GE28F640W18TE85 [INTEL]

Flash, 4MX16, 85ns, PBGA56;
GE28F640W18TE85
型号: GE28F640W18TE85
厂家: INTEL    INTEL
描述:

Flash, 4MX16, 85ns, PBGA56

文件: 总104页 (文件大小:1208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Wireless Flash Memory (W18)  
28F320W18, 28F640W18, 28F128W18  
Datasheet  
Product Features  
High Performance Read-While-Write/  
Erase  
Architecture  
Multiple 4-Mbit Partitions  
Dual Operation: RWW or RWE  
Parameter block size = 4 KWord  
Main block size = 32 Kword  
Top or Bottom Parameter Devices  
16-bit wide data bus  
Burst frequency at 66 MHz  
(zero wait states)  
60 ns Initial Access Read Speed  
11 ns Burst-Mode Read Speed  
20 ns Page-Mode Read Speed  
4-, 8-, 16-, and Continuous-Word Burst  
Mode Reads  
Burst and Page Mode Reads in all  
Blocks, across all partition boundaries  
Burst Suspend Feature  
Software  
—5 µs (typ.) Program and Erase Suspend  
Latency Time  
Flash Data Integrator (FDI) and Common  
Flash Interface (CFI) Compatible  
Programmable WAIT Signal Polarity  
Enhanced Factory Programming at  
3.1 µs/word (typ.for 0.13 µm)  
Packaging and Power  
Security  
90 nm: 64-Mbit in VF BGA Package  
130 nm: 32-, 64-, and 128-Mbit in VF  
BGA Package; 128-Mbit in QUAD+  
Package  
128-bit OTP Protection Register:  
64 unique pre-programmed bits +  
64 user-programmable bits  
Absolute Write Protection with VPP at  
Ground  
Individual and Instantaneous Block  
Locking/Unlocking with Lock-Down  
Capability  
180 nm: 32- and 128-Mbit Densities in VF  
BGA Package  
56 Active Ball Matrix, 0.75 mm Ball-  
Pitch  
VCC = 1.70 V to 1.95 V  
Quality and Reliability  
VCCQ = 1.70 V to 2.24 V or 1.35 V to  
Temperature Range: –40 °C to +85 °C  
100k Erase Cycles per Block  
90 nm ETOX™ IX Process (64Mb)  
130 nm ETOX™ VIII Process  
180 nm ETOX™ VII Process  
1.80 V  
Standby current (0.13 µm): 8µA (typ.)  
Read current: 8mA (4-word burst, typ.)  
The Intel® Wireless Flash Memory (W18) device with flexible multi-partition dual operation,  
provides high-performance asynchronous and synchronous burst reads. It is an ideal memory for  
low-voltage burst CPUs. Combining high read performance with flash memory’s intrinsic non-  
volatility, the W18 device eliminates the traditional system-performance paradigm of shadowing  
redundant code memory from slow nonvolatile storage to faster execution memory. It reduces  
the total memory requirement that increases reliability and reduces overall system power  
consumption and cost.  
The W18 device’s flexible multi-partition architecture allows programming or erasing to occur  
in one partition while reading from another partition. This allows for higher data write  
throughput compared to single partition architectures. The dual-operation architecture also  
allows two processors to interleave code operations while program and erase operations take  
place in the background. The designer can also choose the size of the code and data partitions via  
the flexible multi-partition architecture.  
Notice: This document contains information on new products in production. The specifications  
are subject to change without notice. Verify with your local Intel sales office that you have the  
latest datasheet before finalizing a design.  
290701-010  
February 2004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
The Intel® WirelessFlash Memory may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © 2004, Intel Corporation.  
*Other names and brands may be claimed as the property of others.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction ...............................................................................................................................9  
1.1  
1.2  
1.3  
Document Purpose...............................................................................................................9  
Nomenclature .......................................................................................................................9  
Conventions..........................................................................................................................9  
2.0 Device Description................................................................................................................10  
2.1  
2.2  
2.3  
2.4  
Product Overview ...............................................................................................................10  
Package Diagram ...............................................................................................................12  
Signal Descriptions .............................................................................................................14  
Memory Map and Partitioning.............................................................................................18  
3.0 Device Operations.................................................................................................................21  
3.1  
Bus Operations ...................................................................................................................21  
3.1.1 Reads ....................................................................................................................21  
3.1.2 Writes.....................................................................................................................22  
3.1.3 Output Disable .......................................................................................................22  
3.1.4 Burst Suspend .......................................................................................................22  
3.1.5 Standby..................................................................................................................23  
3.1.6 Reset .....................................................................................................................23  
Device Commands .............................................................................................................23  
Command Sequencing .......................................................................................................27  
3.2  
3.3  
4.0 Read Operations....................................................................................................................28  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Asynchronous Page-Read Mode........................................................................................28  
Synchronous Burst-Read Mode..........................................................................................28  
Read Array..........................................................................................................................29  
Read Identifier ....................................................................................................................29  
CFI Query ...........................................................................................................................30  
Read Status Register..........................................................................................................30  
Clear Status Register..........................................................................................................32  
5.0 Program Operations.............................................................................................................32  
5.1  
5.2  
5.3  
Word Program ....................................................................................................................32  
Factory Programming .........................................................................................................33  
Enhanced Factory Program (EFP) .....................................................................................34  
5.3.1 EFP Requirements and Considerations.................................................................34  
5.3.2 Setup .....................................................................................................................35  
5.3.3 Program .................................................................................................................35  
5.3.4 Verify......................................................................................................................35  
5.3.5 Exit.........................................................................................................................36  
6.0 Program and Erase Operations.......................................................................................38  
6.1  
6.2  
6.3  
Program/Erase Suspend and Resume ...............................................................................38  
Block Erase.........................................................................................................................40  
Read-While-Write and Read-While-Erase ..........................................................................42  
Datasheet  
3
Contents  
7.0 Security Modes.......................................................................................................................43  
7.1  
Block Lock Operations........................................................................................................ 43  
7.1.1 Lock .......................................................................................................................44  
7.1.2 Unlock....................................................................................................................44  
7.1.3 Lock-Down.............................................................................................................44  
7.1.4 Block Lock Status ..................................................................................................45  
7.1.5 Lock During Erase Suspend.................................................................................. 45  
7.1.6 Status Register Error Checking .............................................................................45  
7.1.7 WP# Lock-Down Control .......................................................................................46  
Protection Register ............................................................................................................. 46  
7.2.1 Reading the Protection Register............................................................................47  
7.2.2 Programing the Protection Register....................................................................... 47  
7.2.3 Locking the Protection Register.............................................................................47  
VPP Protection ................................................................................................................... 49  
7.2  
7.3  
8.0 Set Configuration Register................................................................................................ 50  
8.1  
8.2  
Read Mode (CR[15])........................................................................................................... 52  
First Access Latency Count (CR[13:11]) ............................................................................52  
8.2.1 Latency Count Settings.......................................................................................... 53  
WAIT Signal Polarity (CR[10]) ............................................................................................ 54  
WAIT Signal Function......................................................................................................... 54  
Data Hold (CR[9]) ............................................................................................................... 55  
WAIT Delay (CR[8])............................................................................................................56  
Burst Sequence (CR[7])...................................................................................................... 56  
Clock Edge (CR[6]).............................................................................................................58  
Burst Wrap (CR[3]) .............................................................................................................58  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10 Burst Length (CR[2:0])........................................................................................................ 58  
9.0 Power Consumption.............................................................................................................59  
9.1  
9.2  
9.3  
9.4  
Active Power.......................................................................................................................59  
Automatic Power Savings (APS) ........................................................................................59  
Standby Power ................................................................................................................... 59  
Power-Up/Down Characteristics......................................................................................... 59  
9.4.1 System Reset and RST# .......................................................................................60  
9.4.2 VCC, VPP, and RST# Transitions ......................................................................... 60  
Power Supply Decoupling................................................................................................... 60  
9.5  
10.0 Thermal and DC Characteristics..................................................................................... 61  
10.1 Absolute Maximum Ratings................................................................................................ 61  
10.2 Operating Conditions.......................................................................................................... 61  
10.3 DC Current Characteristics................................................................................................. 62  
10.4 DC Voltage Characteristics................................................................................................. 64  
11.0 AC Characteristics................................................................................................................ 66  
11.1 Read Operations – 130 nm and 90 nm Λιτηογραπηψ ........................................................66  
11.2 Read Operations – 180 nµ Λιτηογραπηψ ........................................................................... 68  
11.3 AC Write Characteristics.....................................................................................................78  
11.4 Erase and Program Times..................................................................................................83  
11.5 Reset Specifications ........................................................................................................... 84  
11.6 AC I/O Test Conditions....................................................................................................... 85  
11.7 Device Capacitance............................................................................................................86  
4
Datasheet  
Contents  
Appendix A Write State Machine States ...............................................................................87  
Appendix B Common Flash Interface (CFI).........................................................................90  
Appendix C Mechanical Specifications.................................................................................99  
Appendix D Ordering Information .........................................................................................104  
Datasheet  
5
Contents  
Revision History  
Date of  
Revision  
Version  
Description  
09/13/00  
-001  
Initial Release  
Deleted 16-Mbit density  
Revised ADV#, Section 2.2  
Revised Protection Registers, Section 4.16  
Revised Program Protection Register, Section 4.18  
Revised Example in First Access Latency Count, Section 5.0.2  
Revised Figure 5, Data Output with LC Setting at Code 3  
Added WAIT Signal Function, Section 5.0.3  
Revised WAIT Signal Polarity, Section 5.0.4  
Revised Data Output Configuration, Section 5.0.5  
Added Figure 7, Data Output Configuration with WAIT Signal Delay  
Revised WAIT Delay Configuration, Section 5.0.6  
Changed V  
Extended Temperature Operation  
Spec from 1.7 V – 1.95 V to 1.7 V – 2.24 V in Section 8.2,  
CCQ  
Changed I  
Characteristics  
Spec from 15 µA to 18 µA in Section 8.4, DC  
CCS  
01/29/01  
-002  
Changed I  
Spec from 10 mA (CLK = 40 MHz, burst length = 4) and 13  
CCR  
mA (CLK = 52 MHz, burst length = 4) to 13 mA, and 16 mA respectively in  
Section 8.4, DC Characteristics  
Changed I  
Characteristics  
Spec from 15 µA to 18 µA in Section 8.4, DC  
Spec from 15 µA to 18 µA in Section 8.4, DC  
Spec from 5ns to 3ns in Section 8.6, AC Read  
CCWS  
Changed I  
Characteristics  
CCES  
Changed t  
Characteristics  
CHQX  
Added Figure 25, WAIT Signal in Synchronous Non-Read Array Operation  
Waveform  
Added Figure 26, WAIT Signal in Asynchronous Page Mode Read  
Operation Waveform  
Added Figure 27, WAIT Signal in Asynchronous Single Word Read  
Operation Waveform  
Revised Appendix E, Ordering Information  
Revised entire Section 4.10, Enhanced Factory Program Command (EFP)  
and Figure 6, Enhanced Factory Program Flowchart  
Revised Section 4.13, Protection Register  
Revised Section 4.15, Program Protection Register  
Revised Section 7.3, Capacitance, to include 128-Mbit specs  
Revised Section 7.4, DC Characteristics, to include 128-Mbit specs  
06/12/01  
-003  
Revised Section 7.6, AC Read Characteristics, to include 128-Mbit device  
specifications  
Added t  
Spec in Section 7.6, AC Read Characteristics  
VHGL  
Revised Section 7.7, AC Write Characteristics, to include 128-Mbit device  
specifications  
Minor text edits  
6
Datasheet  
Contents  
Date of  
Revision  
Version  
Description  
New Sections Organization  
Added 16 Word Burst Feature  
Added Burst Suspend Section  
Revised Block Locking State Diagram  
Revised Active Power Section  
Revised Automatic Power Savings Section  
Revised Power-Up/Down Operation Section  
Revised Extended Temperature Operation  
Added 128Mb DC Characteristics Table  
Added 128 Mb AC Read Characteristics  
04/05/02  
-004  
Revised Table 17. Test Configuration Component Values for Worst Case  
Speed Conditions  
Added .13 µ Product DC and AC Read Characteristics  
Revised AC Write Characteristics  
Added Read to Write and Write to Read Transition Waveforms  
Revised Reset Specifications  
Various text edits  
Various text edits  
Updated Latency Count Section, including adding Latency Count Tables  
Added section 8.4 WAIT Function and WAIT Summary Table  
Updated Package Drawing and Dimensions  
10/10/02  
11/12/02  
01/14/03  
-005  
-006  
-007  
Various text clarifications  
Removed Intel Burst Order  
Revised Table 22, DC Current Characteristics, I  
Revised Table 22, DC Current Characteristics, I  
Various text edits  
CCS  
CCAPS  
Revised Table 22, Read Operations, t  
APA  
03/21/03  
12/17/03  
-008  
-009  
Added note to table 15, Configuration Register Descriptions  
Added note to section 3.1.1, Read  
Updated Block-Lock Operations (Section 7.1 and Figure 11)  
Updated Table 21 (128Mb I  
)
CCR  
Updated Table 4 (WAIT behavior)  
Added QUAD+ ballout, package mechanicals, and order information  
Various text edits including latest product-naming convention  
Added 90 nm product line  
Removed µBGA* package  
Added Page- and Burst-Mode descriptions  
Minor text edits  
02/12/04  
-010  
Datasheet  
7
Contents  
8
Datasheet  
Intel® Wireless Flash Memory (W18)  
1.0  
Introduction  
1.1  
Document Purpose  
This datasheet contains information about the Intel® Wireless Flash Memory (W18) device family.  
Section 1.0 provides a flash memory overview. Section 2.0 through Section 9.0 describe the  
memory functionality. Section 10.0 describes the electrical specifications for extended temperature  
product offerings. Packaging specifications and order information can be found in Appendix C and  
Appendix D, respectively.  
1.2  
Nomenclature  
Many acronyms that describe product features or usage are defined here:  
APS - Automatic Power Savings  
BBA - Block Base Address  
CFI - Common Flash Interface  
CUI - Command User Interface  
EFP - Enhanced Factory Programming  
FDI - Flash Data Integrator  
NC - No Connect  
OTP - One-Time Programmable  
PBA - Partition Base Address  
RWE - Read-While-Erase  
RWW - Read-While-Write  
SRD - Status Register Data  
VF BGA - Very thin, Fine pitch, Ball Grid Array  
WSM - Write State Machine  
1.3  
Conventions  
Many abbreviated terms and phrases are used throughout this document:  
The term “1.8 V” refers to the full VCC voltage range of 1.7 V – 1.95 V (except where noted)  
and “VPP = 12 V” refers to 12 V 5%.  
When referring to registers, the term set means the bit is a logical 1, and clear means the bit is  
a logical 0.  
The terms pin and signal are often used interchangeably to refer to the external signal  
connections on the package. (ball is the term used for VF BGA).  
A word is 2 bytes, or 16 bits.  
Datasheet  
9
Intel® Wireless Flash Memory (W18)  
Signal names are in all CAPS (see Section 2.3, “Signal Descriptions” on page 14.)  
Voltage applied to the signal is subscripted, for example, VPP.  
Throughout this document, references are made to top, bottom, parameter, and partition. To clarify  
these references, the following conventions have been adopted:  
A block is a group of bits (or words) that erase simultaneously with one block erase  
instruction.  
A main block contains 32 Kwords.  
A parameter block contains 4 Kwords.  
The Block Base Address (BBA) is the first address of a block.  
A partition is a group of blocks that share erase and program circuitry and a common status  
register.  
The Partition Base Address (PBA) is the first address of a partition. For example, on a 32-  
Mbit top-parameter device, partition number 5 has a PBA of 140000h.  
The top partition is located at the highest physical device address. This partition may be a  
main partition or a parameter partition.  
The bottom partition is located at the lowest physical device address. This partition may be a  
main partition or a parameter partition.  
A main partition contains only main blocks.  
A parameter partition contains a mixture of main blocks and parameter blocks.  
A top parameter device (TPD) has the parameter partition at the top of the memory map with  
the parameter blocks at the top of that partition. This was formerly referred to as top-boot  
device.  
A bottom parameter device (BPD) has the parameter partition at the bottom of the memory  
map with the parameter blocks at the bottom of that partition. This was formerly referred to as  
bottom-boot block flash device.  
2.0  
Device Description  
This section provides an overview of the W18 device features, packaging, signal naming, and  
device architecture.  
2.1  
Product Overview  
The W18 device provides Read-While-Write (RWW) and Read-White-Erase (RWE) capability  
with high-performance synchronous and asynchronous reads on package-compatible densities with  
a 16-bit data bus. Individually-erasable memory blocks are optimally sized for code and data  
storage. Eight 4-Kword parameter blocks are located in the parameter partition at either the top or  
bottom of the memory map. The rest of the memory array is grouped into 32-Kword main blocks.  
The memory architecture for the W18 device consists of multiple 4-Mbit partitions, the exact  
number depending on device density. By dividing the memory array into partitions, program or  
erase operations can take place simultaneously during read operations. Burst reads can traverse  
10  
Datasheet  
Intel® Wireless Flash Memory (W18)  
partition boundaries, but user application code is responsible for ensuring that they don’t extend  
into a partition that is actively programming or erasing. Although each partition has burst-read,  
write, and erase capabilities, simultaneous operation is limited to write or erase in one partition  
while other partitions are in a read mode.  
Augmented erase-suspend functionality further enhances the RWW capabilities of this device. An  
erase can be suspended to perform a program or read operation within any block, except that which  
is erase-suspended. A program operation nested within a suspended erase can subsequently be  
suspended to read yet another memory location.  
After device power-up or reset, the W18 device defaults to asynchronous page-mode read  
configuration. Writing to the device’s configuration register enables synchronous burst-mode read  
operation. In synchronous mode, the CLK input increments an internal burst address generator.  
CLK also synchronizes the flash memory with the host CPU and outputs data on every, or on every  
other, valid CLK cycle after an initial latency. A programmable WAIT output signals to the CPU  
when data from the flash memory device is ready.  
In addition to its improved architecture and interface, the W18 device incorporates Enhanced  
Factory Programming (EFP), a feature that enables fast programming and low-power designs. The  
EFP feature provides the fastest currently-available program performance, which can increase a  
factory’s manufacturing throughput.  
The device supports read operations at 1.8 V and erase and program operations at 1.8 V or 12 V.  
With the 1.8-V option, VCC and VPP can be tied together for a simple, ultra-low-power design. In  
addition to voltage flexibility, the dedicated VPP input provides complete data protection when  
V
PP VPPLK.  
This device allows I/O operation at voltages even lower than the minimum VCCQ of 1.7 V. This  
Extended VCCQ range, 1.35 V – 1.8 V, permits even greater system design flexibility.  
A 128-bit protection register enhances the user’s ability to implement new security techniques and  
data protection schemes. Unique flash device identification and fraud-, cloning-, or content-  
protection schemes are possible through a combination of factory-programmed and user-OTP data  
cells. Zero-latency locking/unlocking on any memory block provides instant and complete  
protection for critical system code and data. An additional block lock-down capability provides  
hardware protection where software commands alone cannot change the block’s protection status.  
The device’s Command User Interface (CUI) is the system processor’s link to internal flash  
memory operation. A valid command sequence written to the CUI initiates device Write State  
Machine (WSM) operation that automatically executes the algorithms, timings, and verifications  
necessary to manage flash memory program and erase. An internal status register provides ready/  
busy indication results of the operation (success, fail, and so on).  
Three power-saving features– Automatic Power Savings (APS), standby, and RST#– can  
significantly reduce power consumption. The device automatically enters APS mode following  
read cycle completion. Standby mode begins when the system deselects the flash memory by  
de-asserting CE#. Driving RST# low produces power savings similar to standby mode. It also  
resets the part to read-array mode (important for system-level reset), clears internal status registers,  
and provides an additional level of flash write protection.  
Datasheet  
11  
Intel® Wireless Flash Memory (W18)  
2.2  
Package Diagram  
The W18 device is available in a 56-ball VF BGA and µBGA Chip SCale Package with 0.75 mm  
ball pitch, or the 88-ball (80 active balls) QUAD+ SCSP package. Figure 1 shows the device  
ballout for the VF BGA package. Figure 2 shows the device ballout for the QUAD+ package.  
Figure 1. 56-Ball VF BGA Ballout  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
VCC  
CLK  
A18  
A17  
A19  
A6  
A5  
A7  
A6  
A18  
A17  
A19  
VCC  
CLK  
A11  
A8  
A9  
VSS  
A20  
A21  
VPP  
A4  
A3  
A2  
A4  
VPP  
VSS  
A20  
A21  
A8  
A9  
A11  
A12  
A13  
A12  
A13  
A3  
A2  
A5  
A7  
RST#  
WE#  
RST#  
WE#  
A10  
A10  
ADV#  
ADV#  
A15  
A14 WAIT  
DQ15 DQ6  
A16  
DQ12  
DQ2  
WP#  
DQ1  
A22  
A1  
A0  
A1  
A0  
A22  
CE#  
WP#  
DQ1  
DQ12  
DQ2  
A16  
WAIT A14  
DQ6 DQ15  
A15  
VCCQ  
DQ4  
CE#  
DQ4  
VCCQ  
VSS  
DQ7  
DQ14 DQ13  
VSSQ DQ5  
DQ11 DQ10  
DQ9  
DQ0  
OE#  
OE#  
DQ0  
DQ9  
DQ10 DQ11  
DQ13 DQ14  
DQ5 VSSQ  
VSS  
DQ7  
G
G
VCC  
DQ3  
VCCQ DQ8  
VSSQ  
VSSQ  
DQ8 VCCQ  
DQ3  
VCC  
Top View - Ball Side Down  
Complete Ink Mark Not Shown  
Bottom View - Ball Side Up  
NOTES:  
1. On lower density devices, upper address balls can be treated as NC. (Example: For 32-Mbit density, A21 and A22 will be NC).  
2. See Appendix C, “Mechanical Specifications” on page 99 for mechanical specifications for the package.  
12  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 2. 88-Ball (80 Active Balls) QUAD+ Ballout  
1
2
3
4
5
6
7
8
DU  
DU  
DU  
DU  
A
B
C
D
E
F
A4  
A5  
A18  
R-LB#  
A17  
A7  
A19  
A23  
A24  
A25  
VSS  
VSS  
F1-VCC F2-VCC  
A21  
A22  
A9  
A11  
A12  
A13  
A15  
A16  
S-CS2  
CLK  
F-VPP,  
F-VPEN  
A3  
R-WE# P1-CS#  
A2  
F-WP# ADV#  
A20  
A8  
A10  
A14  
A1  
A6  
R-UB# F-RST# F-WE#  
G
A0  
D8  
D2  
D10  
D5  
D13  
WAIT F2-CE#  
H
J
R-OE#  
D0  
D1  
D9  
D3  
D12  
D4  
D14  
D6  
D7  
F2-OE#  
VCCQ  
S-CS1# F1-OE#  
D11  
D15  
K
L
P-Mode,  
P-CRE  
F1-CE# P2-CS# F3-CE# S-VCC P-VCC F2-VCC VCCQ  
VSS  
DU  
VSS  
DU  
VCCQ F1-VCC VSS  
VSS  
VSS  
DU  
VSS  
DU  
M
Top View - Ball Side Down  
Legend:  
SRAM/PSRAM specific  
Flash specific  
Global  
NOTES:  
1. Unused upper address balls can be treated as NC (for 128Mbit, A[25:23] are not used).  
2. See Appendix C, “Mechanical Specifications” on page 99 for mechanical specifications for the package.  
Datasheet  
13  
Intel® Wireless Flash Memory (W18)  
2.3  
Signal Descriptions  
Table 1 describes the signals used on the VF BGA package. Table 2 on page 15 describes the  
signals used on the QUAD+ package.  
Table 1. Signal Descriptions - VF BGA Package (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: For memory addresses. 32 Mbit: A[20:0]; 64 Mbit: A[21:0]; 128  
Mbit: A[22:0]  
A[22:0]  
I
DATA INPUTS/OUTPUTS: Inputs data and commands during write cycles; outputs  
data during memory, status register, protection register, and configuration code  
reads. Data pins float when the chip or outputs are deselected. Data is internally  
latched during writes.  
D[15:0]  
I/O  
ADDRESS VALID: ADV# indicates valid address presence on address inputs.  
During synchronous read operations, all addresses are latched on ADV#’s rising  
edge or the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
CE#  
I
I
CHIP ENABLE: Asserting CE# activates internal control logic, I/O buffers,  
decoders, and sense amps. De-asserting CE# deselects the device, places it in  
standby mode, and places all outputs in High-Z.  
CLOCK: CLK synchronizes the device to the system bus frequency during  
synchronous reads and increments an internal address generator. During  
synchronous read operations, addresses are latched on ADV#’s rising edge or the  
next valid CLK edge with ADV# low, whichever occurs first.  
CLK  
I
OUTPUT ENABLE: When asserted, OE# enables the device’s output data buffers  
during a read cycle. When OE# is deasserted, data outputs are placed in a high-  
impedance state.  
OE#  
I
I
RESET: When low, RST# resets internal automation and inhibits write operations.  
This provides data protection during power transitions. de-asserting RST# enables  
normal operation and places the device in asynchronous read-array mode.  
RST#  
WAIT: The WAIT signal indicates valid data during synchronous read modes. It can  
be configured to be asserted-high or asserted-low based on bit 10 of the  
Configuration Register. WAIT is tri-stated if CE# is deasserted. WAIT is not gated by  
OE#.  
WAIT  
WE#  
WP#  
O
I
WRITE ENABLE: WE# controls writes to the CUI and array. Addresses and data  
are latched on the rising edge of WE#.  
WRITE PROTECT: Disables/enables the lock-down function. When WP# is  
asserted, the lock-down mechanism is enabled and blocks marked lock-down  
cannot be unlocked through software. See Section 7.1, “Block Lock Operations” on  
page 43 for details on block locking.  
I
14  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 1. Signal Descriptions - VF BGA Package (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or  
programming. Memory contents cannot be altered when V V . Block erase  
PP  
PPLK  
and program at invalid V voltages should not be attempted.  
PP  
Set V = V for in-system program and erase operations. To accommodate  
PP  
CC  
resistor or diode drops from the system supply, the V level of V can be as low as  
IH  
PP  
VPP  
Pwr/I  
V
min. V must remain above V  
VPP may be 0 V during read operations.  
min to perform in-system flash modification.  
PP1  
PP  
PP1  
V
can be applied to main blocks for 1000 cycles maximum and to parameter  
PP2  
blocks for 2500 cycles. VPP can be connected to 12 V for a cumulative total not to  
exceed 80 hours. Extended use of this pin at 12 V may reduce block cycling  
capability.  
DEVICE POWER SUPPLY: Writes are inhibited at V V  
. Device operations at  
LKO  
CC  
VCC  
Pwr  
invalid V voltages should not be attempted.  
CC  
OUTPUT POWER SUPPLY: Enables all outputs to be driven at V  
may be tied directly to VCC.  
. This input  
CCQ  
VCCQ  
VSS  
Pwr  
Pwr  
Pwr  
GROUND: Pins for all internal device circuitry must be connected to system ground.  
OUTPUT GROUND: Provides ground to all outputs which are driven by VCCQ. This  
signal may be tied directly to VSS.  
VSSQ  
DON’T USE: Do not use this pin. This pin should not be connected to any power  
supplies, signals or other pins and must be floated.  
DU  
NC  
NO CONNECT: No internal connection; can be driven or floated.  
Table 2. Signal Descriptions - QUAD+ Package (Sheet 1 of 4)  
Symbol  
Type  
Description  
ADDRESS INPUTS: Inputs for all die addresses during read and write operations.  
256-Mbit Die : AMAX= A23  
128-Mbit Die : AMAX = A22  
64-Mbit Die : AMAX = A21  
A[MAX:MIN]  
Input  
32-Mbit Die : AMAX = A20  
8-Mbit Die : AMAX = A18  
A0 is the lowest-order 16-bit wide address.  
A[25:24] denote high-order addresses reserved for future device densities.  
DATA INPUTS/OUTPUTS: Inputs data and commands during write cycles, outputs  
data during read cycles. Data signals float when the device or its outputs are  
deselected. Data are internally latched during writes on the flash device.  
Input/  
Output  
D[15:0]  
FLASH CHIP ENABLE: Low-true input.  
F[3:1]-CE# low selects the associated flash memory die. When asserted, flash  
internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby  
levels, data and WAIT outputs are placed in high-Z state.  
F[3:1]-CE#  
Input  
F1-CE# selects or deselects flash die #1; F2-CE# selects or deselects flash die #2  
and is RFU on combinations with only one flash die. F3-CE# selects or deselects  
flash die #3 and is RFU on stacked combinations with only one or two flash dies.  
Datasheet  
15  
Intel® Wireless Flash Memory (W18)  
Table 2. Signal Descriptions - QUAD+ Package (Sheet 2 of 4)  
SRAM CHIP SELECT: Low-true / High-true input (S-CS1# / S-CS2 respectively).  
When either/both SRAM Chip Select signals are asserted, SRAM internal control  
logic, input buffers, decoders, and sense amplifiers are active. When either/both  
SRAM Chip Select signals are deasserted, the SRAM is deselected and its power is  
reduced to standby levels.  
S-CS1#  
S-CS2  
Input  
S-CS1# and S-CS2 are available on stacked combinations with SRAM die and are  
RFU on stacked combinations without SRAM die.  
PSRAM CHIP SELECT: Low-true input.  
When asserted, PSRAM internal control logic, input buffers, decoders, and sense  
amplifiers are active. When deasserted, the PSRAM is deselected and its power is  
reduced to standby levels.  
P[2:1]-CS#  
Input  
P1-CS# selects PSRAM die #1 and is available only on stacked combinations with  
PSRAM die. This ball is an RFU on stacked combinations without PSRAM. P2-CS#  
selects PSRAM die #2 and is available only on stacked combinations with two  
PSRAM dies. This ball is an RFU on stacked combinations without PSRAM or with a  
single PSRAM.  
FLASH OUTPUT ENABLE: Low-true input.  
F[2:1]-OE# low enables the flash output buffers. F[2:1]-OE# high disables the flash  
output buffers, and places the selected flash outputs in High-Z.  
F[2:1]-OE#  
R-OE#  
Input  
Input  
F1-OE# controls the outputs of flash die #1; F2-OE# controls the outputs of flash die  
#2 and flash die #3. F2-OE# is available on stacked combinations with two or three  
flash die and is RFU on stacked combinations with only one flash die.  
RAM OUTPUT ENABLE: Low-true input.  
R-OE# low enables the selected RAM output buffers. R-OE# high disables the RAM  
output buffers, and places the selected RAM outputs in High-Z.  
R-OE# is available on stacked combinations with PSRAM or SRAM die, and is an  
RFU on flash-only stacked combinations.  
FLASH WRITE ENABLE: Low-true input.  
F-WE#  
R-WE#  
Input  
Input  
F-WE# controls writes to the selected flash die. Address and data are latched on the  
rising edge of F-WE#.  
RAM WRITE ENABLE: Low-true input.  
R-WE# controls writes to the selected RAM die.  
R-WE# is available on stacked combinations with PSRAM or SRAM die and is an  
RFU on flash-only stacked combinations.  
CLOCK: Synchronizes the flash die with the system bus clock in synchronous read  
mode and increments the internal address generator.  
During synchronous read operations, addresses are latched on the rising edge of  
ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
CLK  
Input  
In asynchronous mode, addresses are latched on the rising edge ADV#, or are  
continuously flow-through when ADV# is kept asserted.  
WAIT: Output signal.  
Indicates invalid during synchronous array or non-array flash reads. Read  
Configuration Register bit 10 (RCR10) determines WAIT-asserted polarity (high or  
low). WAIT is High-Z if F-CE# is deasserted; WAIT is not gated by F-OE#.  
WAIT  
Output  
In synchronous array or non-array flash read modes, WAIT indicates invalid data  
when asserted and valid data when deasserted.  
In asynchronous flash page read, and all flash write modes, WAIT is asserted.  
16  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 2. Signal Descriptions - QUAD+ Package (Sheet 3 of 4)  
FLASH WRITE PROTECT: Low-true input.  
F-WP# enables/disables the lock-down protection mechanism of the selected flash  
die.  
F-WP#  
ADV#  
Input  
Input  
F-WP# low enables the lock-down mechanism where locked down blocks cannot  
be unlocked with software commands.  
F-WP# high disables the lock-down mechanism, allowing locked down blocks to  
be unlocked with software commands.  
ADDRESS VALID: Low-true input.  
During synchronous flash read operations, addresses are latched on the rising edge  
of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
In asynchronous flash read operations, addresses are latched on the rising edge of  
ADV#, or are continuously flow-through when ADV# is kept asserted.  
RAM UPPER / LOWER BYTE ENABLES: Low-true input.  
During RAM read and write cycles, R-UB# low enables the RAM high order bytes on  
D[15:8], and R-LB# low enables the RAM low-order bytes on D[7:0].  
R-UB#  
R-LB#  
Input  
Input  
R-UB# and R-LB# are available on stacked combinations with PSRAM or SRAM die  
and are RFU on flash-only stacked combinations.  
FLASH RESET: Low-true input.  
F-RST# low initializes flash internal circuitry and disables flash operations. F-RST#  
high enables flash operation. Exit from reset places the flash in asynchronous read  
array mode.  
F-RST#  
P-Mode (PSRAM Mode): Low-true input.  
P-Mode is used to program the configuration register, and enter/exit Low Power  
Mode of PSRAM die.  
P-Mode is available on stacked combinations with asynchronous-only PSRAM die.  
P-Mode,  
P-CRE  
Input  
P-CRE (PSRAM Configuration Register Enable): High-true input.  
P-CRE is high, write operations load the refresh control register or bus control  
register.  
P-CRE is applicable only on combinations with synchronous PSRAM die.  
P-Mode, P-CRE is an RFU on stacked combinations without PSRAM die.  
FLASH PROGRAM AND ERASE POWER: Valid F-V voltage on this ball enables  
PP  
flash program/erase operations.  
Flash memory array contents cannot be altered when F-V (F-V  
) < V  
PPLK  
PP  
PEN  
F-VPP,  
Power (V  
). Erase / program operations at invalid F-V (F-V  
be attempted. Refer to flash discrete product datasheet for additional details.  
) voltages should not  
PENLK  
PP  
PEN  
F-VPEN  
F-VPEN (Erase/Program/Block Lock Enables) is not available for L18/L30 SCSP  
products.  
FLASH LOGIC POWER: F1-VCC supplies power to the core logic of flash die #1;  
F2-VCC supplies power to the core logic of flash die #2 and flash die #3. Write  
operations are inhibited when F-V < V  
voltages should not be attempted.  
. Device operations at invalid F-V  
CC  
LKO  
CC  
F[2:1]-VCC  
S-VCC  
Power  
F2-VCC is available on stacked combinations with two or three flash dies, and is an  
RFU on stacked combinations with only one flash die.  
SRAM POWER SUPPLY: Supplies power for SRAM operations.  
Power  
Power  
S-VCC is available on stacked combinations with SRAM die, and is RFU on stacked  
combinations without SRAM die.  
PSRAM POWER SUPPLY: Supplies power for PSRAM operations.  
P-VCC  
VCCQ  
P-VCC is available on stacked combinations with PSRAM die, and is RFU on stacked  
combinations without PSRAM die.  
Power DEVICE I/O POWER: Supply power for the device input and output buffers.  
Datasheet  
17  
Intel® Wireless Flash Memory (W18)  
Table 2. Signal Descriptions - QUAD+ Package (Sheet 4 of 4)  
VSS  
RFU  
DU  
Power DEVICE GROUND: Connect to system ground. Do not float any VSS connection.  
RESERVED for FUTURE USE: Reserved for future device functionality/  
enhancements. Contact Intel regarding the use of balls designated RFU.  
Don’t Use: Do not connect to any other signal, or power supply; must be left floating.  
2.4  
Memory Map and Partitioning  
The W18 device is divided into 4-Mbit physical partitions, which allows simultaneous RWW or  
RWE operations and allows users to segment code and data areas on 4-Mbit boundaries. The  
device’s memory array is asymmetrically blocked, which enables system code and data integration  
within a single flash device. Each block can be erased independently in block erase mode.  
Simultaneous program and erase operations are not allowed; only one partition at a time can be  
actively programming or erasing. See Table 3, “Bottom Parameter Memory Map” on page 19 and  
Table 4, “Top Parameter Memory Map” on page 20.  
The 32-Mbit device has eight partitions, the 64-Mbit device has 16 partitions, and the 128-Mbit  
device has 32 partitions. Each device density contains one parameter partition and several main  
partitions. The 4-Mbit parameter partition contains eight 4-Kword parameter blocks and seven 32-  
Kword main blocks. Each 4-Mbit main partition contains eight 32-Kword blocks each.  
The bulk of the array is divided into main blocks that can store code or data, and parameter blocks  
that allow storage of frequently updated small parameters that are normally stored in EEPROM. By  
using software techniques, the word-rewrite functionality of EEPROMs can be emulated.  
.
18  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 3. Bottom Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
32  
262  
7F8000-7FFFFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
135  
134  
71  
70  
39  
38  
31  
30  
23  
22  
400000-407FFF  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
134  
71  
70  
39  
38  
31  
30  
23  
22  
3F8000-3FFFFF  
200000-207FFF  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
70  
39  
38  
31  
30  
23  
22  
1F8000-1FFFFF  
100000-107FFF  
0F8000-0FFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
080000-087FFF  
078000-07FFFF  
32  
32  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
15  
14  
040000-047FFF  
038000-03FFFF  
32  
4
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
8
7
008000-00FFFF  
007000-007FFF  
4
0
000000-000FFF  
0
000000-000FFF  
0
000000-000FFF  
Datasheet  
19  
Intel® Wireless Flash Memory (W18)  
Table 4. Top Parameter Memory Map  
Size  
(KW)  
Blk #  
32 Mbit  
Blk #  
64 Mbit  
Blk #  
128 Mbit  
4
70  
1FF000-1FFFFF  
134  
3FF000-3FFFFF  
262  
7FF000-7FFFFF  
4
63  
62  
1F8000-1F8FFF  
1F0000-1F7FFF  
127  
126  
3F8000-3F8FFF  
3F0000-3F7FFF  
255  
254  
7F8000-7F8FFF  
7F0000-7F7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
56  
55  
48  
47  
40  
39  
32  
31  
0
1C0000-1C7FFF  
1B8000-1BFFFF  
18000-187FFF  
178000-17FFFF  
140000-147FFF  
138000-13FFFF  
100000-107FFF  
0F8000-0FFFFF  
000000-007FFF  
120  
119  
112  
111  
104  
103  
96  
3C0000-3C7FFF  
3B8000-3BFFFF  
380000-387FFF  
378000-37FFFF  
340000-347FFF  
338000-33FFFF  
300000-307FFF  
2F8000-2FFFFF  
200000-207FFF  
1F8000-1FFFFF  
000000-007FFF  
248  
247  
240  
239  
232  
231  
224  
223  
192  
191  
128  
127  
0
7C0000-7C7FFF  
7B8000-7BFFFF  
780000-787FFF  
778000-77FFFF  
740000-747FFF  
738000-73FFFF  
700000-707FFF  
6F8000-6FFFFF  
600000-607FFF  
5F8000-5FFFFF  
400000-407FFF  
3F8000-3FFFFF  
000000-007FFF  
95  
64  
63  
0
20  
Datasheet  
Intel® Wireless Flash Memory (W18)  
3.0  
Device Operations  
This section provides an overview of device operations. The Intel® Wireless Flash Memory (W18)  
family includes an on-chip WSM to manage block erase and program algorithms. Its Command  
User Interface (CUI) allows minimal processor overhead with RAM-like interface timings. Device  
commands are written to the CUI using standard microprocessor timings.  
3.1  
Bus Operations  
Bus cycles to/from the W18 device conform to standard microprocessor bus operations. Table 5  
summarizes the bus operations and the logic levels that must be applied to the device’s control  
signal inputs.  
Table 5. Bus Operations Summary  
Bus Operation  
RST#  
CLK  
ADV#  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
Notes  
Asynchronous  
V
V
V
V
V
V
X
Run  
Halt  
X
L
L
L
L
L
L
L
H
X
L
L
H
H
H
L
Asserted  
Driven  
Output  
Output  
Output  
Input  
IH  
IH  
IH  
IH  
IH  
IH  
Read  
Synchronous  
1
Burst Suspend  
X
L
H
H
H
X
X
Active  
Write  
Asserted  
Asserted  
High-Z  
2
3
Output Disable  
Standby  
X
X
X
X
H
X
X
High-Z  
High-Z  
High-Z  
X
3
Reset  
V
X
High-Z  
3,4  
IL  
NOTES:  
1. WAIT is only valid during synchronous array-read operations.  
2. Refer to the Table 7, “Bus Cycle Definitions” on page 26 for valid DQ[15:0] during a write operation.  
3. X = Don’t Care (H or L)  
4. RST# must be at V  
0.2 V to meet the maximum specified power-down current.  
SS  
3.1.1  
Reads  
Device read operations are performed by placing the desired address on A[22:0] and asserting CE#  
and OE#. ADV# must be low, and WE# and RST# must be high. All read operations are  
independent of the voltage level on VPP.  
CE#-low selects the device and enables its internal circuits. OE#-low or WE#-low determine  
whether DQ[15:0] are outputs or inputs, respectively. OE# and WE# must not be low at the same  
time - indeterminate device operation will result.  
In asynchronous-page mode, the rising edge of ADV# can be used to latch the address. If only  
asynchronous read mode is used, ADV# can be tied to ground. CLK is not used in asynchronous-  
page mode and should be tied high.  
In synchronous-burst mode, ADV# is used to latch the initial address - either on the rising edge of  
ADV# or the rising (or falling) edge of CLK with ADV# low, whichever occurs first. CLK is used  
in synchronous-burst mode to increment the internal address counter, and to output read data on  
DQ[15:0].  
Each device partition can be placed in any of several read states:  
Datasheet  
21  
Intel® Wireless Flash Memory (W18)  
Read Array: Returns flash array data from the addressed location.  
Read Identifier (ID): Returns manufacturer ID and device ID codes, block lock status, and  
protection register data. Read Identifier information can be accessed from any 4-Mbit partition  
base address.  
CFI Query: Returns Common Flash Interface (CFI) information. CFI information can be  
accessed starting at 4-Mbit partition base addresses.  
Read Status Register: Returns Status Register (SR) data from the addressed partition.  
The appropriate CUI command must be written to the partition in order to place it in the desired  
read state (see Table 6, “Command Codes and Descriptions” on page 24). Non-array read  
operations (Read ID, CFI Query, and Read Status Register) execute as single synchronous or  
asynchronous read cycles. WAIT is asserted throughout non-array read operations.  
3.1.2  
Writes  
Device write operations are performed by placing the desired address on A[22:0] and asserting  
CE# and WE#. OE# and RST# must be high. Data to be written at the desired address is placed on  
DQ[15:0]. ADV# must be held low throughout the write cycle or it can be toggled to latch the  
address. If ADV# is held low, the address and data are latched on the rising edge of WE#. CLK is  
not used during write operations, and is ignored; it can be either free-running or halted at VIL or  
VIH. All write operations are asynchronous.  
Table 6, “Command Codes and Descriptions” on page 24 shows the available device commands.  
Appendix A, “Write State Machine States” on page 87 provides information on moving between  
different device operations by using CUI commands.  
3.1.3  
3.1.4  
Output Disable  
When OE# is deasserted, device outputs D[15:0] are disabled and placed in a high-impedance  
(High-Z) state.  
Burst Suspend  
The Burst Suspend feature allows the system to temporarily suspend a synchronous-burst read  
operation. This can be useful if the system needs to access another device on the same address and  
data bus as the flash during a burst-read operation.  
Synchronous-burst accesses can be suspended during the initial latency (before data is received) or  
after the device has output data. When a burst access is suspended, internal array sensing continues  
and any previously latched internal data is retained.  
Burst Suspend occurs when CE# is asserted, the current address has been latched (either ADV#  
rising edge or valid CLK edge), CLK is halted, and OE# is deasserted. CLK can be halted when it  
is at VIH or VIL. To resume the burst access, OE# is reasserted and CLK is restarted. Subsequent  
CLK edges resume the burst sequence where it left off.  
Within the device, CE# gates WAIT. Therefore, during Burst Suspend WAIT is still driven. This  
can cause contention with another device attempting to control the system’s READY signal during  
a Burst Suspend. Systems using the Burst Suspend feature should not connect the device’s WAIT  
signal directly to the system’s READY signal. Refer to Figure 27, “Burst Suspend” on page 77.  
22  
Datasheet  
Intel® Wireless Flash Memory (W18)  
3.1.5  
3.1.6  
Standby  
De-asserting CE# deselects the device and places it in standby mode, substantially reducing device  
power consumption. In standby mode, outputs are placed in a high-impedance state independent of  
OE#. If deselected during a program or erase algorithm, the device shall consume active power  
until the program or erase operation completes.  
Reset  
The device enters a reset mode when RST# is asserted. In reset mode, internal circuitry is turned  
off and outputs are placed in a high-impedance state.  
After returning from reset, a time tPHQV is required until outputs are valid, and a delay (tPHWV) is  
required before a write sequence can be initiated. After this wake-up interval, normal operation is  
restored. The device defaults to read-array mode, the status register is set to 80h, and the  
configuration register defaults to asynchronous page-mode reads.  
If RST# is asserted during an erase or program operation, the operation aborts and the memory  
contents at the aborted block or address are invalid. See Figure 33, “Reset Operations Waveforms”  
on page 85 for detailed information regarding reset timings.  
Like any automated device, it is important to assert RST# during system reset. When the system  
comes out of reset, the processor expects to read from the flash memory array. Automated flash  
memories provide status information when read during program or erase operations. If a CPU reset  
occurs with no flash memory reset, proper CPU initialization may not occur because the flash  
memory may be providing status information instead of array data. Intel flash memories allow  
proper CPU initialization following a system reset through the use of the RST# input. In this  
application, RST# is controlled by the same CPU reset signal.  
3.2  
Device Commands  
The device’s on-chip WSM manages erase and program algorithms. This local CPU (WSM)  
controls the device’s in-system read, program, and erase operations. Bus cycles to or from the flash  
memory conform to standard microprocessor bus cycles. RST#, CE#, OE#, WE#, and ADV#  
control signals dictate data flow into and out of the device. WAIT informs the CPU of valid data  
during burst reads. Table 5, “Bus Operations Summary” on page 21 summarizes bus operations.  
Device operations are selected by writing specific commands into the device’s CUI. Table 6,  
“Command Codes and Descriptions” on page 24 lists all possible command codes and  
descriptions. Table 7, “Bus Cycle Definitions” on page 26 lists command definitions. Because  
commands are partition-specific, it is important to issue write commands within the target address  
range.  
Datasheet  
23  
Intel® Wireless Flash Memory (W18)  
Table 6. Command Codes and Descriptions (Sheet 1 of 2)  
Device  
Command  
Operation  
Code  
Description  
FFh  
Read Array  
Places selected partition in Read Array mode.  
Places selected partition in Status Register read mode. After issuing this  
command, reading from the partition outputs SR data on DQ[15:0]. A partition  
automatically enters this mode after issuing the Program or Erase command.  
Read Status  
Register  
70h  
Places the selected partition in Read ID mode. Device reads from partition  
addresses output manufacturer/device codes, configuration register data, block  
lock status, or protection register data on D[15:0].  
90h  
98h  
50h  
Read Identifier  
CFI Query  
Read  
Puts the addressed partition in CFI Query mode. Device reads from the partition  
addresses output CFI information on D[7:0].  
The WSM can set the status register’s block lock (SR[1]), V (SR[3]), program  
PP  
Clear Status  
Register  
(SR[4]), and erase (SR[5]) status bits, but it cannot clear them. SR[5:3,1] can  
only be cleared by a device reset or through the Clear Status Register command.  
This preferred program command’s first cycle prepares the CUI for a program  
operation. The second cycle latches address and data, and executes the WSM  
program algorithm at this location. Status register updates occur when CE# or  
OE# is toggled. A Read Array command is required to read array data after  
programming.  
Word Program  
Setup  
40h  
10h  
30h  
Alternate Setup  
EFP Setup  
Equivalent to a Program Setup command (40h).  
Program  
This program command activates EFP mode. The first write cycle sets up the  
command. If the second cycle is an EFP Confirm command (D0h), subsequent  
writes provide program data. All other commands are ignored after EFP mode  
begins.  
If the first command was EFP Setup (30h), the CUI latches the address and data,  
and prepares the device for EFP mode.  
D0h EFP Confirm  
This command prepares the CUI for Block Erase. The device erases the block  
addressed by the Erase Confirm command. If the next command is not Erase  
Confirm, the CUI sets status register bits SR[5:4] to indicate command sequence  
error and places the partition in the read status register mode.  
20h  
Erase Setup  
Erase  
If the first command was Erase Setup (20h), the CUI latches address and data,  
and erases the block indicated by the erase confirm cycle address. During  
program or erase, the partition responds only to Read Status Register, Program  
Suspend, and Erase Suspend commands. CE# or OE# toggle updates status  
register data.  
D0h Erase Confirm  
Program  
This command, issued at any device address, suspends the currently executing  
program or erase operation. Status register data indicates the operation was  
successfully suspended if SR[2] (program suspend) or SR[6] (erase suspend)  
and SR[7] are set. The WSM remains in the suspended state regardless of  
control signal states (except RST#).  
B0h  
Suspend or  
Erase Suspend  
Suspend  
Suspend  
Resume  
This command, issued at any device address, resumes the suspended program  
or erase operation.  
D0h  
24  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 6. Command Codes and Descriptions (Sheet 2 of 2)  
Device  
Command  
Operation  
Code  
Description  
This command prepares the CUI lock configuration. If the next command is not  
Lock Block, Unlock Block, or Lock-Down, the CUI sets SR[5:4] to indicate  
command sequence error.  
60h  
01h  
D0h  
2Fh  
Lock Setup  
If the previous command was Lock Setup (60h), the CUI locks the addressed  
block.  
Lock Block  
Unlock Block  
Lock-Down  
Block Locking  
If the previous command was Lock Setup (60h), the CUI latches the address and  
unlocks the addressed block. If previously locked-down, the operation has no  
effect.  
If the previous command was Lock Setup (60h), the CUI latches the address and  
locks-down the addressed block.  
This command prepares the CUI for a protection register program operation. The  
second cycle latches address and data, and starts the WSM’s protection register  
program or lock algorithm. Toggling CE# or OE# updates the flash status register  
data. To read array data after programming, issue a Read Array command.  
Protection  
Program  
Setup  
Protection  
C0h  
This command prepares the CUI for device configuration. If Set Configuration  
Register is not the next command, the CUI sets SR[5:4] to indicate command  
sequence error.  
Configuration  
Setup  
60h  
03h  
Configuration  
Set  
Configuration  
Register  
If the previous command was Configuration Setup (60h), the CUI latches the  
address and writes the data from A[15:0] into the configuration register.  
Subsequent read operations access array data.  
NOTE: Do not use unassigned commands. Intel reserves the right to redefine these codes for future functions.  
Datasheet  
25  
Intel® Wireless Flash Memory (W18)  
Table 7. Bus Cycle Definitions  
First Bus Cycle  
Addr1  
Second Bus Cycle  
Bus  
Cycles  
Operation  
Command  
Oper  
Data2,3  
Oper  
Addr1  
Data2,3  
Read  
Address  
Array  
Data  
Read Array/Reset  
1  
Write  
PnA  
FFh  
Read  
Read Identifier  
CFI Query  
2  
2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
PnA  
PnA  
PnA  
XX  
90h  
98h  
70h  
50h  
20h  
Read  
Read  
Read  
PBA+IA  
PBA+QA  
PnA  
IC  
Read  
QD  
Read Status Register  
Clear Status Register  
Block Erase  
SRD  
1
2
BA  
Write  
Write  
Write  
BA  
WA  
WA  
D0h  
WD  
D0h  
Word Program  
EFP  
2
WA  
WA  
XX  
XX  
BA  
BA  
BA  
40h/10h  
30h  
Program  
and  
Erase  
>2  
1
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
B0h  
1
D0h  
60h  
2
Write  
Write  
Write  
BA  
BA  
BA  
01h  
D0h  
2Fh  
Lock  
Unlock Block  
2
60h  
Lock-Down Block  
2
60h  
Protection Program  
2
2
2
Write  
Write  
Write  
PA  
LPA  
CD  
C0h  
C0h  
60h  
Write  
Write  
Write  
PA  
LPA  
CD  
PD  
FFFDh  
03h  
Protection  
Lock Protection Program  
Configuration Set Configuration Register  
NOTES:  
1. First-cycle command addresses should be the same as the operation’s target address. Examples: the first-cycle address for  
the Read Identifier command should be the same as the Identification code address (IA); the first-cycle address for the Word  
Program command should be the same as the word address (WA) to be programmed; the first-cycle address for the Erase/  
Program Suspend command should be the same as the address within the block to be suspended; etc.  
XX = Any valid address within the device.  
IA = Identification code address.  
BA = Block Address. Any address within a specific block.  
LPA = Lock Protection Address is obtained from the CFI (through the CFI Query command). The Intel Wireless Flash Memory  
family’s LPA is at 0080h.  
PA = User programmable 4-word protection address.  
PnA = Any address within a specific partition.  
PBA = Partition Base Address. The very first address of a particular partition.  
QA = CFI code address.  
WA = Word address of memory location to be written.  
2. SRD = Status register data.  
WD = Data to be written at location WA.  
IC = Identifier code data.  
PD = User programmable 4-word protection data.  
QD = Query code data on D[7:0].  
CD = Configuration register code data presented on device addresses A[15:0]. A[MAX:16] address bits can select any  
partition. See Table 14, “Configuration Register Definitions” on page 51 for configuration register bits descriptions.  
3. Commands other than those shown above are reserved by Intel for future device implementations and should not be used.  
26  
Datasheet  
Intel® Wireless Flash Memory (W18)  
3.3  
Command Sequencing  
When issuing a 2-cycle write sequence to the flash device, a read operation is allowed to occur  
between the two write cycles. The setup phase of a 2-cycle write sequence places the addressed  
partition into read-status mode, so if the same partition is read before the second “confirm” write  
cycle is issued, status register data will be returned. Reads from other partitions, however, can  
return actual array data assuming the addressed partition is already in read-array mode. Figure 3 on  
page 27 and Figure 4 on page 27 illustrate these two conditions.  
Figure 3. Normal Write and Read Cycles  
Address [A]  
WE# [W]  
OE# [G]  
Partition A  
Partition A  
Partition A  
Data [Q]  
20h  
Block Erase Setup  
D0h  
Block Erase Conf irm  
FFh  
Read Array  
Figure 4. Interleaving a 2-Cycle Write Sequence with an Array Read  
Address [A]  
WE# [W]  
OE# [G]  
Partition B  
Partition A  
Partition B  
Partition A  
Data [Q]  
FFh  
Read Array  
20h  
Erase Setup  
Array Data  
Bus Read  
D0h  
Erase Confirm  
By contrast, a write bus cycle may not interrupt a 2-cycle write sequence. Doing so causes a  
command sequence error to appear in the status register. Figure 5 illustrates a command sequence  
error.  
Figure 5. Improper Command Sequencing  
Address [A]  
WE# [W]  
Partition X  
Partition Y  
Partition X  
Partition X  
OE# [G]  
Data [D/Q]  
20h  
FFh  
D0h  
SR Data  
Datasheet  
27  
Intel® Wireless Flash Memory (W18)  
4.0  
Read Operations  
The device supports two read modes - asynchronous page mode and synchronous burst mode.  
Asynchronous page mode is the default read mode after device power-up or a reset. The Read  
Configuration Register must be configured to enable synchronous burst reads of the flash memory  
array (see Section 8.0, “Set Configuration Register” on page 50).  
Each partition of the device can be in any of four read states: Read Array, Read Identifier, Read  
Status or CFI Query. Upon power-up, or after a reset, all partitions of the device default to the Read  
Array state. To change a partition’s read state, the appropriate read command must be written to the  
device (see Section 3.2, “Device Commands” on page 23).  
The following sections describe device read modes and read states in detail.  
4.1  
Asynchronous Page-Read Mode  
Following a device power-up or reset, asynchronous page mode is the default read mode and all  
partitions are set to Read Array. However, to perform array reads after any other device operation  
(e.g. write operation), the Read Array command must be issued in order to read from the flash  
memory array.  
Note: Asynchronous page-mode reads can only be performed when Read Configuration Register bit  
RCR[15] is set (see Section 8.0, “Set Configuration Register” on page 50).  
To perform an asynchronous page-mode read, an address is driven onto A[MAX:0], and CE#, OE#  
and ADV# are asserted. WE# and RST# must be deasserted. WAIT is asserted during  
asynchronous page mode. ADV# can be driven high to latch the address, or it must be held low  
throughout the read cycle. CLK is not used for asynchronous page-mode reads, and is ignored. If  
only asynchronous reads are to be performed, CLK should be tied to a valid VIH level, WAIT  
signal can be floated and ADV# must be tied to ground. Array data is driven onto D[15:0] after an  
initial access time tAVQV delay. (see Section 11.0, “AC Characteristics” on page 66).  
In asynchronous page mode, four data words are “sensed” simultaneously from the flash memory  
array and loaded into an internal page buffer. The buffer word corresponding to the initial address  
on A[MAX:0] is driven onto D[15:0] after the initial access delay. Address bits A[MAX:2] select  
the 4-word page. Address bits A[1:0] determine which word of the 4-word page is output from the  
data buffer at any given time.  
4.2  
Synchronous Burst-Read Mode  
Read Configuration register bits CR[15:0] must be set before synchronous burst operation can be  
performed. Synchronous burst mode can be performed for both array and non-array reads such as  
Read ID, Read Status or Read Query (See Section 8.0, “Set Configuration Register” on page 50 for  
details).  
Synchronous burst mode outputs 4, 8, 16, or continuous words. To perform a synchronous burst-  
read, an initial address is driven onto A[MAX:0], and CE# and OE# are asserted. WE# and RST#  
must be deasserted. ADV# is asserted, and then deasserted to latch the address. Alternately, ADV#  
can remain asserted throughout the burst access, in which case the address is latched on the next  
valid CLK edge after ADV# is asserted.  
28  
Datasheet  
Intel® Wireless Flash Memory (W18)  
During synchronous array and non-array read modes, the first word is output from the data buffer  
on the next valid CLK edge after the initial access latency delay (see Section 8.2, “First Access  
Latency Count (CR[13:11])” on page 52). Subsequent data is output on valid CLK edges following  
a minimum delay. However, for a synchronous non-array read, the same word of data will be  
output on successive clock edges until the burst length requirements are satisfied.  
During synchronous read operations, WAIT indicates invalid data when asserted, and valid data  
when deasserted with respect to a valid clock edge. See Section 11.0, “AC Characteristics” on  
page 66 for additional details.  
4.3  
Read Array  
The Read Array command places (or resets) the partition in read-array mode and is used to read  
data from the flash memory array. Upon initial device power-up, or after reset (RST# transitions  
from VIL to VIH), all partitions default to asynchronous read-array mode. To read array data from  
the flash device, first write the Read Array command (FFh) to the CUI and specify the desired  
word address. Then read from that address. If a partition is already in read-array mode, issuing the  
Read Array command is not required to read from that partition.  
If the Read Array command is written to a partition that is erasing or programming, the device  
presents invalid data on the bus until the program or erase operation completes. After the program  
or erase finishes in that partition, valid array data can then be read. If an Erase Suspend or Program  
Suspend command suspends the WSM, a subsequent Read Array command places the addressed  
partition in read-array mode. The Read Array command functions independently of VPP.  
4.4  
Read Identifier  
The Read Identifier mode outputs the manufacturer/device identifier, block lock status, protection  
register codes, and configuration register data. The identifier information is contained within a  
separate memory space on the device and can be accessed along the 4-Mbit partition address range  
supplied by the Read Identifier command (90h) address. Reads from addresses in Table 8 retrieve  
ID information. Issuing a Read Identifier command to a partition that is programming or erasing  
places that partition’s outputs in read ID mode while the partition continues to program or erase in  
the background.  
Table 8. Device Identification Codes (Sheet 1 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
Manufacturer ID  
Device ID  
Partition  
00h  
0089h  
8862h  
8863h  
8864h  
8865h  
8866h  
8867h  
32-Mbit TPD  
32-Mbit BPD  
64-Mbit TPD  
64-Mbit BPD  
128-Mbit TPD  
128-Mbit BPD  
Partition  
01h  
Datasheet  
29  
Intel® Wireless Flash Memory (W18)  
Table 8. Device Identification Codes (Sheet 2 of 2)  
Address1  
Item  
Data  
Description  
Base  
Offset  
D0 = 0  
D0 = 1  
Block is unlocked  
Block Lock Status(2)  
Block  
02h  
Block is locked  
D1 = 0  
Block is not locked-down  
Block is locked down  
Block Lock-Down Status(2)  
Block  
02h  
D1 = 1  
Configuration Register  
Partition  
Partition  
05h  
80h  
Register Data  
Lock Data  
Protection Register Lock Status  
Multiple reads required to read  
Register Data the entire 128-bit Protection  
Register.  
Protection Register  
Partition  
81h - 88h  
NOTES:  
1. The address is constructed from a base address plus an offset. For example, to read the Block Lock Status  
for block number 38 in a BPD, set the address to the BBA (0F8000h) plus the offset (02h), i.e. 0F8002h.  
Then examine bit 0 of the data to determine if the block is locked.  
2. See Section 7.1.4, “Block Lock Status” on page 45 for valid lock status.  
4.5  
4.6  
CFI Query  
This device contains a separate CFI query database that acts as an “on-chip datasheet.” The CFI  
information within this device can be accessed by issuing the Read Query command and supplying  
a specific address. The address is constructed from the base address of a partition plus a particular  
offset corresponding to the desired CFI field. Appendix B, “Common Flash Interface (CFI)” on  
page 90 shows accessible CFI fields and their address offsets.  
Issuing the Read Query command to a partition that is programming or erasing puts that partition in  
read query mode while the partition continues to program or erase in the background.  
Read Status Register  
The device’s status register displays program and erase operation status. A partition’s status can be  
read after writing the Read Status Register command to any location within the partition’s address  
range. Read-status mode is the default read mode following a Program, Erase, or Lock Block  
command sequence. Subsequent single reads from that partition will return its status until another  
valid command is written.  
The read-status mode supports single synchronous and single asynchronous reads only; it doesn’t  
support burst reads. The first falling edge of OE# or CE# latches and updates status register data.  
The operation doesn’t affect other partitions’ modes. Because the status register is 8 bits wide, only  
DQ [7:0] contains valid status register data; DQ [15:8] contains zeros. See Table 9, “Status  
Register Definitions” on page 31 and Table 10, “Status Register Descriptions” on page 31.  
Each 4-Mbit partition contains its own status register. Bits SR[6:0] are unique to each partition, but  
SR[7], the Device WSM Status (DWS) bit, pertains to the entire device. SR[7] provides program  
and erase status of the entire device. By contrast, the Partition WSM Status (PWS) bit, SR[0],  
provides program and erase status of the addressed partition only. Status register bits SR[6:1]  
30  
Datasheet  
Intel® Wireless Flash Memory (W18)  
present information about partition-specific program, erase, suspend, VPP, and block-lock states.  
Table 11, “Status Register Device WSM and Partition Write Status Description” on page 31  
presents descriptions of DWS (SR[7]) and PWS (SR[0]) combinations.  
Table 9. Status Register Definitions  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
DPS  
1
PWS  
0
Table 10. Status Register Descriptions  
Bit  
Name  
State  
Description  
SR[7] indicates erase or program completion in the  
device. SR[6:1] are invalid while SR[7] = 0. See Table  
11 for valid SR[7] and SR[0] combinations.  
DWS  
0 = Device WSM is Busy  
1 = Device WSM is Ready  
7
Device WSM Status  
After issuing an Erase Suspend command, the WSM  
halts and sets SR[7] and SR[6]. SR[6] remains set until  
the device receives an Erase Resume command.  
ESS  
0 = Erase in progress/completed  
6
Erase Suspend Status 1 = Erase suspended  
ES  
0 = Erase successful  
1 = Erase error  
SR[5] is set if an attempted erase failed. A Command  
Sequence Error is indicated when SR[7,5:4] are set.  
5
4
Erase Status  
PS  
0 = Program successful  
1 = Program error  
SR[4] is set if the WSM failed to program a word.  
Program Status  
The WSM indicates the V level after program or  
erase completes. SR[3] does not provide continuous  
PP  
VPPS  
0 = V OK  
PP  
3
2
VPP Status  
1 = V low detect, operation aborted  
PP  
V
feedback and isn’t guaranteed when V V  
.
PP  
PP  
PP1/2  
PSS  
After receiving a Program Suspend command, the  
WSM halts execution and sets SR[7] and SR[2]. They  
remain set until a Resume command is received.  
0 = Program in progress/completed  
1 = Program suspended  
Program Suspend  
Status  
0 = Unlocked  
If an erase or program operation is attempted to a  
DPS  
1
0
locked block (if WP# = V ), the WSM sets SR[1] and  
1 = Aborted erase/program attempt on  
locked block  
IL  
Device Protect Status  
aborts the operation.  
Addressed partition is erasing or programming. In EFP  
mode, SR[0] indicates that a data-stream word has  
finished programming or verifying depending on the  
particular EFP phase. See Table 11 for valid SR[7] and  
SR[0] combinations.  
0 = This partition is busy, but only if  
SR[7]=0  
PWS  
Partition Write Status 1 = Another partition is busy, but only if  
SR[7]=0  
Table 11. Status Register Device WSM and Partition Write Status Description  
DWS  
(SR[7])  
PWS  
(SR[0])  
Description  
The addressed partition is performing a program/erase operation.  
0
0
0
1
EFP: device has finished programming or verifying data, or is ready for data.  
A partition other than the one currently addressed is performing a program/erase operation.  
EFP: the device is either programming or verifying data.  
No program/erase operation is in progress in any partition. Erase and Program suspend bits (SR[6,2])  
indicate whether other partitions are suspended.  
1
1
0
1
EFP: the device has exited EFP mode.  
Won’t occur in standard program or erase modes.  
EFP: this combination does not occur.  
Datasheet  
31  
Intel® Wireless Flash Memory (W18)  
4.7  
Clear Status Register  
The Clear Status Register command clears the status register and leaves all partition output states  
unchanged. The WSM can set all status register bits and clear bits SR[7:6,2,0]. Because bits  
SR[5,4,3,1] indicate various error conditions, they can only be cleared by the Clear Status Register  
command. By allowing system software to reset these bits, several operations (such as  
cumulatively programming several addresses or erasing multiple blocks in sequence) can be  
performed before reading the status register to determine error occurrence. If an error is detected,  
the Status Register must be cleared before beginning another command or sequence. Device reset  
(RST# = VIL) also clears the status register. This command functions independently of VPP.  
5.0  
Program Operations  
5.1  
Word Program  
When the Word Program command is issued, the WSM executes a sequence of internally timed  
events to program a word at the desired address and verify that the bits are sufficiently  
programmed. Programming the flash array changes specifically addressed bits to 0; 1 bits do not  
change the memory cell contents.  
Programming can occur in only one partition at a time. All other partitions must be in either a read  
mode or erase suspend mode. Only one partition can be in erase suspend mode at a time.  
The status register can be examined for program progress by reading any address within the  
partition that is busy programming. However, while most status register bits are partition-specific,  
the Device WSM Status bit, SR[7], is device-specific; that is, if the status register is read from any  
other partition, SR[7] indicates program status of the entire device. This permits the system CPU to  
monitor program progress while reading the status of other partitions.  
CE# or OE# toggle (during polling) updates the status register. Several commands can be issued to  
a partition that is programming: Read Status Register, Program Suspend, Read Identifier, and Read  
Query. The Read Array command can also be issued, but the read data is indeterminate.  
After programming completes, three status register bits can signify various possible error  
conditions. SR[4] indicates a program failure if set. If SR[3] is set, the WSM couldn’t execute the  
Word Program command because VPP was outside acceptable limits. If SR[1] is set, the program  
was aborted because the WSM attempted to program a locked block.  
After the status register data is examined, clear it with the Clear Status Register command before a  
new command is issued. The partition remains in status register mode until another command is  
written to that partition. Any command can be issued after the status register indicates program  
completion.  
If CE# is deasserted while the device is programming, the devices will not enter standby mode until  
the program operation completes.  
32  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 6. Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 40h  
Write  
Write  
Read  
Setup  
Addr = Location to program (WA)  
Write 40h,  
Word Address  
Data = Data to program (WD)  
Addr = Location to program (WA)  
Data  
Write Data  
Word Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Program  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Yes  
Suspend  
Program  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full status register check can be done after each program or  
after a sequence of program operations.  
Full Program  
Status Check  
(if desired)  
Program  
Complete  
FULL PROGRAM STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
VPP Range  
Error  
1
1
1
SR[3] =  
0
Check SR[4]  
1 = Data program error  
Check SR[1]  
Program  
Error  
SR[4] =  
0
Standby  
1 = Attempted program to locked block  
Program aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts  
Device  
Protect Error  
SR[1] =  
0
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
5.2  
Factory Programming  
The standard factory programming mode uses the same commands and algorithm as the Word  
Program mode (40h/10h). When VPP is at VPP1, program and erase currents are drawn through  
VCC. If VPP is driven by a logic signal, VPP1 must remain above the VPP1Min value to perform in-  
system flash modifications. When VPP is connected to a 12 V power supply, the device draws  
program and erase current directly from VPP. This eliminates the need for an external switching  
transistor to control the VPP voltage. Figure 15, “Examples of VPP Power Supply Configurations”  
on page 49 shows examples of flash power supply usage in various configurations.  
Datasheet  
33  
Intel® Wireless Flash Memory (W18)  
The 12-V VPP mode enhances programming performance during the short time period typically  
found in manufacturing processes; however, it is not intended for extended use.12 V may be  
applied to VPP during program and erase operations as specified in Section 10.2, “Operating  
Conditions” on page 61. VPP may be connected to 12 V for a total of tPPH hours maximum.  
Stressing the device beyond these limits may cause permanent damage.  
5.3  
Enhanced Factory Program (EFP)  
EFP substantially improves device programming performance through a number of enhancements  
to the conventional 12 Volt word program algorithm. EFP's more efficient WSM algorithm  
eliminates the traditional overhead delays of the conventional word program mode in both the host  
programming system and the flash device. Changes to the conventional word programming  
flowchart and internal WSM routine were developed because of today's beat-rate-sensitive  
manufacturing environments; a balance between programming speed and cycling performance was  
attained.  
The host programmer writes data to the device and checks the Status Register to determine when  
the data has completed programming. This modification essentially cuts write bus cycles in half.  
Following each internal program pulse, the WSM increments the device's address to the next  
physical location. Now, programming equipment can sequentially stream program data throughout  
an entire block without having to setup and present each new address. In combination, these  
enhancements reduce much of the host programmer overhead, enabling more of a data streaming  
approach to device programming.  
EFP further speeds up programming by performing internal code verification. With this, PROM  
programmers can rely on the device to verify that it has been programmed properly. From the  
device side, EFP streamlines internal overhead by eliminating the delays previously associated to  
switch voltages between programming and verify levels at each memory-word location.  
EFP consists of four phases: setup, program, verify and exit. Refer to Figure 7, “Enhanced Factory  
Program Flowchart” on page 37 for a detailed graphical representation of how to implement EFP.  
5.3.1  
EFP Requirements and Considerations  
Ambient temperature: TA = 25 °C 5 °C  
VCC within specified operating range  
EFP Requirements  
VPP within specified VPP2 range  
Target block unlocked  
Block cycling below 100 erase cycles 1  
RWW not supported2  
EFP Considerations  
EFP programs one block at a time  
EFP cannot be suspended  
NOTES:  
1. Recommended for optimum performance. Some degradation in performance may  
occur if this limit is exceeded, but the internal algorithm will continue to work properly.  
2. Code or data cannot be read from another partition during EFP.  
34  
Datasheet  
Intel® Wireless Flash Memory (W18)  
5.3.2  
Setup  
After receiving the EFP Setup (30h) and EFP Confirm (D0h) command sequence, SR[7] transitions  
from a 1 to a 0 indicating that the WSM is busy with EFP algorithm startup. A delay before  
checking SR[7] is required to allow the WSM time to perform all of its setups and checks (VPP  
level and block lock status). If an error is detected, status register bits SR[4], SR[3], and/or SR[1]  
are set and EFP operation terminates.  
Note: After the EFP Setup and Confirm command sequence, reads from the device automatically output  
status register data. Do not issue the Read Status Register command; it will be interpreted as data to  
program at WA0.  
5.3.3  
Program  
After setup completion, the host programming system must check SR[0] to determine “data-stream  
ready" status (SR[0]=0). Each subsequent write after this is a program-data write to the flash array.  
Each cell within the memory word to be programmed to 0 receives one WSM pulse; additional  
pulses, if required, occur in the verify phase. SR[0]=1 indicates that the WSM is busy applying the  
program pulse.  
The host programmer must poll the device's status register for the "program done" state after each  
data-stream write. SR[0]=0 indicates that the appropriate cell(s) within the accessed memory  
location have received their single WSM program pulse, and that the device is now ready for the  
next word. Although the host may check full status for errors at any time, it is only necessary on a  
block basis, after EFP exit.  
Addresses must remain within the target block. Supplying an address outside the target block  
immediately terminates the program phase; the WSM then enters the EFP verify phase.  
The address can either hold constant or it can increment. The device compares the incoming  
address to that stored from the setup phase (WA0); if they match, the WSM programs the new data  
word at the next sequential memory location. If they differ, the WSM jumps to the new address  
location.  
The program phase concludes when the host programming system writes to a different block  
address, and data supplied must be FFFFh. Upon program phase completion, the device enters the  
EFP verify phase.  
5.3.4  
Verify  
A high percentage of the flash bits program on the first WSM pulse. However, for those cells that  
do not completely program on their first attempt, EFP internal verification identifies them and  
applies additional pulses as required.  
The verify phase is identical in flow to the program phase, except that instead of programming  
incoming data, the WSM compares the verify-stream data to that which was previously  
programmed into the block. If the data compares correctly, the host programmer proceeds to the  
next word. If not, the host waits while the WSM applies an additional pulse(s).  
The host programmer must reset its initial verify-word address to the same starting location  
supplied during the program phase. It then reissues each data word in the same order as during the  
program phase. Like programming, the host may write each subsequent data word to WA0 or it may  
increment up through the block addresses.  
Datasheet  
35  
Intel® Wireless Flash Memory (W18)  
The verification phase concludes when the interfacing programmer writes to a different block  
address; data supplied must be FFFFh. Upon completion of the verify phase, the device enters the  
EFP exit phase.  
5.3.5  
Exit  
SR[7]=1 indicates that the device has returned to normal operating conditions. A full status check  
should be performed at this time to ensure the entire block programmed successfully. After EFP  
exit, any valid CUI command can be issued.  
36  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 7. Enhanced Factory Program Flowchart  
ENHANCED FACTORY PROGRAMMING PROCEDURE  
EFP Program EFP Verify  
EFP Setup  
EFP Exit  
Read  
Status Register  
Read  
Status Register  
Read  
Status Register  
Start  
VPP = 12V  
Unlock Block  
SR[0]=1=N  
SR[0]=1=N  
SR[7]=0=N  
Data Stream  
Ready?  
Verify Stream  
Ready?  
EFP  
Exited?  
SR[0] =0=Y  
SR[0] =0=Y  
SR[7]=1=Y  
Write 30h  
Address = WA0  
Write Data  
Address = WA0  
Write Data  
Address = WA0  
Full Status Check  
Procedure  
Write D0h  
Address = WA0  
Read  
Status Register  
Read  
Status Register  
Operation  
Complete  
EFP setup time  
Program  
Done?  
Verify  
Done?  
Read  
Status Register  
SR[0]=0=Y  
SR[0]=0=Y  
N
N
Last  
Data?  
Last  
Data?  
EFP Setup  
Done?  
Y
Y
SR[7]=1=N  
Check VPP & Lock  
errors (SR[3,1])  
Write FFFFh  
Write FFFFh  
Address BBA  
Address  
BBA  
Exit  
EFP Setup  
EFP Program  
EFP Verify  
Bus  
State  
Bus  
State  
Bus  
State  
Comments  
Comments  
Comments  
Read  
Status Register  
Check SR[0]  
Read  
Status Register  
Verify Check SR[0]  
Unlock VPP = 12V  
Block Unlock block  
Write  
Data  
Standby Stream 0 = Ready for data  
Ready? 1 = Not ready for data  
Standby Stream 0 = Ready for verify  
Ready? 1 = Not ready for verify  
EFP  
Data = 30h  
Write  
Write  
Setup Address = WA0  
EFP Data = D0h  
Confirm Address = WA0  
Write  
Data = Data to program  
Address = WA0  
Write  
Data = Word to verify  
Address = WA0  
(note 1)  
(note 2)  
Read  
Status Register  
Read  
Status Register  
Standby  
Read  
EFP setup time  
Check SR[0]  
0 = Program done  
1 = Program not done  
Check SR[0]  
0 = Verify done  
1 = Verify not done  
Program  
Done?  
Standby Verify  
(note 3) Done?  
Status Register  
Check SR[7]  
Standby  
EFP  
Standby Setup 0 = EFP ready  
Last  
Device automatically  
Last  
Device automatically  
Standby  
Standby  
Done? 1 = EFP not ready  
Data? increments address.  
Data? increments address.  
If SR[7] = 1:  
Error  
Exit Data = FFFFh  
Write Program Address not within same  
Phase BBA  
Exit Data = FFFFh  
Verify Address not within same  
Phase BBA  
Check SR[3,1]  
Standby Condition  
SR[3] = 1 = VPP error  
Check  
Write  
SR[1] = 1 = locked block  
EFP Exit  
1. WA0 = first Word Address to be programmed within the target block. The BBA (Block Base  
Address) must remain constant throughout the program phase data stream; WA can be held  
Read  
Status Register  
Check SR[7]  
EFP  
constant at the first address location, or it can be written to sequence up through the addresses  
within the block. Writing to a BBA not equal to that of the block currently being written to  
terminates the EFP program phase, and instructs the device to enter the EFP verify phase.  
2. For proper verification to occur, the verify data stream must be presented to the device in the  
same sequence as that of the program phase data stream. Writing to a BBA not equal to WA  
terminates the EFP verify phase, and instructs the device to exit EFP .  
3. Bits that did not fully program with the single WSM pulse of the EFP program phase receive  
additional program-pulse attempts during the EFP verify phase. The device will report any  
program failure by setting SR[4]=1; this check can be performed during the full status check after  
EFP has been exited for that block, and will indicate any error within the entire data stream.  
Standby  
0 = Exit not finished  
Exited?  
1 = Exit completed  
Repeat for subsequent operations.  
After EFP exit, a Full Status Check can  
determine if any program error occurred.  
See the Full Status Check procedure in the  
Word Program flowchart.  
Datasheet  
37  
Intel® Wireless Flash Memory (W18)  
6.0  
Program and Erase Operations  
6.1  
Program/Erase Suspend and Resume  
The Program Suspend and Erase Suspend commands halt an in-progress program or erase  
operation. The command can be issued at any device address. The partition corresponding to the  
command’s address remains in its previous state. A suspend command allows data to be accessed  
from memory locations other than the one being programmed or the block being erased.  
A program operation can be suspended only to perform a read operation. An erase operation can be  
suspended to perform either a program or a read operation within any block, except the block that  
is erase suspended. A program command nested within a suspended erase can subsequently be  
suspended to read yet another location. Once a program or erase process starts, the Suspend  
command requests that the WSM suspend the program or erase sequence at predetermined points  
in the algorithm. The partition that is actually suspended continues to output status register data  
after the Suspend command is written. An operation is suspended when status bits SR[7] and SR[6]  
and/or SR[2] are set.  
To read data from blocks within the partition (other than an erase-suspended block), you can write  
a Read Array command. Block erase cannot resume until the program operations initiated during  
erase suspend are complete. Read Array, Read Status Register, Read Identifier (ID), Read Query,  
and Program Resume are valid commands during Program or Erase Suspend. Additionally, Clear  
Status Register, Program, Program Suspend, Erase Resume, Lock Block, Unlock Block, and Lock-  
Down Block are valid commands during erase suspend.  
To read data from a block in a partition that is not programming or erasing, the operation does not  
need to be suspended. If the other partition is already in read array, ID, or Query mode, issuing a  
valid address returns corresponding data. If the other partition is not in a read mode, one of the read  
commands must be issued to the partition before data can be read.  
During a suspend, CE# = VIH places the device in standby state, which reduces active current. VPP  
must remain at its program level and WP# must remain unchanged while in suspend mode.  
A resume command instructs the WSM to continue programming or erasing and clears status  
register bits SR[2] (or SR[6]) and SR[7]. The Resume command can be written to any partition.  
When read at the partition that is programming or erasing, the device outputs data corresponding to  
the partition’s last mode. If status register error bits are set, the status register can be cleared before  
issuing the next instruction. RST# must remain at VIH. See Figure 8, “Program Suspend / Resume  
Flowchart” on page 39, and Figure 9, “Erase Suspend / Resume Flowchart” on page 40.  
If a suspended partition was placed in read array, read status register, read identifier (ID), or read  
query mode during the suspend, the device remains in that mode and outputs data corresponding to  
that mode after the program or erase operation is resumed. After resuming a suspended operation,  
issue the read command appropriate to the read operation. To read status after resuming a  
suspended operation, issue a Read Status Register command (70h) to return the suspended partition  
to status mode.  
38  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 8. Program Suspend / Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = B0h  
Suspend Addr = Block to suspend (BA)  
Program Suspend  
Write B0h  
Any Address  
Wr ite  
Wr ite  
Read Data = 70h  
Read Status  
Write 70h  
Same Partition  
Status Addr = Same partition  
Status register data  
Toggle CE# or OE# to update Status  
register  
Read  
Read Status  
Register  
Addr = Suspended block (BA)  
Check SR.7  
Standby  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.2  
1 = Program suspended  
0 = Program completed  
Program  
Completed  
SR.2 =  
Data = FFh  
Addr = Any address within the  
suspended partition  
1
Read  
Array  
Wr ite  
Read  
Wr ite  
Read Array  
Write FFh  
Susp Partition  
Read array data from block other than  
the one being programmed  
Read Array  
Data  
Program Data = D0h  
Resume Addr = Suspended block (BA)  
If the suspended partition was placed in Read Array mode:  
Done  
No  
Reading  
Return partition to Status mode:  
Read  
Wr ite  
Data = 70h  
Yes  
Status  
Addr = Same partition  
Program Resume  
Read Array  
Write FFh  
Write D0h  
Any Address  
Pgm'd Partition  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Same Partition  
PGM_SUS.WMF  
Datasheet  
39  
Intel® Wireless Flash Memory (W18)  
Figure 9. Erase Suspend / Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Erase  
Data = B0h  
Erase Suspend  
Write B0h  
Any Address  
Write  
Write  
Suspend Addr = Any address  
Read  
Status  
Data = 70h  
Addr = Same partition  
Read Status  
Write 70h  
Same Partition  
Status register data. Toggle CE# or  
OE# to update Status register  
Addr = Same partition  
Read  
Read Status  
Register  
Check SR.7  
Standby  
1 = WSM ready  
0 = WSM busy  
0
0
SR.7 =  
1
Check SR.6  
1 = Erase suspended  
0 = Erase completed  
Standby  
Write  
Erase  
Completed  
SR.6 =  
1
Read Array Data = FFh or 40h  
or Program Addr = Block to program or read  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
Read  
Program  
Read or  
Program?  
Read Array  
Data  
Program  
Loop  
Program Data = D0h  
Resume Addr = Any address  
No  
Write  
If the suspended partition was placed in  
Read Array mode or a Program Loop:  
Done?  
Yes  
Return partition to Status mode:  
Data = 70h  
Addr = Same partition  
Read  
Status  
Erase Resume  
Read Array  
Write  
Write D0h  
Any Address  
Write FFh  
Erased Partition  
Read Array  
Data  
Erase Resumed  
Read Status  
Write 70h  
Same Partition  
ERAS_SUS.WMF  
6.2  
Block Erase  
The 2-cycle block erase command sequence, consisting of Erase Setup (20h) and Erase Confirm  
(D0h), initiates one block erase at the addressed block. Only one partition can be in an erase mode  
at a time; other partitions must be in a read mode. The Erase Confirm command internally latches  
the address of the block to be erased. Erase forces all bits within the block to 1. SR[7] is cleared  
while the erase executes.  
40  
Datasheet  
Intel® Wireless Flash Memory (W18)  
After writing the Erase Confirm command, the selected partition is placed in read status register  
mode and reads performed to that partition return the current status data. The address given during  
the Erase Confirm command does not need to be the same address used in the Erase Setup  
command. So, if the Erase Confirm command is given to partition B, then the selected block in  
partition B will be erased even if the Erase Setup command was to partition A.  
The 2-cycle erase sequence cannot be interrupted with a bus write operation. For example, an Erase  
Setup command must be immediately followed by the Erase Confirm command in order to execute  
properly. If a different command is issued between the setup and confirm commands, the partition  
is placed in read-status mode, the status register signals a command sequence error, and all  
subsequent erase commands to that partition are ignored until the status register is cleared.  
The CPU can detect block erase completion by analyzing SR[7] of that partition. If an error bit  
(SR[5,3,1]) was flagged, the status register can be cleared by issuing the Clear Status Register  
command before attempting the next operation. The partition remains in read-status mode until  
another command is written to its CUI. Any CUI instruction can follow after erasing completes.  
The CUI can be set to read-array mode to prevent inadvertent status register reads.  
Datasheet  
41  
Intel® Wireless Flash Memory (W18)  
Figure 10. Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Start  
Command  
Operation  
Comments  
Block  
Erase  
Setup  
Data = 20h  
Addr = Block to be erased (BA)  
Write  
Write  
Read  
Write 20h  
Block Address  
Erase  
Data = D0h  
Confirm Addr = Block to be erased (BA)  
Write D0h and  
Block Address  
Read SRD  
Toggle CE# or OE# to update SRD  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM ready  
0 = WSM busy  
Standby  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]  
1 = VPP error  
Standby  
Standby  
Standby  
VPP Range  
Error  
1
1
1
1
SR[3] =  
0
Check SR[5:4]  
Both 1 = Command sequence error  
Command  
Sequence Error  
Check SR[5]  
1 = Block erase error  
SR[5:4] =  
0
Check SR[1]  
Standby  
1 = Attempted erase of locked block  
Erase aborted  
Block Erase  
Error  
SR[5] =  
0
SR[3,1] must be cleared before the WSM will allow further  
erase attempts.  
Erase of  
Locked Block  
Aborted  
SR[1] =  
0
Only the Clear Status Register command clears SR[5:3,1].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Block Erase  
Successful  
6.3  
Read-While-Write and Read-While-Erase  
The Intel® Wireless Flash Memory (W18) supports flexible multi-partition dual-operation  
architecture. By dividing the flash memory into many separate partitions, the device can read from  
one partition while programing or erasing in another partition; hence the terms, RWW and RWE.  
Both of these features greatly enhance data storage performance.  
42  
Datasheet  
Intel® Wireless Flash Memory (W18)  
The product does not support simultaneous program and erase operations. Attempting to perform  
operations such as these results in a command sequence error. Only one partition can be  
programming or erasing while another partition is reading. However, one partition may be in erase  
suspend mode while a second partition is performing a program operation, and yet another partition  
is executing a read command. Table 6, “Command Codes and Descriptions” on page 24 describes  
the command codes available for all functions.  
7.0  
Security Modes  
The Intel Wireless Flash Memory offers both hardware and software security features to protect the  
flash data. The software security feature is used by executing the Lock Block command. The  
hardware security feature is used by executing the Lock-Down Block command and by asserting  
the WP# signal.  
Refer to Figure 11, “Block Locking State Diagram” on page 44 for a state diagram of the flash  
security features. Also see Figure 12, “Locking Operations Flowchart” on page 46.  
7.1  
Block Lock Operations  
Individual instant block locking protects code and data by allowing any block to be locked or  
unlocked with no latency. This locking scheme offers two levels of protection. The first allows  
software-only control of block locking (useful for frequently changed data blocks), while the  
second requires hardware interaction before locking can be changed (protects infrequently changed  
code blocks).  
The following sections discuss the locking system operation. The term “state [abc]” specifies  
locking states; for example, “state [001],” where a = WP# value, b = block lock-down status bit  
D1, and c = Block Lock status register bit D0. Figure 11, “Block Locking State Diagram” on  
page 44 defines possible locking states.  
The following summarizes the locking functionality.  
All blocks power-up in a locked state.  
Unlock commands can unlock these blocks, and lock commands can lock them again.  
The Lock-Down command locks a block and prevents it from being unlocked when WP# is  
asserted.  
— Locked-down blocks can be unlocked or locked with commands as long as WP# is  
deasserted  
— The lock-down status bit is cleared only when the device is reset or powered-down.  
Block lock registers are not affected by the VPP level. They may be modified and read even if VPP  
VPPLK  
.
Each block’s locking status can be set to locked, unlocked, and lock-down, as described in the  
following sections. See Figure 12, “Locking Operations Flowchart” on page 46.  
Datasheet  
43  
Intel® Wireless Flash Memory (W18)  
Figure 11. Block Locking State Diagram  
Locked-  
Down4,5  
[011]  
Hardware  
Locked5  
[011]  
Locked  
Power-Up/Reset  
[X01]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[111]  
[110]  
[X00]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes:  
1. [a,b,c] represents [WP#, D1, D0]. X = Don’t Care.  
2. D1 indicates block Lock-down status. D1 = ‘0’, Lock-down has not been issued to  
this block. D1 = ‘1’, Lock-down has been issued to this block.  
3. D0 indicates block lock status. D0 = ‘0’, block is unlocked. D0 = ‘1’, block is locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference between  
Hardware Locked and Locked-Down states.  
7.1.1  
7.1.2  
7.1.3  
Lock  
All blocks default to locked (state [x01]) after initial power-up or reset. Locked blocks are fully  
protected from alteration. Attempted program or erase operations to a locked block will return an  
error in SR[1]. Unlocked blocks can be locked by using the Lock Block command sequence.  
Similarly, a locked block’s status can be changed to unlocked or lock-down using the appropriate  
software commands.  
Unlock  
Unlocked blocks (states [x00] and [110]) can be programmed or erased. All unlocked blocks return  
to the locked state when the device is reset or powered-down. An unlocked block’s status can be  
changed to the locked or locked-down state using the appropriate software commands. A locked  
block can be unlocked by writing the Unlock Block command sequence if the block is not locked-  
down.  
Lock-Down  
Locked-down blocks (state [011]) offer the user an additional level of write protection beyond that  
of a regular locked block. A block that is locked-down cannot have it’s state changed by software if  
WP# is asserted. A locked or unlocked block can be locked-down by writing the Lock-Down Block  
command sequence. If a block was set to locked-down, then later changed to unlocked, a Lock-  
44  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Down command should be issued prior asserting WP# will put that block back to the locked-down  
state. When WP# is deasserted, locked-down blocks are changed to the locked state and can then  
be unlocked by the Unlock Block command.  
7.1.4  
Block Lock Status  
Every block’s lock status can be read in read identifier mode. To enter this mode, issue the Read  
Identifier command to the device. Subsequent reads at Block Base Address + 02h will output that  
block’s lock status. For example, to read the block lock status of block 10, the address sent to the  
device should be 50002h (for a top-parameter device). The lowest two data bits of the read data, D1  
and D0, represent the lock status. D0 indicates the block lock status. It is set by the Lock Block  
command and cleared by the Block Unlock command. It is also set when entering the lock-down  
state. D1 indicates lock-down status and is set by the Lock-Down command. The lock-down status  
bit cannot be cleared by software–only by device reset or power-down. See Table 12.  
Table 12. Write Protection Truth Table  
VPP  
WP#  
RST#  
VIL  
Write Protection  
Device inaccessible  
X
X
VIL  
X
X
VIH  
VIH  
VIH  
Word program and block erase prohibited  
All lock-down blocks locked  
VIL  
VIH  
X
All lock-down blocks can be unlocked  
7.1.5  
Lock During Erase Suspend  
Block lock configurations can be performed during an erase suspend operation by using the  
standard locking command sequences to unlock, lock, or lock-down a block. This feature is useful  
when another block requires immediate updating.  
To change block locking during an erase operation, first write the Erase Suspend command. After  
checking SR[6] to determine the erase operation has suspended, write the desired lock command  
sequence to a block; the lock status will be changed. After completing lock, unlock, read, or  
program operations, resume the erase operation with the Erase Resume command (D0h).  
If a block is locked or locked-down during a suspended erase of the same block, the locking status  
bits change immediately. When the erase operation is resumed, it will complete normally.  
Locking operations cannot occur during program suspend. Appendix A, “Write State Machine  
States” on page 87 shows valid commands during erase suspend.  
7.1.6  
Status Register Error Checking  
Using nested locking or program command sequences during erase suspend can introduce  
ambiguity into status register results.  
Because locking changes require 2-cycle command sequences, for example, 60h followed by 01h  
to lock a block, following the Configuration Setup command (60h) with an invalid command  
produces a command sequence error (SR[5:4]=11b). If a Lock Block command error occurs during  
erase suspend, the device sets SR[4] and SR[5] to 1 even after the erase is resumed. When erase is  
Datasheet  
45  
Intel® Wireless Flash Memory (W18)  
complete, possible errors during the erase cannot be detected from the status register because of the  
previous locking command error. A similar situation occurs if a program operation error is nested  
within an erase suspend.  
7.1.7  
WP# Lock-Down Control  
The Write Protect signal, WP#, adds an additional layer of block security. WP# only affects blocks  
that once had the Lock-Down command written to them. After the lock-down status bit is set for a  
block, asserting WP# forces that block into the lock-down state [011] and prevents it from being  
unlocked. After WP# is deasserted, the block’s state reverts to locked [111] and software  
commands can then unlock the block (for erase or program operations) and subsequently re-lock it.  
Only device reset or power-down can clear the lock-down status bit and render WP# ineffective.  
Figure 12. Locking Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Operation  
Command  
Comments  
Write 60h  
Block Address  
Lock  
Setup  
Data = 60h  
Addr = Block to lock/unlock/lock-down (BA)  
Write  
Write  
Write 01,D0,2Fh  
Block Address  
Lock,  
Unlock, or  
Lockdown  
Data = 01h (Lock block)  
D0h (Unlock block)  
2Fh (Lockdown block)  
Confirm Addr = Block to lock/unlock/lock-down (BA)  
Write 90h  
BBA + 02h  
Write  
Read ID Data = 90h  
(Optional)  
Plane  
Addr = BBA + 02h  
Read Block Lock  
Status  
Read  
(Optional)  
Block Lock Block Lock status data  
Status Addr = BBA + 02h  
Locking  
Change?  
No  
Confirm locking change on DQ[1:0].  
(See Block Locking State Transitions Table  
for valid combinations.)  
Standby  
(Optional)  
Yes  
Read  
Array  
Data = FFh  
Addr = Any address in same partition  
Write  
Write FFh  
Partition Address  
Lock Change  
Complete  
7.2  
Protection Register  
The Intel Wireless Flash Memory includes a 128-bit protection register. This protection register is  
used to increase system security and for identification purposes. The protection register value can  
match the flash component to the system’s CPU or ASIC to prevent device substitution.  
The lower 64 bits within the protection register are programmed by Intel with a unique number in  
each flash device. The upper 64 OTP bits within the protection register are left for the customer to  
program. Once programmed, the customer segment can be locked to prevent further programming.  
Note: The individual bits of the user segment of the protection register are OTP, not the register in total.  
The user may program each OTP bit individually, one at a time, if desired. After the protection  
register is locked, however, the entire user segment is locked and no more user bits can be  
programmed.  
46  
Datasheet  
Intel® Wireless Flash Memory (W18)  
The protection register shares some of the same internal flash resources as the parameter partition.  
Therefore, RWW is only allowed between the protection register and main partitions. Table 13  
describes the operations allowed in the protection register, parameter partition, and main partition  
during RWW and RWE.  
Table 13. Simultaneous Operations Allowed with the Protection Register  
Parameter  
Protection  
Register  
Main  
Partitions  
Partition  
Description  
Array Data  
While programming or erasing in a main partition, the protection register can be  
read from any other partition. Reading the parameter partition data is not  
allowed if the protection register is being read from addresses within the  
parameter partition.  
See  
Description  
Read  
Write/Erase  
While programming or erasing in a main partition, read operations are allowed  
Write/Erase in the parameter partition. Accessing the protection registers from parameter  
partition addresses is not allowed.  
See  
Description  
Read  
Read  
While programming or erasing in a main partition, read operations are allowed  
in the parameter partition. Accessing the protection registers in a partition that  
is different from the one being programmed or erased, and also different from  
the parameter partition, is allowed.  
Read  
Write  
Write/Erase  
While programming the protection register, reads are only allowed in the other  
main partitions. Access to the parameter partition is not allowed. This is  
because programming of the protection register can only occur in the  
No Access  
Allowed  
Read  
parameter partition, so it will exist in status mode.  
While programming or erasing the parameter partition, reads of the protection  
registers are not allowed in any partition. Reads in other main partitions are  
supported.  
No Access  
Allowed  
Write/Erase  
Read  
7.2.1  
Reading the Protection Register  
Writing the Read Identifier command allows the protection register data to be read 16 bits at a time  
from addresses shown in Table 8, “Device Identification Codes” on page 29. The protection  
register is read from the Read Identifier command and can be read in any partition.Writing the  
Read Array command returns the device to read-array mode.  
7.2.2  
7.2.3  
Programing the Protection Register  
The Protection Program command should be issued only at the parameter (top or bottom) partition  
followed by the data to be programmed at the specified location. It programs the upper 64 bits of  
the protection register 16 bits at a time. Table 8, “Device Identification Codes” on page 29 shows  
allowable addresses. See also Figure 13, “Protection Register Programming Flowchart” on  
page 48. Issuing a Protection Program command outside the register’s address space results in a  
status register error (SR[4]=1).  
Locking the Protection Register  
PR-LK.0 is programmed to 0 by Intel to protect the unique device number. PR-LK.1 can be  
programmed by the user to lock the user portion (upper 64 bits) of the protection register (See  
Figure 14, “Protection Register Locking). This bit is set using the Protection Program command to  
program “FFFDh” into PR-LK.  
Datasheet  
47  
Intel® Wireless Flash Memory (W18)  
After PR-LK register bits are programmed (locked), the protection register’s stored values can’t be  
changed. Protection Program commands written to a locked section result in a status register error  
(SR[4]=1, SR[5]=1).  
Figure 13. Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMINGPROCEDURE  
Bus  
Start  
Command  
Comments  
Operation  
Protection  
Program  
Setup  
Data = C0h  
Addr = Protection address  
Write  
Write C0h  
Addr=Prot addr  
Protection Data = Data to program  
Program Addr = Protection address  
Write  
Read  
Write Protect.  
Register  
Address / Data  
Read SRD  
Toggle CE# or OE# to update SRD  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Standby  
No  
SR[7] = 1?  
Yes  
Protection Program operations addresses must be within the  
protection register address space. Addresses outside this  
space will return an error.  
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full status register check can be done after each program or  
after a sequence of program operations.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Bus  
Operation  
Read SRD  
SR[4:3] =  
Command  
Comments  
SR[1] SR[3] SR[4]  
Standby  
Standby  
Standby  
0
0
1
0
1
1
VPP Error  
1,1  
1,0  
1,1  
VPP Range Error  
Protection register  
program error  
1
0
1
Register locked;  
SR[4,1] =  
SR[4,1] =  
Programming Error  
Operation aborted  
SR[3] MUST be cleared before the WSM will allow further  
program attempts.  
Locked-Register  
Program Aborted  
Only the Clear Staus Register command clears SR[4:3,1].  
If an error is detected, clear the status register before  
attempting a program retry or other error recovery.  
Program  
Successful  
48  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 14. Protection Register Locking  
0x88  
User-Programmable  
0x85  
0x84  
Intel Factory-Programmed  
PR Lock Register 0  
0x81  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x80  
7.3  
VPP Protection  
The Intel® Wireless Flash Memory (W18) provides in-system program and erase at VPP1. For  
factory programming, it also includes a low-cost, backward-compatible 12 V programming  
feature.(See “Factory Programming” on page 33.) The EFP feature can also be used to greatly  
improve factory program performance as explained in Section 5.3, “Enhanced Factory Program  
(EFP)” on page 34.  
In addition to the flexible block locking, holding the VPP programming voltage low can provide  
absolute hardware write protection of all flash-device blocks. If VPP is below VPPLK, program or  
erase operations result in an error displayed in SR[3]. (See Figure 15.)  
Figure 15. Examples of VPP Power Supply Configurations  
System supply  
VCC  
System supply  
VCC  
VPP  
12 V supply  
Prot# (logic signal)  
VPP  
10K  
12 V fast programming  
Absolute write protection with VPP VPPLK  
Low-voltage programming  
Absolute write protection via logic signal  
System supply  
VCC  
System supply  
VCC  
(Note 1)  
VPP  
VPP  
12 V supply  
Low voltage and 12 V fast programming  
Low-voltage programming  
NOTE: If the VCC supply can sink adequate current, you can use an appropriately valued resistor.  
Datasheet  
49  
Intel® Wireless Flash Memory (W18)  
8.0  
Set Configuration Register  
The Set Configuration Register command sets the burst order, frequency configuration, burst  
length, and other parameters.  
A two-bus cycle command sequence initiates this operation. The configuration register data is  
placed on the lower 16 bits of the address bus (A[15:0]) during both bus cycles. The Set  
Configuration Register command is written along with the configuration data (on the address bus).  
This is followed by a second write that confirms the operation and again presents the configuration  
register data on the address bus. The configuration register data is latched on the rising edge of  
ADV#, CE#, or WE# (whichever occurs first). This command functions independently of the  
applied VPP voltage. After executing this command, the device returns to read-array mode. The  
configuration register’s contents can be examined by writing the Read Identifier command and  
then reading location 05h. (See Table 14 and Table 15.)  
50  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 14. Configuration Register Definitions  
Data  
Output  
Config  
Read  
Mode  
First Access Latency  
Count  
WAIT  
Polarity  
WAIT  
Config  
Burst  
Seq  
Clock  
Config  
Burst  
Wrap  
Res’d  
Res’d Res’d  
Burst Length  
RM  
15  
R
LC2  
13  
LC1  
12  
LC0  
11  
WT  
10  
DOC  
9
WC  
8
BS  
7
CC  
6
R
5
R
4
BW  
3
BL2  
2
BL1  
1
BL0  
0
14  
Table 15. Configuration Register Descriptions  
Bit  
Name  
Description  
Notes1  
RM  
0 = Synchronous Burst Reads Enabled  
15  
14  
2
5
1 = Asynchronous Reads Enabled (Default)  
Reserved  
Read Mode  
R
LC2-0  
001 = Reserved  
010 = Code 2  
011 = Code 3  
100 = Code 4  
101 = Code 5  
111 = Reserved (Default)  
13-11  
6
First Access Latency  
Count  
WT  
0 = WAIT signal is asserted low  
1 = WAIT signal is asserted high (Default)  
10  
9
3
6
6
WAIT Signal Polarity  
DOC  
0 = Hold Data for One Clock  
1 = Hold Data for Two Clock (Default)  
Data Output Configuration  
WC  
0 = WAIT Asserted During Delay  
1 = WAIT Asserted One Data Cycle before Delay (Default)  
8
WAIT Configuration  
BS  
7
1 = Linear Burst Order (Default)  
Burst Sequence  
CC  
0 = Burst Starts and Data Output on Falling Clock Edge  
1 = Burst Starts and Data Output on Rising Clock Edge (Default)  
6
Clock  
Configuration  
5
4
R
R
Reserved  
Reserved  
5
5
BW  
0 = Wrap bursts within burst length set by CR[2:0]  
1 = Don’t wrap accesses within burst length set by CR[2:0].(Default)  
3
Burst Wrap  
001 = 4-Word Burst  
010 = 8-Word Burst  
BL2-0  
2-0  
4
011 = 16-Word Burst  
111 = Continuous Burst (Default)  
Burst Length  
NOTES:  
1. Undocumented combinations of bits are reserved by Intel for future implementations.  
2. Synchronous and page read mode configurations affect reads from main blocks and parameter blocks. Status register and  
configuration reads support single read cycles. CR[15]=1 disables configuration set by CR[14:0].  
3. Data is not ready when WAIT is asserted.  
4. Set the synchronous burst length. In asynchronous page mode, the page size equals four words.  
5. Set all reserved configuration register bits to zero.  
6. Setting the configuration register for synchronous burst-mode with a latency count of 2 (RCR[13:11] = 010), data hold for 2  
clocks (RCR.9 = 1), and WAIT asserted one data cycle before delay (RCR.8 =1) is not supported.  
Datasheet  
51  
Intel® Wireless Flash Memory (W18)  
8.1  
Read Mode (CR[15])  
All partitions support two high-performance read configurations: synchronous burst mode and  
asynchronous page mode (default). CR[15] sets the read configuration to one of these modes.  
Status register, query, and identifier modes support only asynchronous and single-synchronous read  
operations.  
8.2  
First Access Latency Count (CR[13:11])  
The First Access Latency Count (CR[13:11]) configuration tells the device how many clocks must  
elapse from ADV# de-assertion (VIH) before the first data word should be driven onto its data pins.  
The input clock frequency determines this value. See Table 14, “Configuration Register  
Definitions” on page 51 for latency values. Figure 16 shows data output latency from ADV#  
assertion for different latencies. Refer to Section 8.2.1, “Latency Count Settings” on page 53 for  
Latency Code Settings.  
Figure 16. First Access Latency Configuration  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 3  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 4  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
Code 5  
Valid  
Output  
Valid  
Output  
Valid  
Output  
D[15:0] [Q]  
NOTE: Other First Access Latency Configuration settings are reserved.  
)
Figure 17. Word Boundary  
Word 0 - 3  
Word 4 - 7  
Word 8 - B  
Word C - F  
0 1 2 3 4 5 6 7 8 9 A B C D E F  
16 Word Boundary  
4 Word Boundary  
NOTE: The 16-word boundary is the end of the device sense word-line.  
52  
Datasheet  
Intel® Wireless Flash Memory (W18)  
8.2.1  
Latency Count Settings  
Table 16. Latency Count Settings for V  
= 1.35 V - 1.8 V (.13 µm lithography)  
CCQ  
VCCQ = 1.35 V - 1.8 V  
Unit  
tAVQV/tCHQV (65ns/14ns)  
tAVQV/tCHQV (85ns/20ns)  
Latency Count  
Settings  
2
3, 4, 5  
< 54  
2
3, 4, 5  
< 40  
Frequency  
< 39  
< 30  
MHz  
Table 17. Latency Count Setting for V  
= 1.7 V - 2.24 V (.13 µm lithography)  
CCQ  
VCCQ = 1.7 - 2.24 V  
Unit  
tAVQV/tCHQV (60ns/11ns)  
tAVQV/tCHQV (80ns/14ns)  
Latency Count  
Settings  
2
3
4, 5  
< 66  
2
3
4, 5  
Frequency  
Support  
< 40  
< 61  
< 30  
< 45  
< 54  
MHz  
Table 18. Latency Count Setting for V  
= 1.7 V - 2.24 V (.18 µm lithography)  
CCQ  
VCCQ = 1.7 - 2.24 V  
Unit  
tAVQV/tCHQV (70ns/14ns)  
tAVQV/tCHQV (85ns/18ns)  
Latency Count  
Settings  
2
3, 4, 5  
<52  
2
3, 4, 5  
< 40  
Frequency  
Support  
< 35  
< 29  
MHz  
Datasheet  
53  
Intel® Wireless Flash Memory (W18)  
Figure 18. Example: Latency Count Setting at 3  
tADD-DELAY  
tDATA  
2rd  
0st  
1nd  
3th  
4th  
CLK (C)  
CE# (E)  
ADV# (V)  
AMAX-0 (A)  
Valid Address  
High Z  
Code 3  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
R103  
8.3  
8.4  
WAIT Signal Polarity (CR[10])  
If the WT bit is cleared (CR[10]=0), then WAIT is configured to be asserted low. This means that a  
0 on the WAIT signal indicates that data is not ready and the data bus contains invalid data.  
Conversely, if CR[10] is set, then WAIT is asserted high. In either case, if WAIT is deasserted, then  
data is ready and valid. WAIT is asserted during asynchronous page mode reads.  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(CR[15]=0), and when addressing a partition that is currently in read-array mode. The WAIT signal  
is only “deasserted” when data is valid on the bus.  
When the device is operating in synchronous non-read-array mode, such as read status, read ID, or  
read query, WAIT is set to an “asserted” state as determined by CR[10]. See Figure 26, “WAIT  
Signal in Synchronous Non-Read Array Operation Waveform” on page 76.  
When the device is operating in asynchronous page mode or asynchronous single word read mode,  
WAIT is set to an “asserted” state as determined by CR[10]. See Figure 22, “Page-Mode Read  
Operation Waveform” on page 72, and Figure 20, “Asynchronous Read Operation Waveform” on  
page 70.  
From a system perspective, the WAIT signal is in the asserted state (based on CR[10]) when the  
device is operating in synchronous non-read-array mode (such as Read ID, Read Query, or Read  
Status), or if the device is operating in asynchronous mode (CR[15]=1). In these cases, the system  
software should ignore (mask) the WAIT signal, because it does not convey any useful information  
about the validity of what is appearing on the data bus.  
54  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 19. WAIT Signal Conditions  
CONDITION  
WAIT  
CE# = VIH  
CE# = VIL  
Tri-State  
Active  
OE#  
No-Effect  
Active  
Synchronous Array Read  
Synchronous Non-Array Read  
Asserted  
All Asynchronous Read and all Write Asserted  
8.5  
Data Hold (CR[9])  
The Data Output Configuration bit (CR[9]) determines whether a data word remains valid on the  
data bus for one or two clock cycles. The processor’s minimum data set-up time and the flash  
memory’s clock-to-data output delay determine whether one or two clocks are needed.  
A Data Output Configuration set at 1-clock data hold corresponds to a 1-clock data cycle; a Data  
Output Configuration set at 2-clock data hold corresponds to a 2-clock data cycle. The setting of  
this configuration bit depends on the system and CPU characteristics. For clarification, see Figure  
19, “Data Output Configuration with WAIT Signal Delay” on page 56.  
A method for determining this configuration setting is shown below.  
To set the device at 1-clock data hold for subsequent reads, the following condition must be  
satisfied:  
tCHQV (ns) + tDATA (ns) One CLK Period (ns)  
As an example, use a clock frequency of 66 MHz and a clock period of 15 ns. Assume the data  
output hold time is one clock. Apply this data to the formula above for the subsequent reads:  
11 ns + 4 ns 15 ns  
This equation is satisfied, and data output will be available and valid at every clock period. If tDATA  
is long, hold for two cycles.  
During page-mode reads, the initial access time can be determined by the formula:  
tADD-DELAY (ns) + tDATA (ns) + tAVQV (ns)  
Subsequent reads in page mode are defined by:  
tAPA (ns) + tDATA (ns)  
(minimum time)  
Datasheet  
55  
Intel® Wireless Flash Memory (W18)  
Figure 19. Data Output Configuration with WAIT Signal Delay  
CLK [C]  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHQV  
WAIT (CR.8 = 0)  
1 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
WAIT (CR.8 = 0)  
WAIT (CR.8 = 1)  
Note 1  
Note 1  
tCHTL/H  
tCHQV  
2 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
DQ15-0 [Q]  
NOTE: WAIT shown asserted high (CR[10]=1).  
8.6  
WAIT Delay (CR[8])  
The WAIT configuration bit (CR[8]) controls WAIT signal delay behavior for all synchronous  
read-array modes. Its setting depends on the system and CPU characteristics. The WAIT can be  
asserted either during, or one data cycle before, a valid output.  
In synchronous linear read array (no-wrap mode CR[3]=1) of 4-, 8-, 16-, or continuous-word burst  
mode, an output delay may occur when a burst sequence crosses its first device-row boundary (16-  
word boundary). If the burst start address is 4-word boundary aligned, the delay does not occur. If  
the start address is misaligned to a 4-word boundary, the delay occurs once per burst-mode read  
sequence. The WAIT signal informs the system of this delay.  
8.7  
Burst Sequence (CR[7])  
The burst sequence specifies the synchronous-burst mode data order (see Table 20, “Sequence and  
Burst Length” on page 57). When operating in a linear burst mode, either 4-, 8-, or 16-word burst  
length with the burst wrap bit (CR[3]) set, or in continuous burst mode, the device may incur an  
output delay when the burst sequence crosses the first 16-word boundary. (See Figure 17, “Word  
Boundary” on page 52 for word boundary description.) This depends on the starting address. If the  
starting address is aligned to a 4-word boundary, there is no delay. If the starting address is the end  
of a 4-word boundary, the output delay is one clock cycle less than the First Access Latency Count;  
this is the worst-case delay. The delay takes place only once, and only if the burst sequence crosses  
a 16-word boundary. The WAIT pin informs the system of this delay. For timing diagrams of WAIT  
functionality, see these figures:  
Figure 23, “Single Synchronous Read-Array Operation Waveform” on page 73  
Figure 24, “Synchronous 4-Word Burst Read Operation Waveform” on page 74  
Figure 25, “WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform” on  
page 75  
56  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 20. Sequence and Burst Length  
Burst Addressing Sequence (Decimal)  
4-Word  
Burst  
Continuous  
Burst  
Start  
8-Word Burst  
CR[2:0]=010b  
16-Word Burst  
CR[2:0]=011b  
Addr. CR[2:0]=0  
CR[2:0]=111b  
(Dec)  
01b  
Linear  
Linear  
Linear  
Linear  
0
1
2
3
0-1-2-3 0-1-2-3-4-5-6-7  
1-2-3-0 1-2-3-4-5-6-7-0  
2-3-0-1 2-3-4-5-6-7-0-1  
0-1-2...14-15  
1-2-3...14-15-0  
2-3-4...15-0-1  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
3-0-1-2 3-4-5-6-7-0-1-2 3-4-5...15-0-1-2  
4-5-6...15-0-1-2-  
4
5
6
4-5-6-7-0-1-2-3  
3
4-5-6-7-8-9-10...  
5-6-7-0-1-2-3-4 5-6-7...15-0-1...4 5-6-7-8-9-10-11...  
6-7-8-9-10-11-12-  
6-7-0-1-2-3-4-5 6-7-8...15-0-1...5  
...  
7-8-9-10-11-12-  
7
7-0-1-2-3-4-5-6 7-8-9...15-0-1...6  
13...  
14  
14-15-0-1...13  
14-15-16-17-18-19-  
20-...  
15  
0
15-0-1-2-3...14  
0-1-2...14-15  
1-2-3...15-16  
2-3-4...16-17  
15-16-17-18-19-...  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
0-1-2-3 0-1-2-3-4-5-6-7  
1-2-3-4 1-2-3-4-5-6-7-8  
2-3-4-5 2-3-4-5-6-7-8-9  
1
2
3-4-5-6-7-8-9-  
3
4
5
6
7
3-4-5-6  
10  
3-4-5...17-18  
4-5-6...18-19  
5-6-7...19-20  
6-7-8...20-21  
7-8-9...21-22  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
4-5-6-7-8-9-10-  
11  
5-6-7-8-9-10-  
11-12  
6-7-8-9-10-11-  
12-13  
6-7-8-9-10-11-12-  
...  
7-8-9-10-11-  
12-13-14  
7-8-9-10-11-12-  
13...  
14-15-16-17-18-  
19-20-...  
14  
15  
14-15...28-29  
15-16...29-30  
15-16-17-18-19-  
20-21-...  
Datasheet  
57  
Intel® Wireless Flash Memory (W18)  
8.8  
8.9  
Clock Edge (CR[6])  
Configuring the valid clock edge enables a flexible memory interface to a wide range of burst  
CPUs. Clock configuration sets the device to start a burst cycle, output data, and assert WAIT on  
the clock’s rising or falling edge.  
Burst Wrap (CR[3])  
The burst wrap bit determines whether 4-, 8-, or 16-word burst accesses wrap within the burst-  
length boundary or whether they cross word-length boundaries to perform linear accesses. No-  
wrap mode (CR[3]=1) enables WAIT to hold off the system processor, as it does in the continuous  
burst mode, until valid data is available. In no-wrap mode (CR[3]=0), the device operates similarly  
to continuous linear burst mode but consumes less power during 4-, 8-, or 16-word bursts.  
For example, if CR[3]=0 (wrap mode) and CR[2:0] = 1h (4-word burst), possible linear burst  
sequences are 0-1-2-3, 1-2-3-0, 2-3-0-1, 3-0-1-2.  
If CR[3]=1 (no-wrap mode) and CR[2:0] = 1h (4-word burst length), then possible linear burst  
sequences are 0-1-2-3, 1-2-3-4, 2-3-4-5, and 3-4-5-6. CR[3]=1 not only enables limited non-  
aligned sequential bursts, but also reduces power by minimizing the number of internal read  
operations.  
Setting CR[2:0] bits for continuous linear burst mode (7h) also achieves the above 4-word burst  
sequences. However, significantly more power may be consumed. The 1-2-3-4 sequence, for  
example, consumes power during the initial access, again during the internal pipeline lookup as the  
processor reads word 2, and possibly again, depending on system timing, near the end of the  
sequence as the device pipelines the next 4-word sequence. CR[3]=1 while in 4-word burst mode  
(no-wrap mode) reduces this excess power consumption.  
8.10  
Burst Length (CR[2:0])  
The Burst Length bit (BL[2:0]) selects the number of words the device outputs in synchronous read  
access of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, and continuous  
word.  
Continuous-burst accesses are linear only, and do not wrap within any word length boundaries (see  
Table 20, “Sequence and Burst Length” on page 57). When a burst cycle begins, the device outputs  
synchronous burst data until it reaches the end of the “burstable” address space.  
58  
Datasheet  
Intel® Wireless Flash Memory (W18)  
9.0  
Power Consumption  
Intel® Wireless Flash Memory (W18) devices have a layered approach to power savings that can  
significantly reduce overall system power consumption. The APS feature reduces power  
consumption when the device is selected but idle. If CE# is deasserted, the memory enters its  
standby mode, where current consumption is even lower. Asserting RST# provides current savings  
similar to standby mode. The combination of these features can minimize memory power  
consumption, and therefore, overall system power consumption.  
9.1  
9.2  
Active Power  
With CE# at VIL and RST# at VIH, the device is in the active mode. Refer to Section 10.3, “DC  
Current Characteristics” on page 62, for ICC values. When the device is in “active” state, it  
consumes the most power from the system. Minimizing device active current therefore reduces  
system power consumption, especially in battery-powered applications.  
Automatic Power Savings (APS)  
Automatic Power Saving (APS) provides low-power operation during a read’s active state. During  
APS mode, ICCAPS is the average current measured over any 5 ms time interval 5 µs after the  
following events happen:  
There is no internal sense activity;  
CE# is asserted;  
The address lines are quiescent, and at VSSQ or VCCQ  
.
OE# may be asserted during APS.  
9.3  
9.4  
Standby Power  
With CE# at VIH and the device in read mode, the flash memory is in standby mode, which disables  
most device circuitry and substantially reduces power consumption. Outputs are placed in a high-  
impedance state independent of the OE# signal state. If CE# transitions to VIH during erase or  
program operations, the device continues the operation and consumes corresponding active power  
until the operation is complete. ICCS is the average current measured over any 5 ms time interval 5  
µs after a CE# de-assertion.  
Power-Up/Down Characteristics  
The device is protected against accidental block erasure or programming during power transitions.  
Power supply sequencing is not required if VCC, VCCQ, and VPP are connected together; so it  
doesn’t matter whether VPP or VCC powers-up first. If VCCQ and/or VPP are not connected to the  
system supply, then VCC should attain VCCMIN before applying VCCQ and VPP. Device inputs  
should not be driven before supply voltage = VCCMIN. Power supply transitions should only occur  
when RST# is low.  
Datasheet  
59  
Intel® Wireless Flash Memory (W18)  
9.4.1  
System Reset and RST#  
The use of RST# during system reset is important with automated program/erase devices because  
the system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. To allow proper CPU/flash initialization  
at system reset, connect RST# to the system CPU RESET# signal.  
System designers must guard against spurious writes when VCC voltages are above VLKO  
.
Because both WE# and CE# must be low for a command write, driving either signal to VIH inhibits  
writes to the device. The CUI architecture provides additional protection because alteration of  
memory contents can only occur after successful completion of the two-step command sequences.  
The device is also disabled until RST# is brought to VIH, regardless of its control input states. By  
holding the device in reset (RST# connected to system PowerGood) during power-up/down,  
invalid bus conditions during power-up can be masked, providing yet another level of memory  
protection.  
9.4.2  
VCC, VPP, and RST# Transitions  
The CUI latches commands issued by system software and is not altered by VPP or CE# transitions  
or WSM actions. Read-array mode is its power-up default state after exit from reset mode or after  
VCC transitions above VLKO (Lockout voltage).  
After completing program or block erase operations (even after VPP transitions below VPPLK), the  
Read Array command must reset the CUI to read-array mode if flash memory array access is  
desired.  
9.5  
Power Supply Decoupling  
When the device is accessed, many internal conditions change. Circuits are enabled to charge  
pumps and switch voltages. This internal activity produces transient noise. To minimize the effect  
of this transient noise, device decoupling capacitors are required. Transient current magnitudes  
depend on the device outputs’ capacitive and inductive loading. Two-line control and proper  
decoupling capacitor selection suppresses these transient voltage peaks. Each flash device should  
have a 0.1 µF ceramic capacitor connected between each power (VCC, VCCQ, VPP), and ground  
(VSS, VSSQ) signal. High-frequency, inherently low-inductance capacitors should be as close as  
possible to package signals.  
60  
Datasheet  
Intel® Wireless Flash Memory (W18)  
10.0  
Thermal and DC Characteristics  
10.1  
Absolute Maximum Ratings  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended,  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
Notice: This datasheet contains information on products in the design phase of development. The information  
here is subject to change without notice. Do not finalize a design with this information.  
Table 21. Absolute Maximum Ratings  
Parameter  
Note  
Maximum Rating  
–40 °C to +85 °C  
Temperature under Bias  
Storage Temperature  
–65 °C to +125 °C  
–0.5 V to +2.45 V  
–0.2 V to +14 V  
–0.2 V to +2.45 V  
100 mA  
Voltage on Any Pin (except VCC, VCCQ, VPP)  
VPP Voltage  
1,2,3  
VCC and VCCQ Voltage  
Output Short Circuit Current  
NOTES:  
1
4
1. All specified voltages are relative to VSS. Minimum DC voltage is –0.5 V on input/output pins and  
–0.2 V on VCC and VPP pins. During transitions, this level may undershoot to –2.0 V for periods < 20  
ns which, during transitions, may overshoot to V +2.0 V for periods < 20 ns.  
CC  
2. Maximum DC voltage on VPP may overshoot to +14.0 V for periods < 20 ns.  
3. V program voltage is normally V  
and 2500 cycles on the parameter blocks during program/erase.  
. V can be 12 V 0.6 V for 1000 cycles on the main blocks  
PP  
PP1  
PP  
4. Output shorted for no more than one second. No more than one output shorted at a time.  
10.2  
Operating Conditions  
Table 22. Extended Temperature Operation (Sheet 1 of 2)  
Symbol  
Parameter1  
Operating Temperature  
Supply Voltage  
Note  
Min  
Nom  
Max  
Unit  
T
–40  
1.7  
25  
1.8  
85  
°C  
A
V
V
3
3
4
2
2
2
1.95  
2.24  
1.8  
CC  
CC  
I/O Supply Voltage  
I/O Supply Voltage (Extended)  
Voltage Supply (Logic Level)  
1.7  
1.8  
V
CCQ  
1.35  
0.90  
11.4  
1.5  
V
V
V
V
1.80  
12.0  
1.95  
12.6  
80  
PP1  
PP2  
PP  
Factory Programming V  
PP  
t
Maximum V Hours  
V = 12 V  
PP  
Hours  
PPH  
PP  
Datasheet  
61  
Intel® Wireless Flash Memory (W18)  
Table 22. Extended Temperature Operation (Sheet 2 of 2)  
Symbol  
Parameter1  
Note  
Min  
Nom  
Max  
Unit  
Main and Parameter Blocks  
V
V
V
PP V  
2
2
2
100,000  
CC  
Block  
Erase  
Cycles  
Main Blocks  
= 12 V  
= 12 V  
1000  
2500  
Cycles  
PP  
PP  
Parameter Blocks  
NOTES:  
1. See Section 10.3 and Section 10.4, “DC Voltage Characteristics” on page 64 for specific voltage-range specifications.  
2. VPP is normally V . VPP can be connected to 11.4 V–12.6 V for 1000 cycles on main blocks for extended temperatures  
PP1  
and 2500 cycles on parameter blocks at extended temperature.  
3. Contact your Intel field representative for V /V  
operations down to 1.65 V.  
CC CCQ  
4. See the tables in Section 10.0, “Thermal and DC Characteristics” on page 61 and in Section 11.0, “AC Characteristics” on  
page 66 for operating characteristics within the Extended-V voltage range.  
CCQ  
10.3  
DC Current Characteristics  
Table 23. DC Current Characteristics (Sheet 1 of 3)  
V
CCQ=1.35 V –  
VCCQ= 1.8 V  
128 Mbit  
Typ Max Typ Max  
1.8 V  
Sym  
Parameter (1)  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
Typ  
Max  
V
V
V
= V Max  
CC  
CC  
I
I
Input Load  
9
TBD  
1
1
1
1
µA  
µA  
= V  
Max  
LI  
CCQ  
= V  
CCQ  
CCQ  
or GND  
IN  
V
V
V
= V Max  
CC  
CC  
CCQ  
IN  
Output  
Leakage  
D[15:0]  
TBD  
= V  
Max  
or GND  
LO  
CCQ  
= V  
CCQ  
180 nm  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
5
8
18  
50  
5
8
25  
70  
I
CCS  
V
V
= V Max  
CC  
CC  
130 nm  
= V  
Max  
CCQ  
CCQ  
V
Standby  
10  
11  
µA  
µA  
CC  
I
CE# = V  
RST# =V  
CCS  
CC  
SSQ  
90 nm  
TBD TBD TBD TBD  
I
CCS  
180 nm  
5
8
18  
50  
5
8
25  
70  
V
V
= V Max  
CC  
CC  
CCQ  
I
CCAPS  
= V  
Max  
CCQ  
130 nm  
CE# = V  
RST# =V  
SSQ  
CCQ  
APS  
I
CCAPS  
All other inputs =V  
or  
CCQ  
90 nm  
V
TBD TBD TBD TBD  
SSQ  
I
CCAPS  
62  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 23. DC Current Characteristics (Sheet 2 of 3)  
V
CCQ=1.35 V –  
1.8 V  
VCCQ= 1.8 V  
128 Mbit  
Typ Max Typ Max  
Sym  
Parameter (1)  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
Typ  
Max  
Asynchronous  
Page Mode  
f=13 MHz  
2
TBD  
TBD  
3
6
4
7
mA 4 Word Read  
Burst length  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
6
13  
14  
18  
20  
16  
18  
22  
25  
17  
20  
25  
30  
6
8
13  
14  
19  
20  
16  
18  
22  
25  
mA  
= 4  
Burst length  
8
mA  
= 8  
Synchronous  
CLK = 40 MHz  
2
Burst length  
=16  
V
V
=
Max  
CC  
CC  
10  
11  
7
11  
11  
7
mA  
Average  
CE# = V  
OE# = V  
Inputs = V  
or V  
IL  
IH  
IH  
I
V
Burst length  
mA  
CCR  
CC  
Read  
= Continuous  
Burst length  
IL  
mA  
= 4  
Burst length  
10  
12  
13  
8
10  
12  
13  
mA  
= 8  
Synchronous  
CLK = 54 MHz  
2
Burst length  
= 16  
mA  
Burst length  
mA  
= Continuous  
Burst length  
= 4  
N.A. N.A. mA  
N.A. N.A. mA  
N.A. N.A. mA  
N.A. N.A. mA  
V
V
=
Max  
CC  
CC  
Burst length  
= 8  
11  
14  
16  
Average  
Synchronous  
CLK = 66 MHz  
CE# = V  
OE# = V  
IH  
Inputs = V  
IL  
I
I
V
2, 3  
CCR  
CC  
Burst length  
= 16  
Read  
IH  
or V  
IL  
Burst length  
= Continuous  
V
= V  
Program in  
Program in  
PP2,  
PP  
PP1,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
18  
8
40  
15  
40  
15  
18  
18  
18  
8
40  
15  
40  
15  
25  
25  
mA  
mA  
mA  
mA  
µA  
Progress  
V
V
Program  
3,4,5  
3,4,5  
CCW  
CC  
V
= V  
PP  
Progress  
V
= V  
Block Erase in  
Block Erase in  
Program Sus-  
Erase Sus-  
PP  
PP1,  
18  
8
18  
8
Progress  
I
I
Block Erase  
CCE  
CC  
V
= V  
PP  
PP2,  
Progress  
CE# = V  
pended  
CC,  
V
V
Program Suspend  
Erase Suspend  
6
6
5
5
CCWS  
CC  
CE# = V  
pended  
CC,  
I
I
5
5
µA  
CCES  
PPS  
CC  
V
V
V
Standby  
PP  
PP  
PP  
Program Suspend  
Erase Suspend  
3
TBD  
TBD  
0.2  
5
0.2  
5
µA  
VPP <V  
CC  
(I  
I
PPWS,  
PPES  
)
Datasheet  
63  
Intel® Wireless Flash Memory (W18)  
Table 23. DC Current Characteristics (Sheet 3 of 3)  
V
CCQ=1.35 V –  
VCCQ= 1.8 V  
128 Mbit  
Typ Max Typ Max  
15 15  
0.05 0.10 0.05 0.10  
22 16 37  
0.05 0.10 0.05 0.10  
22 22  
1.8 V  
Sym  
Parameter (1)  
Note  
Unit  
Test Condition  
32/64/128 Mbit 32/64 Mbit  
Typ  
Max  
V
PP V  
CC  
I
I
V
V
Read  
TBD  
TBD  
2
2
µA  
PPR  
PP  
PP  
V
= V  
Program in  
Program in  
Erase in  
PP  
PP1,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Progress  
Program  
Erase  
4
4
mA  
PPW  
V
= V  
PP  
PP2,  
8
Progress  
V
= V  
PP  
PP1,  
Progress  
I
V
mA  
PPE  
PP  
V
= V  
Erase in  
PP2,  
PP  
8
8
Progress  
NOTES:  
1. All currents are RMS unless noted. Typical values at typical V , T = +25°C.  
CC  
A
2. Automatic Power Savings (APS) reduces I  
details.  
to approximately standby levels in static operation. See I  
specification for  
CCR  
CCRQ  
3. Sampled, not 100% tested.  
4. V read + program current is the sum of V read and V program currents.  
CC  
CC  
CC  
CC  
CC  
CC  
plus I  
.
CCR  
CCES  
outside their valid ranges.  
PPH  
11.Refer to section Section 9.2, “Automatic Power Savings (APS)” on page 59 for I  
12.TBD values are to be determined pending silicon characterization.  
measurement details.  
CCAPS  
10.4  
DC Voltage Characteristics  
Table 24. DC Voltage Characteristics (Sheet 1 of 2)  
V
CCQ=1.35 V – 1.8 V  
VCCQ= 1.8 V  
32/64 Mbit 128 Mbit  
Sym  
Parameter (1)  
Note  
32/64/128 Mbit  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
0.4  
Min  
Max  
V
V
V
Input Low  
Input High  
Output Low  
8
0
0.2  
0
0
0.4  
V
V
IL  
V
– 0.2  
V
– 0.4  
V
CCQ  
CCQ  
CCQ  
V
V
V
CCQ  
IH  
OL  
CCQ  
CCQ  
– 0.4  
V
V
= V Min  
CC  
CC  
0.1  
0.1  
0.1  
V
V
= V  
Min  
CCQ  
CCQ  
I
= 100 µA  
OL  
V
Output High  
V
= V Min  
CC CC  
OH  
V
– 0.1  
V
– 0.1  
V
CCQ  
– 0.1  
CCQ  
CCQ  
V
I
= V  
Min  
CCQ  
CCQ  
= –100 µA  
OH  
64  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 24. DC Voltage Characteristics (Sheet 2 of 2)  
V
CCQ=1.35 V – 1.8 V  
VCCQ= 1.8 V  
32/64 Mbit 128 Mbit  
Sym  
Parameter (1)  
Note  
32/64/128 Mbit  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
0.4  
Min  
Max  
0.4  
V
V
V
V
V
V
Lock-Out  
Lock  
7
0.4  
1.0  
V
V
V
PPLK  
LKO  
PP  
1.0  
0.9  
1.0  
0.9  
CC  
Lock  
TBD  
ILKOQ  
CCQ  
NOTE: For all numbered note references in this table, refer to the notes in Table 23, “DC Current Characteristics” on page 62.  
Datasheet  
65  
Intel® Wireless Flash Memory (W18)  
11.0  
AC Characteristics  
11.1  
Read Operations – 130 nm and 90 nm Lithography  
Table 25. Read Operations— 130 nm and 90 nm Lithography (Sheet 1 of 2)  
VCCQ  
=
VCCQ  
=
1.35 V – 1.8 V  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-65  
-85  
-60  
-80  
Min Max Min Max Min Max Min Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
7,8  
7,8  
7,8  
4
65  
85  
60  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVQV  
ELQV  
GLQV  
PHQV  
ELQX  
GLQX  
EHQZ  
GHQZ  
OH  
Address to Output Valid  
CE# Low to Output Valid  
OE# Low to Output Valid  
RST# High to Output Valid  
CE# Low to Output Low-Z  
OE# Low to Output Low-Z  
CE# High to Output High-Z  
OE# High to Output High-Z  
CE# (OE#) High to Output Low-Z  
65  
65  
85  
85  
60  
60  
80  
80  
25  
30  
20  
25  
150  
150  
150  
150  
5
0
0
0
0
0
0
0
0
4,5  
5
17  
14  
20  
14  
14  
14  
17  
14  
4,5  
4,5  
0
0
0
0
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R108  
t
t
t
t
t
t
t
Address Setup to ADV# High  
CE# Low to ADV# High  
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVVH  
ELVH  
VLQV  
VLVH  
VHVL  
VHAX  
APA  
10  
10  
10  
10  
ADV# Low to Output Valid  
ADV# Pulse Width Low  
7,8  
3
65  
85  
60  
80  
7
7
7
7
7
7
7
7
7
7
7
7
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
25  
54  
30  
40  
20  
66  
25  
54  
Clock Specifications  
R200  
R201  
R202  
R203  
f
t
t
t
CLK Frequency  
MHz  
ns  
CLK  
CLK Period  
18.5  
4.5  
25  
15  
18.5  
4.5  
CLK  
CLK High or Low Time  
CLK Fall or Rise Time  
9.5  
3.5  
ns  
CH/L  
CHCL  
3
3
3
3
ns  
66  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 25. Read Operations— 130 nm and 90 nm Lithography (Sheet 2 of 2)  
VCCQ  
=
VCCQ  
=
1.35 V – 1.8 V  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-65  
-85  
-60  
-80  
Min Max Min Max Min Max Min Max  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R308  
R309  
R310  
t
t
t
t
t
t
t
t
t
t
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
7
7
7
7
7
7
7
7
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVCH  
VLCH  
ELCH  
CHQV  
CHQX  
CHAX  
CHTV  
ELTV  
8
14  
20  
11  
14  
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
3
7
3
7
3
7
3
7
3
8
14  
14  
14  
20  
20  
20  
11  
11  
11  
14  
14  
14  
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
CE# Pulse Width High  
6
5,6  
6
EHTZ  
EHEL  
14  
14  
14  
14  
Datasheet  
67  
Intel® Wireless Flash Memory (W18)  
11.2  
Read Operations – 180 nm Lithography  
Table 26. Read Operations — 180 nm Lithography (Sheet 1 of 2)  
32/64 Mbit  
128 Mbit  
-85  
#
Sym  
Parameter (1,2)  
Notes  
–70  
–85  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Asynchronous Specifications  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
70  
85  
85  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVQV  
ELQV  
GLQV  
PHQV  
ELQX  
GLQX  
EHQZ  
GHQZ  
OH  
Address to Output Delay  
70  
70  
85  
85  
85  
85  
CE# Low to Output Delay  
OE# Low to Output Delay  
RST# High to Output Delay  
CE# Low to Output in Low-Z  
OE# Low to Output in Low-Z  
CE# High to Output in High-Z  
OE# High to Output in High-Z  
CE# (OE#) High to Output in Low-Z  
4
30  
30  
30  
150  
150  
150  
5
0
0
0
0
0
0
4,5  
5
20  
14  
20  
14  
20  
14  
4,5  
4,5  
0
0
0
Latching Specifications  
R101  
R102  
R103  
R104  
R105  
R106  
R108  
t
t
t
t
t
t
t
Address Setup to ADV# High  
CE# Low to ADV# High  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVVH  
ELVH  
VLQV  
VLVH  
VHVL  
VHAX  
APA  
ADV# Low to Output Delay  
ADV# Pulse Width Low  
70  
85  
85  
10  
10  
9
10  
10  
9
10  
10  
9
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
3
20  
52  
25  
40  
25  
40  
Clock Specifications  
R200  
R201  
R202  
R203  
f
t
t
t
CLK Frequency  
MHz  
ns  
CLK  
CLK Period  
19  
5
25  
5
25  
5
CLK  
CLK High or Low Time  
CLK Fall or Rise Time  
ns  
CH/L  
CHCL  
3
3
3
ns  
68  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 26. Read Operations — 180 nm Lithography (Sheet 2 of 2)  
32/64 Mbit  
128 Mbit  
-85  
#
Sym  
Parameter (1,2)  
Notes  
–70  
–85  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R308  
R309  
R310  
t
t
t
t
t
t
t
t
t
t
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Valid  
9
10  
9
9
10  
9
9
10  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVCH  
VLCH  
ELCH  
CHQV  
CHQX  
CHAX  
CHTV  
ELTV  
14  
18  
18  
Output Hold from CLK  
Address Hold from CLK  
CLK to WAIT Valid  
3.5  
10  
3.5  
10  
3.5  
10  
3
14  
14  
20  
18  
18  
25  
18  
18  
25  
CE# Low to WAIT Valid  
CE# High to WAIT High-Z  
CE# Pulse Width High  
6
5,6  
6
EHTZ  
EHEL  
15  
20  
20  
NOTES:  
1. See Figure 34, “AC Input/Output Reference Waveform” on page 85 for timing measurements and maximum allowable input  
slew rate.  
2. AC specifications assume the data bus voltage is less than or equal to V  
when a read operation is initiated.  
CCQ  
3. Address hold in synchronous-burst mode is defined as t  
or t  
, whichever timing specification is satisfied first.  
CHAX  
VHAX  
4. OE# may be delayed by up to t  
5. Sampled, not 100% tested.  
– t  
after the falling edge of CE# without impact to t  
.
ELQV GLQV  
ELQV  
6. Applies only to subsequent synchronous reads.  
7. During the initial access of a synchronous burst read, data from the first word may begin to be driven onto the data bus as  
early as the first clock edge after t  
.
AVQV  
8. All specs above apply to all densities.  
x
Datasheet  
69  
Intel® Wireless Flash Memory (W18)  
Figure 20. Asynchronous Read Operation Waveform  
R1  
VIH  
Valid  
Address [A]  
Address  
VIL  
R2  
VIH  
CE# [E]  
VIL  
R3  
R8  
R9  
VIH  
VIL  
R4  
OE# [G]  
R7  
VIH  
VIL  
WE# [W]  
WAIT [T]  
VOH  
VOL  
High Z  
High Z  
Note 1  
VOH  
VOL  
High Z  
Valid  
Output  
Data [D/Q]  
RST# [P]  
R5  
R10  
VIH  
VIL  
NOTES:.  
1. WAIT shown asserted (CR.10=0)  
2. ADV# assumed to be driven to VIL in this waveform  
70  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 21. Latched Asynchronous Read Operation Waveform  
R1  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
A[MAX:2] [A]  
A[1:0] [A]  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
R2  
R101  
R104  
R102  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
VIL  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
Data [Q]  
RST# [P]  
R7  
VIH  
VIL  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
R10  
VIH  
VIL  
Datasheet  
71  
Intel® Wireless Flash Memory (W18)  
Figure 22. Page-Mode Read Operation Waveform  
R1  
VIH  
Valid  
A[MAX:2] [A]  
Address  
VIL  
R2  
VIH  
Valid  
Valid  
Valid  
Valid  
A[1:0] [A]  
Address  
Address  
Address  
Address  
VIL  
R101  
R105  
VIH  
R106  
R103  
ADV# [V]  
CE# [E]  
OE# [G]  
VIL  
R104  
R102  
VIH  
VIL  
R3  
R6  
R4  
R8  
R9  
VIH  
VIL  
R7  
VIH  
WE# [W]  
WAIT [T]  
VIL  
VOH  
High Z  
High Z  
R108  
Note 1  
VOL  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Data [D/Q]  
RST# [P]  
R5  
R10  
VIH  
VIL  
NOTE: WAIT shown asserted (CR.10 = 0).  
72  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 23. Single Synchronous Read-Array Operation Waveform  
VIH  
VIL  
Note 1  
CLK [C]  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
VIH  
VIL  
R309  
R10  
R308  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 8.2, “First Access Latency Count (CR[13:11])” on page 52 describes how to insert clock cycles during the initial access.  
2. WAIT (shown asserted; CR.10=0) can be configured to assert either during, or one data cycle before, valid data.  
3. This waveform illustrates the case in which an x-word burst is initiated to the main array and it is terminated by a CE# de-  
assertion after the first word in the burst. If this access had been done to Status, ID, or Query reads, the asserted (low) WAIT  
signal would have remained asserted (low) as long as CE# is asserted (low).  
Datasheet  
73  
Intel® Wireless Flash Memory (W18)  
Figure 24. Synchronous 4-Word Burst Read Operation Waveform  
VIH  
Note 1  
CLK [C]  
0
1
VIL  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
R310  
R8  
VIH  
VIL  
R3  
R102  
R4  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
R9  
VIH  
VIL  
R309  
R10  
R308  
R307  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 8.2, “First Access Latency Count (CR[13:11])” on page 52 describes how to insert clock cycles during the initial access.  
2. WAIT (shown asserted; CR.10 = 0) can be configured to assert either during, or one data cycle before, valid data.  
74  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 25. WAIT Functionality for EOWL (End-of-Word Line) Condition Waveform  
VIH  
VIL  
Note 1  
CLK [C]  
0
1
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R303  
R4  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [D/Q]  
R7  
VIH  
VIL  
R308  
R307  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
R5  
VIH  
RST# [P]  
VIL  
NOTES:  
1. Section 8.2, “First Access Latency Count (CR[13:11])” on page 52 describes how to insert clock cycles during the initial access.  
2. WAIT (shown asserted; CR.10=0) can be configured to assert either during, or one data cycle before, valid data. (assumed wait  
delay of two clocks for example)  
Datasheet  
75  
Intel® Wireless Flash Memory (W18)  
Figure 26. WAIT Signal in Synchronous Non-Read Array Operation Waveform  
VIH  
Note 1  
CLK [C]  
VIL  
R301  
R306  
VIH  
VIL  
Valid  
Address  
Address [A]  
R2  
R101  
R302  
R104  
R105  
VIH  
R106  
ADV# [V]  
CE# [E]  
VIL  
R103  
VIH  
VIL  
R3  
R102  
R4  
R8  
R9  
VIH  
VIL  
OE# [G]  
WE# [W]  
WAIT [T]  
Data [Q]  
RST# [P]  
R303  
R7  
VIH  
VIL  
R309  
R10  
R308  
VOH  
VOL  
High Z  
High Z  
Note 2  
R304  
R305  
VOH  
VOL  
High Z  
Valid  
Output  
R5  
VIH  
VIL  
NOTES:  
1. Section 8.2, “First Access Latency Count (CR[13:11])” on page 52 describes how to insert clock cycles during the initial access.  
2. WAIT shown asserted (CR.10=0).  
76  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 27. Burst Suspend  
R304  
R305  
R305  
R305  
CLK  
R1  
R2  
Address [A]  
R101  
R105  
R106  
ADV#  
CE# [E]  
OE# [G]  
R3  
R8  
R9  
R4  
R9  
R4  
R13  
R12  
WAIT [T]  
WE# [W]  
R7  
R6  
R304  
Q1  
R304  
Q2  
DATA [D/Q]  
Q0  
Q1  
NOTE: During Burst Suspend Clock signal can be held high or low  
Datasheet  
77  
Intel® Wireless Flash Memory (W18)  
11.3  
AC Write Characteristics  
Table 27. AC Write Characteristics – 130 nm and 90 nm Lithography  
VCCQ  
=
VCCQ  
=
1.35 V – 1.8 V  
1.7 V – 2.24 V  
#
Sym  
Parameter 1,2  
Notes  
Unit  
-65  
-85  
-60  
-80  
Min Max Min Max Min Max Min Max  
RST# High Recovery to WE#  
(CE#) Low  
W1  
W2  
t
(t  
)
3
150  
0
150  
0
150  
0
150  
0
ns  
ns  
PHWL PHEL  
CE# (WE#) Setup to WE# (CE#)  
Low  
t
(t  
)
ELWL WLEL  
WE# (CE#) Write Pulse Width  
Low  
W3  
W4  
W5  
t
(t  
)
4
50  
50  
50  
60  
60  
60  
40  
40  
40  
60  
60  
60  
ns  
ns  
ns  
WLWH ELEH  
t
(t  
)
Data Setup to WE# (CE#) High  
DVWH DVEH  
Address Setup to WE# (CE#)  
High  
t
(t  
)
AVWH AVEH  
t
(t  
CE# (WE#) Hold from WE# (CE#)  
High  
WHEH  
EHWH  
W6  
W7  
W8  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
)
t
(t  
)
)
Data Hold from WE# (CE#) High  
WHDX EHDX  
Address Hold from WE# (CE#)  
High  
t
(t  
WHAX EHAX  
W9  
t
(t  
)
)
WE# (CE#) Pulse Width High  
VPP Setup to WE# (CE#) High  
VPP Hold from Valid SRD  
5,6,7  
3
20  
200  
0
25  
200  
0
20  
200  
0
25  
200  
0
ns  
ns  
ns  
ns  
ns  
ns  
WHWL EHEL  
W10  
W11  
W12  
W13  
W14  
t
(t  
VPWH VPEH  
t
t
3,8  
3,8  
3
QVVL  
QVBL  
WP# Hold from Valid SRD  
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
0
0
0
0
t
(t  
)
)
200  
0
200  
0
200  
0
200  
0
BHWH BHEH  
t
(t  
WHGL EHGL  
tAVQV  
+ 25  
tAVQV  
+ 55  
tAVQV  
+20  
tAVQV  
+50  
W16  
t
WE# High to Valid Data  
3,6,10  
ns  
WHQV  
W18  
W19  
W20  
t
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
3,9,10  
3,10  
0
0
0
0
ns  
ns  
ns  
WHAV  
WHCV  
WHVH  
t
t
16  
16  
20  
20  
12  
12  
20  
20  
3,10  
NOTES:  
1. Write timing characteristics during erase suspend are the same as during write-only operations.  
2. A write operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width low (t  
(whichever occurs first). Hence, t  
5. Write pulse width high (t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
WLWH  
ELEH  
= t  
= t  
= t  
.
ELWH  
WLWH  
ELEH  
WLEH  
or t  
= t  
) is defined from CE# or WE# high (whichever is first) to CE# or WE# low (whichever is  
WHWL  
EHEL  
last). Hence, t  
= t  
= t  
.
WHWL  
EHEL  
WHEL  
EHWL  
6. System designers should take this into account and may insert a software No-Op instruction to delay the first read after  
issuing a command.  
7. For commands other than resume commands.  
8. V should be held at V  
9. Applicable during asynchronous reads following a write.  
or V  
until block erase or program success is determined.  
PP  
PP1  
PP2  
10.tWHCH/L OR tWHVH must be met when transitioning from a write cycle to a synchronous burst read. tWHCH/L and tWHVH both refer to  
the address latching event (either the rising/falling clock edge or the rising ADV# edge, whichever occurs first).  
78  
Datasheet  
Intel® Wireless Flash Memory (W18)  
l
Table 28. AC Write Characteristics – 180 nm Lithography  
32-Mbit  
64-Mbit  
128-Mbit  
Unit  
#
Sym  
Parameter 1,2  
Notes  
-70  
-85  
Min  
Max  
Min  
Max  
W1  
W2  
t
(t  
)
RST# High Recovery to WE# (CE#) Low  
CE# (WE#) Setup to WE# (CE#) Low  
WE# (CE#) Write Pulse Width Low  
Data Setup to WE# (CE#) High  
Address Setup to WE# (CE#) High  
CE# (WE#) Hold from WE# (CE#) High  
Data Hold from WE# (CE#) High  
Address Hold from WE# (CE#) High  
WE# (CE#) Pulse Width High  
3
4
150  
0
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHWL PHEL  
t
(t  
)
ELWL WLEL  
W3  
t
(t  
)
45  
45  
45  
0
60  
60  
60  
0
WLWH ELEH  
W4  
t
(t  
)
DVWH DVEH  
W5  
t
(t  
)
AVWH AVEH  
W6  
t
(t  
)
WHEH EHWH  
W7  
t
(t  
)
0
0
WHDX EHDX  
W8  
t
(t  
)
0
0
WHAX EHAX  
W9  
t
(t  
)
5,6,7  
3
25  
200  
0
25  
200  
0
WHWL EHEL  
W10  
W11  
W12  
W13  
W14  
t
(t  
)
VPP Setup to WE# (CE#) High  
VPP Hold from Valid SRD  
VPWH VPEH  
t
t
3,8  
3,8  
3
QVVL  
QVBL  
WP# Hold from Valid SRD  
0
0
t
(t  
)
WP# Setup to WE# (CE#) High  
Write Recovery before Read  
200  
0
200  
0
BHWH BHEH  
t
(t  
)
WHGL EHGL  
tAVQV  
+ 40  
tAVQV  
+ 50  
W16  
t
WE# High to Valid Data  
3,6,10  
ns  
WHQV  
W18  
t
WE# High to Address Valid  
WE# High to CLK Valid  
WE# High to ADV# High  
3,9,10  
3,10  
0
0
ns  
ns  
ns  
WHAV  
WHCV  
WHVH  
W19  
t
t
20  
20  
20  
20  
W20  
3,10  
NOTES:  
1. Write timing characteristics during erase suspend are the same as during write-only operations.  
2. A write operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width low (t  
(whichever occurs first). Hence, t  
5. Write pulse width high (t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
WLWH  
ELEH  
= t  
= t  
= t  
.
WLWH  
ELEH  
WLEH  
ELWH  
or t  
= t  
) is defined from CE# or WE# high (whichever is first) to CE# or WE# low (whichever is  
WHWL  
EHEL  
last). Hence, t  
= t  
= t  
.
EHWL  
WHWL  
EHEL  
WHEL  
6. System designers should take this into account and may insert a software No-Op instruction to delay the first read after  
issuing a command.  
7. For commands other than resume commands.  
8. V should be held at V  
9. Applicable during asynchronous reads following a write.  
or V  
until block erase or program success is determined.  
PP  
PP1  
PP2  
10.tWHCH/L OR tWHVH must be met when transitioning from a write cycle to a synchronous burst read. tWHCH/L and tWHVH both refer to  
the address latching event (either the rising/falling clock edge or the rising ADV# edge, whichever occurs first).  
Datasheet  
79  
Intel® Wireless Flash Memory (W18)  
Figure 28. Write Operations Waveform  
VIH  
CLK [C]  
VIL  
W19  
Note 1  
Note 2  
W5  
Note 3  
Note 4  
W18  
Note 5  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Address [A]  
R101  
R105  
VIH  
R106  
W8  
ADV# [V]  
VIL  
R104  
W2  
W20  
VIH  
VIL  
Note 6  
CE# (WE#) [E(W)]  
OE# [G]  
W6  
VIH  
VIL  
W3  
W14  
W9  
VIH  
VIL  
Note 6  
WE# (CE#) [W(E)]  
Data [Q]  
W1  
W7  
W16  
VIH  
VIL  
Valid  
SRD  
Data In  
Data In  
W4  
VIH  
VIL  
RST# [P]  
W12  
W11  
W13  
W10  
VIH  
VIL  
WP# [B]  
VPPH  
VPPLK  
VIL  
VPP [V]  
NOTES:  
1. V power-up and standby.  
CC  
2. Write Program or Erase Setup command.  
3. Write valid address and data (for program) or Erase Confirm command.  
4. Automated program/erase delay.  
5. Read status register data (SRD) to determine program/erase operation completion.  
6. OE# and CE# must be asserted and WE# must be deasserted for read operations.  
7. CLK is ignored. (but may be kept active/toggling)  
80  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 29. Asynchronous Read to Write Operation Waveform  
R1  
R2  
W5  
W8  
Address [A]  
CE# [E}  
R3  
R8  
R4  
R9  
OE# [G]  
W3  
W2  
W6  
WE# [W]  
R7  
R6  
W7  
R10  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Figure 30. Asynchronous Write to Read Operation  
W5  
W8  
R1  
Address [A]  
CE# [E}  
W2  
W6  
R10  
W3  
W18  
WE# [W]  
OE# [G]  
W14  
R4  
W7  
R2  
R3  
R9  
W4  
R8  
Data [D/Q]  
RST# [P]  
D
Q
W1  
Datasheet  
81  
Intel® Wireless Flash Memory (W18)  
Figure 31. Synchronous Read to Write Operation  
Latency Count  
R301  
R302  
R306  
CLK[C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R106  
R102  
R104  
W20  
AD V# [V]  
R303  
R3  
R11  
W6  
CE# [E]  
R4  
R8  
OE# [G]  
W15  
W19  
W9  
W3  
W2  
W8  
WE#  
R12  
R307  
R304  
WAIT [T]  
R13  
R7  
R305  
W7  
Data [D/Q]  
Q
D
D
82  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 32. Synchronous Write To Read Operation  
Latency Count  
R2  
R302  
R301  
CLK  
W5  
W8  
R306  
R106  
Address [A]  
ADV#  
W20  
R104  
W6  
R303  
W2  
R11  
CE# [E}  
W18  
W19  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R12  
R307  
W7  
R304  
R304  
R305  
W4  
R3  
Data [D/Q]  
RST# [P]  
D
Q
Q
W1  
11.4  
Erase and Program Times  
Table 29. Erase and Program Times (Sheet 1 of 2)  
VPP1  
VPP2  
Operation  
Symbol  
Parameter  
Description1  
Notes  
Unit  
Typ  
Max  
Typ  
Max  
Erasing and Suspending  
W500  
Erase Time  
tERS/PB  
4-Kword Parameter Block  
32-Kword Main Block  
Program Suspend  
2,3  
2,3  
2
0.3  
0.7  
5
2.5  
4
0.25  
0.4  
5
2.5  
4
s
s
W501  
t
t
t
ERS/MB  
SUSP/P  
SUSP/E  
W600  
10  
20  
10  
20  
µs  
µs  
Suspend  
Latency  
W601  
Erase Suspend  
2
5
5
Programming  
W200  
tPROG/W  
tPROG/PB  
tPROG/MB  
Single Word  
2
12  
0.05  
0.4  
150  
.23  
1.8  
8
130  
0.07  
0.6  
µs  
s
Program  
Time  
W201  
4-Kword Parameter Block  
32-Kword Main Block  
2,3  
2,3  
0.03  
0.24  
W202  
s
Datasheet  
83  
Intel® Wireless Flash Memory (W18)  
Table 29. Erase and Program Times (Sheet 2 of 2)  
VPP1  
VPP2  
Operation  
Symbol  
Parameter  
Description1  
Notes  
Unit  
Typ  
Max  
Typ  
Max  
Enhanced Factory Programming5  
W400  
W401  
W402  
W403  
W404  
W405  
tEFP/W  
Single Word  
4
N/A  
N/A  
N/A  
N/A  
3.1  
15  
16  
µs  
ms  
ms  
µs  
µs  
µs  
Program  
tEFP/PB  
tEFP/MB  
tEFP/SETUP  
tEFP/TRAN  
tEFP/VERIFY  
4-Kword Parameter Block  
32-Kword Main Block  
EFP Setup  
2,3  
2,3  
120  
N/A  
N/A  
N/A  
5
Operation  
Latency  
Program to Verify Transition  
Verify  
N/A  
N/A  
2.7  
1.7  
5.6  
130  
NOTES:  
1. Unless noted otherwise, all parameters are measured at TA = +25 °C and nominal voltages, and they are sampled, not 100%  
tested.  
2. Excludes external system-level overhead.  
3. Exact results may vary based on system overhead.  
4. W400-Typ is the calculated delay for a single programming pulse. W400-Max includes the delay when programming within a  
new word-line.  
5. Some EFP performance degradation may occur if block cycling exceeds 10.  
11.5  
Reset Specifications  
Table 30. Reset Specifications  
#
Symbol  
tPLPH  
Parameter1  
Notes  
Min  
Max  
Unit  
P1  
RST# Low to Reset during Read  
RST# Low to Reset during Block Erase  
RST# Low to Reset during Program  
VCC Power Valid to Reset  
1, 2, 3, 4  
1, 3, 4, 5  
1, 3, 4, 5  
1,3,4,5,6  
100  
ns  
µs  
µs  
µs  
20  
10  
P2  
tPLRH  
P3  
tVCCPH  
60  
NOTES:  
1. These specifications are valid for all product versions (packages and speeds).  
2. The device may reset if tPLPH< tPLPHMin, but this is not guaranteed.  
3. Not applicable if RST# is tied to VCC.  
4. Sampled, but not 100% tested.  
5. If RST# is tied to VCC, the device is not ready until tVCCPH occurs after when VCC VCCMin.  
6. If RST# is tied to any supply/signal with VCCQ voltage levels, the RST# input voltage must not exceed VCC until VCC  
VCCMin.  
84  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Figure 33. Reset Operations Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
(
A) Reset during  
RST# [P]  
read mode  
VIL  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
RST# [P]  
RST# [P]  
VCC  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
11.6  
AC I/O Test Conditions  
Figure 34. AC Input/Output Reference Waveform  
VCCQ  
Test Points  
Input  
V
CCQ/2  
VCCQ/2  
Output  
0V  
NOTE: Input timing begins, and output timing ends, at VCCQ/2. Input rise and fall times (10% to 90%) < 5 ns.  
Worst case speed conditions are when VCC = VCCMin.  
Datasheet  
85  
Figure 35. Transient Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
NOTE: See Table 17 for component values.  
Table 31. Test Configuration Component Values for Worst Case Speed Conditions  
Test Configuration  
CL (pF)  
R1 (k)  
R2 (k)  
VCCQMin-Extended (1.35 V) Standard Test  
VCCQMin (1.7 V) Standard Test  
30  
30  
13.5  
16.7  
13.5  
16.7  
NOTE: CL includes jig capacitance.  
Figure 36. Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
11.7  
Device Capacitance  
TA = +25 °C, f = 1 MHz  
Symbol  
CIN  
Parameter§  
Typ  
Max  
Unit  
Condition  
Input Capacitance  
Output Capacitance  
CE# Input Capacitance  
6
8
8
pF  
pF  
pF  
VIN = 0.0 V  
VOUT = 0.0 V  
VIN = 0.0 V  
COUT  
CCE  
12  
12  
10  
§Sampled, not 100% tested.  
Intel® Wireless Flash Memory (W18)  
Appendix A Write State Machine States  
This table shows the command state transitions based on incoming commands. Only one partition  
can be actively programming or erasing at a time.  
Figure 37. Write State Machine — Next State Table (Sheet 1 of 2)  
Chip Next State after Command Input  
Enhanced BE Confirm,  
Factory P/E Resume,  
Clear  
Status  
Register(6)  
Program/  
Erase  
Suspend  
Read  
Array(3)  
Program  
Setup(4,5)  
Erase  
Setup(4,5)  
Read  
Status  
Read  
ID/Query  
Current Chip  
State(8)  
Pgm  
Setup(4)  
ULB  
Confirm(9)  
(FFH)  
(10H/40H)  
(20H)  
(30H)  
(D0H)  
(B0H)  
(70H)  
(50H)  
(90H, 98H)  
Program  
Setup  
Erase  
Setup  
EFP  
Setup  
Ready  
Ready  
Ready  
Lock/CR Setup  
OTP  
Ready (Lock Error)  
Ready  
Ready (Lock Error)  
Setup  
Busy  
OTP Busy  
Setup  
Busy  
Program Busy  
Program  
Erase  
Program Busy  
Pgm Susp  
Program Busy  
Suspend  
Setup  
Busy  
Program Suspend  
Ready (Error)  
Pgm Busy  
Program Suspend  
Ready (Error)  
Erase Busy  
Erase Busy  
Erase Susp  
Erase Busy  
Pgm in  
Erase  
Susp Setup  
Erase  
Suspend  
Suspend  
Erase Suspend  
Erase Busy  
Erase Suspend  
Setup  
Busy  
Program in Erase Suspend Busy  
Pgm Susp in  
Erase Susp  
Program in  
Erase Suspend  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Pgm in Erase  
Susp Busy  
Suspend  
Program Suspend in Erase Suspend  
Program Suspend in Erase Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend  
(Lock Error)  
Erase Suspend (Lock Error)  
Ready (Error)  
Erase Susp  
Setup  
EFP Busy  
EFP Busy(7)  
Verify Busy(7)  
Ready (Error)  
Enhanced  
Factory  
EFP Busy  
EFP Verify  
Program  
Output Next State after Command Input  
Pgm Setup,  
Erase Setup,  
OTP Setup,  
Pgm in Erase Susp Setup,  
EFP Setup,  
Status  
EFP Busy,  
Verify Busy  
Lock/CR Setup,  
Lock/CR Setup in Erase Susp  
Status  
OTP Busy  
Status  
Ready,  
Pgm Busy,  
Pgm Suspend,  
Erase Busy,  
Erase Suspend,  
Pgm In Erase Susp Busy,  
Pgm Susp In Erase Susp  
Output  
does not  
change  
Array(3)  
Status  
Output does not change  
Status  
ID/Query  
Datasheet  
87  
Intel® Wireless Flash Memory (W18)  
Figure 37. Write State Machine — Next State Table (Sheet 2 of 2)  
Chip Next State after Command Input  
Lock,  
Unlock,  
Lock-down,  
CR setup(5)  
Lock-  
Enhanced  
Fact Pgm  
Exit (blk add  
<> WA0)  
Lock  
Block  
Confirm(9)  
Illegal  
commands or  
EFP data(2)  
OTP  
Setup(5)  
Down  
Block  
Confirm(9)  
Write CR  
Confirm(9)  
WSM  
Operation  
Completes  
Current Chip  
State(8)  
(60H)  
(C0H)  
(01H)  
(2FH)  
(03H)  
Ready  
Ready  
(XXXXH)  
(other codes)  
Lock/CR  
Setup  
OTP  
Setup  
Ready  
N/A  
Lock/CR Setup  
OTP  
Ready (Lock Error)  
Ready  
Ready  
Ready (Lock Error)  
Setup  
Busy  
OTP Busy  
Ready  
N/A  
Setup  
Busy  
Program Busy  
Program Busy  
Program Suspend  
Ready (Error)  
Program  
Erase  
Ready  
Suspend  
Setup  
Busy  
N/A  
Erase Busy  
Erase Busy  
Ready  
Lock/CR  
Setup in  
Erase Susp  
Suspend  
Erase Suspend  
N/A  
Setup  
Busy  
Program in Erase Suspend Busy  
Program in Erase Suspend Busy  
Erase  
Suspend  
Program in  
Erase Suspend  
Suspend  
Program Suspend in Erase Suspend  
Lock/CR Setup in Erase  
Suspend  
Erase Suspend  
(Lock Error)  
Erase Susp Erase Susp Erase Susp Erase Suspend (Lock Error)  
N/A  
Setup  
Ready (Error)  
EFP Verify  
Enhanced  
Factory  
Program  
EFP Busy(7)  
Verify Busy(7)  
EFP Busy(7)  
EFP Verify(7)  
EFP Busy  
EFP Verify  
Ready  
Ready  
Output Next State after Command Input  
Pgm Setup,  
Erase Setup,  
OTP Setup,  
Pgm in Erase Susp Setup,  
EFP Setup,  
Status  
EFP Busy,  
Verify Busy  
Lock/CR Setup,  
Lock/CR Setup in Erase Susp  
Status  
Array  
Status  
Output does  
not change  
OTP Busy  
Ready,  
Pgm Busy,  
Pgm Suspend,  
Erase Busy,  
Output does  
not change  
Status  
Output does not change  
Array  
Erase Suspend,  
Pgm In Erase Susp Busy,  
Pgm Susp In Erase Susp  
NOTES:  
1. The output state shows the type of data that appears at the outputs if the partition address is the same as the command  
address.  
A partition can be placed in Read Array, Read Status or Read ID/CFI, depending on the command issued.  
Each partition stays in its last output state (Array, ID/CFI or Status) until a new command changes it. The next WSM state does  
not depend on the partition's output state.  
For example, if partition #1's output state is Read Array and partition #4's output state is Read Status, every read from partition  
#4 (without issuing a new command) outputs the Status register.  
88  
Datasheet  
Intel® Wireless Flash Memory (W18)  
2. Illegal commands are those not defined in the command set.  
3. All partitions default to Read Array mode at power-up. A Read Array command issued to a busy partition results in undermined  
data when a partition address is read.  
4. Both cycles of 2 cycles commands should be issued to the same partition address. If they are issued to different partitions, the  
second write determines the active partition. Both partitions will output status information when read.  
5. If the WSM is active, both cycles of a 2 cycle command are ignored. This differs from previous Intel devices.  
6. The Clear Status command clears status register error bits except when the WSM is running (Pgm Busy, Erase Busy, Pgm Busy  
In Erase Suspend, OTP Busy, EFP modes) or suspended (Erase Suspend, Pgm Suspend, Pgm Suspend In Erase Suspend).  
7. EFP writes are allowed only when status register bit SR.0 = 0. EFP is busy if Block Address = address at EFP Confirm  
command. Any other commands are treated as data.  
8. The "current state" is that of the WSM, not the partition.  
9. Confirm commands (Lock Block, Unlock Block, Lock-down Block, Configuration Register) perform the operation and then move  
to the Ready State.  
10.In Erase suspend, the only valid two cycle commands are "Program Word", "Lock/Unlock/Lockdown Block", and "CR Write".  
Both cycles of other two cycle commands ("OEM CAM program & confirm", "Program OTP & confirm", "EFP Setup & confirm",  
"Erase setup & confirm") will be ignored. In Program suspend or Program suspend in Erase suspend, both cycles of all two  
cycle commands will be ignored.  
Datasheet  
89  
Intel® Wireless Flash Memory (W18)  
Appendix B Common Flash Interface (CFI)  
This appendix defines the data structure or “database” returned by the Common Flash Interface  
(CFI) Query command. System software should parse this structure to gain critical information  
such as block size, density, x8/x16, and electrical specifications. Once this information has been  
obtained, the software will know which command sets to use to enable flash writes, block erases,  
and otherwise control the flash component. The Query is part of an overall specification for  
multiple command set and control interface descriptions called Common Flash Interface, or CFI.  
B.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the flash device.  
This section describes the device’s CFI-compliant interface that allows access to Query data.  
Query data are presented on the lowest-order data outputs (DQ0-7) only. The numerical offset  
value is the address relative to the maximum bus width supported by the device. On this family of  
devices, the Query table device starting address is a 10h, which is a word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,” appear on  
the low byte at word addresses 10h and 11h. This CFI-compliant device outputs 00h data on upper  
bytes. The device outputs ASCII “Q” in the low byte (DQ0-7) and 00h in the high byte (DQ8-15).  
At Query addresses containing two or more bytes of information, the least significant data byte is  
presented at the lower address, and the most significant data byte is presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the  
“h” suffix has been dropped. In addition, since the upper byte of word-wide devices is always  
“00h,” the leading “00” has been dropped from the table notation and only the lower byte value is  
shown. Any x16 device outputs can be assumed to have 00h on the upper byte in this mode.  
Table 32. Summary of Query Structure Output as a Function of Device and Mode  
Hex  
Hex  
ASCII  
Device  
Offset Code Value  
00010:  
00011:  
00012:  
51  
52  
59  
"Q"  
"R"  
"Y"  
Device Addresses  
Table 33. Example of Query Structure Output of x16- and x8 Devices  
Word Addressing:  
Byte Addressing:  
Offset  
AX–A0  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
Hex Code  
D15–D0  
0051  
0052  
0059  
P_IDLO  
P_IDHI  
PLO  
Value  
Offset  
AX–A0  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
Hex Code  
D7–D0  
51  
52  
59  
P_IDLO  
P_IDLO  
P_IDHI  
...  
Value  
"Q"  
"R"  
"Y"  
"Q"  
"R"  
"Y"  
PrVendor  
ID #  
PrVendor  
TblAdr  
AltVendor  
ID #  
PrVendor  
ID #  
ID #  
PHI  
...  
A_IDLO  
A_IDHI  
...  
...  
90  
Datasheet  
Intel® Wireless Flash Memory (W18)  
B.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash Interface (CFI)  
Query structure or “database.” The structure sub-sections and address locations are summarized  
below.  
Table 34. Query Structure  
Description(1)  
Offset  
Sub-Section Name  
00000h  
Manufacturer Code  
00001h  
Device Code  
Block-specific information  
(BA+2)h(2)  
Block Status register  
00004-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
P(3)  
Primary Intel-specific Extended Query Table  
NOTES:  
1. Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a  
function of device bus width and mode.  
2. BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is  
32K-word).  
3. Offset 15 defines “P” which points to the Primary Intel-specific Extended Query Table.  
B.3  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully or whether  
a given block is locked or can be accessed for flash program/erase operations.  
Block Erase Status (BSR.1) allows system software to determine the success of the last block erase  
operation. BSR.1 can be used just after power-up to verify that the VCC supply was not  
accidentally removed during an erase operation.  
Table 35. Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
Add.  
BA+2 --00 or --01  
Value  
(BA+2)h(1)  
1
BSR.0 Block lock status  
0 = Unlocked  
BA+2 (bit 0): 0 or 1  
1 = Locked  
BSR.1 Block lock-down status  
0 = Not locked down  
1 = Locked down  
BA+2 (bit 1): 0 or 1  
BA+2 (bit 2–7): 0  
BSR 2–7: Reserved for future use  
NOTES:  
1. BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is  
32K-word).  
B.4  
CFI Query Identification String  
The Identification String provides verification that the component supports the Common Flash  
Interface specification. It also indicates the specification version and supported vendor-specified  
command set(s).  
Datasheet  
91  
Intel® Wireless Flash Memory (W18)  
Table 36. CFI Identification  
Hex  
Code  
--51  
--52  
--59  
--03  
--00  
--39  
--00  
--00  
--00  
--00  
--00  
Offset  
Length  
Description  
Query-unique ASCII string “QRY“  
Add.  
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
1A:  
Value  
"Q"  
"R"  
10h  
3
"Y"  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended Query Table primary algorithm address  
13h  
15h  
17h  
19h  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithm exists  
Secondary algorithm Extended Query Table address.  
0000h means none exists  
Table 37. System Interface Information  
Hex  
Offset  
Length  
Description  
Add. Code Value  
1Bh  
1
V
CC logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
1B:  
1C:  
1D:  
1E:  
--17 1.7V  
--19 1.9V  
--B4 11.4V  
--C6 12.6V  
--04 16µs  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
VPP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
“n” such that typical single word program time-out = 2n µ-sec  
“n” such that typical max. buffer write time-out = 2n µ-sec  
“n” such that typical block erase time-out = 2n m-sec  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--00  
--0A  
--00  
NA  
1s  
NA  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
--04 256µs  
--00  
--03  
--00  
NA  
8s  
NA  
92  
Datasheet  
Intel® Wireless Flash Memory (W18)  
B.5  
Device Geometry Definition  
Table 38. Device Geometry Definition  
Offset  
27h  
Length  
Description  
Code  
See table below  
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
1
27:  
28:  
"n" such that n+1 specifies the bit field that represents the flash  
device width capabilities as described in the table:  
7
6
5
4
3
2
1
0
28h  
2
x64  
x32  
x16  
9
x8  
8
--01  
x16  
0
15  
14  
13  
12  
11  
10  
29:  
2A:  
2B:  
2C:  
--00  
--00  
--00  
“n” such that maximum number of bytes in write buffer = 2n  
2
1
2Ah  
2Ch  
Number of erase block regions (x) within device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions with one or  
more contiguous same-size erase blocks.  
See table below  
3. Symmetrically blocked partitions have one blocking region  
Erase Block Region 1 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
4
4
4
2Dh  
31h  
35h  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
32 Mbit  
64 Mbit  
128 Mbit  
–B  
Address  
–B  
–T  
–B  
–T  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--3E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--7E  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--7E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--FE  
--00  
--00  
--01  
--00  
--00  
--00  
--00  
--18  
--01  
--00  
--00  
--00  
--02  
--FE  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--00  
--00  
--00  
--00  
Datasheet  
93  
Intel® Wireless Flash Memory (W18)  
B.6  
Intel-Specific Extended Query Table  
Table 39. Primary Vendor-Specific Extended Query  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
Unique ASCII string “PRI“  
39:  
3A:  
3B:  
3C:  
3D:  
3E:  
3F:  
40:  
41:  
--50  
--52  
--49  
--31  
--33  
--E6  
--03  
--00  
--00  
"P"  
"R"  
"I"  
"1"  
"3"  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 10–31 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 1  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
bit 9 Simultaneous operations supported  
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
(P+9)h  
1
2
42:  
--01  
bits 1–7 reserved; undefined bits are “0”  
bit 0 Program supported after erase suspend  
Block status register mask  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Down Bit Status active  
VCC logic supply highest performance program/erase voltage  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
43:  
44:  
--03  
--00  
bit 0 = 1  
bit 1 = 1  
Yes  
Yes  
(P+C)h  
(P+D)h  
1
1
45:  
--18 1.8V  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
PP optimum program/erase supply voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
V
46:  
--C0 12.0V  
94  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 40. Protection Register Information  
Offset(1)  
Hex  
Length  
Description  
P = 39h  
(P+E)h  
(Optional flash features and commands)  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
with device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The following bytes are factory  
pre-programmed and user-programmable.  
Add. Code Value  
1
4
47:  
--01  
1
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
48:  
49:  
4A:  
4B:  
--80  
--00  
--03 8 byte  
--03 8 byte  
80h  
00h  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8–15 = Lock/bytes Jedec-plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
Table 41. Burst Read Information for Non-muxed Device  
Offset(1)  
P = 39h  
Hex  
Length  
Description  
(Optional flash features and commands)  
Add. Code Value  
(P+13)h  
1
Page Mode Read capability  
4C:  
--03 8 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device word width to  
determine page-mode data output width. 00h indicates no  
read page buffer.  
(P+14)h  
(P+15)h  
1
1
Number of synchronous mode read configuration fields that  
4D:  
4E:  
--04  
--01  
4
4
follow. 00h indicates no burst capability.  
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
bits 0–2 “n” such that 2n+1 HEX value represents the  
maximum number of continuous synchronous reads when  
the device is configured for its maximum word width. A value  
of 07h indicates that the device is capable of continuous  
linear bursts that will output data until the internal burst  
counter reaches the end of the device’s burstable address  
space. This field’s 3-bit value can be written directly to the  
Read Configuration Register bits 0–2 if the device is  
configured for its maximum word width. See offset 28h for  
word width to determine the burst data output width.  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
(P+16)h  
(P+17)h  
(P+18)h  
1
1
1
4F:  
50:  
51:  
--02  
--03  
--07 Cont  
8
16  
Table 42. Partition and Erase-block Region Information  
Offset(1)  
See table below  
Address  
Len  
P = 39h  
Description  
(Optional flash features and commands)  
Bot  
Top  
Bottom  
Top  
(P+19)h (P+19)h Number of device hardware-partition regions within the device.  
x = 0: a single hardware partition device (no fields follow).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
52:  
52:  
Datasheet  
95  
Intel® Wireless Flash Memory (W18)  
Table 43. Partition Region 1 Information  
Offset(1)  
P = 39h  
See table below  
Address  
Description  
Bot  
53:  
54:  
55:  
Top  
53:  
54:  
55:  
Bottom  
(P+1A)h (P+1A)h  
(P+1B)h (P+1B)h  
Top  
(Optional flash features and commands)  
Number of identical partitions within the partition region  
Len  
2
(P+1C)h (P+1C)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
1
1
bits 4–7 = number of simultaneous Erase operations  
(P+1D)h (P+1D)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1E)h (P+1E)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+1F)h (P+1F)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
56:  
57:  
58:  
56:  
57:  
58:  
1
1
(P+20)h (P+20)h Partition Region 1 Erase Block Type 1 Information  
4
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
(P+21)h (P+21)h  
(P+22)h (P+22)h  
(P+23)h (P+23)h  
(P+24)h (P+24)h  
(P+25)h (P+25)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 1 (Erase Block Type 1)  
Minimum block erase cycles x 1000  
2
1
(P+26)h (P+26)h Partition 1 (erase block Type 1) bits per cell; internal ECC  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+27)h (P+27)h Partition 1 (erase block Type 1) page mode and synchronous  
mode capabilities defined in Table 10.  
1
4
60:  
60:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+28)h  
(P+29)h  
(P+2A)h  
(P+2B)h  
(P+2C)h  
(P+2D)h  
(P+2E)h  
Partition Region 1 Erase Block Type 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(bottom parameter device only)  
Partition 1 (Erase block Type 2)  
Minimum block erase cycles x 1000  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
2
1
Partition 1 (Erase block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+2F)h  
Partition 1 (Erase block Type 2) pagemode and synchronous  
mode capabilities defined in Table 10  
1
68:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
96  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Table 44. Partition Region 2 Information  
P = 39h  
Description  
Address  
Bot  
69:  
6A:  
6B:  
Top  
61:  
62:  
63:  
Bottom  
Top  
(Optional flash features and commands)  
Len  
2
(P+30)h (P+28)h Number of identical partitions within the partition region  
(P+31)h (P+29)h  
(P+32)h (P+2A)h Number of program or erase operations allowed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
1
1
1
1
(P+33)h (P+2B)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Program mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+34)h (P+2C)h Simultaneous program or erase operations allowed in other  
partitions while a partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+35)h (P+2D)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w/ contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1  
block sizes) + (Type 2 blocks)x(Type 2 block sizes) +…+  
(Type n blocks)x(Type n block sizes)  
6C:  
6D:  
6E:  
64:  
65:  
66:  
(P+36)h (P+2E)h Partition Region 2 Erase Block Type 1 Information  
4
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
(P+37)h (P+2F)h  
(P+38)h (P+30)h  
(P+39)h (P+31)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
(P+3A)h (P+32)h Partition 2 (Erase block Type 1)  
(P+3B)h (P+33)h Minimum block erase cycles x 1000  
(P+3C)h (P+34)h Partition 2 (Erase block Type 1) bits per cell  
bits 0–3 = bits per cell in erase region  
2
1
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+3D)h (P+35)h Partition 2 (erase block Type 1) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
4
76:  
6E:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+36)h Partition Region 2 Erase Block Type 2 Information  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
(P+37)h  
(P+38)h  
(P+39)h  
(P+3A)h  
(P+3B)h  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Partition 2 (Erase Block Type 2)  
Minimum block erase cycles x 1000  
2
1
(P+3C)h Partition 2 (Erase Block Type 2) bits per cell  
bits 0–3 = bits per cell in erase region  
bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
bits 5–7 = reserved for future use  
(P+3D)h Partition 2 (Erase block Type 2) pagemode and synchronous  
mode capabilities as defined in Table 10.  
1
76:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host writes permitted (1=yes, 0=no)  
bits 3–7 = reserved for future use  
(P+3E)h (P+3E)h Features Space definitions (Reserved for future use)  
(P+3F)h (P+3F)h Reserved for future use  
TBD  
Resv'd 78:  
77:  
77:  
78:  
Datasheet  
97  
Intel® Wireless Flash Memory (W18)  
Table 45. Partition and Erase Block Region Information  
Address  
32 Mbit  
64Mbit  
128Mbit  
–B  
–T  
–B  
–T  
–B  
–T  
52:  
53:  
54:  
55:  
56:  
57:  
58:  
59:  
5A:  
5B:  
5C:  
5D:  
5E:  
5F:  
60:  
61:  
62:  
63:  
64:  
65:  
66:  
67:  
68:  
69:  
6A:  
6B:  
6C:  
6D:  
6E:  
6F:  
70:  
71:  
72:  
73:  
74:  
75:  
76:  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--07  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--0F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--02  
--01  
--00  
--11  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--02  
--1F  
--00  
--11  
--00  
--00  
--01  
--07  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--01  
--00  
--11  
--00  
--00  
--02  
--06  
--00  
--00  
--01  
--64  
--00  
--01  
--03  
--07  
--00  
--20  
--00  
--64  
--00  
--01  
--03  
NOTES:  
1. The variable P is a pointer which is defined at CFI offset 15h.  
2. TPD - Top parameter device; BPD - Bottom parameter device.  
3. Partition: Each partition is 4Mb in size. It can contain main blocks OR a combination of both main and  
parameter blocks.  
4. Partition Region: Symmetrical partitions form a partition region. (there are two partition regions, A. contains  
all the partitions that are made up of main blocks only. B. contains the partition that is made up of the  
parameter and the main blocks.  
98  
Datasheet  
Intel® Wireless Flash Memory (W18)  
Appendix C Mechanical Specifications  
C.1  
W18 - 180 nm Lithography  
This section includes the following package drawings:  
Figure 38, “32-Mb VFBGA Package Drawing  
Figure 39, “128-Mb VFBGA Package Drawing  
Figure 38. 32-Mb VFBGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
G
b
To p View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scale  
Datasheet  
99  
Intel® Wireless Flash Memory (W18)  
Figure 39. 128-Mb VFBGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
S1  
D
S2  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
H
J
G
H
J
b
Top View - Bump Side  
Down  
Bottom View - Ball Side  
Up  
A1  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scal e  
Table 46. 32-Mbit and 128-Mbit VF BGA Package Dimensions  
Millimeters  
Inches  
Nom  
Dimension  
Symbol  
Min  
Nom  
Max  
Min  
Max  
Package Height  
Ball Height  
A
0.850  
0.150  
0.615  
0.325  
7.600  
8.900  
12.400  
11.900  
1.000  
0.0335  
0.0059  
0.0242  
0.0128  
0.2992  
0.3503  
0.4882  
0.4685  
0.0394  
A
A
1
2
Package Body Thickness  
0.665  
0.375  
7.700  
9.000  
12.500  
12.000  
0.750  
56  
0.715  
0.425  
7.800  
9.100  
12.600  
12.100  
0.0262  
0.0148  
0.3031  
0.3543  
0.4921  
0.4724  
0.0295  
56  
0.0281  
0.0167  
0.3071  
0.3583  
0.4961  
0.4764  
Ball (Lead) Width  
b
Package Body Width 32Mb  
Package Body Length32Mb  
Package Body Width 128Mb  
Package Body Length 128Mb  
Pitch  
D
E
D
E
[e]  
N
N
Y
Ball (Lead) Count 32Mb  
Ball (Lead) Count 128Mb  
60  
60  
Seating Plane Coplanarity  
0.100  
1.325  
2.350  
2.975  
3.1000  
0.0039  
0.0522  
0.0925  
0.1171  
0.1220  
Corner to Ball A1 Distance Along D 32Mb  
Corner to Ball A1 Distance Along E 32Mb  
Corner to Ball A1 Distance Along D 128Mb  
Corner to Ball A1 Distance Along E 128Mb  
S
S
S
S
1.125  
2.150  
2.775  
2.900  
1.225  
2.250  
2.875  
3.000  
0.0443  
0.0846  
0.1093  
0.1142  
0.0482  
0.0886  
0.1132  
0.1181  
1
2
1
2
100  
Datasheet  
Intel® Wireless Flash Memory (W18)  
C.2  
W18 – 130 nm Lithography  
Figure 40. 32-, 64-, and 128-Mb VF BGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
S2  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Table 47. 32-Mbit, 64-Mbit, and 128-Mbit VFBGA Package Dimensions  
Millimeters  
Inches  
Nom  
Dimension  
Symbol  
Min  
Nom  
Max  
Min  
Max  
Package Height  
Ball Height  
A
1.000  
0.0394  
A
A
0.150  
0.0059  
1
2
Package Body Thickness  
0.665  
0.375  
7.700  
11.000  
9.000  
0.750  
56  
0.0262  
0.0148  
0.3031  
0.4331  
0.3543  
0.0295  
56  
Ball (Lead) Width  
b
0.325  
7.600  
10.900  
8.900  
0.425  
7.800  
11.100  
9.100  
0.0128  
0.2992  
0.4291  
0.3504  
0.0167  
0.3071  
0.4370  
0.3583  
Package Body Width (32Mb, 64Mb)  
Package Body Width (128Mb)  
Package Body Length (32Mb, 64Mb, 128Mb)  
Pitch  
D
D
E
[e]  
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Y
0.100  
1.325  
2.975  
0.0039  
0.0522  
0.1171  
Corner to Ball A1 Distance Along D (32Mb, 64Mb)  
Corner to Ball A1 Distance Along D (128Mb)  
S
1.125  
2.775  
1.225  
0.0443  
0.1093  
0.0482  
0.1132  
1
1
S
2.2875  
Corner to Ball A1 Distance Along E (32Mb,  
64Mb,128Mb)  
S
2.150  
2.250  
2.350  
0.0846  
0.0886  
0.0925  
2
Datasheet  
101  
Intel® Wireless Flash Memory (W18)  
Figure 41. 128Mbit QUAD+ Package Drawing  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Symbol  
A
A1  
A2  
b
D
E
e
N
Min  
Max Notes  
1.200  
Min  
Max  
0.0472  
0.200  
0.0079  
0.860  
0.375  
10.000  
8.000  
0.800  
88  
0.0339  
0.0148  
0.3937  
0.3150  
0.0315  
88  
0.325  
9.900  
7.900  
0.425  
10.100  
8.100  
0.0128  
0.3898  
0.3110  
0.0167  
0.3976  
0.3189  
Y
S1  
S2  
0.100  
1.300  
0.700  
0.0039  
0.0512  
0.0276  
1.100  
0.500  
1.200  
0.600  
0.0433  
0.0197  
0.0472  
0.0236  
102  
Datasheet  
Intel® Wireless Flash Memory (W18)  
C.3  
W18 - 90 nm Lithography  
Figure 42. 64-Mb VF BGA Package Drawing  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
S2  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
E
e
G
G
b
Top View - Bump Side Down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Table 48. 64-Mbit VF BGA Package Dimensions  
Millimeters  
Nom  
Inches  
Nom  
Dimension  
Symbol  
Min  
Max  
Min  
Max  
Package Height  
Ball Height  
A
1.000  
0.0394  
A
A
0.150  
0.0059  
1
2
Package Body Thickness  
Ball (Lead) Width  
0.665  
0.375  
7.700  
9.000  
0.750  
56  
0.0262  
0.0148  
0.3031  
0.3543  
0.0295  
56  
b
0.325  
7.600  
8.900  
0.425  
7.800  
9.100  
0.0128  
0.2992  
0.3504  
0.0167  
0.3071  
0.3583  
Package Body Width  
Package Body Length  
Pitch  
D
E
[e]  
N
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
0.100  
1.325  
2.350  
0.0039  
0.0522  
0.0925  
S
S
1.125  
2.150  
1.225  
2.250  
0.0443  
0.0846  
0.0482  
0.0886  
1
2
Datasheet  
103  
Intel® Wireless Flash Memory (W18)  
Appendix D Ordering Information  
Figure 43. VF BGA Ordering Information  
G E 2 8 F 6 4 0 W 1 8 T E 6 0  
Access Speed (ns)  
(60,80)  
Package:  
GE = VF BGA, Leaded  
PH = VF BGA, Pb-free  
Process Identifier:  
C = 180 nm  
D = 130 nm  
E = 90 nm  
Product Line Designator:  
for all Intel Flash Products  
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Device Density:  
320 = 32Mbit  
640 = 64Mbit  
128 = 128Mbit  
Product Family:  
W18 = Intel® Wireless Flash  
Memory  
Figure 44. SCSP Ordering Information  
R D 4 8 F 3 0 0 0 W 0 Y B Q 0  
Device Details:  
0 = Initial Version  
Package:  
RD = SCSP, Leaded  
PF = SCSP, Pb-Free  
Ballout Indicator:  
Q= QUAD+  
Product Line:  
48F = Flash Only  
Parameter Location:  
T = Top Parameter  
B = Bottom Parameter  
Flash Density:  
0 = No die  
3 = 128 Mbit  
Voltage:  
Y = 1.8 Volt I/O  
Product Family Designator:  
W = Intel® Wireless Flash Memory  
104  
Datasheet  

相关型号:

GE28F640W30B70

EEPROM|FLASH|4MX16|CMOS|BGA|56PIN|PLASTIC
ETC

GE28F640W30B85

EEPROM|FLASH|4MX16|CMOS|BGA|56PIN|PLASTIC
ETC

GE28F640W30BC70

Flash, 4MX16, 70ns, PBGA56, 0.75 MM PITCH, VFBGA-56
NUMONYX

GE28F640W30BC85

Flash, 4MX16, 85ns, PBGA56
NUMONYX

GE28F640W30BD70

Flash, 4MX16, 70ns, PBGA56, 0.75 MM PITCH, VFBGA-56
NUMONYX

GE28F640W30T70

EEPROM|FLASH|4MX16|CMOS|BGA|56PIN|PLASTIC
ETC

GE28F640W30T85

EEPROM|FLASH|4MX16|CMOS|BGA|56PIN|PLASTIC
ETC

GE28F640W30TC85

Flash, 4MX16, 85ns, PBGA56
NUMONYX

GE28F640W30TD70

Flash, 4MX16, 70ns, PBGA56, 0.75 MM PITCH, VFBGA-56
NUMONYX

GE28F800B3BA70

Flash, 512KX16, 70ns, PBGA48, VFBGA-48
NUMONYX

GE28F800B3BA70

Flash, 512KX16, 70ns, PBGA48, VFBGA-48
INTEL

GE28F800B3BA90

3 Volt Advanced Boot Block Flash Memory
INTEL