GE28F128W18BD65 [INTEL]

Flash, 8MX16, 65ns, PBGA56;
GE28F128W18BD65
型号: GE28F128W18BD65
厂家: INTEL    INTEL
描述:

Flash, 8MX16, 65ns, PBGA56

文件: 总100页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Wireless Flash Memory (W18)  
28F320W18, 28F640W18, 28F128W18  
Datasheet  
Product Features  
High Performance Read-While-Write/  
Erase  
Architecture  
Multiple 4-Mbit Partitions  
Dual Operation: RWW or RWE  
8KB parameter blocks  
64KB main blocks  
Top or Bottom Parameter Devices  
16-bit wide data bus  
Burst frequency at 66 MHz  
60 ns Initial Access Read Speed  
11 ns Burst-Mode Read Speed  
20 ns Page-Mode Read Speed  
4-, 8-, 16-, and Continuous-Word Burst  
Mode Reads  
Burst and Page Mode Reads in all  
Blocks, across all partition boundaries  
Burst Suspend Feature  
Software  
—5 µs (typ.) Program and Erase Suspend  
Latency Time  
Flash Data Integrator (FDI) and Common  
Flash Interface (CFI) Compatible  
Programmable WAIT Signal Polarity  
Enhanced Factory Programming at  
3.1 µs/word (typ.for 0.13 µm)  
Security  
Packaging and Power  
0.13 µm: 32-, 64-, and 128-Mbit in VF  
BGA Package; 128-Mbit in QUAD+  
Package  
128-bit Protection Register  
64-bits Unique Programmed by Intel  
64-bits User-Programmable  
Absolute Write Protection with VPP at  
Ground  
Individual and Instantaneous Block  
Locking/Unlocking with Lock-Down  
Capability  
0.18 µm: 32- and 128-Mbit Densities in  
VF BGA Package; 64-Mbit Density in  
µBGA* Package  
56 Active Ball Matrix, 0.75 mm Ball-  
Pitch  
Quality and Reliability  
VCC = 1.70 V to 1.95 V  
VCCQ = 1.70 V to 2.24 V or 1.35 V to  
1.80 V  
Standby current (0.13 µm): 8µA (typ.)  
Read current: 7mA (typ.)  
Temperature Range: –40 °C to +85 °C  
100k Erase Cycles per Block  
0.13 µm ETOX™ VIII Process  
0.18 µm ETOX™ VII Process  
The Intel® Wireless Flash Memory (W18) device with flexible multi-partition dual operation,  
provides high-performance asynchronous and synchronous burst reads. It is an ideal memory for  
low-voltage burst CPUs. Combining high read performance with flash memory’s intrinsic non-  
volatility, the W18 device eliminates the traditional system-performance paradigm of shadowing  
redundant code memory from slow nonvolatile storage to faster execution memory. It reduces  
the total memory requirement that increases reliability and reduces overall system power  
consumption and cost.  
The W18 device’s flexible multi-partition architecture allows programming or erasing to occur  
in one partition while reading from another partition. This allows for higher data write  
throughput compared to single partition architectures. The dual-operation architecture also  
allows two processors to interleave code operations while program and erase operations take  
place in the background. The designer can also choose the size of the code and data partitions via  
the flexible multi-partition architecture.  
Notice: This document contains information on new products in production. The specifications  
are subject to change without notice. Verify with your local Intel sales office that you have the  
latest datasheet before finalizing a design.  
290701-010  
May, 2004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
The 1.8 Volt Intel® wireless flash memory datasheet may contain design defects or errors known as errata which may cause the product to deviate  
from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © 2003, Intel Corporation.  
*Other names and brands may be claimed as the property of others.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction ...............................................................................................................................9  
1.1  
1.2  
1.3  
Document Purpose...............................................................................................................9  
Nomenclature .......................................................................................................................9  
Conventions..........................................................................................................................9  
2.0 Functional Overview ............................................................................................................11  
2.1 Memory Map and Partitioning.............................................................................................12  
3.0 Package Information ............................................................................................................15  
4.0 Ballout and Signal Descriptions......................................................................................20  
4.1  
Signal Descriptions .............................................................................................................22  
5.0 Maximum Ratings and Operating Conditions ...........................................................23  
5.1  
5.2  
Absolute Maximum Ratings ................................................................................................23  
Operating Conditions ..........................................................................................................23  
6.0 Electrical Specifications.....................................................................................................24  
6.1  
6.2  
DC Current Characteristics (.13 µ and .18 µµ).................................................................24  
DC Voltage Characteristics.................................................................................................26  
7.0 AC Characteristics................................................................................................................28  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
AC I/O Test Conditions .......................................................................................................28  
Device Capacitance............................................................................................................29  
Read Operations – .13 µµ Λιτηογραπηψ ............................................................................30  
Read Operations – .18 µµ Λιτηογραπηψ ............................................................................32  
AC Write Operations...........................................................................................................42  
Erase and Program Times..................................................................................................47  
8.0 Power and Reset Specifications .....................................................................................47  
8.1  
8.2  
8.3  
8.4  
Active Power.......................................................................................................................48  
Automatic Power Savings (APS) ........................................................................................48  
Standby Power ...................................................................................................................48  
Power-Up/Down Characteristics.........................................................................................48  
8.4.1 System Reset and RST# .......................................................................................48  
8.4.2 VCC, VPP, and RST# Transitions .........................................................................49  
Power Supply Decoupling...................................................................................................49  
Reset Specifications ...........................................................................................................49  
8.5  
8.6  
9.0 Device Operations.................................................................................................................50  
9.1  
Bus Operations ...................................................................................................................50  
9.1.1 Read ......................................................................................................................51  
9.1.2 Burst Suspend .......................................................................................................51  
9.1.3 Standby..................................................................................................................52  
9.1.4 Reset .....................................................................................................................52  
9.1.5 Write ......................................................................................................................52  
Device Commands .............................................................................................................53  
Command Sequencing .......................................................................................................56  
9.2  
9.3  
Datasheet  
3
Contents  
10.0 Read Operations.................................................................................................................... 57  
10.1 Read Array.......................................................................................................................... 57  
10.2 Read Device ID................................................................................................................... 57  
10.3 Read Query (CFI) ............................................................................................................... 58  
10.4 Read Status Register.......................................................................................................... 58  
10.5 Clear Status Register.......................................................................................................... 60  
11.0 Program Operations.............................................................................................................60  
11.1 Word Program .................................................................................................................... 60  
11.2 Factory Programming .........................................................................................................61  
11.3 Enhanced Factory Program (EFP) ..................................................................................... 62  
11.3.1 EFP Requirements and Considerations ................................................................ 62  
11.3.2 Setup ..................................................................................................................... 63  
11.3.3 Program................................................................................................................. 63  
11.3.4 Verify...................................................................................................................... 63  
11.3.5 Exit......................................................................................................................... 64  
12.0 Program and Erase Operations.......................................................................................66  
12.1 Program/Erase Suspend and Resume............................................................................... 66  
12.2 Block Erase......................................................................................................................... 68  
12.3 Read-While-Write and Read-While-Erase.......................................................................... 70  
13.0 Security Modes.......................................................................................................................71  
13.1 Block Lock Operations........................................................................................................71  
13.1.1 Lock .......................................................................................................................72  
13.1.2 Unlock.................................................................................................................... 72  
13.1.3 Lock-Down.............................................................................................................72  
13.1.4 Block Lock Status ..................................................................................................73  
13.1.5 Lock During Erase Suspend.................................................................................. 73  
13.1.6 Status Register Error Checking .............................................................................73  
13.1.7 WP# Lock-Down Control .......................................................................................74  
13.2 Protection Register .............................................................................................................74  
13.2.1 Reading the Protection Register............................................................................75  
13.2.2 Programing the Protection Register....................................................................... 75  
13.2.3 Locking the Protection Register.............................................................................76  
13.3 VPP Protection ................................................................................................................... 77  
14.0 Set Configuration Register................................................................................................ 78  
14.1 Read Mode (CR[15])...........................................................................................................80  
14.2 First Access Latency Count (CR[13:11]) ............................................................................80  
14.2.1 Latency Count Settings.......................................................................................... 81  
14.3 WAIT Signal Polarity (CR[10]) ............................................................................................ 82  
14.4 WAIT Signal Function.........................................................................................................82  
14.5 Data Hold (CR[9]) ............................................................................................................... 83  
14.6 WAIT Delay (CR[8])............................................................................................................84  
14.7 Burst Sequence (CR[7])...................................................................................................... 84  
14.8 Clock Edge (CR[6]).............................................................................................................86  
14.9 Burst Wrap (CR[3]) .............................................................................................................86  
14.10 Burst Length (CR[2:0])........................................................................................................ 86  
Appendix A Write State Machine States...............................................................................87  
4
Datasheet  
Contents  
Appendix B Common Flash Interface....................................................................................90  
Appendix C Ordering Information ...........................................................................................99  
Datasheet  
5
Contents  
Revision History  
Date of  
Version  
Revision  
Description  
09/13/00  
-001  
Initial Release  
Deleted 16-Mbit density  
Revised ADV#, Section 2.2  
Revised Protection Registers, Section 4.16  
Revised Program Protection Register, Section 4.18  
Revised Example in First Access Latency Count, Section 5.0.2  
Revised Figure 5, Data Output with LC Setting at Code 3  
Added WAIT Signal Function, Section 5.0.3  
Revised WAIT Signal Polarity, Section 5.0.4  
Revised Data Output Configuration, Section 5.0.5  
Added Figure 7, Data Output Configuration with WAIT Signal Delay  
Revised WAIT Delay Configuration, Section 5.0.6  
Changed V  
Spec from 1.7 V – 1.95 V to 1.7 V – 2.24 V in Section 8.2,  
CCQ  
Extended Temperature Operation  
Changed I  
Characteristics  
Spec from 15 µA to 18 µA in Section 8.4, DC  
CCS  
01/29/01  
-002  
Changed I  
Spec from 10 mA (CLK = 40 MHz, burst length = 4) and 13  
CCR  
mA (CLK = 52 MHz, burst length = 4) to 13 mA, and 16 mA respectively in  
Section 8.4, DC Characteristics  
Changed I  
Characteristics  
Spec from 15 µA to 18 µA in Section 8.4, DC  
Spec from 15 µA to 18 µA in Section 8.4, DC  
Spec from 5ns to 3ns in Section 8.6, AC Read  
CCWS  
Changed I  
Characteristics  
CCES  
Changed t  
Characteristics  
CHQX  
Added Figure 25, WAIT Signal in Synchronous Non-Read Array Operation  
Waveform  
Added Figure 26, WAIT Signal in Asynchronous Page Mode Read  
Operation Waveform  
Added Figure 27, WAIT Signal in Asynchronous Single Word Read  
Operation Waveform  
Revised Appendix E, Ordering Information  
Revised entire Section 4.10, Enhanced Factory Program Command (EFP)  
and Figure 6, Enhanced Factory Program Flowchart  
Revised Section 4.13, Protection Register  
Revised Section 4.15, Program Protection Register  
Revised Section 7.3, Capacitance, to include 128-Mbit specs  
Revised Section 7.4, DC Characteristics, to include 128-Mbit specs  
06/12/01  
-003  
Revised Section 7.6, AC Read Characteristics, to include 128-Mbit device  
specifications  
Added t  
Spec in Section 7.6, AC Read Characteristics  
VHGL  
Revised Section 7.7, AC Write Characteristics, to include 128-Mbit device  
specifications  
Minor text edits  
6
Datasheet  
Contents  
Date of  
Revision  
Version  
Description  
New Sections Organization  
Added 16 Word Burst Feature  
Added Burst Suspend Section  
Revised Block Locking State Diagram  
Revised Active Power Section  
Revised Automatic Power Savings Section  
Revised Power-Up/Down Operation Section  
Revised Extended Temperature Operation  
Added 128Mb DC Characteristics Table  
Added 128 Mb AC Read Characteristics  
04/05/02  
-004  
Revised Table 17. Test Configuration Component Values for Worst Case  
Speed Conditions  
Added .13 µ Product DC and AC Read Characteristics  
Revised AC Write Characteristics  
Added Read to Write and Write to Read Transition Waveforms  
Revised Reset Specifications  
Various text edits  
Various text edits  
Updated Latency Count Section, including adding Latency Count Tables  
Added section 8.4 WAIT Function and WAIT Summary Table  
Updated Package Drawing and Dimensions  
10/10/02  
11/12/02  
01/14/03  
-005  
-006  
-007  
Various text clarifications  
Removed Intel Burst Order  
Revised Table 22, DC Current Characteristics, I  
Revised Table 22, DC Current Characteristics, I  
Various text edits  
CCS  
CCAPS  
Revised Table 22, Read Operations, t  
APA  
03/21/03  
-008  
Added note to table 15, Configuration Register Descriptions  
Added note to section 3.1.1, Read  
Updated Block-Lock Operations (Section 7.1 and Figure 11)  
Updated Table 21 (128Mb I  
)
CCR  
12/17/03  
05/14/04  
-009  
-010  
Updated Table 4 (WAIT behavior)  
Added QUAD+ ballout, package mechanicals, and order information  
Various text edits including latest product-naming convention  
Restructured the document content to match current format.  
Datasheet  
7
Contents  
8
Datasheet  
Intel® Wireless Flash Memory (W18)  
1.0  
Introduction  
1.1  
Document Purpose  
This datasheet contains information about the 1.8 Volt Intel® Wireless Flash memory (W18) device  
family. Section 1.0 provides a flash memory overview. Section 2.0 through Section 8.0 describe the  
memory functionality. Section 5.0 describes the electrical specifications for extended temperature  
product offerings. Packaging specifications and order information can be found in Appendix C and  
Appendix C, respectively.  
1.2  
Nomenclature  
Many acronyms that describe product features or usage are defined here:  
APS - Automatic Power Savings  
BBA - Block Base Address  
CFI - Common Flash Interface  
CUI - Command User Interface  
EFP - Enhanced Factory Programming  
FDI - Flash Data Integrator  
NC - No Connect  
OTP - One-Time Programmable  
PBA - Partition Base Address  
RWE - Read-While-Erase  
RWW - Read-While-Write  
SRD - Status Register Data  
VF BGA - Very thin, Fine pitch, Ball Grid Array  
WSM - Write State Machine  
1.3  
Conventions  
Many abbreviated terms and phrases are used throughout this document:  
The term “1.8 V” refers to the full VCC voltage range of 1.7 V – 1.95 V (except where noted)  
and “VPP = 12 V” refers to 12 V 5%.  
When referring to registers, the term set means the bit is a logical 1, and clear means the bit is  
a logical 0.  
The terms pin and signal are often used interchangeably to refer to the external signal  
connections on the package. (ball is the term used for VF BGA).  
A word is 2 bytes, or 16 bits.  
Datasheet  
9
Intel® Wireless Flash Memory (W18)  
Signal names are in all CAPS (see Section 4.1, “Signal Descriptions” on page 22.)  
Voltage applied to the signal is subscripted, for example, VPP.  
Throughout this document, references are made to top, bottom, parameter, and partition. To clarify  
these references, the following conventions have been adopted:  
A block is a group of bits (or words) that erase simultaneously with one block erase  
instruction.  
A main block contains 32 Kwords.  
A parameter block contains 4 Kwords.  
The Block Base Address (BBA) is the first address of a block.  
A partition is a group of blocks that share erase and program circuitry and a common status  
register.  
The Partition Base Address (PBA) is the first address of a partition. For example, on a 32-  
Mbit top-parameter device, partition number 5 has a PBA of 140000h.  
The top partition is located at the highest physical device address. This partition may be a  
main partition or a parameter partition.  
The bottom partition is located at the lowest physical device address. This partition may be a  
main partition or a parameter partition.  
A main partition contains only main blocks.  
A parameter partition contains a mixture of main blocks and parameter blocks.  
A top parameter device (TPD) has the parameter partition at the top of the memory map with  
the parameter blocks at the top of that partition. This was formerly referred to as top-boot  
device.  
A bottom parameter device (BPD) has the parameter partition at the bottom of the memory  
map with the parameter blocks at the bottom of that partition. This was formerly referred to as  
bottom-boot block flash device.  
10  
Datasheet  
Intel® Wireless Flash Memory (W18)  
2.0  
Functional Overview  
This section provides an overview of the W18 device features, packaging, signal naming, and  
device architecture.  
The W18 device provides Read-While-Write (RWW) and Read-White-Erase (RWE) capability  
with high-performance synchronous and asynchronous reads on package-compatible densities with  
a 16-bit data bus. Individually-erasable memory blocks are optimally sized for code and data  
storage. Eight 4-Kword parameter blocks are located in the parameter partition at either the top or  
bottom of the memory map. The rest of the memory array is grouped into 32-Kword main blocks.  
The memory architecture for the W18 device consists of multiple 4-Mbit partitions, the exact  
number depending on device density. By dividing the memory array into partitions, program or  
erase operations can take place simultaneously during read operations. Burst reads can traverse  
partition boundaries, but user application code is responsible for ensuring that they don’t extend  
into a partition that is actively programming or erasing. Although each partition has burst-read,  
write, and erase capabilities, simultaneous operation is limited to write or erase in one partition  
while other partitions are in a read mode.  
Augmented erase-suspend functionality further enhances the RWW capabilities of this device. An  
erase can be suspended to perform a program or read operation within any block, except that which  
is erase-suspended. A program operation nested within a suspended erase can subsequently be  
suspended to read yet another memory location.  
After device power-up or reset, the W18 device defaults to asynchronous read configuration.  
Writing to the device’s configuration register enables synchronous burst-mode read operation. In  
synchronous mode, the CLK input increments an internal burst address generator. CLK also  
synchronizes the flash memory with the host CPU and outputs data on every, or on every other,  
valid CLK cycle after an initial latency. A programmable WAIT output signals to the CPU when  
data from the flash memory device is ready.  
In addition to its improved architecture and interface, the W18 device incorporates Enhanced  
Factory Programming (EFP), a feature that enables fast programming and low-power designs. The  
EFP feature provides the fastest currently-available program performance, which can increase a  
factory’s manufacturing throughput.  
The device supports read operations at 1.8 V and erase and program operations at 1.8 V or 12 V.  
With the 1.8-V option, VCC and VPP can be tied together for a simple, ultra-low-power design. In  
addition to voltage flexibility, the dedicated VPP input provides complete data protection when  
V
PP VPPLK.  
This device allows I/O operation at voltages even lower than the minimum VCCQ of 1.7 V. This  
Extended VCCQ range, 1.35 V – 1.8 V, permits even greater system design flexibility.  
A 128-bit protection register enhances the user’s ability to implement new security techniques and  
data protection schemes. Unique flash device identification and fraud-, cloning-, or content-  
protection schemes are possible through a combination of factory-programmed and user-OTP data  
cells. Zero-latency locking/unlocking on any memory block provides instant and complete  
protection for critical system code and data. An additional block lock-down capability provides  
hardware protection where software commands alone cannot change the block’s protection status.  
Datasheet  
11  
Intel® Wireless Flash Memory (W18)  
The device’s Command User Interface (CUI) is the system processor’s link to internal flash  
memory operation. A valid command sequence written to the CUI initiates device Write State  
Machine (WSM) operation that automatically executes the algorithms, timings, and verifications  
necessary to manage flash memory program and erase. An internal status register provides ready/  
busy indication results of the operation (success, fail, and so on).  
Three power-saving features– Automatic Power Savings (APS), standby, and RST#– can  
significantly reduce power consumption. The device automatically enters APS mode following  
read cycle completion. Standby mode begins when the system deselects the flash memory by  
de-asserting CE#. Driving RST# low produces power savings similar to standby mode. It also  
resets the part to read-array mode (important for system-level reset), clears internal status registers,  
and provides an additional level of flash write protection.  
2.1  
Memory Map and Partitioning  
The W18 device is divided into 4-Mbit physical partitions, which allows simultaneous RWW or  
RWE operations and allows users to segment code and data areas on 4-Mbit boundaries. The  
device’s memory array is asymmetrically blocked, which enables system code and data integration  
within a single flash device. Each block can be erased independently in block erase mode.  
Simultaneous program and erase operations are not allowed; only one partition at a time can be  
actively programming or erasing. See Table 1, “Bottom Parameter Memory Map” on page 13 and  
Table 2, “Top Parameter Memory Map” on page 14.  
The 32-Mbit device has eight partitions, the 64-Mbit device has 16 partitions, and the 128-Mbit  
device has 32 partitions. Each device density contains one parameter partition and several main  
partitions. The 4-Mbit parameter partition contains eight 4-Kword parameter blocks and seven 32-  
Kword main blocks. Each 4-Mbit main partition contains eight 32-Kword blocks each.  
The bulk of the array is divided into main blocks that can store code or data, and parameter blocks  
that allow storage of frequently updated small parameters that are normally stored in EEPROM. By  
using software techniques, the word-rewrite functionality of EEPROMs can be emulated.  
.
12  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 1. Bottom Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
32  
262  
7F8000-7FFFFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
135  
134  
71  
70  
39  
38  
31  
30  
23  
22  
400000-407FFF  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
134  
71  
70  
39  
38  
31  
30  
23  
22  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
70  
39  
38  
31  
30  
23  
22  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
32  
32  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
32  
4
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
4
0
000000-000FFF  
0
000000-000FFF  
0
000000-000FFF  
Datasheet  
13  
Intel® Wireless Flash Memory (W18)  
Table 2. Top Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
4
70  
1FF000-1FFFFF  
134  
3FF000-3FFFFF  
262  
7FF000-7FFFFF  
4
63  
62  
1F8000-1F8FFF  
1F0000-1F7FFF  
127  
126  
3F8000-3F8FFF  
3F0000-3F7FFF  
255  
254  
7F8000-7F8FFF  
7F0000-7F7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
56  
55  
48  
47  
40  
39  
32  
31  
0
1C0000-1C7FFF  
1B8000-1BFFFF  
18000-187FFF  
178000-17FFFF  
140000-147FFF  
138000-13FFFF  
100000-107FFF  
0F8000-0FFFFF  
000000-007FFF  
120  
119  
112  
111  
104  
103  
96  
3C0000-3C7FFF  
3B8000-3BFFFF  
380000-387FFF  
378000-37FFFF  
340000-347FFF  
338000-33FFFF  
300000-307FFF  
2F8000-2FFFFF  
200000-207FFF  
1F8000-1FFFFF  
000000-007FFF  
248  
247  
240  
239  
232  
231  
224  
223  
192  
191  
128  
127  
0
7C0000-7C7FFF  
7B8000-7BFFFF  
780000-787FFF  
778000-77FFFF  
740000-747FFF  
738000-73FFFF  
700000-707FFF  
6F8000-6FFFFF  
600000-607FFF  
5F8000-5FFFFF  
400000-407FFF  
3F8000-3FFFFF  
000000-007FFF  
95  
64  
63  
0
14  
Datasheet  
Intel® Wireless Flash Memory (W18)  
3.0  
Package Information  
0.1  
W18 – .18 µm Lithography  
Figure 1. 64-Mb µBGA*CSP Package Drawing and Dimensions  
Pin # 1  
Indicator  
Pin # 1  
Corner  
s
D
1
s
2
1
2
3
4
5
6
7
8
8
7
6
5
4
3 2 1  
A
B
A
B
C
D
E
F
C
D
E
E
F
G
G
e
b
Top View - Silicon backside  
Complete Ink Mark Not  
Bottom View - Bump side Up  
A1  
A2  
A
Seati  
Plan  
Y
Side  
Millimeters  
Inches  
Min  
Symbol  
A
Min  
Nom  
Max  
Notes  
Nom  
Max  
Package Height  
Ball Height  
0.850  
0.150  
0.612  
0.300  
7.600  
8.900  
1.000  
0.0335  
0.0059  
0.0241  
0.0118  
0.2992  
0.3503  
0.0394  
A1  
A2  
b
Package Body Thickness  
Ball (Lead) Width  
0.712  
0.350  
7.700  
9.000  
0.750  
56  
0.812  
0.400  
7.800  
9.100  
0.0280  
0.0138  
0.3031  
0.3543  
0.0295  
56  
0.0320  
0.0157  
0.3071  
0.3583  
Package Body Width  
Package Body Length  
Pitch  
D
E
[e]  
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
0.100  
1.325  
2.350  
0.0039  
0.0522  
0.0925  
S1  
S2  
1.125  
2.150  
1.225  
2.250  
0.0443  
0.0846  
0.0482  
0.0886  
Datasheet  
15  
Intel® Wireless Flash Memory (W18)  
Figure 2. 32-Mb VFBGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S
1
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2 1  
S
2
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawingnot to scale  
Figure 3. 128-Mb VFBGA Package Drawing  
Ball A1  
Corner  
Ball A  
Corne  
S1  
D
S2  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
H
J
G
H
J
b
Top View - Bump Side  
Down  
Bottom View - Ball Side  
Up  
A1  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scal e  
16  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 3. 32-Mbit and 128-Mbit VFBGA Package Dimensions  
Millimeters  
Nom  
Inches  
Nom  
Dimension  
Symbol  
Min  
Max  
Min  
Max  
Package Height  
A
0.850  
0.150  
0.615  
0.325  
7.600  
8.900  
1.000  
0.0335  
0.0059  
0.0394  
Ball Height  
A
A
1
2
Package Body Thickness  
Ball (Lead) Width  
0.665  
0.375  
7.700  
9.000  
0.715  
0.425  
7.800  
9.100  
0.0242 0.0262 0.0281  
0.0128 0.0148 0.0167  
0.2992 0.3031 0.3071  
0.3503 0.3543 0.3583  
b
Package Body Width 32Mb  
Package Body Length32Mb  
Package Body Width 128Mb  
Package Body Length 128Mb  
Pitch  
D
E
D
E
12.400 12.500 12.600 0.4882 0.4921 0.4961  
11.900 12.000 12.100 0.4685 0.4724 0.4764  
[e]  
N
N
Y
0.750  
56  
0.0295  
56  
Ball (Lead) Count 32Mb  
Ball (Lead) Count 128Mb  
Seating Plane Coplanarity  
60  
60  
0.100  
1.325  
0.0039  
Corner to Ball A1 Distance Along D  
32Mb  
S
S
S
S
1.125  
2.150  
2.775  
2.900  
1.225  
2.250  
2.875  
3.000  
0.0443 0.0482 0.0522  
0.0846 0.0886 0.0925  
1
2
1
2
Corner to Ball A1 Distance Along E  
32Mb  
2.350  
2.975  
Corner to Ball A1 Distance Along D  
128Mb  
0.1093 0.1132  
0.1171  
Corner to Ball A1 Distance Along E  
128Mb  
3.1000 0.1142 0.1181 0.1220  
Datasheet  
17  
Intel® Wireless Flash Memory (W18)  
0.2  
W18 – .13 µm Lithography  
Figure 4. 32-, 64- and 128-Mb VF BGA*CSP Package Drawing  
Ball A1  
Corner  
Ball A1  
Corne  
D
S1  
1
2
3
4
5
6
7
8
S
2
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Table 4. 32-Mbit, 64-Mbit, and 128-Mbit VFBGA Package Dimensions  
Millimeters  
Inches  
Nom  
Dimension  
Symbol  
Min  
Nom  
Max  
Min  
Max  
0.0394  
Package Height  
A
1.000  
Ball Height  
A
0.150  
0.0059  
1
2
Package Body Thickness  
Ball (Lead) Width  
A
0.665  
0.375  
0.0262  
b
0.325  
7.600  
0.425 0.0128 0.0148 0.0167  
7.800 0.2992 0.3031 0.3071  
Package Body Width (32Mb,  
64Mb)  
D
D
E
7.700  
Package Body Width (128Mb)  
10.900 11.000 11.100 0.4291 0.4331 0.4370  
Package Body Length (32Mb,  
64Mb, 128Mb)  
8.900  
9.000  
9.100 0.3504 0.3543 0.3583  
Pitch  
[e]  
N
0.750  
56  
0.0295  
56  
Ball (Lead) Count  
Seating Plane Coplanarity  
Y
0.100  
0.0039  
Corner to Ball A1 Distance  
Along D (32Mb, 64Mb)  
S
S
S
1.125  
1.225  
1.325 0.0443 0.0482 0.0522  
1
1
2
Corner to Ball A1 Distance  
Along D (128Mb)  
2.775 2.2875 2.975 0.1093 0.1132 0.1171  
2.150 2.250 2.350 0.0846 0.0886 0.0925  
Corner to Ball A1 Distance  
Along E (32Mb, 64Mb,128Mb)  
18  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 5. 128Mbit QUAD+ Package Drawing  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball(Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Symbol  
A
A1  
A2  
b
D
E
e
N
Min  
Max Notes  
1.200  
Min  
Max  
0.0472  
0.200  
0.0079  
0.860  
0.375  
10.000  
8.000  
0.800  
88  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
0.325  
9.900  
7.900  
0.425  
10.100  
8.100  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
Y
S1  
S2  
0.100  
1.300  
0.700  
0.0039  
0.0512  
0.0276  
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
Datasheet  
19  
Intel® Wireless Flash Memory (W18)  
4.0  
Ballout and Signal Descriptions  
The W18 device is available in a 56-ball VF BGA and µBGA Chip SCale Package with 0.75 mm  
ball pitch, or the 88-ball (80 active balls) QUAD+ SCSP package. Figure 6 shows the device  
ballout for the VF BGA and µBGA package. Figure 7 shows the device ballout for the QUAD+  
package.  
Figure 6. 56-Ball VF BGA / µBGA Ballout  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
VCC  
CLK  
A18  
A17  
A19  
A6  
A5  
A7  
A6  
A5  
A7  
A18  
A17  
A19  
VCC  
CLK  
A11  
A8  
A9  
VSS  
A20  
A21  
VPP  
A4  
A3  
A2  
A4  
VPP  
VSS  
A20  
A21  
A8  
A9  
A11  
A12  
A13  
A12  
A13  
A3  
A2  
RST#  
WE#  
RST#  
WE#  
A10  
A10  
ADV#  
ADV#  
A15  
A14 WAIT  
DQ15 DQ6  
A16  
DQ12  
DQ2  
WP#  
DQ1  
A22  
CE#  
A1  
A0  
A1  
A0  
A22  
WP#  
DQ1  
DQ12  
DQ2  
A16  
WAIT A14  
DQ6 DQ15  
A15  
VCCQ  
DQ4  
CE#  
DQ4  
VCCQ  
VSS  
DQ7  
DQ14 DQ13  
VSSQ DQ5  
DQ11 DQ10  
DQ9  
DQ0  
OE#  
OE#  
DQ0  
DQ9  
DQ10 DQ11  
DQ13 DQ14  
DQ5 VSSQ  
VSS  
DQ7  
G
G
VCC  
DQ3  
VCCQ DQ8  
VSSQ  
VSSQ  
DQ8 VCCQ  
DQ3  
VCC  
Top View - Ball Side Down  
Complete Ink Mark Not Shown  
Bottom View - Ball Side Up  
NOTES:  
1. On lower density devices, upper address balls can be treated as NC. (Example: For 32-Mbit density, A21 and A22 will be NC).  
2. See Appendix C, “Ordering Information” on page 99 for mechanical specifications for the package.  
20  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 7. 88-Ball (80 Active Balls) QUAD+ Ballout  
1
2
3
4
5
6
7
8
DU  
DU  
DU  
DU  
A
B
C
D
E
F
A4  
A5  
A18  
R-LB#  
A17  
A7  
A19  
A23  
A24  
A25  
VSS  
VSS  
F1-VCC F2-VCC  
A21  
A22  
A9  
A11  
A12  
A13  
A15  
A16  
S-CS2  
CLK  
F-VPP,  
F-VPEN  
A3  
R-WE# P1-CS#  
A2  
F-WP# ADV#  
A20  
A8  
A10  
A14  
A1  
A6  
R-UB# F-RST# F-WE#  
G
A0  
D8  
D2  
D10  
D5  
D13  
WAIT F2-CE#  
H
J
R-OE#  
D0  
D1  
D9  
D3  
D12  
D4  
D14  
D6  
D7  
F2-OE#  
VCCQ  
S-CS1# F1-OE#  
D11  
D15  
K
L
P-Mode,  
P-CRE  
F1-CE# P2-CS# F3-CE# S-VCC P-VCC F2-VCC VCCQ  
VSS  
DU  
VSS  
DU  
VCCQ F1-VCC VSS  
VSS  
VSS  
DU  
VSS  
DU  
M
Top View - Ball Side Down  
Legend:  
SRAM/PSRAM specific  
Flash specific  
Global  
NOTES:  
1. Unused upper address balls can be treated as NC (for 128Mbit, A[25:23] are not used).  
2. See Appendix C, “Ordering Information” on page 99 for mechanical specifications for the package.  
Datasheet  
21  
Intel® Wireless Flash Memory (W18)  
4.1  
Signal Descriptions  
Table 5 describes ball usage.  
Table 5. Signal Descriptions  
Symbol  
Type  
Name and Function  
A[22:0]  
D[15:0]  
I
ADDRESS INPUTS: For memory addresses. 32 Mbit: A[20:0]; 64 Mbit: A[21:0]; 128 Mbit: A[22:0]  
DATA INPUTS/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
memory, status register, protection register, and configuration code reads. Data pins float when the  
chip or outputs are deselected. Data is internally latched during writes.  
I/O  
ADDRESS VALID: ADV# indicates valid address presence on address inputs. During synchronous  
read operations, all addresses are latched on ADV#’s rising edge or the next valid CLK edge with  
ADV# low, whichever occurs first.  
ADV#  
CE#  
I
I
I
I
I
CHIP ENABLE: Asserting CE# activates internal control logic, I/O buffers, decoders, and sense amps.  
De-asserting CE# deselects the device, places it in standby mode, and tri-states all outputs.  
CLOCK: CLK synchronizes the device to the system bus frequency during synchronous reads and  
increments an internal address generator. During synchronous read operations, addresses are latched  
on ADV#’s rising edge or the next valid CLK edge with ADV# low, whichever occurs first.  
CLK  
OUTPUT ENABLE: When asserted, OE# enables the device’s output data buffers during a read cycle.  
When OE# is deasserted, data outputs are placed in a high-impedance state.  
OE#  
RESET: When low, RST# resets internal automation and inhibits write operations. This provides data  
protection during power transitions. de-asserting RST# enables normal operation and places the  
device in asynchronous read-array mode.  
RST#  
WAIT: The WAIT signal indicates valid data during synchronous read modes. It can be configured to be  
asserted-high or asserted-low based on bit 10 of the Configuration Register. WAIT is tri-stated if CE# is  
deasserted. WAIT is not gated by OE#.  
WAIT  
WE#  
WP#  
O
I
WRITE ENABLE: WE# controls writes to the CUI and array. Addresses and data are latched on the  
rising edge of WE#.  
WRITE PROTECT: Disables/enables the lock-down function. When WP# is asserted, the lock-down  
mechanism is enabled and blocks marked lock-down cannot be unlocked through software. See  
Section 13.1, “Block Lock Operations” on page 71 for details on block locking.  
I
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or programming. Memory  
contents cannot be altered when V V  
not be attempted.  
. Block erase and program at invalid V voltages should  
PP  
PPLK  
PP  
Set V = V for in-system program and erase operations. To accommodate resistor or diode drops  
PP  
CC  
VPP  
VCC  
Pwr/I  
Pwr  
from the system supply, the V level of V can be as low as V  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
min. V must remain above V  
IH  
PP  
PP1 PP PP1  
V
can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500 cycles.  
PP2  
VPP can be connected to 12 V for a cumulative total not to exceed 80 hours. Extended use of this pin  
at 12 V may reduce block cycling capability.  
DEVICE POWER SUPPLY: Writes are inhibited at V V  
. Device operations at invalid V  
CC  
CC  
LKO  
voltages should not be attempted.  
OUTPUT POWER SUPPLY: Enables all outputs to be driven at V  
VCC.  
. This input may be tied directly to  
CCQ  
VCCQ  
VSS  
Pwr  
Pwr  
Pwr  
GROUND: Pins for all internal device circuitry must be connected to system ground.  
OUTPUT GROUND: Provides ground to all outputs which are driven by VCCQ. This signal may be tied  
directly to VSS.  
VSSQ  
DON’T USE: Do not use this pin. This pin should not be connected to any power supplies, signals or  
other pins and must be floated.  
DU  
NC  
NO CONNECT: No internal connection; can be driven or floated.  
22  
Datasheet  
Intel® Wireless Flash Memory (W18)  
5.0  
Maximum Ratings and Operating Conditions  
5.1  
Absolute Maximum Ratings  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended,  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
Notice: This datasheet contains information on products in the design phase of development. The information  
here is subject to change without notice. Do not finalize a design with this information.  
Table 6. Absolute Maximum Ratings  
Parameter  
Note  
Maximum Rating  
–40 °C to +85 °C  
Temperature under Bias  
Storage Temperature  
–65 °C to +125 °C  
–0.5 V to +2.45 V  
–0.2 V to +14 V  
–0.2 V to +2.45 V  
100 mA  
Voltage on Any Pin (except VCC, VCCQ, VPP)  
VPP Voltage  
1,2,3  
VCC and VCCQ Voltage  
Output Short Circuit Current  
NOTES:  
1
4
1. All specified voltages are relative to VSS. Minimum DC voltage is –0.5 V on input/output pins and  
–0.2 V on VCC and VPP pins. During transitions, this level may undershoot to –2.0 V for periods < 20  
ns which, during transitions, may overshoot to V +2.0 V for periods < 20 ns.  
CC  
2. Maximum DC voltage on VPP may overshoot to +14.0 V for periods < 20 ns.  
3. V program voltage is normally V  
and 2500 cycles on the parameter blocks during program/erase.  
. V can be 12 V 0.6 V for 1000 cycles on the main blocks  
PP  
PP1  
PP  
4. Output shorted for no more than one second. No more than one output shorted at a time.  
5.2  
Operating Conditions  
Table 7. Extended Temperature Operation (Sheet 1 of 2)  
Symbol  
Parameter1  
Operating Temperature  
Supply Voltage  
Note  
Min  
Nom  
Max  
Unit  
T
–40  
1.7  
25  
1.8  
85  
1.95  
2.24  
1.8  
°C  
A
V
V
3
3
4
2
2
2
CC  
CC  
I/O Supply Voltage  
1.7  
1.8  
V
CCQ  
I/O Supply Voltage (Extended)  
1.35  
0.90  
11.4  
1.5  
V
V
V
V
Voltage Supply (Logic Level)  
PP  
1.80  
12.0  
1.95  
12.6  
80  
PP1  
PP2  
Factory Programming V  
PP  
t
Maximum V Hours  
V = 12 V  
PP  
Hours  
PPH  
PP  
Datasheet  
23  
Intel® Wireless Flash Memory (W18)  
Table 7. Extended Temperature Operation (Sheet 2 of 2)  
Symbol  
Parameter1  
Note  
Min  
Nom  
Max  
Unit  
Main and Parameter  
Blocks  
V
V  
2
100,000  
PP  
CC  
Block  
Erase  
Cycles  
Cycles  
Main Blocks  
Parameter Blocks  
V
V
= 12 V  
= 12 V  
2
2
1000  
2500  
PP  
PP  
NOTES:  
1. See Section 6.1 and Section 6.2, “DC Voltage Characteristics” on page 26 for specific voltage-range  
specifications.  
2. VPP is normally V  
. VPP can be connected to 11.4 V–12.6 V for 1000 cycles on main blocks for  
PP1  
extended temperatures and 2500 cycles on parameter blocks at extended temperature.  
3. Contact your Intel field representative for V /V operations down to 1.65 V.  
CC CCQ  
4. See the tables in Section 5.0, “Maximum Ratings and Operating Conditions” on page 23 and in Section  
7.0, “AC Characteristics” on page 28 for operating characteristics within the Extended-V  
voltage range.  
CCQ  
6.0  
Electrical Specifications  
6.1  
DC Current Characteristics (.13 µm and .18 µm)  
Table 8. DC Current Characteristics (Sheet 1 of 3)  
V
=1.35 V –  
1.8 V  
CCQ  
V
= 1.8 V  
CCQ  
(1)  
Sym  
Parameter  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
128 Mbit  
Typ Max Typ Max  
Typ  
Max  
V
V
V
= V Max  
CC  
CC  
I
I
Input Load  
9
TBD  
1
1
1
1
µA  
µA  
= V  
Max  
LI  
CCQ  
= V  
CCQ  
CCQ  
or GND  
IN  
V
V
V
= V Max  
CC  
CC  
CCQ  
IN  
Output  
Leakage  
DQ[15:0]  
TBD  
= V  
Max  
or GND  
LO  
CCQ  
= V  
CCQ  
.18µm  
V
V
= V Max  
CC  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
5
8
5
18  
50  
18  
5
8
5
25  
70  
25  
CC  
I
CCS  
= V  
Max  
CCQ  
CCQ  
V
Standby  
10  
11  
µA  
µA  
CC  
CE# = V  
RST# =V  
CC  
SSQ  
.13µm  
I
CCS  
.18µm  
V = V Max  
CC CC  
I
V
= V  
Max  
CCAPS  
CCQ  
CCQ  
CE# = V  
RST# =V  
All other inputs =V  
SSQ  
CCQ  
APS  
.13µm  
TBD  
TBD  
8
50  
8
70  
or  
CCQ  
I
CCAPS  
V
SSQ  
24  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 8. DC Current Characteristics (Sheet 2 of 3)  
V
=1.35 V –  
1.8 V  
CCQ  
V
= 1.8 V  
CCQ  
Sym  
Parameter (1)  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
128 Mbit  
Typ Max Typ Max  
Typ  
Max  
Asynchronous  
Page Mode  
f=13 MHz  
2
TBD  
TBD  
3
6
4
7
mA 4 Word Read  
Burst length  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
6
13  
14  
18  
20  
16  
18  
22  
25  
17  
20  
25  
30  
6
8
13  
14  
19  
20  
16  
18  
22  
25  
mA  
= 4  
Burst length  
8
mA  
= 8  
Synchronous  
CLK = 40 MHz  
2
Burst length  
=16  
V
V
=
Max  
CC  
CC  
10  
11  
7
11  
11  
7
mA  
Average  
CE# = V  
OE# = V  
Inputs = V  
or V  
IL  
IH  
IH  
I
V
Burst length  
mA  
CCR  
CC  
Read  
= Continuous  
Burst length  
IL  
mA  
= 4  
Burst length  
10  
12  
13  
8
10  
12  
13  
mA  
= 8  
Synchronous  
CLK = 54 MHz  
2
Burst length  
= 16  
mA  
Burst length  
mA  
= Continuous  
Burst length  
= 4  
N.A. N.A. mA  
N.A. N.A. mA  
N.A. N.A. mA  
N.A. N.A. mA  
V
V
=
Max  
CC  
CC  
Burst length  
= 8  
11  
14  
16  
Average  
Synchronous  
CLK = 66 MHz  
CE# = V  
OE# = V  
IH  
Inputs = V  
IL  
I
V
2, 3  
CCR  
CC  
Burst length  
= 16  
Read  
IH  
or V  
IL  
Burst length  
= Continuous  
V
= V  
Program in  
Program in  
PP2,  
PP  
PP1,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
18  
8
40  
15  
40  
15  
18  
18  
18  
8
40  
15  
40  
15  
25  
25  
mA  
mA  
mA  
mA  
µA  
Progress  
I
I
V
V
Program  
3,4,5  
3,4,5  
CCW  
CCE  
CC  
V
= V  
PP  
Progress  
V
= V  
Block Erase in  
Block Erase in  
Program Sus-  
Erase Sus-  
PP  
PP1,  
18  
8
18  
8
Progress  
Block Erase  
CC  
V
= V  
PP  
PP2,  
Progress  
CE# = V  
pended  
CC,  
I
I
V
V
Program Suspend  
Erase Suspend  
6
6
5
5
CCWS  
CCES  
CC  
CE# = V  
pended  
CC,  
5
5
µA  
CC  
Datasheet  
25  
Intel® Wireless Flash Memory (W18)  
Table 8. DC Current Characteristics (Sheet 3 of 3)  
V
=1.35 V –  
1.8 V  
CCQ  
V
= 1.8 V  
CCQ  
(1)  
Sym  
Parameter  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
128 Mbit  
Typ Max Typ Max  
Typ  
Max  
I
PPS  
V
V
V
Standby  
PP  
PP  
PP  
(I  
,
PPWS  
Program Suspend  
Erase Suspend  
3
TBD  
TBD  
0.2  
2
5
0.2  
2
5
µA  
µA  
V
<V  
PP CC  
I
)
PPES  
PPR  
V
V
V  
CC  
I
V
Read  
TBD  
TBD  
TBD  
TBD  
15  
15  
PP  
PP  
= V  
Program in  
Program in  
Erase in  
PP  
PP1,  
0.05 0.10 0.05 0.10  
22 16 37  
0.05 0.10 0.05 0.10  
22 22  
Progress  
I
V
Program  
4
4
mA  
mA  
PPW  
PPE  
PP  
V
= V  
PP  
PP2,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
8
Progress  
V
= V  
PP  
PP1,  
Progress  
I
V
Erase  
PP  
V
= V Erase in  
PP2,  
PP  
8
8
Progress  
NOTES:  
1. All currents are RMS unless noted. Typical values at typical V , T = +25°C.  
CC  
A
2. Automatic Power Savings (APS) reduces I  
for details.  
to approximately standby levels in static operation. See I  
specification  
CCR  
CCRQ  
3. Sampled, not 100% tested.  
4. V read + program current is the sum of V read and V program currents.  
CC  
CC  
CC  
CC  
CC  
CC  
plus I  
.
CCR  
CCES  
outside their valid ranges.  
PPH  
11.Refer to section Section 8.2, “Automatic Power Savings (APS)” on page 48 for I  
12.TBD values are to be determined pending silicon characterization.  
measurement details.  
CCAPS  
6.2  
DC Voltage Characteristics  
Table 9. DC Voltage Characteristics (Sheet 1 of 2)  
V
=1.35 V – 1.8 V  
V
= 1.8 V  
CCQ  
CCQ  
Sym  
Parameter (1)  
Note  
32/64/128 Mbit  
32/64 Mbit  
128 Mbit  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
0.4  
Min  
Max  
V
V
V
Input Low  
Input High  
Output Low  
8
0
0.2  
0
0
0.4  
V
V
IL  
V
– 0.2  
V
– 0.4  
V
CCQ  
– 0.4  
CCQ  
CCQ  
V
V
V
CCQ  
IH  
OL  
CCQ  
CCQ  
V
V
= V Min  
CC  
CC  
0.1  
0.1  
0.1  
V
= V  
Min  
CCQ  
CCQ  
I
= 100 µA  
OL  
26  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 9. DC Voltage Characteristics (Sheet 2 of 2)  
V
=1.35 V – 1.8 V  
V
= 1.8 V  
CCQ  
CCQ  
Sym  
Parameter (1)  
Note  
32/64/128 Mbit  
Min Max  
32/64 Mbit  
Min Max  
128 Mbit  
Unit  
Test Condition  
Min  
Max  
V
Output High  
V
= V Min  
CC CC  
CCQ  
= –100 µA  
OH  
V
– 0.1  
V
– 0.1  
V
CCQ  
– 0.1  
CCQ  
CCQ  
V
V
I
= V  
Min  
CCQ  
OH  
V
V
V
V
V
V
Lock-Out  
Lock  
7
0.4  
1.0  
0.4  
0.4  
V
V
V
PPLK  
LKO  
PP  
1.0  
0.9  
1.0  
0.9  
CC  
Lock  
TBD  
ILKOQ  
CCQ  
NOTE: For all numbered note references in this table, refer to the notes in Table 8, “DC Current Characteristics” on page 24.  
Datasheet  
27  
Intel® Wireless Flash Memory (W18)  
7.0  
AC Characteristics  
7.1  
AC I/O Test Conditions  
Figure 8. AC Input/Output Reference Waveform  
VCCQ  
Test P  
oints  
Input  
VCCQ/2  
VCCQ/2  
Output  
0V  
NOTE: Input timing begins, and output timing ends, at V  
/2. Input rise and fall times (10% to 90%) < 5 ns.  
CCQ  
Worst case speed conditions are when V = V Min.  
CC  
CC  
Figure 9. Transient Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
NOTE: See Table 17 for component values.  
Table 10. Test Configuration Component Values for Worst Case Speed Conditions  
Test Configuration  
C
(pF)  
R
(k)  
R (k)  
2
L
1
V
V
Min-Extended (1.35 V) Standard Test  
Min (1.7 V) Standard Test  
30  
30  
13.5  
16.7  
13.5  
16.7  
CCQ  
CCQ  
NOTE: C includes jig capacitance.  
L
28  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 10. Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
7.2  
Device Capacitance  
TA = +25 °C, f = 1 MHz  
Symbol  
Parameter§  
Typ  
Max  
Unit  
Condition  
V = 0.0 V  
IN  
C
C
C
Input Capacitance  
Output Capacitance  
CE# Input Capacitance  
6
8
8
pF  
pF  
pF  
IN  
12  
12  
V
= 0.0 V  
OUT  
CE  
OUT  
10  
V
= 0.0 V  
IN  
§Sampled, not 100% tested.  
Datasheet  
29  
Intel® Wireless Flash Memory (W18)  
7.3  
Read Operations – .13 µm Lithography  
Table 11. Read Operations— .13 µm Lithography (Sheet 1 of 2)  
V
=
V
=
CCQ  
CCQ  
1.35 V – 1.8 V  
-65 -85  
Min Max Min Max Min Max Min Max  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-60 -80  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
7,8  
7,8  
7,8  
4
65  
85  
60  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVQV  
ELQV  
GLQV  
PHQV  
ELQX  
GLQX  
EHQZ  
GHQZ  
OH  
Address to Output Valid  
CE# Low to Output Valid  
OE# Low to Output Valid  
RST# High to Output Valid  
CE# Low to Output Low-Z  
OE# Low to Output Low-Z  
CE# High to Output High-Z  
OE# High to Output High-Z  
CE# (OE#) High to Output Low-Z  
65  
65  
85  
85  
60  
60  
80  
80  
25  
30  
20  
25  
150  
150  
150  
150  
5
0
0
0
0
0
0
0
0
4,5  
5
17  
14  
20  
14  
14  
14  
17  
14  
4,5  
4,5  
0
0
0
0
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R108  
t
t
t
t
t
t
t
Address Setup to ADV# High  
CE# Low to ADV# High  
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVVH  
ELVH  
VLQV  
VLVH  
VHVL  
VHAX  
APA  
10  
10  
10  
10  
ADV# Low to Output Valid  
ADV# Pulse Width Low  
7,8  
3
65  
85  
60  
80  
7
7
7
7
7
7
7
7
7
7
7
7
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
25  
54  
30  
40  
20  
66  
25  
54  
Clock Specifications  
R200  
R201  
R202  
R203  
f
t
t
t
CLK Frequency  
MHz  
ns  
CLK  
CLK Period  
18.5  
4.5  
25  
15  
18.5  
4.5  
CLK  
CLK High or Low Time  
CLK Fall or Rise Time  
9.5  
3.5  
ns  
CH/L  
CHCL  
3
3
3
3
ns  
30  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 11. Read Operations— .13 µm Lithography (Sheet 2 of 2)  
V
=
V
=
CCQ  
CCQ  
1.35 V – 1.8 V  
-65 -85  
Min Max Min Max Min Max Min Max  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-60 -80  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R308  
R309  
R310  
t
t
t
t
t
t
t
t
t
t
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
7
7
7
7
7
7
7
7
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVCH  
VLCH  
ELCH  
CHQV  
CHQX  
CHAX  
CHTV  
ELTV  
8
14  
20  
11  
14  
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
3
7
3
7
3
7
3
7
3
8
14  
14  
14  
20  
20  
20  
11  
11  
11  
14  
14  
14  
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
CE# Pulse Width High  
6
5,6  
6
EHTZ  
EHEL  
14  
14  
14  
14  
Datasheet  
31  
Intel® Wireless Flash Memory (W18)  
7.4  
Read Operations – .18 µm Lithography  
Table 12. Read Operations — .18 µm Lithography (Sheet 1 of 2)  
32/64 Mbit  
128 Mbit  
-85  
#
Sym  
Parameter (1,2)  
Notes  
–70  
–85  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
70  
85  
85  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVQV  
ELQV  
GLQV  
PHQV  
ELQX  
GLQX  
EHQZ  
GHQZ  
OH  
Address to Output Delay  
70  
70  
85  
85  
85  
85  
CE# Low to Output Delay  
OE# Low to Output Delay  
RST# High to Output Delay  
CE# Low to Output in Low-Z  
OE# Low to Output in Low-Z  
CE# High to Output in High-Z  
OE# High to Output in High-Z  
CE# (OE#) High to Output in Low-Z  
4
30  
30  
30  
150  
150  
150  
5
0
0
0
0
0
0
4,5  
5
20  
14  
20  
14  
20  
14  
4,5  
4,5  
0
0
0
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R108  
t
t
t
t
t
t
t
Address Setup to ADV# High  
CE# Low to ADV# High  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVVH  
ELVH  
VLQV  
VLVH  
VHVL  
VHAX  
APA  
ADV# Low to Output Delay  
ADV# Pulse Width Low  
70  
85  
85  
10  
10  
9
10  
10  
9
10  
10  
9
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
3
20  
52  
25  
40  
25  
40  
Clock Specifications  
R200  
R201  
R202  
R203  
f
t
t
t
CLK Frequency  
MHz  
ns  
CLK  
CLK Period  
19  
5
25  
5
25  
5
CLK  
CLK High or Low Time  
CLK Fall or Rise Time  
ns  
CH/L  
CHCL  
3
3
3
ns  
32  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 12. Read Operations — .18 µm Lithography (Sheet 2 of 2)  
32/64 Mbit  
128 Mbit  
-85  
#
Sym  
Parameter (1,2)  
Notes  
–70  
–85  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R308  
R309  
R310  
t
t
t
t
t
t
t
t
t
t
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
9
10  
9
9
10  
9
9
10  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVCH  
VLCH  
ELCH  
CHQV  
CHQX  
CHAX  
CHTV  
ELTV  
14  
18  
18  
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
3.5  
10  
3.5  
10  
3.5  
10  
3
14  
14  
20  
18  
18  
25  
18  
18  
25  
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
CE# Pulse Width High  
6
5,6  
6
EHTZ  
EHEL  
15  
20  
20  
NOTES:  
1. See Figure 8, “AC Input/Output Reference Waveform” on page 28 for timing measurements and maximum allowable input  
slew rate.  
2. AC specifications assume the data bus voltage is less than or equal to V  
when a read operation is initiated.  
CCQ  
3. Address hold in synchronous-burst mode is defined as t  
or t  
, whichever timing specification is satisfied first.  
CHAX  
VHAX  
4. OE# may be delayed by up to t  
5. Sampled, not 100% tested.  
– t  
after the falling edge of CE# without impact to t  
.
ELQV GLQV  
ELQV  
6. Applies only to subsequent synchronous reads.  
7. During the initial access of a synchronous burst read, data from the first word may begin to be driven onto the data bus as  
early as the first clock edge after t  
.
AVQV  
8. All specs above apply to all densities.  
x
Datasheet  
33  
Intel® Wireless Flash Memory (W18)  
Figure 11. Asynchronous Read Operation Waveform  
R1  
VIH  
Address [A]  
VIL  
Valid  
Address  
R2  
VIH  
CE# [E]  
VIL  
R3  
R8  
R9  
VIH  
OE# [G]  
VIL  
R4  
R7  
VIH  
WE# [W]  
VIL  
VOH  
High Z  
High Z  
Note 1  
WAIT [T]  
VOL  
VOH  
VOL  
High Z  
Valid  
Output  
Data [D/Q]  
R5  
R10  
VIH  
VIL  
RST# [P]  
NOTES:.  
1. WAIT shown asserted (CR.10=0)  
2. ADV# assumed to be driven to VIL in this waveform  
34  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 12. Latched Asynchronous Read Operation Waveform  
R1  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
A[MAX:2] [A]  
A[1:0] [A]  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
R2  
R101  
R104  
R102  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
VIL  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
Data [Q]  
RST# [P]  
R7  
VIH  
VIL  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
R10  
VIH  
VIL  
Datasheet  
35  
Intel® Wireless Flash Memory (W18)  
Figure 13. Page-Mode Read Operation Waveform  
R1  
VIH  
Valid  
A[MAX:2] [A]  
Address  
VIL  
R2  
VIH  
Valid  
Valid  
Valid  
Valid  
A[1:0] [A]  
Address  
Address  
Address  
Address  
VIL  
R101  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
OE# [G]  
VIL  
R104  
R102  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
R7  
VIH  
WE# [W]  
WAIT [T]  
VIL  
VOH  
High Z  
High Z  
R108  
Note 1  
VOL  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Data [D/Q]  
RST# [P]  
R5  
R10  
VIH  
VIL  
NOTE: WAIT shown asserted (CR.10 = 0).  
36  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 14. Single Synchronous Read-Array Operation Waveform  
VIH  
VIL  
Note 1  
CLK [C]  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
VIH  
VIL  
R309  
R10  
R308  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 14.2, “First Access Latency Count (CR[13:11])” on page 80 describes how to insert clock cycles  
during the initial access.  
2. WAIT (shown asserted; CR.10=0) can be configured to assert either during, or one data cycle before, valid  
data.  
3. This waveform illustrates the case in which an x-word burst is initiated to the main array and it is terminated  
by a CE# de-assertion after the first word in the burst. If this access had been done to Status, ID, or Query  
reads, the asserted (low) WAIT signal would have remained asserted (low) as long as CE# is asserted (low).  
Datasheet  
37  
Intel® Wireless Flash Memory (W18)  
Figure 15. Synchronous 4-Word Burst Read Operation Waveform  
VIH  
Note 1  
CLK [C]  
0
1
VIL  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
R310  
R8  
VIH  
VIL  
R3  
R102  
R4  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
R9  
VIH  
VIL  
R309  
R10  
R308  
R307  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 14.2, “First Access Latency Count (CR[13:11])” on page 80 describes how to insert clock cycles  
during the initial access.  
2. WAIT (shown asserted; CR.10 = 0) can be configured to assert either during, or one data cycle before, valid  
data.  
38  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 16. WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform  
VIH  
VIL  
Note 1  
CLK [C]  
0
1
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R4  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [D/Q]  
R303  
R7  
VIH  
VIL  
R308  
R307  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
R5  
VIH  
RST# [P]  
VIL  
NOTES:  
1. Section 14.2, “First Access Latency Count (CR[13:11])” on page 80 describes how to insert clock cycles  
during the initial access.  
2. WAIT (shown asserted; CR.10=0) can be configured to assert either during, or one data cycle before, valid  
data. (assumed wait delay of two clocks for example)  
Datasheet  
39  
Intel® Wireless Flash Memory (W18)  
Figure 17. WAIT Signal in Synchronous Non-Read Array Operation Waveform  
VIH  
Note 1  
CLK [C]  
VIL  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
VIH  
VIL  
R309  
R10  
R308  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 14.2, “First Access Latency Count (CR[13:11])” on page 80 describes how to insert clock cycles  
during the initial access.  
2. WAIT shown asserted (CR.10=0).  
40  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 18. Burst Suspend  
R304  
R305  
R305  
R305  
CLK  
R1  
R2  
Address [A]  
R101  
R105  
R106  
ADV#  
CE# [E]  
OE# [G]  
R3  
R8  
R9  
R4  
R9  
R4  
R13  
R12  
WAIT [T]  
WE# [W]  
R7  
R6  
R304  
Q1  
R304  
Q2  
DATA [D/Q]  
Q0  
Q1  
NOTE:  
1. During Burst Suspend Clock signal can be held high or low  
Datasheet  
41  
Intel® Wireless Flash Memory (W18)  
7.5  
AC Write Operations  
Table 13. AC Write Characteristics – .13 µm Lithography  
V
=
V
=
CCQ  
CCQ  
1.35 V – 1.8 V  
-65 -85  
Min Max Min Max Min Max Min Max  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-60 -80  
RST# High Recovery to WE#  
(CE#) Low  
W1  
W2  
t
(t  
)
3
150  
0
150  
0
150  
0
150  
0
ns  
ns  
PHWL PHEL  
CE# (WE#) Setup to WE# (CE#)  
Low  
t
(t  
)
ELWL WLEL  
WE# (CE#) Write Pulse Width  
Low  
W3  
W4  
W5  
t
(t  
)
4
50  
50  
50  
60  
60  
60  
40  
40  
40  
60  
60  
60  
ns  
ns  
ns  
WLWH ELEH  
t
(t  
)
Data Setup to WE# (CE#) High  
DVWH DVEH  
Address Setup to WE# (CE#)  
High  
t
(t  
)
AVWH AVEH  
t
(t  
CE# (WE#) Hold from WE# (CE#)  
High  
WHEH  
EHWH  
W6  
W7  
W8  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
)
t
(t  
)
)
Data Hold from WE# (CE#) High  
WHDX EHDX  
Address Hold from WE# (CE#)  
High  
t
(t  
WHAX EHAX  
W9  
t
(t  
)
)
WE# (CE#) Pulse Width High  
VPP Setup to WE# (CE#) High  
VPP Hold from Valid SRD  
5,6,7  
3
20  
200  
0
25  
200  
0
20  
200  
0
25  
200  
0
ns  
ns  
ns  
ns  
ns  
ns  
WHWL EHEL  
W10  
W11  
W12  
W13  
W14  
t
(t  
VPWH VPEH  
t
t
3,8  
3,8  
3
QVVL  
QVBL  
WP# Hold from Valid SRD  
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
0
0
0
0
t
(t  
)
)
200  
0
200  
0
200  
0
200  
0
BHWH BHEH  
t
(t  
WHGL EHGL  
tAVQV  
+ 25  
tAVQV  
+ 55  
tAVQV  
+20  
tAVQV  
+50  
W16  
t
WE# High to Valid Data  
3,6,10  
ns  
WHQV  
W18  
W19  
W20  
t
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
3,9,10  
3,10  
0
0
0
0
ns  
ns  
ns  
WHAV  
WHCV  
WHVH  
t
t
16  
16  
20  
20  
12  
12  
20  
20  
3,10  
NOTES:  
1. Write timing characteristics during erase suspend are the same as during write-only operations.  
2. A write operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width low (t  
(whichever occurs first). Hence, t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
WLWH  
ELEH  
= t  
= t  
= t  
.
ELWH  
WLWH  
ELEH  
WLEH  
5. Write pulse width high (t  
or t  
) is defined from CE# or WE# high (whichever is first) to CE# or WE# low (whichever is  
WHWL  
EHEL  
EHEL  
last). Hence, t  
= t  
= t  
= t  
.
WHWL  
WHEL  
EHWL  
6. System designers should take this into account and may insert a software No-Op instruction to delay the first read after  
issuing a command.  
7. For commands other than resume commands.  
8. V should be held at V  
9. Applicable during asynchronous reads following a write.  
or V  
until block erase or program success is determined.  
PP  
PP1  
PP2  
10.tWHCH/L OR tWHVH must be met when transitioning from a write cycle to a synchronous burst read. tWHCH/L and tWHVH both refer to  
the address latching event (either the rising/falling clock edge or the rising ADV# edge, whichever occurs first).  
42  
Datasheet  
Intel® Wireless Flash Memory (W18)  
l
Table 14. AC Write Characteristics – .18 µm Lithography  
32-Mbit  
64-Mbit  
128-Mbit  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-70  
-85  
Min Max Min Max  
W1  
W2  
t
(t  
)
RST# High Recovery to WE# (CE#) Low  
CE# (WE#) Setup to WE# (CE#) Low  
WE# (CE#) Write Pulse Width Low  
Data Setup to WE# (CE#) High  
Address Setup to WE# (CE#) High  
CE# (WE#) Hold from WE# (CE#) High  
Data Hold from WE# (CE#) High  
Address Hold from WE# (CE#) High  
WE# (CE#) Pulse Width High  
3
4
150  
0
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHWL PHEL  
t
(t  
)
ELWL WLEL  
W3  
t
(t  
)
45  
45  
45  
0
60  
60  
60  
0
WLWH ELEH  
W4  
t
(t  
)
DVWH DVEH  
W5  
t
(t  
)
AVWH AVEH  
W6  
t
(t  
)
WHEH EHWH  
W7  
t
(t  
)
0
0
WHDX EHDX  
W8  
t
(t  
)
)
)
0
0
WHAX EHAX  
W9  
t
(t  
5,6,7  
3
25  
200  
0
25  
200  
0
WHWL EHEL  
W10  
W11  
W12  
W13  
W14  
t
(t  
VPP Setup to WE# (CE#) High  
VPP Hold from Valid SRD  
VPWH VPEH  
t
t
3,8  
3,8  
3
QVVL  
QVBL  
WP# Hold from Valid SRD  
0
0
t
(t  
)
)
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
200  
0
200  
0
BHWH BHEH  
t
(t  
WHGL EHGL  
tAVQV  
+ 40  
tAVQV  
+ 50  
W16  
t
WE# High to Valid Data  
3,6,10  
ns  
WHQV  
W18  
t
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
3,9,10  
3,10  
0
0
ns  
ns  
ns  
WHAV  
WHCV  
WHVH  
W19  
t
t
20  
20  
20  
20  
W20  
3,10  
NOTES:  
1. Write timing characteristics during erase suspend are the same as during write-only operations.  
2. A write operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width low (t  
high (whichever occurs first). Hence, t  
5. Write pulse width high (t  
(whichever is last). Hence, t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE#  
WLWH  
ELEH  
= t  
= t  
= t  
.
ELWH  
WLWH  
ELEH  
WLEH  
or t  
) is defined from CE# or WE# high (whichever is first) to CE# or WE# low  
WHWL  
EHEL  
= t  
= t  
= t  
.
EHWL  
WHWL  
EHEL  
WHEL  
6. System designers should take this into account and may insert a software No-Op instruction to delay the first  
read after issuing a command.  
7. For commands other than resume commands.  
8. V should be held at V  
9. Applicable during asynchronous reads following a write.  
or V  
until block erase or program success is determined.  
PP  
PP1  
PP2  
10.tWHCH/L OR tWHVH must be met when transitioning from a write cycle to a synchronous burst read. tWHCH/L and tWHVH  
both refer to the address latching event (either the rising/falling clock edge or the rising ADV# edge, whichever  
occurs first).  
Datasheet  
43  
Intel® Wireless Flash Memory (W18)  
Figure 19. Write Operations Waveform  
VIH  
CLK [C]  
VIL  
W19  
Note 1  
Note 2  
W5  
Note 3  
Note 4  
W18  
Note 5  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Address [A]  
R101  
R105  
VIH  
R106  
W8  
ADV# [V]  
VIL  
R104  
W2  
W20  
VIH  
VIL  
Note 6  
CE# (WE#) [E(W)]  
OE# [G]  
W6  
VIH  
VIL  
W3  
W14  
W9  
VIH  
VIL  
Note 6  
WE# (CE#) [W(E)]  
Data [Q]  
W1  
W7  
W16  
VIH  
VIL  
Valid  
SRD  
Data In  
Data In  
W4  
VIH  
VIL  
RST# [P]  
W12  
W11  
W13  
W10  
VIH  
VIL  
WP# [B]  
VPPH  
VPPLK  
VIL  
VPP [V]  
NOTES:  
1. V power-up and standby.  
CC  
2. Write Program or Erase Setup command.  
3. Write valid address and data (for program) or Erase Confirm command.  
4. Automated program/erase delay.  
5. Read status register data (SRD) to determine program/erase operation completion.  
6. OE# and CE# must be asserted and WE# must be deasserted for read operations.  
7. CLK is ignored. (but may be kept active/toggling)  
44  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 20. Asynchronous Read to Write Operation Waveform  
R1  
R2  
W5  
W8  
Address [A]  
CE# [E}  
R3  
R8  
R4  
R9  
OE# [G]  
W3  
W2  
W6  
WE# [W]  
R7  
R6  
W7  
R10  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Figure 21. Asynchronous Write to Read Operation  
W5  
W8  
R1  
Address [A]  
W2  
W6  
R10  
CE# [E}  
W3  
W18  
WE# [W]  
W14  
OE# [G]  
R4  
R2  
R3  
W7  
R9  
W4  
R8  
Data [D/Q]  
RST# [P]  
D
Q
W1  
Datasheet  
45  
Intel® Wireless Flash Memory (W18)  
Figure 22. Synchronous Read to Write Operation  
Latency Count  
R301  
R302  
R306  
CLK[C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R106  
R102  
R104  
W20  
ADV# [V]  
R303  
R3  
R11  
W6  
CE# [E]  
R4  
R8  
OE# [G]  
W15  
W19  
W9  
W3  
W2  
W8  
WE#  
R12  
R307  
R304  
WAIT [T]  
R13  
R7  
R305  
W7  
Data [D /Q]  
Q
D
D
Figure 23. Synchronous Write To Read Operation  
Lat ency Count  
R2  
R302  
R301  
CLK  
W5  
W8  
R306  
Address [A]  
ADV#  
W20  
R106  
R104  
W6  
R303  
W2  
R11  
CE# [E}  
W18  
W19  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R12  
R307  
W7  
R304  
R304  
R305  
W4  
R3  
Data [D/Q]  
RST# [P]  
D
Q
Q
W1  
46  
Datasheet  
Intel® Wireless Flash Memory (W18)  
7.6  
Erase and Program Times  
Table 15. Erase and Program Times  
V
V
PP2  
PP1  
Operation  
Symbol  
Parameter  
Description1  
Notes  
Unit  
Typ  
Max  
Typ  
Max  
Erasing and Suspending  
W500  
Erase Time  
tERS/PB  
4-Kword Parameter Block  
32-Kword Main Block  
Program Suspend  
2,3  
2,3  
2
0.3  
0.7  
5
2.5  
4
0.25  
0.4  
5
2.5  
4
s
s
W501  
t
t
t
ERS/MB  
SUSP/P  
SUSP/E  
W600  
10  
20  
10  
20  
µs  
µs  
Suspend  
Latency  
W601  
Erase Suspend  
2
5
5
Programming  
W200  
tPROG/W  
tPROG/PB  
tPROG/MB  
Single Word  
2
12  
0.05  
0.4  
150  
.23  
1.8  
8
130  
0.07  
0.6  
µs  
s
Program  
Time  
W201  
4-Kword Parameter Block  
32-Kword Main Block  
2,3  
2,3  
0.03  
0.24  
W202  
s
Enhanced Factory Programming5  
W400  
W401  
W402  
W403  
W404  
W405  
tEFP/W  
tEFP/PB  
tEFP/MB  
Single Word  
4
N/A  
N/A  
N/A  
N/A  
3.1  
15  
16  
µs  
ms  
ms  
µs  
µs  
µs  
Program  
4-Kword Parameter Block  
32-Kword Main Block  
EFP Setup  
2,3  
2,3  
120  
t
t
t
N/A  
N/A  
N/A  
5
EFP/SETUP  
EFP/TRAN  
EFP/VERIFY  
Operation  
Latency  
Program to Verify Transition  
Verify  
N/A  
N/A  
2.7  
1.7  
5.6  
130  
NOTES:  
1. Unless noted otherwise, all parameters are measured at T = +25 °C and nominal voltages, and they are sampled, not 100%  
A
tested.  
2. Excludes external system-level overhead.  
3. Exact results may vary based on system overhead.  
4. W400-Typ is the calculated delay for a single programming pulse. W400-Max includes the delay when programming within a  
new word-line.  
5. Some EFP performance degradation may occur if block cycling exceeds 10.  
8.0  
Power and Reset Specifications  
1.8 Volt Intel® Wireless Flash memory devices have a layered approach to power savings that can  
significantly reduce overall system power consumption. The APS feature reduces power  
consumption when the device is selected but idle. If CE# is deasserted, the memory enters its  
standby mode, where current consumption is even lower. Asserting RST# provides current savings  
similar to standby mode. The combination of these features can minimize memory power  
consumption, and therefore, overall system power consumption.  
Datasheet  
47  
Intel® Wireless Flash Memory (W18)  
8.1  
8.2  
Active Power  
With CE# at VIL and RST# at VIH, the device is in the active mode. Refer to Section 6.1, “DC  
Current Characteristics (.13 µm and .18 µm)” on page 24, for ICC values. When the device is in  
“active” state, it consumes the most power from the system. Minimizing device active current  
therefore reduces system power consumption, especially in battery-powered applications.  
Automatic Power Savings (APS)  
Automatic Power Saving (APS) provides low-power operation during a read’s active state. During  
APS mode, ICCAPS is the average current measured over any 5 ms time interval 5 µs after the  
following events happen:  
There is no internal sense activity;  
CE# is asserted;  
The address lines are quiescent, and at VSSQ or VCCQ  
.
OE# may be asserted during APS.  
8.3  
Standby Power  
With CE# at VIH and the device in read mode, the flash memory is in standby mode, which disables  
most device circuitry and substantially reduces power consumption. Outputs are placed in a high-  
impedance state independent of the OE# signal state. If CE# transitions to VIH during erase or  
program operations, the device continues the operation and consumes corresponding active power  
until the operation is complete. ICCS is the average current measured over any 5 ms time interval 5  
µs after a CE# de-assertion.  
8.4  
Power-Up/Down Characteristics  
The device is protected against accidental block erasure or programming during power transitions.  
Power supply sequencing is not required if VCC, VCCQ, and VPP are connected together; so it  
doesn’t matter whether VPP or VCC powers-up first. If VCCQ and/or VPP are not connected to the  
system supply, then VCC should attain VCCMIN before applying VCCQ and VPP. Device inputs  
should not be driven before supply voltage = VCCMIN. Power supply transitions should only occur  
when RST# is low.  
8.4.1  
System Reset and RST#  
The use of RST# during system reset is important with automated program/erase devices because  
the system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. To allow proper CPU/flash initialization  
at system reset, connect RST# to the system CPU RESET# signal.  
48  
Datasheet  
Intel® Wireless Flash Memory (W18)  
System designers must guard against spurious writes when VCC voltages are above VLKO  
.
Because both WE# and CE# must be low for a command write, driving either signal to VIH inhibits  
writes to the device. The CUI architecture provides additional protection because alteration of  
memory contents can only occur after successful completion of the two-step command sequences.  
The device is also disabled until RST# is brought to VIH, regardless of its control input states. By  
holding the device in reset (RST# connected to system PowerGood) during power-up/down,  
invalid bus conditions during power-up can be masked, providing yet another level of memory  
protection.  
8.4.2  
VCC, VPP, and RST# Transitions  
The CUI latches commands issued by system software and is not altered by VPP or CE# transitions  
or WSM actions. Read-array mode is its power-up default state after exit from reset mode or after  
VCC transitions above VLKO (Lockout voltage).  
After completing program or block erase operations (even after VPP transitions below VPPLK), the  
Read Array command must reset the CUI to read-array mode if flash memory array access is  
desired.  
8.5  
Power Supply Decoupling  
When the device is accessed, many internal conditions change. Circuits are enabled to charge  
pumps and switch voltages. This internal activity produces transient noise. To minimize the effect  
of this transient noise, device decoupling capacitors are required. Transient current magnitudes  
depend on the device outputs’ capacitive and inductive loading. Two-line control and proper  
decoupling capacitor selection suppresses these transient voltage peaks. Each flash device should  
have a 0.1 µF ceramic capacitor connected between each power (VCC, VCCQ, VPP), and ground  
(VSS, VSSQ) signal. High-frequency, inherently low-inductance capacitors should be as close as  
possible to package signals.  
8.6  
Reset Specifications  
Table 16. Reset Specifications  
#
Symbol  
Parameter1  
Notes  
Min  
Max  
Unit  
P1  
t
t
t
RST# Low to Reset during Read  
RST# Low to Reset during Block Erase  
RST# Low to Reset during Program  
VCC Power Valid to Reset  
1, 2, 3, 4  
1, 3, 4, 5  
1, 3, 4, 5  
1,3,4,5,6  
100  
ns  
µs  
µs  
µs  
PLPH  
20  
10  
P2  
PLRH  
P3  
60  
VCCPH  
NOTES:  
1. These specifications are valid for all product versions (packages and speeds).  
2. The device may reset if t < t Min, but this is not guaranteed.  
PLPH PLPH  
3. Not applicable if RST# is tied to VCC.  
4. Sampled, but not 100% tested.  
5. If RST# is tied to VCC, the device is not ready until t  
occurs after when V V Min.  
CC CC  
VCCPH  
6. If RST# is tied to any supply/signal with V  
voltage levels, the RST# input voltage must not exceed V until V  
CCQ  
CC  
CC  
V
Min.  
CC  
Datasheet  
49  
Intel® Wireless Flash Memory (W18)  
Figure 24. Reset Operations Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
read mode  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
9.0  
Device Operations  
This section provides an overview of device operations. The 1.8 Volt Intel® Wireless Flash memory  
family includes an on-chip WSM to manage block erase and program algorithms. Its CUI allows  
minimal processor overhead with RAM-like interface timings.  
9.1  
Bus Operations  
Table 17. Bus Operations  
Mode  
RST#  
CE#  
OE#  
WE#  
ADV#  
WAIT  
D[15:0]  
Notes  
Reset  
Write  
Read  
V
X
X
X
X
High-Z  
Asserted  
Active  
High-Z  
1,2  
3
IL  
V
V
V
V
V
V
V
V
V
V
V
D
IN  
IH  
IH  
IH  
IH  
IL  
IL  
IL  
IH  
IH  
IL  
IH  
IH  
IL  
IL  
V
V
V
D
4
IL  
OUT  
Output Disable  
Standby  
V
X
Asserted  
High-Z  
High-Z  
High-Z  
1
IH  
V
X
X
X
1
NOTES:  
1. X = Don’t Care (V or V ).  
IL  
SS  
IH  
2. RST# must be at V  
0.2 V to meet the maximum specified power-down current.  
3. Refer to the Table 19, “Bus Cycle Definitions” on page 55 for valid D during a write operation.  
IN  
4. WAIT is only valid during synchronous array read operations.  
50  
Datasheet  
Intel® Wireless Flash Memory (W18)  
9.1.1  
Read  
The 1.8 Volt Intel Wireless Flash memory has several read configurations:  
Asynchronous page mode read.  
Synchronous burst mode read — outputs four, eight, sixteen, or continuous words, from main  
blocks and parameter blocks.  
Several read modes are available in each partition:  
Read-array mode: read accesses return flash array data from the addressed locations.  
Read identifier mode: reads return manufacturer and device identifier data, block lock status,  
and protection register data. Identifier information can be accessed starting at 4-Mbit partition  
base addresses; the flash array is not accessible in read identifier mode.  
Read query mode: reads return device CFI data. CFI information can be accessed starting at  
4-Mbit partition base addresses; the flash array is not accessible in read query mode.  
Read status register mode: reads return status register data from the addressed partition. That  
partition’s array data is not accessible. A system processor can check the status register to  
determine an addressed partition’s state or monitor program and erase progress.  
All partitions support the synchronous burst mode that internally sequences addresses with respect  
to the input CLK to select and supply data to the outputs.  
Identifier codes, query data, and status register read operations execute as single-synchronous or  
asynchronous read cycles. WAIT is asserted during these reads.  
Access to the modes listed above is independent of VPP. An appropriate CUI command places the  
device in a read mode. At initial power-up or after reset, the device defaults to asynchronous read-  
array mode.  
Asserting CE# enables device read operations. The device internally decodes upper address inputs  
to determine which partition is accessed. Asserting ADV# opens the internal address latches.  
Asserting OE# activates the outputs and gates selected data onto the I/O bus. In asynchronous  
mode, the address is latched when ADV# is deasserted (when the device is configured to use  
ADV#). In synchronous mode, the address is latched by either the rising edge of ADV# or the  
rising (or falling) CLK edge while ADV# remains asserted, whichever occurs first. WE# and RST#  
must be at deasserted during read operations.  
Note: If only asynchronous reads are to be performed in your system, CLK should be tied to a valid VIH  
level, WAIT signal can be floated and ADV# must be tied to ground.  
9.1.2  
Burst Suspend  
The Burst Suspend feature allows the system to temporarily suspend a synchronous burst operation  
if the system needs to use the flash address and data bus for other purposes. Burst accesses can be  
suspended during the initial latency (before data is received) or after the device has output data.  
When a burst access is suspended, internal array sensing continues and any previously latched  
internal data is retained.  
Burst Suspend occurs when CE# is asserted, the current address has been latched (either ADV#  
rising edge or valid CLK edge), CLK is halted, and OE# is deasserted. CLK can be halted when it  
is at VIH or VIL. To resume the burst access, OE# is reasserted and CLK is restarted. Subsequent  
CLK edges resume the burst sequence where it left off.  
Datasheet  
51  
Intel® Wireless Flash Memory (W18)  
Within the device, CE# gates WAIT. Therefore, during Burst Suspend WAIT remains asserted and  
does not revert to a high-impedance state when OE# is deasserted. This can cause contention with  
another device attempting to control the system’s READY signal during a Burst Suspend. System  
using the Burst Suspend feature should not connect the device’s WAIT signal directly to the  
system’s READY signal.  
Refer to Figure 18, “Burst Suspend” on page 41.  
9.1.3  
9.1.4  
Standby  
De-asserting CE# deselects the device and places it in standby mode, substantially reducing device  
power consumption. In standby mode, outputs are placed in a high-impedance state independent of  
OE#. If deselected during a program or erase algorithm, the device shall consume active power  
until the program or erase operation completes.  
Reset  
The device enters a reset mode when RST# is asserted. In reset mode, internal circuitry is turned  
off and outputs are placed in a high-impedance state.  
After returning from reset, a time tPHQV is required until outputs are valid, and a delay (tPHWV) is  
required before a write sequence can be initiated. After this wake-up interval, normal operation is  
restored. The device defaults to read-array mode, the status register is set to 80h, and the  
configuration register defaults to asynchronous page-mode reads.  
If RST# is asserted during an erase or program operation, the operation aborts and the memory  
contents at the aborted block or address are invalid. See Figure 24, “Reset Operations Waveforms”  
on page 50 for detailed information regarding reset timings.  
Like any automated device, it is important to assert RST# during system reset. When the system  
comes out of reset, the processor expects to read from the flash memory array. Automated flash  
memories provide status information when read during program or erase operations. If a CPU reset  
occurs with no flash memory reset, proper CPU initialization may not occur because the flash  
memory may be providing status information instead of array data. 1.8 Volt Intel Flash memories  
allow proper CPU initialization following a system reset through the use of the RST# input. In this  
application, RST# is controlled by the same CPU reset signal, RESET#.  
9.1.5  
Write  
A write occurs when CE# and WE# are asserted and OE# is deasserted. Flash control commands  
are written to the CUI using standard microprocessor write timings. Proper use of the ADV# input  
is needed for proper latching of the addresses. Refer to Section 7.5, “AC Write Operations” on  
page 42 for details. The address and data are latched on the rising edge of WE#. Write operations  
are asynchronous; CLK is ignored (but still may be kept active/toggling).  
The CUI does not occupy an addressable memory location within any partition. The system  
processor must access it at the correct address range depending on the kind of command executed.  
Programming or erasing may occur in only one partition at a time. Other partitions must be in one  
of the read modes or erase suspend mode.  
Table 18, “Command Codes and Descriptions” on page 53 shows the available commands.  
Appendix A, “Write State Machine States” on page 87 provides information on moving between  
different operating modes using CUI commands.  
52  
Datasheet  
Intel® Wireless Flash Memory (W18)  
9.2  
Device Commands  
The device’s on-chip WSM manages erase and program algorithms. This local CPU (WSM)  
controls the device’s in-system read, program, and erase operations. Bus cycles to or from the flash  
memory conform to standard microprocessor bus cycles. RST#, CE#, OE#, WE#, and ADV#  
control signals dictate data flow into and out of the device. WAIT informs the CPU of valid data  
during burst reads. Table 17, “Bus Operations” on page 50 summarizes bus operations.  
Device operations are selected by writing specific commands into the device’s CUI. Table 18,  
“Command Codes and Descriptions” on page 53 lists all possible command codes and  
descriptions. Table 19, “Bus Cycle Definitions” on page 55 lists command definitions. Because  
commands are partition-specific, it is important to issue write commands within the target address  
range.  
Table 18. Command Codes and Descriptions (Sheet 1 of 2)  
Device  
Command  
Operation  
Code  
Description  
FFh  
70h  
Read Array  
Places selected partition in read-array mode.  
Read Status  
Register  
Places selected partition in status register read mode. The partition enters this  
mode after a Program or Erase command is issued to it.  
Puts the selected partition in read identifier mode. Device reads from partition  
addresses output manufacturer/device codes, configuration register data, block  
lock status, or protection register data on D[15:0].  
90h  
98h  
50h  
Read Identifier  
Read Query  
Read  
Puts the addressed partition in read query mode. Device reads from the partition  
addresses output CFI information on D[7:0].  
The WSM can set the status register’s block lock (SR[1]), V (SR[3]), program  
PP  
Clear Status  
Register  
(SR[4]), and erase (SR[5]) status bits, but it cannot clear them. SR[5:3,1] can  
only be cleared by a device reset or through the Clear Status Register command.  
This preferred program command’s first cycle prepares the CUI for a program  
operation. The second cycle latches address and data, and executes the WSM  
program algorithm at this location. Status register updates occur when CE# or  
OE# is toggled. A Read Array command is required to read array data after  
programming.  
Word Program  
Setup  
40h  
10h  
30h  
Alternate Setup  
EFP Setup  
Equivalent to a Program Setup command (40h).  
Program  
This program command activates EFP mode. The first write cycle sets up the  
command. If the second cycle is an EFP Confirm command (D0h), subsequent  
writes provide program data. All other commands are ignored after EFP mode  
begins.  
If the first command was EFP Setup (30h), the CUI latches the address and data,  
and prepares the device for EFP mode.  
D0h  
20h  
EFP Confirm  
Erase Setup  
This command prepares the CUI for Block Erase. The device erases the block  
addressed by the Erase Confirm command. If the next command is not Erase  
Confirm, the CUI sets status register bits SR[5:4] to indicate command sequence  
error and places the partition in the read status register mode.  
Erase  
If the first command was Erase Setup (20h), the CUI latches address and data,  
and erases the block indicated by the erase confirm cycle address. During  
program or erase, the partition responds only to Read Status Register, Program  
Suspend, and Erase Suspend commands. CE# or OE# toggle updates status  
register data.  
D0h  
Erase Confirm  
Datasheet  
53  
Intel® Wireless Flash Memory (W18)  
Table 18. Command Codes and Descriptions (Sheet 2 of 2)  
Device  
Command  
Operation  
Code  
Description  
This command, issued at any device address, suspends the currently executing  
program or erase operation. Status register data indicates the operation was  
successfully suspended if SR[2] (program suspend) or SR[6] (erase suspend)  
and SR[7] are set. The WSM remains in the suspended state regardless of  
control signal states (except RST#).  
Program  
Suspend or  
Erase Suspend  
B0h  
Suspend  
Suspend  
Resume  
This command, issued at any device address, resumes the suspended program  
or erase operation.  
D0h  
60h  
01h  
This command prepares the CUI lock configuration. If the next command is not  
Lock Block, Unlock Block, or Lock-Down, the CUI sets SR[5:4] to indicate  
command sequence error.  
Lock Setup  
Lock Block  
If the previous command was Lock Setup (60h), the CUI locks the addressed  
block.  
Block Locking  
If the previous command was Lock Setup (60h), the CUI latches the address and  
unlocks the addressed block. If previously locked-down, the operation has no  
effect.  
D0h Unlock Block  
If the previous command was Lock Setup (60h), the CUI latches the address and  
locks-down the addressed block.  
2Fh  
Lock-Down  
Protection  
This command prepares the CUI for a protection register program operation. The  
second cycle latches address and data, and starts the WSM’s protection register  
program or lock algorithm. Toggling CE# or OE# updates the flash status register  
data. To read array data after programming, issue a Read Array command.  
Protection  
C0h Program  
Setup  
This command prepares the CUI for device configuration. If Set Configuration  
Register is not the next command, the CUI sets SR[5:4] to indicate command  
sequence error.  
Configuration  
Setup  
60h  
03h  
Configuration  
Set  
Configuration  
Register  
If the previous command was Configuration Setup (60h), the CUI latches the  
address and writes the data from A[15:0] into the configuration register.  
Subsequent read operations access array data.  
NOTE: Do not use unassigned commands. Intel reserves the right to redefine these codes for future functions.  
54  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 19. Bus Cycle Definitions  
First Bus Cycle  
Second Bus Cycle  
Bus  
Operation  
Command  
Cycles  
Oper  
Addr1  
Data2,3  
Oper  
Addr1  
Data2,3  
Read  
Address  
Array  
Data  
Read Array/Reset  
1  
Write  
PnA  
FFh  
Read  
Read Identifier  
Read Query  
2  
2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
PnA  
PnA  
PnA  
XX  
90h  
98h  
Read  
Read  
Read  
PBA+IA  
PBA+QA  
PnA  
IC  
Read  
QD  
Read Status Register  
Clear Status Register  
Block Erase  
70h  
SRD  
1
50h  
2
BA  
20h  
Write  
Write  
Write  
BA  
WA  
WA  
D0h  
WD  
D0h  
Word Program  
EFP  
2
WA  
WA  
XX  
40h/10h  
30h  
Program  
and  
Erase  
>2  
1
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
B0h  
D0h  
60h  
1
XX  
2
BA  
Write  
Write  
Write  
BA  
BA  
BA  
01h  
D0h  
2Fh  
Lock  
Unlock Block  
2
BA  
60h  
Lock-Down Block  
2
BA  
60h  
Protection Program  
2
2
2
Write  
Write  
Write  
PA  
LPA  
CD  
C0h  
C0h  
60h  
Write  
Write  
Write  
PA  
LPA  
CD  
PD  
FFFDh  
03h  
Protection  
Lock Protection Program  
Configuration Set Configuration Register  
NOTES:  
1. First-cycle command addresses should be the same as the operation’s target address. Examples: the first-cycle address for  
the Read Identifier command should be the same as the Identification code address (IA); the first-cycle address for the Word  
Program command should be the same as the word address (WA) to be programmed; the first-cycle address for the Erase/  
Program Suspend command should be the same as the address within the block to be suspended; etc.  
XX = Any valid address within the device.  
IA = Identification code address.  
BA = Block Address. Any address within a specific block.  
LPA = Lock Protection Address is obtained from the CFI (through the Read Query command). The 1.8 Volt Intel Wireless  
Flash memory family’s LPA is at 0080h.  
PA = User programmable 4-word protection address.  
PnA = Any address within a specific partition.  
PBA = Partition Base Address. The very first address of a particular partition.  
QA = Query code address.  
WA = Word address of memory location to be written.  
2. SRD = Status register data.  
WD = Data to be written at location WA.  
IC = Identifier code data.  
PD = User programmable 4-word protection data.  
QD = Query code data on D[7:0].  
CD = Configuration register code data presented on device addresses A[15:0]. A[MAX:16] address bits can select any  
partition. See Table 26, “Configuration Register Definitions” on page 79 for configuration register bits descriptions.  
3. Commands other than those shown above are reserved by Intel for future device implementations and should not be used.  
Datasheet  
55  
Intel® Wireless Flash Memory (W18)  
9.3  
Command Sequencing  
When issuing a 2-cycle write sequence to the flash device, a read operation is allowed to occur  
between the two write cycles. The setup phase of a 2-cycle write sequence places the addressed  
partition into read-status mode, so if the same partition is read before the second “confirm” write  
cycle is issued, status register data will be returned. Reads from other partitions, however, can  
return actual array data assuming the addressed partition is already in read-array mode. Figure 25  
on page 56 and Figure 26 on page 56 illustrate these two conditions.  
Figure 25. Normal Write and Read Cycles  
Address [A]  
WE# [W]  
OE# [G]  
Partition A  
Partition A  
Partition A  
Data [Q]  
20h  
Block Erase Setup  
D0h  
Block Erase Conf irm  
FFh  
Read Array  
Figure 26. Interleaving a 2-Cycle Write Sequence with an Array Read  
Address [A]  
WE# [W]  
OE# [G]  
Partition B  
Partition A  
Partition B  
Partition A  
Data [Q]  
FFh  
Read Array  
20h  
Erase Setup  
Array Data  
Bus Read  
D0h  
Erase Confirm  
By contrast, a write bus cycle may not interrupt a 2-cycle write sequence. Doing so causes a  
command sequence error to appear in the status register. Figure 27 illustrates a command sequence  
error.  
Figure 27. Improper Command Sequencing  
Address [A]  
WE# [W]  
Partition X  
Partition Y  
Partition X  
Partition X  
OE# [G]  
Data [D/Q]  
20h  
FFh  
D0h  
SR Data  
56  
Datasheet  
Intel® Wireless Flash Memory (W18)  
10.0  
Read Operations  
10.1  
Read Array  
The Read Array command places (or resets) the partition in read-array mode and is used to read  
data from the flash memory array. Upon initial device power-up, or after reset (RST# transitions  
from VIL to VIH), all partitions default to asynchronous read-array mode. To read array data from  
the flash device, first write the Read Array command (FFh) to the CUI and specify the desired  
word address. Then read from that address. If a partition is already in read-array mode, issuing the  
Read Array command is not required to read from that partition.  
If the Read Array command is written to a partition that is erasing or programming, the device  
presents invalid data on the bus until the program or erase operation completes. After the program  
or erase finishes in that partition, valid array data can then be read. If an Erase Suspend or Program  
Suspend command suspends the WSM, a subsequent Read Array command places the addressed  
partition in read-array mode. The Read Array command functions independently of VPP.  
10.2  
Read Device ID  
The read identifier mode outputs the manufacturer/device identifier, block lock status, protection  
register codes, and configuration register data. The identifier information is contained within a  
separate memory space on the device and can be accessed along the 4-Mbit partition address range  
supplied by the Read Identifier command (90h) address. Reads from addresses in Table 20 retrieve  
ID information. Issuing a Read Identifier command to a partition that is programming or erasing  
places that partition’s outputs in read ID mode while the partition continues to program or erase in  
the background.  
Table 20. Device Identification Codes (Sheet 1 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
Manufacturer ID  
Device ID  
Partition  
00h  
0089h  
8862h  
32-Mbit TPD  
8863h  
32-Mbit BPD  
8864h  
64-Mbit TPD  
Partition  
Block  
01h  
8865h  
64-Mbit BPD  
8866h  
128-Mbit TPD  
8867h  
128-Mbit BPD  
D0 = 0  
D0 = 1  
D1 = 0  
D1 = 1  
Register Data  
Block is unlocked  
Block is locked  
Block is not locked-down  
Block is locked down  
Block Lock Status(2)  
02h  
Block Lock-Down Status(2)  
Configuration Register  
Block  
02h  
05h  
Partition  
Datasheet  
57  
Intel® Wireless Flash Memory (W18)  
Table 20. Device Identification Codes (Sheet 2 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
Protection Register Lock Status  
Protection Register  
NOTES:  
Partition  
80h  
Lock Data  
Multiple reads required to read  
Partition  
81h - 88h  
Register Data the entire 128-bit Protection  
Register.  
1. The address is constructed from a base address plus an offset. For example, to read the Block Lock Status  
for block number 38 in a BPD, set the address to the BBA (0F8000h) plus the offset (02h), i.e. 0F8002h.  
Then examine bit 0 of the data to determine if the block is locked.  
2. See Section 13.1.4, “Block Lock Status” on page 73 for valid lock status.  
10.3  
10.4  
Read Query (CFI)  
This device contains a separate CFI query database that acts as an “on-chip datasheet.” The CFI  
information within this device can be accessed by issuing the Read Query command and supplying  
a specific address. The address is constructed from the base address of a partition plus a particular  
offset corresponding to the desired CFI field. Appendix B, “Common Flash Interface” on page 90  
shows accessible CFI fields and their address offsets. Issuing the Read Query command to a  
partition that is programming or erasing puts that partition in read query mode while the partition  
continues to program or erase in the background.  
Read Status Register  
The device’s status register displays program and erase operation status. A partition’s status can be  
read after writing the Read Status Register command to any location within the partition’s address  
range. Read-status mode is the default read mode following a Program, Erase, or Lock Block  
command sequence. Subsequent single reads from that partition will return its status until another  
valid command is written.  
The read-status mode supports single synchronous and single asynchronous reads only; it doesn’t  
support burst reads. The first falling edge of OE# or CE# latches and updates status register data.  
The operation doesn’t affect other partitions’ modes. Because the status register is 8 bits wide, only  
DQ [7:0] contains valid status register data; DQ [15:8] contains zeros. See Table 21, “Status  
Register Definitions” on page 59 and Table 22, “Status Register Descriptions” on page 59.  
Each 4-Mbit partition contains its own status register. Bits SR[6:0] are unique to each partition, but  
SR[7], the Device WSM Status (DWS) bit, pertains to the entire device. SR[7] provides program  
and erase status of the entire device. By contrast, the Partition WSM Status (PWS) bit, SR[0],  
provides program and erase status of the addressed partition only. Status register bits SR[6:1]  
present information about partition-specific program, erase, suspend, VPP, and block-lock states.  
Table 23, “Status Register Device WSM and Partition Write Status Description” on page 59  
presents descriptions of DWS (SR[7]) and PWS (SR[0]) combinations.  
58  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 21. Status Register Definitions  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
DPS  
1
PWS  
0
Table 22. Status Register Descriptions  
Bit  
Name  
State  
Description  
SR[7] indicates erase or program completion in the  
device. SR[6:1] are invalid while SR[7] = 0. See Table  
23 for valid SR[7] and SR[0] combinations.  
DWS  
0 = Device WSM is Busy  
1 = Device WSM is Ready  
7
Device WSM Status  
After issuing an Erase Suspend command, the WSM  
halts and sets SR[7] and SR[6]. SR[6] remains set until  
the device receives an Erase Resume command.  
ESS  
0 = Erase in progress/completed  
6
Erase Suspend Status 1 = Erase suspended  
ES  
0 = Erase successful  
1 = Erase error  
SR[5] is set if an attempted erase failed. A Command  
Sequence Error is indicated when SR[7,5:4] are set.  
5
4
Erase Status  
PS  
0 = Program successful  
1 = Program error  
SR[4] is set if the WSM failed to program a word.  
Program Status  
The WSM indicates the V level after program or  
erase completes. SR[3] does not provide continuous  
PP  
VPPS  
0 = V OK  
PP  
3
2
VPP Status  
1 = V low detect, operation aborted  
PP  
V
feedback and isn’t guaranteed when V V  
.
PP  
PP  
PP1/2  
PSS  
After receiving a Program Suspend command, the  
WSM halts execution and sets SR[7] and SR[2]. They  
remain set until a Resume command is received.  
0 = Program in progress/completed  
1 = Program suspended  
Program Suspend  
Status  
0 = Unlocked  
If an erase or program operation is attempted to a  
DPS  
1
0
locked block (if WP# = V ), the WSM sets SR[1] and  
1 = Aborted erase/program attempt on  
locked block  
IL  
Device Protect Status  
aborts the operation.  
Addressed partition is erasing or programming. In EFP  
mode, SR[0] indicates that a data-stream word has  
finished programming or verifying depending on the  
particular EFP phase. See Table 23 for valid SR[7] and  
SR[0] combinations.  
0 = This partition is busy, but only if  
SR[7]=0  
PWS  
Partition Write Status 1 = Another partition is busy, but only if  
SR[7]=0  
Table 23. Status Register Device WSM and Partition Write Status Description  
DWS  
(SR[7])  
PWS  
(SR[0])  
Description  
The addressed partition is performing a program/erase operation.  
0
0
0
1
EFP: device has finished programming or verifying data, or is ready for data.  
A partition other than the one currently addressed is performing a program/erase operation.  
EFP: the device is either programming or verifying data.  
No program/erase operation is in progress in any partition. Erase and Program suspend bits (SR[6,2])  
indicate whether other partitions are suspended.  
1
1
0
1
EFP: the device has exited EFP mode.  
Won’t occur in standard program or erase modes.  
EFP: this combination does not occur.  
Datasheet  
59  
Intel® Wireless Flash Memory (W18)  
10.5  
Clear Status Register  
The Clear Status Register command clears the status register and leaves all partition output states  
unchanged. The WSM can set all status register bits and clear bits SR[7:6,2,0]. Because bits  
SR[5,4,3,1] indicate various error conditions, they can only be cleared by the Clear Status Register  
command. By allowing system software to reset these bits, several operations (such as  
cumulatively programming several addresses or erasing multiple blocks in sequence) can be  
performed before reading the status register to determine error occurrence. If an error is detected,  
the Status Register must be cleared before beginning another command or sequence. Device reset  
(RST# = VIL) also clears the status register. This command functions independently of VPP.  
11.0  
Program Operations  
11.1  
Word Program  
When the Word Program command is issued, the WSM executes a sequence of internally timed  
events to program a word at the desired address and verify that the bits are sufficiently  
programmed. Programming the flash array changes specifically addressed bits to 0; 1 bits do not  
change the memory cell contents.  
Programming can occur in only one partition at a time. All other partitions must be in either a read  
mode or erase suspend mode. Only one partition can be in erase suspend mode at a time.  
The status register can be examined for program progress by reading any address within the  
partition that is busy programming. However, while most status register bits are partition-specific,  
the Device WSM Status bit, SR[7], is device-specific; that is, if the status register is read from any  
other partition, SR[7] indicates program status of the entire device. This permits the system CPU to  
monitor program progress while reading the status of other partitions.  
CE# or OE# toggle (during polling) updates the status register. Several commands can be issued to  
a partition that is programming: Read Status Register, Program Suspend, Read Identifier, and Read  
Query. The Read Array command can also be issued, but the read data is indeterminate.  
After programming completes, three status register bits can signify various possible error  
conditions. SR[4] indicates a program failure if set. If SR[3] is set, the WSM couldn’t execute the  
Word Program command because VPP was outside acceptable limits. If SR[1] is set, the program  
was aborted because the WSM attempted to program a locked block.  
After the status register data is examined, clear it with the Clear Status Register command before a  
new command is issued. The partition remains in status register mode until another command is  
written to that partition. Any command can be issued after the status register indicates program  
completion.  
If CE# is deasserted while the device is programming, the devices will not enter standby mode until  
the program operation completes.  
60  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 28. Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 40h  
Write  
Write  
Read  
Setup  
Addr = Location to program (WA)  
Write 40h,  
Word Address  
Data = Data to program (WD)  
Addr = Location to program (WA)  
Data  
Write Data  
Word Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Program  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Yes  
Suspend  
Program  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full status register check can be done after each program or  
after a sequence of program operations.  
Full Program  
Status Check  
(if desired)  
Program  
Complete  
FULL PROGRAM STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
VPP Range  
Error  
1
1
1
SR[3] =  
0
Check SR[4]  
1 = Data program error  
Check SR[1]  
Program  
Error  
SR[4] =  
0
Standby  
1 = Attempted program to locked block  
Program aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts  
Device  
Protect Error  
SR[1] =  
0
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
11.2  
Factory Programming  
The standard factory programming mode uses the same commands and algorithm as the Word  
Program mode (40h/10h). When VPP is at VPP1, program and erase currents are drawn through  
VCC. If VPP is driven by a logic signal, VPP1 must remain above the VPP1Min value to perform in-  
system flash modifications. When VPP is connected to a 12 V power supply, the device draws  
program and erase current directly from VPP. This eliminates the need for an external switching  
transistor to control the VPP voltage. Figure 37, “Examples of VPP Power Supply Configurations”  
on page 77 shows examples of flash power supply usage in various configurations.  
Datasheet  
61  
Intel® Wireless Flash Memory (W18)  
The 12-V VPP mode enhances programming performance during the short time period typically  
found in manufacturing processes; however, it is not intended for extended use.12 V may be  
applied to VPP during program and erase operations as specified in Section 5.2, “Operating  
Conditions” on page 23. VPP may be connected to 12 V for a total of tPPH hours maximum.  
Stressing the device beyond these limits may cause permanent damage.  
11.3  
Enhanced Factory Program (EFP)  
EFP substantially improves device programming performance through a number of enhancements  
to the conventional 12 Volt word program algorithm. EFP's more efficient WSM algorithm  
eliminates the traditional overhead delays of the conventional word program mode in both the host  
programming system and the flash device. Changes to the conventional word programming  
flowchart and internal WSM routine were developed because of today's beat-rate-sensitive  
manufacturing environments; a balance between programming speed and cycling performance was  
attained.  
The host programmer writes data to the device and checks the Status Register to determine when  
the data has completed programming. This modification essentially cuts write bus cycles in half.  
Following each internal program pulse, the WSM increments the device's address to the next  
physical location. Now, programming equipment can sequentially stream program data throughout  
an entire block without having to setup and present each new address. In combination, these  
enhancements reduce much of the host programmer overhead, enabling more of a data streaming  
approach to device programming.  
EFP further speeds up programming by performing internal code verification. With this, PROM  
programmers can rely on the device to verify that it has been programmed properly. From the  
device side, EFP streamlines internal overhead by eliminating the delays previously associated to  
switch voltages between programming and verify levels at each memory-word location.  
EFP consists of four phases: setup, program, verify and exit. Refer to Figure 29, “Enhanced  
Factory Program Flowchart” on page 65 for a detailed graphical representation of how to  
implement EFP.  
11.3.1  
EFP Requirements and Considerations  
Ambient temperature: TA = 25 °C 5 °C  
VCC within specified operating range  
EFP Requirements  
VPP within specified VPP2 range  
Target block unlocked  
Block cycling below 100 erase cycles 1  
RWW not supported2  
EFP Considerations  
EFP programs one block at a time  
EFP cannot be suspended  
NOTES:  
1. Recommended for optimum performance. Some degradation in performance may  
occur if this limit is exceeded, but the internal algorithm will continue to work properly.  
2. Code or data cannot be read from another partition during EFP.  
62  
Datasheet  
Intel® Wireless Flash Memory (W18)  
11.3.2  
Setup  
After receiving the EFP Setup (30h) and EFP Confirm (D0h) command sequence, SR[7] transitions  
from a 1 to a 0 indicating that the WSM is busy with EFP algorithm startup. A delay before  
checking SR[7] is required to allow the WSM time to perform all of its setups and checks (VPP  
level and block lock status). If an error is detected, status register bits SR[4], SR[3], and/or SR[1]  
are set and EFP operation terminates.  
Note: After the EFP Setup and Confirm command sequence, reads from the device automatically output  
status register data. Do not issue the Read Status Register command; it will be interpreted as data to  
program at WA0.  
11.3.3  
Program  
After setup completion, the host programming system must check SR[0] to determine “data-stream  
ready" status (SR[0]=0). Each subsequent write after this is a program-data write to the flash array.  
Each cell within the memory word to be programmed to 0 receives one WSM pulse; additional  
pulses, if required, occur in the verify phase. SR[0]=1 indicates that the WSM is busy applying the  
program pulse.  
The host programmer must poll the device's status register for the "program done" state after each  
data-stream write. SR[0]=0 indicates that the appropriate cell(s) within the accessed memory  
location have received their single WSM program pulse, and that the device is now ready for the  
next word. Although the host may check full status for errors at any time, it is only necessary on a  
block basis, after EFP exit.  
Addresses must remain within the target block. Supplying an address outside the target block  
immediately terminates the program phase; the WSM then enters the EFP verify phase.  
The address can either hold constant or it can increment. The device compares the incoming  
address to that stored from the setup phase (WA0); if they match, the WSM programs the new data  
word at the next sequential memory location. If they differ, the WSM jumps to the new address  
location.  
The program phase concludes when the host programming system writes to a different block  
address, and data supplied must be FFFFh. Upon program phase completion, the device enters the  
EFP verify phase.  
11.3.4  
Verify  
A high percentage of the flash bits program on the first WSM pulse. However, for those cells that  
do not completely program on their first attempt, EFP internal verification identifies them and  
applies additional pulses as required.  
The verify phase is identical in flow to the program phase, except that instead of programming  
incoming data, the WSM compares the verify-stream data to that which was previously  
programmed into the block. If the data compares correctly, the host programmer proceeds to the  
next word. If not, the host waits while the WSM applies an additional pulse(s).  
The host programmer must reset its initial verify-word address to the same starting location  
supplied during the program phase. It then reissues each data word in the same order as during the  
program phase. Like programming, the host may write each subsequent data word to WA0 or it may  
increment up through the block addresses.  
Datasheet  
63  
Intel® Wireless Flash Memory (W18)  
The verification phase concludes when the interfacing programmer writes to a different block  
address; data supplied must be FFFFh. Upon completion of the verify phase, the device enters the  
EFP exit phase.  
11.3.5  
Exit  
SR[7]=1 indicates that the device has returned to normal operating conditions. A full status check  
should be performed at this time to ensure the entire block programmed successfully. After EFP  
exit, any valid CUI command can be issued.  
64  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 29. Enhanced Factory Program Flowchart  
ENHANCED FACTORY PROGRAMMING PROCEDURE  
EFP Program EFP Verify  
EFP Setup  
EFP Exit  
Read  
Status Register  
Read  
Status Register  
Read  
Status Register  
Start  
VPP = 12V  
Unlock Block  
SR[0]=1=N  
SR[0]=1=N  
SR[7]=0=N  
Data Stream  
Ready?  
Verify Stream  
Ready?  
EFP  
Exited?  
SR[0] =0=Y  
SR[0] =0=Y  
SR[7]=1=Y  
Write 30h  
Address = WA  
0
Write Data  
Address = WA  
Write Data  
Address = WA  
Full Status Check  
Procedure  
0
0
Write D0h  
Address = WA  
0
Read  
Status Register  
Read  
Status Register  
Operation  
Complete  
EFP setup time  
Program  
Done?  
Verify  
Done?  
Read  
Status Register  
SR[0]=0=Y  
SR[0]=0=Y  
N
N
Last  
Data?  
Last  
Data?  
EFP Setup  
Done?  
Y
Y
SR[7]=1=N  
Check VPP & Lock  
errors (SR[3,1])  
Write FFFFh  
Write FFFFh  
Address BBA  
Address  
BBA  
Exit  
EFP Setup  
EFP Program  
EFP Verify  
Bus  
State  
Bus  
State  
Bus  
State  
Comments  
Comments  
Comments  
Read  
Status Register  
Check SR[0]  
Read  
Status Register  
Verify Check SR[0]  
Unlock VPP = 12V  
Block Unlock block  
Write  
Data  
Standby Stream 0 = Ready for data  
Standby Stream 0 = Ready for verify  
EFP  
Data = 30h  
Write  
Write  
Ready? 1 = Not ready for data  
Ready? 1 = Not ready for verify  
Setup Address = WA  
0
EFP  
Data = D0h  
Write  
Data = Data to program  
Write  
Data = Word to verify  
Confirm Address = WA  
(note 1)  
Address = WA  
(note 2)  
Address = WA  
0
0
0
Read  
Status Register  
Read  
Status Register  
Standby  
Read  
EFP setup time  
Check SR[0]  
0 = Program done  
1 = Program not done  
Check SR[0]  
0 = Verify done  
1 = Verify not done  
Program  
Done?  
Standby Verify  
(note 3) Done?  
Status Register  
Check SR[7]  
Standby  
EFP  
Standby Setup 0 = EFP ready  
Done? 1 = EFP not ready  
Last  
Device automatically  
Last  
Device automatically  
Standby  
Standby  
Data? increments address.  
Data? increments address.  
If SR[7] = 1:  
Error  
Exit Data = FFFFh  
Write Program Address not within same  
Phase BBA  
Exit Data = FFFFh  
Verify Addressnot within same  
Phase BBA  
Check SR[3,1]  
Standby Condition  
SR[3] = 1 = VPP error  
Check  
Write  
SR[1] = 1 = locked block  
EFP Exit  
Status Register  
1. WA0 = first Word Address to be programmed within the target block. The BBA (Block Base  
Read  
Address) must remain constant throughout the program phase data stream; WA can be held  
constant at the first address location, or it can be written to sequence up through the addresses  
within the block. Writing to a BBA not equal to that of the block currently being written to  
terminates the EFP program phase, and instructs the device to enter the EFP verify phase.  
2. For proper verification to occur, the verify data stream must be presented to the device in the  
same sequence as that of the program phase data stream. Writing to a BBA not equal tWo A  
terminates the EFP verify phase, and instructs the device to exit EFP.  
3. Bits that did not fully program with the single WSM pulse of the EFP program phase receive  
additional program-pulse attempts during the EFP verify phase. The device will report any  
program failure by setting SR[4]=1; this check can be performed during the full status check afte
EFP has been exited for that block, and will indicate any error within the entire data stream.  
Check SR[7]  
EFP  
Standby  
0 = Exit not finished  
Exited?  
1 = Exit completed  
Repeat for subsequent operations.  
After EFP exit, a Full Status Check can  
determine if any program error occurred.  
See the Full Status Check procedure in the  
Word Program flowchart.  
Datasheet  
65  
Intel® Wireless Flash Memory (W18)  
12.0  
Program and Erase Operations  
12.1  
Program/Erase Suspend and Resume  
The Program Suspend and Erase Suspend commands halt an in-progress program or erase  
operation. The command can be issued at any device address. The partition corresponding to the  
command’s address remains in its previous state. A suspend command allows data to be accessed  
from memory locations other than the one being programmed or the block being erased.  
A program operation can be suspended only to perform a read operation. An erase operation can be  
suspended to perform either a program or a read operation within any block, except the block that  
is erase suspended. A program command nested within a suspended erase can subsequently be  
suspended to read yet another location. Once a program or erase process starts, the Suspend  
command requests that the WSM suspend the program or erase sequence at predetermined points  
in the algorithm. The partition that is actually suspended continues to output status register data  
after the Suspend command is written. An operation is suspended when status bits SR[7] and SR[6]  
and/or SR[2] are set.  
To read data from blocks within the partition (other than an erase-suspended block), you can write  
a Read Array command. Block erase cannot resume until the program operations initiated during  
erase suspend are complete. Read Array, Read Status Register, Read Identifier (ID), Read Query,  
and Program Resume are valid commands during Program or Erase Suspend. Additionally, Clear  
Status Register, Program, Program Suspend, Erase Resume, Lock Block, Unlock Block, and Lock-  
Down Block are valid commands during erase suspend.  
To read data from a block in a partition that is not programming or erasing, the operation does not  
need to be suspended. If the other partition is already in read array, ID, or Query mode, issuing a  
valid address returns corresponding data. If the other partition is not in a read mode, one of the read  
commands must be issued to the partition before data can be read.  
During a suspend, CE# = VIH places the device in standby state, which reduces active current. VPP  
must remain at its program level and WP# must remain unchanged while in suspend mode.  
A resume command instructs the WSM to continue programming or erasing and clears status  
register bits SR[2] (or SR[6]) and SR[7]. The Resume command can be written to any partition.  
When read at the partition that is programming or erasing, the device outputs data corresponding to  
the partition’s last mode. If status register error bits are set, the status register can be cleared before  
issuing the next instruction. RST# must remain at VIH. See Figure 30, “Program Suspend / Resume  
Flowchart” on page 67, and Figure 31, “Erase Suspend / Resume Flowchart” on page 68.  
If a suspended partition was placed in read array, read status register, read identifier (ID), or read  
query mode during the suspend, the device remains in that mode and outputs data corresponding to  
that mode after the program or erase operation is resumed. After resuming a suspended operation,  
issue the read command appropriate to the read operation. To read status after resuming a  
suspended operation, issue a Read Status Register command (70h) to return the suspended partition  
to status mode.  
66  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 30. Program Suspend / Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = B0h  
Suspend Addr = Block to suspend (BA)  
Program Suspend  
Write B0h  
Any Address  
Wr ite  
Wr ite  
Read Data = 70h  
Read Status  
Write 70h  
Same Partition  
Status Addr = Same partition  
Status register data  
Toggle CE# or OE# to update Status  
register  
Read  
Read Status  
Register  
Addr = Suspended block (BA)  
Check SR.7  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.2  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR.2 =  
Data = FFh  
Addr = Any address within the  
suspended partition  
1
Read  
Array  
Wr ite  
Read  
Wr ite  
Read Array  
Write FFh  
Susp Partition  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = Suspended block (BA)  
If the suspended partition was placed in Read Array mode:  
Done  
No  
Reading  
Return partition to Status mode:  
Read  
Wr ite  
Data = 70h  
Yes  
Status  
Addr = Same partition  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Pgm'd Partition  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Same Partition  
PGM_SUS.WMF  
Datasheet  
67  
Intel® Wireless Flash Memory (W18)  
Figure 31. Erase Suspend / Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Erase  
Data = B0h  
Erase Suspend  
Write B0h  
Any Address  
Write  
Write  
Suspend Addr = Any address  
Read  
Status  
Data = 70h  
Addr = Same partition  
Read  
Status  
Write 70h  
Same Partition  
Status register data. Toggle CE# or  
OE# to update Status register  
Addr = Same partition  
Read  
Read Status  
Register  
Check SR.7  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.6  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR.6 =  
1
Read Array Data = FFh or 40h  
or Program Addr = Block to program or read  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
Read Array  
Data  
Program  
Loop  
Program Data = D0h  
Resume Addr = Any address  
No  
Write  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Done?  
Yes  
Return partition to Status mode:  
Data = 70h  
Addr = Same partition  
Read  
Status  
Erase Resume  
Read  
Array  
Write  
Write D0h  
Any Address  
Write FFh  
Erased Partition  
Read Array  
Data  
Erase Resumed  
Read  
Status  
Write 70h  
Same Partition  
ERAS_SUS.WMF  
12.2  
Block Erase  
The 2-cycle block erase command sequence, consisting of Erase Setup (20h) and Erase Confirm  
(D0h), initiates one block erase at the addressed block. Only one partition can be in an erase mode  
at a time; other partitions must be in a read mode. The Erase Confirm command internally latches  
the address of the block to be erased. Erase forces all bits within the block to 1. SR[7] is cleared  
while the erase executes.  
68  
Datasheet  
Intel® Wireless Flash Memory (W18)  
After writing the Erase Confirm command, the selected partition is placed in read status register  
mode and reads performed to that partition return the current status data. The address given during  
the Erase Confirm command does not need to be the same address used in the Erase Setup  
command. So, if the Erase Confirm command is given to partition B, then the selected block in  
partition B will be erased even if the Erase Setup command was to partition A.  
The 2-cycle erase sequence cannot be interrupted with a bus write operation. For example, an Erase  
Setup command must be immediately followed by the Erase Confirm command in order to execute  
properly. If a different command is issued between the setup and confirm commands, the partition  
is placed in read-status mode, the status register signals a command sequence error, and all  
subsequent erase commands to that partition are ignored until the status register is cleared.  
The CPU can detect block erase completion by analyzing SR[7] of that partition. If an error bit  
(SR[5,3,1]) was flagged, the status register can be cleared by issuing the Clear Status Register  
command before attempting the next operation. The partition remains in read-status mode until  
another command is written to its CUI. Any CUI instruction can follow after erasing completes.  
The CUI can be set to read-array mode to prevent inadvertent status register reads.  
Datasheet  
69  
Intel® Wireless Flash Memory (W18)  
Figure 32. Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 20h  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 20h  
Block Address  
Erase  
Data = D0h  
Confirm Addr = Block to be erased (BA)  
Write D0h and  
Block Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
Standby  
VPP Range  
Error  
1
1
1
1
SR[3] =  
0
Check SR[5:4]  
Both 1 = Command sequence error  
Command  
Sequence Error  
Check SR[5]  
1 = Block erase error  
SR[5:4] =  
0
Check SR[1]  
Standby  
1 = Attempted erase of locked block  
Erase aborted  
Block Erase  
Error  
SR[5] =  
0
SR[3,1] must be cleared before the WSM will allow further  
erase attempts.  
Erase of  
Locked Block  
Aborted  
SR[1] =  
0
Only the Clear Status Register command clears SR[5:3,1].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Block Erase  
Successful  
12.3  
Read-While-Write and Read-While-Erase  
The 1.8 Volt Intel® Wireless Flash memory supports flexible multi-partition dual-operation  
architecture. By dividing the flash memory into many separate partitions, the device can read from  
one partition while programing or erasing in another partition; hence the terms, RWW and RWE.  
Both of these features greatly enhance data storage performance.  
70  
Datasheet  
Intel® Wireless Flash Memory (W18)  
The product does not support simultaneous program and erase operations. Attempting to perform  
operations such as these results in a command sequence error. Only one partition can be  
programming or erasing while another partition is reading. However, one partition may be in erase  
suspend mode while a second partition is performing a program operation, and yet another partition  
is executing a read command. Table 18, “Command Codes and Descriptions” on page 53 describes  
the command codes available for all functions.  
13.0  
Security Modes  
The 1.8 Volt Intel Wireless Flash memory offers both hardware and software security features to  
protect the flash data. The software security feature is used by executing the Lock Block command.  
The hardware security feature is used by executing the Lock-Down Block command and by  
asserting the WP# signal.  
Refer to Figure 33, “Block Locking State Diagram” on page 72 for a state diagram of the flash  
security features. Also see Figure 34, “Locking Operations Flowchart” on page 74.  
13.1  
Block Lock Operations  
Individual instant block locking protects code and data by allowing any block to be locked or  
unlocked with no latency. This locking scheme offers two levels of protection. The first allows  
software-only control of block locking (useful for frequently changed data blocks), while the  
second requires hardware interaction before locking can be changed (protects infrequently changed  
code blocks).  
The following sections discuss the locking system operation. The term “state [abc]” specifies  
locking states; for example, “state [001],” where a = WP# value, b = block lock-down status bit  
D1, and c = Block Lock status register bit D0. Figure 33, “Block Locking State Diagram” on  
page 72 defines possible locking states.  
The following summarizes the locking functionality.  
All blocks power-up in a locked state.  
Unlock commands can unlock these blocks, and lock commands can lock them again.  
The Lock-Down command locks a block and prevents it from being unlocked when WP# is  
asserted.  
— Locked-down blocks can be unlocked or locked with commands as long as WP# is  
deasserted  
— The lock-down status bit is cleared only when the device is reset or powered-down.  
Block lock registers are not affected by the VPP level. They may be modified and read even if VPP  
VPPLK  
.
Each block’s locking status can be set to locked, unlocked, and lock-down, as described in the  
following sections. See Figure 34, “Locking Operations Flowchart” on page 74.  
Datasheet  
71  
Intel® Wireless Flash Memory (W18)  
Figure 33. Block Locking State Diagram  
Locked-  
Down4,5  
[011]  
Hardware  
Locked5  
[011]  
Locked  
Power-Up/Reset  
[X01]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[111]  
[110]  
[X00]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes:  
1. [a,b,c] represents [WP#, D1, D0]. X = Don’t Care.  
2. D1 indicates block Lock-down status. D1 = ‘0’, Lock-down has not been issued to  
this block. D1 = ‘1’, Lock-down has been issued to this block.  
3. D0 indicates block lock status. D0 = ‘0’, block is unlocked. D0 = ‘1’, block is locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference between  
Hardware Locked and Locked-Down states.  
13.1.1  
13.1.2  
13.1.3  
Lock  
All blocks default to locked (state [x01]) after initial power-up or reset. Locked blocks are fully  
protected from alteration. Attempted program or erase operations to a locked block will return an  
error in SR[1]. Unlocked blocks can be locked by using the Lock Block command sequence.  
Similarly, a locked block’s status can be changed to unlocked or lock-down using the appropriate  
software commands.  
Unlock  
Unlocked blocks (states [x00] and [110]) can be programmed or erased. All unlocked blocks return  
to the locked state when the device is reset or powered-down. An unlocked block’s status can be  
changed to the locked or locked-down state using the appropriate software commands. A locked  
block can be unlocked by writing the Unlock Block command sequence if the block is not locked-  
down.  
Lock-Down  
Locked-down blocks (state [011]) offer the user an additional level of write protection beyond that  
of a regular locked block. A block that is locked-down cannot have it’s state changed by software if  
WP# is asserted. A locked or unlocked block can be locked-down by writing the Lock-Down Block  
command sequence. If a block was set to locked-down, then later changed to unlocked, a Lock-  
72  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Down command should be issued prior asserting WP# will put that block back to the locked-down  
state. When WP# is deasserted, locked-down blocks are changed to the locked state and can then  
be unlocked by the Unlock Block command.  
13.1.4  
Block Lock Status  
Every block’s lock status can be read in read identifier mode. To enter this mode, issue the Read  
Identifier command to the device. Subsequent reads at Block Base Address + 02h will output that  
block’s lock status. For example, to read the block lock status of block 10, the address sent to the  
device should be 50002h (for a top-parameter device). The lowest two data bits of the read data, D1  
and D0, represent the lock status. D0 indicates the block lock status. It is set by the Lock Block  
command and cleared by the Block Unlock command. It is also set when entering the lock-down  
state. D1 indicates lock-down status and is set by the Lock-Down command. The lock-down status  
bit cannot be cleared by software–only by device reset or power-down. See Table 24.  
Table 24. Write Protection Truth Table  
VPP  
WP#  
RST#  
VIL  
Write Protection  
Device inaccessible  
X
X
VIL  
X
X
VIH  
VIH  
VIH  
Word program and block erase prohibited  
All lock-down blocks locked  
VIL  
VIH  
X
All lock-down blocks can be unlocked  
13.1.5  
Lock During Erase Suspend  
Block lock configurations can be performed during an erase suspend operation by using the  
standard locking command sequences to unlock, lock, or lock-down a block. This feature is useful  
when another block requires immediate updating.  
To change block locking during an erase operation, first write the Erase Suspend command. After  
checking SR[6] to determine the erase operation has suspended, write the desired lock command  
sequence to a block; the lock status will be changed. After completing lock, unlock, read, or  
program operations, resume the erase operation with the Erase Resume command (D0h).  
If a block is locked or locked-down during a suspended erase of the same block, the locking status  
bits change immediately. When the erase operation is resumed, it will complete normally.  
Locking operations cannot occur during program suspend. Appendix A, “Write State Machine  
States” on page 87 shows valid commands during erase suspend.  
13.1.6  
Status Register Error Checking  
Using nested locking or program command sequences during erase suspend can introduce  
ambiguity into status register results.  
Because locking changes require 2-cycle command sequences, for example, 60h followed by 01h  
to lock a block, following the Configuration Setup command (60h) with an invalid command  
produces a command sequence error (SR[5:4]=11b). If a Lock Block command error occurs during  
erase suspend, the device sets SR[4] and SR[5] to 1 even after the erase is resumed. When erase is  
Datasheet  
73  
Intel® Wireless Flash Memory (W18)  
complete, possible errors during the erase cannot be detected from the status register because of the  
previous locking command error. A similar situation occurs if a program operation error is nested  
within an erase suspend.  
13.1.7  
WP# Lock-Down Control  
The Write Protect signal, WP#, adds an additional layer of block security. WP# only affects blocks  
that once had the Lock-Down command written to them. After the lock-down status bit is set for a  
block, asserting WP# forces that block into the lock-down state [011] and prevents it from being  
unlocked. After WP# is deasserted, the block’s state reverts to locked [111] and software  
commands can then unlock the block (for erase or program operations) and subsequently re-lock it.  
Only device reset or power-down can clear the lock-down status bit and render WP# ineffective.  
Figure 34. Locking Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Operation  
Command  
Comments  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Write 01,D0,2Fh  
Block Address  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Write 90h  
BBA + 02h  
Write  
Read ID Data = 90h  
(Optional)  
Plane  
Addr = BBA + 02h  
Read Block Lock  
Status  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = BBA + 02h  
Locking  
Change?  
No  
Confirm locking change on DQ[1:0].  
(See Block Locking State Transitions Table  
for valid combinations.)  
Standby  
(Optional)  
Yes  
Read  
Array  
Data = FFh  
Addr = Any address in same partition  
Write  
Write FFh  
Partition Address  
Lock Change  
Complete  
13.2  
Protection Register  
The 1.8 Volt Intel Wireless Flash memory includes a 128-bit protection register. This protection  
register is used to increase system security and for identification purposes. The protection register  
value can match the flash component to the system’s CPU or ASIC to prevent device substitution.  
The lower 64 bits within the protection register are programmed by Intel with a unique number in  
each flash device. The upper 64 OTP bits within the protection register are left for the customer to  
program. Once programmed, the customer segment can be locked to prevent further programming.  
74  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Note: The individual bits of the user segment of the protection register are OTP, not the register in total.  
The user may program each OTP bit individually, one at a time, if desired. After the protection  
register is locked, however, the entire user segment is locked and no more user bits can be  
programmed.  
The protection register shares some of the same internal flash resources as the parameter partition.  
Therefore, RWW is only allowed between the protection register and main partitions. Table 25  
describes the operations allowed in the protection register, parameter partition, and main partition  
during RWW and RWE.  
Table 25. Simultaneous Operations Allowed with the Protection Register  
Parameter  
Protection  
Register  
Main  
Partitions  
Partition  
Description  
Array Data  
While programming or erasing in a main partition, the protection register can be  
read from any other partition. Reading the parameter partition data is not  
allowed if the protection register is being read from addresses within the  
parameter partition.  
See  
Description  
Read  
Write/Erase  
While programming or erasing in a main partition, read operations are allowed  
Write/Erase in the parameter partition. Accessing the protection registers from parameter  
partition addresses is not allowed.  
See  
Description  
Read  
Read  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition. Accessing the protection registers in a partition that  
is different from the one being programmed or erased, and also different from  
the parameter partition, is allowed.  
Read  
Write  
Write/Erase  
While programming the protection register, reads are only allowed in the other  
main partitions. Access to the parameter partition is not allowed. This is  
because programming of the protection register can only occur in the  
No Access  
Allowed  
Read  
parameter partition, so it will exist in status mode.  
While programming or erasing the parameter partition, reads of the protection  
registers are not allowed in any partition. Reads in other main partitions are  
supported.  
No Access  
Allowed  
Write/Erase  
Read  
13.2.1  
Reading the Protection Register  
Writing the Read Identifier command allows the protection register data to be read 16 bits at a time  
from addresses shown in Table 20, “Device Identification Codes” on page 57. The protection  
register is read from the Read Identifier command and can be read in any partition.Writing the  
Read Array command returns the device to read-array mode.  
13.2.2  
Programing the Protection Register  
The Protection Program command should be issued only at the parameter (top or bottom) partition  
followed by the data to be programmed at the specified location. It programs the upper 64 bits of  
the protection register 16 bits at a time. Table 20, “Device Identification Codes” on page 57 shows  
allowable addresses. See also Figure 35, “Protection Register Programming Flowchart” on  
page 76. Issuing a Protection Program command outside the register’s address space results in a  
status register error (SR[4]=1).  
Datasheet  
75  
Intel® Wireless Flash Memory (W18)  
13.2.3  
Locking the Protection Register  
PR-LK.0 is programmed to 0 by Intel to protect the unique device number. PR-LK.1 can be  
programmed by the user to lock the user portion (upper 64 bits) of the protection register (See  
Figure 36, “Protection Register Locking). This bit is set using the Protection Program command to  
program “FFFDh” into PR-LK.  
After PR-LK register bits are programmed (locked), the protection register’s stored values can’t be  
changed. Protection Program commands written to a locked section result in a status register error  
(SR[4]=1, SR[5]=1).  
Figure 35. Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMINGPROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Protection  
Program  
Setup  
Data = C0h  
Addr = Protection address  
Write  
Write  
Read  
Write C0h  
Addr=Prot addr  
Protection Data = Data to program  
Program Addr = Protection address  
Write Protect.  
Register  
Address / Data  
Read SRD  
Toggle CE# or OE# to update SRD  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Standby  
No  
SR[7] = 1?  
Yes  
Protection Program operations addresses must be within the  
protection register address space. Addresses outside this  
space will return an error.  
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full status register check can be done after each program or  
after a sequence of program operations.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Bus  
Operation  
Read SRD  
SR[4:3] =  
Command  
Comments  
SR[1] SR[3] SR[4]  
Standby  
Standby  
Standby  
0
0
1
0
1
1
VPP Error  
1,1  
1,0  
1,1  
VPP Range Error  
Protection register  
program error  
1
0
1
Register locked;  
SR[4,1] =  
SR[4,1] =  
Programming Error  
Operation aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts.  
Locked-Register  
Program Aborted  
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
76  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 36. Protection Register Locking  
0x88  
User-Programmable  
0x85  
0x84  
Intel Factory-Programmed  
PR Lock Register 0  
0x81  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x80  
13.3  
VPP Protection  
The 1.8 Volt Intel® Wireless Flash memory provides in-system program and erase at VPP1. For  
factory programming, it also includes a low-cost, backward-compatible 12 V programming  
feature.(See “Factory Programming” on page 61.) The EFP feature can also be used to greatly  
improve factory program performance as explained in Section 11.3, “Enhanced Factory Program  
(EFP)” on page 62.  
In addition to the flexible block locking, holding the VPP programming voltage low can provide  
absolute hardware write protection of all flash-device blocks. If VPP is below VPPLK, program or  
erase operations result in an error displayed in SR[3]. (See Figure 37.)  
Figure 37. Examples of VPP Power Supply Configurations  
System supply  
VCC  
System supply  
VCC  
VPP  
12 V supply  
Prot# (logic signal)  
VPP  
10K  
12 V fast programming  
Absolute write protection with VPP VPPLK  
Low-voltage programming  
Absolute write protection via logic signal  
System supply  
VCC  
System supply  
VCC  
(Note 1)  
VPP  
VPP  
12 V supply  
Low voltage and 12 V fast programming  
Low-voltage programming  
NOTE: If the VCC supply can sink adequate current, you can use an appropriately valued resistor.  
Datasheet  
77  
Intel® Wireless Flash Memory (W18)  
14.0  
Set Configuration Register  
The Set Configuration Register command sets the burst order, frequency configuration, burst  
length, and other parameters.  
A two-bus cycle command sequence initiates this operation. The configuration register data is  
placed on the lower 16 bits of the address bus (A[15:0]) during both bus cycles. The Set  
Configuration Register command is written along with the configuration data (on the address bus).  
This is followed by a second write that confirms the operation and again presents the configuration  
register data on the address bus. The configuration register data is latched on the rising edge of  
ADV#, CE#, or WE# (whichever occurs first). This command functions independently of the  
applied VPP voltage. After executing this command, the device returns to read-array mode. The  
configuration register’s contents can be examined by writing the Read Identifier command and  
then reading location 05h. (See Table 26 and Table 27.)  
78  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 26. Configuration Register Definitions  
Data  
Output  
Config  
Read  
Mode  
First Access Latency  
Count  
WAIT  
Polarity  
WAIT  
Config  
Burst  
Seq  
Clock  
Config  
Burst  
Wrap  
Res’d  
Res’d Res’d  
Burst Length  
RM  
15  
R
LC2  
13  
LC1  
12  
LC0  
11  
WT  
10  
DOC  
9
WC  
8
BS  
7
CC  
6
R
5
R
4
BW  
3
BL2  
2
BL1  
1
BL0  
0
14  
Table 27. Configuration Register Descriptions  
Bit  
Name  
Description  
Notes1  
RM  
0 = Synchronous Burst Reads Enabled  
15  
14  
2
5
1 = Asynchronous Reads Enabled (Default)  
Reserved  
Read Mode  
R
LC2-0  
001 = Reserved  
010 = Code 2  
011 = Code 3  
100 = Code 4  
101 = Code 5  
111 = Reserved (Default)  
13-11  
6
First Access Latency  
Count  
WT  
0 = WAIT signal is asserted low  
1 = WAIT signal is asserted high (Default)  
10  
9
3
6
6
WAIT Signal Polarity  
DOC  
0 = Hold Data for One Clock  
1 = Hold Data for Two Clock (Default)  
Data Output Configuration  
WC  
0 = WAIT Asserted During Delay  
1 = WAIT Asserted One Data Cycle before Delay (Default)  
8
WAIT Configuration  
BS  
7
1 = Linear Burst Order (Default)  
Burst Sequence  
CC  
0 = Burst Starts and Data Output on Falling Clock Edge  
1 = Burst Starts and Data Output on Rising Clock Edge (Default)  
6
Clock  
Configuration  
5
4
R
R
Reserved  
Reserved  
5
5
BW  
0 = Wrap bursts within burst length set by CR[2:0]  
1 = Don’t wrap accesses within burst length set by CR[2:0].(Default)  
3
Burst Wrap  
001 = 4-Word Burst  
010 = 8-Word Burst  
BL2-0  
2-0  
4
011 = 16-Word Burst  
111 = Continuous Burst (Default)  
Burst Length  
NOTES:  
1. Undocumented combinations of bits are reserved by Intel for future implementations.  
2. Synchronous and page read mode configurations affect reads from main blocks and parameter blocks. Status register and  
configuration reads support single read cycles. CR[15]=1 disables configuration set by CR[14:0].  
3. Data is not ready when WAIT is asserted.  
4. Set the synchronous burst length. In asynchronous page mode, the page size equals four words.  
5. Set all reserved configuration register bits to zero.  
6. Setting the configuration register for synchronous burst-mode with a latency count of 2 (RCR[13:11] = 010), data hold for 2  
clocks (RCR.9 = 1), and WAIT asserted one data cycle before delay (RCR.8 =1) is not supported.  
Datasheet  
79  
Intel® Wireless Flash Memory (W18)  
14.1  
Read Mode (CR[15])  
All partitions support two high-performance read configurations: synchronous burst mode and  
asynchronous page mode (default). CR[15] sets the read configuration to one of these modes.  
Status register, query, and identifier modes support only asynchronous and single-synchronous read  
operations.  
14.2  
First Access Latency Count (CR[13:11])  
The First Access Latency Count (CR[13:11]) configuration tells the device how many clocks must  
elapse from ADV# de-assertion (VIH) before the first data word should be driven onto its data pins.  
The input clock frequency determines this value. See Table 26, “Configuration Register  
Definitions” on page 79 for latency values. Figure 38 shows data output latency from ADV#  
assertion for different latencies. Refer to Section 14.2.1, “Latency Count Settings” on page 81 for  
Latency Code Settings.  
Figure 38. First Access Latency Configuration  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 3  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 4  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 5  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
NOTE: Other First Access Latency Configuration settings are reserved.  
)
Figure 39. Word Boundary  
Word 0 - 3  
Word 4 - 7  
Word 8 - B  
Word C - F  
0
1 2 3 4 5 6 7 8 9 A B C D E F  
16 Word Boundary  
4 Word Boundary  
The 16-word boundary is the end of the device sense word-line.  
80  
Datasheet  
Intel® Wireless Flash Memory (W18)  
14.2.1  
Latency Count Settings  
Table 28. Latency Count Settings for V  
= 1.35 V - 1.8 V (.13 µm lithography)  
CCQ  
VCCQ = 1.35 V - 1.8 V  
Unit  
tAVQV/tCHQV (65ns/14ns)  
tAVQV/tCHQV (85ns/20ns)  
Latency Count  
Settings  
2
3, 4, 5  
< 54  
2
3, 4, 5  
< 40  
Frequency  
< 39  
< 30  
MHz  
Table 29. Latency Count Setting for V  
= 1.7 V - 2.24 V (.13 µm lithography)  
CCQ  
VCCQ = 1.7 - 2.24 V  
Unit  
tAVQV/tCHQV (60ns/11ns)  
tAVQV/tCHQV (80ns/14ns)  
Latency Count  
Settings  
2
3
4, 5  
< 66  
2
3
4, 5  
Frequency  
Support  
< 40  
< 61  
< 30  
< 45  
< 54  
MHz  
Table 30. Latency Count Setting for V  
= 1.7 V - 2.24 V (.18 µm lithography)  
CCQ  
VCCQ = 1.7 - 2.24 V  
Unit  
tAVQV/tCHQV (70ns/14ns)  
tAVQV/tCHQV (85ns/18ns)  
Latency Count  
Settings  
2
3, 4, 5  
<52  
2
3, 4, 5  
< 40  
Frequency  
Support  
< 35  
< 29  
MHz  
Datasheet  
81  
Intel® Wireless Flash Memory (W18)  
Figure 40. Example: Latency Count Setting at 3  
tADD-DELAY  
tDATA  
2rd  
0st  
1nd  
3th  
4th  
CLK (C)  
CE# (E)  
ADV# (V)  
AMAX-0 (A)  
Valid Address  
High Z  
Code 3  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
R103  
14.3  
14.4  
WAIT Signal Polarity (CR[10])  
If the WT bit is cleared (CR[10]=0), then WAIT is configured to be asserted low. This means that a  
0 on the WAIT signal indicates that data is not ready and the data bus contains invalid data.  
Conversely, if CR[10] is set, then WAIT is asserted high. In either case, if WAIT is deasserted, then  
data is ready and valid. WAIT is asserted during asynchronous page mode reads.  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(CR[15]=0), and when addressing a partition that is currently in read-array mode. The WAIT signal  
is only “deasserted” when data is valid on the bus.  
When the device is operating in synchronous non-read-array mode, such as read status, read ID, or  
read query, WAIT is set to an “asserted” state as determined by CR[10]. See Figure 17, “WAIT  
Signal in Synchronous Non-Read Array Operation Waveform” on page 40.  
When the device is operating in asynchronous page mode or asynchronous single word read mode,  
WAIT is set to an “asserted” state as determined by CR[10]. See Figure 13, “Page-Mode Read  
Operation Waveform” on page 36, and Figure 11, “Asynchronous Read Operation Waveform” on  
page 34.  
From a system perspective, the WAIT signal is in the asserted state (based on CR[10]) when the  
device is operating in synchronous non-read-array mode (such as Read ID, Read Query, or Read  
Status), or if the device is operating in asynchronous mode (CR[15]=1). In these cases, the system  
software should ignore (mask) the WAIT signal, because it does not convey any useful information  
about the validity of what is appearing on the data bus.  
82  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 31. WAIT Signal Conditions  
CONDITION  
WAIT  
CE# = VIH  
CE# = VIL  
Tri-State  
Active  
OE#  
No-Effect  
Active  
Synchronous Array Read  
Synchronous Non-Array Read  
Asserted  
All Asynchronous Read and all Write Asserted  
14.5  
Data Hold (CR[9])  
The Data Output Configuration bit (CR[9]) determines whether a data word remains valid on the  
data bus for one or two clock cycles. The processor’s minimum data set-up time and the flash  
memory’s clock-to-data output delay determine whether one or two clocks are needed.  
A Data Output Configuration set at 1-clock data hold corresponds to a 1-clock data cycle; a Data  
Output Configuration set at 2-clock data hold corresponds to a 2-clock data cycle. The setting of  
this configuration bit depends on the system and CPU characteristics. For clarification, see Figure  
41, “Data Output Configuration with WAIT Signal Delay” on page 84.  
A method for determining this configuration setting is shown below.  
To set the device at 1-clock data hold for subsequent reads, the following condition must be  
satisfied:  
tCHQV (ns) + tDATA (ns) One CLK Period (ns)  
As an example, use a clock frequency of 66 MHz and a clock period of 15 ns. Assume the data  
output hold time is one clock. Apply this data to the formula above for the subsequent reads:  
11 ns + 4 ns 15 ns  
This equation is satisfied, and data output will be available and valid at every clock period. If tDATA  
is long, hold for two cycles.  
During page-mode reads, the initial access time can be determined by the formula:  
tADD-DELAY (ns) + tDATA (ns) + tAVQV (ns)  
Subsequent reads in page mode are defined by:  
tAPA (ns) + tDATA (ns)  
(minimum time)  
Datasheet  
83  
Intel® Wireless Flash Memory (W18)  
Figure 41. Data Output Configuration with WAIT Signal Delay  
CLK [C]  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 0)  
1 CLK  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
Data Hold  
WAIT (CR.8 = 0)  
tCHTL/H  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 1)  
2 CLK  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
Data Hold  
NOTE: WAIT shown asserted high (CR[10]=1).  
14.6  
WAIT Delay (CR[8])  
The WAIT configuration bit (CR[8]) controls WAIT signal delay behavior for all synchronous  
read-array modes. Its setting depends on the system and CPU characteristics. The WAIT can be  
asserted either during, or one data cycle before, a valid output.  
In synchronous linear read array (no-wrap mode CR[3]=1) of 4-, 8-, 16-, or continuous-word burst  
mode, an output delay may occur when a burst sequence crosses its first device-row boundary (16-  
word boundary). If the burst start address is 4-word boundary aligned, the delay does not occur. If  
the start address is misaligned to a 4-word boundary, the delay occurs once per burst-mode read  
sequence. The WAIT signal informs the system of this delay.  
14.7  
Burst Sequence (CR[7])  
The burst sequence specifies the synchronous-burst mode data order (see Table 32, “Sequence and  
Burst Length” on page 85). When operating in a linear burst mode, either 4-, 8-, or 16-word burst  
length with the burst wrap bit (CR[3]) set, or in continuous burst mode, the device may incur an  
output delay when the burst sequence crosses the first 16-word boundary. (See Figure 39, “Word  
Boundary” on page 80 for word boundary description.) This depends on the starting address. If the  
starting address is aligned to a 4-word boundary, there is no delay. If the starting address is the end  
of a 4-word boundary, the output delay is one clock cycle less than the First Access Latency Count;  
this is the worst-case delay. The delay takes place only once, and only if the burst sequence crosses  
a 16-word boundary. The WAIT pin informs the system of this delay. For timing diagrams of WAIT  
functionality, see these figures:  
Figure 14, “Single Synchronous Read-Array Operation Waveform” on page 37  
Figure 15, “Synchronous 4-Word Burst Read Operation Waveform” on page 38  
84  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 16, “WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform” on  
page 39  
Table 32. Sequence and Burst Length  
Burst Addressing Sequence (Decimal)  
4-Word  
Burst  
Continuous  
Burst  
Start  
8-Word Burst  
CR[2:0]=010b  
16-Word Burst  
CR[2:0]=011b  
Addr. CR[2:0]=0  
CR[2:0]=111b  
(Dec)  
01b  
Linear  
Linear  
Linear  
Linear  
0
1
2
3
0-1-2-3 0-1-2-3-4-5-6-7  
1-2-3-0 1-2-3-4-5-6-7-0  
2-3-0-1 2-3-4-5-6-7-0-1  
0-1-2...14-15  
1-2-3...14-15-0  
2-3-4...15-0-1  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
3-0-1-2 3-4-5-6-7-0-1-2 3-4-5...15-0-1-2  
4-5-6...15-0-1-2-  
4
5
6
4-5-6-7-0-1-2-3  
3
4-5-6-7-8-9-10...  
5-6-7-0-1-2-3-4 5-6-7...15-0-1...4 5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-  
6-7-0-1-2-3-4-5 6-7-8...15-0-1...5  
...  
7-8-9-10-11-12-  
7
7-0-1-2-3-4-5-6 7-8-9...15-0-1...6  
13...  
14  
14-15-0-1...13  
14-15-16-17-18-19-  
20-...  
15  
0
15-0-1-2-3...14  
0-1-2...14-15  
1-2-3...15-16  
2-3-4...16-17  
15-16-17-18-19-...  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
0-1-2-3 0-1-2-3-4-5-6-7  
1-2-3-4 1-2-3-4-5-6-7-8  
2-3-4-5 2-3-4-5-6-7-8-9  
1
2
3-4-5-6-7-8-9-  
3
4
5
6
7
3-4-5-6  
10  
3-4-5...17-18  
4-5-6...18-19  
5-6-7...19-20  
6-7-8...20-21  
7-8-9...21-22  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
4-5-6-7-8-9-10-  
11  
5-6-7-8-9-10-  
11-12  
6-7-8-9-10-11-  
12-13  
6-7-8-9-10-11-12-  
...  
7-8-9-10-11-  
12-13-14  
7-8-9-10-11-12-  
13...  
14-15-16-17-18-  
19-20-...  
14  
15  
14-15...28-29  
15-16...29-30  
15-16-17-18-19-  
20-21-...  
Datasheet  
85  
14.8  
14.9  
Clock Edge (CR[6])  
Configuring the valid clock edge enables a flexible memory interface to a wide range of burst  
CPUs. Clock configuration sets the device to start a burst cycle, output data, and assert WAIT on  
the clock’s rising or falling edge.  
Burst Wrap (CR[3])  
The burst wrap bit determines whether 4-, 8-, or 16-word burst accesses wrap within the burst-  
length boundary or whether they cross word-length boundaries to perform linear accesses. No-  
wrap mode (CR[3]=1) enables WAIT to hold off the system processor, as it does in the continuous  
burst mode, until valid data is available. In no-wrap mode (CR[3]=0), the device operates similarly  
to continuous linear burst mode but consumes less power during 4-, 8-, or 16-word bursts.  
For example, if CR[3]=0 (wrap mode) and CR[2:0] = 1h (4-word burst), possible linear burst  
sequences are 0-1-2-3, 1-2-3-0, 2-3-0-1, 3-0-1-2.  
If CR[3]=1 (no-wrap mode) and CR[2:0] = 1h (4-word burst length), then possible linear burst  
sequences are 0-1-2-3, 1-2-3-4, 2-3-4-5, and 3-4-5-6. CR[3]=1 not only enables limited non-  
aligned sequential bursts, but also reduces power by minimizing the number of internal read  
operations.  
Setting CR[2:0] bits for continuous linear burst mode (7h) also achieves the above 4-word burst  
sequences. However, significantly more power may be consumed. The 1-2-3-4 sequence, for  
example, consumes power during the initial access, again during the internal pipeline lookup as the  
processor reads word 2, and possibly again, depending on system timing, near the end of the  
sequence as the device pipelines the next 4-word sequence. CR[3]=1 while in 4-word burst mode  
(no-wrap mode) reduces this excess power consumption.  
14.10  
Burst Length (CR[2:0])  
The Burst Length bit (BL[2:0]) selects the number of words the device outputs in synchronous read  
access of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, and continuous  
word.  
Continuous-burst accesses are linear only, and do not wrap within any word length boundaries (see  
Table 32, “Sequence and Burst Length” on page 85). When a burst cycle begins, the device outputs  
synchronous burst data until it reaches the end of the “burstable” address space.  
Intel® Wireless Flash Memory (W18)  
Appendix A Write State Machine States  
This table shows the command state transitions based on incoming commands. Only one partition  
can be actively programming or erasing at a time.  
Figure 42. Write State Machine — Next State Table (Sheet 1 of 2)  
C h i
p
 
N e x t S ta te a ft e r C o m m a n d In p u t  
E n h a n c e d  
F a c to r y  
P g m  
B E C o n firm ,  
C le a r  
S ta tu s  
R e g is te r (6  
P r o g ra m  
E r a s e  
S u s p e n d  
/
R e a d  
A r ra y ( 3  
P ro g r a m  
E ra s e  
S e tu p ( 4  
P /E R e s u m e ,  
U L B  
R e a d  
S ta tu s  
R e a d  
ID /Q u e ry  
C u r r e n t C h ip  
S ta te ( 8 )  
)
, 5  
)
, 5 )  
S e tu p (4  
)
)
(9 )  
S e tu p ( 4  
C o n firm  
( F F H )  
R e a d y  
(1 0 H /4 0 H )  
( 2 0 H )  
( 3 0 H )  
( D 0 H )  
( B 0 H )  
( 7 0 H )  
( 5 0 H )  
(9 0 H , 9 8 H )  
P ro g r a m  
S e tu p  
E r a s e  
S e tu p  
E F P  
S e tu p  
R e a d y  
R e a d y  
L o c k /C R S e tu p  
O T P  
R e a d y (L o c k E r ro r )  
R e a d y  
R e a d y (L o c k E r ro r )  
S e tu p  
B u s y  
O T P B u s y  
S e tu p  
B u s y  
P r o g ra m B u s y  
P r o g r a m  
P r o g ra m B u s y  
P r o g ra m S u s p e n d  
R e a d y ( E rr o r )  
E r a s e B u s y  
P g m S u s p  
P r o g r a m B u s y  
P ro g r a m S u s p e n d  
R e a d y ( E rr o r )  
E r a s e B u s y  
S u s p e n d  
S e tu p  
B u s y  
P g m B u s y  
E r a s e B u s y  
E r a s e S u s p  
E r a s e  
P g m in  
E ra s e  
S u s p S e tu p  
E r a s e  
S u s p e n d  
S u s p e n d  
E r a s e S u s p e n d  
E r a s e B u s y  
E r a s e S u s p e n d  
S e tu p  
B u s y  
P r o g r a m in E ra s e S u s p e n d B u s y  
P g m S u s p in  
E r a s e S u s p  
P r o g r a m in  
E r a s e S u s p e n d  
P r o g r a m in E ra s e S u s p e n d B u s y  
P r o g ra m in E r a s e S u s p e n d B u s y  
P g m in E r a s e  
S u s p B u s y  
S u s p e n d  
P ro g r a m S u s p e n d in E r a s e S u s p e n d  
P ro g r a m S u s p e n d in E r a s e S u s p e n d  
L o c k /C R S e tu p in E r a s e  
S u s p e n d  
E r a s e S u s p e n d  
( L o c k E r r o r)  
E r a s e S u s p e n d ( L o c k E rr o r)  
R e a d y ( E rr o r )  
E ra s e S u s p  
S e tu p  
E F P B u s y  
E F P 
B u s y
(7  
V e r
ify
 
B u s y
(7  
R e a d y ( E rr o r )  
E n h a n c e d  
F a c to ry  
)
E F P B u s y  
E F P V e r ify  
P r o g r a m  
)
O u t p u t N e x t S t a t e a f te r C o m m a n d In p u t  
P g m S e tu p ,  
E r a s e S e tu p ,  
O T P S e tu p ,  
P g m in E ra s e S u s p S e tu p ,  
E F P S e tu p ,  
S ta tu s  
E F P B u s y ,  
V e r ify B u s y  
L o c k /C R S e tu p ,  
L o c k /C R S e tu p in E r a s e S u s p  
S ta tu s  
O T P B u s y  
S ta tu s  
R e a d y ,  
P g m B u s y ,  
P g m S u s p e n d ,  
E r a s e B u s y ,  
E r a s e S u s p e n d ,  
P g m In E r a s e S u s p B u s y ,  
P g m S u s p In E ra s e S u s p  
O u tp u t  
d o e s n o t  
c h a n g e  
)
A r ra y ( 3  
S ta tu s  
O u tp u t d o e s n o t c h a n g e  
S ta tu s  
ID /Q u e ry  
Datasheet  
87  
Intel® Wireless Flash Memory (W18)  
Figure 42. Write State Machine — Next State Table (Sheet 2 of 2)  
C h i
p
 
N e x t S t a t e a f t e r C o m m a n d In p u t  
L o c k ,  
n lo c k ,  
L o c k -  
o w  
B lo c k  
E n h a n c e d  
F a c t P g m  
E x it (b lk a d d  
L o c k  
B lo c k  
Ille g a l  
c o m m a n d s o r  
E F P d a t a ( 2  
U
O
T P  
D
n
W
rite  
C
R
( 9  
W
S M  
C u r r e n t C h i p  
S t a t e ( 8 )  
)
)
S e t u p ( 5  
C o n f ir m  
O
p e r a t io n  
C o m p le te s  
L o c k - d o w n ,  
)
( 9  
)
)
C o n f ir m  
( 9  
)
< >  
W A 0 )  
C
R
s e t u p ( 5  
C o n f ir m  
( 6 0 H  
)
(C 0 H  
T P  
S e t u p  
)
( 0 1 H  
)
(2 F H )  
( 0 3 H  
)
( X X X X H  
)
( o t h e r c o d e s )  
L o c k / C  
S e tu p  
R
O
R e a d y  
L o c k /C  
T P  
R
e a d y  
N / A  
R
S e t u p  
R
e a d y ( L o c k E r r o r)  
R
e a d y  
R
e a d y  
R
e a d y  
R e a d y (L o c k E rr o r )  
S e t u p  
B u s y  
O T P B u s y  
O
R
R
e a d y  
N / A  
S e t u p  
B u s y  
P r o g ra m B u s y  
P r o g ra m B u s y  
P r o g r a m  
e a d y  
S u s p e n d  
S e t u p  
B u s y  
P r o g ra m S u s p e n d  
e a d y ( E rr o r)  
E ra s e B u s y  
N / A  
R
E ra s e B u s y  
R
e a d y  
E r a s e  
L o c k / C  
S e t u p in  
E ra s e S u s p  
R
S u s p e n d  
E r a s e S u s p e n d  
N / A  
S e t u p  
B u s y  
P ro g r a m in E r a s e S u s p e n d B u s y  
P ro g r a m in E r a s e S u s p e n d B u s y  
E r a s e  
S u s p e n d  
P r o g r a m in  
E r a s e S u s p e n d  
S u s p e n d  
P r o g r a m S u s p e n d in E r a s e S u s p e n d  
L o c k /C  
S u s p e n d  
R S e t u p in E r a s e  
E r a s e S u s p e n d  
( L o c k E r r o r)  
E ra s e S u s p  
E ra s e S u s p  
E ra s e S u s p  
E r a s e S u s p e n d ( L o c k E rr o r)  
N / A  
S e t u p  
R
e a d y ( E rr o r)  
E n h a n c e d  
F a c t o ry  
P r o g r a m  
)
)
E F P 
B u s y
( 7  
E F P 
B u s y
( 7  
E F P V e r if y  
E F P B u s y  
E F P V e r if y  
V e r i
f y
 
B u s y
( 7  
E F P V e r i
f y
( 7  
)
)
R
e a d y  
R e a d y  
O u t p u t N e x t S t a t e a f t e r C o m m a n d In p u t  
P g m S e tu p ,  
E r a s e S e t u p ,  
O
T P S e tu p ,  
P g m in E ra s e S u s p S e t u p ,  
E F P S e t u p ,  
S t a tu s  
E F P B u s y ,  
V e r if y B u s y  
L o c k /C  
L o c k /C  
R
R
S e t u p ,  
S e t u p in E r a s e S u s p  
S ta t u s  
A rr a y  
S t a tu s  
O
u t p u t d o e s  
n o t c h a n g e  
O
T P B u s y  
R e a d y ,  
P g m B u s y ,  
P g m S u s p e n d ,  
E r a s e B u s y ,  
O
u t p u t d o e s  
S ta t u s  
O
u t p u t d o e s n o t c h a n g e  
A rr a y  
n o t c h a n g e  
E r a s e S u s p e n d ,  
P g m I n E r a s e S u s p B u s y ,  
P g m S u s p I n E ra s e S u s p  
NOTES:  
1. The output state shows the type of data that appears at the outputs if the partition address is the same as the command  
address.  
A partition can be placed in Read Array, Read Status or Read ID/CFI, depending on the command issued.  
Each partition stays in its last output state (Array, ID/CFI or Status) until a new command changes it. The next WSM state does  
not depend on the partition's output state.  
For example, if partition #1's output state is Read Array and partition #4's output state is Read Status, every read from partition  
#4 (without issuing a new command) outputs the Status register.  
88  
Datasheet  
Intel® Wireless Flash Memory (W18)  
2. Illegal commands are those not defined in the command set.  
3. All partitions default to Read Array mode at power-up. A Read Array command issued to a busy partition results in undermined  
data when a partition address is read.  
4. Both cycles of 2 cycles commands should be issued to the same partition address. If they are issued to different partitions, the  
second write determines the active partition. Both partitions will output status information when read.  
5. If the WSM is active, both cycles of a 2 cycle command are ignored. This differs from previous Intel devices.  
6. The Clear Status command clears status register error bits except when the WSM is running (Pgm Busy, Erase Busy, Pgm Busy  
In Erase Suspend, OTP Busy, EFP modes) or suspended (Erase Suspend, Pgm Suspend, Pgm Suspend In Erase Suspend).  
7. EFP writes are allowed only when status register bit SR.0 = 0. EFP is busy if Block Address = address at EFP Confirm  
command. Any other commands are treated as data.  
8. The "current state" is that of the WSM, not the partition.  
9. Confirm commands (Lock Block, Unlock Block, Lock-down Block, Configuration Register) perform the operation and then move  
to the Ready State.  
10.In Erase suspend, the only valid two cycle commands are "Program Word", "Lock/Unlock/Lockdown Block", and "CR Write".  
Both cycles of other two cycle commands ("OEM CAM program & confirm", "Program OTP & confirm", "EFP Setup & confirm",  
"Erase setup & confirm") will be ignored. In Program suspend or Program suspend in Erase suspend, both cycles of all two  
cycle commands will be ignored.  
Datasheet  
89  
Intel® Wireless Flash Memory (W18)  
Appendix B Common Flash Interface  
This appendix defines the data structure or “database” returned by the Common Flash Interface  
(CFI) Query command. System software should parse this structure to gain critical information  
such as block size, density, x8/x16, and electrical specifications. Once this information has been  
obtained, the software will know which command sets to use to enable flash writes, block erases,  
and otherwise control the flash component. The Query is part of an overall specification for  
multiple command set and control interface descriptions called Common Flash Interface, or CFI.  
B.3  
Query Structure Output  
The Query database allows system software to obtain information for controlling the flash device.  
This section describes the device’s CFI-compliant interface that allows access to Query data.  
Query data are presented on the lowest-order data outputs (DQ0-7) only. The numerical offset  
value is the address relative to the maximum bus width supported by the device. On this family of  
devices, the Query table device starting address is a 10h, which is a word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,” appear on  
the low byte at word addresses 10h and 11h. This CFI-compliant device outputs 00h data on upper  
bytes. The device outputs ASCII “Q” in the low byte (DQ0-7) and 00h in the high byte (DQ8-15).  
At Query addresses containing two or more bytes of information, the least significant data byte is  
presented at the lower address, and the most significant data byte is presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the  
“h” suffix has been dropped. In addition, since the upper byte of word-wide devices is always  
“00h,” the leading “00” has been dropped from the table notation and only the lower byte value is  
shown. Any x16 device outputs can be assumed to have 00h on the upper byte in this mode.  
Table 33. Summary of Query Structure Output as a Function of Device and Mode  
Table 34. Example of Query Structure Output of x16- and x8 Devices  
WordAddressing:  
HexCode  
D D  
1
ByteAddressing:  
Offset HexCode  
DD  
Offset  
Value  
Value  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
..  
0051  
0052  
0059  
"Q"  
"R"  
"Y"  
PrVendor  
ID#  
PrVendor  
TblAd  
AltVendor  
ID#  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
..  
51  
52  
59  
P_ID  
L
P_ID  
L
"Q"  
"R"  
"Y"  
P_ID  
PrVendor  
ID#  
ID#  
..  
L
P_ID  
L
I
P_ID  
..  
I
I
A_ID  
A_ID  
..  
..  
90  
Datasheet  
Intel® Wireless Flash Memory (W18)  
B.4  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash Interface (CFI)  
Query structure or “database.” The structure sub-sections and address locations are summarized  
below.  
Table 35. Query Structure  
Description(1)  
Offset  
Sub-Section Name  
00000h  
Manufacturer Code  
00001h  
Device Code  
Block-specific information  
(BA+2)h(2)  
Block Status register  
00004-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Intel-specific Extended Query Table  
NOTES:  
1. Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a  
function of device bus width and mode.  
2. BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is  
32K-word).  
3. Offset 15 defines “P” which points to the Primary Intel-specific Extended Query Table.  
B.5  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully or whether  
a given block is locked or can be accessed for flash program/erase operations.  
Block Erase Status (BSR.1) allows system software to determine the success of the last block erase  
operation. BSR.1 can be used just after power-up to verify that the VCC supply was not  
accidentally removed during an erase operation.  
Table 36. Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
Add.  
BA+2 --00 or --01  
Value  
(BA+2)h(1)  
1
BSR.0 Block lock status  
0 = Unlocked  
BA+2 (bit 0): 0 or 1  
1 = Locked  
BSR.1 Block lock-down status  
0 = Not locked down  
1 = Locked down  
BA+2 (bit 1): 0 or 1  
BA+2 (bit 2–7): 0  
BSR 2–7: Reserved for future use  
NOTES:  
1. BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is  
32K-word).  
B.6  
CFI Query Identification String  
The Identification String provides verification that the component supports the Common Flash  
Interface specification. It also indicates the specification version and supported vendor-specified  
command set(s).  
Datasheet  
91  
Intel® Wireless Flash Memory (W18)  
Table 37. CFI Identification  
Hex  
Add. Cod Valu  
10:  
Offset Length  
Description  
3 Query-uniqueASCIIstringQRY“  
10h  
--51 "Q"  
11:  
--52 "R"  
12:  
--59 "Y"  
2 PrimaryvendorcommandsetandcontrolinterfaceIDcode. 13: --03  
16-bitIDcodeforvendor-s ecifiedalorithm 14: --00  
15h 2 ExtendedQueryTableprimaryalgorithmaddress 15: --39  
16: --00  
17h 2 AlternatevendorcommandsetandcontrolinterfaceIDcode. 17: --00  
0000hmeansnosecondvendor-specifiedalgorithmexists 18: --00  
13h  
19h 2 SecondaryalgorithmExtendedQueryTableaddress.  
0000hmeansnoneexists  
19: --00  
1A: --00  
Table 38. System Interface Information  
Hex  
Offset  
1Bh  
Length  
Description  
Add. Code Value  
1
V
CC logic supply minimum program/erase voltage  
1B:  
1C:  
1D:  
1E:  
--17 1.7V  
--19 1.9V  
--B4 11.4V  
--C6 12.6V  
--04 16µs  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
V
PP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
V
PP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n µ-sec  
“n” such that typical max. buffer write time-out = 2n µ-sec  
“n” such that typical block erase time-out = 2n m-sec  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--00  
--0A  
--00  
NA  
1s  
NA  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
--04 256µs  
--00  
--03  
--00  
NA  
8s  
NA  
92  
Datasheet  
Intel® Wireless Flash Memory (W18)  
B.7  
Device Geometry Definition  
Table 39. Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
See table below  
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
1
27:  
28:  
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
2
1
0
28h  
2
x64  
x32  
x16  
9
x8  
8
--01  
x16  
0
15  
14  
13  
12  
11  
10  
29:  
2A:  
2B:  
2C:  
--00  
--00  
--00  
“n” such that maximum number of bytes in write buffer = 2n  
2
1
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partitions have one blocking region  
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
4
4
4
2Dh  
31h  
35h  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
32 Mbit  
64 Mbit  
128 Mbit  
–B  
Address  
–B  
–T  
–B  
–T  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--3E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--7E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--7E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--FE  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--FE  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
Datasheet  
93  
Intel® Wireless Flash Memory (W18)  
B.8  
Intel-Specific Extended Query Table  
Table 40. Primary Vendor-Specific Extended Query  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
Unique ASCII string “PRI“  
39:  
3A:  
3B:  
3C:  
3D:  
3E:  
3F:  
40:  
41:  
--50  
--52  
--49  
--31  
--33  
--E6  
--03  
--00  
--00  
"P"  
"R"  
"I"  
"1"  
"3"  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 1  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
bit 9 Simultaneous operations supported  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
(P+9)h  
1
2
42:  
--01  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
43:  
44:  
--03  
--00  
bit 0 = 1  
bit 1 = 1  
Yes  
Yes  
(P+C)h  
(P+D)h  
1
1
45:  
--18 1.8V  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
PP optimum program/erase supply voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
V
46:  
--C0 12.0V  
94  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 41. Protection Register Information  
(1)  
Hex  
Add. Code Value  
47: --01 1  
Len th  
Descri tion  
(Optional flash featuresandcommands)  
P=39h  
(P+E)h 1 Number of Protection register fields in JEDECIDspace.  
“00h ” indicates that 256 rotectionfieldsareavailable  
(P+F)h 4 ProtectionField1:ProtectionDescription  
48: --80 80h  
(P+10)h  
(P+11)h  
(P+12)h  
Thisfielddescribesuser-availableOne TimePro rammable 49: --00 00h  
OTPProtectionre isterb tes. Someare re- ro rammed 4A: --03 8byte  
with device-unique serialnumbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the sections first byte. The following bytes are factory  
pre-programmed and user-programmable.  
4B: --03 8byte  
bits 0–7 = Lock/bytes Jedec-plane physicallowaddress  
bits 8–15 = Lock/bytes Jedec-plane physicalhigh address  
bits 16–23 =n” such that 2n = factory pre-programmed bytes  
bits 24–31 =n” such that 2n = user ro rammable b tes  
Table 42. Burst Read Information for Non-muxed Device  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+13)h  
1
Page Mode Read capability  
4C:  
--03 8 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
(P+14)h  
(P+15)h  
1
1
Number of synchronous mode read configuration fields that  
4D:  
4E:  
--04  
--01  
4
4
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
(P+16)h  
(P+17)h  
(P+18)h  
1
1
1
4F:  
50:  
51:  
--02  
--03  
--07 Cont  
8
16  
Table 43. Partition and Erase-block Region Information  
Offset(1)  
See table below  
Address  
Len  
P = 39h  
Description  
(Optional flash features and commands)  
Bot  
Top  
Bottom  
Top  
(P+19)h (P+19)h Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
52:  
52:  
Datasheet  
95  
Intel® Wireless Flash Memory (W18)  
Partition Region 1 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
53:  
54:  
55:  
Top  
53:  
54:  
55:  
Bottom  
(P+1A)h (P+1A)h  
(P+1B)h (P+1B)h  
Top  
(Optional flash features and commands)  
Number of identical partitions within the partition region  
Len  
2
(P+1C)h (P+1C)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
1
1
bits 4–7 = number of simultaneous Erase operations  
(P+1D)h (P+1D)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1E)h (P+1E)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1F)h (P+1F)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
56:  
57:  
58:  
56:  
57:  
58:  
1
1
(P+20)h (P+20)h Partition Region 1 Erase Block Type 1 Information  
4
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
(P+21)h (P+21)h  
(P+22)h (P+22)h  
(P+23)h (P+23)h  
(P+24)h (P+24)h  
(P+25)h (P+25)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 1 (Erase Block Type 1)  
Minimum block erase cycles x 1000  
2
1
(P+26)h (P+26)h Partition 1 (erase block Type 1) bits per cell; internal ECC  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+27)h (P+27)h Partition 1 (erase block Type 1) page mode and synchronous  
mode capabilities defined in Table 10.  
1
4
60:  
60:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+28)h  
(P+29)h  
(P+2A)h  
(P+2B)h  
(P+2C)h  
(P+2D)h  
(P+2E)h  
Partition Region 1 Erase Block Type 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(bottom parameter device only)  
Partition 1 (Erase block Type 2)  
Minimum block erase cycles x 1000  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
2
1
Partition 1 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+2F)h  
Partition 1 (Erase block Type 2) pagemode and synchronous  
mode capabilities defined in Table 10  
1
68:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
96  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Partition Region 2 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
69:  
6A:  
6B:  
Top  
61:  
62:  
63:  
Bottom  
Top  
(Optional flash features and commands)  
Len  
2
(P+30)h (P+28)h Number of identical partitions within the partition region  
(P+31)h (P+29)h  
(P+32)h (P+2A)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
1
1
1
1
(P+33)h (P+2B)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+34)h (P+2C)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+35)h (P+2D)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
6C:  
6D:  
6E:  
64:  
65:  
66:  
(P+36)h (P+2E)h Partition Region 2 Erase Block Type 1 Information  
4
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
(P+37)h (P+2F)h  
(P+38)h (P+30)h  
(P+39)h (P+31)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+3A)h (P+32)h Partition 2 (Erase block Type 1)  
(P+3B)h (P+33)h Minimum block erase cycles x 1000  
(P+3C)h (P+34)h Partition 2 (Erase block Type 1) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+3D)h (P+35)h Partition 2 (erase block Type 1) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
4
76:  
6E:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+36)h Partition Region 2 Erase Block Type 2 Information  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
(P+37)h  
(P+38)h  
(P+39)h  
(P+3A)h  
(P+3B)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 2 (Erase Block Type 2)  
Minimum block erase cycles x 1000  
2
1
(P+3C)h Partition 2 (Erase Block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserved for future use  
(P+3D)h Partition 2 (Erase block Type 2) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
76:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+3E)h (P+3E)h Features Space definitions (Reserved for future use)  
(P+3F)h (P+3F)h Reserved for future use  
TBD  
Resv'd 78:  
77:  
77:  
78:  
Datasheet  
97  
Intel® Wireless Flash Memory (W18)  
Partition and Erase-block Region Information  
Address  
32 Mbit  
64Mbit  
128Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
52:  
53:  
54:  
55:  
56:  
57:  
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
60:  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
76:  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
NOTES:  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. TPD - Top parameter device; BPD - Bottom parameter device.  
3. Partition: Each partition is 4Mb in size. It can contain main blocks OR a combination of both main and  
parameter blocks.  
4. Partition Region: Symmetrical partitions form a partition region. (there are two partition regions, A. contains  
all the partitions that are made up of main blocks only. B. contains the partition that is made up of the  
parameter and the main blocks.  
98  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Appendix C Ordering Information  
Figure 43. VF BGA and µBGA Ordering Information  
G E 2 8 F 6 4 0 W 1 8 T D 6 0  
Access Speed (ns)  
(60,80)  
Package:  
GE = 0.75 mm VF BGA  
GT = 0.75 mm µBGA*  
Process Identifier:  
C = 0.18  
µ
µ
m
Product Line Designator:  
for all Intel Flash Products  
D = 0.13  
m
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Device Density:  
320 = 32Mbit  
640 = 64Mbit  
128 = 128Mbit  
Product Family:  
W18 = Intel® Wireless Flash  
Memory  
Figure 44. SCSP Ordering Information  
R D 4 8 F 3 0 0 0 W 0 Y B Q 0  
Device Details:  
0 = Initial Version  
Package:  
RD = SCSP, Leaded  
PF = SCSP, Pb-Free  
Ballout Indicator:  
Q= QUAD+  
Product Line:  
48F = Flash Only  
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Flash Density:  
0 = No die  
3 = 128 Mbit  
Voltage:  
Y
= 1.8 Volt I/O  
Product Family Designator:  
W = Intel® Wireless Flash Memory  
Datasheet  
99  
Intel® Wireless Flash Memory (W18)  
100  
Datasheet  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY