GD80960JS-25 [INTEL]

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PBGA196, PLASTIC, BGA-196;
GD80960JS-25
型号: GD80960JS-25
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PBGA196, PLASTIC, BGA-196

时钟 外围集成电路
文件: 总61页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
80960JD  
EMBEDDED 32-BIT MICROPROCESSOR  
Pin/Code Compatible with all 80960Jx  
High Bandwidth Burst Bus  
Processors  
— 32-Bit Multiplexed Address/Data  
— Programmable Memory Configuration  
— Selectable 8-, 16-, 32-Bit Bus Widths  
— Supports Unaligned Accesses  
— Big or Little Endian Byte Ordering  
High-Performance Embedded Architecture  
— One Instruction/Clock Execution  
— Core Clock Rate is 2x the Bus Clock  
— Load/Store Programming Model  
— Sixteen 32-Bit Global Registers  
— Sixteen 32-Bit Local Registers (8 sets)  
— Nine Addressing Modes  
New Instructions  
— Conditional Add, Subtract and Select  
— Processor Management  
— User/Supervisor Protection Model  
High-Speed Interrupt Controller  
— 31 Programmable Priorities  
Two-Way Set Associative Instruction Cache  
— 80960JD - 4 Kbyte  
— Eight Maskable Pins plus NMI  
— Up to 240 Vectors in Expanded Mode  
— Programmable Cache Locking  
Mechanism  
Two On-Chip Timers  
Direct Mapped Data Cache  
— 80960JD - 2 Kbyte  
— Independent 32-Bit Counting  
— Clock Prescaling by 1, 2, 4 or 8  
— lnternal Interrupt Sources  
— Write Through Operation  
Halt Mode for Low Power  
On-Chip Stack Frame Cache  
— Seven Register Sets Can Be Saved  
— Automatic Allocation on Call/Return  
— 0-7 Frames Reserved for High-Priority  
Interrupts  
IEEE 1149.1 (JTAG) Boundary Scan  
Compatibility  
Packages  
— 132-Lead Pin Grid Array (PGA)  
— 132-Lead Plastic Quad Flat Pack (PQFP)  
On-Chip Data RAM  
— 1 Kbyte Critical Variable Storage  
— Single-Cycle Access  
132  
PIN 1  
99  
A80960JD  
®
XXXXXXXXA2  
i960  
M
©
19xx  
i
NG80960JD  
XXXXXXXXA2  
M
©
19xx  
i
33  
66  
Figure 1. 80960JD Microprocessor  
Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of any  
patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Information  
contained herein supersedes previously published specifications on these devices from Intel.  
© INTEL CORPORATION, 1995  
September 1995  
Order Number: 272596-002  
80960JD  
80960JD  
EMBEDDED 32-BIT MICROPROCESSOR  
1.0 PURPOSE ..................................................................................................................................................1  
2.0 80960JD OVERVIEW ................................................................................................................................1  
2.1 80960 Processor Core ........................................................................................................................2  
2.2 Burst Bus ............................................................................................................................................2  
2.3 Timer Unit ...........................................................................................................................................3  
2.4 Priority Interrupt Controller ..................................................................................................................3  
2.5 Instruction Set Summary ....................................................................................................................3  
2.6 Faults and Debugging .........................................................................................................................3  
2.7 Low Power Operation .........................................................................................................................4  
2.8 Test Features ......................................................................................................................................4  
2.9 Memory-Mapped Control Registers ....................................................................................................4  
2.10 Data Types and Memory Addressing Modes ....................................................................................4  
3.0 PACKAGE INFORMATION .......................................................................................................................6  
3.1 Pin Descriptions ..................................................................................................................................6  
3.1.1 Functional Pin Definitions .........................................................................................................6  
3.1.2 80960Jx 132-Lead PGA Pinout ..............................................................................................13  
3.1.3 80960Jx PQFP Pinout ............................................................................................................17  
3.2 Package Thermal Specifications ......................................................................................................20  
3.3 Thermal Management Accessories ..................................................................................................22  
4.0 ELECTRICAL SPECIFICATIONS ...........................................................................................................23  
4.1 Absolute Maximum Ratings ..............................................................................................................23  
4.2 Operating Conditions ........................................................................................................................23  
4.3 Connection Recommendations .........................................................................................................24  
4.4 DC Specifications .............................................................................................................................24  
4.5 AC Specifications ..............................................................................................................................26  
4.5.1 AC Test Conditions and Derating Curves ..............................................................................33  
4.5.2 AC Timing Waveforms ...........................................................................................................34  
5.0 BUS FUNCTIONAL WAVEFORMS .........................................................................................................42  
6.0 DEVICE IDENTIFICATION ......................................................................................................................56  
7.0 REVISION HISTORY ...............................................................................................................................56  
ii  
PRELIMINARY  
80960JD  
FIGURES  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
80960JD Microprocessor ............................................................................................................ i  
80960JD Block Diagram ............................................................................................................ 2  
132-Lead Pin Grid Array Bottom View - Pins Facing Up ......................................................... 13  
132-Lead Pin Grid Array Top View - Pins Facing Down .......................................................... 14  
132-Lead PQFP - Top View ..................................................................................................... 17  
50 MHz Maximum Allowable Ambient Temperature ................................................................ 21  
40 MHz Maximum Allowable Ambient Temperature ................................................................ 22  
AC Test Load ........................................................................................................................... 33  
Output Delay or Hold vs. Load Capacitance ............................................................................ 33  
Rise and Fall Time Derating .................................................................................................... 34  
CLKIN Waveform ..................................................................................................................... 34  
Output Delay Waveform for TOV1 ............................................................................................ 35  
Output Float Waveform for TOF ............................................................................................... 35  
Input Setup and Hold Waveform for TIS1 and TIH1 .................................................................. 36  
Input Setup and Hold Waveform for TIS2 and TIH2 .................................................................. 36  
Input Setup and Hold Waveform for TIS3 and TIH3 .................................................................. 37  
Input Setup and Hold Waveform for TIS4 and TIH4 .................................................................. 37  
Relative Timings Waveform for TLXL and TLXA ........................................................................ 38  
DT/R and DEN Timings Waveform .......................................................................................... 38  
TCK Waveform ........................................................................................................................ 39  
Input Setup and Hold Waveforms for TBSIS1 and TBSIH1 ......................................................... 39  
Output Delay and Output Float Waveform for TBSOV1 AND TBSOF1 ................................... 40  
Output Delay and Output Float Waveform for TBSOV2 and TBSOF2 .................................... 40  
Input Setup and Hold Waveform for TBSIS2 and TBSIH2 ...........................................................................41  
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus .............................. 42  
Burst Read and Write Transactions Without Wait States, 32-Bit Bus ...................................... 43  
Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus ............................................... 44  
Burst Read and Write Transactions Without Wait States, 8-Bit Bus ........................................ 45  
Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus .................................................................................. 46  
Figure 30.  
Bus Transactions Generated by Double Word Read Bus Request,  
Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian .......................... 47  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
HOLD/HOLDA Waveform For Bus Arbitration ......................................................................... 48  
Cold Reset Waveform .............................................................................................................. 49  
Warm Reset Waveform ........................................................................................................... 50  
Entering the ONCE State ......................................................................................................... 51  
Summary of Aligned and Unaligned Accesses (32-Bit Bus) .................................................... 54  
Summary of Aligned and Unaligned Accesses (32-Bit Bus) .................................................... 55  
PRELIMINARY  
iii  
80960JD  
TABLES  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
80960Jx Instruction Set ................................................................................................................5  
Pin Description Nomenclature ......................................................................................................6  
Pin Description — External Bus Signals ......................................................................................7  
Pin Description — Processor Control Signals, Test Signals and Power ....................................10  
Pin Description — Interrupt Unit Signals ....................................................................................12  
132-Lead PGA Pinout — In Signal Order ...................................................................................15  
132-Lead PGA Pinout — In Pin Order .......................................................................................16  
132-Lead PQFP Pinout — In Signal Order ................................................................................18  
132-Lead PQFP Pinout — In Pin Order .....................................................................................19  
132-Lead PGA Package Thermal Characteristics ......................................................................20  
132-Lead PQFP Package Thermal Characteristics ...................................................................21  
80960JD Operating Conditions ..................................................................................................23  
80960JD DC Characteristics ......................................................................................................24  
80960JD ICC Characteristics .....................................................................................................25  
80960JD AC Characteristics (50 MHz) ......................................................................................26  
Note Definitions for Table 15, 80960JD AC Characteristics (50 MHz) .......................................28  
80960JD AC Characteristics (40 MHz) ......................................................................................28  
80960JD AC Characteristics (33 MHz) ......................................................................................31  
Natural Boundaries for Load and Store Accesses .....................................................................52  
Summary of Byte Load and Store Accesses ..............................................................................52  
Summary of Short Word Load and Store Accesses ...................................................................52  
Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) ..................................................53  
80960JD Die and Stepping Reference .......................................................................................56  
Data Sheet Version -001 to -002 Revision History .....................................................................56  
iv  
PRELIMINARY  
80960JD  
ration registers enable the processor to operate with  
all combinations of bus width and data object  
alignment. The processor supports a homogeneous  
byte ordering model.  
1.0 PURPOSE  
This document contains advance information for the  
80960JD microprocessor, including electrical  
characteristics and package pinout information.  
Detailed functional descriptions  
— other than  
This processor integrates two important peripherals:  
a timer unit and an interrupt controller. These and  
other hardware resources are programmed through  
memory-mapped control registers, an extension to  
the familiar 80960 architecture.  
parametric performance — are published in the  
i960® Jx Microprocessor User’s Guide (272483).  
Throughout this data sheet, references to “80960Jx”  
indicate features which apply to all of the following:  
The timer unit (TU) offers two independent 32-bit  
timers for use as real-time system clocks and  
general-purpose system timing. These operate in  
either single-shot or auto-reload mode and can  
generate interrupts.  
• 80960JA — 5V, 2 Kbyte instruction cache, 1 Kbyte  
data cache  
• 80960JF — 5V, 4 Kbyte instruction cache, 2 Kbyte  
data cache  
• 80960JD — 5V, 4 Kbyte instruction cache, 2 Kbyte  
data cache and clock doubling  
The interrupt controller unit (ICU) provides a flexible  
means for requesting interrupts. The ICU provides  
full programmability of up to 240 interrupt sources  
into 31 priority levels. The ICU takes advantage of a  
cached priority table and optional routine caching to  
minimize interrupt latency. Clock doubling reduces  
interrupt latency by 40% compared to the  
80960JA/JF. Local registers may be dedicated to  
high-priority interrupts to further reduce latency.  
Acting independently from the core, the ICU  
compares the priorities of posted interrupts with the  
current process priority, off-loading this task from the  
core. The ICU also supports the integrated timer  
interrupts.  
• 80L960JA — 3.3 V version of the 80960JA  
• 80L960JF — 3.3 V version of the 80960JF  
2.0 80960JD OVERVIEW  
The 80960JD offers high performance to cost-  
sensitive 32-bit embedded applications. The  
80960JD is object code compatible with the 80960  
Core Architecture and is capable of sustained  
execution at the rate of one instruction per clock.  
This processor’s features include generous  
instruction cache, data cache and data RAM. It also  
boasts a fast interrupt mechanism, dual program-  
mable timer units and new instructions.  
The 80960JD features a Halt mode designed to  
support applications where low power consumption  
is critical. The halt instruction shuts down instruction  
execution, resulting in a power savings of up to 90  
percent.  
The 80960JD’s clock doubler operates the processor  
core at twice the bus clock rate to improve execution  
performance without increasing the complexity of  
board designs.  
The 80960JD’s testability features, including ONCE  
(On-Circuit Emulation) mode and Boundary Scan  
(JTAG), provide a powerful environment for design  
debug and fault diagnosis.  
Memory subsystems for cost-sensitive embedded  
applications often impose substantial wait state  
penalties. The 80960JD integrates considerable  
storage resources on-chip to decouple CPU  
execution from the external bus.  
The Solutions960® program features a wide variety  
of development tools which support the i960  
processor family. Many of these tools are developed  
by partner companies; some are developed by Intel,  
such as profile-driven optimizing compilers. For  
more information on these products, contact your  
local Intel representative.  
The 80960JD rapidly allocates and deallocates local  
register sets during context switches. The processor  
needs to flush a register set to the stack only when it  
saves more than seven sets to its local register  
cache.  
A 32-bit multiplexed burst bus provides a high-speed  
interface to system memory and I/O.  
A full  
complement of control signals simplifies the  
connection of the 80960JD to external components.  
The user programs physical and logical memory  
attributes through memory-mapped control registers  
(MMRs) — an extension not found on the i960 Kx,  
Sx or Cx processors. Physical and logical configu-  
PRELIMINARY  
1
80960JD  
Control  
21  
Physical Region  
Configuration  
32-bit buses  
address / data  
CLKIN  
PLL, Clocks,  
Power Mgmt  
Bus  
Control Unit  
4 KByte Instruction Cache  
Two-Way Set Associative  
Address  
Data Bu  
Bus Request  
Queues  
TAP  
5
Boundary Scan  
Controller  
32  
Instruction Sequencer  
Two 32-Bit  
Timers  
Constants  
Control  
Interrup  
Port  
Programmable  
Interrupt Controller  
9
8-Set  
Local Register Cache  
Execution  
and  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
Address  
Generation  
128  
Unit  
1 Kbyte  
32-bit Address  
32-bit Data  
Global / Local  
Register File  
effective  
address  
Data RAM  
SRC1 SRC2 DEST  
2 Kbyte Direct  
Mapped Data  
Cache  
3 Independent 32-Bit SRC1, SRC2, and DEST Buses  
Figure 2. 80960JD Block Diagram  
• 128-bit register bus speeds local register caching  
2.1 80960 Processor Core  
• 4 Kbyte two-way set associative, integrated  
instruction cache  
The 80960Jx family is a scalar implementation of the  
80960 Core Architecture. Intel designed this  
processor core as a very high performance device  
that is also cost-effective. Factors that contribute to  
the core’s performance include:  
• 2 Kbyte direct-mapped, integrated data cache  
• 1 Kbyte integrated data RAM delivers zero wait  
state program data  
• Core operates at twice the bus speed (80960JD  
only)  
2.2 Burst Bus  
• Single-clock execution of most instructions  
• Independent Multiply/Divide Unit  
A 32-bit high-performance bus controller interfaces  
the 80960JD to external memory and peripherals.  
The BCU fetches instructions and transfers data at  
the rate of up to four 32-bit words per six clock  
cycles. The external address/data bus is multi-  
plexed.  
• Efficient instruction pipeline minimizes pipeline  
break latency  
• Register and resource scoreboarding allow  
overlapped instruction execution  
2
PRELIMINARY  
80960JD  
Users may configure the 80960JD’s bus controller to  
match an application’s fundamental memory organi-  
zation. Physical bus width is register-programmed  
for up to eight regions. Byte ordering and data  
caching are programmed through a group of logical  
memory templates and a defaults register.  
Non-Maskable Interrupt (NMI) pin. Interrupts are  
serviced according to their priority levels relative to  
the current process priority.  
Low interrupt latency is critical to many embedded  
applications. As part of its highly flexible interrupt  
mechanism, the 80960JD exploits several  
techniques to minimize latency:  
The BCU’s features include:  
• Multiplexed external bus to minimize pin count  
• Interrupt vectors and interrupt handler routines can  
be reserved on-chip  
• 32-, 16- and 8-bit bus widths to simplify I/O  
interfaces  
• Register frames for high-priority interrupt handlers  
can be cached on-chip  
• External ready control for address-to-data, data-to-  
data and data-to-next-address wait state types  
• The interrupt stack can be placed in cacheable  
memory space  
• Support for big or little endian byte ordering to  
facilitate the porting of existing program code  
• Interrupt microcode executes at twice the bus  
frequency  
• Unaligned bus accesses performed transparently  
• Three-deep load/store queue to decouple the bus  
from the core  
2.5 Instruction Set Summary  
Upon reset, the 80960JD conducts an internal self  
test. Then, before executing its first instruction, it  
performs an external bus confidence test by  
performing a checksum on the first words of the  
initialization boot record (IBR).  
The 80960Jx adds several new instructions to the  
i960 core architecture. The new instructions are:  
• Conditional Move  
• Conditional Add  
• Conditional Subtract  
• Byte Swap  
The user may examine the contents of the caches at  
any time by executing special cache control instruc-  
tions.  
• Halt  
• Cache Control  
• Interrupt Control  
2.3 Timer Unit  
Table 1 identifies the instructions that the 80960Jx  
supports. Refer to i960® Jx Microprocessor User’s  
Guide (272483) for a detailed description of each  
instruction.  
The timer unit (TU) contains two independent 32-bit  
timers which are capable of counting at several clock  
rates and generating interrupts. Each is programmed  
by use of the TU registers. These memory-mapped  
registers are addressable on 32-bit boundaries. The  
timers have a single-shot mode and auto-reload  
capabilities for continuous operation. Each timer has  
an independent interrupt request to the 80960JD’s  
interrupt controller. The TU can generate a fault  
when unauthorized writes from user mode are  
detected. Clock prescaling is supported.  
2.6 Faults and Debugging  
The 80960Jx employs a comprehensive fault model.  
The processor responds to faults by making implicit  
calls to a fault handling routine. Specific information  
collected for each fault allows the fault handler to  
diagnose exceptions and recover appropriately.  
2.4 Priority Interrupt Controller  
The processor also has built-in debug capabilities. In  
software, the 80960Jx may be configured to detect  
as many as seven different trace event types. Alter-  
natively, mark and fmark instructions can generate  
trace events explicitly in the instruction stream.  
Hardware breakpoint registers are also available to  
trap on execution and data addresses.  
A programmable interrupt controller manages up to  
240 external sources through an 8-bit external  
interrupt port. Alternatively, the interrupt inputs may  
be configured for individual edge- or level-triggered  
inputs. The interrupt unit (IU) also accepts interrupts  
from the two on-chip timer channels and a single  
PRELIMINARY  
3
80960JD  
2.7 Low Power Operation  
2.9 Memory-Mapped Control  
Registers  
Intel fabricates the 80960Jx using an advanced sub-  
micron manufacturing process. The processor’s sub-  
micron topology provides the circuit density for  
optimal cache size and high operating speeds while  
dissipating modest power. The processor also uses  
dynamic power management to turn off clocks to  
unused circuits.  
The 80960JD, though compliant with i960 series  
processor core, has the added advantage of  
memory-mapped, internal control registers not found  
on the i960 Kx, Sx or Cx processors. These give  
software the interface to easily read and modify  
internal control registers.  
Users may program the 80960Jx to enter Halt mode  
for maximum power savings. In Halt mode, the  
processor core stops completely while the integrated  
peripherals continue to function, reducing overall  
power requirements up to 90 percent. Processor  
execution resumes from internally or externally  
generated interrupts.  
Each of these registers is accessed as a memory-  
mapped, 32-bit register. Access is accomplished  
through regular memory-format instructions. The  
processor ensures that these accesses do not  
generate external bus cycles.  
2.10 Data Types and Memory  
Addressing Modes  
2.8 Test Features  
As with all i960 family processors, the 80960Jx  
instruction set supports several data types and  
formats:  
The 80960Jx incorporates numerous features which  
enhance the user’s ability to test both the processor  
and the system to which it is attached. These  
features include ONCE (On-Circuit Emulation) mode  
and Boundary Scan (JTAG).  
• Bit  
• Bit fields  
• Integer (8-, 16-, 32-, 64-bit)  
• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
• Triple word (96 bits)  
• Quad word (128 bits)  
The 80960Jx provides testability features compatible  
with IEEE Standard Test Access Port and Boundary  
Scan Architecture (IEEE Std. 1149.1).  
One of the boundary scan instructions, HIGHZ,  
forces the processor to float all its output pins  
(ONCE mode). ONCE mode can also be initiated at  
reset without using the boundary scan mechanism.  
The 80960Jx provides a full set of addressing modes  
for C and assembly programming:  
• Two Absolute modes  
ONCE mode is useful for board-level testing. This  
feature allows a mounted 80960JD to electrically  
“remove” itself from a circuit board. This allows for  
system-level testing where a remote tester — such  
• Five Register Indirect modes  
• Index with displacement  
• IP with displacement  
as an in-circuit emulator  
processor system.  
— can exercise the  
The provided test logic does not interfere with  
component or circuit board behavior and ensures  
that components function correctly, connections  
between various components are correct, and  
various components interact correctly on the printed  
circuit board.  
The JTAG Boundary Scan feature is an attractive  
alternative to conventional “bed-of-nails” testing. It  
can examine connections which might otherwise be  
inaccessible to a test system.  
4
PRELIMINARY  
80960JD  
Table 1. 80960Jx Instruction Set  
Arithmetic Logical  
Data Movement  
Load  
Bit, Bit Field and Byte  
Add  
And  
Set Bit  
Store  
Subtract  
Not And  
And Not  
Or  
Clear Bit  
Move  
Multiply  
Not Bit  
*Conditional Select  
Load Address  
Divide  
Alter Bit  
Remainder  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Modulo  
Shift  
Or Not  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
*Conditional Add  
*Conditional Subtract  
Rotate  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
*Byte Swap  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call  
Conditional Fault  
Conditional Compare  
Call Extended  
Call System  
Return  
Synchronize Faults  
Compare and  
Increment  
Compare and  
Decrement  
Branch and Link  
Test Condition Code  
Check Bit  
Processor  
Management  
Debug  
Atomic  
Modify Trace Controls  
Mark  
Flush Local Registers  
Atomic Add  
Modify Arithmetic  
Controls  
Atomic Modify  
Force Mark  
Modify Process  
Controls  
*Halt  
System Control  
*Cache Control  
*Interrupt Control  
NOTE:  
Asterisk (*) denotes new 80960Jx instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB  
implementations.  
PRELIMINARY  
5
80960JD  
3.0 PACKAGE INFORMATION  
Table 2. Pin Description Nomenclature  
The 80960JD is offered in several speed and  
package types. The 132-pin Pin Grid Array (PGA)  
device will be specified for operation at  
Symbol  
Description  
Input pin only.  
I
O
I/O  
Vcc = 5.0 V ± 5% over a case temperature range of  
Output pin only.  
0° to 85°C:  
• A80960JD-50 (50 MHz core, 25 MHz bus)  
Pin can be either an input or output.  
Pin must be connected as described.  
The 132-pin Pin Grid Array (PGA) device will be  
specified for operation at Vcc = 5.0 V ± 5% over a  
case temperature range of 0° to 100°C:  
S
Synchronous. Inputs must meet setup  
and hold times relative to CLKIN for  
proper operation.  
• A80960JD-40 (40 MHz core, 20 MHz bus)  
S(E) Edge sensitive input  
S(L) Level sensitive input  
• A80960JD-33 (33.33 MHz core, 16.67 MHz bus)  
The 132-pin Plastic Quad Flatpack (PQFP) devices  
will be specified for operation at Vcc = 5.0 V ± 5%  
over a case temperature range of 0° to 100°C:  
A (...)  
R (...)  
Asynchronous. Inputs may be  
asynchronous relative to CLKIN.  
A(E) Edge sensitive input  
A(L) Level sensitive input  
• NG80960JD-40 (40 MHz core, 20 MHz bus)  
• NG80960JD-33 (33.33 MHz core, 16.67 MHz bus)  
While the processor’s RESET pin is  
asserted, the pin:  
For complete package specifications and infor-  
mation, refer to Intel’s Packaging Handbook  
(240800).  
R(1) is driven to VCC  
R(0) is driven to VSS  
R(Q) is a valid output  
R(X) is driven to unknown state  
R(H) is pulled up to VCC  
3.1 Pin Descriptions  
H (...)  
While the processor is in the hold state,  
the pin:  
This section describes the pins for the 80960JD in  
the 132-pin ceramic Pin Grid Array (PGA) package  
and 132-lead Plastic Quad Flatpack Package  
(PQFP).  
H(1) is driven to VCC  
H(0) is driven to VSS  
H(Q) Maintains previous state or  
continues to be a valid output  
H(Z) Floats  
Section 3.1.1, Functional Pin Definitions  
describes pin function; Section 3.1.2, 80960Jx 132-  
Lead PGA Pinout and Section 3.1.3, 80960Jx  
PQFP Pinout define the signal and pin locations for  
the supported package types.  
P (...)  
While the processor is halted, the pin:  
P(1) is driven to VCC  
P(0) is driven to VSS  
P(Q) Maintains previous state or  
3.1.1 Functional Pin Definitions  
continues to be a valid output  
Table 2 presents the legend for interpreting the pin  
descriptions which follow. Pins associated with the  
bus interface are described in Table 3. Pins  
associated with basic control and test functions are  
described in Table 4. Pins associated with the  
Interrupt Unit are described in Table 5.  
6
PRELIMINARY  
 
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 1 of 4)  
NAME  
TYPE  
DESCRIPTION  
AD31:0  
I/O  
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data  
S(L)  
R(X)  
H(Z)  
P(Q)  
to and from memory. During an address (T ) cycle, bits 31:2 contain a physical word  
a
address (bits 0-1 indicate SIZE; see below). During a data (T ) cycle, read or write  
d
data is present on one or more contiguous bytes, comprising AD31:24, AD23:16,  
AD15:8 and AD7:0. During write operations, unused pins are driven to determinate  
values.  
SIZE, which comprises bits 0-1 of the AD lines during a T cycle, specifies the  
a
number of data transfers during the bus transaction.  
AD1  
AD0  
Bus Transfers  
0
0
1
1
0
1
0
1
1 Transfer  
2 Transfers  
3 Transfers  
4 Transfers  
When the processor enters Halt mode, if the previous bus operation was a:  
• write — AD31:2 are driven with the last data value on the AD bus.  
• read — AD31:4 are driven with the last address value on the AD bus; AD3:2 are  
driven with the value of A3:2 from the last data cycle.  
Typically, AD1:0 reflect the SIZE information of the last bus transaction (either  
instruction fetch or load/store) that was executed before entering Halt mode.  
ALE  
ALE  
ADS  
A3:2  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
asserted during a T cycle and deasserted before the beginning of the T state. It is  
R(0)  
H(Z)  
P(0)  
a
d
active HIGH and floats to a high impedance state during a hold cycle (T ).  
h
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is the  
inverted version of ALE. This signal gives the 80960JD a high degree of compatibility  
with existing 80960Kx systems.  
R(1)  
H(Z)  
P(1)  
O
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
R(1)  
H(Z)  
P(1)  
The processor asserts ADS for the entire T cycle. External bus control logic typically  
a
samples ADS at the end of the cycle.  
O
ADDRESS3:2 comprise a partial demultiplexed address bus.  
R(X)  
H(Z)  
P(Q)  
32-bit memory accesses: the processor asserts address bits A3:2 during T . The  
partial word address increments with each assertion of RDYRCV during a burst.  
a
16-bit memory accesses: the processor asserts address bits A3:1 during Ta with A1  
driven on the BE1 pin. The partial short word address increments with each assertion  
of RDYRCV during a burst.  
8-bit memory accesses: the processor asserts address bits A3:0 during T , with A1:0  
a
driven on BE1:0. The partial byte address increments with each assertion of  
RDYRCV during a burst.  
PRELIMINARY  
7
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 2 of 4)  
NAME  
TYPE  
DESCRIPTION  
BE3:0  
O
BYTE ENABLES select which of up to four data bytes on the bus participate in the  
current bus access. Byte enable encoding is dependent on the bus width of the  
memory region accessed:  
R(1)  
H(Z)  
P(1)  
32-bit bus:  
BE3 enables data on AD31:24  
BE2 enables data on AD23:16  
BE1 enables data on AD15:8  
BE0 enables data on AD7:0  
16-bit bus:  
BE3 becomes Byte High Enable (enables data on AD15:8)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Byte Low Enable (enables data on AD7:0)  
8-bit bus:  
BE3 is not used (state is high)  
BE2 is not used (state is high)  
BE1 becomes Address Bit 1 (A1)  
BE0 becomes Address Bit 0 (A0)  
The processor asserts byte enables, byte high enable and byte low enable during T .  
a
Since unaligned bus requests are split into separate bus transactions, these signals  
do not toggle during a burst. They remain active through the last Td cycle.  
For accesses to 8- and 16-bit memory, the processor asserts the address bits in  
conjunction with A3:2 described above.  
WIDTH/  
O
WIDTH/HALTED signals denote the physical memory attributes for a bus trans-  
HLTD1:0  
R(0)  
H(Z)  
P(1)  
action:  
WIDTH/HLTD1  
WIDTH/HLTD0  
0
0
1
1
0
1
0
1
8 Bits Wide  
16 Bits Wide  
32 Bits Wide  
Processor Halted  
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in  
response to a HOLD request, regardless of prior operating state.  
D/C  
O
DATA/CODE indicates that a bus access is a data access (1) or an instruction  
R(X)  
H(Z)  
P(Q)  
access (0). D/C has the same timing as W/R.  
0 = instruction access  
1 = data access  
W/R  
O
WRITE/READ specifies, during a T cycle, whether the operation is a write (1) or  
a
R(0)  
H(Z)  
P(Q)  
read (0). It is latched on-chip and remains valid during T cycles.  
d
0 = read  
1 = write  
8
PRELIMINARY  
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 3 of 4)  
NAME  
DT/R  
TYPE  
DESCRIPTION  
O
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the  
R(0)  
H(Z)  
P(Q)  
address/data bus. It is low during Ta and T /T cycles for a read; it is high during T  
a
w
d
and Tw/T cycles for a write. DT/R never changes state when DEN is asserted.  
d
0 = receive  
1 = transmit  
DEN  
O
DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted  
at the start of the first data cycle in a bus access and deasserted at the end of the last  
data cycle. DEN is used with DT/R to provide control for data transceivers connected  
to the data bus.  
R(1)  
H(Z)  
P(1)  
0 = data cycle  
1 = not data cycle  
BLAST  
RDYRCV  
O
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses. BLAST remains active as long as  
wait states are inserted via the RDYRCV pin. BLAST becomes inactive after the final  
data transfer in a bus cycle.  
R(1)  
H(Z)  
P(1)  
0 = last data transfer  
1 = not last data transfer  
I
READY/RECOVER indicates that data on AD lines can be sampled or removed. If  
S(L)  
RDYRCV is not asserted during a T cycle, the Td cycle is extended to the next cycle  
by inserting a wait state (T ).  
w
d
0 = sample data  
1 = don’t sample data  
The RDYRCV pin has another function during the recovery (Tr) state. The processor  
continues to insert additional recovery states until it samples the pin HIGH. This  
function gives slow external devices more time to float their buffers before the  
processor begins to drive address again.  
0 = insert wait states  
1 = recovery complete  
LOCK/  
ONCE  
I/O  
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The  
LOCK output is asserted in the first clock of an atomic operation and deasserted in  
the last data transfer of the sequence. The processor does not grant HOLDA while it  
is asserting LOCK. This prevents external agents from accessing memory involved in  
semaphore operations.  
S(L)  
R(H)  
H(Z)  
P(1)  
0 = Atomic read-modify-write in progress  
1 = Atomic read-modify-write not in progress  
ONCE MODE: The processor samples the ONCE input during reset. If it is asserted  
LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the  
processor stops all clocks and floats all output pins. The pin has a weak internal  
pullup which is active during reset to ensure normal operation when the pin is left  
unconnected.  
0 = ONCE mode enabled  
1 = ONCE mode not enabled  
PRELIMINARY  
9
80960JD  
Table 3. Pin Description — External Bus Signals (Sheet 4 of 4)  
NAME  
TYPE  
DESCRIPTION  
HOLD  
I
HOLD: A request from an external bus master to acquire the bus. When the  
S(L)  
processor receives HOLD and grants bus control to another master, it asserts  
HOLDA, floats the address/data and control lines and enters the T state. When  
h
HOLD is deasserted, the processor deasserts HOLDA and enters either the T or T  
i
state, resuming control of the address/data and control lines.  
a
0 = no hold request  
1 = hold request  
HOLDA  
BSTAT  
O
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has  
relinquished control of the bus. The processor can grant HOLD requests and enter  
the Th state during reset and while halted as well as during regular operation.  
R(Q)  
H(1)  
P(Q)  
0 = hold not acknowledged  
1 = hold acknowledged  
O
BUS STATUS indicates that the processor may soon stall unless it has sufficient  
access to the bus; see i960® Jx Microprocessor User’s Guide (272483). Arbitration  
logic can examine this signal to determine when an external bus master should  
acquire/relinquish the bus.  
R(0)  
H(Q)  
P(0)  
0 = no potential stall  
1 = potential stall  
Table 4. Pin Description — Processor Control Signals, Test Signals and Power (Sheet 1 of 2)  
NAME  
CLKIN  
TYPE  
I
DESCRIPTION  
CLOCK INPUT provides the processor’s fundamental time base; the processor core  
operates at twice the CLKIN rate while the external bus operates at the CLKIN rate.  
All input and output timings are specified relative to a rising CLKIN edge.  
RESET  
I
RESET initializes the processor and clears its internal logic. During reset, the  
processor places the address/data bus and control output pins in their idle (inactive)  
states.  
A(L)  
During reset, the input pins are ignored with the exception of LOCK/ONCE, STEST  
and HOLD.  
The RESET pin has an internal synchronizer. To ensure predictable processor initial-  
ization during power up, RESET must be asserted a minimum of 10,000 CLKIN  
cycles with VCC and CLKIN stable. On a warm reset, RESET should be asserted for  
a minimum of 15 cycles.  
STEST  
I
SELF TEST enables or disables the processor’s internal self-test feature at initial-  
ization. STEST is examined at the end of reset. When STEST is asserted, the  
processor performs its internal self-test and the external bus confidence test. When  
STEST is deasserted, the processor performs only the external bus confidence test.  
S(L)  
0 = self test disabled  
1 = self test enabled  
10  
PRELIMINARY  
80960JD  
Table 4. Pin Description — Processor Control Signals, Test Signals and Power (Sheet 2 of 2)  
NAME  
FAIL  
TYPE  
DESCRIPTION  
O
FAIL indicates a failure of the processor’s built-in self-test performed during initial-  
ization. FAIL is asserted immediately upon reset and toggles during self-test to  
indicate the status of individual tests:  
R(0)  
H(Q)  
P(1)  
• When self-test passes, the processor deasserts FAIL and begins operation from  
user code.  
• When self-test fails, the processor asserts FAIL and then stops executing.  
0 = self test failed  
1 = self test passed  
TCK  
I
TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1  
Boundary Scan Testing (JTAG). State information and data are clocked into the  
processor on the rising edge; data is clocked out of the processor on the falling edge.  
TDI  
I
TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising  
S(L)  
edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.  
TDO  
O
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling  
edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At  
other times, TDO floats. TDO does not float during ONCE mode.  
R(Q)  
HQ)  
P(Q)  
TRST  
I
TEST RESET asynchronously resets the Test Access Port (TAP) controller function  
of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan  
feature, connect a pulldown resistor between this pin and VSS. If TAP is not used,  
this pin must be connected to VSS; however, no resistor is required. See Section 4.3,  
Connection Recommendations (pg. 24).  
A(L)  
TMS  
I
TEST MODE SELECT is sampled at the rising edge of TCK to select the operation  
S(L)  
of the test logic for IEEE 1149.1 Boundary Scan testing.  
VCC  
POWER pins intended for external connection to a VCC board plane.  
VCCPLL  
PLL POWER is a separate VCC supply pin for the phase lock loop clock generator. It  
is intended for external connection to the VCC board plane. In noisy environments,  
add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects  
on timing relationships.  
VSS  
NC  
GROUND pins intended for external connection to a VSS board plane.  
NO CONNECT pins. Do not make any system connections to these pins.  
PRELIMINARY  
11  
80960JD  
Table 5. Pin Description — Interrupt Unit Signals  
NAME  
TYPE  
DESCRIPTION  
XINT7:0  
I
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT7:0  
A(E/L)  
pins can be configured in three modes:  
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs  
can be programmed to be level (low) or edge (falling) sensitive.  
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins  
are level sensitive in this mode.  
Mixed Mode:  
The XINT7:5 pins act as dedicated sources and the XINT4:0 pins  
act as the five most significant bits of a vectored source. The  
least significant bits of the vectored source are set to 0102  
internally.  
Unused external interrupt pins should be connected to VCC  
.
NMI  
I
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
A(E)  
NMI is the highest priority interrupt source and is falling edge-triggered. If NMI is  
unused, it should be connected to VCC  
.
12  
PRELIMINARY  
80960JD  
3.1.2 80960Jx 132-Lead PGA Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
AD22 AD19 AD18 VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC AD13  
AD11 AD6  
AD25  
N
N
AD27 AD26 AD24 AD20 VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS AD10 AD7  
AD3  
M
M
AD23 AD21  
AD12  
AD9  
AD17  
AD16 AD15 AD14  
AD8 AD4  
AD5 AD1  
AD0  
VCC  
AD30 AD29 NC  
L
K
J
L
K
J
BE2  
VCC  
BE3  
VSS  
AD28  
AD31  
VSS  
VCC  
AD2  
NC  
VSS  
VCC  
VCC  
VSS  
BE1  
BE0  
H
G
F
H
G
F
VCCPLL VSS CLKIN  
VCC  
VSS  
VCC  
VSS ALE  
NC  
VSS  
VCC  
BSTAT  
DEN  
VCC  
VSS  
RDYRCV VSS  
RESET VSS  
VCC  
VCC  
VCC  
E
D
E
D
VCC  
VSS  
VCC  
VSS DT/R  
VSS  
TDI  
C
B
A
C
B
A
LOCK/  
ONCE  
HOLDA BLAST A3  
A2  
FAIL  
VSS  
VCC  
NC  
VSS  
VCC  
HOLD XINT1 XINT0 TRST STEST NC  
NC  
XINT4 TCK  
XINT3  
NC  
W/R  
D/C WIDTH/ TDO NC  
HLTD0  
VSS  
VSS XINT6  
ALE  
NC  
NC  
ADS WIDTH/  
HLTD1  
VCC VCC  
NMI XINT7 XINT5 XINT2 TMS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 3. 132-Lead Pin Grid Array Bottom View - Pins Facing Up  
PRELIMINARY  
13  
80960JD  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
14  
14  
TMS  
NC  
NC  
VCC  
VSS  
TDI  
VCC  
VCC  
VCC CLKIN VCC  
VCC  
VSS  
AD2  
VCC  
AD1  
AD5  
AD0  
AD4  
AD3  
AD7  
AD6  
13  
12  
13  
12  
XINT2 TCK STEST  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
AD11  
XINT5 XINT3 TRST  
XINT7 XINT4 XINT0  
RESET RDYRCV NC  
AD8  
AD9  
AD10 AD13  
VCCPLL  
11  
10  
9
11  
10  
9
VSS  
VCC  
AD12  
VSS  
VCC  
NMI  
VCC  
XINT6 XINT1  
HOLD  
NC  
VSS  
VSS  
VSS  
AD14  
AD15  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
A80960JD  
8
8
VCC  
7
7
M
© 19xx  
AD16  
NC  
VCC  
i
6
5
6
5
FAIL  
A2  
VCC  
NC  
VSS  
NC  
AD17 VSS  
XXXXXXXX A2  
VCC  
AD21  
VSS  
VCC  
4
4
A3  
NC  
TDO  
AD23 AD20 AD18  
3
2
1
3
2
1
BSTAT ALE  
BE0  
VSS  
VCC  
BE1  
VSS  
VCC  
AD31 AD28  
AD19  
AD22  
AD24  
AD26  
WIDTH/  
HLTD0  
NC  
BLAST  
ALE  
DT/R  
DEN  
WIDTH/  
HLTD1  
HOLDA VSS  
D/C  
VSS  
VSS  
VSS  
VSS  
BE3  
BE2  
AD29  
ADS  
VCC  
VCC  
VCC  
VCC  
VCC  
AD30 AD27 AD25  
W/R LOCK/  
ONCE  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 4. 132-Lead Pin Grid Array Top View - Pins Facing Down  
14  
PRELIMINARY  
80960JD  
Table 6. 132-Lead PGA Pinout — In Signal Order  
Signal  
A2  
Pin  
C5  
Signal  
AD31  
ADS  
Pin  
K3  
Signal  
TDI  
Pin  
D12  
B4  
Signal  
VSS  
Pin  
B9  
A3  
C4  
A1  
TDO  
TMS  
TRST  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCPLL  
VSS  
VSS  
D2  
AD0  
M14  
L13  
K12  
N14  
M13  
L12  
P14  
N13  
M12  
M11  
N12  
P13  
M10  
P12  
M9  
ALE  
G3  
A3  
A14  
C12  
A6  
VSS  
D13  
E2  
AD1  
ALE  
VSS  
AD2  
BE0  
H3  
VSS  
E13  
F2  
AD3  
BE1  
J3  
A7  
VSS  
AD4  
BE2  
L1  
A8  
VSS  
F13  
G2  
AD5  
BE3  
L2  
A9  
VSS  
AD6  
BLAST  
BSTAT  
CLKIN  
D/C  
C3  
D1  
VSS  
G13  
H2  
AD7  
F3  
D14  
E1  
VSS  
AD8  
H14  
B2  
VSS  
H13  
J2  
AD9  
E14  
F1  
VSS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
DEN  
DT/R  
FAIL  
E3  
VSS  
J13  
K2  
D3  
F14  
G1  
G14  
H1  
VSS  
C6  
VSS  
K13  
N5  
HOLD  
HOLDA  
LOCK/ONCE  
NC  
C9  
VSS  
C2  
VSS  
N6  
M8  
C1  
J1  
VSS  
N7  
M7  
A4  
J14  
K1  
VSS  
N8  
M6  
NC  
A5  
VSS  
N9  
P4  
NC  
B5  
K14  
L14  
P5  
VSS  
N10  
N11  
B1  
P3  
NC  
B14  
C7  
VSS  
N4  
NC  
W/R  
M5  
NC  
C8  
P6  
WIDTH/HLTD0  
WIDTH/HLTD1  
XINT0  
XINT1  
XINT2  
XINT3  
XINT4  
XINT5  
XINT6  
XINT7  
B3  
P2  
NC  
C14  
G12  
J12  
M3  
A10  
F12  
E12  
C13  
B13  
P7  
A2  
M4  
NC  
P8  
C11  
C10  
A13  
B12  
B11  
A12  
B10  
A11  
N3  
NC  
P9  
P1  
NC  
P10  
P11  
H12  
B6  
N2  
NMI  
N1  
RDYRCV  
RESET  
STEST  
TCK  
L3  
M2  
VSS  
B7  
M1  
VSS  
B8  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
PRELIMINARY  
15  
80960JD  
Table 7. 132-Lead PGA Pinout — In Pin Order  
Pin  
A1  
Signal  
ADS  
Pin  
C6  
Signal  
FAIL  
NC  
Pin  
H1  
Signal  
VCC  
Pin  
M10  
M11  
M12  
M13  
M14  
N1  
Signal  
AD12  
AD9  
AD8  
AD4  
AD0  
AD27  
AD26  
AD24  
AD20  
VSS  
A2  
WIDTH/HLTD1  
ALE  
C7  
H2  
VSS  
A3  
C8  
NC  
H3  
BE0  
A4  
NC  
C9  
HOLD  
XINT1  
XINT0  
TRST  
STEST  
NC  
H12  
H13  
H14  
J1  
VCCPLL  
VSS  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
A6  
VCC  
CLKIN  
VCC  
A7  
VCC  
N2  
A8  
VCC  
J2  
VSS  
N3  
A9  
VCC  
J3  
BE1  
N4  
A10  
A11  
A12  
A13  
A14  
B1  
NMI  
VCC  
J12  
J13  
J14  
K1  
NC  
N5  
XINT7  
XINT5  
XINT2  
TMS  
D2  
VSS  
VSS  
N6  
VSS  
D3  
DT/R  
TDI  
VCC  
N7  
VSS  
D12  
D13  
D14  
E1  
VCC  
N8  
VSS  
VSS  
K2  
VSS  
N9  
VSS  
W/R  
VCC  
K3  
AD31  
AD2  
N10  
N11  
N12  
N13  
N14  
P1  
VSS  
B2  
D/C  
VCC  
K12  
K13  
K14  
L1  
VSS  
B3  
WIDTH/HLTD0  
TDO  
E2  
VSS  
VSS  
AD10  
AD7  
AD3  
AD25  
AD22  
AD19  
AD18  
VCC  
B4  
E3  
DEN  
RESET  
VSS  
VCC  
B5  
NC  
E12  
E13  
E14  
F1  
BE2  
B6  
VSS  
L2  
BE3  
B7  
VSS  
VCC  
L3  
AD28  
AD5  
P2  
B8  
VSS  
VCC  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P3  
B9  
VSS  
F2  
VSS  
AD1  
P4  
B10  
B11  
B12  
B13  
B14  
C1  
XINT6  
XINT4  
XINT3  
TCK  
F3  
BSTAT  
RDYRCV  
VSS  
VCC  
P5  
F12  
F13  
F14  
G1  
AD30  
AD29  
NC  
P6  
VCC  
P7  
VCC  
VCC  
P8  
VCC  
NC  
VCC  
AD23  
AD21  
AD17  
AD16  
AD15  
AD14  
P9  
VCC  
LOCK/ONCE  
HOLDA  
BLAST  
A3  
G2  
VSS  
P10  
P11  
P12  
P13  
P14  
VCC  
C2  
G3  
ALE  
VCC  
C3  
G12  
G13  
G14  
NC  
AD13  
AD11  
AD6  
C4  
VSS  
C5  
A2  
VCC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
16  
PRELIMINARY  
80960JD  
3.1.3 80960Jx PQFP Pinout  
AD9  
VCC (I/O)  
SS (I/O)  
AD10  
AD11  
TRST  
TCK  
TMS  
HOLD  
XINT0  
XINT1  
XINT2  
1
99  
98  
2
3
4
5
6
7
V
97  
96  
95  
94  
93  
V
V
V
CC (I/O)  
SS (I/O)  
CC (Core)  
XINT3  
VCC (I/O)  
SS (I/O)  
XINT4  
XINT5  
XINT6  
92  
91  
90  
8
9
10  
VSS (Core)  
AD12  
V
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AD13  
AD14  
AD15  
V
CC (I/O)  
XINT7  
NMI  
VSS (I/O)  
AD16  
VCC (Core)  
SS (Core)  
V
®
AD17  
AD18  
AD19  
NC  
NC  
i960  
VCC (I/O)  
NC  
NC  
NC  
FAIL  
ALE  
TDO  
VSS (I/O)  
AD20  
AD21  
AD22  
NG80960JX  
77  
76  
75  
74  
73  
72  
71  
23  
24  
25  
26  
27  
28  
29  
XXXXXXXX A2  
AD23  
VCC (Core)  
VSS (Core)  
V
V
CC (I/O)  
SS(I/O)  
WIDTH/HLTD1  
CC(Core)  
SS (Core)  
M
© 19xx  
i
V
V
CC (I/O)  
SS (I/O)  
V
AD24  
70  
69  
68  
67  
30  
31  
32  
33  
V
WIDTH/HLTD0  
A2  
AD25  
AD26  
NC  
A3  
Figure 5. 132-Lead PQFP - Top View  
PRELIMINARY  
17  
80960JD  
Table 8. 132-Lead PQFP Pinout — In Signal Order  
Signal  
Pin  
60  
Signal  
ALE  
Pin  
24  
36  
33  
32  
55  
54  
53  
52  
28  
31  
35  
37  
42  
43  
34  
132  
50  
4
Signal  
Pin  
47  
Signal  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
VSS (I/O)  
NC  
Pin  
10  
27  
40  
48  
56  
64  
71  
79  
85  
93  
97  
106  
112  
131  
18  
19  
20  
21  
22  
67  
121  
122  
126  
127  
14  
13  
12  
11  
8
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
VCC (Core)  
VCC (Core)  
61  
ADS  
59  
62  
A3  
V
CC (Core)  
CC (Core)  
74  
63  
A2  
V
92  
66  
BE3  
VCC (Core)  
VCC (Core)  
VCC (Core)  
VCC (I/O)  
113  
115  
123  
9
68  
BE2  
69  
BE1  
70  
BE0  
75  
WIDTH/HLTD1  
WIDTH/HLTD0  
D/C  
V
CC (I/O)  
CC (I/O)  
26  
76  
V
41  
77  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
49  
78  
W/R  
57  
81  
DT/R  
65  
82  
DEN  
72  
83  
BLAST  
RDYRCV  
LOCK/ONCE  
HOLD  
HOLDA  
BSTAT  
CLKIN  
RESET  
STEST  
FAIL  
80  
84  
86  
NC  
87  
94  
NC  
88  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
VCC (I/O)  
98  
NC  
89  
44  
51  
117  
125  
128  
23  
2
105  
111  
129  
119  
118  
17  
NC  
90  
NC  
95  
NC  
96  
VCCPLL  
NC  
99  
V
SS (CLK)  
NC  
AD8  
100  
101  
102  
103  
104  
107  
108  
109  
110  
45  
VSS (Core)  
NC  
AD7  
TCK  
V
V
V
SS (Core)  
SS (Core)  
SS (Core)  
30  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
NMI  
AD6  
TDI  
130  
25  
1
38  
AD5  
TDO  
46  
AD4  
TRST  
TMS  
VSS (Core)  
SS (Core)  
58  
AD3  
3
V
73  
AD2  
V
CC (CLK)  
120  
16  
29  
39  
VSS (Core)  
VSS (Core)  
VSS (Core)  
VSS (Core)  
91  
7
AD1  
V
V
V
CC (Core)  
CC (Core)  
CC (Core)  
114  
116  
124  
6
AD0  
5
ALE  
15  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
18  
PRELIMINARY  
80960JD  
Table 9. 132-Lead PQFP Pinout — In Pin Order  
Pin  
1
Signal  
TRST  
TCK  
Pin  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Signal  
BLAST  
D/C  
Pin  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
Signal  
NC  
Pin  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
Signal  
AD8  
AD7  
2
AD26  
3
TMS  
ADS  
AD25  
AD6  
4
HOLD  
XINT0  
XINT1  
XINT2  
XINT3  
W/R  
AD24  
AD5  
5
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
DT/R  
VSS (I/O)  
VCC (I/O)  
VSS (Core)  
VCC (Core)  
AD23  
AD4  
6
VCC (I/O)  
VSS (I/O)  
AD3  
7
8
9
VCC (I/O)  
AD2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
V
SS (I/O)  
XINT4  
XINT5  
XINT6  
XINT7  
NMI  
DEN  
AD22  
AD1  
HOLDA  
ALE  
AD21  
AD0  
AD20  
VCC (I/O)  
VSS (I/O)  
VCC (Core)  
VSS (Core)  
VCC (Core)  
VSS (Core)  
CLKIN  
VSS (CLK)  
VCCPLL  
VCC (CLK)  
NC  
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
LOCK/ONCE  
BSTAT  
BE0  
VSS (I/O)  
VCC (I/O)  
AD19  
V
CC (Core)  
SS (Core)  
NC  
AD18  
V
AD17  
AD16  
NC  
VSS (I/O)  
VCC (I/O)  
AD15  
NC  
BE1  
NC  
BE2  
NC  
BE3  
AD14  
FAIL  
VSS (I/O)  
VCC (I/O)  
AD13  
NC  
ALE  
AD12  
VCC (Core)  
VSS (Core)  
RESET  
NC  
TDO  
V
SS (Core)  
VSS (Core)  
VCC (Core)  
VSS (I/O)  
VCC (I/O)  
VCC (Core)  
AD31  
VSS (I/O)  
WIDTH/HLTD1  
AD30  
VCC (I/O)  
NC  
V
CC (Core)  
SS (Core)  
AD29  
AD11  
STEST  
VCC (I/O)  
TDI  
V
AD28  
AD10  
WIDTH/HLTD0  
VSS (I/O)  
VSS (I/O)  
VCC (I/O)  
AD9  
A2  
A3  
VCC (I/O)  
VSS (I/O)  
RDYRCV  
AD27  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
PRELIMINARY  
19  
80960JD  
TJ = TC + P (θJC  
)
3.2 Package Thermal Specifications  
Similarly, if TA is known, the corresponding case  
temperature (TC) can be calculated as follows:  
The 80960JD is specified for operation when TC  
(case temperature) is within the range of 0°C to 85°C  
for the (PGA) 80960JD-50, or 0°C to 100°C for the  
(PQFP and PGA) 80960JD-40 and 80960JD-33.  
Case temperature may be measured in any  
environment to determine whether the 80960JD is  
within specified operating range. The case temper-  
ature should be measured at the center of the top  
surface, opposite the pins.  
T
C = TA + P (θCA  
Compute P by multiplying ICC from Table 13 and  
CC. Values for θJC and θCA are given in Table 10  
)
V
for the PGA package and Table 11 for the PQFP  
package. For high speed operation, the processor’s  
θJA may be significantly reduced by adding  
a
heatsink and/or by increasing airflow.  
θCA is the thermal resistance from case to ambient.  
Use the following equation to calculate TA, the  
maximum ambient temperature to conform to a  
particular case temperature:  
Figure 6 shows the maximum ambient temperature  
(TA) permitted without exceeding TC for the  
80960JD-50 in a PGA package. Figure 7 illustrates  
this for the 80960JD-40 in PGA and PQFP  
packages. The curves are based on minimum ICC  
(hot) and maximum VCC of +5.25 V, with a TCASE of  
+85°C for the 80960JD-50, or a TCASE of +100°C for  
the 80960JD-40.  
T
A = TC - P (θCA)  
Junction temperature (TJ) is commonly used in  
reliability calculations. TJ can be calculated from θJC  
(thermal resistance from junction to case) using the  
following equation:  
Table 10. 132-Lead PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
200 400 600 800  
(1.01) (2.03) (3.04) (4.06) (5.08)  
Parameter  
0
1000  
(0)  
θJC (Junction-to-Case)  
3
3
3
12  
9
3
11  
8
3
11  
8
3
11  
8
θCA (Case-to-Ambient) (No Heatsink)  
18  
15  
14  
15  
12  
11  
θCA (Case-to-Ambient) (Omnidirectional Heatsink)  
θCA (Case-to-Ambient) (Unidirectional Heatsink)  
8
7
7
7
θJA  
θCA  
θJC  
θJ-PIN  
θJ-CAP  
NOTES:  
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.  
2.  
3.  
4.  
5.  
θ
θ
θ
θ
= θ + θ  
JC  
JA  
CA  
= 4°C/W (approx.)  
J-CAP  
J-PIN  
J-PIN  
= 4°C/W (inner pins) (approx.)  
= 8°C/W (outer pins) (approx.)  
20  
PRELIMINARY  
80960JD  
Table 11. 132-Lead PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θJC (Junction-to-Case)  
6
7
7
7
7
7
9
7
8
θCA (Case-to-Ambient -No Heatsink)  
23  
20  
18  
14  
10  
θCA  
θJC  
θJA  
θJB  
θJL  
NOTES:  
1. This table applies to a PQFP device soldered directly into board.  
2.  
3.  
4.  
θ
θ
θ
= θ  
+ θ  
JA  
JL  
JB  
JC CA  
= 18°C/W (approx.)  
= 18°C/W (approx.)  
65  
60  
55  
50  
45  
40  
35  
30  
0
100  
200  
300  
400  
500  
600  
700  
800  
AIRFLOW (ft/min)  
PGA with unidirectional heatsink  
PGA with no heatsink  
PGA with omnidirectional heatsink  
Figure 6. 50 MHz Maximum Allowable Ambient Temperature  
PRELIMINARY  
21  
80960JD  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0
50  
100  
200  
300  
400  
500  
600  
PGA with unidirectional heatsink  
700  
800  
AIRFLOW (ft/min)  
PQFP  
PGA with no heatsink  
PGA with omnidirectional heatsink  
Figure 7. 40 MHz Maximum Allowable Ambient Temperature  
2. Wakefield Engineering  
3.3 Thermal Management  
Accessories  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
The following is a list of suggested sources for  
80960JD thermal solutions. This is neither an  
endorsement or a warranty of the performance of  
any of the listed products and/or companies.  
3. Aavid Thermal Technologies, Inc.  
One Kool Path  
Laconia, NH 03247-0400  
(603) 528-3400  
Heatsinks  
1. Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(214) 243-4321 FAX: (214) 241-4656  
22  
PRELIMINARY  
80960JD  
4.0 ELECTRICAL SPECIFICATIONS  
4.1 Absolute Maximum Ratings  
NOTICE: This data sheet contains preliminary information  
on new products in production. The specifications are  
subject to change without notice.  
Parameter  
Maximum Rating  
Storage Temperature............................. –65° C to +150° C  
WARNING: Stressing the device beyond the  
“Absolute Maximum Ratings” may cause perma-  
nent damage. These are stress ratings only. Opera-  
tion beyond the “Operating Conditions” is not  
recommended and extended exposure beyond the  
“Operating Conditions” may affect device reliability.  
Case Temperature Under Bias .............. –65° C to +110° C  
Supply Voltage wrt. V ..............................–0.5V to + 4.6V  
SS  
Voltage on Other Pins wrt. V ........... –0.5V to V  
+ 0.5V  
CC  
SS  
4.2 Operating Conditions  
Table 12. 80960JD Operating Conditions  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
Notes  
V
CC  
80960JD-50  
80960JD-40  
80960JD-33  
4.75  
4.75  
4.75  
5.25  
5.25  
5.25  
V
f
Input Clock Frequency  
CLKIN  
80960JD-50  
80960JD-40  
80960JD-33  
8
8
8
25  
20  
16.67  
MHz  
TC  
Operating Case Temperature  
A80960JD-50 (132 PGA)  
A80960JD-40 (132 PGA)  
A80960JD-33 (132 PGA)  
0
0
0
85  
100  
100  
°C  
NG80960JD-40 (132 PQFP)  
NG80960JD-33 (132 PQFP)  
0
0
100  
100  
PRELIMINARY  
23  
80960JD  
Pay special attention to the Test Reset (TRST) pin. It  
is essential that the JTAG Boundary Scan Test  
Access Port (TAP) controller initializes to a known  
state whether it will be used or not. If the JTAG  
Boundary Scan function will be used, connect a  
pulldown resistor between the TRST pin and VSS. If  
the JTAG Boundary Scan function will not be used  
(even for board-level testing), connect the TRST pin  
to VSS. Also, do not connect the TDI, TDO, and TCK  
pins if the TAP Controller will not be used.  
4.3 Connection Recommendations  
For clean on-chip power distribution, VCC and VSS  
pins separately feed the device’s functional units.  
Power and ground connections must be made to all  
80960JD power and ground pins. On the circuit  
board, every VCC pin should connect to a power  
plane and every VSS pin should connect to a ground  
plane. Place liberal decoupling capacitance near the  
80960JD, since the processor can cause transient  
power surges.  
Pins identified as NC must not be connected in  
the system.  
4.4 DC Specifications  
Table 13. 80960JD DC Characteristics  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Min  
-0.3  
2.0  
Typ  
Max  
0.8  
Units  
Notes  
V
V
V
V
VIH  
VCC + 0.3  
0.45  
VOL  
VOH  
IOL = 5 mA  
IOH = -1 mA  
OH = -200 µA  
2.4  
V
CC - 0.5  
I
VOLP  
CIN  
Output Ground Bounce  
< 0.8  
V
(1,2)  
Input Capacitance  
PGA  
PQFP  
f
= fMIN (2)  
= fMIN (2)  
CLKIN  
12  
10  
pF  
COUT  
I/O or Output Capacitance  
PGA  
PQFP  
f
CLKIN  
12  
10  
pF  
pF  
CCLK  
CLKIN Capacitance  
PGA  
PQFP  
12  
10  
f
= fMIN (2)  
CLKIN  
NOTES:  
1. Typical is measured with VCC = 5.0V and temperature = 25 °C.  
2. Not tested.  
24  
PRELIMINARY  
 
80960JD  
Table 14. 80960JD ICC Characteristics  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
0 VIN VCC  
ILI1  
Input Leakage Current for  
each pin except TCK, TDI,  
TRST and TMS  
± 1  
µA  
ILI2  
ILO  
Input Leakage Current for  
TCK, TDI, TRST and TMS  
-140  
-250  
± 1  
µA  
VIN = 0.45V (1)  
Output Leakage Current  
µA  
0.4 VOUT VCC  
ICC Active  
(Power Supply)  
80960JD-50  
80960JD-40  
80960JD-33  
640  
530  
450  
mA  
(2,3)  
(2,3)  
(2,3)  
ICC Active  
(Thermal)  
80960JD-50  
80960JD-40  
80960JD-33  
525  
430  
365  
mA  
mA  
(2,4)  
(2,4)  
(2,4)  
ICC Test  
Reset mode  
80960JD-50  
80960JD-40  
80960JD-33  
(Power modes)  
510  
430  
370  
(5)  
(5)  
(5)  
Halt mode  
80960JD-50  
80960JD-40  
80960JD-33  
48  
41  
36  
(5)  
(5)  
(5)  
ONCE mode  
10  
(5)  
NOTES:  
1. These pins have internal pullup devices. Typical leakage current is not tested.  
2. Measured with device operating and outputs loaded to the test condition in Figure 8, AC Test Load (pg.  
33).  
3. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured  
using one of the worst case instruction mixes with V  
tested.  
= 5.25V. This parameter is characterized but not  
CC  
4.  
I
CC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured  
with VCC = 5.0V and temperature = 25° C. This parameter is characterized but not tested.  
5. ICC Test (Power modes) refers to the ICC values that are tested when the 80960JD is in Reset mode,  
Halt mode or ONCE mode with V  
= 5.25V.  
CC  
PRELIMINARY  
25  
80960JD  
4.5 AC Specifications  
The 80960JD AC timings are based upon device characterization.  
Table 15. 80960JD AC Characteristics (50 MHz) (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
INPUT CLOCK TIMINGS  
TF  
CLKIN Frequency  
8
25  
MHz  
ns  
TC  
CLKIN Period  
40  
125  
TCS  
TCH  
TCL  
TCR  
TCF  
CLKIN Period Stability  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
± 250  
ps  
(1, 2)  
16  
16  
ns  
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
ns  
25  
5
ns  
ns  
2.0 V to 0.8 V (1)  
SYNCHRONOUS OUTPUT TIMINGS  
TOV1  
Output Valid Delay, Except  
ALE/ALE Inactive and DT/R  
3.5  
17  
ns  
(3)  
(4)  
TOV2  
TOF  
Output Valid Delay, DT/R  
Output Float Delay  
0.5TC + 3.5 0.5TC + 17  
3.5 15  
ns  
ns  
SYNCHRONOUS INPUT TIMINGS  
TIS1  
TIH1  
TIS2  
TIH2  
TIS3  
TIH3  
TIS4  
TIH4  
NOTE:  
Input Setup to CLKIN —  
AD31:0, NMI, XINT7:0  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(5)  
(5)  
(6)  
(6)  
(7)  
(7)  
(8)  
(8)  
Input Hold from CLKIN —  
AD31:0, NMI, XINT7:0  
2
9
1
8
2
8
Input Setup to CLKIN —  
RDYRCV and HOLD  
Input Hold from CLKIN —  
RDYRCV and HOLD  
Input Setup to CLKIN —  
RESET  
Input Hold from CLKIN —  
RESET  
Input Setup to RESET —  
ONCE, STEST  
Input Hold from RESET —  
ONCE, STEST  
2
See Table 16 on page 28 for note definitions for this table.  
26  
PRELIMINARY  
 
 
80960JD  
Table 15. 80960JD AC Characteristics (50 MHz) (Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
RELATIVE OUTPUT TIMINGS  
TLXL  
TLXA  
ALE/ALE Width  
(9)  
Address Hold from ALE/ALE  
Inactive  
Equal Loading (9)  
0.5TC - 7.5  
ns  
TDXD  
DT/R Valid to DEN Active  
Equal Loading (9)  
BOUNDARY SCAN TEST SIGNAL TIMINGS  
TBSF  
TCK Frequency  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
0.5TF  
MHz  
ns  
TBSCH  
TBSCL  
TBSCR  
TBSCF  
TBSIS1  
TBSIH1  
15  
15  
5
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
ns  
ns  
5
ns  
2.0 V to 0.8 V (1)  
Input Setup to TCK — TDI, TMS  
4
6
ns  
Input Hold from TCK — TDI,  
TMS  
ns  
TBSOV1  
TBSOF1  
TBSOV2  
TDO Valid Delay  
TDO Float Delay  
3
3
3
30  
30  
30  
ns  
ns  
ns  
(1,10)  
(1,10)  
(1,10)  
All Outputs (Non-Test) Valid  
Delay  
TBSOF2  
TBSIS2  
TBSIH2  
NOTE:  
All Outputs (Non-Test) Float  
Delay  
3
4
6
30  
ns  
ns  
ns  
(1,10)  
Input Setup to TCK — All Inputs  
(Non-Test)  
Input Hold from TCK — All  
Inputs (Non-Test)  
See Table 16 on page 28 for note definitions for this table.  
PRELIMINARY  
27  
80960JD  
NOTES:  
Table 16. Note Definitions for Table 15, 80960JD AC Characteristics (50 MHz) (pg. 26)  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
LO  
designed to be no longer than the valid delay.  
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI  
and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recog-  
nition at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a  
minimum of two CLKIN periods to guarantee recognition.  
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a  
particular clock edge.  
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10. Relative to falling edge of TCK.  
Table 17. 80960JD AC Characteristics (40 MHz) (Sheet 1 of 3)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
INPUT CLOCK TIMINGS  
TF  
CLKIN Frequency  
8
20  
MHz  
ns  
TC  
CLKIN Period  
50  
125  
TCS  
TCH  
CLKIN Period Stability  
CLKIN High Time  
±250  
ps  
(1, 2)  
20  
20  
ns  
Measured at  
1.5 V (1)  
TCL  
TCR  
TCF  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
ns  
ns  
ns  
Measured at  
1.5 V (1)  
7
7
0.8 V to 2.0  
V (1)  
2.0 V to 0.8  
V (1)  
SYNCHRONOUS OUTPUT TIMINGS  
TOV1  
Output Valid Delay, Except ALE/ALE  
Inactive and DT/R  
3.5  
18  
ns  
(3)  
28  
PRELIMINARY  
80960JD  
Notes  
Table 17. 80960JD AC Characteristics (40 MHz) (Sheet 2 of 3)  
Symbol  
TOV2  
Parameter  
Output Valid Delay, DT/R  
Output Float Delay  
Min  
0.5TC + 3.5  
3.5  
Max  
0.5TC + 18  
16  
Units  
ns  
TOF  
ns  
(4)  
SYNCHRONOUS INPUT TIMINGS  
TIS1  
TIH1  
TIS2  
TIH2  
Input Setup to CLKIN — AD31:0, NMI,  
XINT7:0  
8
2
9
1
ns  
ns  
ns  
ns  
(5)  
(5)  
(6)  
(6)  
Input Hold from CLKIN — AD31:0, NMI,  
XINT7:0  
Input Setup to CLKIN — RDYRCV and  
HOLD  
Input Hold from CLKIN — RDYRCV and  
HOLD  
TIS3  
TIH3  
TIS4  
TIH4  
Input Setup to CLKIN — RESET  
8
2
8
2
ns  
ns  
ns  
ns  
(7)  
(7)  
(8 )  
(8)  
Input Hold from CLKIN — RESET  
Input Setup to RESET — ONCE, STEST  
Input Hold from RESET — ONCE,  
STEST  
RELATIVE OUTPUT TIMINGS  
TLXL  
TLXA  
ALE/ALE Width  
(9)  
Address Hold from ALE/ALE Inactive  
Equal  
Loading (9)  
0.5TC - 7.5  
ns  
TDXD  
DT/R Valid to DEN Active  
Equal  
Loading (9)  
BOUNDARY SCAN TEST SIGNAL TIMINGS  
0.5TF  
TBSF  
TCK Frequency  
TCK High Time  
MHz  
ns  
TBSCH  
15  
Measured at  
1.5 V (1)  
TBSCL  
TBSCR  
TBSCF  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
15  
ns  
ns  
ns  
Measured at  
1.5 V (1)  
5
5
0.8 V to 2.0  
V (1)  
2.0 V to 0.8  
V (1)  
TBSIS1  
TBSIH1  
TBSOV1  
TBSOF1  
Input Setup to TCK — TDI, TMS  
Input Hold from TCK — TDI, TMS  
TDO Valid Delay  
4
6
3
3
ns  
ns  
ns  
ns  
30  
30  
(1, 10)  
(1, 10)  
TDO Float Delay  
PRELIMINARY  
29  
80960JD  
Table 17. 80960JD AC Characteristics (40 MHz) (Sheet 3 of 3)  
Symbol  
TBSOV2  
TBSOF2  
TBSIS2  
Parameter  
Min  
3
Max  
30  
Units  
ns  
Notes  
(1, 10)  
(1, 10)  
All Outputs (Non-Test) Valid Delay  
All Outputs (Non-Test) Float Delay  
3
30  
ns  
Input Setup to TCK — All Inputs (Non-  
Test)  
4
ns  
TBSIH2  
Input Hold from TCK — All Inputs (Non-  
Test)  
6
ns  
NOTES:  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
LO  
designed to be no longer than the valid delay.  
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI  
and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recog-  
nition at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a  
minimum of two CLKIN periods to guarantee recognition.  
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a  
particular clock edge.  
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10. Relative to falling edge of TCK.  
30  
PRELIMINARY  
80960JD  
Table 18. 80960JD AC Characteristics (33 MHz) (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
INPUT CLOCK TIMINGS  
TF  
CLKIN Frequency  
8
16.67  
MHz  
ns  
TC  
CLKIN Period  
60  
125  
TCS  
TCH  
TCL  
TCR  
TCF  
CLKIN Period Stability  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
± 250  
ps  
(1, 2)  
24  
24  
ns  
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
ns  
8
8
ns  
ns  
2.0 V to 0.8 V (1)  
SYNCHRONOUS OUTPUT TIMINGS  
TOV1  
TOV2  
TOF  
Output Valid Delay, Except  
ALE/ALE Inactive and DT/R  
3.5  
19  
0.5TC + 19  
18  
ns  
ns  
ns  
(3)  
Output Valid Delay, DT/R  
0.5TC  
3.5  
+
Output Float Delay  
3.5  
(4)  
SYNCHRONOUS INPUT TIMINGS  
TIS1  
TIH1  
TIS2  
TIH2  
Input Setup to CLKIN — AD31:0,  
NMI, XINT7:0  
8
2
9
1
ns  
ns  
ns  
ns  
(5)  
(5)  
(6)  
(6)  
Input Hold from CLKIN — AD31:0,  
NMI, XINT7:0  
Input Setup to CLKIN — RDYRCV  
and HOLD  
Input Hold from CLKIN —  
RDYRCV and HOLD  
TIS3  
TIH3  
TIS4  
Input Setup to CLKIN — RESET  
Input Hold from CLKIN — RESET  
8
2
8
ns  
ns  
ns  
(7)  
(7)  
(8)  
Input Setup to RESET — ONCE,  
STEST  
TIH4  
Input Hold from RESET — ONCE,  
STEST  
2
ns  
(8)  
RELATIVE OUTPUT TIMINGS  
TLXL  
TLXA  
ALE/ALE Width  
(9)  
Address Hold from ALE/ALE Inac-  
tive  
Equal Loading (9)  
0.5TC - 8  
ns  
TDXD  
DT/R Valid to DEN Active  
Equal Loading (9)  
PRELIMINARY  
31  
80960JD  
Symbol  
Table 18. 80960JD AC Characteristics (33 MHz) (Sheet 2 of 2)  
Parameter Min Max Units  
Notes  
BOUNDARY SCAN TEST SIGNAL TIMINGS  
TBSF  
TCK Frequency  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
0.5TF  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TBSCH  
TBSCL  
TBSCR  
TBSCF  
TBSIS1  
TBSIH1  
TBSOV1  
TBSOF1  
TBSOV2  
TBSOF2  
TBSIS2  
15  
15  
5
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
5
2.0 V to 0.8 V (1)  
Input Setup to TCK — TDI, TMS  
Input Hold from TCK — TDI, TMS  
TDO Valid Delay  
4
6
3
3
3
3
4
30  
30  
30  
30  
(1, 10)  
(1, 10)  
(1, 10)  
(1, 10)  
TDO Float Delay  
All Outputs (Non-Test) Valid Delay  
All Outputs (Non-Test) Float Delay  
Input Setup to TCK — All Inputs  
(Non-Test)  
TBSIH2  
Input Hold from TCK — All Inputs  
(Non-Test)  
6
ns  
NOTES:  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
LO  
designed to be no longer than the valid delay.  
5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation.  
NMI and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees  
recognition at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted  
for a minimum of two CLKIN periods to guarantee recognition.  
6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at  
a particular clock edge.  
8. ONCE and STEST must be stable at the rising edge of RESET for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10. Relative to falling edge of TCK.  
32  
PRELIMINARY  
80960JD  
4.5.1 AC Test Conditions and Derating Curves  
The AC Specifications in Section 4.5, AC Specifications are tested with the 50 pF load indicated in Figure 8.  
Figure 9 shows how timings vary with load capacitance; Figure 10 shows how output rise and fall times vary  
with load capacitance.  
Output Pin  
C
= 50 pF for all signals  
L
C
L
Figure 8. AC Test Load  
AC Derating Curves  
nom +6  
nom +4  
nom +2  
nom  
High-to-Low Transitions  
Low-to-High Transitions  
nom -2  
50  
100  
150  
C
(pF)  
L
Figure 9. Output Delay or Hold vs. Load Capacitance  
PRELIMINARY  
33  
80960JD  
10  
8
2.0V to 0.8V Transitions  
0.8V to 2.0V Transitions  
6
4
2
50  
100  
150  
C
(pF)  
L
Figure 10. Rise and Fall Time Derating  
4.5.2 AC Timing Waveforms  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
Figure 11. CLKIN Waveform  
34  
PRELIMINARY  
80960JD  
1.5V  
OV1  
1.5V  
CLKIN  
T
AD31:0,  
ALE (active),  
ALE (active),  
1.5V  
ADS, A3:2,  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DEN,  
BLAST, LOCK,  
HOLDA, BSTAT, FAIL  
Figure 12. Output Delay Waveform for TOV1  
1.5V  
1.5V  
CLKIN  
T
OF  
AD31:0,  
ALE, ALE  
ADS, A3:2,  
BE3:0,  
WIDTH/HLTD1:0,  
D/C, W/R, DT/R,  
DEN, BLAST, LOCK  
Figure 13. Output Float Waveform for TOF  
PRELIMINARY  
35  
80960JD  
1.5V  
1.5V  
IH1  
1.5V  
CLKIN  
T
T
IS1  
AD31:0  
NMI  
Valid  
1.5V  
XINT7:0  
Figure 14. Input Setup and Hold Waveform for T  
and T  
IH1  
IS1  
1.5V  
1.5V  
1.5V  
CLKIN  
T
IH2  
T
IS2  
HOLD,  
1.5V  
Valid  
1.5V  
RDYRCV  
Figure 15. Input Setup and Hold Waveform for T  
and T  
IH2  
IS2  
36  
PRELIMINARY  
80960JD  
1.5V  
1.5V  
CLKIN  
T
T
IS3  
IH3  
RESET  
Figure 16. Input Setup and Hold Waveform for T  
and T  
IH3  
IS3  
RESET  
T
IH4  
T
IS4  
ONCE,  
STEST  
Valid  
Figure 17. Input Setup and Hold Waveform for T  
and T  
IH4  
IS4  
PRELIMINARY  
37  
80960JD  
T
T /T  
w
a
d
1.5V  
1.5V  
1.5V  
CLKIN  
T
LXL  
ALE  
ALE  
1.5V  
Valid  
1.5V  
1.5V  
T
LXA  
1.5V  
AD31:0  
Valid  
Figure 18. Relative Timings Waveform for T  
and T  
LXA  
LXL  
T
T /T  
w d  
a
CLKIN  
1.5V  
1.5V  
1.5V  
T
OV2  
Valid  
DT/R  
DEN  
T
DXD  
T
OV1  
Figure 19. DT/R and DEN Timings Waveform  
38  
PRELIMINARY  
80960JD  
T
T
BSCR  
BSCF  
2.0V  
1.5V  
0.8V  
T
BSCH  
T
BSCL  
Figure 20. TCK Waveform  
1.5V  
1.5V  
1.5V  
TCK  
T
T
BSIH1  
BSIS1  
TMS  
TDI  
1.5V  
Valid  
1.5V  
Figure 21. Input Setup and Hold Waveforms for T  
and T  
BSIS1  
BSIH1  
PRELIMINARY  
39  
80960JD  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOV1  
BSOF1  
Valid  
1.5V  
TDO  
Figure 22. Output Delay and Output Float Waveform for T  
AND T  
BSOF1  
BSOV1  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSOF2  
BSOV2  
Non-Test  
Outputs  
Valid  
1.5V  
Figure 23. Output Delay and Output Float Waveform for T  
and T  
BSOF2  
BSOV2  
40  
PRELIMINARY  
80960JD  
TCK  
1.5V  
1.5V  
1.5V  
T
T
BSIH2  
BSIS2  
Non-Test  
Inputs  
1.5V  
Valid  
1.5V  
Figure 24. Input Setup and Hold Waveform for T  
and T  
BSIS2  
BSIH2  
PRELIMINARY  
41  
80960JD  
5.0 BUS FUNCTIONAL WAVEFORMS  
Figures 25 through 30 illustrate typical 80960JD bus transactions. Figure 31 depicts the bus arbitration  
sequence. Figure 32 illustrates the processor reset sequence from the time power is applied to the device.  
Figure 33 illustrates the processor reset sequence when the processor is in operation. Figure 34 illustrates the  
processor ONCE sequence from the time power is applied to the device. Figures 35 and 36 also show  
accesses on 32-bit buses. Tables 19 through 22 summarize all possible combinations of bus accesses across  
8-, 16-, and 32-bit buses according to data alignment.  
T
T
T
T
T
T
T
T
T
T
i
a
d
r
i
i
a
d
r
i
CLKIN  
D
In  
ADDR  
ADDR  
Invalid  
DATA Out  
AD31:0  
ALE  
ADS  
A3:2  
BE3:0  
WIDTH1:0  
10  
10  
D/C  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF030A  
Figure 25. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
42  
PRELIMINARY  
80960JD  
T
T
T
T
T
T
T
T
T
T
a
d
d
r
a
d
d
d
d
r
CLKIN  
DATA  
Out  
D
In  
DATA  
Out  
DATA  
Out  
D
In  
DATA  
Out  
ADDR  
ADDR  
AD31:0  
ALE  
ADS  
00 or 10  
01 or 11  
00  
01  
10  
11  
A3:2  
BE3:0  
1 0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Figure 26. Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
PRELIMINARY  
43  
80960JD  
T
T
T
T
T
T
T
T
T
T
T
r
a
w
w
d
w
d
w
d
w
d
CLKIN  
AD31:0  
ALE  
DATA  
Out  
DATA  
Out  
DATA  
Out  
DATA  
Out  
ADDR  
ADS  
A3:2  
0 0  
0 1  
1 0  
1 1  
BE3:0  
WIDTH1:0  
D/C  
1 0  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF032A  
Figure 27. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus  
44  
PRELIMINARY  
80960JD  
T
T
T
T
T
T
T
T
T
T
r
a
d
d
r
a
d
d
d
d
CLKIN  
DATA  
Out  
DATA  
Out  
D
In  
DATA DATA  
D
In  
ADDR  
ADDR  
AD31:0  
Out  
Out  
ALE  
ADS  
A3:2  
00,01,10 or 11  
00,01,10 or 11  
01 or  
BE1/A1  
BE0/A0  
00  
01  
10  
11  
00 or 10  
11  
WIDTH1:0  
D/C  
00  
00  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
F_JF033A  
Figure 28. Burst Read and Write Transactions Without Wait States, 8-Bit Bus  
PRELIMINARY  
45  
80960JD  
T
T
T
T
T
T
T
T
T
T
r
T
w
d
d
r
r
a
w
d
d
a
CLKIN  
AD31:0  
ALE  
D
In  
D
In  
DATA  
Out  
DATA  
Out  
ADDR  
ADDR  
ADS  
00,01,10, or 11  
00,01,10, or 11  
A3:2  
0
0
1
BE1/A1  
1
BE3/BHE  
BE0/BLE  
01  
01  
WIDTH1:0  
D/C  
W/R  
BLAST  
DT/R  
DEN  
F_JF034A  
RDYRCV  
Figure 29. Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus  
46  
PRELIMINARY  
80960JD  
T
T
T
T
T
T
T
T
T
T
T
T
r
a
d
r
a
d
r
a
d
r
a
d
CLKIN  
AD31:0  
ALE  
D
In  
D
In  
D
In  
D
In  
A
A
A
A
ADS  
A3:2  
00  
00  
01  
10  
BE3:0  
WIDTH1:0  
D/C  
0 0 0 0  
1 1 1 0  
0 0 1 1  
1 1 0 1  
1 0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
RDYRCV  
Figure 30. Bus Transactions Generated by Double Word Read Bus Request,  
Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian  
PRELIMINARY  
47  
80960JD  
T or T  
T
T
T or T  
i a  
i
r
h
h
CLKIN  
Outputs:  
AD31:0,  
ALE, ALE,  
ADS, A3:2,  
BE3:0,  
Valid  
Valid  
WIDTH/HLTD1:0,  
D/C, W/R,  
DT/R, DEN,  
BLAST, LOCK  
HOLD  
HOLDA  
(Note)  
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the  
same edge in which it recognizes HOLD if the last state was T or the last T of a bus transaction. Similarly,  
i
r
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.  
Figure 31. HOLD/HOLDA Waveform For Bus Arbitration  
48  
PRELIMINARY  
80960JD  
Figure 32. Cold Reset Waveform  
PRELIMINARY  
49  
80960JD  
Figure 33. Warm Reset Waveform  
50  
PRELIMINARY  
80960JD  
Figure 34. Entering the ONCE State  
PRELIMINARY  
51  
80960JD  
Table 19. Natural Boundaries for Load and Store Accesses  
Data Width  
Byte  
Natural Boundary (Bytes)  
1
2
Short Word  
Word  
4
Double Word  
Triple Word  
Quad Word  
8
16  
16  
Table 20. Summary of Byte Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 Bit Bus  
(WIDTH1:0=00)  
(WIDTH1:0=01)  
(WIDTH1:0=10)  
+0 (aligned)  
• byte access  
• byte access  
• byte access  
Table 21. Summary of Short Word Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 Bit Bus  
(WIDTH1:0=00)  
(WIDTH1:0=01)  
(WIDTH1:0=10)  
+0 (aligned)  
+1  
• burst of 2 bytes  
• 2 byte accesses  
• short-word access  
• 2 byte accesses  
• short-word access  
• 2 byte accesses  
52  
PRELIMINARY  
80960JD  
Table 22. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)  
Address Offset  
from Natural  
Boundary in Bytes  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit Bus  
(WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
+0 (aligned)  
n burst(s) of 4 bytes  
• case n=1:  
• burst of n word(s)  
(n =1, 2, 3, 4)  
burst of 2 short words  
• case n=2:  
burst of 4 short words  
• case n=3:  
burst of 4 short words  
burst of 2 short words  
• case n=4:  
2 bursts of 4 short words  
+1 (n =1, 2, 3, 4)  
+5 (n = 2, 3, 4)  
+9 (n = 3, 4)  
• byte access  
• byte access  
• short-word access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• byte access  
• byte access  
• short-word access  
• burst of 2 bytes  
n-1 burst(s) of 4 bytes  
• byte access  
+13 (n = 3, 4)  
• byte access  
+2 (n =1, 2, 3, 4)  
+6 (n = 2, 3, 4)  
+10 (n = 3, 4)  
+14 (n = 3, 4)  
• burst of 2 bytes  
n-1 burst(s) of 4 bytes  
• burst of 2 bytes  
• short-word access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• short-word access  
• short-word access  
• short-word access  
+3 (n =1, 2, 3, 4)  
+7 (n = 2, 3, 4)  
+11 (n = 3, 4)  
+15 (n = 3, 4)  
• byte access  
• byte access  
n-1 burst(s) of 2 short words n-1 word access(es)  
• short-word access  
• byte access  
• byte access  
n-1 burst(s) of 4 bytes  
• burst of 2 bytes  
• byte access  
• short-word access  
• byte access  
+4 (n = 2, 3, 4)  
+8 (n = 3, 4)  
n burst(s) of 4 bytes  
n burst(s) of 2 short words  
n word access(es)  
+12 (n = 3, 4)  
PRELIMINARY  
53  
80960JD  
0
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
Short Access (Aligned)  
Byte, Byte Accesses  
Short-Word  
Load/Store  
Short Access (Aligned)  
Byte, Byte Accesses  
Word Access (Aligned)  
Byte, Short, Byte, Accesses  
Short, Short Accesses  
Word  
Load/Store  
Byte, Short, Byte Accesses  
One Double-Word Burst (Aligned)  
Byte, Short, Word, Byte Accesses  
Short, Word, Short Accesses  
Double-Word  
Load/Store  
Byte, Word, Short, Byte Accesses  
Word, Word Accesses  
One Double-Word  
Burst (Aligned)  
Figure 35. Summary of Aligned and Unaligned Accesses (32-Bit Bus)  
54  
PRELIMINARY  
80960JD  
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
0
One Three-Word  
Burst (Aligned)  
Byte, Short, Word,  
Word, Byte Accesses  
Short, Word, Word,  
Short Accesses  
Triple-Word  
Load/Store  
Byte, Word, Word,  
Short, Byte Accesses  
Word, Word,  
Word Accesses  
Word, Word,  
Word Accesses  
Word,  
Word,  
Word  
Accesses  
One Four-Word  
Burst (Aligned)  
Byte, Short, Word, Word,  
Word, Byte Accesses  
Short, Word, Word, Word,  
Short Accesses  
Quad-Word  
Load/Store  
Byte, Word, Word, Word,  
Short, Byte Accesses  
Word, Word, Word,  
Word Accesses  
Word,  
Word,  
Word,  
Word,  
Accesses  
Figure 36. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)  
PRELIMINARY  
55  
80960JD  
6.0 DEVICE IDENTIFICATION  
80960JD processors may be identified electrically according to device type and stepping (see Table 23). The  
32-bit identifier is accessible in three ways:  
• Upon reset, the identifier is placed into the g0 register.  
• The identifier may be accessed from supervisor mode at any time by reading the DEVICEID register at  
address FF008710H.  
• The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the IDCODE  
instruction.  
The device and stepping letter is also printed on the top side of the product package.  
Table 23. 80960JD Die and Stepping Reference  
Device and  
Stepping  
Version  
Number  
Complete ID  
(Hex)  
Part Number  
Manufacturer  
X
80960JD A, A2  
0000  
1000 1000 0010 0000  
0000 0001 001  
1
08820013  
NOTE: This data sheet applies to the 80960JD A and 80960JD A2 steppings.  
7.0 REVISION HISTORY  
This data sheet supersedes revision 272596-001. Table 24 indicates significant changes since the previous  
revision.  
Table 24. Data Sheet Version -001 to -002 Revision History (Sheet 1 of 2)  
Table 13, 80960JD DC Characteristics (pg.  
24)  
Removed Icc characteristics. Added VOLP (output  
ground bounce) specification  
Table 13, 80960JD DC Characteristics (pg.  
24)  
New table for comprehensible Icc characteristics.  
Added Icc’s for reset mode. Halt Icc for: 80960JD-50  
(max) improved from 56 mA to 48 mA, 80960JD-40  
(max) improved from 44 mA to 41mA. ONCE Icc  
Improved from 30 mA to 10 mA.  
Section 4.5, AC Specifications (pg. 26)  
Grouped AC Specifications tables by frequency.  
Added 40 MHz and 33 MHz AC specifications.  
Table 15, 80960JD AC Characteristics (50  
MHz) (pg. 26) Section INPUT CLOCK  
TIMINGS  
T
CS (max) improved from ±0.1% to ±250 ps  
Table 15, 80960JD AC Characteristics (50  
MHz) (pg. 26) Section SYNCHRONOUS  
OUTPUT TIMINGS  
T
ov1 (min) improved from 3.0 ns to 3.5 ns. Tov2 (min)  
improved from 0.45TC + 3.0 ns to 0.5TC + 3.5 ns. ToF  
(min) improved from 3.0 ns to 3.5 ns. ToF (max)  
improved from 17 ns to 15 ns.  
56  
PRELIMINARY  
 
80960JD  
Table 24. Data Sheet Version -001 to -002 Revision History (Sheet 2 of 2)  
Table 15, 80960JD AC Characteristics (50  
MHz) (pg. 26) Section SYNCHRONOUS  
INPUT TIMINGS  
T
IS2 (min) improved from 10 ns to 9 ns  
Table 15, 80960JD AC Characteristics (50  
MHz) (pg. 26) Section RELATIVE OUTPUT  
TIMINGS  
T
LXL, TLXA, and TDXD (min) improved from .45TC - 3 ns  
to .5TC - 7.5 ns.  
Table 15, 80960JD AC Characteristics (50  
MHz) (pg. 26) Section BOUNDARY SCAN  
TEST SIGNAL TIMINGS  
TBSF (max) improved from 8 MHz to .5TF. TBSIS1 (min)  
improved from 8 ns to 4 ns. TBSIH1 (min) improved  
from 10 ns to 6 ns. TBSIS2 (min) improved from 8 ns to  
4 ns. TBSIH2 (min) improved from 10 ns to 6 ns.  
PRELIMINARY  
57  

相关型号:

GD80960JS-33

RISC Microprocessor, 32-Bit, 33MHz, CMOS, PBGA196, PLASTIC, BGA-196
INTEL

GD80960JT-100

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

GD80960JT-75

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

GD82541EI

82541 Family of Gigabit Ethernet Controllers
INTEL

GD82541ER

82541ER Gigabit Ethernet Controller
INTEL

GD82541GI

82541 Family of Gigabit Ethernet Controllers
INTEL

GD82541PI

82541 Family of Gigabit Ethernet Controllers
INTEL

GD82541PI/SL7AT

LAN Controller, PBGA196
INTEL

GD82547EI

LAN Controller, 1 Channel(s), 125MBps, CMOS, PBGA196, 15 X 15 MM, PLASTIC, BGA-196
INTEL

GD82547GI

LAN Controller, 1 Channel(s), 125MBps, CMOS, PBGA196, 15 X 15 MM, PLASTIC, BGA-196
INTEL

GD82551ER

暂无描述
INTEL

GD82551IT

Fast Ethernet PCI Controller
INTEL