.........................................................................34  
Thermal Management Accessories.....................................................................38  
3.3.1 Heatsinks................................................................................................38  
3.2  
3.3  
Electrical Specifications........................................................................................39  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Absolute Maximum Ratings.................................................................................39  
Operating Conditions...........................................................................................39  
Connection Recommendations ...........................................................................40  
VCC5 Pin Requirements (VDIFF) .......................................................................40  
VCCPLL Pin Requirements.................................................................................41  
DC Specifications................................................................................................42  
AC Specifications ................................................................................................44  
4.7.1 AC Test Conditions and Derating Curves ..............................................47  
4.7.2 AC Timing Waveforms ...........................................................................52  
5.0  
Bus Functional Waveforms..................................................................................58  
5.1  
5.2  
Basic Bus States .................................................................................................68  
Boundary-Scan Register .....................................................................................69  
6.0  
7.0  
Device Identification ...............................................................................................74  
Revision History .......................................................................................................77  
Advance Information Datasheet  
3
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figures  
1
80960Jx Microprocessor Package Options...........................................................7  
2
3
4
5
6
7
8
9
80960Jx Block Diagram ........................................................................................9  
132-Lead Pin Grid Array Bottom View - Pins Facing Up.....................................22  
132-Lead Pin Grid Array Top View - Pins Facing Down .....................................23  
132-Lead PQFP - Top View................................................................................26  
196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up..................29  
196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down ..................30  
VCC5 Current-Limiting Resistor..........................................................................40  
VCCPLL Lowpass Filter......................................................................................41  
AC Test Load ......................................................................................................47  
Output Delay or Hold vs. Load Capacitance.......................................................48  
TLX vs. AD Bus Load Capacitance......................................................................48  
80960JA/JF ICC Active (Power Supply) vs. Frequency.......................................49  
80960JA/JF ICC Active (Thermal) vs. Frequency................................................49  
80960JD ICC Active (Power Supply) vs. Frequency............................................50  
80960JD ICC Active (Thermal) vs. Frequency.....................................................50  
80960JT ICC Active (Power Supply) vs. Frequency ...........................................51  
80960JT ICC Active (Thermal) vs. Frequency.....................................................51  
CLKIN Waveform ................................................................................................52  
TOV1 Output Delay Waveform.............................................................................52  
TOF Output Float Waveform................................................................................53  
TIS1 and TIH1 Input Setup and Hold Waveform...................................................53  
TIS2 and TIH2 Input Setup and Hold Waveform...................................................53  
TIS3 and TIH3 Input Setup and Hold Waveform...................................................54  
TIS4 and TIH4 Input Setup and Hold Waveform...................................................54  
TLX, TLXL and TLXA Relative Timings Waveform.................................................55  
DT/R and DEN Timings Waveform .....................................................................55  
TCK Waveform....................................................................................................56  
TBSIS1 and TBSIH1 Input Setup and Hold Waveforms .........................................56  
TBSOV1 and TBSOF1 Output Delay and Output Float Waveform..........................56  
TBSOV2 and TBSOF2 Output Delay and Output Float Waveform..........................57  
TBSIS2 and TBSIH2 Input Setup and Hold Waveform ...........................................57  
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus .........58  
Burst Read and Write Transactions Without Wait States, 32-Bit Bus.................59  
Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus...........................60  
Burst Read and Write Transactions Without Wait States, 8-Bit Bus...................61  
Burst Read and Write Transactions With 1, 0 Wait States and  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Extra Tr State on Read, 16-Bit Bus.....................................................................62  
38  
Double Word Read Bus Request, Misaligned One Byte From  
Quad Word Boundary, 32-Bit Bus, Little Endian.................................................63  
HOLD/HOLDA Waveform For Bus Arbitration ....................................................64  
Cold Reset Waveform.........................................................................................65  
Warm Reset Waveform.......................................................................................66  
Entering the ONCE State....................................................................................67  
Bus States with Arbitration..................................................................................68  
Summary of Aligned and Unaligned Accesses (32-Bit Bus) ...............................72  
Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) ...........73  
80960JT Device Identification Register...............................................................74  
80960JD Device Identification Register ..............................................................75  
80960JA/JF Device Identification Register .........................................................76  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
4
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Tables  
1
2
3
4
5
6
7
8
80960Jx Instruction Set.......................................................................................13  
Pin Description Nomenclature.............................................................................16  
Pin Description — External Bus Signals .............................................................17  
Pin Description — Processor Control Signals, Test Signals and Power.............20  
Pin Description — Interrupt Unit Signals.............................................................21  
132-Lead PGA Pinout — In Signal Order............................................................24  
132-Lead PGA Pinout — In Pin Order ................................................................25  
132-Lead PQFP Pinout — In Signal Order .........................................................27  
132-Lead PQFP Pinout — In Pin Order ..............................................................28  
196-Ball MPBGA Pinout — In Signal Order ........................................................31  
196-Ball MPBGA Pinout — In Pin Order.............................................................33  
132-Lead PGA Package Thermal Characteristics...............................................35  
196-Ball MPBGA Package Thermal Characteristics ...........................................35  
132-Lead PQFP Package Thermal Characteristics ............................................36  
Maximum TA at Various Airflows in °C (80960JT)...............................................36  
Maximum TA at Various Airflows in °C (80960JD) ..............................................37  
Maximum TA at Various Airflows in °C (80960JA/JF)..........................................37  
Absolute Maximum Ratings.................................................................................39  
80960Jx Operating Conditions............................................................................39  
VDIFF Parameters ..............................................................................................40  
80960Jx DC Characteristics................................................................................42  
80960Jx ICC Characteristics................................................................................42  
80960Jx AC Characteristics................................................................................44  
Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44) ...................47  
Boundary-Scan Register Bit Order......................................................................69  
Natural Boundaries for Load and Store Accesses ..............................................70  
Summary of Byte Load and Store Accesses.......................................................70  
Summary of Short Word Load and Store Accesses............................................70  
Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)...........................71  
80960Jx Device Type and Stepping Reference..................................................74  
Fields of 80960JT Device ID ...............................................................................75  
80960JT Device ID Model Types ........................................................................75  
Fields of 80960JD Device ID...............................................................................76  
80960JD Device ID Model Types........................................................................76  
Fields of 80960JA/JF Device ID..........................................................................77  
80960JA/JF Device ID Model Types...................................................................77  
Data Sheet Revision History ...............................................................................77  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Advance Information Datasheet  
5
80960JA/JF/JD/JT 3.3 V Microprocessor  
1.0  
Introduction  
This document contains information for the 80960Jx microprocessor, including electrical  
characteristics and package pinout information. Detailed functional descriptions — other than  
parametric performance — are published in the i960® Jx Microprocessor Developers Manual  
(272483).  
Figure 1.  
80960Jx Microprocessor Package Options  
A80960JX  
®
GD80960JX  
XXXXXXXXSS  
XXXXXXXSS  
i960  
M
i
© 19xx  
M
©
19xx  
i
NG80960JX  
XXXXXXXX SS  
M
©
19xx  
i
136-Ball MPBGA  
132-Pin PQFP  
132-Pin PGA  
Throughout this data sheet, references to “80960Jx” indicate features that apply to all of the  
following:  
80960JA — 3.3 V (5 V Tolerant), 2 Kbyte instruction cache, 1 Kbyte data cache  
80960JF — 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache  
80960JD — 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache and clock  
doubling  
80960JT — 3.3 V (5 V Tolerant), 16 Kbyte instruction cache, 4 Kbyte data cache and clock  
tripling  
2.0  
80960Jx Overview  
The 80960Jx offers high performance to cost-sensitive 32-bit embedded applications. The 80960Jx  
is object code compatible with the 80960 Core Architecture and is capable of sustained execution  
at the rate of one instruction per clock. This processor’s features include generous instruction  
cache, data cache and data RAM. It also boasts a fast interrupt mechanism and dual-programmable  
timer units.  
The 80960Jx’s clock multiplication operates the processor core at two or three times the bus clock  
rate to improve execution performance without increasing the complexity of board designs.  
Memory subsystems for cost-sensitive embedded applications often impose substantial wait state  
penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU  
execution from the external bus.  
Advance Information Datasheet  
7
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
The 80960Jx rapidly allocates and deallocates local register sets during context switches. The  
processor needs to flush a register set to the stack only when it saves more than seven sets to its  
local register cache.  
A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full  
complement of control signals simplifies the connection of the 80960Jx to external components.  
The user programs physical and logical memory attributes through memory-mapped control  
registers (MMRs) — an extension not found on the i960 Kx, Sx or Cx processors. Physical and  
logical configuration registers enable the processor to operate with all combinations of bus width  
and data object alignment. The processor supports a homogeneous byte ordering model.  
This processor integrates two important peripherals: a timer unit, and an interrupt controller. These  
and other hardware resources are programmed through memory-mapped control registers, an  
extension to the familiar 80960 architecture.  
The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and  
general-purpose system timing. These operate in either single-shot or auto-reload mode and can  
generate interrupts.  
The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.  
The ICU provides full programmability of up to 240 interrupt sources into 31 priority levels. The  
ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt  
latency. Clock doubling reduces interrupt latency by 40% compared to the 80960JA/JF, and clock  
tripling reduces interrupt latency by 20% compared to the 80960JD. Local registers may be  
dedicated to high-priority interrupts to further reduce latency. Acting independently from the core,  
the ICU compares the priorities of posted interrupts with the current process priority, off-loading  
this task from the core. The ICU also supports the integrated timer interrupts.  
The 80960Jx features a Halt mode designed to support applications where low power consumption  
is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up  
to 90 percent.  
The 80960Jx’s testability features, including ONCE (On-Circuit Emulation) mode and Boundary  
Scan (JTAG), provide a powerful environment for design debug and fault diagnosis.  
The Solutions960® program features a wide variety of development tools which support the i960  
processor family. Many of these tools are developed by partner companies; some are developed by  
Intel, such as profile-driven optimizing compilers. For more information on these products, contact  
your local Intel representative.  
8
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 2.  
80960Jx Block Diagram  
Control  
Physical Region  
32-bit buses  
address / data  
CLKIN  
Configuration  
PLL, Clocks,  
21  
Power Mgmt  
Instruction Cache  
Bus  
Control Unit  
80960JA - 2K  
80960JF/JD - 4K  
80960JT - 16K  
Address/  
Data Bus  
Bus Request  
Queues  
TAP  
Boundary Scan  
32  
Controller  
Two-Way Set Associative  
5
Two 32-Bit  
Timers  
Instruction Sequencer  
Interrupt  
Port  
Constants  
Control  
Programmable  
Interrupt Controller  
9
8-Set  
Local Register Cache  
Execution  
and  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
Address  
Generation  
128  
Unit  
32-bit Address  
32-bit Data  
1K Data RAM  
Global / Local  
Register File  
effective  
address  
SRC1 SRC2 DEST  
Direct Mapped  
Data Cache  
80960JA - 1K  
80960JF/JD - 2K  
80960JT - 4K  
3 Independent 32-Bit SRC1, SRC2, and DEST Buses  
2.1  
80960 Processor Core  
The 80960Jx family is a scalar implementation of the 80960 Core Architecture. Intel designed this  
processor core as a very high performance device that is also cost-effective. Factors that contribute  
to the core’s performance include:  
Core operates at the bus speed with the 80960JA/JF  
Core operates at two or three times the bus speed with the 80960JD and 80960JT respectively  
Single-clock execution of most instructions  
Independent Multiply/Divide Unit  
Efficient instruction pipeline minimizes pipeline break latency  
Register and resource scoreboarding allow overlapped instruction execution  
128-bit register bus speeds local register caching  
Two-way set associative, integrated instruction cache  
Direct-mapped, integrated data cache  
1 Kbyte integrated data RAM delivers zero wait state program data  
Advance Information Datasheet  
9
80960JA/JF/JD/JT 3.3 V Microprocessor  
2.2  
Burst Bus  
A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory  
and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit  
words per six clock cycles. The external address/data bus is multiplexed.  
Users may configure the 80960Jx’s bus controller to match an application’s fundamental memory  
organization. Physical bus width is register-programmed for up to eight regions. Byte ordering and  
data caching are programmed through a group of logical memory templates and a defaults register.  
The BCU’s features include:  
Multiplexed external bus to minimize pin count  
32-, 16- and 8-bit bus widths to simplify I/O interfaces  
External ready control for address-to-data, data-to-data and data-to-next-address wait state types  
Support for big or little endian byte ordering to facilitate the porting of existing program code  
Unaligned bus accesses performed transparently  
Three-deep load/store queue to decouple the bus from the core  
Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it  
performs an external bus confidence test by performing a checksum on the first words of the  
initialization boot record (IBR).  
The user may examine the contents of the caches by executing special cache control instructions.  
2.3  
2.4  
Timer Unit  
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several  
clock rates and generating interrupts. Each is programmed by use of the TU registers. These  
memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot  
mode and auto-reload capabilities for continuous operation. Each timer has an independent  
interrupt request to the 80960Jx’s interrupt controller. The TU can generate a fault when  
unauthorized writes from user mode are detected. Clock prescaling is supported.  
Priority Interrupt Controller  
A programmable interrupt controller manages up to 240 external sources through an 8-bit external  
interrupt port. Alternatively, the interrupt inputs may be configured for individual edge- or  
level-triggered inputs. The interrupt unit (IU) also accepts interrupts from the two on-chip timer  
channels and a single Non-Maskable Interrupt (NMI) pin. Interrupts are serviced according to their  
priority levels relative to the current process priority.  
Low interrupt latency is critical to many embedded applications. As part of its highly flexible  
interrupt mechanism, the 80960Jx exploits several techniques to minimize latency:  
Interrupt vectors and interrupt handler routines can be reserved on-chip  
Register frames for high-priority interrupt handlers can be cached on-chip  
The interrupt stack can be placed in cacheable memory space  
Interrupt microcode executes at two or three times the bus frequency for the 80960JD and  
80960JT respectively  
10  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
2.5  
Instruction Set Summary  
The 80960Jx adds several new instructions to the i960 core architecture. The new instructions are:  
Conditional Move  
Conditional Add  
Conditional Subtract  
Byte Swap  
Halt  
Cache Control  
Interrupt Control  
Table 1 identifies the instructions that the 80960Jx supports. Refer to the i960® Jx Microprocessor  
Developers Manual (272483) for a detailed description of each instruction.  
2.6  
2.7  
Faults and Debugging  
The 80960Jx employs a comprehensive fault model. The processor responds to faults by making  
implicit calls to a fault handling routine. Specific information collected for each fault allows the  
fault handler to diagnose exceptions and recover appropriately.  
The processor also has built-in debug capabilities. In software, the 80960Jx may be configured to  
detect as many as seven different trace event types. Alternatively, mark and fmark instructions  
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are  
also available to trap on execution and data addresses.  
Low Power Operation  
Intel fabricates the 80960Jx using an advanced sub-micron manufacturing process. The processor’s  
sub-micron topology provides the circuit density for optimal cache size and high operating speeds  
while dissipating modest power. The processor also uses dynamic power management to turn off  
clocks to unused circuits.  
Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode,  
the processor core stops completely while the integrated peripherals continue to function, reducing  
overall power requirements up to 90 percent. Processor execution resumes from internally or  
externally generated interrupts.  
Advance Information Datasheet  
11  
80960JA/JF/JD/JT 3.3 V Microprocessor  
2.8  
Test Features  
The 80960Jx incorporates numerous features which enhance the user’s ability to test both the  
processor and the system to which it is attached. These features include ONCE (On-Circuit  
Emulation) mode and Boundary Scan (JTAG).  
The 80960Jx provides testability features compatible with IEEE Standard Test Access Port and  
Boundary Scan Architecture (IEEE Std. 1149.1).  
One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE  
mode). ONCE mode can also be initiated at reset without using the boundary scan mechanism.  
ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to  
electrically “remove” itself from a circuit board. This allows for system-level testing where a  
remote tester — such as an in-circuit emulator — can exercise the processor system.  
The provided test logic does not interfere with component or circuit board behavior and ensures  
that components function correctly, connections between various components are correct, and  
various components interact correctly on the printed circuit board.  
The JTAG Boundary Scan feature is an attractive alternative to conventional “bed-of-nails” testing.  
It can examine connections which might otherwise be inaccessible to a test system.  
2.9  
Memory-Mapped Control Registers  
The 80960Jx, though compliant with i960 series processor core, has the added advantage of  
memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. These  
give software the interface to easily read and modify internal control registers.  
Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished  
through regular memory-format instructions. The processor ensures that these accesses do not  
generate external bus cycles.  
2.10  
Data Types and Memory Addressing Modes  
As with all i960 family processors, the 80960Jx instruction set supports several data types and formats:  
Bit  
Bit fields  
Integer (8-, 16-, 32-, 64-bit)  
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
Triple word (96 bits)  
Quad word (128 bits)  
The 80960Jx provides a full set of addressing modes for C and assembly programming:  
Two Absolute modes  
Five Register Indirect modes  
Index with displacement  
IP with displacement  
12  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 1.  
80960Jx Instruction Set  
Data Movement  
Arithmetic  
Logical  
Bit, Bit Field and Byte  
Add  
Subtract  
Multiply  
And  
Set Bit  
Divide  
Not And  
And Not  
Or  
Clear Bit  
Remainder  
Not Bit  
Load  
Modulo  
Alter Bit  
Store  
Shift  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Move  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
*Conditional Add  
*Conditional Subtract  
Rotate  
*Conditional Select  
Load Address  
Or Not  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
*Byte Swap  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Call  
Conditional Compare  
Compare and Increment  
Compare and Decrement  
Test Condition Code  
Check Bit  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call Extended  
Call System  
Return  
Conditional Fault  
Synchronize Faults  
Branch and Link  
Debug  
Processor Management  
Atomic  
Flush Local Registers  
Modify Arithmetic  
Controls  
Modify Trace Controls  
Mark  
Modify Process Controls  
*Halt  
Atomic Add  
Atomic Modify  
Force Mark  
System Control  
*Cache Control  
*Interrupt Control  
Asterisk (*) denotes new 80960Jx instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.  
Advance Information Datasheet  
13  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.0  
Package Information  
The 80960Jx is offered with four speeds and three package types. The 132-pin Pin Grid Array  
(PGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of  
0° to 100°C:  
A80960JT-100 (100 MHz core, 33 MHz bus)  
A80960JT-75 (75 MHz core, 25 MHz bus)  
A80960JD-66 (66 MHz core, 33 MHz bus)  
A80960JD-50 (50 MHz core, 25 MHz bus)  
A80960JD-40 (40 MHz core, 20 MHz bus)  
A80960JD-33 (33 MHz core, 16 MHz bus)  
A80960JA/JF-33 (33 MHz)  
A80960JA/JF-25 (25 MHz)  
A80960JA/JF-16 (16 MHz)  
The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at  
VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 100°C:  
NG80960JT-100 (100 MHz core, 33 MHz bus)  
NG80960JT-75 (75 MHz core, 25 MHz bus)  
NG80960JD-66 (66 MHz core, 33 MHz bus)  
NG80960JD-50 (50 MHz core, 25 MHz bus)  
NG80960JD-40 (40 MHz core, 20 MHz bus)  
NG80960JD-33 (33 MHz core, 16 MHz bus)  
NG80960JA/JF-33 (33 MHz)  
NG80960JA/JF-25 (25 MHz)  
NG80960JA/JF-16 (16 MHz)  
An extended temperature 132-pin Plastic Quad Flatpack (PQFP) device is specified for operation  
at VCC = 3.3 V ± 0.15 V over a case temperature range of -40° to 100°C:  
TG80960JA-25 (25 MHz)  
14  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at  
VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 100°C:  
GD80960JT-100 (100 MHz core, 33 MHz bus)  
GD80960JT-75 (75 MHz core, 25 MHz bus)  
GD80960JD-50 (50 MHz core, 25 MHz bus)  
GD80960JD-40 (40 MHz core, 20 MHz bus)  
GD80960JD-33 (33 MHz core, 16 MHz bus)  
GD80960JA/JF-33 (33 MHz)  
GD80960JA/JF-25 (25 MHz)  
GD80960JA/JF-16 (16 MHz)  
For package specifications and information, refer to Intel’s Packaging Handbook (240800).  
Advance Information Datasheet  
15  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.1  
Pin Descriptions  
This section describes the pins for the 80960Jx in the 132-pin ceramic Pin Grid Array (PGA)  
package, 132-lead Plastic Quad Flatpack Package (PQFP) and 196-ball Mini Plastic Ball Grid  
Array (MPBGA).  
Section 3.1.1, “Functional Pin Definitions”, describes pin function; Section 3.1.2, “80960Jx  
132-Lead PGA Pinout”, Section 3.1.3, “80960Jx 132-Lead PQFP Pinout” and Section 3.1.4,  
“80960Jx 196-Ball MPBGA Pinout”, define the signal and pin locations for the supported package  
types.  
3.1.1  
Functional Pin Definitions  
Table 2 presents the legend for interpreting the pin descriptions which follow. Pins associated with  
the bus interface are described in Table 3. Pins associated with basic control and test functions are  
described in Table 4. Pins associated with the Interrupt Unit are described in Table 5.  
Table 2.  
Pin Description Nomenclature  
Symbol  
Description  
I
O
Input pin only.  
Output pin only.  
I/O  
Pin can be either an input or output.  
Pin must be connected as described.  
Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation.  
S
S(E) Edge sensitive input  
S(L) Level sensitive input  
Asynchronous. Inputs may be asynchronous relative to CLKIN.  
A (...)  
A(E) Edge sensitive input  
A(L) Level sensitive input  
While the processor’s RESET pin is asserted, the pin:  
R(1) is driven to V  
R(0) is driven to V  
R(Q) is a valid output  
CC  
SS  
R (...)  
R(X) is driven to unknown state  
R(H) is pulled up to V  
CC  
While the processor is in the hold state, the pin:  
H(1) is driven to V  
H(0) is driven to V  
H(Q) Maintains previous state or continues to be a valid output  
H(Z) Floats  
CC  
SS  
H (...)  
P (...)  
While the processor is halted, the pin:  
P(1) is driven to V  
P(0) is driven to V  
CC  
SS  
P(Q) Maintains previous state or continues to be a valid output  
16  
Advance Information Datasheet  
 
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 3.  
Pin Description — External Bus Signals (Sheet 1 of 3)  
NAME  
TYPE  
DESCRIPTION  
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data  
to and from memory. During an address (T ) cycle, bits 31:2 contain a physical word  
a
address (bits 0-1 indicate SIZE; see below). During a data (T ) cycle, read or write  
d
data is present on one or more contiguous bytes, comprising AD31:24, AD23:16,  
AD15:8 and AD7:0. During write operations, unused pins are driven to determinate  
values.  
SIZE, which comprises bits 0-1 of the AD lines during a T cycle, specifies the  
a
number of data transfers during the bus transaction.  
I/O  
AD1 AD0 Bus Transfers  
S(L)  
R(X)  
H(Z)  
P(Q)  
0
0
1
1
0
1
0
1
1 Transfer  
2 Transfers  
3 Transfers  
4 Transfers  
AD31:0  
When the processor enters Halt mode, if the previous bus operation was a:  
write — AD31:2 are driven with the last data value on the AD bus.  
read — AD31:4 are driven with the last address value on the AD bus; AD3:2 are  
driven with the value of A3:2 from the last data cycle.  
Typically, AD1:0 reflect the SIZE information of the last bus transaction (either  
instruction fetch or load/store) that was executed before entering Halt mode.  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
R(0)  
H(Z)  
P(0)  
ALE  
ALE  
ADS  
asserted during a T cycle and deasserted before the beginning of the T state. It is  
a
d
active HIGH and floats to a high impedance state during a hold cycle (T ).  
h
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is the  
inverted version of ALE. This signal gives the 80960Jx a high degree of compatibility  
with existing 80960Kx systems.  
R(1)  
H(Z)  
P(1)  
O
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
R(1)  
H(Z)  
P(1)  
The processor asserts ADS for the entire T cycle. External bus control logic typically  
a
samples ADS at the end of the cycle.  
ADDRESS3:2 comprise a partial demultiplexed address bus.  
32-bit memory accesses: the processor asserts address bits A3:2 during T . The  
a
partial word address increments with each assertion of RDYRCV during a burst.  
O
16-bit memory accesses: the processor asserts address bits A3:1 during T with A1  
a
R(X)  
H(Z)  
P(Q)  
A3:2  
driven on the BE1 pin. The partial short word address increments with each  
assertion of RDYRCV during a burst.  
8-bit memory accesses: the processor asserts address bits A3:0 during T , with A1:0  
a
driven on BE1:0. The partial byte address increments with each assertion of  
RDYRCV during a burst.  
Advance Information Datasheet  
17  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 3.  
Pin Description — External Bus Signals (Sheet 2 of 3)  
NAME  
TYPE  
DESCRIPTION  
BYTE ENABLES select which of up to four data bytes on the bus participate in the  
current bus access. Byte enable encoding is dependent on the bus width of the  
memory region accessed:  
32-bit bus:  
BE3 enables data on AD31:24  
BE2 enables data on AD23:16  
BE1 enables data on AD15:8  
BE0 enables data on AD7:0  
16-bit bus:  
BE3 becomes Byte High Enable (enables data on AD15:8)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
O
R(1)  
H(Z)  
P(1)  
BE3:0  
BE0 becomes Byte Low Enable (enables data on AD7:0)  
8-bit bus:  
BE3 is not used (state is high)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Address Bit 0 (A0)  
The processor asserts byte enables, byte high enable and byte low enable during T .  
a
Since unaligned bus requests are split into separate bus transactions, these signals  
do not toggle during a burst. They remain active through the last T cycle.  
d
For accesses to 8- and 16-bit memory, the processor asserts the address bits in  
conjunction with A3:2 described above.  
WIDTH/HALTED signals denote the physical memory attributes for a bus  
transaction:  
WIDTH/HLTD1 WIDTH/HLTD0  
O
0
0
1
1
0
1
0
1
8 Bits Wide  
WIDTH/  
HLTD1:0  
R(0)  
H(Z)  
P(1)  
16 Bits Wide  
32 Bits Wide  
Processor Halted  
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in  
response to a HOLD request, regardless of prior operating state.  
DATA/CODE indicates that a bus access is a data access (1) or an instruction  
access (0). D/C has the same timing as W/R.  
O
R(X)  
H(Z)  
P(Q)  
D/C  
0 = instruction access  
1 = data access  
WRITE/READ specifies, during a T cycle, whether the operation is a write (1) or  
O
a
read (0). It is latched on-chip and remains valid during T cycles.  
R(0)  
H(Z)  
P(Q)  
d
W/R  
0 = read  
1 = write  
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the  
O
address/data bus. It is low during T and T /T cycles for a read; it is high during T  
a
w
d
a
R(0)  
H(Z)  
P(Q)  
and T /T cycles for a write. DT/R never changes state when DEN is asserted.  
DT/R  
DEN  
w
d
0 = receive  
1 = transmit  
DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted  
at the start of the first data cycle in a bus access and deasserted at the end of the  
last data cycle. DEN is used with DT/R to provide control for data transceivers  
connected to the data bus.  
O
R(1)  
H(Z)  
P(1)  
0 = data cycle  
1 = not data cycle  
18  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 3.  
Pin Description — External Bus Signals (Sheet 3 of 3)  
NAME  
TYPE  
DESCRIPTION  
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses. BLAST remains active as long as  
wait states are inserted via the RDYRCV pin. BLAST becomes inactive after the final  
data transfer in a bus cycle.  
O
R(1)  
H(Z)  
P(1)  
BLAST  
0 = last data transfer  
1 = not last data transfer  
READY/RECOVER indicates that data on AD lines can be sampled or removed. If  
RDYRCV is not asserted during a T cycle, the T cycle is extended to the next cycle  
d
d
by inserting a wait state (T ).  
w
0 = sample data  
1 = don’t sample data  
I
RDYRCV  
The RDYRCV pin has another function during the recovery (T ) state. The processor  
r
S(L)  
continues to insert additional recovery states until it samples the pin HIGH. This  
function gives slow external devices more time to float their buffers before the  
processor begins to drive address again.  
0 = insert wait states  
1 = recovery complete  
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The  
LOCK output is asserted in the first clock of an atomic operation and deasserted in  
the last data transfer of the sequence. The processor does not grant HOLDA while it  
is asserting LOCK. This prevents external agents from accessing memory involved  
in semaphore operations.  
I/O  
0 = Atomic read-modify-write in progress  
1 = Atomic read-modify-write not in progress  
S(L)  
R(H)  
H(Z)  
P(1)  
LOCK/  
ONCE  
ONCE MODE: The processor samples the ONCE input during reset. If it is asserted  
LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the  
processor stops all clocks and floats all output pins. The pin has a weak internal  
pullup which is active during reset to ensure normal operation when the pin is left  
unconnected.  
0 = ONCE mode enabled  
1 = ONCE mode not enabled  
HOLD: A request from an external bus master to acquire the bus. When the  
processor receives HOLD and grants bus control to another master, it asserts  
HOLDA, floats the address/data and control lines and enters the T state. When  
h
I
HOLD is deasserted, the processor deasserts HOLDA and enters either the T or T  
HOLD  
i
a
S(L)  
state, resuming control of the address/data and control lines.  
0 = no hold request  
1 = hold request  
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has  
relinquished control of the bus. The processor can grant HOLD requests and enter  
O
R(Q)  
H(1)  
P(Q)  
the T state during reset and while halted as well as during regular operation.  
HOLDA  
BSTAT  
h
0 = hold not acknowledged  
1 = hold acknowledged  
BUS STATUS indicates that the processor may soon stall unless it has sufficient  
access to the bus; see i960 Jx Microprocessor Developer’s Manual (272483).  
Arbitration logic can examine this signal to determine when an external bus master  
should acquire/relinquish the bus.  
®
O
R(0)  
H(Q)  
P(0)  
0 = no potential stall  
1 = potential stall  
Advance Information Datasheet  
19  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 4.  
Pin Description — Processor Control Signals, Test Signals and Power  
NAME  
TYPE  
DESCRIPTION  
CLOCK INPUT provides the processor’s fundamental time base; both the processor  
core and the external bus run at the CLKIN rate. All input and output timings are  
specified relative to a rising CLKIN edge.  
CLKIN  
I
RESET initializes the processor and clears its internal logic. During reset, the  
processor places the address/data bus and control output pins in their idle (inactive)  
states.  
During reset, the input pins are ignored with the exception of LOCK/ONCE, STEST  
and HOLD.  
I
RESET  
A(L)  
The RESET pin has an internal synchronizer. To ensure predictable processor  
initialization during power up, RESET must be asserted a minimum of 10,000 CLKIN  
cycles with V and CLKIN stable. On a warm reset, RESET should be asserted for  
CC  
a minimum of 15 cycles.  
SELF TEST enables or disables the processor’s internal self-test feature at  
initialization. STEST is examined at the end of reset. When STEST is asserted, the  
processor performs its internal self-test and the external bus confidence test. When  
STEST is deasserted, the processor performs only the external bus confidence test.  
I
STEST  
S(L)  
0 = self test disabled  
1 = self test enabled  
FAIL indicates a failure of the processor’s built-in self-test performed during  
initialization. FAIL is asserted immediately upon reset and toggles during self-test to  
indicate the status of individual tests:  
O
When self-test passes, the processor deasserts FAIL and begins operation from  
user code.  
R(0)  
H(Q)  
P(1)  
FAIL  
When self-test fails, the processor asserts FAIL and then stops executing.  
0 = self test failed  
1 = self test passed  
TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1  
Boundary Scan Testing (JTAG). State information and data are clocked into the  
processor on the rising edge; data is clocked out of the processor on the falling edge.  
TCK  
TDI  
I
I
TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising  
edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.  
S(L)  
O
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling  
edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At  
other times, TDO floats. TDO does not float during ONCE mode.  
R(Q)  
HQ)  
P(Q)  
TDO  
TEST RESET asynchronously resets the Test Access Port (TAP) controller function  
of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan  
I
TRST  
TMS  
feature, connect a pulldown resistor between this pin and V . If TAP is not used,  
SS  
A(L)  
this pin must be connected to V ; however, no resistor is required. See Section 4.3,  
SS  
“Connection Recommendations” on page 40.  
I
TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of  
the test logic for IEEE 1149.1 Boundary Scan testing.  
S(L)  
V
POWER pins intended for external connection to a V board plane.  
CC  
CC  
PLL POWER is a separate V supply pin for the phase lock loop clock generator. It  
CC  
is intended for external connection to the V board plane. In noisy environments,  
CC  
VCCPLL  
VCC5  
add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects  
on timing relationships.  
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O  
buffers. This signal should be connected to +5 V for use with inputs which exceed  
3.3 V. If all inputs are from 3.3 V components, this pin should be connected to 3.3 V.  
V
GROUND pins intended for external connection to a V board plane.  
SS  
SS  
NC  
NO CONNECT pins. Do not make any system connections to these pins.  
20  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 5.  
Pin Description — Interrupt Unit Signals  
NAME  
TYPE  
DESCRIPTION  
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT7:0  
pins can be configured in three modes:  
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs  
can be programmed to be level (low) or edge (falling) sensitive.  
I
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins  
are level sensitive in this mode.  
XINT7:0  
A(E/L)  
Mixed Mode: The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act  
as the five most significant bits of a vectored source. The least significant bits of the  
vectored source are set to 010 internally.  
2
Unused external interrupt pins should be connected to V  
.
CC  
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
NMI is the highest priority interrupt source and is falling edge-triggered. If NMI is  
I
NMI  
A(E)  
unused, it should be connected to V  
.
CC  
Advance Information Datasheet  
21  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.1.2  
80960Jx 132-Lead PGA Pinout  
Figure 3.  
132-Lead Pin Grid Array Bottom View - Pins Facing Up  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
AD25 AD22 AD19 AD18  
AD27 AD26 AD24 AD20  
V
V
V
V
V
V
V
V
CC  
AD13 AD11  
AD10 AD7  
AD6  
AD3  
CC  
CC  
CC  
CC  
CC  
CC  
N
N
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
M
M
AD23 AD21  
AD12  
AD9  
AD17  
AD16 AD15 AD14  
AD8 AD4  
AD5 AD1  
AD0  
AD30 AD29 NC  
L
K
J
L
K
J
V
V
CC  
CC  
BE2  
BE3 AD28  
V
V
V
V
AD31  
BE1  
AD2  
NC  
SS  
CC  
SS  
V
V
V
V
SS  
CC  
CC  
SS  
H
G
F
H
G
F
VCCPLL V  
CLKIN  
V
BE0  
ALE  
SS  
SS  
CC  
SS  
V
V
NC  
V
V
CC  
SS  
SS  
SS  
CC  
BSTAT  
V
V
V
RDYRCV V  
V
CC  
SS  
SS  
SS  
CC  
E
D
E
D
V
RESET  
TDI  
V
V
V
CC  
DEN  
DT/R  
CC  
V
V
V
CC  
CC  
SS  
C
B
A
C
B
A
LOCK/  
ONCE  
HOLDA BLAST A3  
A2  
FAIL  
VCC5  
NC HOLD XINT1 XINT0 TRST STEST NC  
W/R  
D/C WIDTH/ TDO NC  
HLTD0  
V
V
V
V
SS  
XINT6 XINT4 XINT3 TCK  
NC  
SS  
SS  
SS  
ALE  
NC  
NC  
ADS WIDTH/  
HLTD1  
V
V
V
8
V
NMI XINT7 XINT5 XINT2 TMS  
CC  
CC  
CC  
CC  
1
2
3
4
5
6
7
9
10  
11  
12  
13  
14  
22  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 4.  
132-Lead Pin Grid Array Top View - Pins Facing Down  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
P
P
AD6 AD11 AD13  
V
V
V
V
V
V
V
CC  
AD18 AD19 AD22 AD25  
AD20 AD24 AD26 AD27  
CC  
CC  
CC  
CC  
CC  
CC  
N
N
AD3  
AD0  
AD7 AD10  
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
M
M
AD4 AD8 AD9  
AD1 AD5  
AD17 AD21 AD23  
AD12 AD14 AD15 AD16  
NC AD29 AD30  
L
L
V
V
CC  
CC  
AD28 BE3  
BE2  
K
J
K
J
V
AD2  
AD31  
BE1  
V
V
SS  
SS  
CC  
V
V
V
V
NC  
VCCPLL  
NC  
V
V
CC  
SS  
SS  
SS  
CC  
H
G
F
E
D
A80960Jx  
H
G
F
E
D
CLKIN  
BE0  
ALE  
V
V
SS  
SS  
CC  
M
© 19xx  
V
V
V
V
V
SS  
CC  
CC  
i
BSTAT  
V
V
V
V
V
RDYRCV  
RESET  
TDI  
SS  
SS  
CC  
CC  
SS  
SS  
SS  
XXXXXXXX SS  
V
V
CC  
DEN  
CC  
V
DT/R  
V
V
CC  
CC  
SS  
C
B
A
C
B
A
LOCK/  
ONCE  
NC STEST TRST XINT0 XINT1 HOLD NC  
VCC5  
FAIL  
A2  
A3 BLAST HOLDA  
NC  
TCK XINT3 XINT4 XINT6  
V
V
V
V
SS  
NC TDO WIDTH/ D/C  
HLTD0  
W/R  
SS  
SS  
SS  
NC  
NC  
ALE  
TMS XINT2 XINT5 XINT7 NMI  
V
V
V
V
WIDTH/ ADS  
HLTD1  
CC  
CC  
CC  
CC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Advance Information Datasheet  
23  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 6.  
132-Lead PGA Pinout — In Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
A2  
C5  
C4  
AD31  
ADS  
K3  
A1  
TDO  
TMS  
B4  
A14  
C12  
A6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
B9  
D2  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A3  
AD0  
M14  
L13  
K12  
N14  
M13  
L12  
P14  
N13  
M12  
M11  
N12  
P13  
M10  
P12  
M9  
ALE  
G3  
A3  
TRST  
D13  
E2  
AD1  
ALE  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
AD2  
BE0  
H3  
A7  
E13  
F2  
AD3  
BE1  
J3  
A8  
AD4  
BE2  
L1  
A9  
F13  
G2  
AD5  
BE3  
L2  
D1  
AD6  
BLAST  
BSTAT  
CLKIN  
D/C  
C3  
D14  
E1  
G13  
H2  
AD7  
F3  
AD8  
H14  
B2  
E14  
F1  
H13  
J2  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
DEN  
E3  
F14  
G1  
G14  
H1  
J13  
K2  
DT/R  
FAIL  
HOLD  
HOLDA  
LOCK/ONCE  
NC  
D3  
C6  
K13  
N5  
C9  
C2  
J1  
N6  
M8  
C1  
J14  
K1  
N7  
M7  
A4  
N8  
M6  
NC  
A5  
K14  
L14  
P5  
N9  
P4  
NC  
B5  
N10  
N11  
B1  
P3  
NC  
B14  
C8  
N4  
NC  
P6  
W/R  
WIDTH/HLTD0  
WIDTH/HLTD1  
XINT0  
M5  
NC  
C14  
G12  
J12  
M3  
A10  
F12  
E12  
C13  
B13  
D12  
P7  
B3  
P2  
NC  
P8  
A2  
M4  
NC  
P9  
C11  
C10  
A13  
B12  
B11  
A12  
B10  
A11  
N3  
NC  
P10  
P11  
H12  
C7  
XINT1  
P1  
NMI  
XINT2  
N2  
RDYRCV  
RESET  
STEST  
TCK  
VCCPLL  
VCC5  
XINT3  
N1  
XINT4  
L3  
V
V
V
B6  
XINT5  
SS  
SS  
SS  
M2  
B7  
XINT6  
M1  
TDI  
B8  
XINT7  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
24  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 7.  
132-Lead PGA Pinout — In Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
A1  
A2  
ADS  
C6  
C7  
FAIL  
VCC5  
NC  
H1  
H2  
V
V
M10  
M11  
M12  
M13  
M14  
N1  
AD12  
AD9  
CC  
WIDTH/HLTD1  
SS  
A3  
ALE  
NC  
C8  
H3  
BE0  
AD8  
A4  
C9  
HOLD  
XINT1  
XINT0  
TRST  
STEST  
NC  
H12  
H13  
H14  
J1  
VCCPLL  
AD4  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
V
AD0  
SS  
A6  
V
V
V
V
CLKIN  
AD27  
AD26  
AD24  
AD20  
CC  
CC  
CC  
CC  
A7  
V
V
N2  
CC  
SS  
A8  
J2  
N3  
A9  
J3  
BE1  
NC  
N4  
A10  
A11  
A12  
A13  
A14  
B1  
NMI  
XINT7  
XINT5  
XINT2  
TMS  
V
V
J12  
J13  
J14  
K1  
N5  
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
D2  
V
V
V
V
N6  
SS  
CC  
CC  
SS  
D3  
DT/R  
TDI  
N7  
D12  
D13  
D14  
E1  
N8  
V
V
V
V
K2  
N9  
SS  
CC  
CC  
SS  
W/R  
K3  
AD31  
AD2  
N10  
N11  
N12  
N13  
N14  
P1  
B2  
D/C  
K12  
K13  
K14  
L1  
B3  
WIDTH/HLTD0  
TDO  
E2  
V
V
AD10  
AD7  
SS  
CC  
B4  
E3  
DEN  
B5  
NC  
E12  
E13  
E14  
F1  
RESET  
BE2  
BE3  
AD3  
B6  
V
V
V
V
V
V
V
V
L2  
AD25  
AD22  
AD19  
AD18  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
SS  
B7  
L3  
AD28  
AD5  
AD1  
P2  
B8  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P3  
B9  
F2  
P4  
B10  
B11  
B12  
B13  
B14  
C1  
XINT6  
XINT4  
XINT3  
TCK  
F3  
BSTAT  
V
P5  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
F12  
F13  
F14  
G1  
RDYRCV  
AD30  
AD29  
NC  
P6  
V
V
V
V
P7  
SS  
CC  
CC  
SS  
P8  
NC  
AD23  
AD21  
AD17  
AD16  
AD15  
AD14  
P9  
LOCK/ONCE  
HOLDA  
BLAST  
A3  
G2  
P10  
P11  
P12  
P13  
P14  
C2  
G3  
ALE  
NC  
C3  
G12  
G13  
G14  
AD13  
AD11  
AD6  
C4  
V
V
SS  
CC  
C5  
A2  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Advance Information Datasheet  
25  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.1.3  
80960Jx 132-Lead PQFP Pinout  
Figure 5.  
132-Lead PQFP - Top View  
AD9  
TRST  
TCK  
TMS  
HOLD  
XINT0  
XINT1  
XINT2  
1
99  
98  
V
(I/O)  
(I/O)  
2
3
4
5
6
7
CC  
V
97  
96  
95  
94  
93  
SS  
AD10  
AD11  
V
V
V
(I/O)  
(I/O)  
(Core)  
CC  
SS  
CC  
XINT3  
(I/O)  
92  
91  
90  
8
9
10  
V
(Core)  
V
V
SS  
CC  
AD12  
(I/O)  
SS  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AD13  
AD14  
AD15  
XINT4  
XINT5  
XINT6  
XINT7  
NMI  
V
(I/O)  
(I/O)  
CC  
V
SS  
®
AD16  
AD17  
AD18  
AD19  
V
V
(Core)  
(Core)  
CC  
SS  
i960  
NC  
NC  
V
V
(I/O)  
(I/O)  
VCC5  
NC  
NC  
FAIL  
ALE  
TDO  
CC  
SS  
AD20  
AD21  
AD22  
AD23  
NG80960Jx  
77  
76  
75  
74  
73  
72  
71  
23  
24  
25  
26  
27  
28  
29  
XXXXXXXX SS  
V
(Core)  
V
V
(I/O)  
CC  
CC  
M
© 19xx  
V
(Core)  
(I/O)  
SS  
SS  
i
V
V
(I/O)  
(I/O)  
WIDTH/HLTD1  
CC  
SS  
V
V
(Core)  
(Core)  
CC  
AD24  
70  
69  
68  
67  
30  
31  
32  
33  
SS  
WIDTH/HLTD0  
A2  
AD25  
AD26  
NC  
A3  
26  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 8.  
132-Lead PQFP Pinout — In Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
(Core)  
Pin  
Signal  
(Core)  
SS  
Pin  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
60  
61  
ALE  
ADS  
24  
36  
33  
32  
55  
54  
53  
52  
28  
31  
35  
37  
42  
43  
34  
132  
50  
4
V
V
V
V
V
V
V
47  
59  
V
124  
10  
27  
40  
48  
56  
64  
71  
79  
85  
93  
97  
106  
112  
131  
18  
19  
21  
22  
67  
121  
122  
126  
127  
14  
13  
12  
11  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
V
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
62  
A3  
74  
V
V
V
V
V
V
V
V
V
V
V
V
V
63  
A2  
92  
66  
BE3  
113  
115  
123  
9
68  
BE2  
69  
BE1  
70  
BE0  
V
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
75  
WIDTH/HLTD1  
WIDTH/HLTD0  
D/C  
V
V
V
V
V
V
V
V
V
V
V
V
V
26  
76  
41  
77  
49  
78  
W/R  
57  
81  
DT/R  
65  
82  
DEN  
72  
83  
BLAST  
RDYRCV  
LOCK/ONCE  
HOLD  
HOLDA  
BSTAT  
CLKIN  
RESET  
STEST  
FAIL  
80  
84  
86  
NC  
87  
94  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
88  
98  
89  
44  
51  
117  
125  
128  
23  
2
105  
111  
129  
119  
20  
90  
95  
96  
VCCPLL  
VCC5  
99  
AD8  
100  
101  
102  
103  
104  
107  
108  
109  
110  
45  
V
(CLK)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
118  
17  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD7  
TCK  
V
V
V
V
V
V
V
V
V
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
NMI  
AD6  
TDI  
130  
25  
1
30  
AD5  
TDO  
38  
AD4  
TRST  
46  
AD3  
TMS  
3
58  
8
AD2  
V
(CLK)  
(Core)  
(Core)  
(Core)  
120  
16  
29  
39  
73  
7
CC  
CC  
CC  
CC  
AD1  
V
V
V
91  
6
AD0  
114  
116  
5
ALE  
15  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Advance Information Datasheet  
27  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 9.  
132-Lead PQFP Pinout — In Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
1
TRST  
TCK  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
BLAST  
D/C  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
NC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
AD8  
AD7  
AD6  
AD5  
AD4  
2
AD26  
AD25  
AD24  
3
TMS  
ADS  
W/R  
4
HOLD  
XINT0  
XINT1  
XINT2  
XINT3  
5
V
V
(Core)  
V
(I/O)  
(I/O)  
SS  
CC  
SS  
CC  
6
(Core)  
V
V
(I/O)  
CC  
SS  
7
V
(I/O)  
(I/O)  
V
(Core)  
(Core)  
V
(I/O)  
SS  
CC  
SS  
CC  
8
V
V
AD3  
9
V
(I/O)  
DT/R  
DEN  
AD23  
AD2  
AD1  
AD0  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
V
(I/O)  
AD22  
AD21  
AD20  
SS  
XINT4  
XINT5  
XINT6  
XINT7  
NMI  
HOLDA  
ALE  
V
V
(I/O)  
CC  
SS  
V
V
(Core)  
(Core)  
V
(I/O)  
(I/O)  
SS  
CC  
SS  
CC  
V
(I/O)  
V
(Core)  
(Core)  
(Core)  
(Core)  
CC  
SS  
CC  
SS  
V
(I/O)  
(I/O)  
AD19  
AD18  
AD17  
AD16  
V
V
V
SS  
CC  
V
V
(Core)  
V
CC  
SS  
(Core)  
LOCK/ONCE  
BSTAT  
BE0  
NC  
NC  
CLKIN  
V (CLK)  
SS  
V
(I/O)  
SS  
CC  
VCC5  
NC  
BE1  
V
(I/O)  
VCCPLL  
BE2  
AD15  
AD14  
AD13  
AD12  
V
CC (CLK)  
NC  
BE3  
NC  
FAIL  
ALE  
TDO  
V
(I/O)  
(I/O)  
NC  
SS  
CC  
V
V
(Core)  
(Core)  
CC  
SS  
V
(Core)  
(Core)  
V
(Core)  
V
SS  
CC  
SS  
CC  
V
(I/O)  
V
V
(Core)  
RESET  
NC  
CC  
V
(I/O)  
AD31  
V
(I/O)  
(I/O)  
SS  
SS  
CC  
WIDTH/HLTD1  
AD30  
AD29  
AD28  
V
NC  
V
V
(Core)  
(Core)  
AD11  
AD10  
STEST  
CC  
SS  
V
(I/O)  
CC  
WIDTH/HLTD0  
V
(I/O)  
V
(I/O)  
TDI  
SS  
CC  
SS  
CC  
A2  
A3  
V
(I/O)  
V
(I/O)  
V
(I/O)  
SS  
AD27  
AD9  
RDYRCV  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
28  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.1.4  
80960Jx 196-Ball MPBGA Pinout  
Figure 6.  
196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
A
B
C
NC  
AD28  
V
NC  
V
V
AD22  
V
AD18  
V
AD15 AD13  
V
CC  
AD8  
NC  
CC  
CC  
CC  
CC  
CC  
V
AD30 AD27 AD29  
AD23 AD20 AD17 AD14 AD12 AD10 AD9 AD7  
AD4  
CC  
AD26 AD25  
V
V
CC  
AD24 AD21 AD19 AD16  
AD11 AD6  
AD5 AD0  
AD2  
AD1  
NC  
NC  
AD31  
NC  
NC  
NC  
CC  
D
E
F
G
H
J
D
E
F
G
H
J
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
AD3  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
NC  
NC  
NC  
NC  
NC  
V
V
V
SS  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
VCCPLL  
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC CLKIN NC  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC  
V
CC  
NC  
BE1  
BE2  
BE0  
BE3  
BSTAT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
TDI  
NC  
NC  
NC RESET  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
K
L
K
L
ALE  
LOCK/  
ONCE  
V
STEST  
V
V
V
V
V
CC  
CC  
SS  
SS  
HOLDA DEN  
V
V
V
V
NC RDYRCV  
CC  
SS  
SS  
SS  
SS  
SS  
M
N
M
N
DT/R  
W/R  
NC  
V
NC  
NC  
NC  
NC  
A3  
A2  
V
V
ALE VCC5  
V
XINT2 XINT0 TMS TRST TCK  
CC  
CC  
CC  
CC  
D/C  
TDO  
NC XINT4 NC XINT6 XINT1 XINT3 HOLD  
P
P
BLAST  
V
WIDTH0  
ADS  
WIDTH1 FAIL  
NC  
NC  
NMI XINT7 XINT5  
V
NC  
14  
CC  
CC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Advance Information Datasheet  
29  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 7.  
196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
A
B
C
NC  
AD8  
V
AD13 AD15  
V
AD18  
V
AD22  
V
NC  
V
CC  
AD28  
NC  
CC  
CC  
CC  
CC  
AD4  
AD7 AD9 AD10 AD12 AD14 AD17 AD20 AD23  
V
AD29 AD27 AD30  
V
CC  
CC  
V
V
AD25 AD26  
AD2  
AD1  
AD6 AD11  
AD0 AD5  
AD16 AD19 AD21 AD24  
NC  
NC  
AD31  
NC  
NC  
NC  
CC  
CC  
D
E
F
G
H
J
D
E
F
G
H
J
AD3  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
NC  
CC  
CC  
CC  
CC  
SS  
CC  
VCCPLL  
V
V
V
V
V
V
V
V
V
V
NC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
NC CLKIN NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
BE3  
BE2  
BE1  
NC  
V
NC  
CC  
V
V
BSTAT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
BE0  
V
SS  
SS  
RESET NC  
TDI  
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
K
L
K
L
ALE  
LOCK/  
ONCE  
STEST  
V
CC  
V
V
V
V
V
SS  
SS  
SS  
CC  
RDYRCV NC  
V
V
V
V
CC  
DEN HOLDA  
SS  
SS  
SS  
SS  
M
N
M
N
DT/R  
W/R  
NC  
TCK TRST TMS XINT0 XINT2  
HOLD XINT3 XINT1 XINT6 NC  
V
VCC5 ALE  
V
V
A3  
A2  
NC  
NC  
NC  
NC  
V
CC  
CC  
CC  
XINT4 NC  
TDO  
D/C  
CC  
P
P
WIDTH0  
V
BLAST  
NC  
V
XINT5 XINT7 NMI  
NC  
NC  
FAIL WIDTH1  
ADS  
CC  
CC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
30  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 10.  
196-Ball MPBGA Pinout — In Signal Order (Sheet 1 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
A2  
N5  
M5  
D13  
D14  
C14  
D11  
B14  
D12  
C13  
B13  
A13  
B12  
B11  
C12  
B10  
A11  
B9  
BE0  
BE1  
BE2  
BE3  
BLAST  
BSTAT  
CLKIN  
DEN  
D/C  
J2  
H1  
NC  
NC  
M4  
N3  
V
V
V
V
V
V
V
V
V
V
J1  
K3  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A3  
AD0  
H2  
NC  
N4  
K13  
L3  
AD1  
H3  
NC  
N8  
AD2  
P3  
NC  
N10  
P1  
M2  
M6  
M9  
N6  
P4  
AD3  
J3  
NC  
AD4  
G13  
L2  
NC  
P8  
AD5  
NC  
P9  
AD6  
N2  
NC  
P14  
P10  
L14  
J14  
K14  
M14  
J12  
N7  
AD7  
DT/R  
FAIL  
HOLD  
HOLDA  
LOCK/ONCE  
NC  
M1  
P7  
NMI  
P13  
F14  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E4  
AD8  
RDYRCV  
RESET  
STEST  
TCK  
TDI  
VCCPLL  
AD9  
N14  
L1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
ADS  
ALE  
K2  
A1  
NC  
A4  
TDO  
TMS  
TRST  
VCC5  
NC  
A14  
C1  
M12  
M13  
M8  
A10  
C9  
NC  
NC  
C3  
B8  
NC  
D1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A3  
E5  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A8  
NC  
D2  
A5  
E6  
C8  
NC  
D3  
A7  
E7  
B7  
NC  
E1  
A9  
E8  
C7  
NC  
E2  
A12  
B1  
E9  
A6  
NC  
F1  
E10  
E11  
F4  
B6  
NC  
F2  
B5  
C6  
NC  
G1  
G2  
G12  
G14  
H12  
H14  
J13  
K12  
L12  
L13  
M3  
C10  
C11  
E3  
C5  
NC  
F5  
C4  
NC  
F6  
B3  
NC  
E12  
E13  
E14  
F3  
F7  
A2  
NC  
F8  
B4  
NC  
F9  
B2  
NC  
F10  
F11  
G4  
G5  
G6  
C2  
NC  
F12  
F13  
G3  
P2  
NC  
K1  
NC  
ALE  
M7  
NC  
H13  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Advance Information Datasheet  
31  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 10.  
196-Ball MPBGA Pinout — In Signal Order (Sheet 2 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G7  
G8  
G9  
G10  
G11  
H4  
V
V
V
V
V
V
V
V
V
V
V
V
H11  
J4  
V
V
V
V
V
V
V
V
V
V
V
V
K7  
K8  
K9  
K10  
K11  
L5  
V
SS  
L11  
P5  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
WIDTH0  
WIDTH1  
W/R  
J5  
P6  
J6  
N1  
J7  
XINT0  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
XINT6  
XINT7  
M11  
N12  
M10  
N13  
N9  
J8  
H5  
J9  
L6  
H6  
J10  
J11  
K4  
K5  
K6  
L7  
H7  
L8  
H8  
L9  
P12  
N11  
P11  
H9  
L10  
L4  
H10  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
32  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 11.  
196-Ball MPBGA Pinout — In Pin Order (Sheet 1 of 2)  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
A1  
A2  
NC  
C11  
C12  
C13  
C14  
D1  
V
F7  
F8  
V
V
V
V
V
V
V
J3  
J4  
BSTAT  
CC  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
AD28  
AD11  
AD6  
AD2  
NC  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A3  
V
F9  
J5  
CC  
A4  
NC  
F10  
F11  
F12  
F13  
F14  
G1  
J6  
A5  
V
J7  
CC  
A6  
AD22  
D2  
NC  
J8  
A7  
V
D3  
NC  
J9  
CC  
A8  
AD18  
D4  
V
V
V
V
V
V
V
VCCPLL  
NC  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A9  
V
D5  
CC  
A10  
A11  
A12  
A13  
A14  
B1  
AD15  
AD13  
D6  
G2  
NC  
TDI  
NC  
D7  
G3  
V
V
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
D8  
G4  
RESET  
ALE  
CC  
AD8  
NC  
D9  
G5  
D10  
D11  
D12  
D13  
D14  
E1  
G6  
LOCK/ONCE  
V
AD3  
AD5  
AD0  
AD1  
NC  
G7  
V
V
V
V
V
V
V
V
V
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
B2  
AD30  
AD27  
AD29  
G8  
B3  
G9  
B4  
G10  
G11  
G12  
G13  
G14  
H1  
B5  
V
CC  
B6  
AD23  
AD20  
AD17  
AD14  
AD12  
AD10  
AD9  
E2  
NC  
NC  
CLKIN  
NC  
B7  
E3  
V
V
V
V
V
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
CC  
B8  
E4  
B9  
E5  
BE1  
BE2  
BE3  
B10  
B11  
B12  
B13  
B14  
C1  
E6  
H2  
NC  
E7  
H3  
V
CC  
E8  
H4  
V
V
V
V
V
V
V
V
STEST  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD7  
E9  
H5  
HOLDA  
DEN  
AD4  
E10  
E11  
E12  
E13  
E14  
F1  
H6  
L2  
NC  
H7  
L3  
V
V
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
C2  
AD31  
NC  
H8  
L4  
C3  
H9  
L5  
C4  
AD26  
AD25  
AD24  
AD21  
AD19  
AD16  
H10  
H11  
H12  
H13  
H14  
J1  
L6  
C5  
NC  
NC  
L7  
C6  
F2  
NC  
L8  
C7  
F3  
V
V
L9  
CC  
SS  
SS  
SS  
CC  
C8  
F4  
V
V
V
NC  
L10  
L11  
L12  
C9  
F5  
V
CC  
C10  
V
F6  
J2  
BE0  
NC  
CC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Advance Information Datasheet  
33  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 11.  
196-Ball MPBGA Pinout — In Pin Order (Sheet 2 of 2)  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
NC  
M10  
M11  
M12  
M13  
M14  
N1  
XINT2  
XINT0  
TMS  
TRST  
TCK  
W/R  
D/C  
N7  
N8  
TDO  
NC  
P4  
P5  
V
CC  
RDYRCV  
DT/R  
WIDTH0  
WIDTH1  
FAIL  
N9  
XINT4  
NC  
P6  
V
N10  
N11  
N12  
N13  
N14  
P1  
P7  
CC  
NC  
NC  
A3  
XINT6  
XINT1  
XINT3  
HOLD  
NC  
P8  
NC  
P9  
NC  
N2  
P10  
P11  
P12  
P13  
P14  
NMI  
V
N3  
NC  
XINT7  
XINT5  
CC  
ALE  
N4  
NC  
VCC5  
N5  
A2  
P2  
ADS  
V
CC  
V
N6  
V
P3  
BLAST  
NC  
CC  
CC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
3.2  
Package Thermal Specifications  
The 80960Jx is specified for operation when TC (case temperature) is within the range of 0°C to  
100°C for PGA, MPBGA and PQFP packages. An extended temperature device is also available in  
a PQFP package with TC -40°C to 100°C. Case temperature may be measured in any environment  
to determine whether the 80960Jx is within its specified operating range. The case temperature  
should be measured at the center of the top surface, opposite the pins.  
θCA is the thermal resistance from case to ambient. Use the following equation to calculate TA, the  
maximum ambient temperature to conform to a particular case temperature:  
T = T - P (θ )  
CA  
A
C
Junction temperature (TJ) is commonly used in reliability calculations. TJ can be calculated from  
θJC (thermal resistance from junction to case) using the following equation:  
T = T + P (θ )  
JC  
J
C
Similarly, if TA is known, the corresponding case temperature (TC) can be calculated as follows:  
T
= T + P (θ  
)
CA  
C
A
Compute P by multiplying ICC from Table 22 and VCC. Values for θJC and θCA are given in  
Table 12 for the PGA package, Table 13 for the MPBGA package, and Table 14 for the PQFP  
package. For high speed operation, the processor’s θJA may be significantly reduced by adding a  
heatsink and/or by increasing airflow.  
Tables 15, 16, and 17 show the maximum ambient temperature (TA) permitted without exceeding  
TC for the PGA, MPBGA, and PQFP packages. The values are based on typical ICC and VCC of  
+3.3 V, with a TCASE of +100°C.  
34  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 12.  
132-Lead PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.08)  
θ
θ
θ
θ
(Junction-to-Case)  
0.7  
25  
15  
16  
0.7  
19  
9
0.7  
14  
6
0.7  
12  
5
0.7  
11  
4
0.7  
10  
4
JC  
(Case-to-Ambient) (No Heatsink)  
CA  
CA (Case-to-Ambient) (Omnidirectional Heatsink)  
CA (Case-to-Ambient) (Unidirectional Heatsink)  
8
6
5
4
4
θ
θ
CA  
JA  
θ
JC  
θ
J-PIN  
θ
J-CAP  
NOTES:  
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.  
2. θ = θ + θ  
JA  
JC  
CA  
3. θ  
4. θ  
5. θ  
6. θ  
7. θ  
8. θ  
= 5.6°C/W (approximate) (no heatsink)  
J-CAP  
J-PIN  
J-PIN  
J-CAP  
J-PIN  
J-PIN  
= 6.4°C/W (inner pins) (approximate) (no heatsink)  
= 6.2°C/W (outer pins) (approximate) (no heatsink)  
= 3°C/W (approximate) (with heatsink)  
= 3.3°C/W (inner pins) (approximate) (with heatsink)  
= 3.3°C/W (outer pins) (approximate) (with heatsink)  
Table 13.  
196-Ball MPBGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.08)  
θ
θ
θ
θ
(Junction-to-Case)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
JC  
(Case-to-Ambient) (No Heatsink)  
CA  
CA (Case-to-Ambient) (Omnidirectional Heatsink)  
CA (Case-to-Ambient) (Unidirectional Heatsink)  
TBD  
Advance Information Datasheet  
35  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 14.  
132-Lead PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ
θ
(Junction-to-Case)  
4.1  
23  
4.3  
19  
4.3  
18  
4.3  
16  
4.3  
14  
4.7  
11  
4.9  
9
JC  
(Case-to-Ambient -No Heatsink)  
CA  
θ
CA  
θ
θ
JA  
θ
JC  
JB  
θ
JL  
NOTES:  
1. This table applies to a PQFP device soldered directly into board.  
2. θ = θ + θ  
JA  
JC  
CA  
3. θ = 13°C/W (approx.)  
JL  
4. θ = 13.5°C/W (approx.)  
JB  
Table 15.  
Maximum TA at Various Airflows in °C (80960JT)  
Airflow-ft/min (m/sec)  
400 600  
(1.01) (2.03) (3.04) (4.06) (5.07)  
0
200  
800  
1000  
f
(MHz)  
CLKIN  
(0)  
PQFP  
Package  
T without Heatsink  
33  
25  
62  
71  
73  
79  
76  
82  
81  
86  
85  
88  
88  
91  
A
T without Heatsink  
33  
25  
58  
68  
68  
75  
76  
82  
80  
84  
81  
86  
83  
87  
A
PGA  
T with Omnidirectional  
33  
25  
75  
81  
85  
88  
90  
92  
92  
94  
93  
95  
93  
95  
A
1
Package Heatsink  
T with Unidirectional  
Heatsink  
33  
25  
73  
79  
86  
90  
90  
92  
92  
94  
93  
95  
93  
95  
A
2
MPBGA T without Heatsink  
Package  
33  
25  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
NOTES:  
1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).  
2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
36  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 16.  
Maximum TA at Various Airflows in °C (80960JD)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
T without Heatsink  
33  
25  
20  
61  
70  
75  
79  
73  
79  
82  
86  
76  
82  
85  
87  
81  
86  
88  
90  
85  
88  
90  
92  
86  
90  
91  
93  
A
PQFP  
Package  
16.67  
T without Heatsink  
33  
25  
20  
58  
68  
73  
78  
68  
75  
79  
83  
76  
82  
85  
87  
80  
84  
87  
89  
81  
86  
88  
90  
83  
87  
89  
91  
A
16.67  
T with Omnidirectional  
Heatsink  
33  
25  
20  
75  
81  
84  
87  
85  
88  
90  
92  
90  
92  
93  
95  
92  
94  
95  
96  
93  
95  
96  
96  
93  
95  
96  
96  
A
1
PGA  
Package  
16.67  
T with Unidirectional  
Heatsink  
33  
25  
20  
73  
79  
82  
86  
86  
90  
91  
93  
90  
92  
93  
95  
92  
94  
95  
96  
93  
95  
96  
96  
93  
96  
96  
96  
A
2
16.67  
T without Heatsink  
25  
20  
16.67  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
MPBGA  
Package  
NOTES:  
1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).  
2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
Table 17.  
Maximum TA at Various Airflows in °C (80960JA/JF)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
For NG80960JA/JF  
33  
25  
16  
79  
84  
89  
86  
89  
92  
87  
90  
93  
90  
92  
95  
92  
94  
96  
93  
94  
96  
T without Heatsink  
A
PQFP  
Package  
For TG80960JA-25  
25  
84  
89  
90  
92  
94  
94  
T without Heatsink  
A
T without Heatsink  
33  
25  
16  
78  
83  
88  
83  
87  
91  
87  
90  
93  
89  
92  
94  
90  
92  
95  
91  
93  
95  
A
T with Omnidirectional  
Heatsink  
33  
25  
16  
87  
90  
93  
92  
94  
96  
95  
96  
97  
96  
97  
98  
96  
97  
98  
96  
97  
98  
A
PGA  
Package  
1
T with Unidirectional  
Heatsink  
33  
25  
16  
86  
89  
92  
93  
94  
96  
95  
96  
97  
96  
97  
98  
96  
97  
98  
96  
97  
98  
A
2
T without Heatsink  
33  
25  
16  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
MPBGA  
Package  
NOTES:  
1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing).  
2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
Advance Information Datasheet  
37  
80960JA/JF/JD/JT 3.3 V Microprocessor  
3.3  
Thermal Management Accessories  
The following is a list of suggested sources for 80960Jx thermal solutions. This is neither an  
endorsement or a warranty of the performance of any of the listed products and/or companies.  
3.3.1  
Heatsinks  
1. Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(972) 243-4321  
2. Wakefield Engineering  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
3. Aavid Thermal Technologies, Inc.  
One Kool Path  
Laconia, NH 03247-0400  
(603) 528-3400  
38  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
Note: This document contains information on products in the sampling and initial production phases of  
development. It is valid for the devices indicated in the revision history. The specifications within  
this data sheet are subject to change without notice. Verify with your local Intel sales office that  
you have the latest data sheet before finalizing a design.  
Table 18.  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
o
o
Storage Temperature  
–65 C to +150 C  
o
o
Case Temperature Under Bias  
–65 C to +110 C  
–0.5 V to + 4.6 V  
–0.5 V to + 6.5 V  
Supply Voltage wrt. V  
SS  
Voltage on VCC5 wrt. VSS  
Voltage on Other Pins wrt. V  
–0.5 V to V + 0.5 V  
CC  
SS  
4.2  
Operating Conditions  
Table 19 indicates the operating conditions for the 80960Jx.  
Table 19.  
80960Jx Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
V
Supply Voltage  
3.15  
3.15  
3.45  
5.5  
V
V
CC  
VCC5  
Input Protection Bias  
Input Clock Frequency  
(1)  
80960JT-100  
80960JT-75  
15  
15  
12  
12  
12  
12  
12  
12  
12  
33.3  
25  
33.3  
25  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
f
CLKIN  
20  
MHz  
°C  
16.67  
33.3  
25  
16  
Operating Case Temperature  
PGA, MPBGA, and PQFP  
T
0
-40  
100  
100  
C
Extended temp PQFP (TG80960JA-25)  
NOTE:  
1. See Section 4.4, “VCC5 Pin Requirements (VDIFF)” on page 40.  
Advance Information Datasheet  
39  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.3  
Connection Recommendations  
For clean on-chip power distribution, VCC and VSS pins separately feed the device’s functional units.  
Power and ground connections must be made to all 80960Jx power and ground pins. On the circuit board,  
every VCC pin should connect to a power plane and every VSS pin should connect to a ground plane. Place  
liberal decoupling capacitance near the 80960Jx, since the processor can cause transient power surges.  
Pay special attention to the Test Reset (TRST) pin. It is essential that the JTAG Boundary Scan Test Access  
Port (TAP) controller initializes to a known state whether it will be used or not. If the JTAG Boundary Scan  
function will be used, connect a pulldown resistor between the TRST pin and VSS. If the JTAG Boundary  
Scan function will not be used (even for board-level testing), connect the TRST pin to VSS.  
Do not connect the TDI, TDO, and TCK pins if the TAP Controller will not be used.  
Note: Pins identified as NC must not be connected in the system.  
4.4  
VCC5 Pin Requirements (VDIFF)  
In 3.3 V only systems where the 80960Jx input pins are driven from 3.3 V logic, connect the VCC5  
pin directly to the 3.3 V VCC plane.  
In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V  
components, VCC5 must be connected to 5 V. This allows proper 5 V tolerant buffer operation,  
and prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and  
its 3.3 V VCC pins must not exceed 2.25 V. If this requirement is not met, current flow through the  
pin may exceed the value at which the processor is damaged. Instances when the voltage can  
exceed 2.25 V is during power up or power down, where one source reaches its level faster than the  
other, briefly causing an excess voltage differential. Another instance is during steady-state  
operation, where the differential voltage of the regulator (provided a regulator is used) cannot be  
maintained within 2.25 V. Two methods are possible to prevent this from happening:  
Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V, or,  
As shown in Figure 8, place a 100 resistor in series with the VCC5 pin to limit the current  
through VCC5.  
Figure 8.  
VCC5 Current-Limiting Resistor  
+5 V (±0.25 V)  
VCC5 Pin  
100 Ω  
(±5%, 0.5 W)  
If the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple and  
reliable method for limiting current. The resistor can also prevent damage in the case of a power  
failure, where the 5 V supply remains on and the 3.3 V supply goes to zero.  
Table 20.  
VDIFF Parameters  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
VCC5 input should not exceed V by more than 2.25 V  
during power-up and power-down, or during  
steady-state operation.  
CC  
VCC5-V  
Difference  
CC  
VDIFF  
2.25  
V
40  
Advance Information Datasheet  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.5  
VCCPLL Pin Requirements  
To reduce clock skew on the i960 80960Jx processor, the VCCPLL pin for the Phase Lock Loop  
(PLL) circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise  
induced clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor  
must be low ESR solid tantalum; the 0.01 µF capacitor must be of the type X7R and the node  
connecting VCCPLL must be as short as possible.  
Figure 9.  
VCCPLL Lowpass Filter  
100  
10  
(80960JA/JF/JD)  
(80960JT)  
VCCPLL  
(On 80960Jx)  
+
V
CC  
4.7 µF  
0.01 µF  
(Board Plane)  
F_CA078A  
Advance Information Datasheet  
41  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.6  
DC Specifications  
Table 21.  
80960Jx DC Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
Input High Voltage  
-0.3  
2.0  
0.8  
V
V
IL  
V
V
VCC5 + 0.3  
IH  
0.4  
0.2  
V
V
I
= 3 mA  
OL  
Output Low Voltage  
OL  
I
= 100 µA  
= -1 mA  
OL  
2.4  
I
OH  
V
V
Output High Voltage  
V
V
OH  
V
- 0.2  
I
= -200 µA  
(1,2)  
CC  
OH  
Output Ground Bounce  
<0.8  
OLP  
Input Capacitance  
PGA  
PQFP  
15  
15  
15  
C
C
C
pF  
pF  
pF  
f
f
f
= f  
= f  
= f  
(2)  
(2)  
(2)  
IN  
MIN  
MIN  
MIN  
CLKIN  
CLKIN  
CLKIN  
MPBGA  
I/O or Output Capacitance  
PGA  
PQFP  
MPBGA  
15  
15  
15  
OUT  
CLK  
CLKIN Capacitance  
PGA  
PQFP  
15  
15  
15  
MPBGA  
NOTES:  
1. Typical is measured with V = 3.3 V and temperature = 25 °C.  
CC  
2. Not tested.  
Table 22.  
80960Jx ICC Characteristics (Sheet 1 of 2)  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
0 V V  
CC  
Input Leakage Current for each pin  
except TCK, TDI, TRST and TMS  
I
± 1  
µA  
LI1  
IN  
Input Leakage Current for TCK, TDI,  
TRST and TMS  
I
I
-140  
20  
-250  
± 1  
30  
µA  
µA  
kΩ  
V
= 0.45V (1)  
IN  
LI2  
LO  
Output Leakage Current  
0.4 V  
V  
OUT CC  
Internal Pull-UP Resistance for  
ONCE, TMS, TDI and TRST  
R
pu  
80960JT-100  
80960JT-75  
600  
450  
580  
447  
367  
310  
320  
260  
194  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
(2,3)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
I
Active  
CC  
mA  
(Power Supply)  
42  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 22.  
80960Jx ICC Characteristics (Sheet 2 of 2)  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
80960JT-100  
80960JT-75  
500  
380  
510  
390  
320  
260  
271  
215  
152  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
(2,4)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
I
Active  
CC  
mA  
(Thermal)  
Reset mode  
80960JT-100  
80960JT-75  
450  
400  
475  
425  
345  
300  
250  
200  
150  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
I
Test  
CC  
Halt mode  
mA  
(Power modes)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
80960JT-100  
80960JT-75  
50  
40  
50  
40  
34  
34  
31  
26  
21  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
(5)  
ONCE mode  
10  
80960JT-100  
80960JT-75  
(6)  
(6)  
(6)  
(6)  
(6)  
(6)  
(6)  
(6)  
(6)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
I
Current on the  
CC5  
200  
µA  
VCC5 Pin  
NOTES:  
1. These pins have internal pullup devices. Typical leakage current is not tested.  
2. Measured with device operating and outputs loaded to the test condition in Figure 10 “AC Test Load” on  
page 47.  
3. I Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using  
CC  
one of the worst case instruction mixes with V = 3.45 V. This parameter is characterized but not tested.  
CC  
4. I Active (Thermal) value is provided for your system’s thermal management. Typical I is measured with  
CC  
CC  
V
=3.3 V and temperature = 25°C. This parameter is characterized but not tested.  
CC  
5. I Test (Power modes) refers to the I values that are tested when the 80960JD is in Reset mode, Halt  
CC  
CC  
mode or ONCE mode with V = 3.45 V.  
CC  
6. I  
is tested at V = 3.3 V, VCC5 = 5.25 V.  
CC5  
CC  
Advance Information Datasheet  
43  
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.7  
AC Specifications  
The 80960Jx AC timings are based upon device characterization.  
Table 23.  
80960Jx AC Characteristics (Sheet 1 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
INPUT CLOCK TIMINGS  
CLKIN Frequency  
80960JT-100  
80960JT-75  
15  
15  
12  
12  
12  
12  
12  
12  
12  
33.3  
25  
33.3  
25  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
T
MHz  
F
20  
16.67  
33.3  
25  
16  
CLKIN Period  
80960JT-100  
80960JT-75  
30  
40  
30  
40  
50  
60  
30  
40  
62.5  
66.7  
66.7  
83.3  
83.3  
83.3  
83.3  
83.3  
83.3  
83.3  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA/JF-16  
T
ns  
C
T
T
CLKIN Period Stability  
± 250  
ps  
ns  
(1, 2)  
CS  
Measured at 1.5 V  
(1)  
CLKIN High Time  
8
8
CH  
Measured at 1.5 V  
(1)  
T
CLKIN Low Time  
ns  
CL  
T
T
CLKIN Rise Time  
CLKIN Fall Time  
4
4
ns  
ns  
0.8 V to 2.0 V (1)  
2.0 V to 0.8 V (1)  
CR  
CF  
SYNCHRONOUS OUTPUT TIMINGS  
Output Valid Delay, Except ALE/ALE  
Inactive and DT/R for 3.3 V input signals  
2.5  
2.5  
13.5  
16.5  
T
ns  
(3)  
OV1  
Same as above, but for 5.5 V input signals  
Output Valid Delay, DT/R  
0.5T + 7 0.5T + 9  
80960JT  
80960JD  
80960JA/JF  
C
C
T
T
ns  
ns  
OV2  
0.5T + 7 0.5T + 9  
C
C
0.5T + 4 0.5T + 18  
C
C
Output Float Delay  
2.5  
13.5  
(4)  
OF  
NOTE:  
See Table 24 on page 47 for note definitions for this table.  
44  
Advance Information Datasheet  
 
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 23.  
80960Jx AC Characteristics (Sheet 2 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
ns  
Notes  
(5)  
SYNCHRONOUS INPUT TIMINGS  
Input Setup to CLKIN — AD31:0, NMI,  
XINT7:0  
T
80960JT  
80960JD  
80960JA/JF  
6
6
9
IS1  
Input Hold from CLKIN — AD31:0, NMI,  
XINT7:0  
T
ns  
(5)  
80960JT  
80960JD  
80960JA/JF  
1.5  
1.5  
1.0  
IH1  
Input Setup to CLKIN — RDYRCV and  
HOLD  
T
ns  
(6)  
80960JT  
80960JD  
6.5  
6.5  
IS2  
80960JA/JF  
10.0  
Input Hold from CLKIN — RDYRCV and  
HOLD  
T
T
1
ns  
ns  
(6)  
(7)  
IH2  
IS3  
Input Setup to CLKIN — RESET  
80960JT  
80960JD  
80960JA/JF  
7
7
8
Input Hold from CLKIN — RESET  
80960JT  
80960JD  
80960JA/JF  
2
2
1
T
T
T
ns  
ns  
ns  
(7)  
(8)  
(8)  
IH3  
IS4  
IH4  
Input Setup to RESET — ONCE, STEST  
80960JT  
80960JD  
80960JA/JF  
7
7
8
Input Hold from RESET — ONCE, STEST  
80960JT  
80960JD  
80960JA/JF  
2
2
1
RELATIVE OUTPUT TIMINGS  
Address Valid to ALE/ALE Inactive  
T
ns  
ns  
(9)  
For 3.3 V Data Input Signals  
For 5.0 V Data Input Signals  
0.5T - 5  
C
LX  
0.5T - 8  
C
T
T
T
ALE/ALE Width  
LXL  
LXA  
DXD  
Address Hold from ALE/ALE Inactive  
DT/R Valid to DEN Active  
0.5T - 7  
Equal Loading (9)  
C
BOUNDARY SCAN TEST SIGNAL TIMINGS  
T
T
TCK Frequency  
TCK High Time  
0.5T  
MHz  
ns  
BSF  
F
Measured at 1.5 V  
(1)  
15  
15  
BSCH  
Measured at 1.5 V  
(1)  
T
TCK Low Time  
ns  
BSCL  
T
T
TCK Rise Time  
TCK Fall Time  
5
5
ns  
ns  
0.8 V to 2.0 V (1)  
2.0 V to 0.8 V (1)  
BSCR  
BSCF  
NOTE:  
See Table 24 on page 47 for note definitions for this table.  
Advance Information Datasheet  
45  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 23.  
80960Jx AC Characteristics (Sheet 3 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
T
T
T
T
T
T
Input Setup to TCK — TDI, TMS  
Input Hold from TCK — TDI, TMS  
TDO Valid Delay  
4
6
3
3
3
3
ns  
ns  
ns  
ns  
ns  
ns  
BSIS1  
BSIH1  
BSOV1  
BSOF1  
BSOV2  
BSOF2  
30  
30  
30  
30  
(1,10)  
(1,10)  
(1,10)  
(1,10)  
TDO Float Delay  
All Outputs (Non-Test) Valid Delay  
All Outputs (Non-Test) Float Delay  
Input Setup to TCK — All Inputs  
(Non-Test)  
T
4
6
ns  
ns  
BSIS2  
BSIH2  
Input Hold from TCK — All Inputs  
(Non-Test)  
T
NOTE:  
See Table 24 on page 47 for note definitions for this table.  
46  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 24.  
Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44)  
NOTES:  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
OL  
designed to be no longer than the valid delay.  
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI  
and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition  
at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a  
minimum of two CLKIN periods to guarantee recognition.  
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a  
particular clock edge.  
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10.Relative to falling edge of TCK.  
11.Worst-case T condition occurs on I/O pins when pins transition from a floating high input to driving a  
OV  
low output state. The Address/Data Bus pins encounter this condition between the last access of a read,  
and the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at  
50 pF loads.  
4.7.1  
AC Test Conditions and Derating Curves  
The AC Specifications in Section 4.7, “AC Specifications” are tested with the 50 pF load indicated  
in Figure 10. Figure 11 shows how timings and output rise and fall times vary with load  
capacitance.  
Figure 10.  
AC Test Load  
Output Pin  
CL = 50 pF for all signals  
CL  
Advance Information Datasheet  
47  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 11.  
Output Delay or Hold vs. Load Capacitance  
AC Timings vs. Load Capacitance  
nom + 7  
nom + 6  
nom + 5  
nom + 4  
nom + 3  
nom + 2  
nom + 1  
nom + 0  
Rising  
Falling  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Rise and Fall times are identical.  
Figure 12.  
T
LX vs. AD Bus Load Capacitance  
AC Timings vs. Load Capacitance  
nom + 7  
nom + 6  
nom + 5  
nom + 4  
nom + 3  
nom + 2  
nom + 1  
nom + 0  
Rising  
Falling  
50  
100  
150  
Rise and Fall times are identical.  
AD Bus Capacitive Load (pF)  
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the  
AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE  
and ALE.  
48  
Advance Information Datasheet  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 13.  
80960JA/JF ICC Active (Power Supply) vs. Frequency  
Icc Active (Power Supply) vs Frequency  
350  
300  
250  
200  
150  
100  
50  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency MHz  
Figure 14.  
80960JA/JF ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
300  
250  
200  
150  
100  
50  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency MHz  
Advance Information Datasheet  
49  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 15.  
80960JD ICC Active (Power Supply) vs. Frequency  
Icc Active (Power Supply) vs. Frequency  
600  
500  
400  
300  
200  
100  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency (MHz)  
Figure 16.  
80960JD ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
600  
500  
400  
300  
200  
100  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Fre que ncy (M Hz)  
50  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 17.  
80960JT ICC Active (Power Supply) vs. Frequency  
Icc Active (Power Supply) vs. Frequency  
600  
500  
400  
300  
200  
100  
0
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency (MHz)  
Figure 18.  
80960JT ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
1000  
800  
600  
400  
200  
0
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency (MHz)  
Advance Information Datasheet  
51  
80960JA/JF/JD/JT 3.3 V Microprocessor  
4.7.2  
AC Timing Waveforms  
Figure 19.  
CLKIN Waveform  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
Figure 20.  
TOV1 Output Delay Waveform  
1.5V  
OV1  
1.5V  
CLKIN  
T
AD31:0,  
ALE (active),  
ALE (active),  
ADS, A3:2,  
1.5V  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DEN,  
BLAST, LOCK,  
HOLDA, BSTAT, FAIL  
52  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 21.  
TOF Output Float Waveform  
1.5V  
1.5V  
CLKIN  
T
OF  
AD31:0,  
ALE, ALE  
ADS, A3:2,  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DT/R,  
DEN, BLAST, LOCK  
Figure 22.  
TIS1 and TIH1 Input Setup and Hold Waveform  
1.5V  
1.5V  
IH1  
1.5V  
CLKIN  
T
T
IS1  
AD31:0  
NMI  
Valid  
1.5V  
XINT7:0  
Figure 23.  
TIS2 and TIH2 Input Setup and Hold Waveform  
1.5V  
1.5V  
1.5V  
CLKIN  
T
IH2  
T
IS2  
HOLD,  
1.5V  
Valid  
1.5V  
RDYRCV  
Advance Information Datasheet  
53  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 24.  
TIS3 and TIH3 Input Setup and Hold Waveform  
1.5V  
1.5V  
CLKIN  
T
T
IS3  
IH3  
RESET  
Figure 25.  
TIS4 and TIH4 Input Setup and Hold Waveform  
RESET  
T
IH4  
T
IS4  
ONCE,  
STEST  
Valid  
54  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 26.  
TLX, TLXL and TLXA Relative Timings Waveform  
Ta  
Tw/Td  
1.5V  
1.5V  
1.5V  
CLKIN  
TLXL  
ALE  
ALE  
1.5V  
Valid  
1.5V  
1.5V  
TLX  
TLXA  
1.5V  
AD31:0  
Valid  
Figure 27.  
DT/R and DEN Timings Waveform  
Ta  
Tw/Td  
CLKIN  
1.5V  
1.5V  
1.5V  
TOV2  
Valid  
DT/R  
TDXD  
DEN  
TOV1  
Advance Information Datasheet  
55  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 28.  
TCK Waveform  
T
T
BSCR  
BSCF  
2.0V  
1.5V  
0.8V  
T
BSCH  
T
BSCL  
Figure 29.  
TBSIS1 and TBSIH1 Input Setup and Hold Waveforms  
1.5V  
1.5V  
1.5V  
TCK  
T
T
BSIH1  
BSIS1  
TMS  
TDI  
1.5V  
Valid  
1.5V  
Figure 30.  
TBSOV1 and TBSOF1 Output Delay and Output Float Waveform  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOV1  
BSOF1  
Valid  
1.5V  
TDO  
56  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 31.  
TBSOV2 and TBSOF2 Output Delay and Output Float Waveform  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOF2  
BSOV2  
Non-Test  
Outputs  
Valid  
1.5V  
Figure 32.  
TBSIS2 and TBSIH2 Input Setup and Hold Waveform  
TCK  
1.5V  
1.5V  
1.5V  
TBSIH2  
TBSIS2  
Non-Test  
Inputs  
1.5V  
Valid  
1.5V  
Advance Information Datasheet  
57  
80960JA/JF/JD/JT 3.3 V Microprocessor  
5.0  
Bus Functional Waveforms  
Figure 33 through Figure 38 illustrate typical 80960Jx bus transactions. Figure 39 depicts the bus  
arbitration sequence. Figure 40 illustrates the processor reset sequence from the time power is  
applied to the device. Figure 41 illustrates the processor reset sequence when the processor is in  
operation. Figure 42 illustrates the processor ONCE sequence from the time power is applied to the  
device. Figure 44 and Figure 45 also show accesses on 32-bit buses. Table 27 through Table 29  
summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to  
data alignment.  
Figure 33.  
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
Ta  
Td  
Tr  
Ti  
Ti  
Ta  
Td  
Tr  
Ti  
Ti  
CLKIN  
D
ADDR  
ADDR  
DATA Out  
Invalid  
AD31:0  
In  
ALE  
ADS  
A3:2  
BE3:0  
WIDTH1:0  
10  
10  
D/C  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF030A  
58  
Advance Information Datasheet  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 34.  
Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD TD  
TR  
CLKIN  
DATA  
Out  
D
In  
DATA  
Out  
D
In  
DATA DATA  
ADDR  
ADDR  
AD31:0  
Out  
Out  
ALE  
ADS  
00 or 10  
01 or 11  
00  
01  
10  
11  
A3:2  
BE3:0  
1 0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Advance Information Datasheet  
59  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 35.  
Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus  
TA  
TW  
TW  
TD  
TW  
TD  
TW  
TD  
TW  
TD  
TR  
CLKIN  
AD31:0  
ALE  
DATA  
Out  
DATA  
Out  
DATA  
Out  
DATA  
Out  
ADDR  
ADS  
A3:2  
0 0  
0 1  
1 0  
1 1  
BE3:0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF032A  
60  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 36.  
Burst Read and Write Transactions Without Wait States, 8-Bit Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD  
TD  
TR  
CLKIN  
DATA  
Out  
D
In  
D
In  
DATA DATA  
DATA  
ADDR  
ADDR  
AD31:0  
Out Out Out  
ALE  
ADS  
A3:2  
00,01,10 or 11  
00,01,10 or 11  
01 or  
BE1/A1  
BE0/A0  
00  
01  
10  
11  
00 or 10  
11  
WIDTH1:0  
D/C  
00  
00  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF033A  
Advance Information Datasheet  
61  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 37.  
Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on  
Read, 16-Bit Bus  
TW TD  
TD  
TR  
TR  
TA  
TW  
TD TD  
TR  
TA  
CLKIN  
AD31:0  
ALE  
D
D
DATA  
DATA  
Out  
ADDR  
ADDR  
In  
In  
Out  
ADS  
00,01,10, or 11  
00,01,10, or 11  
A3:2  
0
0
1
BE1/A1  
1
BE3/BHE  
BE0/BLE  
01  
01  
WIDTH1:0  
D/C  
W/R  
BLAST  
DT/R  
DEN  
F_JF034A  
RDYRCV  
62  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 38.  
Double Word Read Bus Request, Misaligned One Byte From  
Quad Word Boundary, 32-Bit Bus, Little Endian  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
CLKIN  
AD31:0  
ALE  
D
In  
D
In  
D
In  
D
In  
A
A
A
A
ADS  
A3:2  
00  
00  
01  
10  
BE3:0  
WIDTH1:0  
D/C  
0 0 0 0  
1 1 1 0  
0 0 1 1  
1 1 0 1  
1 0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Advance Information Datasheet  
63  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 39.  
HOLD/HOLDA Waveform For Bus Arbitration  
TI or TR  
TH  
TH  
TI or TA  
CLKIN  
Outputs:  
AD31:0,  
ALE, ALE,  
ADS, A3:2,  
BE3:0,  
Valid  
Valid  
WIDTH/HLTD1:0,  
D/C, W/R,  
DT/R, DEN,  
BLAST, LOCK  
HOLD  
HOLDA  
(Note)  
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the  
same edge in which it recognizes HOLD if the last state was Ti or the last Tr of a bus transaction. Similarly,  
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.  
64  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 40.  
Cold Reset Waveform  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ ~  
~ ~  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
Advance Information Datasheet  
65  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 41.  
Warm Reset Waveform  
~
~
~
~
~
~
~
~
~
~ ~  
~ ~  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ ~ ~ ~ ~ ~  
~ ~ ~ ~ ~ ~  
~
~
~
~
~
~
~
~
~
~
66  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 42.  
Entering the ONCE State  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ ~  
~ ~  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ ~  
~ ~  
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
Advance Information Datasheet  
67  
80960JA/JF/JD/JT 3.3 V Microprocessor  
5.1  
Basic Bus States  
The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold  
(Th). During system operation, the processor continuously enters and exits different bus states.  
The bus occupies the idle (Ti) state when no address/data transactions are in progress and when RESET is  
asserted. When the processor needs to initiate a bus access, it enters the Ta state to transmit the address.  
Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data  
lines. Assertion of the RDYRCV input signal indicates completion of each transfer. When data is  
not ready, the processor can wait as long as necessary for the memory or I/O device to respond.  
After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case of a  
burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next data word.  
The processor asserts the BLAST signal during the last Tw/Td states of an access. Once all data words  
transfer in a burst access (up to four), the bus enters the Tr state to allow devices on the bus to recover.  
The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state  
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the  
bus enters the Ta state to transmit the new address.  
Figure 43.  
Bus States with Arbitration  
(READY AND BURST)  
OR NOT READY  
Tw/Td  
RECOVERED AND  
READY AND NO BURST  
Ta  
REQUEST  
PENDING AND (NO  
HOLD OR LOCKED)  
REQUEST PENDING  
AND (NO HOLD OR  
LOCKED)  
NOT  
RECOVERED  
Tr  
RECOVERED AND  
NO REQUEST AND  
(NO HOLD OR  
LOCKED)  
REQUEST  
PENDING AND  
NO HOLD  
NO REQUEST  
AND (NO HOLD  
OR LOCKED)  
Ti  
ONCE & RESET  
DEASSERTION  
RECOVERED AND  
HOLD AND NOT  
LOCKED  
NO REQUEST  
AND NO HOLD  
Th  
RESET  
To  
HOLD AND  
NOT LOCKED  
HOLD  
Ti — IDLE STATE  
READY — RDYRCV ASSERTED  
Ta — ADDRESS STATE  
NOT READY — RDYRCV NOT ASSERTED  
BURST — BLAST NOT ASSERTED  
NO BURST — BLAST ASSERTED  
Tw / Td — WAIT/DATA STATE  
Tr — RECOVERY STATE  
Th — HOLD STATE  
RECOVERED — RDYRCV NOT ASSERTED  
NOT RECOVERED — RDYRCV ASSERTED  
REQUEST PENDING — NEW TRANSACTION  
NOREQUEST — NO NEW TRANSACTION  
HOLD — HOLD REQUEST ASSERTED  
NO HOLD — HOLD REQUEST NOT ASSERTED  
To — ONCE STATE  
LOCKED — ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS  
NOT LOCKED — NO ATOMIC EXECUTION IN PROGRESS  
RESET — RESET ASSERTED  
ONCE — ONCE ASSERTED  
68  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
5.2  
Boundary-Scan Register  
The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and HIGHZ pins.  
Table 25 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that  
contain “CTL” select the direction of bidirectional pins or HIGHZ output pins. If a “1” is loaded  
into the control cell, the associated pin(s) are HIGHZ or selected as input.  
Table 25.  
Boundary-Scan Register Bit Order  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Bit  
Signal  
Bit  
Signal  
Bit  
Signal  
0
1
2
RDYRCV (TDI)  
HOLD  
I
I
I
24  
25  
26  
DEN  
HOLDA  
ALE  
O
O
O
48  
49  
50  
AD17  
AD16  
AD15  
I/O  
I/O  
I/O  
XINT0  
LOCK/ONCE  
cell  
1
3
XINT1  
I
27  
Enable cell  
51  
AD14  
I/O  
4
5
XINT2  
XINT3  
I
I
28  
29  
LOCK/ONCE  
BSTAT  
I/O  
O
52  
53  
AD13  
AD12  
I/O  
I/O  
Enable  
cell  
6
XINT4  
I
30  
BE0  
O
54  
AD cells  
1
7
XINT5  
XINT6  
I
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
BE1  
BE2  
O
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
AD11  
AD10  
AD9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
8
I
O
9
XINT7  
I
BE3  
O
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NMI  
I
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AD8  
FAIL  
I
AD7  
ALE  
O
AD6  
WIDTH/HLTD1  
WIDTH/HLTD0  
A2  
O
AD5  
O
AD4  
O
AD3  
A3  
O
Enable cell  
Enable cell  
O
AD2  
1
1
CONTROL1  
CONTROL2  
BLAST  
D/C  
AD1  
AD0  
CLKIN  
RESET  
O
I
STEST  
(TDO)  
21  
ADS  
O
45  
AD20  
I/O  
69  
I
22  
W/R  
O
O
46  
47  
AD19  
AD18  
I/O  
I/O  
23  
DT/R  
NOTE:  
1. Enable cells are active low.  
Advance Information Datasheet  
69  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 26.  
Natural Boundaries for Load and Store Accesses  
Data Width  
Natural Boundary (Bytes)  
Byte  
1
2
Short Word  
Word  
4
Double Word  
Triple Word  
Quad Word  
8
16  
16  
Table 27.  
Table 28.  
Summary of Byte Load and Store Accesses  
Address Offset from  
Accesses on 8-Bit Bus  
Natural Boundary  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
Bus (WIDTH1:0=01)  
(in Bytes)  
+0 (aligned)  
byte access  
byte access  
byte access  
Summary of Short Word Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Bus (WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
+0 (aligned)  
+1  
burst of 2 bytes  
2 byte accesses  
short-word access  
2 byte accesses  
short-word access  
2 byte accesses  
70  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 29.  
Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)  
Address Offset  
from Natural  
Boundary in Bytes  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit Bus  
(WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
case n=1:  
burst of 2 short words  
case n=2:  
burst of 4 short words  
+0 (aligned)  
(n =1, 2, 3, 4)  
n burst(s) of 4 bytes  
burst of n word(s)  
case n=3:  
burst of 4 short words  
burst of 2 short words  
case n=4:  
2 bursts of 4 short words  
byte access  
byte access  
+1 (n =1, 2, 3, 4)  
+5 (n = 2, 3, 4)  
+9 (n = 3, 4)  
byte access  
short-word access  
short-word access  
burst of 2 bytes  
n-1 burst(s) of 4 bytes  
byte access  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
+13 (n = 3, 4)  
byte access  
byte access  
+2 (n =1, 2, 3, 4)  
+6 (n = 2, 3, 4)  
+10 (n = 3, 4)  
+14 (n = 3, 4)  
short-word access  
short-word access  
burst of 2 bytes  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
n-1 burst(s) of 4 bytes  
burst of 2 bytes  
short-word access  
short-word access  
byte access  
byte access  
+3 (n =1, 2, 3, 4)  
+7 (n = 2, 3, 4)  
+11 (n = 3, 4)  
+15 (n = 3, 4)  
byte access  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
n-1 burst(s) of 4 bytes  
burst of 2 bytes  
byte access  
short-word access  
byte access  
short-word access  
byte access  
+4 (n = 2, 3, 4)  
+8 (n = 3, 4)  
n burst(s) of 4 bytes  
n burst(s) of 2 short words  
n word access(es)  
+12 (n = 3, 4)  
Advance Information Datasheet  
71  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 44.  
Summary of Aligned and Unaligned Accesses (32-Bit Bus)  
0
0
4
8
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
1
2
Short Access (Aligned)  
Byte, Byte Accesses  
Short-Word  
Load/Store  
Short Access (Aligned)  
Byte, Byte Accesses  
Word Access (Aligned)  
Byte, Short, Byte, Accesses  
Short, Short Accesses  
Word  
Load/Store  
Byte, Short, Byte Accesses  
One Double-Word Burst (Aligned)  
Byte, Short, Word, Byte Accesses  
Short, Word, Short Accesses  
Double-Word  
Load/Store  
Byte, Word, Short, Byte Accesses  
Word, Word Accesses  
One Double-Word  
Burst (Aligned)  
72  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Figure 45.  
Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)  
0
4
8
12  
16  
20  
24  
Byte Offset  
Word Offset  
0
1
2
3
4
5
6
One Three-Word  
Burst (Aligned)  
Byte, Short, Word,  
Word, Byte Accesses  
Short, Word, Word,  
Short Accesses  
Triple-Word  
Load/Store  
Byte, Word, Word,  
Short, Byte Accesses  
Word, Word,  
Word Accesses  
Word, Word,  
Word Accesses  
Word,  
Word,  
Word  
Accesses  
One Four-Word  
Burst (Aligned)  
Byte, Short, Word, Word,  
Word, Byte Accesses  
Short, Word, Word, Word,  
Short Accesses  
Quad-Word  
Load/Store  
Byte, Word, Word, Word,  
Short, Byte Accesses  
Word, Word, Word,  
Word Accesses  
Word,  
Word,  
Word,  
Word,  
Accesses  
Advance Information Datasheet  
73  
80960JA/JF/JD/JT 3.3 V Microprocessor  
6.0  
Device Identification  
80960Jx processors may be identified electrically, according to device type and stepping (see  
Figure 46, and Table 31 through Table 36). Table 30 identifies the device type and stepping for all  
5V, 80960Jx processors. Figure 46, and Table 31 through Table 36 identify all 3.3V-5V-tolerant  
80960Jx processors. The device ID was enhanced to differentiate between 3.3V and 5V supply  
voltages, and between non-clock-doubled and clock-doubled cores when stepping from the A2  
stepping to the C0 stepping. The 32-bit identifier is accessible in three ways:  
Upon reset, the identifier is placed into the g0 register.  
The identifier may be accessed from supervisor mode at any time by reading the DEVICEID  
register at address FF008710H.  
The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the  
IDCODE instruction.  
The device and stepping letter is also printed on the top side of the product package.  
Table 30.  
80960Jx Device Type and Stepping Reference  
Device and  
Stepping  
Version  
Number  
Complete ID  
(Hex)  
Part Number  
Manufacturer  
X
80960JT A0, A1  
80960JD C0  
80960JF C0  
80960JA C0  
0000  
0011  
0011  
0011  
0000 1000 0010 1011  
0000 1000 0011 0000  
0000 1000 0010 0000  
0000 1000 0010 0001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
1
1
1
1
0082B013  
30830013  
30820013  
30821013  
Figure 46.  
80960JT Device Identification Register  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
0
1
0
1
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
74  
Advance Information Datasheet  
 
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 31.  
Fields of 80960JT Device ID  
Field  
Version  
Value  
Definition  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
Designates type of product.  
See Table 32  
V
0 = 3.3 V device  
CC  
Product Type  
000 100  
(Indicates i960 CPU)  
Generation Type 0001 = J-series  
Indicates the generation (or series) the product belongs  
to.  
Model  
D DPCC  
Indicates member within a series and specific model  
information.  
D = Clock Multiplier  
(01) Clock-Tripled  
(P) Product Derivative  
(0) Jx  
C = Cache Size  
(11) 16K I-cache, 4K D-cache  
Manufacturer ID 000 0000 1001  
(Indicates Intel)  
Manufacturer ID assigned by IEEE.  
Table 32.  
80960JT Device ID Model Types  
Device  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
‘1’  
CC  
80960JT A0, A1  
0000  
0
000100  
0001  
01011  
00000001001  
1
Figure 47.  
80960JD Device Identification Register  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
Advance Information Datasheet  
75  
 
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 33.  
Fields of 80960JD Device ID  
Field  
Version  
Value  
Definition  
Indicates major stepping changes.  
See Table 30  
0 = 3.3 V device  
1 = 5V device  
V
Indicates that a device is 3.3 V.  
CC  
00 0100  
(Indicates i960 CPU)  
Product Type  
Designates type of product.  
Generation Type 0001 = J-series  
Indicates the generation (or series) the product belongs to.  
D000C  
D = Clock Doubled  
(0) Not Clock-Doubled  
(1) Clock Doubled  
Model  
Indicates member within a series and specific model information.  
C = Cache Size  
(0) 4K I-cache, 2K  
D-cache  
(1) 2K I-cache, 1K  
D-cache  
000 0000 1001  
Manufacturer ID  
Manufacturer ID assigned by IEEE.  
(Indicates Intel)  
Table 34.  
80960JD Device ID Model Types  
Device  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
‘1’  
CC  
80960JD C0  
0011  
0
000100  
0001  
10000  
00000001001  
1
Figure 48.  
80960JA/JF Device Identification Register  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
76  
Advance Information Datasheet  
80960JA/JF/JD/JT 3.3 V Microprocessor  
Table 35.  
Fields of 80960JA/JF Device ID  
Field  
Version  
Value  
Definition  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
See Table 36  
V
0 = 3.3 V device  
1 = 5V device  
CC  
Product Type  
00 0100  
Designates type of product.  
(Indicates i960 CPU)  
Generation Type 0001 = J-series  
Indicates the generation (or series) to which the  
product belongs.  
Model  
0000C  
Indicates member within a series and specific  
model information.  
C = Cache Size  
0 = 4K I-cache, 2K D-cache  
1 = 2K I-cache, 1K D-cache  
Manufacturer ID 000 0000 1001  
(Indicates Intel)  
Manufacturer ID assigned by IEEE.  
Table 36.  
80960JA/JF Device ID Model Types  
Device  
Version  
0011  
V
Product  
000100  
000100  
Gen.  
0001  
0001  
Model  
00001  
00000  
Manufacturer ID  
00000001001  
00000001001  
‘1’  
1
CC  
80960JA C0  
80960JF C0  
0
0011  
0
1
7.0  
Revision History  
This data sheet supersedes revisions 273109-001, 272971-002, and 276146-001. Table 37 indicates  
significant changes since the previous revisions.  
Table 37.  
Data Sheet Revision History  
Figure 1 “80960Jx Microprocessor Package  
Added MPBGA package diagram  
Options” on page 7  
Section 3.1.4, “80960Jx 196-Ball MPBGA  
Added new Figures 6 and 7, Tables 10, 11 and 13  
Pinout” on page 29  
Figure 12 “T vs. AD Bus Load Capacitance” on  
page 48  
LX  
Added with following note  
Throughout document  
Merged 80960JA/JF/JD/JT 3.3 volt Processor data sheets  
Advance Information Datasheet  
77  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY