HBLXT9785EHC.D0SE000 [INTEL]

Ethernet Transceiver, 8-Trnsvr, PQFP208,;
HBLXT9785EHC.D0SE000
型号: HBLXT9785EHC.D0SE000
厂家: INTEL    INTEL
描述:

Ethernet Transceiver, 8-Trnsvr, PQFP208,

文件: 总228页 (文件大小:3934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® LXT9785 and LXT9785E Advanced  
8-Port 10/100 Mbps PHY Transceivers  
Datasheet  
The Intel® LXT9785 and LXT9785E are 8-port Fast Ethernet PHY Transceivers supporting  
IEEE 802.3 physical layer applications at 10 Mbps and 100 Mbps. These devices provide Serial/  
Source Synchronous Serial Media Independent Interfaces (SMII/SS-SMII) and Reduced Media  
Independent Interface (RMII) for switching and other independent port applications. The  
LXT9785 and LXT9785E are identical except for the IP telephony features included in the  
LXT9785E transceiver. The LXT9785E is an enhanced version of the LXT9785 that detects  
Data Terminal Equipment (DTE) requiring power from the switch over a CAT5 cable. The  
system uses the information collected by the LXT9785E to apply power if the DTE at the far end  
requires power over the cable, such as an IP telephone.  
Each network port can provide a twisted-pair (TP) or Low-Voltage Positive Emitter Coupled  
Logic (LVPECL) interface. The twisted-pair interface supports 10 Mbps and 100 Mbps  
(10BASE-T and 100BASE-TX) Ethernet over twisted-pair. The LVPECL interface supports  
100 Mbps (100BASE-FX) Ethernet over fiber-optic media.  
The LXT9785/LXT9785E provides three discrete LED driver outputs for each port. The devices  
support both half-duplex and full-duplex operation at 10 Mbps and 100 Mbps and require only a  
single 2.5 V power supply.  
Applications  
Enterprise switches  
Storage Area Networks  
IP telephony switches  
Multi-port Network Interface Cards (NICs)  
Product Features  
Eight IEEE 802.3-compliant 10BASE-T or  
100BASE-TX ports with integrated filters.  
100BASE-FX fiber-optic capability on all  
ports.  
Supports both auto-negotiation systems and  
legacy systems without auto-negotiation  
capability.  
Robust baseline wander correction.  
2.5 V operation.  
Low power consumption; 250 mW per port  
typical.  
Configurable through the MDIO port or  
external control pins.  
JTAG boundary scan.  
Multiple RMII or SMII/SS-SMII ports for  
independent PHY port operation.  
208-pin PQFP: LXT9785HC,  
LXT9785EHC, LXT9785HE.  
Auto MDI/MDIX crossover capability.  
241-ball BGA: LXT9785BC,  
LXT9785EBC.  
196-ball BGA: LXT9785MBC (includes  
DTE detection similar to the LXT9785E)  
Proprietary Optimal Signal Processing™  
architecture improves SNR by 3 dB over  
ideal analog filters.  
Optimized for dual-high stacked RJ-45  
applications.  
MDIO sectionalization into 2x4 or 1x8  
configurations.  
DTE detection for remote powering  
applications (LXT9785E and  
LXT9785MBC only).  
o
Extended temperature operation of -40 C  
o
to +85 C (LXT9785E only).  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or  
in nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® LXT9785 and Intel® LXT9785E PHY Transceivers may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486,  
i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade,  
Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel  
SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,  
Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie,  
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are  
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2004, Intel Corporation  
2
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Contents  
1.0 Introduction..................................................................................................................................17  
1.1  
1.2  
What You Will Find in This Document ................................................................................17  
Related Documents ............................................................................................................17  
2.0 Block Diagram .............................................................................................................................18  
3.0 Pin/Ball Assignments and Signal Descriptions........................................................................19  
3.1  
PQFP Pin Assignments ......................................................................................................19  
3.1.1 PQFP Pin Assignments – RMII Configuration .......................................................20  
3.1.2 PQFP Pin Assignments – SMII Configuration........................................................25  
3.1.3 PQFP Pin Assignments – SS-SMII Configuration..................................................30  
PQFP Signal Descriptions ..................................................................................................35  
3.2.1 Signal Name Conventions .....................................................................................35  
3.2.2 PQFP Signal Descriptions – RMII, SMII, and SS-SMII Configurations..................35  
BGA23 Ball Assignments....................................................................................................50  
3.3.1 RMII BGA23 Ball List .............................................................................................51  
3.3.2 SMII BGA23 Ball List .............................................................................................61  
3.3.3 SS-SMII BGA23 Ball List .......................................................................................71  
BGA23 Signal Descriptions ................................................................................................81  
3.4.1 Signal Name Conventions .....................................................................................81  
3.4.2 Signal Descriptions – RMII, SMII, and SS-SMII Configurations.............................81  
BGA15 Ball Assignments....................................................................................................98  
3.5.1 BGA15 Ball List......................................................................................................99  
BGA15 Signal Descriptions ..............................................................................................108  
3.6.1 Signal Name Conventions ...................................................................................108  
3.6.2 Signal Descriptions – SMII and SS-SMII Configurations .....................................108  
3.2  
3.3  
3.4  
3.5  
3.6  
4.0 Functional Description..............................................................................................................115  
4.1  
Introduction .......................................................................................................................115  
4.1.1 OSP™ Architecture .............................................................................................115  
4.1.2 Comprehensive Functionality ..............................................................................116  
4.1.2.1 Sectionalization....................................................................................116  
Interface Descriptions.......................................................................................................116  
4.2.1 10/100 Network Interface.....................................................................................116  
4.2.1.1 Twisted-Pair Interface ..........................................................................117  
4.2.1.2 MDI Crossover (MDIX).........................................................................118  
4.2.1.3 Fiber Interface......................................................................................118  
Media Independent Interface (MII) Interfaces...................................................................118  
4.3.1 Global MII Mode Select .......................................................................................118  
4.3.2 Internal Loopback ................................................................................................119  
4.3.3 RMII Data Interface..............................................................................................119  
4.3.4 Serial Media Independent Interface (SMII) and Source Synchronous-  
4.2  
4.3  
Serial Media Independent Interface (SS-SMII) ....................................................120  
4.3.4.1 SMII Interface.......................................................................................120  
4.3.4.2 Source Synchronous-Serial Media Independent Interface ..................120  
4.3.5 Configuration Management Interface ..................................................................120  
4.3.6 MII Isolate ............................................................................................................120  
Datasheet  
3
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
4.3.7 MDIO Management Interface ..............................................................................120  
4.3.8 MII Sectionalization..............................................................................................122  
4.3.9 MII Interrupts........................................................................................................122  
4.3.10 Global Hardware Control Interface ......................................................................123  
4.3.11 FIFO Initial Fill Values..........................................................................................123  
Operating Requirements...................................................................................................124  
4.4.1 Power Requirements ...........................................................................................124  
4.4.2 Clock/SYNC Requirements .................................................................................124  
4.4.2.1 Reference Clock ..................................................................................124  
4.4.2.2 TxCLK Signal (SS-SMII only)...............................................................124  
4.4.2.3 TxSYNC Signal (SMII/SS-SMII)...........................................................124  
4.4.2.4 RxSYNC Signal (SS-SMII only) ...........................................................124  
4.4.2.5 RxCLK Signal (SS-SMII only) ..............................................................125  
Initialization.......................................................................................................................125  
4.5.1 MDIO Control Mode.............................................................................................125  
4.5.2 Hardware Control Mode.......................................................................................125  
4.5.3 Power-Down Mode ..............................................................................................126  
4.5.3.1 Global (Hardware) Power Down ..........................................................127  
4.5.3.2 Port (Software) Power Down ...............................................................127  
4.5.4 Reset ...................................................................................................................127  
4.5.5 Hardware Configuration Settings.........................................................................128  
Link Establishment............................................................................................................128  
4.6.1 Auto-Negotiation..................................................................................................128  
4.6.1.1 Base Page Exchange ..........................................................................128  
4.6.1.2 Manual Next Page Exchange ..............................................................129  
4.6.1.3 Controlling Auto-Negotiation................................................................129  
4.6.1.4 Link Criteria..........................................................................................129  
4.6.1.5 Parallel Detection.................................................................................129  
4.6.1.6 Reliable Link Establishment While Auto MDI/MDIX is  
4.4  
4.5  
4.6  
Enabled in Forced Speed Mode ..........................................................130  
4.7  
Serial MII Operation..........................................................................................................130  
4.7.1 SMII Reference Clock..........................................................................................134  
4.7.2 TxSYNC Pulse (SMII/SS-SMII)............................................................................134  
4.7.3 Transmit Data Stream..........................................................................................134  
4.7.3.1 Transmit Enable...................................................................................134  
4.7.3.2 Transmit Error......................................................................................134  
4.7.4 Receive Data Stream...........................................................................................135  
4.7.4.1 Carrier Sense.......................................................................................135  
4.7.4.2 Receive Data Valid ..............................................................................135  
4.7.4.3 Receive Error.......................................................................................135  
4.7.4.4 Receive Status Encoding.....................................................................135  
4.7.5 Collision ...............................................................................................................135  
4.7.6 Source Synchronous-Serial Media Independent Interface ..................................136  
RMII Operation .................................................................................................................140  
4.8.1 RMII Reference Clock..........................................................................................140  
4.8.2 Transmit Enable...................................................................................................141  
4.8.3 Carrier Sense & Data Valid..................................................................................141  
4.8.4 Receive Error.......................................................................................................141  
4.8.5 Out-of-Band Signaling .........................................................................................141  
4.8.6 4B/5B Coding Operations....................................................................................141  
100 Mbps Operation.........................................................................................................144  
4.8  
4.9  
4
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
4.9.1 100BASE-X Network Operations.........................................................................144  
4.9.2 100BASE-X Protocol Sublayer Operations..........................................................144  
4.9.2.1 PCS Sublayer ......................................................................................144  
4.9.3 PMA Sublayer......................................................................................................146  
4.9.3.1 Link ......................................................................................................147  
4.9.3.2 Link Failure Override............................................................................147  
4.9.3.3 Carrier Sense/Data Valid (RMII) ..........................................................147  
4.9.3.4 Carrier Sense (SMII) ............................................................................147  
4.9.3.5 Receive Data Valid (SMII)....................................................................147  
4.9.3.6 Twisted-Pair PMD Sublayer.................................................................148  
4.9.3.7 Fiber PMD Sublayer.............................................................................148  
4.10 10 Mbps Operation ...........................................................................................................149  
4.10.1 Preamble Handling ..............................................................................................149  
4.10.2 Dribble Bits ..........................................................................................................150  
4.10.3 Link Test ..............................................................................................................150  
4.10.3.1 Link Failure ..........................................................................................150  
4.10.4 Jabber..................................................................................................................150  
4.11 DTE Discovery Process....................................................................................................151  
4.11.1 Definitions ............................................................................................................151  
4.11.2 Interaction between Processor, MAC, and PHY..................................................152  
4.11.3 Management Interface and Control .....................................................................152  
4.11.4 DTE Discovery Process Flow ..............................................................................153  
4.11.5 DTE Discovery Behavior......................................................................................154  
4.12 Monitoring Operations ......................................................................................................156  
4.12.1 Monitoring Auto-Negotiation ................................................................................156  
4.12.2 Per-Port LED Driver Functions ............................................................................156  
4.12.3 Out-of-Band Signaling .........................................................................................157  
4.12.4 Boundary Scan Interface .....................................................................................158  
4.12.5 State Machine......................................................................................................158  
4.12.6 Instruction Register..............................................................................................158  
4.12.7 Boundary Scan Register......................................................................................158  
4.13 Cable Diagnostics Overview.............................................................................................159  
4.13.1 Features...............................................................................................................159  
4.13.2 Operation .............................................................................................................159  
4.13.2.1 Short and Long Cable Testing Requirements......................................159  
4.13.2.2 Precision ..............................................................................................159  
4.13.3 Implementation Considerations ...........................................................................160  
4.13.4 Basic Implementation ..........................................................................................160  
4.14 Link Hold-Off Overview.....................................................................................................161  
4.14.1 Features...............................................................................................................161  
4.14.2 Operation .............................................................................................................162  
5.0 Application Information ............................................................................................................164  
5.1  
5.2  
Design Recommendations................................................................................................164  
General Design Guidelines...............................................................................................164  
5.2.1 Power Supply Filtering.........................................................................................164  
5.2.2 Power and Ground Plane Layout Considerations................................................165  
5.2.2.1 Chassis Ground ...................................................................................165  
5.2.3 MII Terminations ..................................................................................................165  
5.2.4 Twisted-Pair Interface..........................................................................................165  
5.2.4.1 Magnetic Requirements .......................................................................166  
Datasheet  
5
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
5.2.5 The Fiber Interface ..............................................................................................166  
5.2.6 LED Circuit...........................................................................................................167  
Typical Application Circuits...............................................................................................168  
5.3  
6.0 Test Specifications....................................................................................................................173  
7.0 Register Definitions...................................................................................................................199  
8.0 Package Specifications.............................................................................................................221  
9.0 Ordering Information.................................................................................................................227  
Figures  
1
2
3
4
5
6
7
8
9
Block Diagram ............................................................................................................................18  
RMII 208-Pin PQFP Assignments ..............................................................................................20  
SMII 208-Pin PQFP Assignments ..............................................................................................25  
SS-SMII 208-Pin PQFP Assignments ........................................................................................30  
241-Ball BGA23 Assignments (Top View)..................................................................................50  
196-Ball BGA15 Assignments (Top View)..................................................................................98  
Interface Signals.......................................................................................................................117  
Internal Loopback.....................................................................................................................119  
Management Interface Read Frame Structure .........................................................................121  
10 Management Interface Write Frame Structure .........................................................................121  
11 Port Address Scheme...............................................................................................................122  
12 Interrupt Logic...........................................................................................................................123  
13 Initialization Sequence..............................................................................................................126  
14 Auto-Negotiation Operation ......................................................................................................130  
15 Typical SMII Interface...............................................................................................................132  
16 Typical SMII Quad Sectionalization..........................................................................................133  
17 100 Mbps Serial MII Data Flow ................................................................................................134  
18 Serial MII Transmit Synchronization.........................................................................................135  
19 Serial MII Receive Synchronization..........................................................................................136  
20 Typical SS-SMII Interface.........................................................................................................138  
21 Typical SS-SMII Quad Sectionalization....................................................................................139  
22 SS-SMII Transmit Timing .........................................................................................................140  
23 SS-SMII Receive Timing ..........................................................................................................140  
24 RMII Data Flow.........................................................................................................................141  
25 Typical RMII Interface...............................................................................................................142  
26 Typical RMII Quad Sectionalization..........................................................................................143  
27 100BASE-X Frame Format.......................................................................................................144  
28 Protocol Sublayers ...................................................................................................................145  
29 Typical IP Telephone System Connection................................................................................151  
30 Intel® LXT9785E Negotiation Flow Chart .................................................................................155  
31 LED Pulse Stretching ...............................................................................................................157  
32 RMII Programmable Out-of-Band Signaling .............................................................................157  
33 LED Circuit ...............................................................................................................................167  
34 Power and Ground Supply Connections ..................................................................................168  
35 Typical Twisted-Pair Interface ..................................................................................................169  
36 Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver  
Interface Circuitry .....................................................................................................................170  
37 Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver  
Interface Circuitry .....................................................................................................................171  
6
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
38 ON Semiconductor Triple PECL-to-LVPECL Translator...........................................................172  
39 SMII - 100BASE-TX Receive Timing........................................................................................178  
40 SMII - 100BASE-TX Transmit Timing.......................................................................................179  
41 SMII - 100BASE-FX Receive Timing........................................................................................180  
42 SMII - 100BASE-FX Transmit Timing.......................................................................................181  
43 SMII - 10BASE-T Receive Timing ............................................................................................182  
44 SMII - 10BASE-T Transmit Timing ...........................................................................................183  
45 SS-SMII - 100BASE-TX Receive Timing..................................................................................184  
46 SS-SMII - 100BASE-TX Transmit Timing.................................................................................185  
47 SS-SMII - 100BASE-FX Receive Timing..................................................................................186  
48 SS-SMII - 100BASE-FX Transmit Timing.................................................................................187  
49 SS-SMII - 10BASE-T Receive Timing ......................................................................................188  
50 SS-SMII - 10BASE-T Transmit Timing .....................................................................................189  
51 RMII - 100BASE-TX Receive Timing........................................................................................190  
52 RMII - 100BASE-TX Transmit Timing.......................................................................................191  
53 RMII - 100BASE-FX Receive Timing........................................................................................192  
54 RMII - 100BASE-FX Transmit Timing.......................................................................................193  
55 RMII - 10BASE-T Receive Timing ............................................................................................194  
56 RMII - 10BASE-T Transmit Timing ...........................................................................................195  
57 Auto-Negotiation and Fast Link Pulse Timing...........................................................................196  
58 Fast Link Pulse Timing .............................................................................................................196  
59 MDIO Write Timing (MDIO Sourced by MAC) ..........................................................................197  
60 MDIO Read Timing (MDIO Sourced by PHY)...........................................................................197  
61 Power-Up Timing......................................................................................................................198  
62 RESET_L Recovery Timing......................................................................................................198  
63 PHY Identifier Bit Mapping........................................................................................................203  
64 208-Pin PQFP Plastic Package Specification...........................................................................221  
65 241-Ball BGA23 Package Specificationss - Top/Side Views (LXT9785BC).............................222  
66 241-Ball BGA23 Package Specificationss - Bottom View (LXT9785BC)..................................223  
67 196-Ball BGA15 Package Specs - Top/Side Views (LXT9785MBC)........................................224  
68 196-Ball BGA15 Package – Bottom View (LXT9785MBC )......................................................225  
69 Ordering Information - Sample .................................................................................................228  
Tables  
1
Signal Type Descriptions............................................................................................................19  
2
3
4
5
7
6
8
9
RMII PQFP Pin List.....................................................................................................................21  
SMII PQFP Pin List.....................................................................................................................26  
SS-SMII PQFP Pin List...............................................................................................................31  
RMII Signal Descriptions – PQFP...............................................................................................35  
SMII Specific Signal Descriptions – PQFP .................................................................................38  
SMII/SS-SMII Common Signal Descriptions – PQFP.................................................................38  
SS-SMII Specific Signal Descriptions – PQFP ...........................................................................39  
MDIO Control Interface Signals – PQFP ....................................................................................40  
10 Signal Detect – PQFP.................................................................................................................41  
11 Network Interface Signal Descriptions – PQFP..........................................................................41  
12 JTAG Test Signal Descriptions – PQFP.....................................................................................42  
13 Miscellaneous Signal Descriptions – PQFP ...............................................................................42  
14 LED Signal Descriptions – PQFP ...............................................................................................46  
15 Power Supply Signal Descriptions – PQFP................................................................................47  
Datasheet  
7
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
16 Unused/Reserved Pins – PQFP.................................................................................................49  
17 Receive FIFO Depth Considerations..........................................................................................49  
18 RMII BGA23 Ball List in Alphanumeric Order by Signal Name ..................................................51  
19 RMII BGA23 Ball List in Alphanumeric Order by Ball Location ..................................................56  
20 SMII BGA23 Ball List in Alphanumeric Order by Signal Name...................................................61  
21 SMII BGA23 Ball List in Alphanumeric Order by Ball Location...................................................66  
22 SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name.............................................71  
23 SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location.............................................76  
24 RMII Signal Descriptions – BGA23.............................................................................................81  
25 SMII/SS-SMII Common Signal Descriptions – BGA23...............................................................84  
26 SMII Specific Signal Descriptions – BGA23 ...............................................................................84  
27 SS-SMII Specific Signal Descriptions – BGA23 .........................................................................85  
28 MDIO Control Interface Signals – BGA23 ..................................................................................86  
29 Signal Detect – BGA23...............................................................................................................87  
30 Network Interface Signal Descriptions – BGA23........................................................................87  
31 JTAG Test Signal Descriptions – BGA23 ...................................................................................88  
32 Miscellaneous Signal Descriptions – BGA23 .............................................................................89  
33 LED Signal Descriptions – BGA23 .............................................................................................93  
34 Power Supply Signal Descriptions – BGA23 ..............................................................................94  
35 Unused/Reserved Pins – BGA23 ...............................................................................................96  
36 Receive FIFO Depth Configurations...........................................................................................97  
37 Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name.........................99  
38 Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location  
(SMII/SS-SMII) .........................................................................................................................103  
39 Intel® LXT9785 BGA15 Signal Descriptions ............................................................................108  
40 MDIX Selection.........................................................................................................................118  
41 MII Mode Select........................................................................................................................119  
42 Global Hardware Configuration Settings ..................................................................................128  
43 SMII Signal Summary...............................................................................................................131  
44 RX Status Encoding Bit Definitions ..........................................................................................136  
45 SS-SMII ....................................................................................................................................137  
46 4B/5B Coding ...........................................................................................................................146  
47 Next Page Message #5 Code Word Definitions .......................................................................154  
48 BSR Mode of Operation ...........................................................................................................158  
49 Supported JTAG Instructions ...................................................................................................158  
50 Magnetics Requirements..........................................................................................................166  
51 Absolute Maximum Ratings......................................................................................................173  
52 Operating Conditions................................................................................................................173  
53 Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%) ............................................174  
54 Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%) ............................................175  
55 Digital I/O DC Electrical Characteristics – SD Pins ..................................................................175  
56 Required Clock Characteristics ................................................................................................175  
57 100BASE-TX Transceiver Characteristics................................................................................176  
58 100BASE-FX Transceiver Characteristics................................................................................176  
59 10BASE-T Transceiver Characteristics....................................................................................177  
60 SMII - 100BASE-TX Receive Timing Parameters ....................................................................178  
61 SMII - 100BASE-TX Transmit Timing Parameters ...................................................................179  
62 SMII - 100BASE-FX Receive Timing Parameters ....................................................................180  
63 SMII - 100BASE-FX Transmit Timing Parameters ...................................................................181  
64 SMII - 10BASE-T Receive Timing Parameters.........................................................................182  
8
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
65 SMII-10BASE-T Transmit Timing Parameters..........................................................................183  
66 SS-SMII - 100BASE-TX Receive Timing Parameters ..............................................................184  
67 SS-SMII - 100BASE-TX Transmit Timing.................................................................................185  
68 SS-SMII - 100BASE-FX Receive Timing Parameters ..............................................................186  
69 SS-SMII - 100BASE-FX Transmit Timing Parameters .............................................................187  
70 SS-SMII - 10BASE-T Receive Timing Parameters...................................................................188  
71 SS-SMII - 10BASE-T Transmit Timing Parameters..................................................................189  
72 RMII - 100BASE-TX Receive Timing Parameters ....................................................................190  
73 RMII - 100BASE-TX Transmit Timing Parameters ...................................................................191  
74 RMII - 100BASE-FX Receive Timing Parameters ....................................................................192  
75 RMII - 100BASE-FX Transmit Timing Parameters ...................................................................193  
76 RMII - 10BASE-T Receive Timing Parameters.........................................................................194  
77 RMII - 10BASE-T Transmit Timing Parameters........................................................................195  
78 Auto-Negotiation and Fast Link Pulse Timing Parameters.......................................................196  
79 MDIO Timing Parameters.........................................................................................................197  
80 Power-Up Timing Parameters ..................................................................................................198  
81 RESET_L Recovery Timing Parameters ..................................................................................198  
82 Register Set..............................................................................................................................199  
83 Control Register (Address 0) ....................................................................................................200  
84 Status Register (Address 1)......................................................................................................201  
85 PHY Identification Register 1 (Address 2) ................................................................................203  
86 PHY Identification Register 2 (Address 3) ................................................................................203  
87 Auto-Negotiation Advertisement Register (Address 4).............................................................204  
88 Auto-Negotiation Link Partner Base Page Ability Register (Address 5) ...................................205  
89 Auto-Negotiation Expansion Register (Address 6) ...................................................................206  
90 Auto-Negotiation Next Page Transmit Register (Address 7) ....................................................206  
91 Auto-Negotiation Link Partner Next Page Receive Register (Address 8).................................207  
92 Port Configuration Register (Address 16, Hex 10) ...................................................................207  
93 Quick Status Register (Address 17, Hex 11)............................................................................209  
94 Interrupt Enable Register (Address 18, Hex 12).......................................................................211  
95 Interrupt Status Register (Address 19, Hex 13)........................................................................212  
96 LED Configuration Register (Address 20, Hex 14)...................................................................213  
97 Receive Error Count Register (Address 21, Hex 15)................................................................214  
98 RMII Out-of-Band Signaling Register (Address 25, Hex 19) ....................................................215  
99 Trim Enable Register (Address 27, Hex 1B).............................................................................216  
100 Cable Diagnostics Register (Address 29, Hex 1D)...................................................................217  
101 Register Bit Map .......................................................................................................................219  
102 241-Ball BGA23 Package Dimensions .....................................................................................223  
103 196-Ball BGA15 Package Dimensions (LXT9785MBC ) ..........................................................226  
104 Product Information ..................................................................................................................227  
Datasheet  
9
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision History  
Revision Number: 009  
Revision Date: April 30, 2004  
Page  
Description  
1
Modified 196-Ball BGA and DTE Detection bullets under Product Features.  
42  
Added table note 3 (regarding LINKHOLD) to Table 13 “Miscellaneous Signal Descriptions – PQFP”.  
Added table note 3 (regarding LINKHOLD) to Table 32 “Miscellaneous Signal Descriptions –  
BGA23”.  
89  
51  
Modified Table 18 “RMII BGA23 Ball List in Alphanumeric Order by Signal Name” through Table 23  
“SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location” for ball, type, and reference page  
corrections.  
227  
228  
Modified Table 104 “Product Information” [added new packaging information].  
Modified Figure 69 “Ordering Information - Sample” [changed Internal Package Designator for B  
and E, and added the GD and definition under Intel Package Designator).  
Revision Number: 008  
Revision Date: April 15, 2004  
Page  
Description  
All  
Globally added LEDn_3 to BGA15.  
229  
Added Figure 68 “Intel® LXT9785MBC 196-Ball BGA15 Package – Bottom View”.  
Revision Number: 007  
Revision Date: August 28, 2003  
(Sheet 1 of 4)  
Page  
Description  
21  
22  
26  
27  
31  
32  
36  
40  
43  
50  
Modified Figure 2 “Intel® LXT9785 and Intel® LXT9785E RMII 208-Pin PQFP Assignments”.  
Modified Table 2 “Intel® LXT9785/LXT9785E RMII PQFP Pin List”.  
Modified Figure 3 “Intel® LXT9785/LXT9785E SMII 208-Pin PQFP Assignments”.  
Modified Table 3 “Intel® LXT9785/LXT9785E SMII PQFP Pin List”.  
Modified Figure 4 “Intel® LXT9785/LXT9785E SS-SMII 208-Pin PQFP Assignments”.  
Modified Table 4 “Intel® LXT9785/LXT9785 SS-SMII PQFP Pin List”.  
Modified Table 5 “Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”.  
Modified Table 8 “Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – PQFP”.  
Modified Table 13 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”.  
Modified Table 16 “Intel® LXT9785/LXT9785E Unused/Reserved Pins – PQFP”.  
Replaced old Figures 5, 6, and 7 with Figure 5 “Intel® LXT9785/LXT9785E 241-Ball BGA23  
Assignments (Top View)”.  
51  
52  
Modified Table 18 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by  
Signal Name”.  
10  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 007  
Revision Date: August 28, 2003  
(Sheet 2 of 4)  
Page  
Description  
Modified Table 19 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball  
Location”.  
57  
Modified Table 20 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by  
Signal Name”.  
62  
67  
72  
77  
82  
Modified Table 21 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball  
Location”  
Modified Table 22 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by  
Signal Name”.  
Modified Table 23 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by  
Ball Location”.  
Modified Table 23 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by  
Ball Location”.  
86  
90  
97  
Modified Table 27 “Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – BGA23”.  
Modified Table 32 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23”.  
Modified Table 35 “Intel® LXT9785/LXT9785E Unused/Reserved Pins – BGA23”.  
Added Section 3.5, “BGA15 Ball Assignments” (including Figure 6 “Intel® LXT9785MBC 196-Ball  
BGA15 Assignments (Top View)”, Table 37 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric  
Order by Signal Name” through Table 39 “Intel® LXT9785 BGA15 Signal Descriptions”.  
98  
116  
117  
119  
119  
120  
120  
121  
Added second paragraph under Section 4.1, “Introduction”.  
Added note under Section 4.1.2.1, “Sectionalization”.  
Added note under Table 40 “Intel® LXT9785/LXT9785E MDIX Selection”.  
Added note under Section 4.3, “Media Independent Interface (MII) Interfaces”.  
Added note to Table 41 “Intel® LXT9785/LXT9785E MII Mode Select”.  
Modified/added text under Section 4.3.2, “Internal Loopback”.  
Modified text under Section 4.3.6, “MII Isolate”.  
Section 4.3.7, “MDIO Management Interface”:  
Added note under second paragraph.  
Added last paragraph.  
121  
123  
124  
125  
127  
128  
128  
129  
130  
Added note under Section 4.3.8, “MII Sectionalization”.  
Added new Section 4.3.11, “FIFO Initial Fill Values”  
Modified paragraph three under Section 4.4.1, “Power Requirements”.  
Added notes under second and last paragraphs under Section 4.5.3, “Power-Down Mode”.  
Modified last bullet under Section 4.5.3.1, “Global (Hardware) Power Down”.  
Added last paragraph to Section 4.5.4, “Reset”.  
Modified Table 42 “Intel® LXT9785/9785E Global Hardware Configuration Settings”.  
Change heading and modified last line under Section 4.6.1.2, “Manual Next Page Exchange”.  
Section 4.6.1.4, “Link Criteria”:  
Changed scrambler to descrambler in first line.  
Modified second paragraph.  
130  
131  
Added two new paragraphs.  
Added second paragraph under Section 4.6.1.5, “Parallel Detection”.  
Datasheet  
11  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 007  
Revision Date: August 28, 2003  
(Sheet 3 of 4)  
Page  
Description  
Modified paragraphs under Section 4.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is  
Enabled in Forced Speed Mode”.  
131  
136  
141  
Changed “1110” to “0101” under Section 4.7.4.3, “Receive Error”.  
Added note under first paragraph of Section 4.8, “RMII Operation”  
Changed “asynchronously” to “synchronously” in second paragraph under Section 4.9.3.3, “Carrier  
Sense/Data Valid (RMII)”.  
148  
148  
149  
149  
149  
150  
151  
152  
153  
154  
155  
Modified last sentence in first paragraph under Section 4.9.3.4, “Carrier Sense (SMII)”.  
Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”.  
Added note under Section 4.9.3.7, “Fiber PMD Sublayer”.  
Added second paragraph under Section 4.9.3.7.1, “Far End Fault Indications”.  
Modified/added text under Section 4.10.1, “Preamble Handling”.  
Modified text under Section 4.10.4, “Jabber”.  
Modified first paragraph under Section 4.11, “DTE Discovery Process”.  
Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”.  
Modified second paragraph under Section 4.11.4, “DTE Discovery Process Flow”.  
Added Section 4.11.5, “DTE Discovery Behavior”  
Added BGA15 information into first paragraph under Section 4.12.2, “Per-Port LED Driver  
Functions”.  
157  
158  
Added last sentence to first paragraph and note under first paragraph under Section 4.12.3, “Out-of-  
Band Signaling”.  
160  
161  
162  
173  
176  
Added Section 4.13, “Cable Diagnostics Overview”.  
Modified/added text under Section 4.13.3, “Implementation Considerations”.  
Added Section 4.14, “Link Hold-Off Overview”.  
Modified Table 52 “Intel® LXT9785/LXT9785E Operating Conditions”  
Modified Table 58 “Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics”  
Added note to Table 60 “Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing  
Parameters” through Table 77 “Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing  
Parameters”.  
178-  
195  
Added table note to Table 60 “Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing  
Parameters”.  
178  
184  
190  
198  
Added table note to Table 66 “Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing  
Parameters”.  
Added table note to Table 72 “Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing  
Parameters”  
Added software power-down and note to Table 80 “Intel® LXT9785/LXT9785E Power-Up Timing  
Parameters”.  
199  
199  
200  
201  
Modified paragraphs and added last paragraph under Section 7.0, “Register Definitions”.  
Modified Table 82 “Intel® LXT9785/LXT9785E Register Set”.  
Modified Table 83 “Control Register (Address 0)”.  
Modified Table 84 “Status Register (Address 1)”.  
12  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 007  
Revision Date: August 28, 2003  
(Sheet 4 of 4)  
Page  
Description  
203  
203  
204  
205  
206  
206  
206  
207  
209  
211  
212  
213  
214  
215  
216  
217  
219  
226  
227  
Modified Table 85 “PHY Identification Register 1 (Address 2)”.  
Modified Table 86 “PHY Identification Register 2 (Address 3)”  
Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)”  
Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”.  
Modified Table 89 “Auto-Negotiation Expansion Register (Address 6)”.  
Modified Table 90 “Auto-Negotiation Next Page Transmit Register (Address 7)”.  
Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”.  
Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”. (Register bits 16.6, 16.4:3)  
Modified Table 93 “Quick Status Register (Address 17, Hex 11)”. (Register bit 17.8)  
Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)”  
Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)”  
Modified Table 96 “LED Configuration Register (Address 20, Hex 14)”  
Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”.  
Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”.  
Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”. (Register bit 27.6)  
Added Table 100 “Cable Diagnostics Register (Address 29, Hex 1D)”.  
Modified Table 101 “Intel® LXT9785/LXT9785E Register Bit Map”.  
Added Figure 102 “Intel® LXT9785MBC 196-Ball BGA15 Package Dimensions”  
Modified table and figure under Section 9.0, “Ordering Information”.  
Revision Number: 006 (INTERNAL RELEASE)  
Revision Date: June 10, 2003  
(Sheet 1 of 3)  
Page  
Description  
Changed "pseudo-ECL (PECL)" to "Low Voltage Positive Emitter Coupled Logic (LVPECL)" in the  
second paragraph, front page.  
1
Modified Table 5 “Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”. Added last  
sentence to RXER0 through RXER7 signal description.  
36  
42  
42  
Modified Table 10 “Intel® LXT9785/LXT9785E Signal Detect – PQFP”.  
Modified Table 11 “Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – PQFP”,  
Modified Table 13 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”. Added  
note to PREASEL signal description.  
43  
Modified Section 4.1, “Introduction”. Changed "Pseudo-ECL (PECL)" to "Low Voltage PECL  
(LVPECL)" in the first paragraph, second sentence.  
116  
119  
120  
130  
Replace text under Section 4.2.1.3, “Fiber Interface”.  
Modified Section 4.3.2, “Internal Loopback”.  
Modified last sentence under Section 4.6.1.4, “Link Criteria”.  
Datasheet  
13  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 006 (INTERNAL RELEASE)  
Revision Date: June 10, 2003  
(Sheet 2 of 3)  
Page  
Description  
131  
136  
Modified text under Section 4.6.1.5, “Parallel Detection”. Added second paragraph.  
Modified text under Section 4.7.4.3, “Receive Error”.  
Changed "PECL" to "LVPECL in third paragraph, first sentence under Section 4.9.1, “100BASE-X  
Network Operations”.  
145  
146  
148  
Modified Figure 28 “Intel® LXT9785/LXT9785E Protocol Sublayers”.  
Modified Section 4.9.3.3, “Carrier Sense/Data Valid (RMII)”. Changed “asynchronously to  
“synchronously.”  
148  
149  
149  
150  
151  
152  
153  
158  
166  
Modified text under Section 4.9.3.4, “Carrier Sense (SMII)”. Revised last sentence in first paragraph.  
Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”.  
Replaced text under Section 4.9.3.7, “Fiber PMD Sublayer”.  
Modified Section 4.10.1, “Preamble Handling”. Added text to last paragraph.  
Modified first sentence under Section 4.10.4, “Jabber”.  
Modified first paragraph of Section 4.11, “DTE Discovery Process”.  
Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”.  
Modified Section 4.12.3, “Out-of-Band Signaling”. Added sentence to end of first paragraph.  
Replaced text under Section 5.2.5, “The Fiber Interface”.  
Replaced Figure 36 “Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver  
Interface Circuitry”.  
170  
Replaced Figure 37 “Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface  
Circuitry”.  
171  
173  
174  
Modified Table 52 “Intel® LXT9785/LXT9785E Operating Conditions”.  
Modified Table 53 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5  
V +/- 5%)”.  
Modified Table 54 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3  
V +/- 5%)”.  
175  
175  
176  
200  
201  
204  
205  
207  
207  
209  
211  
Added Table 55 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins”.  
Modified Table 58 “Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics”.  
Modified Table 83 “Control Register (Address 0)”.  
Modified Table 84 “Status Register (Address 1)”.  
Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)”.  
Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”.  
Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”.  
Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”.  
Modified Table 93 “Quick Status Register (Address 17, Hex 11)”.  
Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)”  
Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)”. Changed all references of RO/  
SC to R/LH.  
212  
214  
Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”.  
14  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 006 (INTERNAL RELEASE)  
Revision Date: June 10, 2003  
(Sheet 3 of 3)  
Page  
Description  
Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”. Added note to  
Register bit 25.0.  
215  
216  
227  
Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”.  
Modified Table 103 “Product Information”.  
Revision Number: 005  
Revision Date: January 2002  
Page  
Description  
1
Added bullet to Product Features  
Modified Table 12 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions” (Added  
FIFOSEL1 and FIFOSEL0)  
49  
70  
Added Section 2.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced  
Speed Mode”  
Modified Figure 38 “Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver  
Interface Circuitry”  
109  
110  
Added Figure 39 “Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface  
Circuitry”  
111  
112  
112  
Added Figure 40 “ON Semiconductor Triple PECL-to-LVPECL Translator”  
Modified Table 28 “Absolute Maximum Ratings”  
Modified Table 29 “Operating Conditions”  
Modified Table 31 “Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)”(Output low  
voltage SD pins - Max)  
114  
129  
131  
133  
Modified Figure 53 “RMII - 100BASE-TX Receive Timing” and Table 49 “RMII - 100BASE-TX  
Receive Timing Parameters”  
Modified Figure 55 “RMII - 100BASE-FX Receive Timing” and Table 51 “RMII - 100BASE-FX  
Receive Timing Parameters”  
Modified Figure 57 “RMII - 10BASE-T Receive Timing” and Table 53 “RMII - 10BASE-T Receive  
Timing Parameters”  
146  
148  
168  
Modified Table 69 “Port Configuration Register (Address 16, Hex 10)” (Bits 16.5 and 16.6)  
Modified Table 71 “Interrupt Enable Register (Address 18, Hex 12)”  
Added product ordering table and diagram.  
Revision Number: 003  
Revision Date: April 2001  
(Sheet 1 of 2)  
Page  
Description  
1
Modified and added new language to front page.  
Reset: Modified language in first paragraph.  
61  
85  
93  
Added new section on DTE discovery.  
Supported JTAG Instructions table: replaced long hit streams with hex.  
Datasheet  
15  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
Contents  
Revision Number: 003  
Revision Date: April 2001  
(Sheet 2 of 2)  
Page  
Description  
97  
97  
99  
LED Circuit: Modified paragraph language.  
LED Circuit diagram: Modified diagram.  
Replaced Typical Fiber Interface diagram.  
Required Clock Characteristics table: Replaced SMII Input frequency and RMII Input frequency  
symbol with “f”.  
102  
122  
126  
128  
128  
131  
133  
140  
141  
Auto-Negotiation and Fast Link Pulse Timing Parameters: FLP burst width under Typ = 2.  
Control Register table: Modified table and table notes.  
PHY Identification Register 2 (Address 3): Modified table.  
PHY Identifier Bit Mapping: Modified diagram.  
Auto-Negotiation Expansion: Modified table and table notes.  
Port Configuration Register table: Modified table and table notes.  
Trim Enable Register: Modified table (DTE Discovery).  
Modified Register Bit Map table.  
16  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
1.0  
Introduction  
This document contains information on the Intel® LXT9785 and LXT9785E Advanced 8-port  
10/100 Mbps Fast Ethernet transceivers.  
1.1  
What You Will Find in This Document  
This document contains the following sections:  
Section 3.0, “Pin/Ball Assignments and Signal Descriptions” on page 19  
This section contains pin/ball assignments and signal descriptions for the following:  
Section 3.1, “PQFP Pin Assignments” on page 19  
Section 3.2, “PQFP Signal Descriptions” on page 35  
Section 3.3, “BGA23 Ball Assignments” on page 50  
Section 3.4, “BGA23 Signal Descriptions” on page 81  
Section 3.5, “BGA15 Ball Assignments” on page 98  
Section 3.6, “BGA15 Signal Descriptions” on page 108  
Section 4.0, “Functional Description” on page 115  
Section 5.0, “Application Information” on page 164  
Section 6.0, “Test Specifications” on page 173  
Section 7.0, “Register Definitions” on page 199  
Section 8.0, “Package Specifications” on page 221  
Section 9.0, “Ordering Information” on page 227  
1.2  
Related Documents  
Document  
Number  
Document  
Intel® LXT9785/LXT9785E Design and Layout Guide  
Intel® LXT9785/LXT9785E Specification Update  
249509  
249357  
Intel® LXT9785/LXT9785E 100BASE-FX Fiber Optic Transceivers: Connecting a PECL/  
LVPECL Interface  
250781  
249611  
IP Telephony and DTE Discovery Using Intel Ethernet® PHYs  
Datasheet  
17  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
2.0  
Block Diagram  
Figure 1 provides the LXT9785/LXT9785E block diagram.  
Figure 1. Block Diagram  
8-Port Global  
Functions  
RMII/SMII Contr  
ADD_[4:0]  
Management /  
Mode Select  
Logic & LED  
Drivers  
RESET_L  
MDIO  
MDC  
PWRDN  
2
2
2
Clock  
Generator  
REFCLK  
SYNC (SMII only)  
MDINT_L  
Register Set  
Manchester  
Encoder  
+
10  
TP  
Driver  
Pulse  
Shaper  
TxDatan  
TP /  
Fiber  
Out  
TPFOPn  
TPFONn  
Parallel/Serial  
Converter  
Scrambler  
& Encoder  
100  
-
+
ECL  
Driver  
Auto  
Negotiation  
Mgmt  
Counters  
-
Fiber  
selectn  
Register Set  
+
Media  
Select  
Clock Generator  
Adaptive EQ with BL  
Wander Cancellation  
100TX  
100FX  
10BT  
Port LED  
Drivers  
-
3
LEDn_[3:1]_L  
RxDatan  
+
Manchester  
Decoder  
TPFIPn  
TPFINn  
TP /  
Fiber In  
Serial to  
Parallel  
Converter  
10  
Slicer  
-
Decoder &  
Descrambler  
100  
Carrier Sense  
Data Valid  
+
Error Detect  
-
Per-Port Functions  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
B3368-01  
18  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.0  
Pin/Ball Assignments and Signal Descriptions  
3.1  
PQFP Pin Assignments  
The following sections show PQFP pin assignments and signal descriptions:  
Section 3.1.1, “PQFP Pin Assignments – RMII Configuration” on page 20  
Section 3.1.2, “PQFP Pin Assignments – SMII Configuration” on page 25  
Section 3.1.3, “PQFP Pin Assignments – SS-SMII Configuration” on page 30  
Table 1 lists the acronyms and descriptions for signal types.  
Table 1. Signal Type Descriptions  
Acronym  
Description  
AI  
Analog Input  
AO  
I
Analog Output  
Input  
O
Output  
OD  
ST  
TS  
SL  
IP  
Open Drain Output  
Schmitt Triggered Input  
Three-State-able Output  
Slew-rate Limited Output  
Weak Internal Pull-Up  
Weak Internal Pull-Down  
ID  
Datasheet  
19  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.1.1  
PQFP Pin Assignments – RMII Configuration  
Figure 2 and Table 2, “RMII PQFP Pin List” on page 21 provide LXT9785/LXT9785 RMII PQFP  
pin assignments.  
Figure 2. RMII 208-Pin PQFP Assignments  
CRS_DV6.....1  
RxER6/LINKHOLD.....2  
TxEN6.....3  
156....... TPFIN7  
155....... GNDR7  
154....... TPFOP7  
153....... TPFON7  
152....... VCCT6/7  
151....... TPFON6  
150....... TPFOP6  
149....... GNDR6  
148....... GNDT6/7  
147....... TPFIN6  
146....... TPFIP6  
145....... VCCR6  
144....... VCCR5  
143....... TPFIP5  
142....... TPFIN5  
141....... GNDR5  
140....... TPFOP5  
139....... TPFON5  
138....... VCCT4/5  
137....... TPFON4  
136....... TPFOP4  
135....... GNDR4  
134....... GNDT4/5  
133....... TPFIN4  
132....... TPFIP4  
131....... VCCR4  
130....... VCCR3  
129....... TPFIP3  
128....... TPFIN3  
127....... GNDT2/3  
126....... GNDR3  
125....... TPFOP3  
124....... TPFON3  
123....... VCCT2/3  
122....... TPFON2  
121....... TPFOP2  
120....... GNDR2  
119....... TPFIN2  
118....... TPFIP2  
117....... VCCR2  
116....... VCCR1  
115....... TPFIP1  
114....... TPFIN1  
113....... GNDT0/1  
112....... GNDR1  
111....... TPFOP1  
110....... TPFON1  
109....... VCCT0/1  
108....... TPFON0  
107....... TPFOP0  
106....... GNDR0  
105....... TPFIN0  
TxData6_0.....4  
TxData6_1.....5  
REFCLK1.....6  
RxData5_1 .....7  
RxData5_0 .....8  
GNDIO .....9  
CRS_DV5.....10  
RxER5/FIFOSEL1......11  
TxEN5.....12  
TxData5_0.....13  
TxData5_1.....14  
RxData4_1 .....15  
RxData4_0 .....16  
CRS_DV4.....17  
VCCIO .....18  
GNDIO .....19  
RxER4/FIFOSEL0.....20  
TxEN4.....21  
TxData4_0.....22  
TxData4_1.....23  
MDC1 .....24  
MDIO1.....25  
MDINT1_L .....26  
RxData3_1 .....27  
RxData3_0 .....28  
VCCIO .....29  
GNDIO .....30  
CRS_DV3.....31  
RxER3.....32  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
Rev #  
TxEN3.....33  
TxData3_0.....34  
TxData3_1.....35  
RxData2_1 .....36  
RxData2_0 .....37  
GNDIO .....38  
CRS_DV2.....39  
RxER2/PREASEL.....40  
TxEN2.....41  
TxData2_0.....42  
TxData2_1.....43  
REFCLK0.....44  
RxData1_1 .....45  
RxData1_0 .....46  
VCCIO .....47  
GNDIO .....48  
CRS_DV1.....49  
RxER1/PAUSE .....50  
TxEN1.....51  
TxData1_0.....52  
20  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 2. RMII PQFP Pin List  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type  
Pin Symbol  
Type  
O, TS,  
SL  
29 VCCIO  
30 GNDIO  
Table 15 (page 47)  
Table 15 (page 47)  
1
2
CRS_DV6  
Table 5 (page 35)  
Table 5 (page 35)  
O, TS,  
SL, ID,  
I, ST  
RxER6/  
LINKHOLD  
O, TS,  
SL  
31 CRS_DV3  
32 RxER3  
Table 5 (page 35)  
Table 5 (page 35)  
Table 13 on  
page 42  
O, TS,  
SL, ID  
3
4
5
6
TxEN6  
I, ID  
I, ID  
I, ID  
I
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
TxData6_0  
TxData6_1  
REFCLK1  
33 TxEN3  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
34 TxData3_0  
35 TxData3_1  
O, TS,  
ID  
O, TS,  
ID  
7
RxData5_1  
Table 5 (page 35)  
36 RxData2_1  
Table 5 (page 35)  
8
9
RxData5_0  
GNDIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
37 RxData2_0  
38 GNDIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
O, TS,  
SL  
O, TS,  
SL  
10 CRS_DV5  
Table 5 (page 35)  
39 CRS_DV2  
Table 5 (page 35)  
Table 5 (page 35)  
O, TS,  
SL, ID,  
I, ST  
Table 5 (page 35)  
O, TS,  
SL, ID,  
I, ST  
RxER5 /  
11  
RxER2  
40  
Table 13 on  
page 42  
FIFOSEL1  
Table 13 on  
page 42  
(PREASEL)  
12 TxEN5  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
41 TxEN2  
I, ID  
I, ID  
I, ID  
I
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
13 TxData5_0  
14 TxData5_1  
42 TxData2_0  
43 TxData2_1  
44 REFCLK0  
O,  
TS,ID  
15 RxData4_1  
16 RxData4_0  
17 CRS_DV4  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
O, TS,  
ID  
45 RxData1_1  
Table 5 (page 35)  
O, TS  
O, TS,  
SL  
46 RxData1_0  
47 VCCIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
Table 15 (page 47)  
18 VCCIO  
19 GNDIO  
Table 15 (page 47)  
Table 15 (page 47)  
Table 5 (page 35)  
48 GNDIO  
O, TS,  
SL  
49 CRS_DV1  
Table 5 (page 35)  
Table 5 (page 35)  
O, TS,  
SL, ID,  
I, ST  
RxER4 /  
20  
Table 13 on  
page 42  
FIFOSEL0  
O, TS,  
SL, ID,  
I, ST  
RxER1/  
50  
PAUSE  
21 TxEN4  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
22 TxData4_0  
23 TxData4_1  
24 MDC1  
51 TxEN1  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
52 TxData1_0  
53 TxData1_1  
I, ST, ID Table 8 (page 39)  
I/O, TS,  
O, TS,  
ID  
25 MDIO1  
Table 8 (page 39)  
SL, IP  
54 RxData0_1  
Table 5 (page 35)  
OD, TS,  
55 RxData0_0  
56 VCCIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
Table 15 (page 47)  
26 MDINT1_L  
Table 8 (page 39)  
SL, IP  
O, TS,  
27 RxData3_1  
28 RxData3_0  
Table 5 (page 35)  
ID  
57 GNDIO  
O, TS,  
SL  
O, TS  
Table 5 (page 35)  
58 CRS_DV0  
Table 5 (page 35)  
Datasheet  
21  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type  
Pin Symbol  
Type  
O, TS,  
SL, ID,  
I, ST  
87 CFG_1  
88 ADD_4  
89 ADD_3  
90 ADD_2  
91 ADD_1  
92 ADD_0  
93 TxSLEW_1  
94 TxSLEW_0  
95 SD_2P5V  
96 SD0  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 10 (page 41)  
RxER0/  
59  
Table 5 (page 35)  
MDIX  
60  
61  
62  
63  
TxEN0  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
TxData0_0  
TxData0_1  
MDC0  
I, ST, ID Table 8 (page 39)  
I/O, TS,  
64  
MDIO0  
Table 8 (page 39)  
SL, IP  
65  
66  
VCCD  
GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
I
Table 10 (page 41)  
Table 10 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
Table 17 (page 49)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
OD, TS,  
SL, IP  
97 SD1  
I
67  
68  
69  
70  
71  
72  
MDINT0_L  
LED3_3_L  
LED3_2_L  
LED3_1_L  
LED2_3_L  
LED2_2_L  
Table 8 (page 39)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
98 VCCPECL  
99 GNDPECL  
100 SD2  
OD, TS,  
SO, IP  
OD, TS,  
SL, IP  
I
101 SD3  
I
OD, TS,  
SL, IP  
102 NC  
103 VCCR0  
104 TPFIP0  
105 TPFIN0  
106 GNDR0  
107 TPFOP0  
108 TPFON0  
109 VCCT0/1  
110 TPFON1  
111 TPFOP1  
112 GNDR1  
113 GNDT0/1  
114 TPFIN1  
115 TPFIP1  
116 VCCR1  
117 VCCR2  
118 TPFIP2  
119 TPFIN2  
120 GNDR2  
121 TPFOP2  
122 TPFON2  
123 VCCT2/3  
124 TPFON3  
OD, TS,  
SL, IP  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
73  
74  
75  
LED2_1_L  
GNDIO  
Table 14 (page 46)  
Table 15 (page 47)  
Table 14 (page 46)  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
LED1_3_L  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
76  
77  
LED1_2_L  
LED1_1_L  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
78  
79  
VCCD  
GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
80  
81  
82  
LED0_3_L  
LED0_2_L  
LED0_1_L  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
83  
84  
85  
86  
AMDIX_EN  
MDDIS  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 9 (page 40)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
AO/AI  
AO/AI  
CFG_3  
CFG_2  
AO/AI  
22  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type  
Pin Symbol  
Type  
125 TPFOP3  
126 GNDR3  
127 GNDT2/3  
128 TPFIN3  
129 TPFIP3  
130 VCCR3  
131 VCCR4  
132 TPFIP4  
133 TPFIN4  
134 GNDT4/5  
135 GNDR4  
136 TPFOP4  
137 TPFON4  
138 VCCT4/5  
139 TPFON5  
140 TPFOP5  
141 GNDR5  
142 TPFIN5  
143 TPFIP5  
144 VCCR5  
145 VCCR6  
146 TPFIP6  
147 TPFIN6  
148 GNDT6/7  
149 GNDR6  
150 TPFOP6  
151 TPFON6  
152 VCCT6/7  
153 TPFON7  
154 TPFOP7  
155 GNDR7  
156 TPFIN7  
157 TPFIP7  
158 VCCR7  
159 NC  
AO/AI  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 17 (page 49)  
Table 17 (page 49)  
Table 10 (page 41)  
Table 10 (page 41)  
163 GNDPECL  
164 VCCPECL  
165 SD6  
I
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
AO/AI  
166 SD7  
I
AO/AI  
167 TDI  
I, ST, IP Table 12 (page 42)  
O, TS Table 12 (page 42)  
168 TDO  
169 TMS  
I, ST, IP Table 12 (page 42)  
I, ST, ID Table 12 (page 42)  
I, ST, IP Table 12 (page 42)  
AO/AI  
170 TCK  
AO/AI  
171 TRST_L  
172 NC  
Table 17 (page 49)  
173 G_FX/TP_L I, ST, ID Table 13 (page 42)  
AO/AI  
174 PWRDWN  
175 RESET_L  
176 SECTION  
177 ModeSel0  
178 ModeSel1  
179 SGND  
I, ST, ID Table 13 (page 42)  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
AO/AI  
AO/AI  
AO/AI  
Table 15 (page 47)  
Table 14 (page 46)  
AO/AI  
OD, TS,  
SL, IP  
180 LED4_1_L  
181 LED4_2_L  
182 LED4_3_L  
AO/AI  
OD, TS,  
SL, IP  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
AO/AI  
183 GNDD  
184 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
AO/AI  
OD, TS,  
SL, IP  
185 LED5_1_L  
186 LED5_2_L  
Table 14 (page 46)  
Table 14 (page 46)  
AO/AI  
OD, TS,  
SL, IP  
AO/AI  
OD, TS,  
SL, IP  
187 LED5_3_L  
188 GNDIO  
Table 14 (page 46)  
Table 15 (page 47)  
Table 14 (page 46)  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
189 LED6_1_L  
AO/AI  
OD, TS,  
SL, IP  
190 LED6_2_L  
191 LED6_3_L  
192 LED7_1_L  
193 LED7_2_L  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
AO/AI  
OD, TS,  
SL, IP  
I
OD, TS,  
SL, IP  
160 NC  
161 SD4  
OD, TS,  
SL, IP  
162 SD5  
I
Datasheet  
23  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Pin Symbol  
Type  
OD, TS,  
SL, IP  
194 LED7_3_L  
Table 5 (page 35)  
195 GNDD  
196 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
O, TS,  
ID  
197 RxData7_1  
Table 5 (page 35)  
198 RxData7_0  
199 GNDIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
O, TS,  
SL  
200 CRS_DV7  
201 RxER7  
Table 5 (page 35)  
Table 5 (page 35)  
O, TS,  
SL, ID  
202 TxEN7  
I, ID  
I, ID  
I, ID  
Table 5 (page 35)  
Table 5 (page 35)  
Table 5 (page 35)  
203 TxData7_0  
204 TxData7_1  
O, TS,  
ID  
205 RxData6_1  
Table 5 (page 35)  
206 RxData6_0  
207 GNDIO  
208 VCCIO  
O, TS  
Table 5 (page 35)  
Table 15 (page 47)  
Table 15 (page 47)  
24  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.1.2  
PQFP Pin Assignments – SMII Configuration  
Figure 3 and Table 3, “SMII PQFP Pin List” on page 26 provide the LXT9785/LXT9785E SMII  
PQFP pin assignments.  
Figure 3. SMII 208-Pin PQFP Assignments  
NC..... 1  
NC/LINKHOLD..... 2  
NC..... 3  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
TxData6..... 4  
NC..... 5  
REFCLK1..... 6  
NC..... 7  
RxData5..... 8  
GNDIO..... 9  
NC..... 10  
FIFOSEL1..... 11  
NC..... 12  
TxData5..... 13  
NC..... 14  
NC..... 15  
RxData4..... 16  
NC..... 17  
VCCIO ..... 18  
GNDIO..... 19  
FIFOSEL0..... 20  
NC..... 21  
TxData4..... 22  
NC..... 23  
MDC1..... 24  
MDIO1..... 25  
MDINT1_L..... 26  
NC..... 27  
RxData3..... 28  
Rev #  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
VCCIO ..... 29  
GNDIO..... 30  
NC..... 31  
NC..... 32  
NC..... 33  
TxData3..... 34  
SYNC0..... 35  
NC..... 36  
RxData2..... 37  
GNDIO..... 38  
NC..... 39  
PREASEL..... 40  
NC..... 41  
TxData2..... 42  
NC..... 43  
REFCLK0..... 44  
NC..... 45  
RxData1..... 46  
VCCIO ..... 47  
GNDIO..... 48  
NC..... 49  
PAUSE..... 50  
NC..... 51  
TxData1..... 52  
Datasheet  
25  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 3. SMII PQFP Pin List  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
1
2
NC  
Table 16 (page 49)  
34  
35  
36  
37  
38  
39  
TxData3  
SYNC0  
NC  
I, ID  
I, ID  
Table 6 (page 38)  
Table 7 (page 38)  
Table 16 (page 49)  
NC/  
LINKHOLD  
Table 16 (page 49)  
Table 13 (page 42)  
I, ID,  
3
4
NC  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 5 (page 35)  
Table 16 (page 49)  
RxData2  
GNDIO  
NC  
O, TS Table 6 (page 38)  
TxData6  
NC  
Table 15 (page 47)  
Table 16 (page 49)  
5
6
REFCLK1  
NC  
I
I, ID,  
ST  
40  
PREASEL  
Table 13 (page 42)  
7
41  
42  
43  
44  
45  
46  
47  
48  
49  
NC  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 5 (page 35)  
Table 16 (page 49)  
8
RxData5  
GNDIO  
NC  
O, TS Table 6 (page 38)  
TxData2  
NC  
9
Table 15 (page 47)  
Table 16 (page 49)  
10  
REFCLK0  
NC  
I
I, ID,  
ST  
11  
FIFOSEL1  
Table 13 (page 42)  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 16 (page 49)  
RxData1  
VCCIO  
GNDIO  
NC  
O, TS Table 6 (page 38)  
TxData5  
NC  
Table 15 (page 47)  
Table 15 (page 47)  
Table 16 (page 49)  
NC  
RxData4  
NC  
O, TS Table 6 (page 38)  
I, ID,  
ST  
50  
PAUSE  
Table 13 (page 42)  
Table 16 (page 49)  
Table 15 (page 47)  
Table 15 (page 47)  
51  
52  
53  
54  
55  
56  
57  
58  
NC  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 16 (page 49)  
VCCIO  
GNDIO  
TxData1  
NC  
I, ID,  
ST  
Table 13 on  
page 42  
20  
FIFOSEL0  
NC  
21  
22  
23  
24  
NC  
I, ID  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
RxData0  
VCCIO  
GNDIO  
NC  
O, TS Table 6 (page 38)  
TxData4  
NC  
Table 15 (page 47)  
Table 15 (page 47)  
Table 16 (page 49)  
MDC1  
I, ST, ID Table 9 (page 40)  
I/O, TS,  
I, ID,  
ST  
25  
26  
MDIO1  
Table 9 (page 40)  
SL, IP  
59  
MDIX  
Table 13 (page 42)  
OD,  
60  
61  
62  
63  
NC  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
MDINT1_L  
TS, SL, Table 9 (page 40)  
IP  
TxData0  
NC  
27  
28  
29  
30  
31  
32  
33  
NC  
Table 16 (page 49)  
RxData3  
VCCIO  
GNDIO  
NC  
O, TS Table 6 (page 38)  
MDC0  
I, ST, ID Table 9 (page 40)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 16 (page 49)  
Table 16 (page 49)  
I/O,TS,  
64  
MDIO0  
Table 9 (page 40)  
SL, IP  
65  
66  
VCCD  
GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
NC  
OD,  
NC  
67  
MDINT0_L  
TS, SL, Table 9 (page 40)  
IP  
26  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
OD,  
TS,  
SO, IP  
92  
93  
94  
95  
96  
97  
98  
99  
ADD_0  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 10 (page 41)  
68  
69  
70  
71  
72  
LED3_3_L  
LED3_2_L  
LED3_1_L  
LED2_3_L  
LED2_2_L  
Table 14 (page 46)  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD,  
TS, SL, Table 14 (page 46)  
IP  
I
I
Table 10 (page 41)  
Table 10 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
Table 17 (page 49)  
Table 15 (page 47)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
SD1  
VCCPECL  
GNDPECL  
I
OD,  
TS, SL, Table 14 (page 46)  
IP  
100 SD2  
OD,  
101 SD3  
I
TS, SL, Table 14 (page 46)  
IP  
102 NC  
OD,  
103 VCCR0  
104 TPFIP0  
105 TPFIN0  
106 GNDR0  
107 TPFOP0  
108 TPFON0  
109 VCCT0/1  
110 TPFON1  
111 TPFOP1  
112 GNDR1  
113 GNDT0/1  
114 TPFIN1  
115 TPFIP1  
116 VCCR1  
117 VCCR2  
118 TPFIP2  
119 TPFIN2  
120 GNDR2  
121 TPFOP2  
122 TPFON2  
123 VCCT2/3  
124 TPFON3  
125 TPFOP3  
126 GNDR3  
127 GNDT2/3  
128 TPFIN3  
129 TPFIP3  
73  
74  
75  
LED2_1_L  
GNDIO  
TS, SL, Table 14 (page 46)  
IP  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
OD,  
LED1_3_L  
TS, SL, Table 14 (page 46)  
IP  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
OD,  
76  
77  
LED1_2_L  
LED1_1_L  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
Table 15 (page 47)  
78  
79  
VCCD  
GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
OD,  
80  
81  
82  
LED0_3_L  
LED0_2_L  
LED0_1_L  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
Table 15 (page 47)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
83  
84  
85  
86  
87  
88  
89  
90  
91  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 8 (page 39)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
Table 15 (page 47)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
Datasheet  
27  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
130 VCCR3  
131 VCCR4  
132 TPFIP4  
133 TPFIN4  
134 GNDT4/5  
135 GNDR4  
136 TPFOP4  
137 TPFON4  
138 VCCT4/5  
139 TPFON5  
140 TPFOP5  
141 GNDR5  
142 TPFIN5  
143 TPFIP5  
144 VCCR5  
145 VCCR6  
146 TPFIP6  
147 TPFIN6  
148 GNDT6/7  
149 GNDR6  
150 TPFOP6  
151 TPFON6  
152 VCCT6/7  
153 TPFON7  
154 TPFOP7  
155 GNDR7  
156 TPFIN7  
157 TPFIP7  
158 VCCR7  
159 NC  
Table 15 (page 47)  
Table 15 (page 47)  
168 TDO  
169 TMS  
170 TCK  
171 TRST_L  
172 NC  
O, TS Table 12 (page 42)  
I, ST, IP Table 12 (page 42)  
I, ST, ID Table 12 (page 42)  
I, ST, IP Table 12 (page 42)  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 17 (page 49)  
173 G_FX/TP_L I, ST, ID Table 13 (page 42)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
174 PWRDWN  
175 RESET_L  
176 Section  
I, ST, ID Table 13 (page 42)  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
Table 15 (page 47)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
177 ModeSel0  
178 ModeSel1  
179 SGND  
Table 15 (page 47)  
Table 15 (page 47)  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
OD,  
180 LED4_1_L  
181 LED4_2_L  
182 LED4_3_L  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
Table 15 (page 47)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
OD,  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
Table 15 (page 47)  
183 GNDD  
184 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
OD,  
185 LED5_1_L  
186 LED5_2_L  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
OD,  
AO/AI Table 11 (page 41)  
AO/AI Table 11 (page 41)  
TS, SL, Table 14 (page 46)  
IP  
Table 15 (page 47)  
OD,  
187 LED5_3_L  
188 GNDIO  
TS, SL, Table 14 (page 46)  
IP  
AI/AO Table 11 (page 41)  
AI/AO Table 11 (page 41)  
Table 15 (page 47)  
I
Table 15 (page 47)  
Table 17 (page 49)  
Table 17 (page 49)  
Table 10 (page 41)  
Table 10 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
OD,  
189 LED6_1_L  
TS, SL, Table 14 (page 46)  
IP  
160 NC  
OD,  
161 SD4  
190 LED6_2_L  
191 LED6_3_L  
192 LED7_1_L  
TS, SL, Table 14 (page 46)  
IP  
162 SD5  
I
OD,  
163 GNDPECL  
164 VCCPECL  
165 SD6  
I
TS, SL, Table 14 (page 46)  
IP  
OD,  
TS, SL, Table 14 (page 46)  
IP  
166 SD7  
I
167 TDI  
I, ST, IP Table 12 (page 42)  
28  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Pin Symbol  
Type1  
OD,  
193 LED7_2_L  
194 LED7_3_L  
TS, SL, Table 14 (page 46)  
IP  
OD,  
TS, SL, Table 5 (page 35)  
IP  
195 GNDD  
196 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
O, TS,  
ID  
197 NC  
Table 16 (page 49)  
198 RxData7  
199 GNDIO  
200 NC  
O, TS Table 6 (page 38)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 16 (page 49)  
Table 16 (page 49)  
Table 6 (page 38)  
Table 5 (page 35)  
Table 16 (page 49)  
201 NC  
202 NC  
203 TxData7  
204 SYNC1  
205 NC  
I, ID  
I, ID  
206 RxData6  
207 GNDIO  
208 VCCIO  
O, TS Table 6 (page 38)  
Table 15 (page 47)  
Table 15 (page 47)  
Datasheet  
29  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.1.3  
PQFP Pin Assignments – SS-SMII Configuration  
Figure 4 and Table 4, “SS-SMII PQFP Pin List” on page 31 provide the LXT9785/LXT9785E SS-  
SMII PQFP pin assignments.  
Figure 4. SS-SMII 208-Pin PQFP Assignments  
NC ..... 1  
NC/LINKHOLD ..... 2  
NC ..... 3  
156....... TPFIN7  
155....... GNDR7  
154....... TPFOP7  
153....... TPFON7  
152....... VCCT6/7  
151....... TPFON6  
150....... TPFOP6  
149....... GNDR6  
148....... GNDT6/7  
147....... TPFIN6  
146....... TPFIP6  
145....... VCCR6  
144....... VCCR5  
143....... TPFIP5  
142....... TPFIN5  
141....... GNDR5  
140....... TPFOP5  
139....... TPFON5  
138....... VCCT4/5  
137....... TPFON4  
136....... TPFOP4  
135....... GNDR4  
134....... GNDT4/5  
133....... TPFIN4  
132....... TPFIP4  
131....... VCCR4  
130....... VCCR3  
129....... TPFIP3  
128....... TPFIN3  
127....... GNDT2/3  
126....... GNDR3  
125....... TPFOP3  
124....... TPFON3  
123....... VCCT2/3  
122....... TPFON2  
121....... TPFOP2  
120....... GNDR2  
119....... TPFIN2  
118....... TPFIP2  
117....... VCCR2  
116....... VCCR1  
115....... TPFIP1  
114....... TPFIN1  
113....... GNDT0/1  
112....... GNDR1  
111....... TPFOP1  
110....... TPFON1  
109....... VCCT0/1  
108....... TPFON0  
107....... TPFOP0  
106....... GNDR0  
105....... TPFIN0  
TxData6 ..... 4  
NC ..... 5  
REFCLK1 ..... 6  
RxData5 ..... 7  
NC ..... 8  
GNDIO ..... 9  
NC ..... 10  
FIFOSEL1 ..... 11  
NC ..... 12  
TxData5 ..... 13  
NC ..... 14  
RxData4 ..... 15  
NC ..... 16  
RxSYNC1 ..... 17  
VCCIO ..... 18  
GNDIO ..... 19  
FIFOSEL0 ..... 20  
RxCLK1 ..... 21  
TxData4 ..... 22  
NC ..... 23  
MDC1 ..... 24  
MDIO1 ..... 25  
MDINT1_L ..... 26  
RxData3 ..... 27  
NC ..... 28  
VCCIO ..... 29  
GNDIO ..... 30  
NC ..... 31  
TxCLK0 ..... 32  
NC ..... 33  
TxData3 ..... 34  
TxSYNC0 ..... 35  
RxData2 ..... 36  
NC ..... 37  
GNDIO ..... 38  
NC ..... 39  
PREASEL ..... 40  
NC ..... 41  
TxData2 ..... 42  
NC ..... 43  
Rev #  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
REFCLK0 ..... 44  
RxData1 ..... 45  
NC ..... 46  
VCCIO ..... 47  
GNDIO ..... 48  
NC ..... 49  
PAUSE ..... 50  
NC ..... 51  
TxData1 ..... 52  
30  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 4. SS-SMII PQFP Pin List  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
1
2
NC  
Table 16 (page 49)  
33 NC  
Table 16 (page 49)  
Table 6 (page 38)  
Table 8 (page 39)  
NC/  
LINKHOLD  
I, ID  
Table 16 (page 49)  
Table 13 (page 42)  
34 TxData3  
35 TxSYNC0  
I, ID  
I, ID  
3
4
5
6
NC  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 6 (page 38)  
O, TS,  
ID  
36 RxData2  
Table 8 (page 39)  
TxData6  
NC  
I, ID  
I
I
37 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 13 (page 42)  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
Table 6 (page 38)  
REFCLK1  
38 GNDIO  
39 NC  
O, TS,  
ID  
I, ST  
7
RxData5  
Table 8 (page 39)  
40 PREASEL  
41 NC  
8
9
NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 16 (page 49)  
GNDIO  
42 TxData2  
43 NC  
I, ID  
10 NC  
11 FIFOSEL1  
12 NC  
I, ID, ST Table 13 (page 42)  
44 REFCLK0  
I
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
O, TS,  
ID  
45 RxData1  
Table 8 (page 39)  
13 TxData5  
14 NC  
46 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 16 (page 49)  
O, TS,  
ID  
47 VCCIO  
48 GNDIO  
49 NC  
15 RxData4  
16 NC  
Table 8 (page 39)  
Table 16 (page 49)  
Table 8 (page 39)  
O, TS,  
ID  
17 RxSYNC1  
50 PAUSE  
51 NC  
I, ID, ST Table 13 (page 42)  
I, ID  
Table 16 (page 49)  
Table 6 (page 38)  
Table 16 (page 49)  
18 VCCIO  
Table 15 (page 47)  
Table 15 (page 47)  
52 TxData1  
53 NC  
19 GNDIO  
20 FIFOSEL0  
I, ID, ST Table 13 (page 42)  
O, TS,  
ID  
O, TS,  
54 RxData0  
Table 8 (page 39)  
21 RxCLK1  
Table 8 (page 39)  
ID  
55 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 15 (page 47)  
22 TxData4  
23 NC  
I, ID  
Table 6 (page 38)  
Table 16 (page 49)  
56 VCCIO  
57 GNDIO  
24 MDC1  
I, ST, ID Table 9 (page 40)  
O, TS,  
ID  
I/O, TS,  
58 RxSYNC0  
Table 8 (page 39)  
25 MDIO1  
Table 9 (page 40)  
SL, IP  
59 MDIX  
60 RxCLK0  
61 TxData0  
62 NC  
I, ID, ST Table 13 (page 42)  
OD, TS,  
26 MDINT1_L  
27 RxData3  
Table 9 (page 40)  
SL, IP  
I, ID  
Table 8 (page 39)  
Table 6 (page 38)  
Table 16 (page 49)  
O, TS,  
Table 8 (page 39)  
ID  
28 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 8 (page 39)  
63 MDC0  
I, ST, ID Table 9 (page 40)  
29 VCCIO  
30 GNDIO  
31 NC  
I/O, TS,  
64 MDIO0  
Table 9 (page 40)  
SL, IP  
65 VCCD  
66 GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
32 TxCLK0  
I, ID  
Datasheet  
31  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
OD, TS,  
SL, IP  
97 SD1  
I
Table 10 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
Table 16 (page 49)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
67 MDINT0_L  
68 LED3_3_L  
69 LED3_2_L  
70 LED3_1_L  
71 LED2_3_L  
72 LED2_2_L  
Table 9 (page 40)  
98 VCCPECL  
99 GNDPECL  
100 SD2  
OD, TS,  
SO, IP  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
I
OD, TS,  
SL, IP  
101 SD3  
I
OD, TS,  
SL, IP  
102 NC  
103 VCCR0  
104 TPFIP0  
105 TPFIN0  
106 GNDR0  
107 TPFOP0  
108 TPFON0  
109 VCCT0/1  
110 TPFON1  
111 TPFOP1  
112 GNDR1  
113 GNDT0/1  
114 TPFIN1  
115 TPFIP1  
116 VCCR1  
117 VCCR2  
118 TPFIP2  
119 TPFIN2  
120 GNDR2  
121 TPFOP2  
122 TPFON2  
123 VCCT2/3  
124 TPFON3  
125 TPFOP3  
126 GNDR3  
127 GNDT2/3  
128 TPFIN3  
129 TPFIP3  
130 VCCR3  
131 VCCR4  
132 TPFIP4  
133 TPFIN4  
134 GNDT4/5  
OD, TS,  
SL, IP  
AI/AO  
AI/AO  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
73 LED2_1_L  
74 GNDIO  
Table 14 (page 46)  
Table 15 (page 47)  
Table 14 (page 46)  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
75 LED1_3_L  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
76 LED1_2_L  
77 LED1_1_L  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
78 VCCD  
79 GNDD  
Table 15 (page 47)  
Table 15 (page 47)  
AI/AO  
AI/AO  
OD, TS,  
SL, IP  
80 LED0_3_L  
81 LED0_2_L  
82 LED0_1_L  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
AI/AO  
AI/AO  
OD, TS,  
SL, IP  
83 AMDIX_EN  
84 MDDIS  
85 CFG_3  
86 CFG_2  
87 CFG_1  
88 ADD_4  
89 ADD_3  
90 ADD_2  
91 ADD_1  
92 ADD_0  
93 TxSLEW_1  
94 TxSLEW_0  
95 SD_2P5V  
96 SD0  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 9 (page 40)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 10 (page 41)  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
I
Table 10 (page 41)  
32  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Pin Symbol  
Type1  
Pin Symbol  
Type1  
135 GNDR4  
136 TPFOP4  
137 TPFON4  
138 VCCT4/5  
139 TPFON5  
140 TPFOP5  
141 GNDR5  
142 TPFIN5  
143 TPFIP5  
144 VCCR5  
145 VCCR6  
146 TPFIP6  
147 TPFIN6  
148 GNDT6/7  
149 GNDR6  
150 TPFOP6  
151 TPFON6  
152 VCCT6/7  
153 TPFON7  
154 TPFOP7  
155 GNDR7  
156 TPFIN7  
157 TPFIP7  
158 VCCR7  
159 NC  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 11 (page 41)  
Table 11 (page 41)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 16 (page 49)  
Table 10 (page 41)  
Table 10 (page 41)  
Table 15 (page 47)  
Table 15 (page 47)  
Table 10 (page 41)  
Table 10 (page 41)  
173 G_FX/TP_L  
174 PWRDWN  
175 RESET_L  
176 SECTION  
177 ModeSel0  
178 ModeSel1  
179 SGND  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, IP Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
I, ST, ID Table 13 (page 42)  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
Table 15 (page 47)  
Table 14 (page 46)  
AI/AO  
OD, TS,  
SL, IP  
180 LED4_1_L  
181 LED4_2_L  
182 LED4_3_L  
AI/AO  
OD, TS,  
SL, IP  
Table 14 (page 46)  
Table 14 (page 46)  
OD, TS,  
SL, IP  
AI/AO  
183 GNDD  
184 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
AI/AO  
OD, TS,  
SL, IP  
185 LED5_1_L  
186 LED5_2_L  
Table 14 (page 46)  
Table 14 (page 46)  
AO/AI  
OD, TS,  
SL, IP  
AO/AI  
OD, TS,  
SL, IP  
187 LED5_3_L  
188 GNDIO  
Table 14 (page 46)  
Table 15 (page 47)  
Table 14 (page 46)  
AO/AI  
AO/AI  
OD, TS,  
SL, IP  
189 LED6_1_L  
AI/AO  
OD, TS,  
SL, IP  
190 LED6_2_L  
191 LED6_3_L  
192 LED7_1_L  
193 LED7_2_L  
194 LED7_3_L  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
Table 14 (page 46)  
AI/AO  
OD, TS,  
SL, IP  
I
OD, TS,  
SL, IP  
160 NC  
161 SD4  
OD, TS,  
SL, IP  
162 SD5  
I
OD, TS,  
SL, IP  
163 GNDPECL  
164 VCCPECL  
165 SD6  
I
195 GNDD  
196 VCCD  
Table 15 (page 47)  
Table 15 (page 47)  
166 SD7  
I
O, TS,  
ID  
197 RxData7  
Table 8 (page 39)  
167 TDI  
I, ST, IP Table 12 (page 42)  
O, TS Table 12 (page 42)  
198 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 16 (page 49)  
Table 8 (page 39)  
Table 16 (page 49)  
168 TDO  
199 GNDIO  
200 NC  
169 TMS  
I, ST, IP Table 12 (page 42)  
I, ST, ID Table 12 (page 42)  
I, ST, IP Table 12 (page 42)  
170 TCK  
201 TxCLK1  
202 NC  
I, ID  
171 TRST_L  
172 NC  
Table 16 (page 49)  
Datasheet  
33  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Pin Symbol  
Type1  
203 TxData7  
I, ID  
I, ID  
Table 6 (page 38)  
Table 8 (page 39)  
204 TxSYNC1  
O, TS,  
ID  
205 RxData6  
Table 8 (page 39)  
206 NC  
Table 16 (page 49)  
Table 15 (page 47)  
Table 15 (page 47)  
207 GNDIO  
208 VCCIO  
34  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.2  
PQFP Signal Descriptions  
3.2.1  
Signal Name Conventions  
Signal names may contain either a port designation or a serial designation, or a combination of the  
two designations. Signal naming conventions are as follows:  
Port Number Only. Individual signals that apply to a particular port are designated by the  
Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit  
Enable signals would be identified as TxEN0, TxEN1, and TxEN2.  
Serial Number Only. A set of signals which are not tied to any specific port are designated by  
the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set  
of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3.  
Port and Serial Number. In cases where each port is assigned a set of multiple signals, each  
signal is designated in the following order: Signal Mnemonic, Port Designation, an  
underscore, and the serial designation. For example, a set of three Port Configuration signals  
would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and  
RxData2_0 and RxData2_1.  
3.2.2  
PQFP Signal Descriptions – RMII, SMII, and SS-SMII Configurations  
Table 5 through Table 17, “Receive FIFO Depth Considerations” on page 49 provide PQFP signal  
descriptions. Ball designations are included for cross-reference.  
Table 5. RMII Signal Descriptions – PQFP (Sheet 1 of 3)  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Reference Clock.  
50 MHz RMII reference clock is always required. RMII  
inputs are sampled on the rising edge of REFCLK,  
RMII outputs are sourced on the falling edge. See  
“Clock/SYNC Requirements” on page 124 for detailed  
CLK requirements.  
44  
6
E6,  
E12  
REFCLK0  
REFCLK1  
I
Transmit Data - Port 0.  
61  
62  
E2,  
F4  
TxData0_0  
TxData0_1  
I, ID  
I, ID  
I, ID  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 0 are clocked in synchronously to REFCLK.  
Transmit Data - Port 1.  
52  
53  
C3,  
D4  
TxData1_0  
TxData1_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 1 are clocked in synchronously to REFCLK  
Transmit Data - Port 2.  
42  
43  
B5  
A4  
TxData2_0  
TxData2_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 2 are clocked in synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
Datasheet  
35  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 5. RMII Signal Descriptions – PQFP (Sheet 2 of 3)  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Transmit Data - Port 3.  
34  
35  
D8,  
A6  
TxData3_0  
TxData3_1  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 3 are clocked in synchronously to REFCLK.  
Transmit Data - Port 4.  
22  
23  
A11,  
C10  
TxData4_0  
TxData4_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 4 are clocked in synchronously to REFCLK.  
Transmit Data - Port 5.  
13  
14  
B13,  
D11  
TxData5_0  
TxData5_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 5 are clocked in synchronously to REFCLK.  
Transmit Data - Port 6.  
4
5
D13,  
A16  
TxData6_0  
TxData6_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 6 are clocked in synchronously to REFCLK.  
Transmit Data - Port 7.  
203  
204  
E14,  
C16  
TxData7_0  
TxData7_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 7 are clocked in synchronously to REFCLK.  
60  
51  
41  
33  
21  
12  
3
E3,  
B2,  
C6,  
TxEN0  
TxEN1  
TxEN2  
TxEN3  
TxEN4  
TxEN5  
TxEN6  
TxEN7  
Transmit Enable - Ports 0-7.  
A7,  
I, ID  
Active High input enables respective port transmitter.  
This signal must be synchronous to the REFCLK.  
B11,  
A14,  
C14,  
D16  
202  
Receive Data - Port 0.  
55  
54  
C2,  
B1  
RxData0_0  
RxData0_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 1.  
46  
45  
A3,  
B4  
RxData1_0  
RxData1_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 2.  
37  
36  
B6,  
C7  
RxData2_0  
RxData2_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 3.  
28  
27  
D9,  
B9  
RxData3_0  
RxData3_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 4.  
16  
15  
A13,  
C12  
RxData4_0  
RxData4_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 5.  
8
7
B14,  
B15  
RxData5_0  
RxData5_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
36  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 5. RMII Signal Descriptions – PQFP (Sheet 3 of 3)  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Receive Data - Port 6.  
206  
205  
C15,  
B17  
RxData6_0  
RxData6_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 7.  
198  
197  
E16,  
F14  
RxData7_0  
RxData7_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
58  
49  
39  
31  
17  
10  
1
E4,  
C4,  
A5,  
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
Carrier Sense/Receive Data Valid - Ports 0-7.  
On detection of valid carrier, these signals are  
asserted asynchronously with respect to REFCLK.  
CRS_DVn is de-asserted on loss of carrier,  
synchronous to REFCLK.  
B8,  
O, TS, SL,  
ID  
B12,  
D12,  
B16,  
E15  
200  
Receive Error - Ports 0-7.  
These signals are synchronous to the respective  
REFCLK. Active High indicates that received code  
group is invalid, or that PLL is not locked.  
59  
50  
40  
32  
20  
11  
2
D2,  
D5,  
D7,  
RxER0  
RxER1  
RxER2  
RxER3  
RxER4  
RxER5  
RxER6  
RxER7  
The RxER signals have the following additional  
function pins:  
C8,  
O, TS, SL,  
ID  
RxER0 (MDIX)  
A12,  
A15,  
A17,  
D17  
RxER1 (PAUSE)  
RxER2 (PREASEL)  
RxER4 (FIFOSEL0)  
RxER5 (FIFOSEL1)  
RxER6 (LINKHOLD)  
201  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
Datasheet  
37  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 6. SMII/SS-SMII Common Signal Descriptions – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
61  
52  
42  
34  
22  
13  
4
E2,  
C3,  
B5,  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
Transmit Data - Ports 0-7.  
D8,  
These serial input streams provide data to be transmitted to  
the network. The LXT9785/9785E clocks the data in  
synchronously to REFCLK.  
I, ID  
A11,  
B13,  
D13,  
E14  
203  
Reference Clock.  
The LXT9785/9785E always requires a 125 MHz reference  
clock input. Refer to Functional Description for detailed clock  
requirements. REFCLK0 and REFCLK1 are always  
connected regardless of sectionalization mode.  
E6,  
44  
6
REFCLK0  
REFCLK1  
I
E12  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Table 7. SMII Specific Signal Descriptions – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SMII Synchronization.  
The MAC must generate a SYNC pulse every 10 REFCLK  
cycles to synchronize the SMII. SYNC0 is used when 1x8  
port sectionalization is selected. SYNC0 and SYNC1 are  
to be used when 2x4 port sectionalization is chosen.  
35  
204  
A6,  
C16  
SYNC0  
SYNC1  
I, ID  
55  
46  
37  
28  
16  
8
206  
198  
C2,  
A3,  
B6,  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7.  
D9,  
These serial output streams provide data received from  
the network. The LXT9785/9785E drives the data out  
synchronously to REFCLK.  
O, TS  
A13,  
B14,  
C15,  
E16  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware  
reset.  
38  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 8. SS-SMII Specific Signal Descriptions – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SS-SMII Transmit Synchronization.  
35  
204  
A6,  
C16  
TxSYNC0  
TxSYNC1  
The MAC must generate a TxSYNC pulse every 10 TxCLK  
cycles to mark the start of TxData segments. TxSYNC0 is  
used when 1x8 port sectionalization is selected.  
I, ID  
SS-SMII Receive Synchronization.  
The LXT9785/9785E generates these pulses every 10  
RxCLK cycles to mark the start of RxData segments for the  
MAC. RxSYNC1 is used when 1x8 port sectionalization is  
selected. RxSYNC0 may not be used. These outputs are  
only enabled when SS-SMII mode is enabled.  
RxSYNC0  
RxSYNC1  
58  
17  
E4,  
B12  
O, TS,  
ID  
SS-SMII Transmit Clock.  
The MAC sources this 125 MHz clock as the timing  
reference for TxData and TxSYNC. Only TxCLK0 is used  
when 1x8 port sectionalization is selected. See “Clock/  
SYNC Requirements” on page 124 for detailed clock  
requirements.  
32  
201  
C8,  
D17  
TxCLK0  
TxCLK1  
I, ID  
SS-SMII Receive Clock.  
The LXT9785/9785E generates these clocks, based on  
REFCLK, to provide a timing reference for RxData and  
RxSYNC to the MAC. RxCLK1 is used when 1x8 port  
sectionalization is selected. RxCLK0 may not be used. See  
“Clock/SYNC Requirements” on page 124 for detailed clock  
requirements. These outputs are only enabled when SS-  
SMII mode is enabled.  
60  
21  
E3,  
B11  
RxCLK0  
RxCLK1  
O, TS,  
ID  
54  
45  
36  
27  
15  
7
B1,  
B4,  
C7,  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7.  
B9,  
O, TS,  
ID  
These serial output streams provide data received from  
the network. The LXT9785/9785E drives the data out  
synchronously to REFCLK.  
C12,  
B15,  
B17,  
F14  
205  
197  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down  
modes and during H/W reset.  
Datasheet  
39  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 9. MDIO Control Interface Signals – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3,4  
PQFP  
PBGA  
Management Data Input/Output.  
Bidirectional serial data channel for communication  
between the PHY and MAC or switch ASIC. Only  
MDIO0 is used when 1x8 port sectionalization is  
selected. In 2x4 port sectionalization mode, MDIO0  
accesses ports 0-3 and MDIO1 accesses ports 4-7.  
Refer to Figure 21 on page 139.  
64  
25  
F3,  
A10  
MDIO0  
MDIO1  
I/O, TS, SL,  
IP  
Management Data Interrupt.  
When Register bit 18.1 = 1, an active Low output on this  
Pin indicates status change. Only MDINT0_L is used  
when 1x8 port sectionalization is selected. In 2x4 port  
sectionalization mode, MDINT0_L is associated with  
ports 0-3 and MDINT1_L is associated with ports 4-7.  
Refer to Figure 21 on page 139.  
67  
26  
F1,  
C9  
MDINT0_L  
MDINT1_L  
OD,TS, SL,  
IP  
Management Data Clock.  
Clock for the MDIO serial data channel. Maximum  
frequency is 20 MHz. Only MDC0 is used when 1x8 port  
sectionalization is selected. In 2x4 port  
sectionalization mode, MDC0 clocks ports 0-3 register  
accesses and MDC1 clocks ports 4-7 register accesses.  
Refer to Figure 21 on page 139.  
63  
24  
E1,  
B10  
MDC0  
MDC1  
I, ST, ID  
Management Disable.  
When MDDIS is tied High, the MDIO port is completely  
disabled and the Hardware Control Interface pins set  
their respective bits at power up and reset.  
When MDDIS is pulled Low at power up or reset, via the  
internal pull-down resistor or by tieing it to ground, the  
Hardware Control Interface Pins control only the initial  
or “default” values of their respective register bits. After  
the power-up/reset cycle is complete, bit control reverts  
to the MDIO serial channel.  
84  
L1  
MDDIS  
I, ST, ID  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. MDIO[0:1] and MDINT[0:1] outputs are three-stated in H/W Power-Down mode and during H/W reset.  
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
40  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 10. Signal Detect – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Signal Detect 2.5 Volt Interface.  
SD input threshold voltage select.  
95  
P1  
SD_2P5V  
I, ST, ID  
Tie to VCCPECL = Select 2.5 V LVPECL input levels  
Float or Tie to GNDPECL = Select 3.3 V LVPECL input  
levels  
Signal Detect - Ports 0-7.  
96  
97  
P2,  
N4,  
P3,  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
Signal Detect input from the fiber transceiver (these inputs  
are only active for ports operating in fiber mode).  
100  
101  
161  
162  
165  
166  
N5,  
I
Logic High = Normal operation (the process of searching  
for receive idles for the purpose of bringing link up is  
initiated)  
P15,  
P16,  
P17,  
N17  
Logic Low = Link is declared lost  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. Tie SD[0:7] inputs to GNDPECL if unused.  
Table 11. Network Interface Signal Descriptions – PQFP  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
Twisted-Pair/Fiber Outputs2, Positive &  
Negative, Ports 0-7.  
107, 108  
111, 110  
121, 122  
125, 124  
136, 137  
140, 139  
150, 151  
154, 153  
T2, U1,  
T3, R4,  
T6, U5,  
TPFOP0, TPFON0  
TPFOP1, TPFON1  
TPFOP2, TPFON2  
TPFOP3, TPFON3  
TPFOP4, TPFON4  
TPFOP5, TPFON5  
TPFOP6, TPFON6  
TPFOP7, TPFON7  
During 100BASE-TX or 10BASE-T operation,  
TPFO pins drive 802.3 compliant pulses onto  
the line.  
U7, T7,  
AO/AI  
T10, R10,  
T11, U11,  
T14,U15,  
R14, T15  
During 100BASE-FX operation, TPFO pins  
produce differential LVPECL outputs for fiber  
transceivers.  
Twisted-Pair/Fiber Inputs3, Positive &  
Negative, Ports 0-7.  
104, 105  
115, 114  
118, 119  
129, 128  
132, 133  
143, 142  
146, 147  
157, 156  
R2, T1,  
U3, T4,  
R6, T5,  
T8, R8,  
T9, U9,  
U13, T12,  
R12, T13,  
R16, T16  
TPFIP0, TPFIN0  
TPFIP1, TPFIN1  
TPFIP2, TPFIN2  
TPFIP3, TPFIN3  
TPFIP4, TPFIN4  
TPFIP5, TPFIN5  
TPFIP6, TPFIN6  
TPFIP7, TPFIN7  
During 100BASE-TX or 10BASE-T operation,  
TPFI pins receive differential 100BASE-TX or  
10BASE-T signals from the line.  
AI/AO  
During 100BASE-FX operation, TPFI pins  
receive differential LVPECL inputs from fiber  
transceivers.  
1. Type Column Coding: AI = Analog Input, AO = Analog Output.  
2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is,  
twisted-pair, non-crossover MDI mode].  
3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is,  
twisted-pair, non-crossover MDI mode].  
Datasheet  
41  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 12. JTAG Test Signal Descriptions – PQFP  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Test Data Input.  
167  
N14  
TDI  
I, ST, IP  
Test data sampled with respect to the rising edge of TCK.  
Test Data Output.  
168  
169  
170  
N15  
N16  
M16  
TDO  
TMS  
TCK  
O, TS  
I, ST, IP  
I, ST, ID  
Test data driven with respect to the falling edge of TCK.  
Test Mode Select.  
Test Clock.  
Clock input for JTAG test.  
Test Reset.  
171  
M17  
TRST  
I, ST, IP  
Reset input for JTAG test.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT =  
Schmitt Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. TDO output is three-stated in H/W Power-Down mode and during H/W reset.  
Table 13. Miscellaneous Signal Descriptions – PQFP (Sheet 1 of 4)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Tx Output Slew Controls 0 and 1 Defaults.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of Register bits  
27.11:10 for all ports. These register bits can be read  
and overwritten after startup / reset.  
These pins select the TX output slew rate for all ports  
(rise and fall time) as follows:  
TxSLEW_0  
TxSLEW_1  
94  
93  
N3,  
M4  
I, ST, ID  
Slew Rate (Rise and Fall  
TxSLEW_1 TxSLEW_0  
Time)  
0
0
1
1
0
1
0
1
3.3 ns  
3.6 ns  
3.9 ns  
4.2 ns  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
42  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 13. Miscellaneous Signal Descriptions – PQFP (Sheet 2 of 4)  
Pin/Ball  
Designation  
Symbol  
Type1  
I, ID, ST  
I, ST, ID  
Signal Description2  
PQFP  
PBGA  
Pause Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 4.10 for  
all ports. This register bit can be read and overwritten  
after startup / reset.  
When High, the LXT9785/9785E advertises Pause  
capabilities on all ports during auto-negotiation.  
50  
D5  
PAUSE  
This pin is shared with RMII-RxER1. An external pull-  
up resistor (see applications section for value) can be  
used to set Pause active while RxER1 is three-stated  
during H/W reset. If no pull-up is used, the default  
Pause state is set inactive via the internal pull-down  
resistor.  
Power-Down.  
When High, forces the LXT9785/9785E into global  
power-down mode.  
174  
175  
L14  
PWRDWN  
RESET_L  
Pin is not on JTAG chain.  
Reset.  
This active low input is ORed with the control register  
M15  
I, ST, IP Reset Register bit 0.15. When held Low, all outputs are  
forced to inactive state.  
Pin is not on JTAG chain.  
Address <4:0>.  
Sets base address. Each port adds its port number  
(starting with 0) to this address to determine its PHY  
address.  
88  
89  
90  
91  
92  
L4,  
M2,  
M3,  
N1,  
N2  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
Port 0 Address = Base  
Port 1 Address = Base + 1  
Port 2 Address = Base + 2  
Port 3 Address = Base + 3  
Port 4 Address = Base + 4  
Port 5 Address = Base + 5  
Port 6 Address = Base + 6  
Port 7 Address = Base + 7  
I, ST, ID  
Mode Select[1:0].  
00 = RMII  
01 = SMII  
178  
177  
L17,  
L16  
MODESEL_1  
MODESEL_0  
I, ST, ID  
I, ST, ID  
10 = SS-SMII  
11 = Reserved  
All ports are configured the same. Interfaces cannot be  
mixed and must be all RMII, SMII, or SS-SMII.  
Sectionalization Select.  
This pin selects sectionalization into separate ports.  
0 = 1x8 ports,  
176  
L15  
SECTION  
1 = 2x4 ports  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
Datasheet  
43  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 13. Miscellaneous Signal Descriptions – PQFP (Sheet 3 of 4)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Auto MDIX Enable Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 27.9 for  
all ports. These register bits can be read and  
overwritten after startup / reset. Refer to Table 40 on  
page 118.  
83  
K1  
AMDIX_EN  
I, ST, IP  
When active (High), automatic MDI crossover (MDIX)  
(regardless of segmentation) is selected for all ports.  
When inactive (Low) MDIX is selected according to the  
MDIX pin.  
MDIX Select Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 27.8 for  
all ports. These register bits can be read and  
overwritten after startup / reset. Refer to Table 40,  
“MDIX Selection” on page 118.  
When AMDIX_EN is active this pin is ignored.  
When AMDIX_EN is inactive, all ports are forced to the  
MDI or the MDIX function regardless of segmentation.  
If this pin is active (high), MDI crossover (MDIX) is  
selected. If this pin is inactive, non-crossover MDI  
mode is set.  
59  
D2  
MDIX  
I, ID, ST  
This pin is shared with RMII-RxER0. An external pull-  
up resistor (see applications section for value) can be  
used to set MDIX active while RxER0 is three-stated  
during H/W reset. If no pull-up is used, the default  
MDIX state is set inactive via the internal pull-down  
resistor. Do not tie this pin directly to VCCIO (vs. using  
a pull-up) in non-RMII modes.  
Global Port Configuration Defaults 1-3.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of register bits  
shown in Table 42, “Global Hardware Configuration  
85  
86  
87  
L2,  
L3,  
M1  
CFG_3  
CFG_2  
CFG_1  
I, ST, ID Settings” on page 128 for all ports. These register bits  
can be read and overwritten after startup / reset.  
When operating in Hardware Control Mode, these pins  
provide configuration control options for all the ports  
(refer to page 128 for details).  
Global FX/TP_L Enable Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 16.0 for  
all ports. These register bits can be read and  
overwritten after startup / reset. Refer to Table 92, “Port  
173  
M14  
G_FX/TP_L  
I, ST, ID  
Configuration Register (Address 16, Hex 10)” on page 207.  
This input selects whether all the ports are defaulted to  
TP vs. FX mode.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
44  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 13. Miscellaneous Signal Descriptions – PQFP (Sheet 4 of 4)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
FIFO Select <1:0>.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of Register bits  
18.15:14 for all ports. These register bits can be read  
and overwritten after startup/reset.  
These pins are shared with RMII-RxER<5:4>. An  
external pull-up resistor (see applications section for  
value) can be used to set FIFO Select<1:0> to active  
while RxER<5:4> are three-stated during hardware  
reset. If no pull-up is used, the default FIFO select  
state is set via the internal pull-down resistors.  
11  
20  
A15  
A12  
FIFOSEL1  
FIFOSEL0  
I, ID, ST  
See Table 17, “Receive FIFO Depth Considerations”  
on page 49.  
Preamble Select.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 16.5 for  
all ports. This register bit can be read and overwritten  
after startup/reset.  
This pin is shared with RMII-RxER2. An external pull-  
up resistor (see applications section for value) can be  
used to set Preamble Select to active while RxER2 is  
three-stated during hardware reset. If no pull-up is  
used, the default Preamble Select state is set via the  
internal pull-down resistors.  
40  
D7  
PREASEL  
I, ID, ST  
Note: Preamble select has no effect in 100 Mbps  
operation.  
LINKHOLD Default. This pin is read at startup or  
reset. Its value at that time is used to set the default  
state of Register bit 0.11 for all ports. This register bit  
can be read and overwritten after startup / reset. When  
High, the LXT9785/9785E powers down all ports.  
2
A17  
LINKHOLD3  
ID  
This pin is shared with RMII-RxER6. An external pull-  
up resistor (see applications section for value) can be  
used to set LINKHOLD active while RxER6 is tri-stated  
during H/W reset. If no pull-up is used, the default  
LINKHOLD state is set inactive via the internal pull-  
down resistor.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
Datasheet  
45  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 14. LED Signal Descriptions – PQFP (Sheet 1 of 2)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Port 0 LED Drivers 1-3.  
These pins drive LED indicators for Port 0. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
82  
81  
80  
K3,  
K2,  
J1  
LED0_1_L  
LED0_2_L  
LED0_3_L  
OD, TS, SL,  
IP  
Port 1 LED Drivers 1-3.  
These pins drive LED indicators for Port 1. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
77  
76  
75  
J4,  
J3,  
H1  
LED1_1_L  
LED1_2_L  
LED1_3_L  
OD, TS, SL,  
IP  
Port 2 LED Drivers 1-3.  
These pins drive LED indicators for Port 2. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
73  
72  
71  
H2,  
H3,  
G1  
LED2_1_L  
LED2_2_L  
LED2_3_L  
OD, TS, SL,  
IP  
Port 3 LED Drivers 1-3.  
These pins drive LED indicators for Port 3. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
70  
69  
68  
F2,  
G3,  
G4  
LED3_1_L  
LED3_2_L  
LED3_3_L  
OD, TS, SL,  
IP  
Port 4 LED Drivers 1-3.  
These pins drive LED indicators for Port 4. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
180  
181  
182  
K16,  
K17,  
J17  
LED4_1_L  
LED4_2_L  
LED4_3_L  
OD, TS, SL,  
IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.  
46  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 14. LED Signal Descriptions – PQFP (Sheet 2 of 2)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Port 5 LED Drivers 1-3.  
These pins drive LED indicators for Port 5. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
185  
186  
187  
J15,  
J16,  
H17  
LED5_1_L  
LED5_2_L  
LED5_3_L  
OD, TS, SL,  
IP  
Port 6 LED Drivers 1-3.  
These pins drive LED indicators for Port 6. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
189  
190  
191  
H15,  
H16,  
G17  
LED6_1_L  
LED6_2_L  
LED6_3_L  
OD, TS, SL,  
IP  
Port 7 LED Drivers 1-3.  
These pins drive LED indicators for Port 7. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96, “LED Configuration Register (Address  
20, Hex 14)” on page 213 for details).  
192  
193  
194  
G15,  
F17,  
F16  
LED7_1_L  
LED7_2_L  
LED7_3_L  
OD, TS, SL,  
IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.  
Table 15. Power Supply Signal Descriptions – PQFP (Sheet 1 of 2)  
Pin/Ball Designation  
Symbol  
Type  
Signal Description  
PQFP  
PBGA  
Digital Power Supply - Core.  
65, 78, 184,  
196  
G13, J14,  
F5, J5  
VCCD  
-
+2.5 V supply for core digital circuits.  
Digital Power Supply - I/O Ring.  
+2.5/3.3 V supply for digital I/O circuits. The digital  
input circuits running off of this rail, having a TTL-level  
threshold and over-voltage protection, may be  
interfaced with 3.3/5.0 V, when the IO supply is 3.3 V,  
and 2.5/3.3/5.0 V when 2.5 V.  
A2, A8,  
C1, C11,  
D14  
18, 29, 47,  
56, 208  
VCCIO  
-
Digital Power Supply - PECL Signal Detect Inputs.  
+2.5/3.3 V supply for PECL Signal Detect input  
circuits. If Fiber Mode is not used, tie these pins to  
GNDPECL to save power.  
98, 164  
L13, L5  
VCCPECL  
VCCR  
-
-
103, 116,  
117, 130,  
131, 144,  
145, 158  
N13, P4,  
P7, P8,  
P9, P10,  
Analog Power Supply - Receive.  
+2.5 V supply for all analog receive circuits.  
P11, P12  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
Datasheet  
47  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 15. Power Supply Signal Descriptions – PQFP (Sheet 2 of 2)  
Pin/Ball Designation  
Symbol  
Type  
Signal Description  
PQFP  
PBGA  
N6, N7,  
N9, N11,  
N12  
Analog Power Supply - Transmit.  
109, 123,  
138, 152  
VCCT  
-
+2.5 V supply for all analog transmit circuits.  
A1, A9,  
B3, B7,  
C5, C13,  
C17, D1,  
D3, D6,  
D10, D15,  
E5, E7,  
E9, E11,  
E13, E17,  
F13, H8,  
H9, H10,  
J8, J9,  
Digital Ground.  
66, 79,  
183, 195  
Ground return for core digital supplies (VCCD). All  
ground pins can be tied together using a single ground  
plane.  
GNDD  
-
J10, K8,  
K9, K10  
9, 19, 30,  
38, 48, 57,  
74, 188,  
Digital GND - I/O Ring.  
GNDIO  
GNDPECL  
GNDR  
-
-
-
Ground return for digital I/O circuits (VCCIO).  
199, 207  
Digital GND - PECL Signal Detect Inputs.  
99, 163  
M5, M13  
Ground return for PECL Signal Detect input circuits.  
106, 112,  
120, 126,  
135, 141,  
149, 155  
P5, P6,  
P13, R7,  
R9, R11,  
R13, U8  
Analog Ground - Receive.  
Ground return for receive analog supply. All ground  
pins can be tied together using a single ground plane.  
P14, R1,  
R3, R5,  
R15, R17,  
T17, U2,  
U4, U6,  
U10, U12,  
U14, U16,  
U17  
Analog Ground - Transmit.  
113, 127,  
134, 148  
GNDT  
SGND  
-
-
Ground return for transmit analog supply. All ground  
pins can be tied together using a single ground plane.  
Substrate Ground.  
179  
K14  
Ground for chip substrate. All ground pins can be tied  
together using a single ground plane.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
48  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 16. Unused/Reserved Pins – PQFP  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
J13, K4,  
K15  
NC  
NC  
No Connection.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2.  
Table 17. Receive FIFO Depth Considerations  
Register 18.15  
Value  
Register 18.14  
Value  
FIFOSEL1  
FIFOSEL0  
0
0
1
1
0
1
0
1
1
1
0
0
0
1
0
1
Datasheet  
49  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.3  
BGA23 Ball Assignments  
The following sections provide BGA23 ball location and signal description information for RMII,  
SMII, and SS-SMII:  
Table 3.3.1 “RMII BGA23 Ball List” on page 51  
Table 3.3.2 “SMII BGA23 Ball List” on page 61  
Table 3.3.3 “SS-SMII BGA23 Ball List” on page 71  
Table 3.4 “BGA23 Signal Descriptions” on page 81  
Figure 5 illustrates the LXT9785/LXT9785E 241-ball BGA23 ball locations for RMII, SMII, and  
SS-SMII.  
Figure 5. 241-Ball BGA23 Assignments (Top View)  
1
A1  
B1  
2
A2  
B2  
3
4
5
6
A6  
B6  
7
8
9
10 11 12 13 14 15 16 17  
A3  
B3  
A4 A5  
B4 B5  
A7  
B7  
A8  
B8  
A9 A10 A11 A12 A13 A14 A15 A16 A17  
B9 B10 B11 B12 B13 B14 B15 B16 B17  
A
B
C
D
E
F
A
B
C
D
E
F
C1  
D1  
E1  
F1  
C2  
D2  
E2  
F2  
C3  
D3  
E3  
F3  
C4 C5  
D4 D5  
E4 E5  
C6  
D6  
E6  
F6  
C7  
D7  
E7  
F7  
C8  
D8  
E8  
F8  
C9 C10 C11 C12 C13 C14 C15 C16 C17  
D9 D10 D11 D12 D13 D14 D15 D16 D17  
E9  
E10 E11 E12 E13 E14 E15 E16 E17  
F4  
F5  
F9 F10 F11 F12 F13 F14 F15 F16 F17  
G9 G10 G11 G12 G13 G14 G15 G16 G17  
H9 H10 H11 H12 H13 H14 H15 H16 H17  
G
H
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G
H
H1  
J1  
H2  
J2  
H3  
J3  
H4  
J4  
H5  
J5  
H6  
J6  
H7  
J7  
H8  
J8  
J9  
J10 J11 J12 J13 J14 J15 J16  
J17  
J
K
L
J
K1  
L1  
K2  
L2  
K3  
L3  
K4  
L4  
K5  
L5  
K6  
L6  
K7  
L7  
K8  
L8  
K9 K10 K11 K12 K13 K14 K15 K16 K17  
L9 L10 L11 L12 L13 L14 L15 L16 L17  
K
L
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17  
M
N
P
R
T
M
N
P
R
T
N1  
P1  
N2  
P2  
N3  
P3  
N4  
P4  
N5  
P5  
N6  
P6  
N7  
P7  
N8  
P8  
N9 N10 N11 N12 N13 N14 N15 N16 N17  
P9 P10 P11 P12 P13 P14 P15 P16 P17  
R1  
T1  
U1  
R2  
T2  
U2  
R3  
T3  
U3  
R4  
T4  
U4  
R5  
T5  
U5  
R6  
T6  
U6  
R7  
T7  
U7  
R8  
T8  
U8  
R9 R10 R11 R12 R13 R14 R15 R16 R17  
T9 T10 T11 T12 T13 T14 T15 T16 T17  
U9 U10 U11 U12 U13 U14 U15 U16 U17  
U
U
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
= No Ball  
B1498-01  
Datasheet  
50  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.3.1  
RMII BGA23 Ball List  
The following tables provide the RMII BGA23 ball locations and signal names arranged in  
alphanumeric order as follows:  
Table 18 “RMII BGA23 Ball List in Alphanumeric Order by Signal Name”  
Table 19 “RMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 56  
Table 18. RMII BGA23 Ball List in Alphanumeric Order by Signal Name  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
ADD_0  
ADD_1  
ADD_2  
ADD_3  
ADD_4  
AMDIX_EN  
CFG_1  
CFG_2  
CFG_3  
N2 I, ST, ID  
N1 I, ST, ID  
M3 I, ST, ID  
M2 I, ST, ID  
L4 I, ST, ID  
K1 I, ST, IP  
M1 I, ST, ID  
L3 I, ST, ID  
L2 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDPECL  
GNDPECL  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
D3  
D6  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
D10  
D15  
E5  
E7  
E9  
E11  
E13  
E17  
F13  
H8  
O, TS, SL,  
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
E4  
ID  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
O, TS, SL,  
C4  
ID  
H9  
O, TS, SL,  
A5  
ID  
H10  
J8  
O, TS, SL,  
B8  
ID  
J9  
O, TS, SL,  
B12  
ID  
J10  
K8  
O, TS, SL,  
D12  
ID  
K9  
O, TS, SL,  
B16  
ID  
K10  
M5  
M13  
P5  
O, TS, SL,  
E15  
ID  
G_FX/TP_L M14 I, ST, ID  
Table 32 (page 89)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
A1  
A9  
P6  
P13  
R7  
B3  
B7  
R9  
C5  
R11  
R13  
U8  
C13  
C17  
D1  
51  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
OD, TS,  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
P14  
R1  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
LED4_3_L  
LED5_1_L  
LED5_2_L  
LED5_3_L  
LED6_1_L  
LED6_2_L  
LED6_3_L  
LED7_1_L  
LED7_2_L  
LED7_3_L  
J17  
J15  
J16  
H17  
H15  
H16  
G17  
G15  
F17  
F16  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
SL, IP  
OD, TS,  
SL, IP  
R3  
R5  
OD, TS,  
SL, IP  
R15  
R17  
T17  
U2  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
U4  
OD, TS,  
SL, IP  
U6  
OD, TS,  
SL, IP  
U10  
U12  
U14  
U16  
U17  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
LED0_1_L  
LED0_2_L  
LED0_3_L  
LED1_1_L  
LED1_2_L  
LED1_3_L  
LED2_1_L  
LED2_2_L  
LED2_3_L  
LED3_1_L  
LED3_2_L  
LED3_3_L  
LED4_1_L  
LED4_2_L  
K3  
K2  
J1  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
MDC0  
MDC1  
MDDIS  
E1 I, ST, ID  
B10 I, ST, ID  
L1 I, ST, ID  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
F1  
MDINT0_L  
MDINT1_L  
MDIO0  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
SL, IP  
OD, TS,  
SL, IP  
J4  
OD, TS,  
C9  
SL, IP  
OD, TS,  
SL, IP  
J3  
I/O, TS,  
F3  
SL, IP  
OD, TS,  
SL, IP  
H1  
H2  
H3  
G1  
F2  
I/O, TS,  
A10  
MDIO1  
SL, IP  
OD, TS,  
SL, IP  
ModeSel0  
ModeSel1  
NC  
L16 I, ST, ID  
L17 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
F15  
G2  
OD, TS,  
SL, IP  
NC  
OD, TS,  
SL, IP  
NC  
G5  
NC  
G14  
G16  
H4  
OD, TS,  
SL, IP  
G3  
G4  
K16  
K17  
NC  
NC  
OD, TS,  
SO, IP  
NC  
H14  
J2  
OD, TS,  
SL, IP  
NC  
NC  
J13  
K4  
OD, TS,  
SL, IP  
NC  
NC  
K15  
Datasheet  
52  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
No ball  
No ball  
No ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
F6  
F7  
No Ball  
L11  
M6  
No Ball  
F8  
No Ball  
M7  
E8  
No Ball  
M8  
E10  
F9  
No Ball  
M9  
No Ball  
M10  
M11  
M12  
N8  
F10  
F11  
F12  
G6  
No Ball  
No Ball  
No Ball  
No Ball  
N10  
G7  
PWRDWN  
REFCLK0  
REFCLK1  
RESET_L  
RxData0_0  
RxData0_1  
RxData1_0  
RxData1_1  
RxData2_0  
RxData2_1  
RxData3_0  
RxData3_1  
RxData4_0  
RxData4_1  
RxData5_0  
RxData5_1  
RxData6_0  
RxData6_1  
RxData7_0  
RxData7_1  
L14 I, ST, ID  
Table 32 (page 89)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 32 (page 89)  
Table 24 (page 81)  
G8  
E6  
I
I
G9  
E12  
G10  
G11  
G12  
H5  
M15 I, ST, IP  
C2 O, TS  
B1 O, TS, ID Table 24 (page 81)  
A3 O, TS Table 24 (page 81)  
B4 O, TS, ID Table 24 (page 81)  
B6 O, TS Table 24 (page 81)  
C7 O, TS, ID Table 24 (page 81)  
D9 O, TS Table 24 (page 81)  
B9 O, TS, ID Table 24 (page 81)  
H6  
H7  
H11  
H12  
H13  
J6  
A13 O, TS  
C12 O, TS,ID  
B14 O, TS  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
J7  
J11  
J12  
K5  
B15 O, TS, ID Table 24 (page 81)  
C15 O, TS Table 24 (page 81)  
B17 O, TS, ID Table 24 (page 81)  
E16 O, TS Table 24 (page 81)  
K6  
K7  
K11  
K12  
K13  
L6  
F14 O, TS, ID Table 24 (page 81)  
RxER0  
(MDIX)  
O, TS, SL, Table 24 (page 81)  
D2  
ID, I, ST  
Table 32 (page 89)  
RxER1  
(PAUSE)  
O, TS, SL, Table 24 (page 81)  
ID, I, ST Table 32 (page 89)  
D5  
D7  
L7  
RxER2  
(PREASEL)  
O, TS, SL, Table 24 (page 81)  
ID, I, ST  
Table 32 (page 89)  
L8  
O, TS, SL,  
ID  
L9  
RxER3  
C8  
Table 24 (page 81)  
L10  
L11  
RxER4  
(FIFOSEL0)  
O, TS, SL, Table 24 (page 81)  
ID, I, ST  
A12  
Table 32 (page 89)  
53  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
RxER5  
(FIFOSEL1)  
O, TS, SL, Table 24 (page 81)  
TPFON2  
TPFON3  
TPFON4  
TPFON5  
TPFON6  
TPFON7  
TPFOP0  
TPFOP1  
TPFOP2  
TPFOP3  
TPFOP4  
TPFOP5  
TPFOP6  
TPFOP7  
TRST_L  
U5 AO/AI  
T7 AO/AI  
R10 AO/AI  
U11 AO/AI  
U15 AO/AI  
T15 AO/AI  
T2 AO/AI  
T3 AO/AI  
T6 AO/AI  
U7 AO/AI  
T10 AO/AI  
T11 AO/AI  
T14 AO/AI  
R14 AO/AI  
M17 I, ST, IP  
E2 I, ID  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 31 (page 88)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
A15  
A17  
D17  
ID, I, ST  
Table 32 (page 89)  
RxER6  
LINKHOLD  
O, TS, SL, Table 24 (page 81)  
I, ID, ST  
Table 32 (page 89)  
Table 24 (page 81)  
O, TS, SL,  
ID  
RxER7  
SD_2P5V  
SD0  
P1 I, ST, ID  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
P2  
N4  
I
I
I
I
I
I
I
I
SD1  
SD2  
P3  
SD3  
N5  
SD4  
P15  
P16  
P17  
N17  
SD5  
SD6  
SD7  
SECTION  
SGND  
TCK  
L15 I, ST, ID  
K14  
TxData0_0  
TxData0_1  
TxData1_0  
TxData1_1  
TxData2_0  
TxData2_1  
TxData3_0  
TxData3_1  
TxData4_0  
TxData4_1  
TxData5_0  
TxData5_1  
TxData6_0  
TxData6_1  
TxData7_0  
TxData7_1  
TxEN0  
M16 I, ST, ID  
N14 I, ST, IP  
N15 O, TS  
N16 I, ST, IP  
T1 AO/AI  
T4 AO/AI  
T5 AO/AI  
R8 AO/AI  
U9 AO/AI  
T12 AO/AI  
T13 AO/AI  
T16 AO/AI  
R2 AO/AI  
U3 AO/AI  
R6 AO/AI  
T8 AO/AI  
T9 AO/AI  
U13 AO/AI  
R12 AO/AI  
R16 AO/AI  
U1 AO/AI  
R4 AO/AI  
F4 I, ID  
TDI  
C3 I, ID  
TDO  
D4 I, ID  
TMS  
B5 I, ID  
TPFIN0  
TPFIN1  
TPFIN2  
TPFIN3  
TPFIN4  
TPFIN5  
TPFIN6  
TPFIN7  
TPFIP0  
TPFIP1  
TPFIP2  
TPFIP3  
TPFIP4  
TPFIP5  
TPFIP6  
TPFIP7  
TPFON0  
TPFON1  
A4 I, ID  
D8 I, ID  
A6 I, ID  
A11 I, ID  
C10 I, ID  
B13 I, ID  
D11 I, ID  
D13 I, ID  
A16 I, ID  
E14 I, ID  
C16 I, ID  
E3 I, ID  
TxEN1  
B2 I, ID  
TxEN2  
C6 I, ID  
TxEN3  
A7 I, ID  
TxEN4  
B11 I, ID  
A14 I, ID  
C14 I, ID  
TxEN5  
TxEN6  
Datasheet  
54  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Signal  
Ball Type1  
TxEN7  
TxSLEW_0  
TxSLEW_1  
VCCD  
D16 I, ID  
Table 24 (page 81)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
N3 I, ST, ID  
M4 I, ST, ID  
F5  
G13  
J5  
VCCD  
VCCD  
VCCD  
J14  
A2  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCPECL  
VCCPECL  
VCCR  
A8  
C1  
C11  
D14  
L5  
L13  
N13  
P4  
VCCR  
VCCR  
P7  
VCCR  
P8  
VCCR  
P9  
VCCR  
P10  
P11  
P12  
N6  
VCCR  
VCCR  
VCCT  
VCCT  
N7  
VCCT  
N9  
VCCT  
N11  
N12  
VCCT  
55  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 19. RMII BGA23 Ball List in Alphanumeric Order by Ball Location  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
A1 GNDD  
Table 34 (page 94)  
Table 34 (page 94)  
Table 24 (page 81)  
Table 24 (page 81)  
O, TS, SL,  
ID  
B16 CRS_DV6  
Table 24 (page 81)  
A2 VCCIO  
B17 RxData6_1  
C1 VCCIO  
O, TS, ID Table 24 (page 81)  
A3 RxData1_0  
A4 TxData2_1  
O, TS  
I, ID  
Table 34 (page 94)  
Table 24 (page 81)  
Table 24 (page 81)  
C2 RxData0_0  
C3 TxData1_0  
O, TS  
I, ID  
O, TS, SL,  
ID  
A5 CRS_DV2  
Table 24 (page 81)  
A6 TxData3_1  
A7 TxEN3  
A8 VCCIO  
A9 GNDD  
I, ID  
I, ID  
Table 24 (page 81)  
Table 24 (page 81)  
Table 34 (page 94)  
Table 34 (page 94)  
O, TS, SL,  
ID  
C4 CRS_DV1  
Table 24 (page 81)  
C5 GNDD  
Table 34 (page 94)  
Table 24 (page 81)  
C6 TxEN2  
I, ID  
C7 RxData2_1  
O, TS, ID Table 24 (page 81)  
I/O, TS,  
SL, IP  
A10 MDIO1  
Table 28 (page 86)  
Table 24 (page 81)  
O, TS, SL,  
C8 RxER3  
Table 24 (page 81)  
ID  
A11 TxData4_0  
I, ID  
OD, TS,  
C9 MDINT1_L  
Table 28 (page 86)  
SL, IP  
RxER4  
A12  
O, TS, SL, Table 24 (page 81)  
(FIFOSEL0) ID, I, ST  
Table 32 (page 89)  
Table 24 (page 81)  
Table 24 (page 81)  
C10 TxData4_1  
C11 VCCIO  
I, ID  
Table 24 (page 81)  
Table 34 (page 94)  
Table 24 (page 81)  
Table 34 (page 94)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 34 (page 94)  
Table 34 (page 94)  
A13 RxData4_0  
A14 TxEN5  
O, TS  
I, ID  
C12 RxData4_1  
C13 GNDD  
O, TS,ID  
RxER5  
A15  
O, TS, SL, Table 24 (page 81)  
(FIFOSEL1) ID, I, ST  
Table 32 (page 89)  
A16 TxData6_1  
I, ID  
Table 24 (page 81)  
C14 TxEN6  
I, ID  
O, TS  
I, ID  
RxER6LINK O, TS, SL, Table 24 (page 81)  
HOLD I, ID, ST Table 32 (page 89)  
C15 RxData6_0  
C16 TxData7_1  
C17 GNDD  
A17  
B1 RxData0_1  
B2 TxEN1  
O, TS, ID Table 24 (page 81)  
I, ID  
Table 24 (page 81)  
Table 34 (page 94)  
D1 GNDD  
B3 GNDD  
RxER0  
D2  
O, TS, SL, Table 24 (page 81)  
I, ID, ST  
B4 RxData1_1  
B5 TxData2_0  
B6 RxData2_0  
B7 GNDD  
O, TS, ID Table 24 (page 81)  
(MDIX)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 24 (page 81)  
I, ID  
O, TS  
Table 24 (page 81)  
Table 24 (page 81)  
Table 34 (page 94)  
D3 GNDD  
D4 TxData1_1  
I, ID  
RxER1  
D5  
O, TS, SL, Table 24 (page 81)  
ID, I, ST  
(PAUSE)  
Table 32 (page 89)  
O, TS, SL,  
ID  
B8 CRS_DV3  
Table 24 (page 81)  
D6 GNDD  
Table 34 (page 94)  
B9 RxData3_1  
B10 MDC1  
O, TS, ID Table 24 (page 81)  
RxER2  
D7  
O, TS, SL, Table 24 (page 81)  
(PREASEL) I, ID, ST  
Table 32 (page 89)  
Table 24 (page 81)  
Table 24 (page 81)  
Table 34 (page 94)  
Table 24 (page 81)  
I, ST, ID  
I, ID  
Table 28 (page 86)  
Table 24 (page 81)  
D8 TxData3_0  
D9 RxData3_0  
D10 GNDD  
I, ID  
O, TS  
B11 TxEN4  
O, TS, SL,  
ID  
B12 CRS_DV4  
Table 24 (page 81)  
B13 TxData5_0  
B14 RxData5_0  
B15 RxData5_1  
I, ID  
Table 24 (page 81)  
Table 24 (page 81)  
D11 TxData5_1  
I, ID  
O, TS  
O, TS, SL,  
ID  
D12 CRS_DV5  
D13 TxData6_0  
Table 24 (page 81)  
Table 24 (page 81)  
O, TS, ID Table 24 (page 81)  
I, ID  
Datasheet  
56  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
D14 VCCIO  
D15 GNDD  
D16 TxEN7  
Table 34 (page 94)  
Table 34 (page 94)  
Table 24 (page 81)  
F14 RxData7_1  
F15 NC  
O, TS, ID Table 24 (page 81)  
Table 35 (page 96)  
Table 33 (page 93)  
I, ID  
OD, TS,  
SL, IP  
F16 LED7_3_L  
F17 LED7_2_L  
O, TS, SL,  
ID  
D17 RxER7  
Table 24 (page 81)  
OD, TS,  
SL, IP  
Table 33 (page 93)  
E1 MDC0  
I, ST, ID  
I, ID  
Table 28 (page 86)  
Table 24 (page 81)  
Table 24 (page 81)  
OD, TS,  
SL, IP  
G1 LED2_3_L  
G2 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
E2 TxData0_0  
E3 TxEN0  
I, ID  
O, TS, SL,  
ID  
OD, TS,  
SL, IP  
E4 CRS_DV0  
Table 24 (page 81)  
G3 LED3_2_L  
E5 GNDD  
E6 REFCLK0  
E7 GNDD  
I
Table 34 (page 94)  
Table 24 (page 81)  
Table 34 (page 94)  
OD, TS,  
SO, IP  
G4 LED3_3_L  
Table 33 (page 93)  
G5 NC  
Table 35 (page 96)  
G6 No Ball  
G7 No Ball  
G8 No Ball  
G9 No Ball  
G10 No Ball  
G11 No Ball  
G12 No Ball  
G13 VCCD  
G14 NC  
E8 No Ball  
E9 GNDD  
Table 34 (page 94)  
E10 No Ball  
E11 GNDD  
E12 REFCLK1  
E13 GNDD  
E14 TxData7_0  
Table 34 (page 94)  
Table 24 (page 81)  
Table 34 (page 94)  
Table 24 (page 81)  
I
I, ID  
Table 34 (page 94)  
Table 35 (page 96)  
O, TS, SL,  
ID‘  
E15 CRS_DV7  
Table 24 (page 81)  
E16 RxData7_0  
E17 GNDD  
O, TS  
Table 24 (page 81)  
Table 34 (page 94)  
OD, TS,  
SL, IP  
G15 LED7_1_L  
G16 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
F1 MDINT0_L  
F2 LED3_1_L  
F3 MDIO0  
Table 28 (page 86)  
Table 33 (page 93)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
G17 LED6_3_L  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
H1 LED1_3_L  
H2 LED2_1_L  
H3 LED2_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
I/O, TS,  
SL, IP  
OD, TS,  
SL, IP  
F4 TxData0_1  
F5 VCCD  
I, ID  
Table 24 (page 81)  
OD, TS,  
SL, IP  
Table 34 (page 94)  
F6 No ball  
F7 No ball  
F8 No ball  
F9 No Ball  
F10 No Ball  
F11 No Ball  
F12 No Ball  
F13 GNDD  
H4 NC  
Table 35 (page 96)  
H5 No Ball  
H6 No Ball  
H7 No Ball  
H8 GNDD  
H9 GNDD  
H10 GNDD  
H11 No Ball  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
57  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
H12 No Ball  
H13 No Ball  
H14 NC  
K9 GNDD  
K10 GNDD  
K11 No Ball  
K12 No Ball  
K13 No Ball  
K14 SGND  
K15 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
H15 LED6_1_L  
H16 LED6_2_L  
H17 LED5_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
Table 34 (page 94)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
K16 LED4_1_L  
K17 LED4_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
J1  
J2  
J3  
LED0_3_L  
NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
L1 MDDIS  
L2 CFG_3  
I, ST, ID  
Table 28 (page 86)  
OD, TS,  
SL, IP  
LED1_2_L  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
L3 CFG_2  
I, ST, ID  
Table 32 (page 89)  
J4  
LED1_1_L  
Table 33 (page 93)  
L4 ADD_4  
I, ST, ID  
Table 32 (page 89)  
J5  
J6  
J7  
J8  
J9  
VCCD  
No Ball  
No Ball  
GNDD  
GNDD  
Table 34 (page 94)  
L5 VCCPECL  
L6 No Ball  
Table 34 (page 94)  
L7 No Ball  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
L8 No Ball  
L9 No Ball  
J10 GNDD  
J11 No Ball  
J12 No Ball  
J13 NC  
L10 No Ball  
L11 No Ball  
L11 No Ball  
L13 VCCPECL  
L14 PWRDWN  
L15 SECTION  
L16 ModeSel0  
L17 ModeSel1  
M1 CFG_1  
M2 ADD_3  
M3 ADD_2  
M4 TxSLEW_1  
M5 GNDPECL  
M6 No Ball  
M7 No Ball  
M8 No Ball  
M9 No Ball  
M10 No Ball  
M11 No Ball  
Table 35 (page 96)  
Table 34 (page 94)  
Table 34 (page 94)  
J14 VCCD  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
J15 LED5_1_L  
J16 LED5_2_L  
J17 LED4_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
I, ST, ID  
Table 32 (page 89)  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
Table 33 (page 93)  
Table 32 (page 89)  
Table 33 (page 93)  
I, ST, ID  
Table 32 (page 89)  
I, ST, ID  
Table 32 (page 89)  
K1 AMDIX_EN I, ST, IP  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
K2 LED0_2_L  
SL, IP  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
K3 LED0_1_L  
SL, IP  
Table 34 (page 94)  
Table 33 (page 93)  
K4 NC  
Table 35 (page 96)  
K5 No Ball  
K6 No Ball  
K7 No Ball  
K8 GNDD  
Table 34 (page 94)  
Datasheet  
58  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
M12 No Ball  
P16 SD5  
I
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
M13 GNDPECL  
Table 34 (page 94)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
P17 SD6  
I
M14 G_FX/TP_L I, ST, ID  
R1 GNDT  
M15 RESET_L  
M16 TCK  
I, ST, IP  
R2 TPFIP0  
R3 GNDT  
AO/AI  
I, ST, ID  
M17 TRST_L  
N1 ADD_1  
N2 ADD_0  
N3 TxSLEW_0  
N4 SD1  
I, ST, IP  
R4 TPFON1  
R5 GNDT  
AO/AI  
I, ST, ID  
I, ST, ID  
R6 TPFIP2  
R7 GNDR  
R8 TPFIN3  
R9 GNDR  
R10 TPFON4  
R11 GNDR  
R12 TPFIP6  
R13 GNDR  
R14 TPFOP7  
R15 GNDT  
R16 TPFIP7  
R17 GNDT  
T1 TPFIN0  
T2 TPFOP0  
T3 TPFOP1  
T4 TPFIN1  
T5 TPFIN2  
T6 TPFOP2  
T7 TPFON3  
T8 TPFIP3  
T9 TPFIP4  
T10 TPFOP4  
T11 TPFOP5  
T12 TPFIN5  
T13 TPFIN6  
T14 TPFOP6  
T15 TPFON7  
T16 TPFIN7  
T17 GNDT  
U1 TPFON0  
U2 GNDT  
AO/AI  
I, ST, ID  
I
AO/AI  
N5 SD3  
I
N6 VCCT  
N7 VCCT  
N8 No Ball  
N9 VCCT  
N10 No Ball  
N11 VCCT  
N12 VCCT  
N13 VCCR  
N14 TDI  
AO/AI  
AO/AI  
Table 34 (page 94)  
AO/AI  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 29 (page 87)  
AO/AI  
I, ST, IP  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
N15 TDO  
O, TS  
N16 TMS  
I, ST, IP  
N17 SD7  
I
P1 SD_2P5V  
P2 SD0  
I, ST, ID  
I
P3 SD2  
I
P4 VCCR  
P5 GNDR  
P6 GNDR  
P7 VCCR  
P8 VCCR  
P9 VCCR  
P10 VCCR  
P11 VCCR  
P12 VCCR  
P13 GNDR  
P14 GNDT  
P15 SD4  
I
AO/AI  
59  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Type1  
Ball Signal  
Full Description  
U3 TPFIP1  
U4 GNDT  
AO/AI  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
U5 TPFON2  
U6 GNDT  
AO/AI  
U7 TPFOP3  
U8 GNDR  
U9 TPFIN4  
U10 GNDT  
U11 TPFON5  
U12 GNDT  
U13 TPFIP5  
U14 GNDT  
U15 TPFON6  
U16 GNDT  
U17 GNDT  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
Datasheet  
60  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.3.2  
SMII BGA23 Ball List  
The following tables provide the SMII ball locations and signal names arranged in alphanumeric  
order as follows:  
Table 20 “SMII BGA23 Ball List in Alphanumeric Order by Signal Name”  
Table 21 “SMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 66  
Table 20. SMII BGA23 Ball List in Alphanumeric Order by Signal Name  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
ADD_0  
ADD_1  
ADD_2  
ADD_3  
ADD_4  
AMDIX_EN  
CFG_1  
CFG_2  
CFG_3  
N2 I, ST, ID  
N1 I, ST, ID  
M3 I, ST, ID  
M2 I, ST, ID  
L4 I, ST, ID  
K1 I, ST, IP  
M1 I, ST, ID  
L3 I, ST, ID  
L2 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDPECL  
GNDPECL  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
E17  
F13  
H8  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
H9  
H10  
J8  
J9  
J10  
K8  
O, TS, SL,  
A12  
K9  
FIFOSEL0  
FIFOSEL1  
Table 32 (page 89)  
Table 32 (page 89)  
ID, I, ST  
K10  
M5  
M13  
P5  
O, TS, SL,  
A15  
ID, I, ST  
G_FX/TP_L M14 I, ST, ID  
Table 32 (page 89)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
A1  
A9  
P6  
P13  
R7  
B3  
B7  
R9  
C5  
R11  
R13  
U8  
C13  
C17  
D1  
P14  
R1  
D3  
D6  
R3  
D10  
D15  
E5  
R5  
R15  
R17  
T17  
U2  
E7  
E9  
E11  
E13  
U4  
61  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U6  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
OD, TS,  
SL, IP  
LED6_3_L  
LED7_1_L  
LED7_2_L  
LED7_3_L  
G17  
G15  
F17  
F16  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
U10  
U12  
U14  
U16  
U17  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
LED0_1_L  
LED0_2_L  
LED0_3_L  
LED1_1_L  
LED1_2_L  
LED1_3_L  
LED2_1_L  
LED2_2_L  
LED2_3_L  
LED3_1_L  
LED3_2_L  
LED3_3_L  
LED4_1_L  
LED4_2_L  
LED4_3_L  
LED5_1_L  
LED5_2_L  
LED5_3_L  
LED6_1_L  
LED6_2_L  
K3  
K2  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
MDC0  
MDC1  
MDDIS  
E1 I, ST, ID  
B10 I, ST, ID  
L1 I, ST, ID  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
F1  
J1  
MDINT0_L  
MDINT1_L  
MDIO0  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
C9  
J4  
SL, IP  
OD, TS,  
SL, IP  
I/O, TS,  
F3  
J3  
SL, IP  
OD, TS,  
SL, IP  
I/O, TS,  
A10  
H1  
MDIO1  
SL, IP  
OD, TS,  
SL, IP  
MDIX  
ModeSel0  
ModeSel1  
NC  
D2 I, ID, ST  
L16 I, ST, ID  
L17 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
H2  
OD, TS,  
SL, IP  
H3  
OD, TS,  
SL, IP  
A4  
A5  
G1  
F2  
NC  
OD, TS,  
SL, IP  
NC  
A7  
NC  
A14  
A16  
B1  
OD, TS,  
SL, IP  
G3  
G4  
K16  
K17  
J17  
J15  
J16  
H17  
H15  
H16  
NC  
OD, TS,  
SO, IP  
NC  
NC  
B2  
OD, TS,  
SL, IP  
NC  
B4  
OD, TS,  
SL, IP  
NC  
B8  
NC  
B9  
OD, TS,  
SL, IP  
NC  
B11  
B12  
B15  
B16  
B17  
C4  
NC  
OD, TS,  
SL, IP  
NC  
OD, TS,  
SL, IP  
NC  
NC  
OD, TS,  
SL, IP  
NC  
OD, TS,  
SL, IP  
NC  
C6  
NC  
C7  
OD, TS,  
SL, IP  
NC  
C8  
Datasheet  
62  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
C10  
C12  
C14  
D4  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
G9  
G10  
G11  
G12  
H5  
D11  
D12  
D16  
D17  
E3  
H6  
H7  
H11  
H12  
H13  
J6  
E4  
E15  
F4  
J7  
F14  
F15  
G2  
J11  
J12  
K5  
G5  
K6  
G14  
G16  
H4  
K7  
K11  
K12  
K13  
L6  
H14  
J2  
J13  
K4  
L7  
L8  
K15  
L9  
NC/  
LINKHOLD  
Table 35 (page 96)  
Table 32 (page 89)  
L10  
L11  
L11  
M6  
A17 I, ID, ST  
No ball  
No ball  
No ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
F6  
F7  
F8  
M7  
E8  
M8  
E10  
F9  
M9  
M10  
M11  
M12  
N8  
F10  
F11  
F12  
G6  
G7  
G8  
N10  
O, TS, SL,  
ID, I, ST  
PAUSE  
D5  
Table 32 (page 89)  
63  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
PREASEL  
PWRDWN  
REFCLK0  
REFCLK1  
RESET_L  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
SD_2P5V  
SD0  
D7 I, ID, ST  
L14 I, ID, ST  
Table 32 (page 89)  
Table 32 (page 89)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 32 (page 89)  
TPFIP0  
R2 AO/AI  
U3 AO/AI  
R6 AO/AI  
T8 AO/AI  
T9 AO/AI  
U13 AO/AI  
R12 AO/AI  
R16 AO/AI  
U1 AO/AI  
R4 AO/AI  
U5 AO/AI  
T7 AO/AI  
R10 AO/AI  
U11 AO/AI  
U15 AO/AI  
T15 AO/AI  
T2 AO/AI  
T3 AO/AI  
T6 AO/AI  
U7 AO/AI  
T10 AO/AI  
T11 AO/AI  
T14 AO/AI  
R14 AO/AI  
M17 I, ST, IP  
E2 I, ID  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 31 (page 88)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
TPFIP1  
E6  
I
I
TPFIP2  
E12  
TPFIP3  
M15 I, ST, IP  
TPFIP4  
C2 O, TS, ID Table 26 (page 84)  
A3 O, TS, ID Table 26 (page 84)  
B6 O, TS, ID Table 26 (page 84)  
D9 O, TS, ID Table 26 (page 84)  
A13 O, TS, ID Table 26 (page 84)  
B14 O, TS, ID Table 26 (page 84)  
C15 O, TS, ID Table 26 (page 84)  
E16 O, TS, ID Table 26 (page 84)  
TPFIP5  
TPFIP6  
TPFIP7  
TPFON0  
TPFON1  
TPFON2  
TPFON3  
TPFON4  
TPFON5  
TPFON6  
TPFON7  
TPFOP0  
TPFOP1  
TPFOP2  
TPFOP3  
TPFOP4  
TPFOP5  
TPFOP6  
TPFOP7  
TRST_L  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
TxSLEW_0  
TxSLEW_1  
VCCD  
P1 I, ST, ID  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 26 (page 84)  
Table 26 (page 84)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
P2  
N4  
I
I
I
I
I
I
I
I
SD1  
SD2  
P3  
SD3  
N5  
SD4  
P15  
P16  
P17  
N17  
SD5  
SD6  
SD7  
SECTION  
SGND  
L15 I, ST, ID  
K14  
SYNC0  
SYNC1  
TCK  
A6 I, ID  
C16 I, ID  
M16 I, ST, ID  
N14 I, ST, IP  
N15 O, TS  
N16 I, ST, IP  
T1 AO/AI  
T4 AO/AI  
T5 AO/AI  
R8 AO/AI  
U9 AO/AI  
T12 AO/AI  
T13 AO/AI  
T16 AO/AI  
C3 I, ID  
TDI  
B5 I, ID  
TDO  
D8 I, ID  
TMS  
A11 I, ID  
TPFIN0  
TPFIN1  
TPFIN2  
TPFIN3  
TPFIN4  
TPFIN5  
TPFIN6  
TPFIN7  
B13 I, ID  
D13 I, ID  
E14 I, ID  
N3 I, ST, ID  
M4 I, ST, ID  
F5  
G13  
J5  
VCCD  
VCCD  
Datasheet  
64  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Signal  
Ball Type1  
VCCD  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCPECL  
VCCPECL  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCT  
J14  
A2  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
A8  
C1  
C11  
D14  
L5  
L13  
N13  
P4  
P7  
P8  
P9  
P10  
P11  
P12  
N6  
VCCT  
N7  
VCCT  
N9  
VCCT  
N11  
N12  
VCCT  
65  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 21. SMII BGA23 Ball List in Alphanumeric Order by Ball Location  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
A1 GNDD  
A2 VCCIO  
A3 RxData1  
A4 NC  
Table 34 (page 94)  
Table 34 (page 94)  
C1 VCCIO  
C2 RxData0  
C3 TxData1  
C4 NC  
Table 34 (page 94)  
O, TS, ID Table 26 (page 84)  
O, TS, ID Table 26 (page 84)  
I, ID  
Table 25 (page 84)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 26 (page 84)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 34 (page 94)  
A5 NC  
C5 GNDD  
C6 NC  
A6 SYNC0  
A7 NC  
I, ID  
C7 NC  
A8 VCCIO  
A9 GNDD  
C8 NC  
OD, TS,  
SL, IP  
C9 MDINT1_L  
Table 28 (page 86)  
I/O, TS,  
SL, IP  
A10 MDIO1  
Table 28 (page 86)  
Table 25 (page 84)  
Table 32 (page 89)  
C10 NC  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
A11 TxData4  
A12 FIFOSEL0  
I, ID  
C11 VCCIO  
C12 NC  
O, TS, SL,  
ID, I, ST  
C13 GNDD  
C14 NC  
A13 RxData4  
A14 NC  
O, TS, ID Table 26 (page 84)  
Table 35 (page 96)  
Table 32 (page 89)  
Table 35 (page 96)  
C15 RxData6  
C16 SYNC1  
C17 GNDD  
D1 GNDD  
D2 MDIX  
D3 GNDD  
D4 NC  
O, TS, ID Table 26 (page 84)  
O, TS, SL,  
ID, I, ST  
A15 FIFOSEL1  
A16 NC  
I, ID  
Table 26 (page 84)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 35 (page 96)  
NC/  
A17  
Table 35 (page 96)  
Table 32 (page 89)  
I, ID, ST  
LINKHOLD  
I, ID, ST  
B1 NC  
Table 35 (page 96)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 25 (page 84)  
B2 NC  
B3 GNDD  
B4 NC  
O, TS, SL,  
ID, I, ST  
D5 PAUSE  
Table 32 (page 89)  
D6 GNDD  
D7 PREASEL  
D8 TxData3  
D9 RxData3  
D10 GNDD  
D11 NC  
Table 34 (page 94)  
Table 32 (page 89)  
Table 25 (page 84)  
B5 TxData2  
B6 RxData2  
B7 GNDD  
B8 NC  
I, ID  
I, ID, ST  
I, ID  
O, TS, ID Table 26 (page 84)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 28 (page 86)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 25 (page 84)  
O, TS, ID Table 26 (page 84)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 25 (page 84)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 28 (page 86)  
B9 NC  
B10 MDC1  
B11 NC  
I, ST, ID  
D12 NC  
D13 TxData6  
D14 VCCIO  
D15 GNDD  
D16 NC  
I, ID  
B12 NC  
B13 TxData5  
B14 RxData5  
B15 NC  
I, ID  
O, TS, ID Table 26 (page 84)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
D17 NC  
B16 NC  
E1 MDC0  
I, ST, ID  
B17 NC  
Datasheet  
66  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
E2 TxData0  
E3 NC  
I, ID  
Table 25 (page 84)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 25 (page 84)  
Table 34 (page 94)  
G2 NC  
Table 35 (page 96)  
Table 33 (page 93)  
I
OD, TS,  
SL, IP  
G3 LED3_2_L  
E4 NC  
OD, TS,  
SO, IP  
G4 LED3_3_L  
Table 33 (page 93)  
E5 GNDD  
E6 REFCLK0  
E7 GNDD  
E8 No Ball  
E9 GNDD  
E10 No Ball  
E11 GNDD  
E12 REFCLK1  
E13 GNDD  
E14 TxData7  
E15 NC  
G5 NC  
Table 35 (page 96)  
G6 No Ball  
G7 No Ball  
G8 No Ball  
G9 No Ball  
G10 No Ball  
G11 No Ball  
G12 No Ball  
G13 VCCD  
G14 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 25 (page 84)  
Table 34 (page 94)  
Table 25 (page 84)  
Table 35 (page 96)  
I
I, ID  
Table 34 (page 94)  
Table 35 (page 96)  
E16 RxData7  
E17 GNDD  
O, TS, ID Table 26 (page 84)  
OD, TS,  
SL, IP  
G15 LED7_1_L  
G16 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
Table 34 (page 94)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
F1 MDINT0_L  
F2 LED3_1_L  
F3 MDIO0  
OD, TS,  
SL, IP  
G17 LED6_3_L  
OD, TS,  
SL, IP  
Table 33 (page 93)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
H1 LED1_3_L  
H2 LED2_1_L  
H3 LED2_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
I/O, TS,  
SL, IP  
OD, TS,  
SL, IP  
F4 NC  
Table 35 (page 96)  
OD, TS,  
SL, IP  
F5 VCCD  
F6 No ball  
F7 No ball  
F8 No ball  
F9 No Ball  
F10 No Ball  
F11 No Ball  
F12 No Ball  
F13 GNDD  
F14 NC  
Table 34 (page 94)  
H4 NC  
Table 35 (page 96)  
H5 No Ball  
H6 No Ball  
H7 No Ball  
H8 GNDD  
H9 GNDD  
H10 GNDD  
H11 No Ball  
H12 No Ball  
H13 No Ball  
H14 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
F15 NC  
OD, TS,  
SL, IP  
F16 LED7_3_L  
F17 LED7_2_L  
G1 LED2_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
H15 LED6_1_L  
H16 LED6_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
67  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
H17 LED5_3_L  
Table 33 (page 93)  
K16 LED4_1_L  
K17 LED4_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
J1 LED0_3_L  
J2 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
L1 MDDIS  
L2 CFG_3  
L3 CFG_2  
L4 ADD_4  
L5 VCCPECL  
L6 No Ball  
L7 No Ball  
L8 No Ball  
L9 No Ball  
L10 No Ball  
L11 No Ball  
L11 No Ball  
L13 VCCPECL  
L14 PWRDWN  
L15 SECTION  
L16 ModeSel0  
L17 ModeSel1  
M1 CFG_1  
M2 ADD_3  
M3 ADD_2  
I, ST, ID  
Table 28 (page 86)  
OD, TS,  
SL, IP  
I, ST, ID  
Table 32 (page 89)  
J3 LED1_2_L  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
J4 LED1_1_L  
Table 33 (page 93)  
I, ST, ID  
Table 32 (page 89)  
Table 34 (page 94)  
J5 VCCD  
J6 No Ball  
J7 No Ball  
J8 GNDD  
J9 GNDD  
J10 GNDD  
J11 No Ball  
J12 No Ball  
J13 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 34 (page 94)  
I, ID, ST  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
J14 VCCD  
OD, TS,  
SL, IP  
J15 LED5_1_L  
J16 LED5_2_L  
J17 LED4_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
Table 33 (page 93)  
Table 32 (page 89)  
Table 33 (page 93)  
K1 AMDIX_EN I, ST, IP  
OD, TS,  
K2 LED0_2_L  
SL, IP  
M4 TxSLEW_1 I, ST, ID  
M5 GNDPECL  
M6 No Ball  
M7 No Ball  
M8 No Ball  
M9 No Ball  
M10 No Ball  
M11 No Ball  
M12 No Ball  
M13 GNDPECL  
OD, TS,  
K3 LED0_1_L  
SL, IP  
Table 33 (page 93)  
K4 NC  
Table 35 (page 96)  
K5 No Ball  
K6 No Ball  
K7 No Ball  
K8 GNDD  
K9 GNDD  
K10 GNDD  
K11 No Ball  
K12 No Ball  
K13 No Ball  
K14 SGND  
K15 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 32 (page 89)  
Table 34 (page 94)  
M14 G_FX/TP_L I, ST, ID  
M15 RESET_L  
M16 TCK  
I, ST, IP  
I, ST, ID  
I, ST, IP  
I, ST, ID  
M17 TRST_L  
N1 ADD_1  
Table 34 (page 94)  
Table 35 (page 96)  
Datasheet  
68  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
N2 ADD_0  
I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
R6 TPFIP2  
R7 GNDR  
AO/AI  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
N3 TxSLEW_0 I, ST, ID  
N4 SD1  
I
R8 TPFIN3  
R9 GNDR  
AO/AI  
N5 SD3  
I
N6 VCCT  
N7 VCCT  
N8 No Ball  
N9 VCCT  
N10 No Ball  
N11 VCCT  
N12 VCCT  
N13 VCCR  
N14 TDI  
R10 TPFON4  
R11 GNDR  
R12 TPFIP6  
R13 GNDR  
R14 TPFOP7  
R15 GNDT  
R16 TPFIP7  
R17 GNDT  
T1 TPFIN0  
T2 TPFOP0  
T3 TPFOP1  
T4 TPFIN1  
T5 TPFIN2  
T6 TPFOP2  
T7 TPFON3  
T8 TPFIP3  
T9 TPFIP4  
T10 TPFOP4  
T11 TPFOP5  
T12 TPFIN5  
T13 TPFIN6  
T14 TPFOP6  
T15 TPFON7  
T16 TPFIN7  
T17 GNDT  
U1 TPFON0  
U2 GNDT  
AO/AI  
AO/AI  
Table 34 (page 94)  
AO/AI  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
AO/AI  
I, ST, IP  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
N15 TDO  
N16 TMS  
N17 SD7  
O, TS  
I, ST, IP  
I
P1 SD_2P5V  
P2 SD0  
I, ST, ID  
I
P3 SD2  
I
P4 VCCR  
P5 GNDR  
P6 GNDR  
P7 VCCR  
P8 VCCR  
P9 VCCR  
P10 VCCR  
P11 VCCR  
P12 VCCR  
P13 GNDR  
P14 GNDT  
P15 SD4  
AO/AI  
I
P16 SD5  
I
U3 TPFIP1  
U4 GNDT  
AO/AI  
P17 SD6  
I
R1 GNDT  
R2 TPFIP0  
R3 GNDT  
R4 TPFON1  
R5 GNDT  
U5 TPFON2  
U6 GNDT  
AO/AI  
AO/AI  
U7 TPFOP3  
U8 GNDR  
AO/AI  
AO/AI  
U9 TPFIN4  
AO/AI  
69  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Type1  
Ball Signal  
Full Description  
U10 GNDT  
U11 TPFON5  
U12 GNDT  
U13 TPFIP5  
U14 GNDT  
U15 TPFON6  
U16 GNDT  
U17 GNDT  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
AO/AI  
AO/AI  
AO/AI  
Datasheet  
70  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.3.3  
SS-SMII BGA23 Ball List  
The following tables provide the SS-SMII ball locations and signal names arranged in  
alphanumeric order as follows:  
Table 22 “SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name”  
Table 23 “SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 76  
Table 22. SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
ADD_0  
N2 I, ST, ID  
N1 I, ST, ID  
M3 I, ST, ID  
M2 I, ST, ID  
L4 I, ST, ID  
K1 I, ST, IP  
M1 I, ST, ID  
L3 I, ST, ID  
L2 I, ST, ID  
A12 I, ID, ST  
A15 I, ID, ST  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDPECL  
GNDPECL  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
F13  
H8  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
ADD_1  
ADD_2  
H9  
ADD_3  
H10  
J8  
ADD_4  
AMDIX_EN  
CFG_1  
J9  
J10  
K8  
CFG_2  
CFG_3  
K9  
FIFOSEL0  
FIFOSEL1  
K10  
M5  
M13  
P5  
G_FX/TP_L M14 I, ID, ST  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
A1  
A9  
P6  
B3  
P13  
R7  
B7  
C5  
R9  
C13  
C17  
D1  
R11  
R13  
U8  
D3  
P14  
R1  
D6  
D10  
D15  
E5  
R3  
R5  
R15  
R17  
T17  
U2  
E7  
E9  
E11  
E13  
E17  
U4  
U6  
71  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U10  
U12  
U14  
U16  
U17  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
OD, TS,  
SL, IP  
LED6_3_L  
LED7_1_L  
LED7_2_L  
LED7_3_L  
G17  
G15  
F17  
F16  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
LED0_1_L  
LED0_2_L  
LED0_3_L  
LED1_1_L  
LED1_2_L  
LED1_3_L  
LED2_1_L  
LED2_2_L  
LED2_3_L  
LED3_1_L  
LED3_2_L  
LED3_3_L  
LED4_1_L  
LED4_2_L  
LED4_3_L  
LED5_1_L  
LED5_2_L  
LED5_3_L  
LED6_1_L  
LED6_2_L  
K3  
K2  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
MDC0  
MDC1  
MDDIS  
E1 I, ST, ID  
B10 I, ST, ID  
L1 I, ST, ID  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
J1  
OD, TS,  
F1  
MDINT0_L  
MDINT1_L  
MDIO0  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
Table 28 (page 86)  
OD, TS,  
SL, IP  
SL, IP  
J4  
OD, TS,  
C9  
OD, TS,  
SL, IP  
SL, IP  
J3  
I/O, TS,  
F3  
OD, TS,  
SL, IP  
SL, IP  
H1  
I/O, TS,  
A10  
MDIO1  
OD, TS,  
SL, IP  
SL, IP  
H2  
MDIX  
ModeSel0  
ModeSel1  
NC  
D2 I, ID, ST  
L16 I, ST, ID  
L17 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
H3  
OD, TS,  
SL, IP  
G1  
F2  
A3  
A4  
OD, TS,  
SL, IP  
NC  
NC  
A5  
OD, TS,  
SL, IP  
G3  
G4  
K16  
K17  
J17  
J15  
J16  
H17  
H15  
H16  
NC  
A7  
OD, TS,  
SL, IP  
NC  
A13  
A14  
A16  
B2  
NC  
OD, TS,  
SL, IP  
NC  
OD, TS,  
SL, IP  
NC  
NC  
B6  
OD, TS,  
SL, IP  
NC  
B8  
NC  
B14  
B16  
C2  
OD, TS,  
SL, IP  
NC  
OD, TS,  
SL, IP  
NC  
NC  
C4  
OD, TS,  
SL, IP  
NC  
C6  
OD, TS,  
SL, IP  
NC  
C10  
C14  
C15  
D4  
NC  
OD, TS,  
SL, IP  
NC  
NC  
Datasheet  
72  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D9  
D11  
D12  
D16  
E15  
E16  
F4  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
PAUSE  
PREASEL  
PWRDWN  
REFCLK0  
REFCLK1  
RESET_L  
RxCLK0  
RxCLK1  
H7  
H11  
H12  
H13  
J6  
J7  
J11  
J12  
K5  
F15  
G2  
G5  
K6  
G14  
G16  
H4  
K7  
K11  
K12  
K13  
L6  
H14  
J2  
J13  
K4  
L7  
L8  
K15  
L9  
NC/  
LINKHOLD  
Table 35 (page 96)  
Table 32 (page 89)  
L10  
L11  
L11  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
N8  
A17 I, ID, ST  
No ball  
No ball  
No ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
No Ball  
F6  
F7  
F8  
E8  
E10  
F9  
F10  
F11  
F12  
G6  
N10  
G7  
D5 ID, I, ST  
D7 I, ID, ST  
L14 I, ST, ID  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 32 (page 89)  
G8  
G9  
G10  
G11  
G12  
H5  
E6  
I
I
E12  
M15 I, ST, IP  
E3 O, TS, ID Table 27 (page 85)  
B11 O, TS, ID Table 27 (page 85)  
H6  
73  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Signal  
Ball Type1  
Signal  
Ball Type1  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
RxSYNC0  
RxSYNC1  
SD_2P5V  
SD0  
B1 O, TS, ID Table 27 (page 85)  
B4 O, TS, ID Table 27 (page 85)  
C7 O, TS, ID Table 27 (page 85)  
B9 O, TS, ID Table 27 (page 85)  
C12 O, TS, ID Table 27 (page 85)  
B15 O, TS, ID Table 27 (page 85)  
B17 O, TS, ID Table 27 (page 85)  
F14 O, TS, ID Table 27 (page 85)  
E4 O, TS, ID Table 27 (page 85)  
B12 O, TS, ID Table 27 (page 85)  
TPFIP5  
U13 AO/AI  
R12 AO/AI  
R16 AO/AI  
U1 AO/AI  
R4 AO/AI  
U5 AO/AI  
T7 AO/AI  
R10 AO/AI  
U11 AO/AI  
U15 AO/AI  
T15 AO/AI  
T2 AO/AI  
T3 AO/AI  
T6 AO/AI  
U7 AO/AI  
T10 AO/AI  
T11 AO/AI  
T14 AO/AI  
R14 AO/AI  
M17 I, IP, ST  
C8 I, ID  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 31 (page 88)  
Table 27 (page 85)  
Table 27 (page 85)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 25 (page 84)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 27 (page 85)  
Table 27 (page 85)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
TPFIP6  
TPFIP7  
TPFON0  
TPFON1  
TPFON2  
TPFON3  
TPFON4  
TPFON5  
TPFON6  
TPFON7  
TPFOP0  
TPFOP1  
TPFOP2  
TPFOP3  
TPFOP4  
TPFOP5  
TPFOP6  
TPFOP7  
TRST_L  
TxCLK0  
TxCLK1  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
TxSLEW_0  
TxSLEW_1  
TxSYNC0  
TxSYNC1  
VCCD  
P1 I, ST, ID  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
P2  
N4  
I
I
I
I
I
I
I
I
SD1  
SD2  
P3  
SD3  
N5  
SD4  
P15  
P16  
P17  
N17  
SD5  
SD6  
SD7  
SECTION  
SGND  
TCK  
L15 I, ID, ST  
K14  
M16 I, ST, ID  
N14 I, ST, IP  
N15 O, TS  
N16 I, ST, IP  
T1 AO/AI  
T4 AO/AI  
T5 AO/AI  
R8 AO/AI  
U9 AO/AI  
T12 AO/AI  
T13 AO/AI  
T16 AO/AI  
R2 AO/AI  
U3 AO/AI  
R6 AO/AI  
T8 AO/AI  
T9 AO/AI  
D17 I, ID  
TDI  
E2 I, ID  
TDO  
C3 I, ID  
TMS  
B5 I, ID  
TPFIN0  
TPFIN1  
TPFIN2  
TPFIN3  
TPFIN4  
TPFIN5  
TPFIN6  
TPFIN7  
TPFIP0  
TPFIP1  
TPFIP2  
TPFIP3  
TPFIP4  
D8 I, ID  
A11 I, ID  
B13 I, ID  
D13 I, ID  
E14 I, ID  
N3 I, ST, ID  
M4 I, ST, ID  
A6 I, ID  
C16 I, ID  
F5  
G13  
J5  
VCCD  
VCCD  
VCCD  
J14  
Datasheet  
74  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Signal  
Ball Type1  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCPECL  
VCCPECL  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCR  
VCCT  
A2  
A8  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
C1  
C11  
D14  
L5  
L13  
N13  
P4  
P7  
P8  
P9  
P10  
P11  
P12  
N6  
VCCT  
N7  
VCCT  
N9  
VCCT  
N11  
N12  
VCCT  
75  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 23. SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
A1 GNDD  
A2 VCCIO  
A3 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 27 (page 85)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 34 (page 94)  
C2 NC  
Table 35 (page 96)  
Table 25 (page 84)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
C3 TxData1  
C4 NC  
I, ID  
A4 NC  
C5 GNDD  
C6 NC  
A5 NC  
A6 TxSYNC0  
A7 NC  
I, ID  
C7 RxData2  
C8 TxCLK0  
O, TS, ID Table 27 (page 85)  
I, ID  
Table 27 (page 85)  
Table 28 (page 86)  
A8 VCCIO  
A9 GNDD  
OD, TS,  
SL, IP  
C9 MDINT1_L  
C10 NC  
Table 35 (page 96)  
Table 34 (page 94)  
I/O, TS,  
SL, IP  
A10 MDIO1  
Table 28 (page 86)  
C11 VCCIO  
C12 RxData4  
C13 GNDD  
C14 NC  
A11 TxData4  
A12 FIFOSEL0  
A13 NC  
I, ID  
Table 25 (page 84)  
Table 32 (page 89)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 32 (page 89)  
Table 35 (page 96)  
O, TS, ID Table 27 (page 85)  
I, ID, ST  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 27 (page 85)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 25 (page 84)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 25 (page 84)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 27 (page 85)  
Table 28 (page 86)  
Table 25 (page 84)  
A14 NC  
C15 NC  
A15 FIFOSEL1  
A16 NC  
I, ID, ST  
C16 TxSYNC1  
C17 GNDD  
D1 GNDD  
D2 MDIX  
D3 GNDD  
D4 NC  
I, ID  
NC/  
A17  
Table 35 (page 96)  
Table 32 (page 89)  
I, ID, ST  
LINKHOLD  
I, ID, ST  
B1 RxData0  
B2 NC  
O, TS, ID Table 27 (page 85)  
Table 35 (page 96)  
Table 34 (page 94)  
B3 GNDD  
B4 RxData1  
B5 TxData2  
B6 NC  
D5 PAUSE  
D6 GNDD  
D7 PREASEL  
D8 TxData3  
D9 NC  
ID, I, ST  
O, TS, ID Table 27 (page 85)  
I, ID  
Table 25 (page 84)  
Table 35 (page 96)  
Table 34 (page 94)  
Table 35 (page 96)  
I, ID, ST  
I, ID  
B7 GNDD  
B8 NC  
D10 GNDD  
D11 NC  
B9 RxData3  
B10 MDC1  
B11 RxCLK1  
B12 RxSYNC1  
B13 TxData5  
B14 NC  
O, TS, ID Table 27 (page 85)  
I, ST, ID Table 28 (page 86)  
D12 NC  
O, TS, ID Table 27 (page 85)  
O, TS, ID Table 27 (page 85)  
D13 TxData6  
D14 VCCIO  
D15 GNDD  
D16 NC  
I, ID  
I, ID  
Table 25 (page 84)  
Table 35 (page 96)  
B15 RxData5  
B16 NC  
O, TS, ID Table 27 (page 85)  
Table 35 (page 96)  
O, TS, ID Table 27 (page 85)  
Table 34 (page 94)  
D17 TxCLK1  
E1 MDC0  
E2 TxData0  
E3 RxCLK0  
I, ID  
I, ST, ID  
I, ID  
B17 RxData6  
C1 VCCIO  
O, TS, ID Table 27 (page 85)  
Datasheet  
76  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
E4 RxSYNC0  
E5 GNDD  
E6 REFCLK0  
E7 GNDD  
E8 No Ball  
E9 GNDD  
E10 No Ball  
E11 GNDD  
E12 REFCLK1  
E13 GNDD  
E14 TxData7  
E15 NC  
O, TS, ID Table 27 (page 85)  
OD, TS,  
SL, IP  
G4 LED3_3_L  
Table 33 (page 93)  
I
Table 34 (page 94)  
Table 25 (page 84)  
Table 34 (page 94)  
G5 NC  
Table 35 (page 96)  
G6 No Ball  
G7 No Ball  
G8 No Ball  
G9 No Ball  
G10 No Ball  
G11 No Ball  
G12 No Ball  
G13 VCCD  
G14 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 25 (page 84)  
Table 34 (page 94)  
Table 25 (page 84)  
Table 35 (page 96)  
Table 35 (page 96)  
Table 34 (page 94)  
I
Table 34 (page 94)  
Table 35 (page 96)  
I, ID  
OD, TS,  
SL, IP  
G15 LED7_1_L  
G16 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
E16 NC  
E17 GNDD  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
F1 MDINT0_L  
F2 LED3_1_L  
F3 MDIO0  
Table 28 (page 86)  
Table 33 (page 93)  
Table 28 (page 86)  
G17 LED6_3_L  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
H1 LED1_3_L  
H2 LED2_1_L  
H3 LED2_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
I/O, TS,  
SL, IP  
OD, TS,  
SL, IP  
F4 NC  
Table 35 (page 96)  
OD, TS,  
SL, IP  
F5 VCCD  
F6 No ball  
F7 No ball  
F8 No ball  
F9 No Ball  
F10 No Ball  
F11 No Ball  
F12 No Ball  
F13 GNDD  
F14 RxData7  
F15 NC  
Table 34 (page 94)  
H4 NC  
Table 35 (page 96)  
H5 No Ball  
H6 No Ball  
H7 No Ball  
H8 GNDD  
H9 GNDD  
H10 GNDD  
H11 No Ball  
H12 No Ball  
H13 No Ball  
H14 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
O, TS, ID Table 27 (page 85)  
Table 35 (page 96)  
Table 33 (page 93)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
F16 LED7_3_L  
F17 LED7_2_L  
OD, TS,  
SL, IP  
H15 LED6_1_L  
H16 LED6_2_L  
H17 LED5_3_L  
J1 LED0_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
G1 LED2_3_L  
G2 NC  
Table 33 (page 93)  
Table 35 (page 96)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
G3 LED3_2_L  
77  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
J2 NC  
Table 35 (page 96)  
Table 33 (page 93)  
L1 MDDIS  
L2 CFG_3  
L3 CFG_2  
L4 ADD_4  
L5 VCCPECL  
L6 No Ball  
L7 No Ball  
L8 No Ball  
L9 No Ball  
L10 No Ball  
L11 No Ball  
L11 No Ball  
L13 VCCPECL  
L14 PWRDWN  
L15 SECTION  
L16 ModeSel0  
L17 ModeSel1  
M1 CFG_1  
M2 ADD_3  
M3 ADD_2  
I, ST, ID  
Table 28 (page 86)  
OD, TS,  
SL, IP  
I, ST, ID  
Table 32 (page 89)  
J3 LED1_2_L  
I, ST, ID  
Table 32 (page 89)  
OD, TS,  
SL, IP  
J4 LED1_1_L  
Table 33 (page 93)  
I, ST, ID  
Table 32 (page 89)  
Table 34 (page 94)  
J5 VCCD  
J6 No Ball  
J7 No Ball  
J8 GNDD  
J9 GNDD  
J10 GNDD  
J11 No Ball  
J12 No Ball  
J13 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 34 (page 94)  
Table 35 (page 96)  
Table 34 (page 94)  
I, ST, ID  
I, ID, ST  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
J14 VCCD  
OD, TS,  
SL, IP  
J15 LED5_1_L  
J16 LED5_2_L  
J17 LED4_3_L  
Table 33 (page 93)  
Table 33 (page 93)  
OD, TS,  
SL, IP  
OD, TS,  
SL, IP  
Table 33 (page 93)  
Table 32 (page 89)  
Table 33 (page 93)  
K1 AMDIX_EN I, ST, IP  
OD, TS,  
K2 LED0_2_L  
SL, IP  
M4 TxSLEW_1 I, ST, ID  
M5 GNDPECL  
M6 No Ball  
M7 No Ball  
M8 No Ball  
M9 No Ball  
M10 No Ball  
M11 No Ball  
M12 No Ball  
M13 GNDPECL  
OD, TS,  
K3 LED0_1_L  
SL, IP  
Table 33 (page 93)  
K4 NC  
Table 35 (page 96)  
K5 No Ball  
K6 No Ball  
K7 No Ball  
K8 GNDD  
K9 GNDD  
K10 GNDD  
K11 No Ball  
K12 No Ball  
K13 No Ball  
K14 SGND  
K15 NC  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 32 (page 89)  
Table 29 (page 87)  
Table 34 (page 94)  
M14 G_FX/TP_L I, ID, ST  
M15 RESET_L  
M16 TCK  
I, IP, ST  
I, ST, ID  
I, IP, ST  
I, ID, ST  
I, ID, ST  
M17 TRST_L  
N1 ADD_1  
N2 ADD_0  
Table 34 (page 94)  
Table 35 (page 96)  
OD, TS,  
SL, IP  
K16 LED4_1_L  
K17 LED4_2_L  
Table 33 (page 93)  
Table 33 (page 93)  
N3 TxSLEW_0 I, ID, ST  
N4 SD1  
OD, TS,  
SL, IP  
I
Datasheet  
78  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Full Description  
Reference for  
Full Description  
Ball Signal  
Type1  
Ball Signal  
Type1  
N5 SD3  
I
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
R9 GNDR  
R10 TPFON4  
R11 GNDR  
R12 TPFIP6  
R13 GNDR  
R14 TPFOP7  
R15 GNDT  
R16 TPFIP7  
R17 GNDT  
T1 TPFIN0  
T2 TPFOP0  
T3 TPFOP1  
T4 TPFIN1  
T5 TPFIN2  
T6 TPFOP2  
T7 TPFON3  
T8 TPFIP3  
T9 TPFIP4  
T10 TPFOP4  
T11 TPFOP5  
T12 TPFIN5  
T13 TPFIN6  
T14 TPFOP6  
T15 TPFON7  
T16 TPFIN7  
T17 GNDT  
U1 TPFON0  
U2 GNDT  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
N6 VCCT  
N7 VCCT  
N8 No Ball  
N9 VCCT  
N10 No Ball  
N11 VCCT  
N12 VCCT  
N13 VCCR  
N14 TDI  
AO/AI  
AO/AI  
Table 34 (page 94)  
AO/AI  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 31 (page 88)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 34 (page 94)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 29 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
AO/AI  
I, ST, IP  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
N15 TDO  
N16 TMS  
N17 SD7  
O, TS  
I, ST, IP  
I
P1 SD_2P5V  
P2 SD0  
I, ST, ID  
I
P3 SD2  
I
P4 VCCR  
P5 GNDR  
P6 GNDR  
P7 VCCR  
P8 VCCR  
P9 VCCR  
P10 VCCR  
P11 VCCR  
P12 VCCR  
P13 GNDR  
P14 GNDT  
P15 SD4  
AO/AI  
I
P16 SD5  
I
U3 TPFIP1  
U4 GNDT  
AO/AI  
P17 SD6  
I
R1 GNDT  
R2 TPFIP0  
R3 GNDT  
R4 TPFON1  
R5 GNDT  
R6 TPFIP2  
R7 GNDR  
R8 TPFIN3  
U5 TPFON2  
U6 GNDT  
AO/AI  
AO/AI  
U7 TPFOP3  
U8 GNDR  
AO/AI  
AO/AI  
U9 TPFIN4  
U10 GNDT  
U11 TPFON5  
U12 GNDT  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
79  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for  
Type1  
Ball Signal  
Full Description  
U13 TPFIP5  
U14 GNDT  
U15 TPFON6  
U16 GNDT  
U17 GNDT  
AO/AI  
Table 30 (page 87)  
Table 34 (page 94)  
Table 30 (page 87)  
Table 34 (page 94)  
Table 34 (page 94)  
AO/AI  
Datasheet  
80  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.4  
BGA23 Signal Descriptions  
3.4.1  
Signal Name Conventions  
Signal names may contain either a port designation or a serial designation, or a combination of the  
two designations. Signal naming conventions are as follows:  
Port Number Only. Individual signals that apply to a particular port are designated by the  
Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit  
Enable signals would be identified as TxEN0, TxEN1, and TxEN2.  
Serial Number Only. A set of signals which are not tied to any specific port are designated by  
the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set  
of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3.  
Port and Serial Number. In cases where each port is assigned a set of multiple signals, each  
signal is designated in the following order: Signal Mnemonic, Port Designation, an  
underscore, and the serial designation. For example, a set of three Port Configuration signals  
would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and  
RxData2_0 and RxData2_1.  
3.4.2  
Signal Descriptions – RMII, SMII, and SS-SMII Configurations  
Table 24. RMII Signal Descriptions – BGA23 (Sheet 1 of 3)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Reference Clock.  
50 MHz RMII reference clock is always required. RMII  
inputs are sampled on the rising edge of REFCLK,  
RMII outputs are sourced on the falling edge. See  
“Clock/SYNC Requirements” on page 124. for detailed  
CLK requirements.  
E6,  
E12  
44  
6
REFCLK0  
REFCLK1  
I
Transmit Data - Port 0.  
E2,  
F4  
61  
62  
TxData0_0  
TxData0_1  
I, ID  
I, ID  
I, ID  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 0 are clocked in synchronously to REFCLK.  
Transmit Data - Port 1.  
C3,  
D4  
52  
53  
TxData1_0  
TxData1_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 1 are clocked in synchronously to REFCLK  
Transmit Data - Port 2.  
B5  
A4  
42  
43  
TxData2_0  
TxData2_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 2 are clocked in synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
81  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 24. RMII Signal Descriptions – BGA23 (Sheet 2 of 3)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Transmit Data - Port 3.  
D8,  
A6  
34  
35  
TxData3_0  
TxData3_1  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 3 are clocked in synchronously to REFCLK.  
Transmit Data - Port 4.  
A11,  
C10  
22  
23  
TxData4_0  
TxData4_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 4 are clocked in synchronously to REFCLK.  
Transmit Data - Port 5.  
B13,  
D11  
13  
14  
TxData5_0  
TxData5_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 5 are clocked in synchronously to REFCLK.  
Transmit Data - Port 6.  
D13,  
A16  
4
5
TxData6_0  
TxData6_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 6 are clocked in synchronously to REFCLK.  
Transmit Data - Port 7.  
E14,  
C16  
203  
204  
TxData7_0  
TxData7_1  
Inputs containing 2-bit parallel di-bits to be transmitted  
from port 7 are clocked in synchronously to REFCLK.  
E3,  
B2,  
C6,  
60  
51  
41  
33  
21  
12  
3
TxEN0  
TxEN1  
TxEN2  
TxEN3  
TxEN4  
TxEN5  
TxEN6  
TxEN7  
Transmit Enable - Ports 0-7.  
A7,  
I, ID  
Active High input enables respective port transmitter.  
This signal must be synchronous to the REFCLK.  
B11,  
A14,  
C14,  
D16  
202  
Receive Data - Port 0.  
C2,  
B1  
55  
54  
RxData0_0  
RxData0_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 1.  
A3,  
B4  
46  
45  
RxData1_0  
RxData1_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 2.  
B6,  
C7  
37  
36  
RxData2_0  
RxData2_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 3.  
D9,  
B9  
28  
27  
RxData3_0  
RxData3_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 4.  
A13,  
C12  
16  
15  
RxData4_0  
RxData4_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 5.  
B14,  
B15  
8
7
RxData5_0  
RxData5_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
Datasheet  
82  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 24. RMII Signal Descriptions – BGA23 (Sheet 3 of 3)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Receive Data - Port 6.  
C15,  
B17  
206  
205  
RxData6_0  
RxData6_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
Receive Data - Port 7.  
E16,  
F14  
198  
197  
RxData7_0  
RxData7_1  
O, TS  
O, TS, ID  
Receive data signals (2-bit parallel di-bits) are driven  
synchronously to REFCLK.  
E4,  
C4,  
A5,  
58  
49  
39  
31  
17  
10  
1
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
Carrier Sense/Receive Data Valid - Ports 0-7.  
On detection of valid carrier, these signals are  
asserted asynchronously with respect to REFCLK.  
CRS_DVn is de-asserted on loss of carrier,  
synchronous to REFCLK.  
B8,  
O, TS, SL,  
ID  
B12,  
D12,  
B16,  
E15  
200  
Receive Error - Ports 0-7.  
These signals are synchronous to the respective  
REFCLK. Active High indicates that received code  
group is invalid, or that PLL is not locked.  
D2,  
D5,  
D7,  
59  
50  
40  
32  
20  
11  
2
RxER0  
RxER1  
RxER2  
RxER3  
RxER4  
RxER5  
RxER6  
RxER7  
The RxER signals have the following additional  
function pins:  
C8,  
O, TS, SL,  
ID, I, ST  
RxER0 (MDIX)  
A12,  
A15,  
A17,  
D17  
RxER1 (PAUSE)  
RxER2 (PREASEL)  
RxER4 (FIFOSEL0)  
RxER5 (FIFOSEL1)  
RxER6 {LINKHOLD)  
201  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W  
Power-Down modes and during H/W reset.  
83  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 25. SMII/SS-SMII Common Signal Descriptions – BGA23  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2  
BGA23  
E2,  
C3,  
B5,  
PQFP  
61  
52  
42  
34  
22  
13  
4
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
Transmit Data - Ports 0-7.  
D8,  
These serial input streams provide data to be transmitted to  
the network. The LXT9785/9785E clocks the data in  
synchronously to REFCLK.  
I, ID  
A11,  
B13,  
D13,  
E14  
203  
Reference Clock.  
The LXT9785/9785E always requires a 125 MHz reference  
clock input. Refer to Functional Description for detailed clock  
requirements. REFCLK0 and REFCLK1 are always  
connected regardless of sectionalization mode.  
E6,  
44  
6
REFCLK0  
REFCLK1  
I
E12  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Table 26. SMII Specific Signal Descriptions – BGA23  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
SMII Synchronization.  
The MAC must generate a SYNC pulse every 10 REFCLK  
cycles to synchronize the SMII. SYNC0 is used when 1x8  
port sectionalization is selected. SYNC0 and SYNC1 are  
to be used when 2x4 port sectionalization is chosen.  
A6,  
C16  
35  
204  
SYNC0  
SYNC1  
I, ID  
C2,  
A3,  
B6,  
55  
46  
37  
28  
16  
8
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7.  
D9,  
These serial output streams provide data received from  
the network. The LXT9785/9785E drives the data out  
synchronously to RXCLK.  
O, TS  
A13,  
B14,  
C15,  
E16  
206  
198  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware  
reset.  
Datasheet  
84  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 27. SS-SMII Specific Signal Descriptions – BGA23  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
SS-SMII Transmit Synchronization.  
A6,  
C16  
35  
204  
TxSYNC0  
TxSYNC1  
The MAC must generate a TxSYNC pulse every 10 TxCLK  
cycles to mark the start of TxData segments. TxSYNC0 is  
used when 1x8 port sectionalization is selected.  
I, ID  
SS-SMII Receive Synchronization.  
The LXT9785/9785E generates these pulses every 10  
RxCLK cycles to mark the start of RxData segments for the  
MAC. RxSYNC1 is used when 1x8 port sectionalization is  
selected. RxSYNC0 may not be used. These outputs are  
only enabled when SS-SMII mode is enabled.  
RxSYNC0  
RxSYNC1  
E4,  
B12  
58  
17  
O, TS,  
ID  
SS-SMII Transmit Clock.  
The MAC sources this 125 MHz clock as the timing  
reference for TxData and TxSYNC. Only TxCLK0 is used  
when 1x8 port sectionalization is selected. See “Clock/  
SYNC Requirements” on page 124. for detailed clock  
requirements.  
C8,  
D17  
32  
201  
TxCLK0  
TxCLK1  
I, ID  
SS-SMII Receive Clock.  
The LXT9785/9785E generates these clocks, based on  
REFCLK, to provide a timing reference for RxData and  
RxSYNC to the MAC. RxCLK1 is used when 1x8 port  
sectionalization is selected. RxCLK0 may not be used. See  
“Clock/SYNC Requirements” on page 124. for detailed clock  
requirements. These outputs are only enabled when SS-  
SMII mode is enabled.  
E3,  
B11  
60  
21  
RxCLK0  
RxCLK1  
O, TS,  
ID  
B1,  
B4,  
C7,  
54  
45  
36  
27  
15  
7
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7.  
B9,  
O, TS,  
ID  
These serial output streams provide data received from  
the network. The LXT9785/9785E drives the data out  
synchronously to REFCLK.  
C12,  
B15,  
B17,  
F14  
205  
197  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down  
modes and during H/W reset.  
85  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 28. MDIO Control Interface Signals – BGA23  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3,4  
BGA23  
PQFP  
Management Data Input/Output.  
Bidirectional serial data channel for communication  
between the PHY and MAC or switch ASIC. Only  
MDIO0 is used when 1x8 port sectionalization is  
selected. In 2x4 port sectionalization mode, MDIO0  
accesses ports 0-3 and MDIO1 accesses ports 4-7.  
Refer to Figure 21 “Typical SS-SMII Quad Sectionalization”  
on page 139.  
F3,  
A10  
64  
25  
MDIO0  
MDIO1  
I/O, TS, SL,  
IP  
Management Data Interrupt.  
When Register bit 18.1 = 1, an active Low output on this  
Pin indicates status change. Only MDINT0_L is used  
when 1x8 port sectionalization is selected. In 2x4 port  
sectionalization mode, MDINT0_L is associated with  
ports 0-3 and MDINT1_L is associated with ports 4-7.  
Refer to Figure 21 “Typical SS-SMII Quad Sectionalization”  
on page 139.  
F1,  
C9  
67  
26  
MDINT0_L  
MDINT1_L  
OD, TS, SL,  
IP  
Management Data Clock.  
Clock for the MDIO serial data channel. Maximum  
frequency is 20 MHz. Only MDC0 is used when 1x8 port  
sectionalization is selected. In 2x4 port sectionalization  
mode, MDC0 clocks ports 0-3 register accesses and  
MDC1 clocks ports 4-7 register accesses. Refer to  
Figure 21 “Typical SS-SMII Quad Sectionalization” on  
page 139.  
E1,  
B10  
63  
24  
MDC0  
MDC1  
I, ST, ID  
Management Disable.  
When MDDIS is tied High, the MDIO port is completely  
disabled and the Hardware Control Interface pins set  
their respective bits at power up and reset.  
When MDDIS is pulled Low at power up or reset, via the  
internal pull-down resistor or by tieing it to ground, the  
Hardware Control Interface Pins control only the initial  
or “default” values of their respective register bits. After  
the power-up/reset cycle is complete, bit control reverts  
to the MDIO serial channel.  
L1  
84  
MDDIS  
I, ST, ID  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. MDIO[0:1] and MDINT[0:1]_L outputs are three-stated in H/W Power-Down mode and during H/W reset.  
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation,  
where X is the register number (0-32) and Y is the bit number (0-15).  
Datasheet  
86  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 29. Signal Detect – BGA23  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Signal Detect 2.5 Volt Interface.  
SD input threshold voltage select.  
P1  
95  
SD_2P5V  
I, ST, ID  
Tie to VCCPECL = Select 2.5 V LVPECL input levels  
Float or Tie to GNDPECL = Select 3.3 V LVPECL input  
levels  
Signal Detect - Ports 0-7.  
P2,  
N4,  
P3,  
96  
97  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
Signal Detect input from the fiber transceiver (these inputs  
are only active for ports operating in fiber mode).  
100  
101  
161  
162  
165  
166  
N5,  
I
Logic High = Normal operation (the process of searching  
for receive idles for the purpose of bringing link up is  
initiated)  
P15,  
P16,  
P17,  
N17  
Logic Low = Link is declared lost  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. Tie SD[0:7] inputs to GNDPECL if unused.  
Table 30. Network Interface Signal Descriptions – BGA23  
Ball/Pin Designation  
Symbol  
Type1  
Signal Description  
BGA23  
PQFP  
Twisted-Pair/Fiber Outputs2, Positive &  
Negative, Ports 0-7.  
T2, U1,  
T3, R4,  
T6, U5,  
107, 108  
111, 110  
121, 122  
125, 124  
136, 137  
140, 139  
150, 151  
154, 153  
TPFOP0, TPFON0  
TPFOP1, TPFON1  
TPFOP2, TPFON2  
TPFOP3, TPFON3  
TPFOP4, TPFON4  
TPFOP5, TPFON5  
TPFOP6, TPFON6  
TPFOP7, TPFON7  
During 100BASE-TX or 10BASE-T operation,  
TPFO pins drive 802.3 compliant pulses onto  
the line.  
U7, T7,  
AO/AI  
T10, R10,  
T11, U11,  
T14,U15,  
R14, T15  
During 100BASE-FX operation, TPFO pins  
produce differential LVPECL outputs for fiber  
transceivers.  
Twisted-Pair/Fiber Inputs3, Positive &  
Negative, Ports 0-7.  
R2, T1,  
U3, T4,  
R6, T5,  
T8, R8,  
T9, U9,  
U13, T12,  
R12, T13,  
R16, T16  
104, 105  
115, 114  
118, 119  
129, 128  
132, 133  
143, 142  
146, 147  
157, 156  
TPFIP0, TPFIN0  
TPFIP1, TPFIN1  
TPFIP2, TPFIN2  
TPFIP3, TPFIN3  
TPFIP4, TPFIN4  
TPFIP5, TPFIN5  
TPFIP6, TPFIN6  
TPFIP7, TPFIN7  
During 100BASE-TX or 10BASE-T operation,  
TPFI pins receive differential 100BASE-TX or  
10BASE-T signals from the line.  
AI/AO  
During 100BASE-FX operation, TPFI pins  
receive differential LVPECL inputs from fiber  
transceivers.  
1. Type Column Coding: AI = Analog Input, AO = Analog Output.  
2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is,  
twisted-pair, non-crossover MDI mode].  
3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is,  
twisted-pair, non-crossover MDI mode].  
87  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 31. JTAG Test Signal Descriptions – BGA23  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Test Data Input.  
N14  
167  
TDI  
I, ST, IP  
Test data sampled with respect to the rising edge of TCK.  
Test Data Output.  
N15  
N16  
M16  
168  
169  
170  
TDO  
TMS  
TCK  
O, TS  
I, ST, IP  
I, ST, ID  
Test data driven with respect to the falling edge of TCK.  
Test Mode Select.  
Test Clock.  
Clock input for JTAG test.  
Test Reset.  
M17  
171  
TRST_L  
I, ST, IP  
Reset input for JTAG test.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT =  
Schmitt Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. TDO output is three-stated in H/W Power-Down mode and during H/W reset.  
Datasheet  
88  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 32. Miscellaneous Signal Descriptions – BGA23 (Sheet 1 of 4)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2  
BGA23  
PQFP  
Tx Output Slew Controls 0 and 1 Defaults.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of Register bits  
27.11:10 for all ports. These register bits can be read  
and overwritten after startup / reset.  
These pins select the TX output slew rate for all ports  
(rise and fall time) as follows:  
TxSLEW_0  
TxSLEW_1  
N3,  
M4  
94  
93  
I, ST, ID  
Slew Rate (Rise and Fall  
TxSLEW_1 TxSLEW_0  
Time)  
0
0
1
0
1
3.3 ns  
3.6 ns  
3.9 ns  
4.2 ns  
0
1
1
Pause Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 4.10 for  
all ports. This register bit can be read and overwritten  
after startup / reset.  
When High, the LXT9785/9785E advertises Pause  
capabilities on all ports during auto-negotiation.  
D5  
50  
PAUSE  
ID, I, ST  
This pin is shared with RMII-RxER1. An external pull-  
up resistor (see applications section for value) can be  
used to set Pause active while RxER1 is three-stated  
during H/W reset. If no pull-up is used, the default  
Pause state is set inactive via the internal pull-down  
resistor.  
Power-Down.  
When High, forces the LXT9785/9785E into global  
power-down mode.  
L14  
174  
175  
PWRDWN  
RESET_L  
I, ST, ID  
Pin is not on JTAG chain.  
Reset.  
This active low input is ORed with the control register  
I, ST, IP Reset Register bit 0.15. When held Low, all outputs are  
M15  
forced to inactive state.  
Pin is not on JTAG chain.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
89  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 32. Miscellaneous Signal Descriptions – BGA23 (Sheet 2 of 4)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2  
BGA23  
PQFP  
Address <4:0>.  
Sets base address. Each port adds its port number  
(starting with 0) to this address to determine its PHY  
address.  
L4,  
M2,  
M3,  
N1,  
N2  
88  
89  
90  
91  
92  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
Port 0 Address = Base  
Port 1 Address = Base + 1  
Port 2 Address = Base + 2  
Port 3 Address = Base + 3  
Port 4 Address = Base + 4  
Port 5 Address = Base + 5  
Port 6 Address = Base + 6  
Port 7 Address = Base + 7  
I, ST, ID  
Mode Select[1:0].  
00 = RMII  
01 = SMII  
L17,  
L16  
178  
177  
MODESEL_1  
MODESEL_0  
I, ST, ID  
I, ST, ID  
10 = SS-SMII  
11 = Reserved  
All ports are configured the same. Interfaces cannot be  
mixed and must be all RMII, SMII, or SS-SMII.  
Sectionalization Select.  
This pin selects sectionalization into separate ports.  
0 = 1x8 ports,  
L15  
176  
SECTION  
1 = 2x4 ports  
Auto MDI/MDIX Enable Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 27.9 for  
all ports. These register bits can be read and  
overwritten after startup / reset. Refer to Table 40  
“MDIX Selection” on page 118.  
K1  
83  
AMDIX_EN  
I, ST, IP  
When active (High), automatic MDI crossover (MDIX)  
(regardless of segmentation) is selected for all ports.  
When inactive (Low) MDIX is selected according to the  
MDIX pin.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
Datasheet  
90  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 32. Miscellaneous Signal Descriptions – BGA23 (Sheet 3 of 4)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2  
BGA23  
PQFP  
MDIX Select Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 27.8 for  
all ports. These register bits can be read and  
overwritten after startup / reset. Refer to Table 40  
“MDIX Selection” on page 118.  
When AMDIX_EN is active this pin is ignored.  
When AMDIX_EN is inactive, all ports are forced to the  
MDI or the MDIX function regardless of segmentation.  
If this pin is active (high), MDI crossover (MDIX) is  
selected. If this pin is inactive, non-crossover MDI  
mode is set.  
D2  
59  
MDIX  
I, ID, ST  
This pin is shared with RMII-RxER0. An external pull-  
up resistor (see applications section for value) can be  
used to set MDIX active while RxER0 is three-stated  
during H/W reset. If no pull-up is used, the default  
MDIX state is set inactive via the internal pull-down  
resistor. Do not tie this pin directly to VCCIO (vs. using  
a pull-up) in non-RMII modes.  
Global Port Configuration Defaults 1-3.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of register bits  
shown in Table 42 “Global Hardware Configuration  
Settings” on page 128 for all ports. These register bits  
can be read and overwritten after startup / reset.  
L2,  
L3,  
M1  
85  
86  
87  
CFG_3  
CFG_2  
CFG_1  
I, ST, ID  
When operating in Hardware Control Mode, these pins  
provide configuration control options for all the ports  
(refer to Table 42 “Global Hardware Configuration  
Settings” on page 128 for details).  
Global FX/TP_L Enable Default.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 16.0 for  
all ports. These register bits can be read and  
M14  
173  
G_FX/TP_L  
I, ST, ID  
overwritten after startup / reset. Refer to Table 92 “Port  
Configuration Register (Address 16, Hex 10)” on page 207.  
This input selects whether all the ports are defaulted to  
TP vs. FX mode.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
91  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 32. Miscellaneous Signal Descriptions – BGA23 (Sheet 4 of 4)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2  
BGA23  
PQFP  
FIFO Select <1:0>.  
These pins are read at startup or reset. Their value at  
that time is used to set the default state of Register bits  
18.15:14 for all ports. These register bits can be read  
and overwritten after startup/reset.  
These pins are shared with RMII-RxER<5:4>. An  
external pull-up resistor (see applications section for  
value) can be used to set FIFO Select<1:0> to active  
while RxER<5:4> are three-stated during hardware  
reset. If no pull-up is used, the default FIFO select  
state is set via the internal pull-down resistors.  
A15  
A12  
11  
20  
FIFOSEL1  
FIFOSEL0  
I, ID, ST  
See Table 36 “Receive FIFO Depth Configurations” on  
page 97.  
Preamble Select.  
This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 16.5 for  
all ports. This register bit can be read and overwritten  
after startup/reset.  
This pin is shared with RMII-RxER2. An external pull-  
up resistor (see applications section for value) can be  
used to set Preamble Select to active while RxER2 is  
three-stated during hardware reset. If no pull-up is  
used, the default Preamble Select state is set via the  
internal pull-down resistors.  
D7  
40  
PREASEL  
I, ID, ST  
Note: Preamble select has no effect in 100 Mbps  
operation.  
LINKHOLD Default. This pin is read at startup or  
reset. Its value at that time is used to set the default  
state of Register bit 0.11 for all ports. This register bit  
can be read and overwritten after startup / reset. When  
High, the LXT9785/9785E powers down all ports.  
A17  
2
LINKHOLD3  
I, ID, ST  
This pin is shared with RMII-RxER6. An external pull-  
up resistor (see applications section for value) can be  
used to set LINKHOLD active while RxER6 is tri-stated  
during H/W reset. If no pull-up is used, the default  
LINKHOLD state is set inactive via the internal pull-  
down resistor.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS =  
Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal  
Pull-Down.  
2. The IP/ID resistors are disabled during hardware power-down mode.  
3. The LINKHOLD ability is available only for stepping 4 (Revision D0).  
Datasheet  
92  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 33. LED Signal Descriptions – BGA23 (Sheet 1 of 2)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Port 0 LED Drivers 1-3.  
These pins drive LED indicators for Port 0. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
K3,  
K2,  
J1  
82  
81  
80  
LED0_1_L  
LED0_2_L  
LED0_3_L  
OD, TS, SL,  
IP  
Port 1 LED Drivers 1-3.  
These pins drive LED indicators for Port 1. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
J4,  
J3,  
H1  
77  
76  
75  
LED1_1_L  
LED1_2_L  
LED1_3_L  
OD, TS, SL,  
IP  
Port 2 LED Drivers 1-3.  
These pins drive LED indicators for Port 2. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
H2,  
H3,  
G1  
73  
72  
71  
LED2_1_L  
LED2_2_L  
LED2_3_L  
OD, TS, SL,  
IP  
Port 3 LED Drivers 1-3.  
These pins drive LED indicators for Port 3. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
F2,  
G3,  
G4  
70  
69  
68  
LED3_1_L  
LED3_2_L  
LED3_3_L  
OD, TS, SL,  
IP  
Port 4 LED Drivers 1-3.  
These pins drive LED indicators for Port 4. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
K16,  
K17,  
J17  
180  
181  
182  
LED4_1_L  
LED4_2_L  
LED4_3_L  
OD, TS, SL,  
IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.  
4.  
93  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 33. LED Signal Descriptions – BGA23 (Sheet 2 of 2)  
Ball/Pin  
Designation  
Symbol  
Type1  
Signal Description2,3  
BGA23  
PQFP  
Port 5 LED Drivers 1-3.  
These pins drive LED indicators for Port 5. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
J15,  
J16,  
H17  
185  
186  
187  
LED5_1_L  
LED5_2_L  
LED5_3_L  
OD, TS, SL,  
IP  
Port 6 LED Drivers 1-3.  
These pins drive LED indicators for Port 6. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
H15,  
H16,  
G17  
189  
190  
191  
LED6_1_L  
LED6_2_L  
LED6_3_L  
OD, TS, SL,  
IP  
Port 7 LED Drivers 1-3.  
These pins drive LED indicators for Port 7. Each LED  
can display one of several available status conditions  
as selected by the LED Configuration Register (refer  
to Table 96 “LED Configuration Register (Address 20,  
Hex 14)” on page 213 for details).  
G15,  
F17,  
F16  
192  
193  
194  
LED7_1_L  
LED7_2_L  
LED7_3_L  
OD, TS, SL,  
IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID  
resistors are also disabled when the output is enabled.  
3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset.  
4.  
Table 34. Power Supply Signal Descriptions – BGA23 (Sheet 1 of 2)  
Ball/Pin Designation  
Symbol  
Type  
Signal Description  
BGA23  
PQFP  
F5,  
G13,  
J14,  
J5  
65,  
78,  
184,  
196  
Digital Power Supply - Core.  
VCCD  
+2.5 V supply for core digital circuits.  
Digital Power Supply - I/O Ring.  
A2,  
A8,  
C1,  
C11,  
D14  
18,  
29,  
47,  
56,  
208  
+2.5/3.3 V supply for digital I/O circuits. The digital  
input circuits running off of this rail, having a TTL-level  
threshold and over-voltage protection, may be  
interfaced with 3.3/5.0 V, when the IO supply is 3.3 V,  
and 2.5/3.3/5.0 V when 2.5 V.  
VCCIO  
Digital Power Supply - PECL Signal Detect Inputs.  
L5,  
L13  
98,  
164  
+2.5/3.3 V supply for PECL Signal Detect input  
circuits. If Fiber Mode is not used, tie these pins to  
GNDPECL to save power.  
VCCPECL  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
Datasheet  
94  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 34. Power Supply Signal Descriptions – BGA23 (Sheet 2 of 2)  
Ball/Pin Designation  
Symbol  
Type  
Signal Description  
BGA23  
PQFP  
N13, P4,  
P7, P8,  
P9, P10,  
P11, P12  
103, 116,  
117, 130,  
131, 144,  
145, 158  
Analog Power Supply - Receive.  
VCCR  
VCCT  
+2.5 V supply for all analog receive circuits.  
N6, N7,  
N9, N11,  
N12  
Analog Power Supply - Transmit.  
109, 123,  
138, 152  
+2.5 V supply for all analog transmit circuits.  
A1, A9,  
B3, B7,  
C5, C13,  
C17, D1,  
D3, D6,  
D10, D15,  
E5, E7,  
E9, E11,  
E13, E17,  
F13, H8,  
H9, H10,  
J8, J9,  
Digital Ground.  
66, 79,  
183, 195  
Ground return for core digital supplies (VCCD). All  
ground pins can be tied together using a single ground  
plane.  
GNDD  
J10, K8,  
K9, K10  
9, 19, 30,  
38, 48, 57,  
74, 188,  
Digital GND - I/O Ring.  
GNDIO  
GNDPECL  
GNDR  
Ground return for digital I/O circuits (VCCIO).  
199, 207  
Digital GND - PECL Signal Detect Inputs.  
M5, M13  
99, 163  
Ground return for PECL Signal Detect input circuits.  
P5, P6,  
P13, R7,  
R9, R11,  
R13, U8  
106, 112,  
120, 126,  
135, 141,  
149, 155  
Analog Ground - Receive.  
Ground return for receive analog supply. All ground  
pins can be tied together using a single ground plane.  
P14, R1,  
R3, R5,  
R15, R17,  
T17, U2,  
U4, U6,  
U10, U12,  
U14, U16,  
U17  
Analog Ground - Transmit.  
113, 127,  
134, 148  
GNDT  
SGND  
Ground return for transmit analog supply. All ground  
pins can be tied together using a single ground plane.  
Substrate Ground.  
K14  
179  
Ground for chip substrate. All ground pins can be tied  
together using a single ground plane.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
95  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 35. Unused/Reserved Pins – BGA23  
Pin/Ball Designation  
BGA23 PQFP  
Symbol  
Type1  
Signal Description  
RMII - No Connection  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
NC  
NC  
No Connection.  
J13, K4,  
K15  
SMII - No Connection  
A4, A5,  
A7, A14,  
A16, B1,  
B2, B4,  
B8, B9,  
B11, B12,  
B15, B16,  
B17, C4,  
C6, C7,  
C8, C10,  
C12, C14,  
D4, D11,  
NC  
NC  
No Connection  
D12, D16,  
D17, E3,  
E4, E15,  
F4, F14,  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
J13, K4,  
K15  
SS-SMII - No Connection  
A3, A4,  
A5, A7,  
A13, A14,  
A16, B2,  
B6, B8,  
B14, B16,  
C2, C4,  
C6, C10,  
C14, C15,  
D4, D9,  
D11, D12,  
D16, E15,  
E16, F4,  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
J13, K4,  
K15  
NC  
NC  
No Connection  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down  
Datasheet  
96  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 36. Receive FIFO Depth Configurations  
FIFOSEL1  
FIFOSEL0  
Register 18.15 Value  
Register 18.14 Value  
0
0
1
1
0
1
0
1
1
1
0
0
0
1
0
1
Datasheet  
97  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.5  
BGA15 Ball Assignments  
The following figure and tables provide the BGA15 ball locations and signal names arranged in  
alphanumeric order as follows:  
Figure 6 “196-Ball BGA15 Assignments (Top View)”  
Table 37, “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name”  
on page 99  
Table 38, “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location  
(SMII/SS-SMII)” on page 103  
Figure 6. 196-Ball BGA15 Assignments (Top View)  
1
A1  
B1  
2
A2  
B2  
3
4
5
6
A6  
B6  
7
8
9
10 11 12 13 14  
A3  
B3  
A4 A5  
B4 B5  
A7  
B7  
A8  
B8  
A9 A10 A11 A12 A13 A14  
B9 B10 B11 B12 B13 B14  
A
B
C
D
E
F
A
B
C
D
E
F
C1  
D1  
E1  
F1  
C2  
D2  
E2  
F2  
C3  
D3  
E3  
F3  
C4 C5  
D4 D5  
E4 E5  
C6  
D6  
E6  
F6  
C7  
D7  
E7  
F7  
C8  
D8  
E8  
F8  
C9 C10 C11 C12 C13 C14  
D9 D10 D11 D12 D13 D14  
E9  
E10 E11 E12 E13 E14  
F4  
F5  
F9 F10 F11 F12 F13 F14  
G9 G10 G11 G12 G13 G14  
H9 H10 H11 H12 H13 H14  
G
H
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G
H
H1  
J1  
H2  
J2  
H3  
J3  
H4  
J4  
H5  
J5  
H6  
J6  
H7  
J7  
H8  
J8  
J9  
J10 J11 J12 J13 J14  
J
K
L
J
K1  
L1  
K2  
L2  
K3  
L3  
K4  
L4  
K5  
L5  
K6  
L6  
K7  
L7  
K8  
L8  
K9 K10 K11 K12 K13 K14  
L9 L10 L11 L12 L13 L14  
K
L
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14  
M
N
P
M
N
P
N1  
P1  
1
N2  
P2  
2
N3  
P3  
3
N4  
P4  
4
N5  
P5  
5
N6  
P6  
6
N7  
P7  
7
N8  
P8  
8
N9 N10 N11 N12 N13 N14  
P9 P10 P11 P12 P13 P14  
9
10 11 12 13 14  
B1532-01  
98  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.5.1  
BGA15 Ball List  
The following tables provide the RMII BGA23 ball locations and signal names arranged in  
alphanumeric order as follows:  
Table 37 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name”  
Table 38 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/  
SS-SMII)”  
Table 37. Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name  
Signal  
Name  
Reference for Full  
Description  
Signal  
Name  
Reference for Full  
Description  
Ball  
Type  
Ball  
Type  
I, ST,  
ID  
I, ST,  
ID  
ADD_3  
ADD_4  
P10  
N10  
K8  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
CFG_2  
CFG_3  
L9  
Table 39 on page 108  
Table 39 on page 108  
I, ST,  
ID  
I, ST,  
ID  
M9  
I, ST,  
IP  
FIFOSEL0  
FIFOSEL1  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
F1  
C1  
A1  
A2  
A3  
B1  
B2  
B5  
B10  
D9  
D11  
E5  
E6  
E9  
E10  
F5  
I, ID  
I, ID  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
AMDIX_EN  
AVCC  
AVCC  
AVCC  
AVCC  
AVCC  
AVCC  
AVCC  
AVCC  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
D12  
E12  
F12  
G12  
H12  
J12  
K12  
L12  
E11  
F9  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
F10  
F11  
G9  
G10  
G11  
H9  
F6  
F7  
H10  
H11  
J9  
F8  
G4  
G6  
G7  
G8  
H6  
H7  
H8  
J5  
J10  
J11  
K11  
L11  
I, ST,  
ID  
CFG_1  
M10  
Table 39 on page 108  
Datasheet  
99  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Signal  
Name  
Reference for Full  
Description  
Signal  
Name  
Reference for Full  
Description  
Ball  
Type  
Ball  
Type  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
J6  
J7  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
OD,  
TS,  
SL, IP  
LED4_1_L  
LED4_2_L  
LED4_3_L  
LED5_1_L  
LED5_2_L  
LED5_3_L  
LED6_1_L  
LED6_2_L  
LED6_3_L  
LED7_1_L  
LED7_2_L  
LED7_3_L  
B9  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
J8  
OD,  
TS,  
SL, IP  
A9  
D8  
B8  
A8  
C7  
A7  
B7  
D6  
B6  
A6  
D5  
K5  
K6  
K9  
K10  
L2  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
N1  
N11  
P1  
P11  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
LED0_1_L  
LED0_2_L  
LED0_3_L  
LED1_1_L  
LED1_2_L  
LED1_3_L  
LED2_1_L  
LED2_2_L  
LED2_3_L  
LED3_1_L  
LED3_2_L  
LED3_3_L  
N9  
P9  
M8  
N8  
P8  
L8  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
P7  
N7  
M7  
P6  
N6  
M6  
LINKHOLD  
MDC  
B3  
P4  
ID  
Table 39 on page 108  
Table 39 on page 108  
OD,  
TS,  
SL, IP  
I, ST,  
ID  
OD,  
TS,  
SL, IP  
OD,  
TS,  
SL, IP  
MDINT_L  
P5  
Table 39 on page 108  
IO,TS,  
SL, IP  
MDIO  
N5  
C9  
E8  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
OD,  
TS,  
SL, IP  
I, ST,  
ID  
ModeSel_0  
ModeSel_1  
OD,  
TS,  
SL, IP  
I, ST,  
ID  
NC  
NC  
C4  
D1  
Table 39 on page 108  
Table 39 on page 108  
OD,  
TS,  
SL, IP  
100  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Signal  
Name  
Reference for Full  
Description  
Signal  
Name  
Reference for Full  
Description  
Ball  
Type  
Ball  
Type  
NC  
NC  
D2  
D10  
E4  
E7  
G2  
G5  
H1  
H5  
J4  
I
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
RxData6_S  
B4  
O, TS Table 39 on page 108  
O, TS,  
RxData6_SS A4  
RxData7_S C5  
RxData7_SS C6  
Table 39 on page 108  
ID  
NC  
O, TS Table 39 on page 108  
NC  
O, TS,  
Table 39 on page 108  
ID  
NC  
NC  
O, TS,  
RxSYNC  
SGND  
E1  
C8  
K1  
Table 39 on page 108  
ID  
NC  
Table 39 on page 108  
Table 39 on page 108  
NC  
SYNC/  
TXSYNC  
NC  
I, ID  
NC  
K4  
K7  
L1  
I, ST,  
ID  
TCK  
A11  
C12  
Table 39 on page 108  
Table 39 on page 108  
NC  
NC  
I, ST,  
IP  
TDI  
TDO  
TMS  
NC  
L6  
C11 O, TS Table 39 on page 108  
NC  
L10  
M4  
M5  
P2  
P3  
L4  
I, ST,  
IP  
B11  
Table 39 on page 108  
NC  
NC  
TPIN0  
TPIN1  
TPIN2  
TPIN3  
TPIN4  
TPIN5  
TPIN6  
TPIN7  
TPIP0  
TPIP1  
TPIP2  
TPIP3  
TPIP4  
TPIP5  
TPIP6  
TPIP7  
TPON0  
TPON1  
TPON2  
TPON3  
TPON4  
TPON5  
TPON6  
N12 AI/AO Table 39 on page 108  
M13 AI/AO Table 39 on page 108  
L14 AI/AO Table 39 on page 108  
H13 AI/AO Table 39 on page 108  
G13 AI/AO Table 39 on page 108  
D14 AI/AO Table 39 on page 108  
C13 AI/AO Table 39 on page 108  
B12 AI/AO Table 39 on page 108  
P12 AI/AO Table 39 on page 108  
M14 AI/AO Table 39 on page 108  
L13 AI/AO Table 39 on page 108  
H14 AI/AO Table 39 on page 108  
G14 AI/AO Table 39 on page 108  
D13 AI/AO Table 39 on page 108  
C14 AI/AO Table 39 on page 108  
A12 AI/AO Table 39 on page 108  
N13 AO/AI Table 39 on page 108  
P14 AO/AI Table 39 on page 108  
K14 AO/AI Table 39 on page 108  
NC  
NC  
REFCLK0  
REFCLK1  
C3  
I
I, ST,  
IP  
RESET_L  
C10  
Table 39 on page 108  
Table 39 on page 108  
O, TS,  
ID  
RXCLK  
G1  
N3  
RxData0_S  
O, TS Table 39 on page 108  
O, TS,  
RxData0_SS M3  
RxData1_S M2  
RxData1_SS M1  
Table 39 on page 108  
ID  
O, TS Table 39 on page 108  
O, TS,  
Table 39 on page 108  
ID  
RxData2_S  
RxData2_SS  
RxData3_S  
K2  
J2  
O, TS Table 39 on page 108  
O, TS,  
Table 39 on page 108  
ID  
H3  
O, TS Table 39 on page 108  
O, TS,  
RxData3_SS H2  
Table 39 on page 108  
ID  
RxData4_S  
RxData4_SS  
RxData5_S  
F2  
F3  
E3  
O, TS Table 39 on page 108  
J13  
AO/AI Table 39 on page 108  
O, TS,  
Table 39 on page 108  
ID  
F13 AO/AI Table 39 on page 108  
E14 AO/AI Table 39 on page 108  
A14 AO/AI Table 39 on page 108  
O, TS Table 39 on page 108  
O, TS Table 39 on page 108  
RxData5_SS C2  
Datasheet  
101  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Signal  
Name  
Reference for Full  
Description  
Ball  
Type  
TPON7  
TPOP0  
TPOP1  
TPOP2  
TPOP3  
TPOP4  
TPOP5  
TPOP6  
TPOP7  
B13 AO/AI Table 39 on page 108  
P13 AO/AI Table 39 on page 108  
N14 AO/AI Table 39 on page 108  
K13 AO/AI Table 39 on page 108  
J14  
AO/AI Table 39 on page 108  
F14 AO, AI Table 39 on page 108  
E13 AO/AI Table 39 on page 108  
B14 AO/AI Table 39 on page 108  
A13 AO/AI Table 39 on page 108  
I, ST,  
TRST_L  
A10  
Table 39 on page 108  
IP  
TXCLK  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
J3  
N4  
N2  
K3  
J1  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
G3  
E2  
D3  
A5  
I, ST,  
ID  
TXSLEW_0 M11  
TXSLEW_1 M12  
Table 39 on page 108  
Table 39 on page 108  
I,ST,  
ID  
VCCD  
VCCD  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
D7  
L7  
D4  
F4  
H4  
L3  
L5  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
Table 39 on page 108  
102  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 38 shows the ball locations and signal names arranged in order by ball location.  
Table 38. Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/  
SS-SMII)  
Reference for Full  
Description  
Reference for Full  
Description  
Ball Signal Name Type  
Ball Signal Name Type  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
A1  
A2  
A3  
A4  
A5  
GNDD  
GNDD  
Table 39 on  
page 108  
B7  
B8  
B9  
LED6_2_L  
LED5_1_L  
LED4_1_L  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
GNDD  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
O, TS,  
ID  
Table 39 on  
page 108  
RxData6_SS  
TxData7  
Table 39 on  
page 108  
Table 39 on  
page 108  
I, ID  
B10  
B11  
B12  
B13  
B14  
C1  
GNDD  
TMS  
OD,  
TS,  
SL, IP  
I, ST,  
IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
A6  
A7  
A8  
A9  
LED7_2_L  
LED6_1_L  
LED5_2_L  
LED4_2_L  
Table 39 on  
page 108  
TPIN7  
AI/AO  
AO/AI  
AO/AI  
I, ID  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
TPON7  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
TPOP6  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
FIFOSEL1  
RxData5_SS  
REFCLK1  
NC  
O, TS,  
ID  
Table 39 on  
page 108  
C2  
I, ST,  
IP  
Table 39 on  
page 108  
A10  
A11  
A12  
A13  
A14  
B1  
TRST_L  
TCK  
Table 39 on  
page 108  
C3  
I
I, ST,  
ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
C4  
Table 39 on  
page 108  
TPIP7  
AI/AO  
AO/AI  
AO/AI  
Table 39 on  
page 108  
C5  
RxData7_S  
RxData7_SS  
O, TS  
Table 39 on  
page 108  
TPOP7  
TPON6  
GNDD  
O, TS,  
ID  
Table 39 on  
page 108  
C6  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
C7  
LED5_3_L  
Table 39 on  
page 108  
Table 39 on  
page 108  
B2  
GNDD  
C8  
C9  
SGND  
ModeSel_0  
RESET_L  
TDO  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
B3  
LINKHOLD  
RxData6_S  
GNDD  
ID  
Table 39 on  
page 108  
I, ST,  
IP  
Table 39 on  
page 108  
B4  
O, TS  
C10  
C11  
C12  
Table 39 on  
page 108  
Table 39 on  
page 108  
B5  
O, TS  
OD,  
TS,  
SL, IP  
I, ST,  
IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
TDI  
B6  
LED7_1_L  
Datasheet  
103  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Reference for Full  
Description  
Ball Signal Name Type  
Ball Signal Name Type  
Description  
Table 39 on  
page 108  
Table 39 on  
page 108  
C13  
C14  
D1  
TPIN6  
TPIP6  
NC  
AI/AO  
E7  
E8  
NC  
ModeSel_1  
GNDD  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
AI/AO  
Table 39 on  
page 108  
Table 39 on  
page 108  
E9  
Table 39 on  
page 108  
Table 39 on  
page 108  
D2  
NC  
E10  
E11  
E12  
E13  
E14  
F1  
GNDD  
Table 39 on  
page 108  
Table 39 on  
page 108  
D3  
TxData6  
VCCIO  
I, ID  
AVSS  
Table 39 on  
page 108  
Table 39 on  
page 108  
D4  
AVCC  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
TPOP5  
TPON5  
FIFOSEL0  
RxData4_S  
RxData4_SS  
VCCIO  
GNDD  
AO/AI  
AO/AI  
I, ID  
O, TS  
D5  
LED7_3_L  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
D6  
D7  
D8  
LED6_3_L  
VCCD  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
F2  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
O, TS,  
ID  
Table 39 on  
page 108  
LED4_3_L  
F3  
Table 39 on  
page 108  
Table 39 on  
page 108  
F4  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
GNDD  
NC  
Table 39 on  
page 108  
Table 39 on  
page 108  
F5  
Table 39 on  
page 108  
Table 39 on  
page 108  
F6  
GNDD  
GNDD  
AVCC  
Table 39 on  
page 108  
Table 39 on  
page 108  
F7  
GNDD  
Table 39 on  
page 108  
Table 39 on  
page 108  
F8  
GNDD  
TPIP5  
AI/AO  
AI/AO  
Table 39 on  
page 108  
Table 39 on  
page 108  
F9  
AVSS  
TPIN5  
RxSYNC  
TxData5  
RxData5_S  
NC  
Table 39 on  
page 108  
O, TS,  
ID  
Table 39 on  
page 108  
F10  
F11  
F12  
F13  
F14  
G1  
G2  
AVSS  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVSS  
E2  
I, ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVCC  
E3  
O, TS  
Table 39 on  
page 108  
Table 39 on  
page 108  
TPON4  
TPOP4  
RXCLK  
NC  
AO/AI  
AO, AI  
E4  
Table 39 on  
page 108  
Table 39 on  
page 108  
E5  
GNDD  
GNDD  
O, TS,  
ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
E6  
Table 39 on  
page 108  
104  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Description  
Reference for Full  
Description  
Ball Signal Name Type  
Ball Signal Name Type  
Table 39 on  
page 108  
Table 39 on  
page 108  
G3  
G4  
TxData4  
GNDD  
NC  
I, ID  
H13  
H14  
J1  
TPIN3  
TPIP3  
AI/AO  
AI/AO  
I, ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
G5  
TxData3  
RxData2_SS  
TXCLK  
NC  
Table 39 on  
page 108  
O, TS,  
ID  
Table 39 on  
page 108  
G6  
GNDD  
GNDD  
GNDD  
AVSS  
J2  
Table 39 on  
page 108  
Table 39 on  
page 108  
G7  
J3  
I, ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
G8  
J4  
Table 39 on  
page 108  
Table 39 on  
page 108  
G9  
J5  
GNDD  
GNDD  
GNDD  
GNDD  
AVSS  
Table 39 on  
page 108  
Table 39 on  
page 108  
G10  
G11  
G12  
G13  
G14  
H1  
AVSS  
J6  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVSS  
J7  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVCC  
TPIN4  
TPIP4  
NC  
J8  
Table 39 on  
page 108  
Table 39 on  
page 108  
AI/AO  
AI/AO  
J9  
Table 39 on  
page 108  
Table 39 on  
page 108  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
AVSS  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVSS  
O, TS,  
ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
H2  
RxData3_SS  
RxData3_S  
VCCIO  
NC  
AVCC  
Table 39 on  
page 108  
Table 39 on  
page 108  
H3  
O, TS  
TPON3  
TPOP3  
AO/AI  
AO/AI  
I, ID  
O, TS  
I, ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
H4  
Table 39 on  
page 108  
SYNC/  
TXSYNC  
Table 39 on  
page 108  
H5  
Table 39 on  
page 108  
Table 39 on  
page 108  
H6  
GNDD  
GNDD  
GNDD  
AVSS  
RxData2_S  
TxData2  
NC  
Table 39 on  
page 108  
Table 39 on  
page 108  
H7  
Table 39 on  
page 108  
Table 39 on  
page 108  
H8  
Table 39 on  
page 108  
Table 39 on  
page 108  
H9  
GNDD  
Table 39 on  
page 108  
Table 39 on  
page 108  
H10  
H11  
H12  
AVSS  
GNDD  
Table 39 on  
page 108  
Table 39 on  
page 108  
AVSS  
NC  
Table 39 on  
page 108  
I, ST,  
IP  
Table 39 on  
page 108  
AVCC  
AMDIX_EN  
Datasheet  
105  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Reference for Full  
Description  
Ball Signal Name Type  
Ball Signal Name Type  
Description  
Table 39 on  
page 108  
Table 39 on  
page 108  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
GNDD  
GNDD  
AVSS  
M4  
M5  
NC  
NC  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
M6  
M7  
M8  
LED3_3_L  
LED2_3_L  
LED0_3_L  
Table 39 on  
page 108  
AVCC  
TPOP2  
TPON2  
NC  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
AO/AI  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
AO/AI  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
I
M9  
M10  
M11  
M12  
M13  
M14  
N1  
CFG_3  
CFG_1  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
L2  
GNDD  
VCCIO  
REFCLK0  
VCCIO  
NC  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
L3  
TXSLEW_0  
TXSLEW_1  
TPIN1  
Table 39 on  
page 108  
I,ST,  
ID  
Table 39 on  
page 108  
L4  
Table 39 on  
page 108  
Table 39 on  
page 108  
L5  
AI/AO  
AI/AO  
Table 39 on  
page 108  
Table 39 on  
page 108  
L6  
TPIP1  
Table 39 on  
page 108  
Table 39 on  
page 108  
L7  
VCCD  
GNDD  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
N2  
TxData1  
RxData0_S  
TxData0  
I, ID  
L8  
LED1_3_L  
Table 39 on  
page 108  
N3  
O, TS  
I, ID  
I, ST,  
ID  
Table 39 on  
page 108  
L9  
CFG_2  
NC  
Table 39 on  
page 108  
N4  
Table 39 on  
page 108  
L10  
L11  
L12  
L13  
L14  
M1  
IO,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
N5  
N6  
N7  
N8  
MDIO  
AVSS  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
AVCC  
Table 39 on  
page 108  
LED3_2_L  
LED2_2_L  
LED1_1_L  
Table 39 on  
page 108  
TPIP2  
AI/AO  
AI/AO  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
Table 39 on  
page 108  
TPIN2  
OD,  
TS,  
SL, IP  
O, TS,  
ID  
Table 39 on  
page 108  
Table 39 on  
page 108  
RxData1_SS  
RxData1_S  
RxData0_SS  
Table 39 on  
page 108  
M2  
O, TS  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
N9  
LED0_1_L  
ADD_4  
O, TS,  
ID  
Table 39 on  
page 108  
M3  
I, ST,  
ID  
Table 39 on  
page 108  
N10  
106  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Reference for Full  
Ball Signal Name Type  
Description  
Table 39 on  
page 108  
N11  
N12  
N13  
N14  
P1  
GNDD  
TPIN0  
TPON0  
TPOP1  
GNDD  
NC  
AI/AO  
AO/AI  
AO/AI  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
Table 39 on  
page 108  
P2  
Table 39 on  
page 108  
P3  
NC  
I, ST,  
ID  
Table 39 on  
page 108  
P4  
MDC  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
P5  
P6  
P7  
P8  
P9  
MDINT_L  
LED3_1_L  
LED2_1_L  
LED1_2_L  
LED0_2_L  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
OD,  
TS,  
SL, IP  
Table 39 on  
page 108  
I, ST,  
ID  
Table 39 on  
page 108  
P10  
P11  
P12  
P13  
P14  
ADD_3  
GNDD  
TPIP0  
Table 39 on  
page 108  
Table 39 on  
page 108  
AI/AO  
AO/AI  
AO/AI  
Table 39 on  
page 108  
TPOP0  
TPON1  
Table 39 on  
page 108  
Datasheet  
107  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3.6  
BGA15 Signal Descriptions  
3.6.1  
Signal Name Conventions  
Signal names may contain either a port designation or a serial designation, or a combination of the  
two designations. Signal naming conventions are as follows:  
Port Number Only. Individual signals that apply to a particular port are designated by the  
Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit  
Enable signals would be identified as TxEN0, TxEN1, and TxEN2.  
Serial Number Only. A set of signals which are not tied to any specific port are designated by  
the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set  
of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3.  
Port and Serial Number. In cases where each port is assigned a set of multiple signals, each  
signal is designated in the following order: Signal Mnemonic, Port Designation, an  
underscore, and the serial designation. For example, a set of three Port Configuration signals  
would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and  
RxData2_0 and RxData2_1.  
3.6.2  
Signal Descriptions – SMII and SS-SMII Configurations  
Table 39 provides the BGA15 signal descriptions.  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 1 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
SMII/SS-SMII Common Signal Descriptions  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
N4,  
N2,  
K3,  
J1,  
G3,  
E2,  
D3,  
A5  
Transmit Data - Ports 0-7.  
These serial input streams provide data to be transmitted to  
the network. The LXT9785/9785E clocks the data in  
synchronously to REFCLK.  
I, ID  
Reference Clock.  
The LXT9785/9785E always requires a 125 MHz reference  
clock input. Refer to Section 4.4.2, “Clock/SYNC  
Requirements” on page 124 for detailed clock  
requirements.  
REFCLK1  
REFCLK0  
C3  
L4  
I
SMII Specific Signal Descriptions  
SMII Synchronization.  
SYNC  
K1  
I, ID  
The MAC must generate a SYNC pulse every 10 REFCLK  
cycles to synchronize the SMII.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
108  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 2 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
RxData0_S  
RxData1_S  
RxData2_S  
RxData3_S  
RxData4_S  
RxData5_S  
RxData6_S  
RxData7_S  
N3,  
M2,  
K2,  
H3,  
F2,  
E3,  
B4,  
C5  
Receive Data - Ports 0-7.  
These serial output streams provide data received from the  
network. The LXT9785/9785E drives the data out  
synchronously to REFCLK.  
O, TS  
SS-SMII Specific Signal Descriptions  
SS-SMII Transmit Synchronization.  
TxSYNC  
RxSYNC  
K1  
E1  
I, ID  
The MAC must generate a TxSYNC pulse every 10 TxCLK  
cycles to mark the start of TxData segments.  
SS-SMII Receive Synchronization.  
O, TS,  
ID  
The LXT9785/9785E generates these pulses every 10  
RxCLK cycles to mark the start of RxData segments for the  
MAC.  
SS-SMII Transmit Clock.  
The MAC sources this 125 MHz clock as the timing  
reference for TxData and TxSYNC. See “Clock/SYNC  
Requirements” on page 124 for detailed clock requirements.  
TxCLK  
RxCLK  
J3  
I, ID  
SS-SMII Receive Clock.  
The LXT9785/9785E generates these clocks, based on  
REFCLK, to provide a timing reference for RxData and  
RxSYNC to the MAC. See “Clock/SYNC Requirements” on  
page 124 for detailed clock requirements. These outputs are  
only enabled when SS-SMII mode is enabled.  
O, TS,  
ID  
G1  
RxData0_SS  
RxData1_SS  
RxData2_SS  
RxData3_SS  
RxData4_SS  
RxData5_SS  
RxData6_SS  
RxData7_SS  
M3,  
M1,  
J2,  
H2,  
F3,  
C2,  
A4,  
C6  
Receive Data - Ports 0-7.  
O, TS,  
ID  
These serial output streams provide data received from the  
network. The LXT9785/9785E drives the data out  
synchronously to REFCLK.  
MDIO Control Interface Signal Descriptions  
Management Data Input/Output.  
I/O, TS,  
SL, IP  
Bidirectional serial data channel for communication  
between the PHY and MAC or switch ASIC. Refer to  
Figure 21 on page 139.  
MDIO  
N5  
P5  
Management Data Interrupt.  
OD, TS,  
SL,  
When Register bit 18.1 = 1, an active Low output on this  
Pin indicates status change. Refer to Figure 21 on page 139.  
MDINT_L  
IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
Datasheet  
109  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 3 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
Management Data Clock.  
Clock for the MDIO serial data channel. Maximum  
frequency is 20 MHz. Only MDC0 is used when 1x8 port  
sectionalization is selected. In 2x4 port sectionalization  
mode, MDC0 clocks ports 0-3 register accesses and MDC1  
clocks ports 4-7 register accesses. Refer to Figure 21 on  
page 139.  
MDC  
P4  
I, ST, ID  
Network Interface Signal Description  
TPOP0, TPON0  
TPOP1, TPON1  
TPOP2, TPON2  
TPOP3, TPON3  
TPOP4, TPON4  
TPOP5, TPON5  
TPOP6, TPON6  
TPOP7, TPON7  
P13, N13,  
N14, P14,  
K13, K14,  
J14, J13,  
F14, F13,  
E13, E14,  
B14, A14,  
A13, B13  
Twisted-Pair Outputs2, Positive & Negative, Ports 0-7.  
AO/AI  
AI/AO  
During 100BASE-TX or 10BASE-T operation, TPO pins  
drive 802.3 compliant pulses onto the line.  
TPIP0, TPIN0  
TPIP1, TPIN1  
TPIP2, TPIN2  
TPIP3, TPIN3  
TPIP4, TPIN4  
TPIP5, TPIN5  
TPIP6, TPIN6  
TPIP7, TPIN7  
P12, N12,  
M14, M13,  
L13, L14,  
H14, H13,  
G14, G13,  
D13, D14,  
C14, C13,  
A12, B12  
Twisted-Pair Inputs3, Positive & Negative, Ports 0-7.  
During 100BASE-TX or 10BASE-T operation, TPI pins  
receive differential 100BASE-TX or 10BASE-T signals from  
the line.  
JTAG Test Signal Description  
Test Data Input.  
TDI  
C12  
I, ST, IP  
Test data sampled with respect to the rising edge of TCK.  
Test Data Output.  
TDO  
TMS  
TCK  
C11  
B11  
A11  
O, TS  
Test data driven with respect to the falling edge of TCK.  
I, ST, IP Test Mode Select.  
Test Clock.  
I, ST, ID  
Clock input for JTAG test.  
Test Reset.  
TRST_L  
A10  
I, ST, IP  
Reset input for JTAG test.  
Miscellaneous Signal Description  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
110  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 4 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
Tx Output Slew Controls 0 and 1 Defaults.  
These pins are read at startup or reset. Their value at that  
time is used to set the default state of Register bits  
27.11:10 for all ports. These register bits can be read and  
overwritten after startup / reset.  
These pins select the TX output slew rate for all ports (rise  
and fall time) as follows:  
TxSLEW_0  
TxSLEW_1  
M11,  
M12  
I, ST, ID  
Slew Rate (Rise and Fall  
TxSLEW_1 TxSLEW_0  
Time)  
0
0
1
0
1
3.3 ns  
3.6 ns  
3.9 ns  
4.2 ns  
0
1
1
Reset.  
This active low input is ORed with the control register Reset  
RESET_L  
C10  
I, ST, IP Register bit 0.15. When held Low, all outputs are forced to  
inactive state.  
Pin is not on JTAG chain.  
Address <4:3>.  
Sets base address to one of the following four possible  
addresses:  
00000  
01000  
10000  
11000  
ADD_4  
ADD_3  
N10,  
P10  
Each port adds its port number (starting with 0) to this  
address to determine its PHY address.  
I, ST, ID  
Port 0 Address = Base  
Port 1 Address = Base + 1  
Port 2 Address = Base + 2  
Port 3 Address = Base + 3  
Port 4 Address = Base + 4  
Port 5 Address = Base + 5  
Port 6 Address = Base + 6  
Port 7 Address = Base + 7  
Mode Select[1:0].  
00 = Reserved  
01 = SMII  
MODESEL_1  
MODESEL_0  
E8  
C9,  
I, ST, ID  
10 = SS-SMII  
11 = Reserved  
All ports are configured the same. Interfaces cannot be  
mixed and must be all SMII or SS-SMII.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
Datasheet  
111  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 5 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
Auto MDI/MDIX Enable Default.  
This pin is read at startup or reset. Its value at that time is  
used to set the default state of Register bit 27.9 for all ports.  
These register bits can be read and overwritten after  
startup / reset. Refer to Table 40 on page 118.  
AMDIX_EN  
K8  
I, ST, IP  
When active (High), automatic MDI crossover (MDIX)  
(regardless of segmentation) is selected for all ports. When  
inactive (Low) MDIX is selected according to the MDIX pin.  
Global Port Configuration Defaults 1-3.  
These pins are read at startup or reset. Their value at that  
time is used to set the default state of register bits shown in  
Table 42, “Global Hardware Configuration Settings” on  
CFG_1  
CFG_2  
CFG_3  
M10,  
L9,  
M9  
I, ST, ID page 128 for all ports. These register bits can be read and  
overwritten after startup / reset.  
When operating in Hardware Control Mode, these pins  
provide configuration control options for all the ports (refer  
to page 128 for details).  
FIFO Select <1:0>.  
These pins are read at startup or reset. Their value at that  
time is used to set the default state of Register bits  
18.15:14 for all ports. These register bits can be read and  
overwritten after startup/reset.  
These pins are shared with RMII-RxER<5:4>. An external  
FIFOSEL1  
FIFOSEL0  
C1,  
F1  
I, ID, ST  
pull-up resistor (see applications section for value) can be  
used to set FIFO Select<1:0> to active while RxER<5:4>  
are three-stated during hardware reset. If no pull-up is  
used, the default FIFO select state is set via the internal  
pull-down resistors.  
See Table 36, “Receive FIFO Depth Configurations” on  
page 97.  
LINKHOLD Default. This pin is read at startup or reset. Its  
value at that time is used to set the default state of Register  
bit 0.11 for all ports. This register bit can be read and  
overwritten after startup / reset. When High, the LXT9785/  
9785E powers down all ports.  
LINKHOLD  
B3  
I, ID, ST  
This pin is shared with RMII-RxER6. An external pull-up  
resistor (see applications section for value) can be used to  
set LINKHOLD active while RxER6 is three-stated during  
H/W reset. If no pull-up is used, the default LINKHOLD  
state is set inactive via the internal pull-down resistor.  
LED Signal Descriptions  
Port 0 LED Drivers 1-3.  
These pins drive LED indicators for Port 0. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED0_1_L  
LED0_2_L  
LED0_3_L  
N9  
P9  
M8  
OD, TS,  
SL, IP  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
112  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 6 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
Port 1 LED Drivers 1-3.  
These pins drive LED indicators for Port 1. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED1_1_L  
LED1_2_L  
LED1_3_L  
N8  
P8  
L8  
OD, TS,  
SL, IP  
Port 2 LED Drivers 1-3.  
These pins drive LED indicators for Port 2. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED2_1_L  
LED2_2_L  
LED2_3_L  
P7  
N7  
M7  
OD, TS,  
SL, IP  
Port 3 LED Drivers 1-3.  
These pins drive LED indicators for Port 3. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED3_1_L  
LED3_2_L  
LED3_3_L  
P6  
N6  
M6  
OD, TS,  
SL, IP  
Port 4 LED Drivers 1-3.  
These pins drive LED indicators for Port 4. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED4_1_L  
LED4_2_L  
LED4_3_L  
B9  
A9  
D8  
OD, TS,  
SL, IP  
Port 5 LED Drivers 1-3.  
These pins drive LED indicators for Port 5. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED5_1_L  
LED5_2_L  
LED5_3_L  
B8  
A8  
C7  
OD, TS,  
SL, IP  
Port 6 LED Drivers 1-3.  
These pins drive LED indicators for Port 6. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED6_1_L  
LED6_2_L  
LED6_3_L  
A7  
B7  
D6  
OD, TS,  
SL, IP  
Port 7 LED Drivers 1-3.  
These pins drive LED indicators for Port 7. Each LED can  
display one of several available status conditions as  
selected by the LED Configuration Register (refer to  
Table 96, “LED Configuration Register (Address 20, Hex  
14)” on page 213 for details).  
LED7_1_L  
LED7_2_L  
LED7_3_L  
B6  
A6  
D5  
OD, TS,  
SL, IP  
Power Supply Signal Descriptions  
D12, E12,  
F12, G12,  
H12, J12,  
K12, L12,  
Analog Power Supply.  
AVCC  
+2.5 V supply for analog circuits.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
Datasheet  
113  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 7 of 7)  
BGA15 Ball  
Designation  
Symbol  
Type  
Signal Description  
E11, F9, F10,  
F11, G9, G10,  
G11, H9, H10,  
H11, J9, J10,  
J11, K11, L11  
Analog Ground.  
AVSS  
Ground return for analog supply (AVCC). all grounds can  
be tied together using a single ground plane.  
Digital Power Supply - Core.  
VCCD  
D7, L7  
+2.5 V supply for core digital circuits.  
Digital Power Supply - I/O Ring.  
+2.5/3.3 V supply for digital I/O circuits. The digital input  
circuits running off of this rail, having a TTL-level threshold  
and over-voltage protection, may be interfaced with 3.3/5.0  
V, when the IO supply is 3.3 V, and 2.5/3.3/5.0 V when 2.5  
V.  
D4, F4, H4,  
L3, L5,  
VCCIO  
A1, A2, A3,  
B1, B2, B5,  
B10, D9, D11,  
E5, E6, E9,  
E10, F5, F6,  
F7, F8, G4,  
G6, G7, G8,  
H6, H7, H8,  
J5, J6, J7, J8,  
K5, K6, K9,  
K10, L2, N1,  
N11, P1, P11  
Digital Ground.  
GNDD  
Ground return for core digital supplies (VCCD). All ground  
pins can be tied together using a single ground plane.  
Substrate Ground.  
SGND  
C8  
Ground for chip substrate. All ground pins can be tied  
together using a single ground plane.  
Unused/Reserved Balls  
C4, D1, D2,  
D10, E4, E7,  
G2, G5, H1,  
H5, J4, K4,  
K7, L1, L6,  
L10, M4, M5,  
P2, P3  
NC  
No Connection.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS =  
Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-  
Down.  
114  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.0  
Functional Description  
4.1  
Introduction  
The Intel® LXT9785/LXT9785E is an 8-port Fast Ethernet 10/100 PHY transceiver that supports  
10 Mbps and 100 Mbps networks, complying with all applicable requirements of IEEE 802.3  
standards. The device incorporates a Serial Media Independent Interface (SMII), Source  
Synchronous-Serial Media Independent Interface (SS-SMII), and a Reduced Serial Independent  
Interface (RMII) to enable each individual network port to interface with multiple 10/100 MACs.  
Each port directly drives either a 100BASE-TX line or a 10BASE-T line. The LXT9785/9785E  
also supports 100BASE-FX operation via an LVPECL interface. The device has a 241-ball BGA, a  
208-pin QFP, or a 196-ball BGA package.  
The 196-ball BGA package (BGA15) is a reduced feature-set product designated as the  
LXT9785MBC. The BGA15 package does not support the following features:  
RMII  
Fiber  
Sectionalization  
Hardware control pins:  
PAUSE  
— MDIX  
— MDDIS  
— PWRDWN  
— Lower three PHY address (out of five PHY address bits)  
Extended temperature  
Note: Unless otherwise noted, all information in this document applies to the LXT9785 and LXT9785E.  
4.1.1  
OSP™ Architecture  
The Intel LXT9785/LXT9785E incorporates high-efficiency Optimal Signal Processing™ design  
techniques, combining the best properties of digital and analog signal processing to produce a truly  
optimal device.  
The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by  
as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques  
in the receive equalizer avoids the quantization noise and calculation truncation errors found in  
traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result  
is improved receiver noise and cross-talk performance.  
The OSP architecture also requires substantially less computational logic than traditional DSP-  
based designs. The result is lower power consumption and reduced logic switching noise generated  
by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a considerable  
source of EMI when generated from the device’s power supplies.  
Datasheet  
115  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
The OSP-based LXT9785/LXT9785E provides improved data recovery, EMI performance and  
power consumption.  
4.1.2  
Comprehensive Functionality  
The LXT9785/LXT9785E performs all functions of the Physical Coding Sublayer (PCS) and  
Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X  
specification. This device also performs all functions of the Physical Media Dependent (PMD)  
sublayer for 100BASE-TX connections.  
On power-up, the LXT9785/LXT9785E reads its configuration inputs to check for forced operation  
settings. If not configured for forced operation, each port uses auto-negotiation/parallel detection to  
automatically determine line operating conditions. If the PHY device on the other side of the link  
supports auto-negotiation, the LXT9785/LXT9785E auto-negotiates with it using Fast Link Pulse  
(FLP) Bursts. If the PHY partner does not support auto-negotiation, the LXT9785/LXT9785E  
automatically detects the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps  
PHY) and set its operating conditions accordingly.  
The LXT9785/LXT9785E provides half-duplex and full-duplex operation at 100 Mbps and 10  
Mbps.  
4.1.2.1  
Sectionalization  
The LXT9785/LXT9785E’s sectional design allows flexibility with large multiport MACs and  
ASICs. With the use of the Section pin, the LXT9785/LXT9785E can be configured into a single 8-  
port or two separate 4-port sections, each with its own MDIO (with separate MDC clock) and MII  
data (with separate REFCLK/TxCLK/RxCLK clocks) interfaces. See Figure 16, “Typical SMII  
Quad Sectionalization” on page 133, Figure 21, “Typical SS-SMII Quad Sectionalization” on  
page 139, and Figure 26, “Typical RMII Quad Sectionalization” on page 143.  
Note: The BGA15 package does not support sectionalization.  
4.2  
Interface Descriptions  
4.2.1  
10/100 Network Interface  
The LXT9785/LXT9785E supports 10 Mbps and 100 Mbps (10BASE-T and 100BASE-TX)  
Ethernet over twisted-pair, or 100 Mbps (100BASE-FX) Ethernet over fiber media. Each network  
interface port consists of four external pins (two differential signal pairs). The pins are shared  
between twisted-pair (TP) and fiber. The LXT9785/LXT9785E pinout is designed to interface  
seamlessly with dual-high stacked RJ-45 connectors. Refer to Table 11, “Network Interface Signal  
Descriptions – PQFP” on page 41 for specific pin assignments.  
The LXT9785/LXT9785E output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-  
FX output. When not transmitting data, the device generates IEEE 802.3-compliant link pulses or  
idle code. Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input,  
depending on the mode selected. Auto-negotiation/parallel detection or manual control is used to  
determine the speed of this interface.  
116  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 7. Interface Signals  
TXENn  
TXDn_0  
TXDn_1  
TXCLK  
RXCLK  
RXDn_1  
TPFOPn  
TPFONn  
Network  
Interface  
DATA  
Interface  
TPFIPn  
TPFINn  
RXDn_0  
RXERn  
CRS_DVn  
MDIOn  
MDCn  
MDIO  
Management  
Interface  
MDINTn  
MDDIS  
Direct Drive  
LEDn_1  
Port LEDs/  
Controls  
LEDn_2  
LEDn_3  
+3.3V  
OR  
+2.5V  
MDIX_Enb  
Mode Select  
ADD[4:0]  
Addr &  
MDIX/  
Contr  
VCCIO  
VCCD  
GNDD  
+2.5V  
.01uF  
B3369-01  
4.2.1.1  
Twisted-Pair Interface  
The LXT9785/LXT9785E supports either 100BASE-TX or 10BASE-T connections over 100 Ω,  
Category 5, Unshielded Twisted-Pair (UTP). Only a transformer, RJ-45, and bypass capacitors are  
required to complete this interface. Using Intel's patented waveshaping technology, the transmitter  
shapes the outgoing signal to help reduce the need for external EMI filters. Four slew rate settings  
(refer to Table 13, “Miscellaneous Signal Descriptions – PQFP” on page 42) allow the designer to  
match the output waveform to the magnetic characteristics. Both transmit and receive terminations  
are built into the LXT9785/LXT9785E so no external components are required between the  
LXT9785/LXT9785E and the external transformer. The transmitter uses a transformer with a  
center tap to help reduce power consumption.  
When operating at 100 Mbps, MLT3 symbols are continuously transmitted and received. When not  
transmitting data, the LXT9785/LXT9785E generates “IDLE” symbols.  
During 10 Mbps operation, LXT9785/LXT9785E encoded data is exchanged. When no data are  
being exchanged, the line is left in an idle state with NLPs transmitted to maintain link.  
Datasheet  
117  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.2.1.2  
MDI Crossover (MDIX)  
The LXT9785/LXT9785E crossover function, which is compliant to the IEEE 802.3, clause 23  
standard, connects the transmit output of the device to the far-end receiver in a link segment. This  
function can be disabled via Register bits 27.9:8 or by using the hardware configuration pins.  
Table 40. MDIX Selection  
AMDIX_EN  
MDIX  
MDIX Mode  
0
0
1
0
1
MDI forced  
MDIX forced  
X
Auto MDI/MDIX  
Note: The BGA15 package does not support MDIX hardware configuration. Software must be used to  
control the function after power-up.  
4.2.1.3  
Fiber Interface  
The LXT9785/LXT9785E fiber ports are designed to interface with common industry-standard 3.3  
V and 5 V fiber transceivers. Each of the 8 ports incorporates a Low-Voltage PECL interface that  
complies with the ANSI X3.166 standard for seamless integration.  
Note: The BGA15 package does not support the fiber interface.  
Fiber mode is selected through Register bit 16.0 by the following two methods:  
1. Configure Register bit 16.0 = 1 on a global basis (all 8 ports) by driving the Hardware Control  
pin G_FX/TP_L to a logic High value on power-up and/or reset.  
2. Configure Register bit 16.0 = 1 on a per-port basis through the MDIO interface.  
The fiber interface is capable of full-duplex or half-duplex operation. In half duplex, operation  
collisions must be managed by external Layer 2 logic (MAC). Auto negotiation is not supported for  
fiber mode.  
4.3  
Media Independent Interface (MII) Interfaces  
The LXT9785/LXT9785E supports Reduced MII or Serial MII, but not concurrently. The interface  
mode selection pins configures the device for either RMII or SMII/SS-SMII on all eight ports.  
Refer to Table 41 for the mode select settings.  
Note: The BGA15 package does not support the RMII interface.  
4.3.1  
Global MII Mode Select  
The mode select pins are used for MII interface configuration settings upon power-up sequencing.  
All ports are configured the same and cannot be intermixed.  
118  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 41. MII Mode Select  
ModeSel1  
ModeSel0  
RMII1  
SMII  
0
0
1
1
0
1
0
1
SS-SMII  
Reserved  
1. Invalid for the BGA15 package.  
4.3.2  
Internal Loopback  
Register bit 0.14 must be set to enable internal loopback operation. Register bits 16.14 and 0.8  
must be set for 10 Mbps operation. Intel recommends that auto-negotiation be disabled while  
internal loopback is enabled. The normal auto-negotiation process code word exchange cannot be  
completed.The following two-step sequence is recommended for the most efficient mode change  
when enabling forced 100 Mbps internal loopback mode directly from auto-negotiation mode:  
1. Write Register 0 with 0x2100h (forced 100 Mbps), and  
2. Write Register 0 with 0x6100h (enable internal loopback with forced 100 Mbps)  
This two-step process ensures the 100 Mbps link comes up quickly. If the one-write process of  
writing 0x6100h is followed, it may take up to 1.5 seconds before link is established and data is  
received on the port. The 1.5 second delay is due to the IEEE auto-negotiation Break Link Timer  
(BLT) requirement. The timer must expire before link is established when changing modes directly  
from auto-negotiation to internal loopback forced 100 Mbps mode. Use the above two-step process  
to eliminate the auto-negotiation BLT timer requirement.  
Figure 8. Internal Loopback  
LXT9785/9785E  
Fx  
Driver  
RMII/  
SMII/  
SS-  
SMII  
inter  
face  
Analog  
Digital  
Block  
Loopback  
Block  
Tx  
Driver  
4.3.3  
RMII Data Interface  
The LXT9785/LXT9785E provides a separate RMII for each network port, each complying with  
the RMII Specification, Revision 1.2. The RMII includes both a data interface and an MDIO  
management interface. The RMII Data Interface exchanges data between the LXT9785/LXT9785E  
and up to eight Media Access Controllers (MACs).  
Datasheet  
119  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.3.4  
Serial Media Independent Interface (SMII) and Source Synchronous-  
Serial Media Independent Interface (SS-SMII)  
4.3.4.1  
SMII Interface  
The LXT9785/LXT9785E provides an independent serial interface for each network port,  
complying with the Serial-MII Specification, Revision 1.2. All SMII ports use a common reference  
clock and SYNC signal. The SMII Data Interface exchanges data between the LXT9785/  
LXT9785E and multiple Media Access Controllers (MACs). All signals are synchronous to the  
reference clock. One SYNC control stream is sourced by the MAC to the PHY. Both the transmit  
and receive data streams are segmented into boundaries delimited by the SYNC pulses. This  
interface is expected to drive up to 6 inches of trace lengths.  
4.3.4.2  
4.3.5  
4.3.6  
Source Synchronous-Serial Media Independent Interface  
The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps to  
relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC, RxCLK,  
and RxSYNC. The transmit TxCLK and TxSYNC are sourced from the MAC to the PHY and  
referenced to the REFCLK input. The receive RxCLK and RxSYNC are sourced by the PHY to the  
MAC and in reference to the REFCLK.  
Configuration Management Interface  
The LXT9785/LXT9785E provides an MDIO Management Interface and a Hardware Control  
Interface (via the CFG pins) for device configuration and management. Mode control selection is  
provided via the MDDIS pin as shown in Table 9, “MDIO Control Interface Signals – PQFP” on  
page 40. When sectionalization (2x4) is selected, separate MDIO interfaces are enabled (see  
Figure 13 on page 126).  
MII Isolate  
In applications where the MII must be isolated from the bus, the RMII and the SMII/SS-SMII  
configurations can be three-stated using Register 0.10. On each individual port, Register bit 0.10  
controls the isolation of the transmit and receive data signals for that port. Register bit 0.10 on ports  
0 and 4 isolate the RxCLKn/TxCLKn and SYNC signals.  
When 1x8 sectionalization is selected, TxCLK0, TxSYNC0, RxCLK1, and RxSYNC1 are used for  
the clocking and synchronization interface. Port 4 controls the isolation of RxCLK0, RxCLK1,  
RxSYNC0, and RxSYNC1, and must be used to isolate the receive clock and synchronization  
interface.  
When 2x4 sectionalization is selected, TxCLK0, TxSNC0, RxCLK0, and TxCLK0 are used for  
Port 0 through Port 3 and TxCLK1, TxSYNC1, RxCLK1, and RxSYNC1 are used for Port 4  
through Port 7. Port 0 must be isolated to isolate the receive clock and synchronization interface for  
Port 0 through Port 3. Port 4 must be isolated to isolate Port 4 through Port 7.  
4.3.7  
MDIO Management Interface  
The LXT9785/LXT9785E supports the IEEE 802.3 MII Management Interface, also known as the  
Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to  
monitor and control the state of the LXT9785/LXT9785E. The MDIO interface consists of a  
120  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
physical connection, a specific protocol that runs across the connection, and an internal set of  
addressable registers. Some registers are required and their functions are defined by the IEEE  
802.3 specification. Additional registers allow for expanded functionality. Specific bits in the  
registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is  
the bit number (0-15).  
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this  
interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are  
completely disabled. The Hardware Control Interface provides primary configuration control.  
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the  
Hardware Control Interface is not used.  
Note: The BGA15 package does not support the MDDIS pin.  
The timing for the MDIO Interface is shown in Table 79, “MDIO Timing Parameters” on page 197.  
MDIO read and write cycles are shown in Figure 9, “Management Interface Read Frame Structure”  
on page 121 and Figure 10, “Management Interface Write Frame Structure” on page 121.  
Figure 9. Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
High Z  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14 D1  
D15  
Z
0
0
1
1
0
32 "1"s  
Turn  
Around  
Data  
Read  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Write  
Figure 10. Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
Register Address  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Data  
Idle  
Write  
The protocol allows one controller to communicate with multiple LXT9785/LXT9785E chips. Pins  
ADD_<4:0> determine the base address. Each port adds its port number to the base address to  
obtain its port address as shown in Figure 11.  
The BGA15 package uses a similar scheme where the ADD_[2:0] bits internally set to 0 and the  
ADD_[4:3] bits are used to select from four base addresses (0x00000b, 0x01000b, 0x10000b, or  
0x11000b.  
Datasheet  
121  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 11. Port Address Scheme  
BASE ADD_<4:0>  
(example ADD_<4:0> = 4)  
LXT9785/9785E  
PHY ADD_<4:0> (BASE+0)  
ex. 4  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
PHY ADD_<4:0> (BASE+1)  
ex. 5  
PHY ADD_<4:0> (BASE+2)  
ex. 6  
PHY ADD_<4:0> (BASE+3)  
ex. 7  
PHY ADD_<4:0> (BASE+4)  
ex. 8  
PHY ADD_<4:0> (BASE+5)  
ex. 9  
PHY ADD_<4:0> (BASE+6)  
ex. 10  
PHY ADD_<4:0> (BASE+7)  
ex. 11  
4.3.8  
MII Sectionalization  
When sectionalized into two quad sections, the MDIO bus splits into two separate PHY access  
ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII isolate function  
is unaffected and operates normally. Sectionalization is selected by pulling pin 176 (Section) High  
on the initial power-up sequence (refer to Figure 13). In applications that need sectionalization,  
such as 1x8 and 2x4 and have a single MDIO bus structure, it is necessary that the addressing  
scheme be contiguous. For example, the first eight ports are addressed 0-7, so the next four ports  
must be addressed 8-11.  
Note: The BGA15 package does not support the MII sectionalization feature.  
4.3.9  
MII Interrupts  
The LXT9785/LXT9785E provides a single per-section interrupt pin that is available to all ports.  
Interrupt logic is shown in Figure 12. The LXT9785/LXT9785E also provides two dedicated  
interrupt registers for each port. Register 18 provides interrupt enable and mask functions and  
Register 19 provides interrupt status. Setting Register bit 18.1 = 1 enables a port to request  
interrupt via the MDINT_L pin. An active Low on this pin indicates a status change on the device.  
Because it is a shared interrupt, there is no indication which port is requesting interrupt service (see  
Figure 12).  
There are five conditions that may cause an interrupt:  
122  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Auto-negotiation complete.  
Speed status change.  
Duplex status change.  
Link status change.  
Isolate status change.  
Figure 12. Interrupt Logic  
Event X Enable Reg  
AND  
Event X Status Reg  
OR  
Port  
Combine  
Logic  
Interrupt Pin  
AND  
.
.
.
.
.
Per Event  
.
Per port  
Force Interrupt  
Interrupt Enable  
Interrupt (Event) Status Register is cleared on read.  
X = Any Interrupt capability  
4.3.10  
4.3.11  
Global Hardware Control Interface  
The LXT9785/LXT9785E provides a Hardware Control Interface for applications where the  
MDIO is not desired. Refer to “Initialization” on page 125 for additional details.  
FIFO Initial Fill Values  
The FIFO initial fill value sets the number of bits required to be written into the FIFO before the  
process of reading the packet out of the FIFO is started. The read operation is aligned on nibble  
boundaries because the FIFO is one nibble wide. The read clock on the RMII and SMII interfaces  
may occur any time within the next available nibble. Therefore, the effective size of the FIFO is  
one nibble less than the selected size.  
Large initial fill FIFO settings alter both the data-path latency and the InterFrame Gap (IFG) output  
on the RMII and SMII interfaces. The latency values are increased or decreased depending on the  
number of bits the FIFO size is increased or decreased. The IFG may decrease up to twice the size  
of the initial fill FIFO setting. When the following three conditions are met, the IPG on the RMII  
and SMII interfaces may become nonexistent between packets, effectively concatenating the  
packets into one long corrupted packet:  
The frequency difference between the link partner and the local LXT9895 device exceed  
200 ppm (the IEEE standard requirement).  
Jumbo packets (8192 byte packets or longer) are used.  
Packets on the wire occur with minimum Inter-Packet Gap (IPG) of 96 bit times.  
The concatenation of the packets is flagged by the MAC as a CRC error and possibly an oversized  
packet depending upon the length indication capabilities of the MAC. The possibility of packet  
concatenation can be minimized on the RMII interface by setting the initial fill FIFO Register bits  
18.15:14 to 01. The FIFO setting bits should be set to 10 for the SMII interfaces.  
Datasheet  
123  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.4  
Operating Requirements  
4.4.1  
Power Requirements  
The LXT9785/LXT9785E requires four power supply inputs: VCCD, VCCA, VCCPECL and  
VCCIO. The digital and analog circuits require 2.5 V supplies (VCCD, VCCR, and VCCT). These  
inputs may be supplied from a single source although decoupling is required to each respective  
ground. The fiber VCCPECL supply can be connected to either 2.5 V or 3.3 V.  
A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces. The  
power supply may be either +2.5 V or +3.3 V. VCCIO should be supplied from the same power  
source used to supply the controller on the other side of the interface. Refer to Table 53, “Digital I/  
O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%)” on page 174, Table 54, “Digital I/O DC  
Electrical Characteristics (VCCIO = 3.3 V +/- 5%)” on page 175, and Table 55, “Digital I/O DC  
Electrical Characteristics – SD Pins” on page 175 for I/O characteristics.  
As a matter of good practice, these supplies should be as clean as possible. Typical filtering and  
decoupling are shown in Figure 34 on page 168. The power supplies should be brought up as close  
to the same time as possible. However, there are no specific timing requirements.  
4.4.2  
Clock/SYNC Requirements  
Reference Clock  
4.4.2.1  
The LXT9785/LXT9785E requires a constant enabled reference clock (REFCLK). REFCLK’s  
frequency must be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The reference clock is used  
to generate transmit signals and recover receive signals. A crystal-based clock is recommended  
over a derived clock (that is, PLL-based) to minimize transmit jitter. Refer to Table 56, “Required  
Clock Characteristics” on page 175 for clock timing requirements.  
For applications that use a single 8-port sectionalization, REFCLK0 and REFCLK1 must always  
be tied together and to the source. In 2x4 applications, REFCLK0 and REFCLK1 are not tied  
together.  
4.4.2.2  
4.4.2.3  
4.4.2.4  
TxCLK Signal (SS-SMII only)  
The LXT9785/LXT9785E requires a 125 MHz input transmit clock synchronous with TxDatan  
and frequency locked to REFCLK. See Figure 22 on page 140.  
TxSYNC Signal (SMII/SS-SMII)  
The LXT9785/LXT9785E requires a 12.5 MHz input pulse for SMII synchronization. See  
Figure 22 on page 140.  
RxSYNC Signal (SS-SMII only)  
The LXT9785/LXT9785E provides a 12.5 MHz output pulse synchronous with the RxDatan  
outputs. See Figure 23 on page 140.  
124  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.4.2.5  
RxCLK Signal (SS-SMII only)  
In SS-SMII mode, the LXT9785/LXT9785E provides a 125 MHz clock output in reference to the  
output RxDatan. RxCLK is referenced and synchronized to the REFCLK. See Figure 23 on page  
140.  
4.5  
Initialization  
When the LXT9785/LXT9785E is first powered on, reset, or encounters a link failure state, it  
checks the MDIO register configuration bits to determine the line speed and operating conditions  
to use for the network link. The configuration bits may be set by the Hardware Control or MDIO  
interface as shown in Figure 13 on page 126.  
4.5.1  
4.5.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT9785/LXT9785E reads the Hardware Control Interface pins to  
set the initial (default) values of the MDIO registers. Once the initial values are set, bit control  
reverts to the MDIO interface.  
Hardware Control Mode  
In the Hardware Control Mode, the LXT9785/LXT9785E disables direct write operations to the  
MDIO registers via the MDIO Interface. On power-up or hardware reset, the LXT9785/LXT9785E  
reads the Hardware Control Interface pins and sets the MDIO registers accordingly.  
The following modes are available using either Hardware Control or MDIO Control:  
Force network link to 100BASE-FX (Fiber).  
Force network link operation to:  
— 100BASE-TX, Full-Duplex  
— 100BASE-TX, Half-Duplex  
— 10BASE-T, Full-Duplex  
— 10BASE-T, Half-Duplex  
Allow auto-negotiation/parallel-detection.  
Auto/Manual MDIX enable/disable.  
Pause for full-duplex links operation.  
Global Output Slew Rate Control.  
When the network link is forced to a specific configuration, the LXT9785/LXT9785E immediately  
begins operating the network interface as commanded. When auto-negotiation is enabled, the  
LXT9785/LXT9785E begins the auto-negotiation/ parallel-detection operation.  
Datasheet  
125  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 13. Initialization Sequence  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
Pass Control to MDIO  
Interface  
Disable MDIO Writes  
Software  
Reset?  
Hardware  
Reset?  
Yes  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
4.5.3  
Power-Down Mode  
The LXT9785/LXT9785E incorporates numerous features to maintain the lowest power possible.  
The device can be put into a low-power state via Register 0 as well as a near-zero power state with  
the power down pin. When in power-down mode, the device is not capable of receiving or  
transmitting packets.  
The lowest power operation is achieved using the Global power-down pin, which is active High.  
This pin powers down every circuit in the device, including all clocks. All registers are unaltered  
and maintained when the Global PWRDWN pin is released.  
Note: The BGA15 package does not support the PWRDWN pin feature.  
Individual ports (software power down) can be powered down using Register bit 0.11. This bit  
powers down a significant portion of the port, but clocks to the register section remain active. This  
allows the management interface to remain active during register power-down. The power-down  
bit is active High.  
126  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Note: Intel recommends that a minimum recovery time be allowed after bringing up a port from software  
or hardware power-down or link hold-off modes. The recovery times are specified in Table 80,  
“Power-Up Timing Parameters” on page 198  
4.5.3.1  
Global (Hardware) Power Down  
The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High, the  
following conditions are true:  
All LXT9785/LXT9785E ports and the clock are shut down.  
All outputs are three-stated.  
All weak pad pull-up and pull-down resistors are disabled.  
The MDIO registers are not accessible.  
Configuration pins are read upon release of the PWRDWN pin, and registers are loaded with  
the current values of the hardware configuration pins.  
4.5.3.2  
Port (Software) Power Down  
Individual port power-down control is provided by Register bit 0.11 in the respective port Control  
Registers (refer to Table 83, “Control Register (Address 0)” on page 200). During individual port  
power-down, the following conditions are true:  
The individual port is shut down.  
The MDIO registers remain accessible.  
Pull-up and pull-down resisters are not affected and the outputs are not three-stated.  
The register remains unchanged.  
4.5.4  
Reset  
The LXT9785/LXT9785E provides both hardware and software resets. Configuration control of  
Auto-Negotiation, speed, and duplex mode selection is handled differently for each. During a  
hardware reset, settings for bits 0.13, 0.12, 0.8, and 4.8:5 are read in from the pins (refer to  
Table 42, “Global Hardware Configuration Settings” on page 128 for pin settings, and Table 83,  
“Control Register (Address 0)” on page 200 and Table 87, “Auto-Negotiation Advertisement  
Register (Address 4)” on page 204 for register bit definitions).  
During a software reset (Register bit 0.15 = 1), the bit settings are not re-read from the pins and  
revert back to the values that were read in during the last hardware reset. Any changes to pin values  
from the last hardware reset are not detected during a software reset.  
During a hardware reset, register information is unavailable for 1 ms after de-assertion of the reset.  
All MII interface pins are disabled during a hardware reset and released to the bus on de-assertion  
of reset.  
During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be  
polled to see when the part has completed reset (0.15 = 0). Pull up and pull down resisters are not  
affected.  
Datasheet  
127  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Intel recommends that a minimum recovery time be allowed after bringing up a port from software  
or hardware reset. The recovery times are specified in Table 80, “Power-Up Timing Parameters” on  
page 198  
4.5.5  
Hardware Configuration Settings  
The LXT9785/LXT9785E provides a hardware option to set the initial device configuration. The  
hardware option uses three Global CFG pins that provide control for all ports (see Table 42).  
Table 42. Global Hardware Configuration Settings  
CFG  
Desired Mode  
Resulting Register Bit Values  
Pin Settings1  
AutoNeg Speed  
Duplex  
1
2
3
0.12  
0.13  
0.8  
4.8  
4.7  
4.6  
4.5  
Half  
Full  
Half  
Full  
Half  
Low  
Low  
Low  
Low  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
0
1
0
1
0
0
0
0
10  
Disabled  
0
N/A  
0
Auto-Negotiation  
Advertisement  
100  
1
1
1
1
1
0
1
0
1
1
0
1
100  
Enabled  
0
Full/Half High  
Half High  
Full/Half High  
1
1
1
0
1
1
1
10/100  
1. Refer to Table 5, “RMII Signal Descriptions – PQFP” on page 35 through Table 17, “Receive FIFO Depth  
Considerations” on page 49 Table 24, “RMII Signal Descriptions – BGA23” on page 81 through Table 36,  
“Receive FIFO Depth Configurations” on page 97, and Table 39, “Intel® LXT9785 BGA15 Signal  
Descriptions” on page 108 for CFG pin assignments.  
4.6  
Link Establishment  
4.6.1  
Auto-Negotiation  
The LXT9785/LXT9785E attempts to auto-negotiate with its link partner by sending Fast Link  
Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses  
(clock pulses) are always present. Even link pulses (data pulses) may also be present or absent to  
indicate a “1” or a “0”. Each FLP burst exchanges 16 bits of data, referred to as a “page”. All  
devices that support auto-negotiation must implement the “Base Page”, defined by IEEE 802.3  
(registers 4 and 5). The LXT9785/LXT9785E also supports the optional “Next Page” function  
(registers 7 and 8).  
4.6.1.1  
Base Page Exchange  
By exchanging Base Pages, the LXT9785/LXT9785E and its link partner communicate their  
capabilities to each other. Both sides must receive at least three identical base pages for negotiation  
to proceed. Each side finds their highest common capabilities, exchange more pages, and agree on  
the operating state of the line.  
128  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.6.1.2  
Manual Next Page Exchange  
Additional information, exceeding that required by base page exchange, is also sent via “Next  
Pages.” The LXT9785/LXT9785E fully supports the IEEE 802.3 method of negotiation via Next  
Page exchange. The Next Page exchange uses Register 7 to send information and Register 8 to  
receive it. Next Page exchange occurs only if both ends of the link partners advertise their ability to  
exchange Next Pages. A special mode has been added to make manual next page exchange easier  
for software. When Register 6 “page” is received, it stays set until read. This bit is cleared when a  
new negotiation occurs, preventing the user from reading an old value in Register 6 and assuming  
there is valid information in Registers 5 and 8. The page received bit is cleared upon reading the  
“Auto-Negotiation Expansion Register (Address 6)” on page 206.  
4.6.1.3  
Controlling Auto-Negotiation  
The following steps are recommended when auto-negotiation is controlled by software:  
After power-up, power-down, or reset, the power-down recovery time, as specified in  
Table 80, “Power-Up Timing Parameters” on page 198, must be exhausted before proceeding.  
Set the auto-negotiation advertisement register bits in Register 4 as desired.  
Enable auto-negotiation (set MDIO Register bit 0.12 = 1).  
Enable or restart auto-negotiation as soon as possible after writing to Register 4 to ensure  
proper operation.  
4.6.1.4  
Link Criteria  
In 100 Mbps mode, link is established when the descrambler becomes locked and remains locked  
for approximately 50 ms. Link remains up unless the descrambler receives less than 16 consecutive  
idle symbols in any 2 ms period. This provides a robust operation, filtering out any small noise hits  
that may disrupt the link.  
MLT-3 idle waveforms, for short periods, meet all the criteria for 10BASE-T start delimiters. A  
working 10BASE-T receive may temporarily indicate link to 100BASE-TX waveforms. However,  
the PHY will not bring up a permanent 10 Mbps link.  
According to the IEEE standard 10 Mbps link state machine, the last condition that must be met  
before 10 Mbps link can come up is a period of transmit and receive idle time. TXEN and RXDV  
are inactive at the same time. This ensures that link is not brought up in the middle of transmitting  
or receiving a packet. To ensure link establishment, Intel recommends no packet transmission into  
the MII interface until link is established.  
The IEEE Standard references this requirement in Section 14.2.3 State Diagrams, Figure 14-6-Link  
Integrity Test Function State Diagram and in Section 28.3.4 State Diagrams, Figure 28-17-NLP  
Receive Link Integrity Test State Diagram. These diagrams illustrate that while the PHY is in the  
Link Test Fail Extend state, the last state before Link Pass state) Packet receive activity (RD) and  
Transmit Activity (DO) must be idle (RD = idle * D0 = idle) for link to establish.  
4.6.1.5  
Parallel Detection  
In parallel with auto-negotiation, the LXT9785/LXT9785E also monitors for 10 Mbps Normal  
Link Pulses (NLP) or 100 Mbps Idle symbols. If either symbol is detected, the device  
automatically reverts to the corresponding operating speed in half-duplex mode. Parallel detection  
allows the LXT9785/LXT9785E to communicate with devices that do not support auto-  
negotiation.  
Datasheet  
129  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
When parallel detection resolves a link, the link must be established in half-duplex mode.  
According to IEEE standards, the forced link partner cannot be configured to full-duplex. If the  
auto-negotiation link partner does not advertise half-duplex capability at the speed of the forced  
link partner, link is not established. The IEEE Standard prevents forced full-duplex-to-half-duplex  
link connections.  
Figure 14. Auto-Negotiation Operation  
Power-Up, Reset,  
Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
Auto-Neg/Parallel Detection  
0.12 = 0  
0.12 = 1  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Set?  
4.6.1.6  
Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced  
Speed Mode  
With auto MDI/MDIX hardware enabled, end users experience reliable link establishment under all  
settings of auto MDI/MDIX and speed between the LXT9785/LXT9785E and its link partners. As  
stated in the IEEE clauses 40.4.5.1 (Auto MDI/MDIX) and 28.3.2 (Parallel Detect), when ports are  
forced to 10 Mbps or 100 Mbps and auto MDI/MDIX is enabled, and the port is connected to a  
partner with auto-negotiation enabled, an undefined condition exists between the IEEE auto MDIX  
and Parallel Detect specifications. Link may not occur according to the IEEE specification.  
During this undefined condition, when the LXT9785/LXT9785E is set to 10 Mbps or 100 Mbps  
and auto MDI/MDIX is enabled, the LXT9785/LXT9785E and the link partner auto-negotiation  
processes are expected to be skewed enough to establish link in all but the rarest cases. Auto MDI/  
MDIX is configured through hardware and software. If auto MDI/MDIX operation is desired in  
forced modes, disabling auto MDI/MDIX using the software programming can aid link  
establishment.  
4.7  
Serial MII Operation  
The LXT9785/LXT9785E exchanges transmit and receive data with the controller via the Serial  
MII (SMII). The SMII performs the following functions:  
Conveys complete MII information between a 10/100 PHY and MAC with two pins per port.  
Allows a multi-port MAC/PHY communication with one system clock.  
Operates in both half and full-duplex.  
130  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Supports per-packet switching between 10 Mbps and 100 Mbps data rates.  
The Serial MII operates at 125 MHz using a global reference clock and frame synchronization  
signal (REFCLK and SYNC). Each port has an individual two-line data interface (TxDatan and  
RxDatan). All signals are synchronous to REFCLK. Table 43 summarizes the SMII signals.  
Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of 4B  
coded data) and two status bits. When the port is operating at 100 Mbps, each word contains a new  
data byte. When the port is operating at 10 Mbps, each data byte is repeated 10 times.  
Table 43. SMII Signal Summary  
Signal  
TxData  
To  
PHY  
From  
MAC  
Purpose  
Transmit data & control  
Synchronization  
SYNC  
PHY  
MAC  
MAC  
PHY  
RxData  
Receive data & control  
MAC &  
PHY  
REFCLK  
System  
Synchronization  
1. Refer to Table 7, “SMII Specific Signal Descriptions – PQFP”  
on page 38 for detailed signal descriptions.  
Datasheet  
131  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 15. Typical SMII Interface  
Typical SMII Interface  
in a 16-Port System  
SECTION  
8
TxDatan  
SYNC0  
8
n
RxData  
MDIO0  
MDC0  
MDINT0  
RefCLK0 RefCLK1  
125 MHz Sourced  
Externally or from  
Switch ASIC  
SYSTEM CLK  
RefCLK0 RefCLK1  
8
8
TxData  
SYNC0  
n
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
132  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 16. Typical SMII Quad Sectionalization  
Typical SMII Interface in a  
24-Port System  
RefClk1  
RefClk0  
TxDatan  
8
8
SYNC0  
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
n
TxData  
4
SYNC0  
n
RxData  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxDatan  
4
SYNC1  
4
n
RxData  
VCC  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
TxData n  
SYNC0  
8
RxData n  
SECTION  
RefClk0 RefClk1  
Datasheet  
133  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 17. 100 Mbps Serial MII Data Flow  
Strip  
Serial Data Stream  
To/From  
TX_EN &  
TX_ER  
Status  
Bits  
2 Nibbles Tx/Rx Data  
D0 D1 D2 D3  
2 Symbols Tx/Rx Data  
S0 S1 S2 S3 S4  
MAC  
S0 S1 D0 D1 D2  
4B/5B  
To/From  
PMD  
Insert  
CRS &  
RX_DV  
Status  
Bits  
D3 D4 D5 D6 D7  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
Sublayer  
4.7.1  
4.7.2  
4.7.3  
SMII Reference Clock  
The REFCLK operates at 125 MHz. The transmit and receive data and control streams must always  
be synchronized to the REFCLK by the MAC and PHY. The LXT9785/LXT9785E samples these  
signals on the rising edge of the REFCLK.  
TxSYNC Pulse (SMII/SS-SMII)  
The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The MAC must  
continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The TxSYNC pulse  
signals the start of each new segment (see Figure 21 on page 139).  
Transmit Data Stream  
Transmit data and control information are signaled in ten- bit segments. In 100 Mbps mode, each  
segment contains a new byte of data. In 10 Mbps mode, the MAC must repeat a 10M serial word  
ten times on TxData. The LXT9785/LXT9785E may sample that serial word at any point.  
The TxSYNC pulse signals the start of a new segment as shown in Figure 18.  
4.7.3.1  
4.7.3.2  
Transmit Enable  
The MAC must assert the TxEN bit in each segment of TxData, and de-assert TxENn after the last  
segment of the packet.  
Transmit Error  
When the MAC asserts the TxER bit in 100BASE-X mode, the LXT9785/LXT9785E drives “H”  
symbols onto the network interface. TxER does not have any function in 10M operation.  
134  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 18. Serial MII Transmit Synchronization  
CLOCK  
TxSYNC  
TX  
TxER TxEN  
TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TxER  
4.7.4  
Receive Data Stream  
Receive data and control information are signalled in ten-bit segments. In 100 Mbps mode, each  
segment contains a new byte of data. In 10 Mbps mode, each segment is repeated ten times (except  
for the CRS bit), and the MAC can sample any of the ten segments.  
4.7.4.1  
4.7.4.2  
Carrier Sense  
The CRS bit (slot 0) is generated when a packet is received from the network interface. The CRS  
bit is set in real time, even in 10 Mbps mode (all other bits are repeated in 10 sequential segments).  
Receive Data Valid  
The LXT9785/LXT9785E asserts the RX_DV bit (slot 1) when it receives a valid packet. The  
assertion timing changes depending on line operating speed:  
For 100BASE-TX and 100BASE-FX links, the RX_DV bit is asserted from the first nibble of  
preamble to the last nibble of the data packet.  
For 10BASE-T links, the entire preamble is truncated. The RX_DV bit is asserted with the  
first nibble of the Start-of-Frame Delimiter (SFD) “5D” and remains asserted until the end of  
the packet.  
4.7.4.3  
4.7.4.4  
Receive Error  
When the LXT9785/LXT9785E receives an invalid symbol from the network in 100BASE-TX  
mode, it drives “0101” on the associated RxData signals.  
Receive Status Encoding  
The LXT9785/LXT9785E encodes status information onto the RxData line during IPG as seen in  
Table 44 on page 136. Status bit RxData<5> indicates the validity of the upper nibble  
(RxData<7:4> of the last byte of the previous frame). RxData and RX_DV are passed through the  
internal elasticity FIFO to smooth any clock rate differences between the recovered clock and the  
125 MHz reference clock.  
4.7.5  
Collision  
The SMII interface does not provide a collision output and relies on the MAC to interpret COL  
conditions using CRS and TxEN. CRS is unaffected by the transmit path.  
Datasheet  
135  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 19. Serial MII Receive Synchronization  
CLOCK  
RxSYNC  
RXD0  
RXER  
RXD1  
Speed  
RXD2  
Duplex  
RXD3  
Link  
RXD4  
Jabber  
RXD5  
Valid  
RXD6  
FCE  
RXD7  
RXD7  
RX  
CRS  
CRS  
RX_DV  
Table 44. RX Status Encoding Bit Definitions  
Signal  
Definition  
CRS  
Carrier Sense - identical to MII, except that it is not an asynchronous signal.  
Receive Data Valid - identical to MII. When RX_DV = 0, status  
0 = Status Byte  
RxDV  
information is transmitted to the MAC. When RX_DV = 1,  
1 = Valid Data Byte  
received data is transmitted to the MAC.  
RxER  
(RxData0)  
Inter-frame status bit RxData0 indicates whether or not the  
PHY detected an error somewhere in the previous frame.  
0 = No Error  
1 = Error  
SPEED  
(RxData1)  
0 = 10 Mbps  
1 = 100 Mbps  
Inter-frame status bit RxData1 indicates port operating speed.  
Inter-frame status bit RxData2 indicates port duplex condition.  
Inter-frame status bit RxData3 indicates port link status.  
Inter-frame status bit RxData4 indicates port jabber status.  
DUPLEX  
(RxData2)  
0 = Half-duplex  
1 = Full-duplex  
LINK  
(RxData3)  
0 = Down  
1 = Up  
JABBER  
(RxData4)  
0 = OK  
1 = Error  
VALID  
Inter-frame status bit RxData5 conveys the validity of the upper 0 = Invalid  
(RxData5)  
nibble of the last byte of the previous frame  
1 = Valid  
False Carrier  
(RxData6)  
Inter-frame status bit RxData6 indicates whether or not the  
PHY has detected a false carrier event.  
0 = No FC detected  
1 = FC detected  
RxData7  
This bit is set to 1.  
1 = Always  
1. Both RxData0 and RxData5 bits are valid in the segment immediately following a frame, and remain valid  
until the first data segment of the next frame begins.  
4.7.6  
Source Synchronous-Serial Media Independent Interface  
Some system designs require the PHY to be placed between 3 to 12 inches away from the MAC. A  
new Source Synchronous-Serial Media Independent Interface (SS-SMII) definition has been added  
because of this requirement. To provide a source synchronous interface between the PHY and  
MAC, the PHY must drive the RxCLK and the RxSYNC signals to the MAC. Also, the MAC must  
drive the TxCLK and the TxSYNC signal to the PHY. The REFCLK is also needed to synchronize  
the data to the PHY’s core clock domain. TxData is clocked in using TxCLK and then  
synchronized to REFCLK and transmitted to the twisted-pair. The RxData is synchronized to the  
RxCLK. See Figure 23 on page 140.  
136  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 45. SS-SMII  
Signal  
To  
From  
MAC  
Purpose  
TxData  
TxCLK  
PHY  
PHY  
PHY  
MAC  
MAC  
MAC  
MAC  
Transmit data & control  
Transmit clock  
MAC  
MAC  
PHY  
TxSYNC  
RxData  
RxCLK  
Synchronization pulses  
Receive data & control  
Receive clock  
PHY  
RxSYNC  
REFCLK  
PHY  
Receive Synchronization  
Synchronization  
System  
Datasheet  
137  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 20. Typical SS-SMII Interface  
Typical SS-SMII Interface in  
a 16-Port System  
SECTION  
8
TxDatan  
TxSYNC0  
TxCLK0  
8
RxDatan  
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
RefCLK0,1  
125 MHz Sourced  
SYS_CLK  
Externally or from  
Switch ASIC  
RefCLK0,1  
TxDatan  
8
TxSYNC0  
TxCLK0  
8
RxData  
n
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
138  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 21. Typical SS-SMII Quad Sectionalization  
Typical SS-SMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
8
TxData n  
TxSYNC0  
TxCLK0  
8
RxData n  
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
TxData  
n
4
TxSYNC0  
TxCLK0  
RxData  
n
4
RxSYNC0  
RxCLK0  
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxData  
n
4
TxSYNC1  
TxCLK1  
4
RxData  
n
RxSYNC1  
RxCLK1  
VCC  
MDINT1  
MDIO1  
SECTION  
MDC1  
MDINT0  
MDIO0  
MDC0  
8
TxData  
n
TxSYNC0  
TxCLK0  
8
RxData n  
RxSYNC1  
RxCLK1  
SECTION  
RefClk0 RefClk1  
Datasheet  
139  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 22. SS-SMII Transmit Timing  
TxCLK  
TxSYNC  
TXER  
TXEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TXER  
TxData  
TxCLK  
TxSYNC  
TxData  
TXER  
Frcerr Speed  
Dplx LINK Jabr  
TXEN  
TXER  
All signals are synchronous to the clock  
Figure 23. SS-SMII Receive Timing  
RxCLK  
RxSYNC  
RxData  
CRS  
RXDV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS  
RxCLK  
RxSYNC  
RxData  
CRS  
RXERSpeed  
CRS  
RXDV  
Dplx LINK Jabr UPnib FlsCar  
All signals are synchronous to the clock  
4.8  
RMII Operation  
The LXT9785/LXT9785E provides an independent Reduced MII port for each network port. Each  
RMII uses four signals to pass received data to the MAC: RxDatan<1:0>, RxERn, and CRS_DVn  
(where n reflects the port number). Three signals are used to transmit data from the MAC:  
TxDatan_<1:0> and TxENn. Both receive and transmit signals are clocked by REFCLK. Data  
transmission across the RMII is implemented in di-bit pairs which equal a 4-bit wide nibble.  
Note: The BGA15 package does not support the RMII interface.  
4.8.1  
RMII Reference Clock  
The LXT9785/LXT9785E requires a 50 MHz reference clock (REFCLK). The device samples the  
RMII input signals on the rising edge of REFCLK and drives RMII output signals on the falling  
edge.  
140  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.8.2  
Transmit Enable  
TxENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert  
TxENn at the same time as the first nibble of preamble. TxENn must be de-asserted after the last  
bit of the packet.  
4.8.3  
4.8.4  
Carrier Sense & Data Valid  
The LXT9785/LXT9785E asserts CRS_DVn when it detects activity on the line. However,  
RxDatan outputs zeros until the received data is decoded and available for transfer to the controller.  
Receive Error  
Whenever the LXT9785/LXT9785E receives an error symbol from the network, it asserts RxERn.  
When it detects a bad Start-of-Stream Delimiter (SSD) it drives a “10” jam pattern on the RxData  
pins to indicate a false carrier event.  
4.8.5  
4.8.6  
Out-of-Band Signaling  
The LXT9785/LXT9785E has the capability of encoding status information in the RxData stream  
during IPG. See “Monitoring Operations” on page 156 for details.  
4B/5B Coding Operations  
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However,  
data is normally transmitted across the RMII interface in 2-bit nibblets or “di-bits”. The LXT9785/  
LXT9785E incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit  
nibbles, and a 4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit  
symbols for the 100BASE-X connection. Figure 24 shows the data conversion flow from nibbles to  
symbols. Table 46 on page 146 shows 4B/5B symbol coding (not all symbols are valid).  
Figure 24. RMII Data Flow  
Reduced MII Mode Data Flow  
+1  
Parallel  
to  
Serial  
0
0
0
Scramble  
D0 D2  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
D1 D3  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
di-bit  
pairs  
4-bit  
nibbles  
5-bit  
symbols  
Datasheet  
141  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 25. Typical RMII Interface  
Typical RMII Interface  
in a 16-Port System  
SECTION  
8
TxD0n  
8
TxD1n  
8
TxENn  
8
RxD0n  
8
RxD1  
n
8
8
CRS_DVn  
RxERn  
MDIO0  
MDC0  
MDINT0  
RefClk0 RefClk1  
50 Mhz Sourced  
Externally or from  
Switch ASIC  
RefClk0  
MDINT0  
RefClk1  
MDIO0  
MDC0  
8
8
TxD0n  
TxD1n  
8
8
TxENn  
RxD0n  
8
RxD1n  
8
8
CRS_DVn  
n
RxER  
SECTION  
142  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 26. Typical RMII Quad Sectionalization  
Typical RMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
TxD0n  
TxD1  
8
8
n
8
8
TxENn  
RxD0n  
8
8
8
RxD1n  
CRS_DVn  
RxERn  
MDIO0  
MDC0  
MDINT0  
SECTION  
4
TxD0n  
TxD1n  
TxENn  
RxD0n  
RxD1n  
4
4
4
4
4
CRS_DVn  
RxERn  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
50 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
4
TxD0  
TxD1  
TxEN  
n
n
n
4
4
4
4
4
4
RxD0n  
RxD1n  
CRS_DV  
n
VCC  
n
RxER  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
8
8
TxD0n  
TxD1n  
TxENn  
8
8
8
8
RxD0n  
RxD1n  
CRS_DVn  
RxERn  
SECTION  
RefClk0 RefClk1  
Datasheet  
143  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.9  
100 Mbps Operation  
4.9.1  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT9785/LXT9785E transmits and receives 5-bit symbols  
across the network link. Figure 27 shows the structure of a standard frame packet. When the MAC  
is not actively transmitting data, the LXT9785/LXT9785E sends out Idle symbols on the line.  
In 100BASE-TX mode, the device scrambles the data and transmits it to the network using MLT-3  
line code. The MLT-3 signals received from the network are de-scrambled and decoded, and sent  
across the RMII to the MAC.  
In 100BASE-FX mode, the LXT9785/LXT9785E transmits and receives NRZI signals across the  
LVPECL interface. An external 100BASE-FX transceiver module is required to complete the fiber  
connection.  
As shown in Figure 27, the MAC starts each transmission with a preamble pattern. As soon as the  
LXT9785/LXT9785E detects the start of preamble, it transmits a J/K Start-of-Stream Delimiter  
(SSD) symbol to the network. It then encodes and transmits the rest of the packet, including the  
balance of the preamble, the Start-of-Frame Delimiter (SFD), packet data, and CRC. Once the  
packet ends, the LXT9785/LXT9785E transmits the T/R End-of-Stream Delimiter (ESD) symbol  
and then returns to transmitting Idle symbols.  
Figure 27. 100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0 P1 P6  
DA DA SA SA L1  
L2 D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
4.9.2  
100BASE-X Protocol Sublayer Operations  
In a 7-layer communications model, the LXT9785/LXT9785E is a Physical Layer 1 (PHY) device.  
The LXT9785/LXT9785E implements the Physical Coding Sublayer (PCS), Physical Medium  
Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model  
defined by the IEEE 802.3u specification. The following paragraphs discuss the LXT9785/  
LXT9785E operation from the reference model point of view.  
4.9.2.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/  
decoding function. For 100BASE-TX and 100BASE-FX operation, the PCS layer provides IDLE  
symbols to the PMD-layer line driver as long as TxEN is de-asserted. For 10T operation, the PCS  
layer merely provides a bus interface and serialization/de-serialization function. 10T operation  
does not use the 4B/5B encoder.  
144  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.9.2.1.1 Preamble Handling  
When the MAC asserts TxEN, the PCS substitutes a /J/K/ symbol pair, also known as the Start-of-  
Stream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer  
continues to encode the remaining RMII data until TxEN is de-asserted (see Table 46 on page 146).  
It then returns to supplying IDLE symbols to the line driver.  
The PCS layer performs the opposite function in the receive direction by substituting two preamble  
nibbles for the SSD.  
Figure 28. Protocol Sublayers  
MII Interface  
LXT9785  
PCS  
Encoder/Decoder  
Serializer/De-serializer  
Sublayer  
PMA  
Sublayer  
Link/Carrier Detect  
LVPECL Interface  
PMD  
Sublayer  
Scrambler/  
De-scrambler  
Fiber Transceiver  
100BASE-TX  
100BASE-FX  
Datasheet  
145  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.9.3  
PMA Sublayer  
The 100BASE-X PMA protocol uses the 4B/5B data encoding scheme to encode/decode the data  
streams. The coding scheme is shown in Table 46.  
Table 46. 4B/5B Coding  
4B Code  
3 2 1 0  
5B Code  
4 3 2 1 0  
Code Type  
Name  
Interpretation  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
undefined  
0
1
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
2
3
4
5
6
DATA  
7
8
9
A
B
C
D
E
F
I 1  
IDLE  
Idle. Used as inter stream fill code.  
Start-of-Stream Delimiter (SSD),  
part 1 of 2.  
0 1 0 1  
0 1 0 1  
J 2  
K 2  
T 3  
R 3  
H 4  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
Start-of-Stream Delimiter (SSD),  
part 2 of 2.  
CONTROL  
End-of-Stream Delimiter (ESD),  
part 1 of 2.  
undefined  
undefined  
undefined  
End-of-Stream Delimiter (ESD),  
part 2 of 2.  
Transmit Error. Used to force  
signaling errors.  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
146  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.9.3.1  
Link  
In 100 Mbps mode, the LXT9785/LXT9785E establishes a link whenever the descrambler  
becomes locked and remains locked for approximately 50 ms. Whenever the descrambler loses  
lock (<16 consecutive idle symbols during a 2 ms window), the link is taken down. This provides a  
robust link, filtering out any small noise hits that may otherwise disrupt the link. Furthermore, 100  
Mbps idle patterns will not bring up a 10 Mbps link.  
The LXT9785/LXT9785E reports link failure via the Register status bits (1.2, 17.10, and 19.4) and  
interrupt functions. If auto-negotiate is enabled, link failure causes the device to re-negotiate.  
4.9.3.2  
Link Failure Override  
The LXT9785/LXT9785E normally transmits 100 Mbps data packets or Idle symbols only if it  
detects the link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1  
overrides this function, allowing the LXT9785/LXT9785E to transmit data packets even when the  
link is down. This feature is provided as a diagnostic tool.  
Note: Auto-negotiation must be disabled to transmit data packets in the absence of link. If auto-  
negotiation is enabled, the LXT9785/LXT9785E automatically begins transmitting FLP bursts if  
the link goes down.  
4.9.3.3  
Carrier Sense/Data Valid (RMII)  
The LXT9785/LXT9785E asserts CRS_DV whenever the respective port receiver is in a non-idle  
state (as defined by the RMII Specification Revision 1.2), including false carrier events. Assertion  
of CRS_DV is asynchronous with respect to REFCLK. In the event that signal decoding is not  
complete when CRS_DV is asserted, the LXT9785/LXT9785E outputs 00 on the RxData1:0 lines  
until the decoded data are available.  
When the line returns to an idle state, CRS_DV is de-asserted synchronously with respect to  
REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS is de-  
asserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For 100BASE-X signals,  
CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at 2.5 MHz.  
4.9.3.4  
Carrier Sense (SMII)  
For 100BASE-TX and 100BASE-FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol pair  
causes assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/ symbol pair  
causes de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE symbols are received  
without /T/R/. In this event, receive error is indicated during the IPG until the next packet is  
received.  
For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on receipt of  
an End-of-Frame (EOF) marker.  
4.9.3.5  
Receive Data Valid (SMII)  
The LXT9785/LXT9785E asserts the RX_DV bit when it receives a valid packet. However,  
RxData outputs zeros until the received data are decoded and available for transfer to the controller.  
Datasheet  
147  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.9.3.6  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100BASE-TX, Manchester for 10T), as well  
as receiving, polarity correction, and baseline wander correction functions.  
4.9.3.6.1 Scrambler/Descrambler (100BASE-TX Only)  
The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using  
an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial  
whenever IDLE symbols are received.  
The scrambler/descrambler can be bypassed by setting Register bit 16.12 = 1. The scrambler is  
automatically bypassed when the fiber port is enabled. Scrambler bypass is provided for diagnostic  
and test support.  
4.9.3.6.2 Baseline Wander Correction  
The LXT9785/LXT9785E provides a baseline wander correction function which makes the device  
robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is,  
by definition, “unbalanced”. This means that the DC average value of the signal voltage can  
“wander” significantly over short time intervals (tenths of seconds). This wander may cause  
receiver errors, particularly in less robust designs, at long line lengths (100 meters). The exact  
characteristics of the wander are completely data dependent.  
The LXT9785/LXT9785E baseline wander correction characteristics allow the device to recover  
error-free data while receiving worst-case “killer” packets over all cable lengths.  
4.9.3.6.3 Polarity Correction  
The LXT9785/LXT9785E automatically detects and corrects for the condition where the receive  
signal (TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses or four  
inverted End-of-Frame (EOF) markers are received consecutively. If link pulses or data are not  
received by the maximum receive time-out period, the polarity state is reset to a non-inverted state.  
Before the polarity switch occurs, every frame is inverted and causes RxER to assert. The specific  
number of RxER events observed depends on how many link pulses occur between packets.  
4.9.3.7  
Fiber PMD Sublayer  
The LXT9785/LXT9785E provides an LVPECL interface for connection to an external 3.3 V or  
5 V fiber transceiver. (The external transceiver provides the PMD function for the optical medium.)  
The LXT9785/LXT9785E uses a 125 Mbaud NRZI format for the fiber interface, and does not  
support 10BASE-FL applications.  
Note: The BGA15 package does not support fiber interface.  
4.9.3.7.1 Far End Fault Indications  
The LXT9785/LXT9785E Signal Detect pins independently detect signal faults from the local  
fiber transceivers via the SD pins. The device also uses Register bit 1.4 to report Remote Fault  
indications received from its link partner. The device “ORs” both fault conditions to set bit 1.4.  
Register bit 1.4 is set once and clears when read.  
148  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
The far-end fault detection process in fiber operation requires idles to establish link. Link will not  
establish if a far-end fault pattern is the initial signal detected.  
Either fault condition causes the LXT9785/LXT9785E to drop the link unless Forced Link Pass is  
selected (16.14 = 1). Link down condition is then reported via interrupts and status bits.  
In response to locally detected signal faults (SD activated by the local fiber transceiver), the  
affected port can transmit the far end fault code if fault code transmission is enabled by Register bit  
16.2.  
When Register bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT9785/  
LXT9785E transmits far end fault code if fault conditions are detected by the Signal Detect  
pins.  
When Register bit 16.2 = 0, the LXT9785/LXT9785E does not transmit far end fault code. It  
continues to transmit idle code and may or may not drop link depending on the setting for  
Register bit 16.14.  
The occurrence of a Far End Fault causes all transmission of data from the Reconciliation Sublayer  
to stop and the Far End fault code to begin. The Far End Fault code consists of 84 ones’s followed  
by a single “0” and is repeated until the Far End Fault condition is removed.  
4.10  
10 Mbps Operation  
The LXT9785/LXT9785E operates as a standard 10BASE-T transceiver and supports all the  
standard 10 Mbps functions. During 10BASE-T (10T) operation, the LXT9785/LXT9785E  
transmits and receives Manchester-encoded data across the network link. When the MAC is not  
actively transmitting data, the device sends out link pulses on the line.  
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals  
received from the network are decoded by the LXT9785/LXT9785E and sent across the MII to the  
MAC.  
Note: The LXT9785/LXT9785E does not support fiber connections at 10 Mbps.  
4.10.1  
Preamble Handling  
The LXT9785/9785E offers two options for preamble handling, which are selected by Register bit  
16.5. In 10BASE-T mode, when Register bit 16.5 = 0, the device strips the preamble off the  
received packets. In RMII and the SMII modes, the CRS signal is asserted based upon receive  
activity. In the SMII modes, Out-of-Band (OOB) signaling is present until the SFD is output. The  
DV signal is initially asserted in the frame that the SFD is output. In RMII mode, zeros are output  
after receive activity is detected until the SFD is output. The packet is output following the SFD.  
When Register bit 16.5 = 1 in 10BASE-T mode, the LXT9785/LXT9785E passes the preamble  
through the RMII and the SMII interfaces. In RMII and the SMII modes, the CRS signal is asserted  
based upon receive activity. In the SMII modes, OOB signaling is continued until preamble is  
available from the receive FIFO. After the preamble, the SFD is output with the initial assertion of  
the DV signal. The RMII interface outputs zeros after receive activity is detected until preamble is  
available from the FIFO. The number of zero nibbles output before preamble is based upon the  
FIFO initial fill settings (Register bits 18.15:14). The preamble is followed by the SFD and the  
packet body. Register bit 16.5 has no effect in 100 Mbps operation.  
Datasheet  
149  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.10.2  
4.10.3  
Dribble Bits  
The LXT9785/LXT9785E device handles dribble bits in all modes. If one through four dribble bits  
are received, the nibble is passed across the RMII. If five through seven dribble bits are received,  
the second nibble is not sent onto the RMII bus.  
Link Test  
The LXT9785/LXT9785E always transmits link pulses in 10T mode. When enabled, the link test  
function monitors the connection for link pulses. Once link pulses are detected, data transmission is  
enabled and remains enabled as long as either the link pulses or data transmission continue. If link  
pulses stop, the data transmission is disabled.  
If the link test function is disabled, the LXT9785/LXT9785E transmits to the connection regardless  
of detected link pulses. The link test function is disabled by setting Register bit 16.14 = 1.  
4.10.3.1  
4.10.4  
Link Failure  
Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this  
condition occurs, the LXT9785/LXT9785E returns to the auto-negotiation phase if auto-  
negotiation is enabled.  
Jabber  
If a transmission exceeds the jabber timer, the LXT9785/LXT9785E disables the transmit and  
loopback functions and the Collision Status bit (Register bit 17.11) is set regardless of duplex. The  
jabber timer, according to the IEEE standard, must be between 20 ms to 150 ms. The RMII does  
not include a Jabber pin, but the MAC may read Register 1 to determine jabber status. The  
LXT9785/LXT9785E automatically exits jabber mode after the unjab time expires. This function is  
disabled by setting Register bit 16.10 = 1.  
150  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.11  
DTE Discovery Process  
The DTE discovery process is port dependent and must be enabled through software. The process  
is implemented as a next page option to the auto-negotiation flow. When the process is enabled,  
manual control of auto-negotiation next pages is not allowed. This feature applies to the  
LXT9785E transceiver only.  
The process depends upon an IP phone, or any other DTE capable of being powered remotely,  
having a specific filter that passes NLPs and FLPs. This filter should be non-polarized to insure  
that the latest status of Auto-MDIX operation does not effect operation. This filter attenuates  
100 Mbps MLT3 signals and 10 Mbps Manchester-encoded signals, and must be bypassed when  
power is applied to the IP phone. Figure 29 shows a typical IP telephone system connection.  
Figure 29. Typical IP Telephone System Connection  
VoIP-Enabled Switch  
S
D
1
0/100Bas e-TPorts  
M
o
d
ul  
e
St  
a
t
u
s
1
2
3
4
5
6
1
3
1
4
1
5
1
6
1
7
1
8
L
ni  
k
1
X
2
X
3
X
4
X
5
X
6
X
1
3
X
1
4
X
1
5
X
1
6
X
1
7
3
X
X
1
2
8
X
Se  
l
f
T
e
s
t
M
o
d
e
7
8
9
1
0
1
1
1
2
1
9
2
0
2
1
2
2
2
3
2
4
Lin  
k
Console  
Mo de  
Power  
ActF  
d
x
100  
Res  
e
t
C
el  
a
r
Mo  
d
e
Sel  
e
c
t
F
a
u
tl  
7
X
8
X
9
X
1
0
X
1
1
X
1
2
X
1
9
X
2
0
X
2
1
X
2
2
X
2
4
X
Power cable  
Power and data over  
Category 5 cable  
Power  
Outlet  
UPS/  
Generator  
Power cable  
1
2
3
4
7
5
8
6
9
8
#
*
Power  
Outlet  
IP Telephone  
Computer  
Data only over  
Category 5 cable  
4.11.1  
Definitions  
The following terms are used throughout the DTE discovery sections:  
Negotiation Process:  
System:  
This includes auto-negotiation and parallel detection processes  
The switch system using the LXT9785E for DTE Discovery  
A device connected to the LXT9785E through twisted pair cables  
Data Terminal Equipment; any end-of-link partner  
Link Partner:  
DTE:  
A link partner that is not requiring power over a Category 5 cable;  
typically a PC  
Standard Link Partner:  
Data Terminal Equipment requiring power over a Category 5 cable;  
typically an IP telephone  
Remote-Power DTE:  
Discovery:  
The process of identifying the type of link partner present  
Datasheet  
151  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.11.2  
Interaction between Processor, MAC, and PHY  
The state machines that control the mechanics of the Discovery process reside within the  
LXT9785E device. However, control of the power supply and overall system control reside in the  
system processor. The processor communicates with the power supply unit (PSU) and switches it  
on and off dependant on the data that is supplied by the PHY. The PHY register data is read by the  
MAC using the MDIO interface. The required control bits are contained in the PHY device register  
map and are discussed in detail in the section labeled “Management Interface and Control” on  
page 152.  
Note: The details of the processor/MAC interface and the processor/PSU interface are implementation  
specific and therefore are out of the scope of this specification.  
The following is an overview of the system control for a successful Remote-Power DTE discovery:  
1. The discovery process is enabled by the DTE Discovery Process Enable (Dis_EN) Register bit  
27.6 and the Auto-Negotiation Enable Register bit 0.12. Writing Register bit 27.6 immediately  
affects the Auto-Negotiation Base Page. If already enabled, auto-negotiation should be  
restarted after this bit is written to ensure proper operation. Register bit 4.15 is used for manual  
control of auto-negotiation next pages and should be left in the default state (cleared).  
2. The LXT9785E PHY then tests to see if a Remote-Power DTE is present as the link partner. If  
a Remote-Power DTE is found, the Power Enable (Power_EN) Register bit 27.4 is set. The  
processor polls this signal via the MAC.  
3. Upon detecting a Remote-Power DTE, the processor instructs the power supply to switch on.  
Once power has been applied to the DTE, normal negotiation takes place. The processor must  
enable the required negotiation process by restarting auto-negotiation, or by setting forced  
speed mode after power has been applied. The processor must poll the link-up Register bit 1.2  
for the corresponding LXT9785E port, or the link status change interrupt, to ensure that the  
link has been established.  
4. A time-out must be connected with this feature so that if link is not established within a pre-  
determined time period (system dependant), the processor instructs the power supply to switch  
off. If link is not established prior to the expiration of the “link fail inhibit timer”, the  
LXT9785E restarts negotiation with DTE detection if auto-negotiation mode was used to  
establish link with the phone, and the DTE process is still enabled. The LXT9785E restarts  
negotiation without DTE detection if either forced speed mode is used to establish link with  
the phone, or the DTE process is disabled.  
5. If power is applied and link is established, the system must still poll the Link Status Register  
bit 1.2 for the corresponding LXT9785E port or the link status change interrupt. This is  
required since link status is the only way to know when the Remote-Power DTE is removed or  
unplugged. On seeing the Link_Down condition, the processor instructs the power supply to  
switch off, and the DTE Discovery begins again or is disabled.  
4.11.3  
Management Interface and Control  
The management and control of the DTE discovery process is via the MDIO port. Each port on the  
LXT9785E is capable of running the discovery process, thus each port is independently controlled.  
This is achieved by each port having a dedicated set of control and status bits. These bits are found  
in Register 27 as follows:  
152  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
DTE DISCOVERY PROCESS ENABLE - Register Bit 27.6 (Dis_EN)  
R/W Default value = 0: Disabled.  
Register bit 27.6 controls the operation of the process. The discovery process is disabled when  
Register bit 27.6 = 0, and enabled when Register bit 27.6 = 1. The MAC controller sets Register bit  
27.6 to a 1 when a port search for a DTE requiring power is desired. Once set, Register bit 27.6  
remains = 1 until the MAC clears it, either by directly clearing it or by resetting the PHY. This  
allows the discovery process to continue to function if unsuccessful in detecting a DTE, without  
being continually re-enabled by the MAC. If Register bit 27.6 is set after link is established, no  
action is taken until after the link goes down.  
POWER ENABLE - Register Bit 27.4 (Power_EN)  
R Default value = 0: No Remote-Power DTE found.  
Register bit 27.4 contains the result of the discovery process. When Register bit 27.4 = 0, the  
discovery process has not found Remote-Power DTE, and when Register bit 27.4 = 1, the  
discovery process has potentially found a DTE requiring power. This indicates power should be  
applied to the Category 5 cable. Register bit 27.4 is polled by the MAC during the discovery  
process, and is cleared when the PHY is reset, when auto-negotiation is restarted, or when auto-  
negotiation is disabled. In the event of a discovery process being interrupted due to detection of an  
already powered link partner (auto-negotiation completion or Parallel Detection), Register  
bit 27.4 = 0.  
STANDARD LINK PARTNER DETECTED - Register Bit 27.3 (SLP_Det)  
R/W Clear on Read Default value = 0: No link partner found.  
When Register bit 27.3 = 1, a standard link partner has been detected by the LXT9785E (NLPs,  
MLT3 data, FLPs without next page support, or FLPs with non-matching next pages). This  
indicates power should not be applied to the Category 5 cable. When Register bit 27.3 = 0, other  
bits are checked to determine overall status of the link partner. Register bit 27.3 is cleared on read,  
or DTE discovery is disabled, link is established, or auto-negotiation is either restarted or disabled.  
LINK FAIL TIMEOUT - Register Bit 27.2 (LFIT Expired)  
R/W Clear on Read Default value = 0 (Link Fail Inhibit timer has expired without establishment of  
link with a standard link partner). Valid only when Standard Link Partner Detected Register bit  
27.3 = 1.  
Register bit 27.2 is set if link is not established prior to the Link Fail Inhibit Timer expiring. This  
indicates that the Discovery process has restarted and the Standard Link Partner Detected Register  
bit may no longer be valid. Register bit 27.2 is cleared on read, or DTE discovery is disabled, link  
is established, or auto-negotiation is either restarted or disabled.  
4.11.4  
DTE Discovery Process Flow  
The following section describes the DTE Discovery process.See Figure 30, “Intel® LXT9785E  
Negotiation Flow Chart” on page 155 for a flow chart of the discovery process.When DTE  
Discovery (27.6) and auto-negotiation (0.12) are enabled (auto-negotiation mode is required), the  
LXT9785E transmits the auto-negotiation base page with the next page ability bit set (“Auto-  
Negotiation Advertisement Register (Address 4)” on page 204).  
System software polls Register 27 to determine if or when a Remote-Power DTE is detected. The  
receiver monitors the line to determine if NLPs, MLT3 data, or FLP bursts are being received. If  
the receive activity is FLP bursts, the status of the next page ability bit is checked. If the detected  
“link partner” also supports next page, then the LXT9785E transmits out the next page sequence  
Datasheet  
153  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
associated with message code #5 (Organizationally Unique Identifier (OUI) Tag Code). The  
definition for the next pages to be sent out for this message code include some user-defined code  
values. These values are loaded with randomly created data from an internal LSFR that is free  
running and seeded with the PHY address of the LXT9785E port. The Next Pages are hard coded  
in the logic (the LXT9785E ignores any data written into Register 7) and are outlined in Table 47.  
The receiver monitors the next pages to determine that the exact next page data (especially the  
random data) transmitted is received. As soon as the first non-matching next page is detected, the  
DTE Discovery process is stopped and the base page is used to determine the capability options.  
The Power-Enable Register bit 27.4 is set when a Remote-Power DTE is detected as the link  
partner, and the last next page is repeatedly transmitted until software restarts the required  
negotiation process (auto-negotiation or forced-speed mode).  
The software should be written so that the negotiation is not restarted until the DTE has been  
powered up over the Category 5 cable. The Power-Enable Register bit 27.4 is cleared upon  
restarting or disabling auto-negotiation (selecting forced mode). The system must be able to detect  
over-current conditions and be capable of disabling power in case the link partner is not a Remote-  
Power DTE. Some examples of devices that would mistakenly set Power-Enable Register bit 27.4  
are a token-ring balun and a loopback cable. Once link partner power has been stabilized and  
sufficient time has passed for the link partner to initialize, the auto-negotiation process may be  
restarted.  
The negotiation process establishes link if a compatible mode exists between the LXT9785E and  
the link partner. If a compatible mode does not exist (not compatible or not established within the  
Link Fail Inhibit Timer period), the LXT9785E either restarts auto-negotiation/DTE discovery  
(discovery is enabled (27.6=1) and auto-negotiation is enabled (0.12 = 1)), or normal negotiation  
(discovery is disabled (27.6=0) and auto-negotiation is enabled (0.12 = 1)), or either 10 Mbps or  
100 Mbps forced-mode operation (auto-negotiation is disabled (0.12 = 0)). The software must  
detect this non-link state and disable power.  
Table 47. Next Page Message #5 Code Word Definitions  
NextPage  
Encoding  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6  
D5  
D4 D3  
D2  
D1 D0  
OUI  
Tagged  
Message  
1
a
1
0
t
0
0
0
0
0
0
0
0
1
0
1
UserPage  
1
1
1
1
1
a
a
a
a
0
0
0
0
0
0
0
0
t
t
t
t
3.10 3.11 3.12 3.13 3.14 3.15 2.0 2.1 2.2 2.3 2.4  
2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15  
UserPage  
2
UserPage  
3
0
0
L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0  
UserPage  
4
L.10 L.9 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0  
1. a is the acknowledge bit; t is the toggle bit; L is the LFSR  
4.11.5  
DTE Discovery Behavior  
The device behavior checks the comparison bit after each next page is successfully auto-  
negotiated. If the first next page or any subsequent next page does not match, the DTE Discovery  
process transmits one last null page with the next page bit cleared to stop the DTE Discovery  
154  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
process. If each page is successfully auto-negotiated (it matches the transmitted page), DTE  
Discovery completes as previously described. The five Next Pages consist of a message page and  
four user pages.  
Figure 30. Intel® LXT9785E Negotiation Flow Chart  
Start  
Assumptions:  
Auto-Negotiation/Forced Speed Set by Pins  
Advertisement Requirements Set by Pins  
Power Up  
or  
Link Down 1.2 = 0 and Dis_EN 27.6 = 0  
or  
Link Down 1.2 = 0 and Forced Mode  
LFIT Expired 27.2 = 1  
Link Fail Timeout = 1  
Dis_EN Not Set 27.6 = 0  
Default Mode  
Transmit based upon hardware  
configuration  
FLP, NLP or IDLE Symbols  
NLPs or IDLE Symbols  
Detected  
LFIT Expired 27.2 = 1  
Dis_EN 27.6 = 0  
Software Intervention  
Auto-negotiation 0.12 = 1 (if needed)  
Power_EN 27.6 = 1  
FLP Detected  
NLPs or IDLE Symbols  
Link Down 1.2 = 0  
Discovery Base  
Transmit FLPs  
Base Page (Register 4)  
with Next Page 4.15 = 1  
Detected  
and  
Parallel Detection  
Determine Compatibility on  
Speed and Duplex  
Dis_EN 27.6 = 1  
and  
Auto-Neg 0.12 = 1  
LFIT Expired 27.2 = 1  
Dis_EN 27.6 = 1  
Check Advertisement  
FLP Detected  
LFIT Expired 27.2 = 1  
Dis_EN 27.6 = 1  
No  
Auto Negotiation  
Determine Compatibility Options  
Next Page  
Set?  
No  
Yes  
Yes  
Auto-  
Negotiation?  
Compatibility  
Nonmatching DTE  
Discovery NP  
Received  
Next Page Transmission  
Use Random Data for User Defined  
Bits as Code  
Power Applied  
No  
Next Pages Received  
Compatibility  
Power On  
Wait State for  
Proper Power  
Assertiion  
Pages = Code  
Transmitted?  
Set Mode  
Restart  
Auto-Negotiation  
Yes  
or  
Software Intervention  
Software Polled Power_EN 27.4 = 1  
Turn On Power Supply  
Force Speed  
DTE Discovered  
Transmit Last Page Continuously  
Power_EN 27.4 = 1  
Link Up  
Datasheet  
155  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.12  
Monitoring Operations  
4.12.1  
Monitoring Auto-Negotiation  
Auto-negotiation may be monitored as follows:  
Bits 1.2 and 17.10 = 1 once the link is established.  
Additional bits in Register 1 (refer to Table 84, “Status Register (Address 1)” on page 201) and  
Register 17 (refer to Table 93, “Quick Status Register (Address 17, Hex 11)” on page 209) can  
be used to determine the link operating conditions and status.  
4.12.2  
Per-Port LED Driver Functions  
The LXT9785/LXT9785E incorporates three direct drive LEDs per port (LEDn_1_L, LEDn_2_L,  
and LEDn_3_L).  
On power up, all the LEDs lights up for approximately one second after reset de-asserts. Each LED  
may be programmed to one of several different display modes using the LED Configuration  
Register. Each per-port LED may be programmed (refer to Table 96, “LED Configuration Register  
(Address 20, Hex 14)” on page 213) to indicate one of the following conditions:  
Operating Speed  
Transmit Activity  
Receive Activity  
Collision Condition  
Link Status  
Duplex Mode  
Isolate Condition  
The LEDs can also be programmed to display various combined status conditions. For example,  
setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications:  
If Link is down, LED is off.  
If Link is up, LED is on.  
If Link is up AND activity is detected, the LED blinks at the stretch interval selected by bits  
20.3:2 and continues to blink as long as activity is present.  
The LED driver pins are open drain circuits (10 mA max current rating). Refer to “LED Circuit” on  
page 167 under the Application Information Section for LED circuit design details. The LED  
Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms. If during  
this pulse stretch period, the event occurs again, the pulse stretch time is further extended (see  
Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213).  
When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer.  
The LED driver remains asserted until the stretch timer expires. If another event occurs before the  
stretch timer expires, the stretch timer is reset and the stretch time extended.  
156  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer.  
When the stretch timer expires, the edge detector is reset so that a long event causes another pulse  
to be generated from the edge detector. The edge detector resets the stretch timer, causing the LED  
driver to remain asserted. Figure 31 on page 157 shows how the stretch operation functions.  
Figure 31. LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
4.12.3  
Out-of-Band Signaling  
The LXT9785/LXT9785E provides an out-of-band signaling option to transfer status information  
across the RMII receive interface. This feature is enabled when Register bit 25.0 = 1 and uses the  
RxData(1:0) data bus during the Inter-Packet Gap (IPG) time as shown in Figure 32. Out-of-Band  
signaling is disabled when Isolate mode is enabled by setting Register 0.10.  
Note: The BGA15 package does not support Out-of-Band Signaling nor the RMII interface.  
The two status bits transferred across the RxData bus are software selectable via Register 25 (see  
Table 98, “RMII Out-of-Band Signaling Register (Address 25, Hex 19)” on page 215).  
In normal operation, the LXT9785/LXT9785E stuffs the RxData bus with zeros during the IPG. A  
software-selectable bit enables the RMII out-of-band signaling feature. Once this bit is set, the  
LXT9785/LXT9785E replaces the zeros with selected status bits during the IPG.  
Figure 32. RMII Programmable Out-of-Band Signaling  
RE FCLK  
CRS_DV  
status 1  
status 0  
status 1  
status 0  
data  
data  
data  
data  
data  
data  
data  
data  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
0s  
0s  
status 1  
status 0  
RXD(1)  
RXD(0)  
1. When network activity is detected, the LXT9785/LXT9785E asserts CRS_DV asynchronously with respect  
to REFCLK.  
2. After CRS_DV is asserted, the LXT9785/LXT9785E zero-stuffs the RxData bits until the received data has  
been processed through the FIFO.  
3. When network activity ceases, the LXT9785/LXT9785E de-asserts CRS_DV synchronously with respect  
to REFCLK. CRS_DV toggles until all data in the FIFO has been processed through the RMII. Once the  
FIFO is empty, LXT9785/LXT9785E drives the status bits selected by the Out-of-Band Signaling Register  
(refer to Table 98, “RMII Out-of-Band Signaling Register (Address 25, Hex 19)” on page 215) on the  
Datasheet  
157  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
The LXT9785/LXT9785E includes an IEEE 1149.1 boundary scan test port for board level testing.  
All digital input, output, and input/output pins are accessible.  
4.12.4  
4.12.5  
4.12.6  
4.12.7  
Boundary Scan Interface  
This interface consists of five pins (TMS, TDI, TDO, TCK and TRST_L). It includes a state  
machine, data register array, and instruction register. The TMS and TDI pins are internally pulled  
up and the TCK pin is internally pulled down. TDO does not have an internal pull-up or pull-down.  
State Machine  
The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the  
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are  
High for five TCK periods.  
Instruction Register  
The IDCODE instruction is always invoked after the state machine resets. The decode logic  
ensures the correct data flow to the Data registers according to the current instruction. Valid  
instructions are listed in Table 49.  
Boundary Scan Register  
Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the  
serial shift stage and the parallel output stage. There are four modes of operation as listed in  
Table 48. Refer to the Identification Information section in the LXT9785/LXT9785E Specification  
Update (document number 249357) for the JTAG ID numbers.  
Table 48. BSR Mode of Operation  
Mode  
Description  
1
2
3
4
Capture  
Shift  
Update  
System Function  
Table 49. Supported JTAG Instructions  
Data  
Register  
Name  
Code  
Description  
External Test  
EXTEST  
IDCODE  
SAMPLE  
High Z  
0000 Hex  
BSR  
FFFE Hex  
FFF8 Hex  
FFCF Hex  
FFEF Hex  
FFFF Hex  
ID Code Inspection  
Sample Boundary  
Force Float  
ID REG  
BSR  
Bypass  
BSR  
Clamp  
Clamp  
BYPASS  
Bypass Scan  
Bypass  
158  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.13  
Cable Diagnostics Overview  
Debugging cable problems increases the overall cost of owning and operating a local area network.  
Cable Diagnostic tools were incorporated into the LXT9785 device to help customers debug  
network cable problems. The Cable Diagnostic tools provide the ability to detect severe cable  
problems, such as open and short circuits, and determine the distance to the discontinuity.  
4.13.1  
Features  
The following are three cases to consider for Cable Diagnostics:  
Distance to a short circuit between wires of a single twisted-pair  
An open circuit  
Detection of an improperly terminated cable by the link partner.  
An improperly terminated cable will not meet IEEE 802.3 return loss requirements. Register 29 has  
been added to control cable testing and report cable testing results.  
Cable Diagnostics provides a method to determine the distance to opens and shorts when the link  
partner is inactive on the twisted-pair under test. The cable tests produce undefined results if the  
link partner is transmitting signals. Implementation methods may vary depending upon the system  
use requirements of Cable Diagnostics.  
4.13.2  
Operation  
Cable Diagnostics utilizes the PHY transmit drivers and receivers to test a single twisted-pair. A  
transmit pulse is driven down the twisted-pair under test and the reflected signal is analyzed. Link  
partners transmitting NLP, FLP, MLT3, or other TDR pulses may interfere with the ability of the  
LXT9785 to properly analyze the reflected Cable Diagnostic pulse. Implementation algorithms  
must take these potential situations into consideration.  
4.13.2.1  
4.13.2.2  
Short and Long Cable Testing Requirements  
Implementing Cable Diagnostic tests, by enabling short and long cable tests sequentially, allows  
more accurate measurements to a detected fault. Both tests are necessary to reach full precision.  
The short and long cable tests can be run by writing 0x7400h and 0x6C00h to Register 29,  
respectively. See Section 4.13.4, “Basic Implementation” on page 160 for implementation details.  
Precision  
Cable Diagnostics estimates the distance to a fault up to 150 m. Category 5 or better cable produces  
the most accurate test results. Less than Category 5 cable may produce less accurate results on long  
cable lengths. Cable Diagnostics returns the distance to the closest fault, if a fault is present.  
Cable Diagnostic tests report the distance to a cable fault based on the velocity of signal  
propagation, which is used to determine the electrical length to the fault. The electrical length may  
vary slightly from the physical cable length. The measurement accuracy may vary by +/- 2 m.  
The following basic equation is used to calculate the distance to a fault:  
Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16  
Datasheet  
159  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
4.13.3  
Implementation Considerations  
Before performing Cable Diagnostics, the twisted-pair to be tested may be verified to be inactive.  
All applicable link configurations should be attempted. Cable Diagnostic tests may be started if the  
attempts indicate no link partners are active. If link partners are detected, additional tests and  
decisions as to next steps may need to be implemented in the cable testing algorithm to ensure the  
most accurate results.  
Intel recommends that a 100BASE-TX link be attempted with MDI and MDIX enabled  
sequentially, prior to performing Cable Diagnostic testing, to determine if a 100BASE-TX-only  
link partner is present. If a link partner is in forced 100BASE-TX operation, transmitting MLT3,  
the Cable Diagnostic test result will be undefined due to the interference MLT3 causes in  
attempting to process the reflected Cable Diagnostic pulse. Auto MDI/MDIX on the link partner  
should be accounted for in deriving the cable testing algorithm.  
Intel recommends auto MDI/MDIX be disabled when running the cable tests. The transmit and  
receive twisted-pairs must be tested one at a time with both short and long cable test suites. The  
MDI/MDIX control bits in Table 99, “Trim Enable Register (Address 27, Hex 1B)” on page 216  
can be used to select the twisted-pair to be tested. This requirement creates a minimum of four test  
permutations that must be completed to determine if the fault exists, the distance to the fault.  
If Cable Diagnostics testing is completed using a powered down LXT9785 device as the link  
partner, specific results can be expected. The results will indicate an open connection when the  
PWRDWN hardware configuration pin is used. These power-down methods disable the internal  
termination resistors to create a high impedance connection equivalent to an open circuit.  
If Transmit Disable (Register bit 16.13) or software controlled Power-Down (Register bit 0.11) is  
used, the powered down device transmit logic will look like an open circuit and the receive circuit  
will look like a 100 terminated connection. The Transmit Disable bit and the software Power-  
Down bit disable the transmit circuit but do not affect the receive circuit.  
The result of Cable Diagnostic tests using an IP Phone indicate an open or a short fault at a gross  
approximation of the distance to the IP Phone. The termination resistors are not powered and do  
not create a proper termination. The filter circuit used by some manufacturers adversely affects the  
test results.  
Transmission and reception of packets is disabled when Cable Diagnostics is enabled. Internal  
loopback must be disabled for Cable Diagnostics to operate properly. Internal loopback disables  
the analog interface.  
4.13.4  
Basic Implementation  
Register 29 is used to control and report the Cable Diagnostics test results. The function tests one  
pair of the twisted-pair cable at a time. The basic process flow is described as follows (see  
Table 100, “Cable Diagnostics Register (Address 29, Hex 1D)” on page 217 for Register 29 bit  
definitions):  
1. Disable auto-negotiation by clearing Register bit 0.12, set to MDI by clearing Register bits  
27.9:8, and ensure internal loopback is disabled, Register bit 0.14 = 0.  
2. Write 0x7400h to Register 29. Setting these bits places the device in short cable Cable  
Diagnostics mode and forces link to drop. The device waits a specific amount of time (1.2 s to  
1.5 s) to ensure link drops on any connected link partner, and initiates the Cable Diagnostics  
test on the selected twisted-pair.  
160  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
3. Poll Register bit 29.9. When this bit is set, the test is complete and Register bits 29.7:0 contain  
a value used to determine if a cable fault was found and the distance to that fault. A value of  
0xFFh indicates no fault was found. Any other value indicates a fault was found, that value  
should be stored for later use.  
4. Write 0x6C00h to Register 29. Setting these bits places the device in long cable Cable  
Diagnostics mode.  
5. Poll Register bit 29.9. When set, record the value of Register bits 29.7:0 if a fault is found.  
6. If a fault is present, a calculation is used to determine the distance to the fault. Insert the  
smallest value recorded from Register bits 29.7:0 in steps 3 and 5 above into the following  
formula:  
Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16  
Register bit 29.8 is set if the fault is detected as a short circuit and is cleared if the fault is  
detected as an open circuit. Register bits 29.12:11 are cleared when read and are cleared during  
the same read cycle when Register bit 29.9 is read, indicating a fault condition exists.  
7. Normal PHY operation can be resumed by writing 0x4000h to Register 29 or by software or  
hardware reset. The test suite can be run again by resuming at step 2 above.  
4.14  
Link Hold-Off Overview  
The PHY link is established as soon as the system platform powers-up. In many cases, the system  
platform is not capable of supporting network operation until configuration firmware is loaded. It is  
desirable in such cases to prevent the PHY from establishing a link until the system platform is  
fully configured and ready for network operation. Link Hold-Off was incorporated into the  
LXT9785 device to satisfy these requirements. Enabling Link Hold-Off disables the PHY Link  
capability until the system platform is fully capable of supporting network operation. The feature is  
enabled by hardware control at power-up or software control during normal operation.  
4.14.1  
Features  
Link Hold-Off prevents the LXT9785 from establishing a link by disabling the analog transmit and  
receive capability. The digital capabilities of the PHY are unaffected including register access and  
LED operation. Link Hold-Off can be enabled by an external hardware pin for all ports or by  
software register access for individual ports. When Link Hold-Off is enabled, the transmitter and  
receiver on the selected ports are forced into software power-down mode (see Section 4.5.3,  
“Power-Down Mode” on page 126) to block signal activity from establishing a link and passing  
packets through the PHY.  
The hardware enabled Link Hold-Off is controlled by the LINKHOLD pin. Internal pull-down  
resistors hold the pin in the inactive state. Connecting a 5k pull-up resistor to the pin enables the  
feature at power-up reset or external hardware pin Reset. Once a PHY port is programmed as  
desired, clearing Register bit 0.11 will re-enable that port. Each port must be individually re-  
enabled.  
When a port is software reset, by setting Register 0.15, the state of the hardware configuration pin  
captured by the last hardware or power-up reset determines the default register values for the  
specific function for that port. Link Hold-Off, once enabled by hardware configuration, is re-  
enabled on a port by issuing a software reset for that port. It is not necessary to reset the entire PHY  
or switch system to re-enable Link Hold-Off.  
Datasheet  
161  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Link Hold-Off software control is enabled or disabled on individual ports by respectively setting or  
clearing Register bit 0.11, the power-down bit, during normal operation. It is not required to have  
previously enabled Link Hold-Off by hardware configuration.  
Link Hold-Off is disabled if the external pin MDDIS is active. The MDDIS pin disables the MDIO  
interface required to re-enable normal transmit and receive link operation. MDDIS is intended to  
disable the MDIO management interface for unmanaged applications. Internal loopback circuitry  
is unaffected in Link Hold-Off mode.  
4.14.2  
Operation  
Link Hold-Off is implemented in one of the following two ways:  
Using a hardware pin at power-up or hardware reset  
Using software control through the MII Management (MDC/MDIO) interface.  
Link Hold-Off use by an external hardware pin is as follows:  
1. Pull the LINKHOLD pin High with a pull-up resistor (approximately 5 k Ohms).  
2. Power up the system or drive the reset pin active.  
3. All ports are link disabled.  
4. Program all ports to the desired configuration.  
5. Clear Register Bit 0.11, power-down for each individual port.  
6. Normal operation resumes on each port after Register bit 0.11 is cleared (see Table 83 for the  
recovery time).  
Link Hold-Off is enabled on a per port basis by software control using the following two methods:  
162  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Method One:  
This method requires that Link Hold-Off is enabled by the LINKHOLD pin during the last power-  
up or hardware reset.  
1. Set Register bit 0.15 to reset and re-enable Link Hold-Off for the desired port.  
2. Program the PHY to the desired configuration.  
3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off.  
4. Normal operation resumes.  
Method Two:  
This method enables Link Hold-Off regardless of the LINKHOLD hardware configuration state.  
1. Set Register bit 0.11(power-down) to enable Link Hold-Off for the desired port.  
2. Program the PHY to the desired configuration.  
3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off.  
4. Normal operation resumes.  
Note: High is defined by the IO voltage supply level selected (2.5V or 3.3V).  
Datasheet  
163  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
5.0  
Application Information  
5.1  
Design Recommendations  
The LXT9785/LXT9785E is designed to comply with IEEE 802.3 requirements to provide  
outstanding receive Bit Error Rate (BER), and long-line-length performance. To achieve maximum  
performance from the LXT9785/LXT9785E, attention to detail and good design practices are  
required. Refer to the LXT9785 Design and Layout Guide application note for detailed design and  
layout information.  
5.2  
General Design Guidelines  
Adherence to generally accepted design practices is essential to minimize noise levels on power  
and ground planes. Up to 50 mV maximum of noise is considered acceptable. High-frequency  
switching noise can be reduced, and its effects eliminated, by following these simple guidelines  
throughout the design:  
Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC  
or ground plane that is not located adjacent to the signal layer.  
Use ample bulk and decoupling capacitors throughout the design (a value of 0.01µF is  
recommended for decoupling caps).  
Provide ample power and ground planes.  
Provide termination on all high-speed switching signals and clock lines.  
Provide impedance matching on long traces to prevent reflections.  
Route high-speed signals next to a continuous, unbroken ground plane.  
Filter and shield DC-DC converters, oscillators, etc.  
Do not route any digital signals between the LXT9785/LXT9785E and the RJ-45 connectors at  
the edge of the board.  
Do not extend any circuit power and ground plane past the center of the magnetics or to the  
edge of the board. Use this area for chassis ground, or leave it void.  
5.2.1  
Power Supply Filtering  
Power supply ripple and digital switching noise on the VCC plane may cause EMI problems and  
degrade line performance. The best approach to this problem is to minimize ground noise as much  
as possible using good general techniques and by filtering the VCC plane. It is generally difficult to  
predict in advance the performance of any design, although certain factors greatly increase the risk  
of having problems:  
Poorly-regulated or over-burdened power supplies.  
Wide data busses (32-bits+) running at a high clock rate.  
DC-to-DC converters.  
164  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Intel recommends filtering the power supply to the analog VCC pins of the LXT9785/LXT9785E.  
This has two benefits. First, it keeps digital switching noise out of the analog circuitry inside the  
LXT9785/LXT9785E, helping with line performance. Second, if the VCC planes are laid out  
correctly, digital switching noise is kept away from external connectors, reducing EMI problems.  
The recommended implementation is to break the VCC plane into two sections. The digital section  
supplies power to the VCCD and VCCIO pins of the LXT9785/LXT9785E. The analog section  
supplies power to the VCCA pins. The break between the two planes should run underneath the  
device. In designs with more than one the LXT9785/LXT9785E, a single continuous analog VCC  
plane can be used to supply them all.  
The digital and analog VCC planes should be joined at one or more points by ferrite beads. The  
beads should produce at least a 100 impedance at 100 MHz. Beads should be placed so that  
current flow is evenly distributed. The maximum current rating of the beads should be at least  
150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10µF) should  
be placed on each side of each bead.  
In addition, a high-frequency bypass cap (0.01 µF) should be placed near each analog VCC pin.  
5.2.2  
Power and Ground Plane Layout Considerations  
Great care needs to be taken when laying out the power and ground planes.  
Follow the guidelines in the LXT9785 Design and Layout Guide (formerly Application Note  
151) for locating the split between the digital and analog VCC planes.  
Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the magnetics, and  
the RJ-45 connectors.  
Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the  
ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N.  
5.2.2.1  
Chassis Ground  
For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the  
board and is isolated via moats and keep-out areas from all circuit-ground planes and active  
signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be used  
to terminate unused signal pairs (Bob Smith termination). In single-point grounding applications,  
provide a single connection between chassis and circuit grounds with a 2 kV isolation capacitor. In  
multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide  
2 kV isolation to the Bob Smith termination.  
5.2.3  
MII Terminations  
Series termination resistors are required on all the SS-SMII output signals driven by the LXT9785/  
LXT9785E. Special trace layout consideration should be used when using the SMII interface. Keep  
all traces orthogonal and as short as possible. Whenever possible, route the clock and sync traces  
evenly between the longest and shortest data routes. This minimizes round-trip, clock-to-data  
delays and allows a larger margin to the setup and hold requirements.  
5.2.4  
Twisted-Pair Interface  
Use the following standard guidelines for a twisted-pair interface:  
Datasheet  
165  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Place the magnetics as close as possible to the LXT9785/LXT9785E.  
Keep transmit pair traces as short as possible; both traces should have the same length.  
Avoid vias and layer changes as much as possible.  
Keep the transmit and receive pairs apart to avoid cross-talk.  
Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the  
transmit traces two to three layers from the ground plane, with no intervening signals.  
Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at 400  
mA may be used to supply center tap current to all ports.  
5.2.4.1  
Magnetic Requirements  
The LXT9785/LXT9785E requires a 1:1 ratio for both the receive transformers and the transmit  
transformers. The transmit isolation voltage should be rated at 1.5 kV to protect the circuitry from  
static voltages across the connectors and cables. The LXT9785/LXT9785E is a current driven  
transceiver that requires an external voltage (center tap) to drive the transmit signal. In order to  
support the Auto-MDIX functionality of the LXT9785/LXT9785E, the magnetic must provide a  
center tap for both the transmit and receive magnetic winding, with both connected to VCCT. See  
the LXT9785/LXT9785E Design and Layout Guide (249509-001) for magnetic testing with the  
LXT9785/LXT9785E. Before committing to a specific component, designers should contact the  
manufacturer for current product specifications, and validate the magnetics for the specific  
application. Table 50 provides the magnetics requirements.  
Table 50. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
1:1  
1:1  
0.6  
Tx turns ratio  
Insertion loss  
0.0  
350  
1.1  
dB  
µH  
kV  
Primary inductance  
Transformer isolation  
2
Differential to common mode  
rejection  
40  
dB  
.1 to 60 MHz  
35  
-16  
-10  
dB  
dB  
dB  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
5.2.5  
The Fiber Interface  
The fiber interface consists of an LVPECL transmit and receive pair to an external fiber  
transceiver. Both 3.3 V fiber transceivers and 5 V fiber transceivers can be used with the LXT9785/  
LXT9785E. See the 100BASE-FX Fiber Optic Transceivers-Connecting a PECL/LVPECL  
Interface Application Note (document number 250781) for detailed information on fiber interface  
designs and recommendations for Intel PHYs.  
The following should occur in 3.3 V fiber transceiver applications as shown in Figure 36:  
The transmit pair should be AC-coupled with 2.5 V supplies and re-biased to 3.3 V LVPECL  
levels  
166  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
The transmit pair should contain a balance offset in the pull-up resistors to prevent PHY-to-  
fiber transceiver crosstalk amplification in power-down, loopback, and reset states (see fiber  
interface application note)  
The receive pair should be DC-coupled with an emitter current path for the fiber transceiver  
The signal detect pin should be DC-coupled with an emitter current path for the fiber  
transceiver  
Refer to the fiber transceiver manufacturer’s recommendations for termination circuitry. Figure 36  
shows a typical example of an LXT9785/LXT9785E-to-3.3 V fiber transceiver interface.  
The following occurs in 5 V fiber transceiver applications as shown in Figure 37:  
The transmit pair should be AC-coupled and re-biased to 5 V PECL input levels  
The transmit pair should contain a balance offset in the pull-up resistors to prevent PHY-to-  
fiber transceiver crosstalk amplification in power-down, loopback, and reset states (see fiber  
interface application note)  
The receive pair should be AC-coupled with an emitter current path for the fiber transceiver  
and re-biased to 1.2 V  
The signal detect pin on a 5 V fiber transceiver interface should use the logic translator  
circuitry as shown in Figure 38.  
Refer to the fiber transceiver manufacturer’s recommendations for termination circuitry. Figure 37  
shows a typical example of an LXT9785/LXT9785E-to-5 V fiber transceiver interface, while  
Figure 38 shows the interface circuitry for the logic translator.  
5.2.6  
LED Circuit  
Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected through a  
current-limiting resistor to a positive-voltage rail. The LEDs are turned on when the output pin  
drives Low. The open-drain LED pins are 5 V tolerant, allowing use of either a 3.3 V or 5 V rail (a  
2.5 V rail is unlikely to work with standard forward voltage LEDs). A 5 V rail eases LED  
component selection by allowing more common, high-forward voltage LEDs to be used. Refer to  
Figure 33 for a circuit illustration.  
Figure 33. LED Circuit  
VLED  
R
LEDn_m  
Inside Outside  
IC  
IC  
VCCIO < VLED < 5 V + 5%  
Datasheet  
167  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
5.3  
Typical Application Circuits  
Figure 34 through Figure 37 on page 171 show typical application circuits for the LXT9785/  
LXT9785E. Figure 38 on page 172 shows the interface circuitry for the logic translator.  
Figure 34. Power and Ground Supply Connections  
SGND  
GNDR/GNDT  
0.01µF  
VCCR/VCCT  
10µF  
+
Analog Supply Plane  
Ferrite  
Bead  
LXT9785/9785E  
Digital Supply Plane  
10 µF  
+2.5 V  
VCCD  
GNDD  
VCCIO  
0.01 µF  
0.01 µF  
+ 2.5 V  
or +3.3 V  
+2. 5 V  
or +3.3 V  
VCCPECL  
GNDPECL  
0.1 µF  
168  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 35. Typical Twisted-Pair Interface  
TPFOP  
RJ-45  
1:1  
1:1  
1
2
3
4
5
6
7
8
1
TPFON  
TPFIP  
50 Ω  
50 Ω  
50 Ω  
LXT9785/9785E  
50 Ω  
50 Ω  
2
50 Ω  
TPFIN  
.01 µF  
* = 0.001 µF /  
2.0 kV  
* = 0.001 µF /  
2.0 kV  
VCCT  
GNDA  
.01µF  
0.1µF  
1. The 100 transmit load termination resistor typically required is integrated in the LXT9785/  
LXT9785E.  
2. The 100 receive load termination resistor typically required is integrated in the LXT9785/  
Datasheet  
169  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 36. Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface  
Circuitry  
+3.3V  
+2.5V  
+2.5V  
0.01µF  
− 0.1µF  
0.01µF  
− 0.1µF  
1.4kΩ  
1.3kΩ  
27Ω  
50Ω  
50Ω  
0.01 µF  
TPFONn  
TPFOPn  
TD -  
TD +  
0.01 µF  
2kΩ  
2kΩ  
3.3V  
LXT9785(E)  
Fiber Txcvr  
+3.3V  
130Ω  
SDn  
SD  
82Ω  
1
RD -  
TPFINn  
TPFIPn  
RD +  
130Ω  
130Ω  
SD_2P5V  
GNDPECL  
3.3V  
VCCPECL  
1. Refer to the transceiver manufacturers’ recommendations for termination circuitry.  
170  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 37. Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface  
Circuitry  
+5V  
+2.5V  
+2.5V  
0.01µF  
− 0.1µF  
0.01µF  
− 0.1µF  
27Ω  
1.15kΩ  
1.1kΩ  
3.1kΩ  
50Ω  
50Ω  
0.01µF  
0.01µF  
TPFONn  
TPFOPn  
TD -  
TD +  
3.1kΩ  
5V  
LXT9785(E)  
Fiber Txcvr  
2
ON Semiconductor*  
MC100LVEL92  
SDn  
SD  
PECL-to-LVPECL  
Logic Translator  
+2.5V  
1
0.01µF  
− 0.1µF  
127Ω  
127Ω  
0.01µF  
0.01µF  
RD -  
TPFINn  
TPFIPn  
RD +  
118Ω  
118Ω  
270Ω  
270Ω  
SD_2P5V  
GNDPECL  
3.3V  
VCCPECL  
1. Refer to the transceiver manufacturers’ recommendations for termination circuitry.  
2. See Figure 38 on page 172 for recommended logic translator interface circuitry.  
Datasheet  
171  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 38. ON Semiconductor Triple PECL-to-LVPECL Translator  
5V  
0.01 µF  
0.01 µF  
5V  
3.3V  
ON Semiconductor*  
82Ω  
130Ω  
82Ω  
1
2
3
Vcc  
Vcc  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PECL Input  
Signal  
(5V Fiber  
Txcvr)  
LVPECL  
Output Signal  
(LXT9785)  
D0  
__  
D0  
Q0  
__  
Q0  
130Ω  
VBB PECL  
4
5
6
LVCC  
D1  
__  
D1  
Q1  
__  
Q1  
3.3V  
VBB PECL  
7
8
9
LVCC  
D2  
__  
D2  
Q2  
__  
Q2  
0.01 µF  
3.3V  
GND  
Vcc  
10  
130Ω  
MC100LVEL92  
82Ω  
172  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
6.0  
Test Specifications  
Note: Table 51 through Table 81 and Figure 39 through Figure 62 represent the target specifications of  
the LXT9785/LXT9785E. These specifications are not guaranteed and are subject to change  
without notice. Minimum and maximum values listed in Table 53 through Table 81 apply over the  
recommended operating conditions specified in Table 52.  
Table 51. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Units  
VCCIO, VCCPECL  
VCCA, VCCD  
TST  
-0.3  
-0.3  
-65  
4.0  
3.0  
V
V
Supply voltage  
Storage temperature  
+150  
ºC  
Caution: Exceeding these values may cause permanent damage. Functional operation  
under these conditions is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
Table 52. Operating Conditions (Sheet 1 of 2)  
1
1
Typ  
Typ  
Parameter  
Ambient  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
Commercial  
Operating  
Temperature  
TOPA  
TOPC  
TOPA  
TOPC  
0
70  
108  
85  
ºC  
ºC  
ºC  
ºC  
Case  
0
Extended  
Operating  
Temperature  
Ambient  
Case  
-40  
-40  
123  
Analog & Digital  
I/O  
Vcca, Vccd  
Vccio  
2.38  
2.38  
3.14  
2.38  
2.5  
2.5  
N/A  
2.5  
2.5  
3.3  
3.3  
N/A  
2.63  
3.46  
3.46  
2.63  
810  
160  
410  
200  
765  
90  
V
V
Supply voltage2  
I/O (SD_2P5V = 0)  
I/O (SD_2P5V = 1)  
V
VCCPECL  
V
ICC  
ICCIO  
ICC  
780  
380  
710  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
100BASE-FX  
10BASE-T  
60  
90  
30  
130  
170  
70  
ICCIO  
ICC  
Operating  
Current - RMII3  
ICCIO  
ICC  
Power-Down  
Mode  
Hardware  
20  
ICCIO  
2
2
3
4
4
mA  
ICC  
500  
540  
4
mA  
mA  
Auto-Negotiation  
ICCIO  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Voltages with respect to ground unless otherwise specified.  
3. Values are aggregated for all eight ports.  
Datasheet  
173  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 52. Operating Conditions (Sheet 2 of 2)  
1
1
Typ  
Typ  
Parameter  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
ICC  
800  
380  
740  
50  
830  
160  
410  
200  
770  
130  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
ICCIO  
ICC  
70  
90  
60  
130  
170  
110  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
Operating  
Current - SMII3  
ICCIO  
ICC  
Power-Down  
Mode  
Hardware  
ICCIO  
3
5
5
mA  
ICC  
520  
800  
380  
740  
30  
570  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Auto-Negotiation  
100BASE-TX  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
20  
90  
90  
90  
30  
835  
200  
410  
200  
780  
180  
40  
ICCIO  
ICC  
170  
170  
150  
ICCIO  
ICC  
Operating  
Current -  
SS-SMII3  
ICCIO  
ICC  
Power-Down  
Mode  
Hardware  
ICCIO  
3
5
5
mA  
ICC  
530  
570  
80  
mA  
mA  
Auto-Negotiation  
ICCIO  
50  
70  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Voltages with respect to ground unless otherwise specified.  
3. Values are aggregated for all eight ports.  
Table 53. Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
II  
0.75  
V
V
Input High voltage  
Input current  
1.75  
-100  
100  
0.2  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n_L  
pins)  
VOL-LED  
VOH  
0.5  
V
V
IOL = 10 mA  
IOH = -4 mA  
Output High voltage  
2.07  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
174  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 54. Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
II  
2.0  
-100  
0.8  
V
V
Input High voltage  
Input current  
100  
0.2  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n_L  
pins)  
VOL-LED  
VOH  
0.5  
V
V
IOL = 10 mA  
IOH = -4 mA  
Output High voltage  
2.4  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
Table 55. Digital I/O DC Electrical Characteristics – SD Pins  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
2.5 V Operation  
Input Low voltage  
Input High voltage  
VIL  
0.69  
1.34  
0.8  
1.6  
1.03  
1.62  
V
V
VCCPECL = 2.5 V  
VCCPECL = 2.5 V  
VIH  
3.3 V Operation  
Input Low voltage  
Input High voltage  
VIL  
1.49  
2.14  
1.6  
2.4  
1.83  
2.42  
V
V
VCCPECL = 3.3 V  
VCCPECL = 3.3 V  
VIH  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. For 2.5 V operation, SD_2P5V = VCCPECL and VCCPECL=2.5 V.  
3. For 3.3 V operation, SD_2P5V = GNDPECL or Floating and VCCPECL=3.3 V.  
Table 56. Required Clock Characteristics  
2
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
SMII Input frequency  
f
f
125  
50  
MHz  
MHz  
ppm  
%
RMII Input frequency  
Input clock frequency tolerance1  
Input clock duty cycle1  
f  
Tdc  
± 50  
65  
35  
50  
RMII selection  
Input clock duty cycle - REFCLK,  
TxCLK1  
Tdc  
Tdc  
40  
45  
50  
50  
60  
55  
%
%
SMII/SS-SMII selection  
SS-SMII only  
Output RxCLK duty cycle  
1. Parameter is guaranteed by design; not subject to production testing.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
Datasheet  
175  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 57. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output  
voltage  
VP  
0.95  
1.05  
V
Note 2  
Signal amplitude symmetry  
Signal rise/fall time  
Vss  
trf  
98  
3
102  
5
%
ns  
ns  
Note 2  
Note 2  
Note 2  
Rise/fall time symmetry  
trfs  
0.5  
Offset from 16 ns pulse  
width at 50% of pulse  
peak  
Duty cycle distortion  
Overshoot  
+/- 0.5  
ns  
VO  
5
%
Jitter magnitude (measured  
differentially)  
ttx-jit  
1.4  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
Table 58. 100BASE-FX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak-to-peak differential  
output voltage  
VDIFFP-P  
trf  
0.6  
1.44  
V
Note 2  
Signal rise/fall time  
1.8  
1.4  
ns  
ns  
Jitter magnitude (measured  
differentially)  
ttx-jit  
Receiver  
Peak differential input  
voltage  
VIP  
VCMIR  
VIL  
0.55  
V
V
V
Common mode input range  
Input Low Voltage (SD pins)  
VCC - 0.5  
VCC  
-1.84  
VCC  
-1.63  
VCC  
-1.04  
VCC  
-0.88  
Input High Voltage (SD Pins)  
VIH  
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. 20 - 80 percent into 100 equivalent load of a typical fiber transceiver.  
176  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 59. 10BASE-T Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
Link transmit period  
VOP  
2.2  
8
2.5  
2.8  
24  
V
Note 2  
ms  
Jitter magnitude added by the  
MAU and PLS sections 3, 4  
ttx-jit  
11  
ns  
Receiver  
Between TPFIP and  
TPFIN  
Receive input impedance3  
ZIN  
100  
W
Link min receive timer  
Link max receive timer  
TLRmin  
TLRmax  
2
7
ms  
ms  
50  
150  
5 MHz square wave  
input  
Differential squelch threshold  
VDS  
475  
mV Peak  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5  
ns from the MAU.  
4. After line model specified by IEEE 802.3 for 10BASE-T MAU.  
Datasheet  
177  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 39. SMII - 100BASE-TX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RxData  
TPFI  
t1  
t2  
t3  
t4  
Table 60. SMII - 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max  
Units  
Test Conditions  
RxData output delay from REFCLK  
rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
5
ns  
ns  
RxData Rise/Fall Time  
1.0  
21  
Synchronous sampling of  
SMII  
Receive start of /J/ to CRS asserted  
29  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous sampling of  
SMII  
t4  
25  
30  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
178  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 40. SMII - 100BASE-TX Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 61. SMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge and  
TxData hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
11  
18  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
179  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 41. SMII - 100BASE-FX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RxData  
TPFI  
t1  
t2  
t3  
t4  
Table 62. SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RxData output delay from REFCLK  
rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
1
5
ns  
ns  
RxData Rise/Fall Time  
Synchronous  
sampling of SMII  
Receive start of /J/ to CRS asserted  
18  
26  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous  
sampling of SMII  
t4  
23  
27  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
180  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 42. SMII - 100BASE-FX Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 63. SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge  
and TxData hold from REFCLK rising  
edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
10  
17  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
181  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 43. SMII - 10BASE-T Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RxData  
TPFI  
t1  
t2  
t3  
t4  
Table 64. SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
t1  
Min  
Typ  
Max  
Units  
Test Conditions  
RxData output delay from  
REFCLK rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
1.5  
5
ns  
RxData Rise/Fall Time  
t2  
t3  
1
ns  
Receive Start-of-Frame to CRS  
asserted  
17  
21  
BT3  
Synchronous sampling of SMII2  
Receive Start-of-Idle to CRS  
de-asserted  
t4  
t5  
t6  
17  
18  
BT3  
ns  
Synchronous sampling of SMII2  
SYNC setup to REFCLK rising  
edge  
1.5  
1.0  
SYNC hold from REFCLK rising  
edge  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
182  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 44. SMII - 10BASE-T Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 65. SMII-10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold to REFCLK rising edge and  
TxData hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start-of-frame  
10  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
183  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 45. SS-SMII - 100BASE-TX Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
t3  
t3  
RxData  
TPFI  
t4  
t5  
Table 66. SS-SMII - 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK  
rising edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay  
from RxCLK rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
t3  
t4  
1.5  
5
ns  
ns  
RxData/RxSYNC Rise/Fall time  
1.0  
21  
Receive start of /J/ to CRS  
asserted  
27  
BT2  
Receive start of /T/ to CRS  
de-asserted  
t5  
25  
30  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
184  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 46. SS-SMII - 100BASE-TX Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 67. SS-SMII - 100BASE-TX Transmit Timing  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold from TxCLK rising edge and  
TxData hold to TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
11  
18  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
185  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 47. SS-SMII - 100BASE-FX Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
t3  
t3  
RxData  
TPFI  
t4  
t5  
Table 68. SS-SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK rising edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay from RxCLK  
rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
1.5  
5
ns  
RxData/RxSYNC Rise/Fall time  
t3  
t4  
t5  
1
ns  
Receive start of /J/ to CRS asserted  
Receive start of /T/ to CRS de-asserted  
18  
21  
23  
26  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
186  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 48. SS-SMII - 100BASE-FX Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 69. SS-SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold from TxCLK rising edge and  
TxData hold to TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxData to TPFO Latency  
11  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
187  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 49. SS-SMII - 10BASE-T Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
RxData  
t4  
t5  
TPFI  
Table 70. SS-SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK rising  
edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay from  
RxCLK rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
t3  
t4  
1.5  
1
5
ns  
ns  
RxData/RxSYNC Rise/Fall time  
Synchronous sampling of  
SMII2  
Receive Start-of-Frame to CRS asserted  
10  
11  
BT3  
Synchronous sampling of  
SMII2  
Receive Start-of-Idle to CRS de-asserted  
t5  
18  
21  
BT3  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
188  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 50. SS-SMII - 10BASE-T Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 71. SS-SMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold to TxCLK rising edge and TxData  
hold from TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxData to TPFO Latency  
10  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
189  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 51. RMII - 100BASE-TX Receive Timing  
REFCLK  
t1  
t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 72. RMII - 100BASE-TX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV, RXER setup to REFCLK  
rising edge3  
t1  
t2  
4
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV, RXER hold from REFCLK  
rising edge3  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t3  
t4  
16  
20  
21  
27  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
190  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 52. RMII - 100BASE-TX Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 73. RMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising  
edge  
t1  
4
ns  
TxData<1:0>/TxEN hold from REFCLK rising  
edge  
t2  
t3  
2
ns  
TxEN sampled to TPFO out (Tx latency)  
12  
17  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
191  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 53. RMII - 100BASE-FX Receive Timing  
REFCLK  
t1  
t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 74. RMII - 100BASE-FX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV, RXER setup to  
REFCLK rising edge3  
t1  
t2  
4
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV, RXER hold from  
REFCLK rising edge3  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t3  
t4  
14  
18  
18  
25  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
192  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 54. RMII - 100BASE-FX Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 75. RMII - 100BASE-FX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising edge  
t1  
t2  
t3  
4
2
ns  
ns  
TxData<1:0>/TX-EN hold from REFCLK rising  
edge  
TxEN sampled to TPFO out (Tx latency)  
10  
12  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
193  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 55. RMII - 10BASE-T Receive Timing  
REFCLK  
t1  
t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 76. RMII - 10BASE-T Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV setup to REFCLK rising  
edge3  
t1  
t2  
4
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV hold from REFCLK rising  
edge3  
TPFI in to CRS_DV asserted  
t3  
t4  
1.5  
12  
3
4
BT2  
BT2  
TPFI quiet to CRS_DV de-asserted  
15  
16  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
194  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 56. RMII - 10BASE-T Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 77. RMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising  
edge  
t1  
4
ns  
TxData<1:0>/TxEN hold from REFCLK rising  
edge  
t2  
t3  
2
ns  
TxEN sampled to TPFO out (Tx latency)  
8.5  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using  
100BASE-TX or 100BASE-FX).  
NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a  
default configuration of 00 (32 bits of initial fill).  
Datasheet  
195  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 57. Auto-Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPFOP  
t1  
t1  
t3  
t2  
Figure 58. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPFOP  
t4  
t5  
Table 78. Auto-Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
111  
100  
69.5  
139  
ns  
µs  
µs  
2
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
196  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 59. MDIO Write Timing (MDIO Sourced by MAC)  
MDC  
t2  
t1  
MDIO  
Figure 60. MDIO Read Timing (MDIO Sourced by PHY)  
MDC  
t3  
MDIO  
Table 79. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
MDIO setup before MDC, sourced by  
STA  
t1  
10  
ns  
MDIO hold after MDC,  
sourced by STA  
t2  
t3  
10  
0
ns  
ns  
MDC to MDIO output delay, sourced  
by PHY  
40  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
Datasheet  
197  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 61. Power-Up Timing  
v1  
VCC  
tPDR  
MDIO,etc  
Table 80. Power-Up Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage Threshold  
v1  
2.1  
100  
20  
V
Power-up recovery time  
Software power-down2  
tPDR  
tSPDR  
ms  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. The minimum time required between bringing up consecutive ports powered down by Register bit 0.11, or  
a software or hardware reset.  
Figure 62. RESET_L Recovery Timing  
tPW  
RESET  
tRcdly  
MDIO,etc  
Table 81. RESET_L Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Reset pulse width  
tPW  
10  
ns  
Reset recovery delay  
tRcdly  
0.4  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
198  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
7.0  
Register Definitions  
The LXT9785/LXT9785E register set includes multiple 16-bit registers, 18 registers per port.  
Table 82 presents a complete register listing. Table 83, “Control Register (Address 0)” on page 200  
through Table 100, “Cable Diagnostics Register (Address 29, Hex 1D)” on page 217 define  
individual registers and Table 101, “Register Bit Map” on page 219 provides a consolidated  
memory map of all registers.  
Base registers (0 through 8) are defined in accordance with the “Reconciliation Sublayer and  
Media Independent Interface” and “Physical Layer Link Signaling for 10/100 Mbps Auto-  
Negotiation” sections of the IEEE 802.3 standard.  
Additional registers (16 through 21, 25, 27, and 29) are defined in accordance with the IEEE 802.3  
standard for adding unique chip functions.  
The BGA15 package on some registers has different default values. Some LXT9785 features are  
not available on the BGA15 package. These differences are called out in the register description  
and in the table notes in individual register tables.  
Table 82. Register Set (Sheet 1 of 2)  
Address Register Name  
Bit Assignments  
0
1
2
3
4
“Control Register (Address 0)”  
Refer to Table 83 on page 200  
Refer to Table 84 on page 201  
Refer to Table 85 on page 203  
Refer to Table 86 on page 203  
Refer to Table 87 on page 204  
Status Register (Address 1)”  
“PHY Identification Register 1 (Address 2)”  
“PHY Identification Register 2 (Address 3)”  
“Auto-Negotiation Advertisement Register (Address 4)”  
“Auto-Negotiation Link Partner Base Page Ability Register  
(Address 5)”  
5
Refer to Table 88 on page 205  
6
7
“Auto-Negotiation Expansion Register (Address 6)”  
Refer to Table 89 on page 206  
Refer to Table 90 on page 206  
“Auto-Negotiation Next Page Transmit Register (Address 7)”  
“Auto-Negotiation Link Partner Next Page Receive Register  
(Address 8)”  
8
Refer to Table 91 on page 207  
9
10  
1000BASE-T/100BASE-T2 Control  
1000BASE-T/100BASE-T2 Status  
Not Implemented  
Not Implemented  
15  
Extended Status  
Not Implemented  
16  
“Port Configuration Register (Address 16, Hex 10)”  
“Quick Status Register (Address 17, Hex 11)”  
“Interrupt Enable Register (Address 18, Hex 12)”  
“Interrupt Status Register (Address 19, Hex 13)”  
“LED Configuration Register (Address 20, Hex 14)”  
“Receive Error Count Register (Address 21, Hex 15)”  
Reserved  
Refer to Table 92 on page 207  
Refer to Table 93 on page 209  
Refer to Table 94 on page 211  
Refer to Table 95 on page 212  
Refer to Table 96 on page 213  
Refer to Table 97 on page 214  
N/A  
17  
18  
19  
20  
21  
22-24  
25  
“RMII Out-of-Band Signaling Register (Address 25, Hex 19)”  
Reserved  
Refer to Table 98 on page 215  
N/A  
26  
Datasheet  
199  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 82. Register Set (Sheet 2 of 2)  
Address Register Name  
Bit Assignments  
27  
28  
“Trim Enable Register (Address 27, Hex 1B)”  
Refer to Table 99 on page 216  
Reserved  
N/A  
29  
“Cable Diagnostics Register (Address 29, Hex 1D)”  
Reserved  
Refer to Table 100 on page 217  
N/A  
30 - 31  
Table 83. Control Register (Address 0) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type1  
Default  
R/W  
SC  
0 = Normal operation  
1 = PHY reset  
15  
RESET_L  
02  
0 = Disable loopback mode  
1 = Enable loopback mode  
Not recommended to enable auto-negotiation  
while in internal loopback operation.  
14  
13  
Loopback  
R/W  
R/W  
0
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000 Mbps (not allowed)  
1 = 100 Mbps  
0 = 10 Mbps  
Speed Selection  
LSHR3,4  
Auto-Negotiation  
Enable  
0 = Disable auto-negotiation process  
1 = Enable auto-negotiation process  
12  
11  
R/W  
R/W  
LSHR3,4  
LSHR3,5  
0 = Normal operation  
1 = Power-down  
Power-Down  
Isolate  
0 = Normal operation  
1 = Electrically isolate PHY from RMII/SMII/SS-  
10  
R/W  
0
SMII interfaces  
Restart  
R/W  
SC  
0 = Normal operation  
1 = Restart auto-negotiation process  
9
8
0
Auto-Negotiation  
0 = Half-duplex  
1 = Full-duplex  
Duplex Mode  
R/W  
LSHR3,4  
1. R/W = Read/Write, SC = Self Clearing when operation complete.  
2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the  
LSHR information is not re-read from the pins. This information reverts back to the information that was  
read in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms  
after de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The  
reset bit should be polled to see when the part has completed reset.  
3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42,  
“Global Hardware Configuration Settings” on page 128.  
5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin.  
200  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 83. Control Register (Address 0) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type1  
Default  
This bit is ignored by the LXT9785/LXT9785E  
7
Collision Test  
R/W  
0
0 = Disable COL signal test  
1 = Enable COL signal test  
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000 Mbps (not allowed)  
1 = 100 Mbps  
0 = 10 Mbps  
Speed Selection  
1000 Mbps  
6
R/W  
R/W  
0
5:0  
Reserved  
Write as 0, ignore on Read  
000000  
1. R/W = Read/Write, SC = Self Clearing when operation complete.  
2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the  
LSHR information is not re-read from the pins. This information reverts back to the information that was  
read in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms  
after de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The  
reset bit should be polled to see when the part has completed reset.  
3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42,  
“Global Hardware Configuration Settings” on page 128.  
5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin.  
Table 84. Status Register (Address 1)  
Bit  
Name  
Description  
Type1,2  
Default  
0 = PHY not able to perform 100BASE-T4  
1 = PHY able to perform 100BASE-T4  
15  
100BASE-T4  
R
0
100BASE-X  
Full-Duplex  
0 = PHY not able to perform full-duplex 100BASE-X  
1 = PHY able to perform full-duplex 100BASE-X  
14  
13  
R
R
1
1
100BASE-X  
Half-Duplex  
0 = PHY not able to perform half-duplex 100BASE-X  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to operate at 10 Mbps in full-duplex  
mode  
12  
11  
10 Mbps Full-Duplex  
R
R
1
1
1 = PHY able to operate at 10 Mbps in full-duplex  
mode  
0 = PHY not able to operate at 10 Mbps in half-duplex  
10 Mbps Half-Duplex 1 = PHY able to operate at 10 Mbps in half-duplex  
mode  
100BASE-T2  
Full-Duplex  
0 = PHY not able to perform full-duplex 100BASE-T2  
1 = PHY able to perform full-duplex 100BASE-T2  
10  
9
R
R
0
0
100BASE-T2  
Half-Duplex  
0 = PHY not able to perform half-duplex 100BASE-T2  
1 = PHY able to perform half-duplex 100BASE-T2  
0 = No extended status information in Register 15  
1 = Extended status information in Register 15  
8
7
Extended Status  
Reserved  
R
R
0
0
Write as 0, ignore on Read  
0 = PHY will not accept management frames with  
preamble suppressed  
1 = PHY accepts management frames with preamble  
suppressed  
MF Preamble  
Suppression  
6
R
0
1. R = Read Only  
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.  
Datasheet  
201  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 84. Status Register (Address 1)  
Bit  
Name  
Description  
Type1,2  
Default  
Auto-Negotiation  
complete  
0 = Auto-negotiation not complete  
1 = Auto-negotiation complete  
5
R
0
0 = No remote fault condition detected  
1 = Remote fault condition detected  
4
3
2
1
0
Remote Fault  
R/LL  
R
0
1
0
0
1
Auto-Negotiation  
Ability  
0 = PHY is not able to perform auto-negotiation  
1 = PHY is able to perform auto-negotiation  
0 = Link is down  
1 = Link is up  
Link Status  
R/LL  
R/LH  
R
0 = Jabber condition not detected  
1 = Jabber condition detected  
Jabber Detect  
Extended Capability  
0 = Basic register capabilities  
1 = Extended register capabilities  
1. R = Read Only  
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.  
202  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 85. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type1  
Default  
The PHY identifier composed of bits 3 through 18 of the  
OUI  
15:0  
PHY ID Number  
R
0013 hex  
1. R = Read Only  
Table 86. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type1  
Default  
The PHY identifier composed of bits 19 through 24 of  
the OUI  
15:10 PHY ID Number  
R
011110  
Manufacturer’s  
9:4  
6 bits containing manufacturer’s part number  
3 bits containing manufacturer’s revision number  
R
R
001111  
XXX2  
Model Number  
Manufacturer’s  
3:1  
0
Revision  
Number  
0 = LXT9785  
1 = LXT9785/LXT9785E  
Model Variant  
R
X2  
1. R = Read Only  
2. Refer to the Identification Information section in the Intel® LXT9785/LXT9785E Specification Update.  
Figure 63. PHY Identifier Bit Mapping  
a
1
r
s
x
b
2
c
Organizationally Unique Identifier  
18 19  
24  
3
0
0
1
3
9
3
I/G  
0
15  
0
0
1
15  
0
10  
4
0
PHY ID Register #1 (Address 2)  
PHY ID Register #2 (Address 3)  
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
X
0
0
0
2
B
7
5
0
3
1
0
00  
20  
7B  
Manufacturer's  
Model Number  
Revision  
Number  
The Intel OUI is 00207B hex.  
Model  
Variant  
Datasheet  
203  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 87. Auto-Negotiation Advertisement Register (Address 4)  
Bit  
Name  
Description  
Type1  
Default  
0 = Port has no ability to send manual next pages  
1 = Port has ability to send manual next pages  
15  
Next Page  
R/W  
0
Note: This bit should only be set to manually control the auto-  
negotiation process. It is not needed and should be cleared  
for DTE Discovery.  
14  
136  
12  
Reserved  
Remote Fault  
Reserved  
Write as 0, ignore on Read  
R
0
0
0
0 = No remote fault  
1 = Remote fault  
R/W  
R/W  
Write as 0, ignore on Read  
Pause operation defined in Clause 40 and 27  
Asymmetric  
Pause  
11  
10  
R/W  
R/W  
0
0 = Port is not Pause capable  
1 = Port can only send Pause  
0 = Pause operation disabled  
1 = Port can send and receive Pause  
Pause5  
LSHR2,3  
NOTE: Default for the BGA15 package is 0.  
0 = 100BASE-T4 capability is not available  
1 = 100BASE-T4 capability is available  
(The LXT9785/LXT9785E does not support 100BASE-T4 but  
allows this bit to be set to advertise in the auto-negotiation  
sequence for 100BASE-T4 operation. An external  
100BASE-T4 transceiver could be switched in if this  
capability is desired.)  
9
100BASE-T4  
R/W  
0
100BASE-TX 0 = Port is not 100BASE-TX full-duplex capable.  
Full-Duplex 1 = Port is 100BASE-TX full-duplex capable  
8
7
6
5
R/W  
R/W  
R/W  
R/W  
LSHR2,4  
LSHR2,4  
LSHR2,4  
LSHR2,4  
100BASE-TX 0 = Port is not 100BASE-TX half-duplex capable  
Half-Duplex  
1 = Port is 100BASE-TX half-duplex capable  
10BASE-T  
Full-Duplex  
0 = Port is not 10BASE-T full-duplex capable  
1 = Port is 10BASE-T full-duplex capable  
10BASE-T  
Half-Duplex  
0 = Port is not 10BASE-T half-duplex capable  
1 = Port is 10BASE-T half-duplex capable  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector  
Field,  
S<4:0>  
<00000> = Reserved for future auto-negotiation development  
<11111> = Reserved for future auto-negotiation development  
Unspecified or reserved combinations should not be  
transmitted  
4:0  
R/W  
00001  
1. R/W = Read/Write, R = Read Only  
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
3. The default setting of Register bit 4.10 is determined by the PAUSE pin. The BGA15 package does not  
have a Pause hardware configuration pin and has a default of 0.  
4. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 42, “Global Hardware  
Configuration Settings” on page 128.  
5. Pause operation is only valid for full-duplex modes.  
6. If Register bit 4.13 is set to advertise a fault, Register bit 1.4 will be set.  
NOTE: Restart the auto-negotiation process whenever Register 4 is written/modified.  
204  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 88. Auto-Negotiation Link Partner Base Page Ability Register (Address 5)  
Bit  
Name  
Description  
Type1 Default2  
0 = Link partner has no ability to send multiple pages  
1 = Link partner has ability to send multiple pages  
15  
Next Page  
R
R
0
0
0 = Link partner has not received Link Code Word from the  
the LXT9785/LXT9785E  
1 = Link partner has received Link Code Word from the  
LXT9785/LXT9785E.  
14  
Acknowledge  
0 = No remote fault  
1 = Remote fault  
13  
12  
Remote Fault  
Reserved  
R
R
0
0
Write as 0, ignore on Read  
Pause operation defined in Clause 40 and 27  
Asymmetric  
Pause  
11  
R
0
0 = Link partner is not Pause capable  
1 = Link partner can only send Pause  
0 = Link partner is not Pause capable  
1 = Link partner can send and receive Pause  
10  
9
Pause  
R
R
R
R
0
0
0
0
0 = Link partner is not 100BASE-T4 capable  
1 = Link partner is 100BASE-T4 capable  
100BASE-T4  
100BASE-TX  
Full-Duplex  
0 = Link partner is not 100BASE-TX full-duplex capable  
1 = Link partner is 100BASE-TX full-duplex capable  
8
0 = Link partner is not 100BASE-TX capable  
1 = Link partner is 100BASE-TX capable  
7
100BASE-TX  
10BASE-T  
Full-Duplex  
0 = Link partner is not 10BASE-T full-duplex capable  
1 = Link partner is 10BASE-T full-duplex capable  
6
5
R
R
0
0
0 = Link partner is not 10BASE-T capable  
1 = Link partner is 10BASE-T capable  
10BASE-T  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector Field  
S<4:0>  
4:0  
<00000> = Reserved for future auto-negotiation development  
<11111> = Reserved for future auto-negotiation development  
Unspecified or reserved combinations shall not be transmitted  
R
00000  
1. R = Read Only  
2. Default value at the start of auto-negotiation code word transmission.  
Datasheet  
205  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 89. Auto-Negotiation Expansion Register (Address 6)  
Bit  
Name  
Description  
Type1  
Default  
15:5  
Reserved  
Parallel  
Write as 0, ignore on Read  
R
0x000  
0 = Parallel detection fault has not occurred  
R/  
LH  
4
3
2
0
0
1
Detection Fault 1 = Parallel detection fault has occurred  
Link Partner 0 = Link partner is not next page able  
Next Page Able 1 = Link partner is next page able  
R
R
0 = Local device is not next page able  
Next Page Able  
1 = Local device is next page able  
Indicates that a new page has been received and the  
received code word has been loaded into Register 5 or  
Register 8 as specified in clause 28 of 802.3.  
R/  
LH  
1
0
Page Received  
0
0
0 = Three identical and consecutive link code words have  
not been received from link partner  
1 = Three identical and consecutive link code words have  
been received from link partner  
Link Partner  
A/N Able  
0 = Link partner is not auto-negotiation able  
1 = Link partner is auto-negotiation able  
R
1. R = Read Only, LH = Latching High – cleared when read  
Table 90. Auto-Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type1  
Default  
Next Page  
(NP)  
0 = Last page  
1 = Additional next pages follow  
15  
14  
13  
R/W  
R
0
0
1
Reserved  
Write as 0, ignore on Read.  
Message Page  
(MP)  
0 = Unformatted page  
1 = Message page  
R/W  
Acknowledge 2  
(ACK2)  
0 = Cannot comply with message  
1 = Complies with message  
12  
11  
R/W  
R
0
0
0 = Previous value of the transmitted link code word  
equalled logic one  
1 = Previous value of the transmitted link code word  
equalled logic zero  
Toggle  
(T)  
Message/  
10:0 Unformatted  
MP = 0: Code interpreted as “unformatted page”  
MP = 1: Code interpreted as “message page”  
0000000  
0001  
R/W  
Code Field  
1. R/W = Read Write, R = Read Only  
206  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 91. Auto-Negotiation Link Partner Next Page Receive Register (Address 8)  
Bit  
Name  
Description  
Type1  
Default2  
Next Page  
(NP)  
0 = Link partner has no additional next pages to send  
1 = Link partner has additional next pages to send  
15  
R
0
0 = Link partner has not received Link Code Word from  
the LXT9785/LXT9785E  
1 = Link partner has received Link Code Word from the  
Acknowledge  
(ACK)  
14  
R
0
LXT9785/LXT9785E  
Message Page  
(MP)  
0 = Page sent by the link partner is an unformatted page  
1 = Page sent by the link partner is a message page  
13  
12  
R
R
0
0
Acknowledge 2  
(ACK2)  
0 = Link partner cannot comply with the message  
1 = Link partner complies with the message  
0 = Previous value of the transmitted Link Code Word  
equalled logic one  
1 = Previous value of the transmitted Link Code Word  
Toggle  
(T)  
11  
R
R
0
equalled logic zero  
Message/  
10:0 Unformatted  
Code Field  
MP = 1: Code interpreted as message page  
MP = 0: Code interpreted as unformatted page  
0x000  
1. R = Read Only  
2. Default value at the start of auto-negotiation code word transmission.  
Table 92. Port Configuration Register (Address 16, Hex 10) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type 1  
Default  
15  
Reserved  
Write as 0, ignore on Read  
R/W  
0
0 = Normal operation  
1 = Force link pass (sets appropriate registers and LEDs  
to pass)  
14  
Link Disable  
R/W  
0
Note: Setting this bit in 100 Mbps mode by-passes the  
descrambler lock requirement to establish link and forces  
the link to the link-good state. Setting this bit produces  
unreliable results if the descrambler is not locked,  
0 = Normal operation  
1 = Disable twisted-pair transmitter  
13  
Transmit Disable  
R/W  
0
Bypass Scramble 0 = Normal operation  
12  
11  
R/W  
R/W  
0
0
(100BASE-TX)  
1 = Bypass scrambler and descrambler  
Reserved  
Write as 0, ignore on Read  
1. R/W = Read/Write  
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
3. The default value of Register bit 16.0 is determined by the G_FX/TP_L pin.  
If G_FX/TP_L is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP_L is not tied Low, the  
default value of Register bit 16.0 = 1. The BGA15 package does not have a G_FX/TP_L hardware  
configuration pin.  
4. The default value of Register bit 16.5 is determined by the PREASEL pin. The BGA15 package does not  
have a PREASEL hardware configuration pin and has a default of 0.  
5. The BGA15 package does not support fiber. Default for the BGA15 package is 0.  
6. NA means the bits do not have a default value and may initially contain any value.  
Datasheet  
207  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 92. Port Configuration Register (Address 16, Hex 10) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type 1  
Default  
0 = Normal operation  
1 = Jabber function is enabled; however, jabber status  
Jabber  
(10BASE-T)  
10  
9
R/W  
R/W  
0
0
reporting to Register bit 1.1 is disabled  
Reserved  
Write as 0, ignore on Read.  
0 = Normal operation  
1 = Disable twisted-pair loopback during half-duplex  
TP Loopback  
(10BASE-T)  
8
R/W  
1
operation  
Note: Valid function in SMII and S-SMII modes only.  
7
6
Reserved  
Reserved  
R/W  
R/W  
1
0
Write as 1, ignore on Read  
Write as 0, ignore on Read  
0 = No preamble (default)  
10 Mbps 1 = Preamble enabled  
NOTE: Default for BGA15 package is 0.  
LSHR2,4  
N/A  
5
Preamble Enable  
R/W  
100  
No effect  
Mbps  
4
3
Reserved  
Reserved  
Write as 0, ignore on Read  
Write as 0, ignore on Read  
R/W  
R/W  
0
0
Far End Fault  
Transmission  
Enable  
0 = Disable Far End Fault transmission  
1 = Enable Far End Fault transmission  
2
R/W  
1
Invalid for  
BGA15  
Write as '0', ignore on Read (BGA15).  
Write as 0, ignore on Read.  
1
0
Reserved  
R/W  
R/W  
0
0 = Select twisted-pair mode for this port  
1 = Select fiber mode for this port  
Fiber Select5  
LSHR2,3  
Reserved for  
BGA15  
Write as '0', ignore on Read (BGA15).  
NOTE: Default for BGA15 is 0.  
1. R/W = Read/Write  
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
3. The default value of Register bit 16.0 is determined by the G_FX/TP_L pin.  
If G_FX/TP_L is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP_L is not tied Low, the  
default value of Register bit 16.0 = 1. The BGA15 package does not have a G_FX/TP_L hardware  
configuration pin.  
4. The default value of Register bit 16.5 is determined by the PREASEL pin. The BGA15 package does not  
have a PREASEL hardware configuration pin and has a default of 0.  
5. The BGA15 package does not support fiber. Default for the BGA15 package is 0.  
6. NA means the bits do not have a default value and may initially contain any value.  
208  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 93. Quick Status Register (Address 17, Hex 11) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type 1  
Default2  
15  
Reserved  
Write as 0, ignore on Read  
R
0
0 = The LXT9785/LXT9785E is operating in 10 Mbps  
mode  
1 = The LXT9785/LXT9785E is operating in 100 Mbps  
14  
10/100 Mode  
R
0
mode  
NOTE: The status is valid for TX and FX operation.  
0 = The LXT9785/LXT9785E is not transmitting a packet  
1 = The LXT9785/LXT9785E is transmitting a packet  
R
LH  
13  
12  
Transmit Status  
Receive Status  
0
0
0 = Packet has not been received since last read  
1 = Packet has been received since last read  
R
LH  
0 = A collision is not occurring  
1 = A collision is occurring  
R
11  
Collision Status  
0
LH  
NOTE: This bit is set when jabber is detected, regardless  
of duplex.  
0 = Link is down  
1 = Link is up  
10  
9
Link  
R
R
0
0
0 = Half-duplex  
1 = Full-duplex  
Duplex Mode  
0 = The LXT9785/LXT9785E is in manual mode  
1 = The LXT9785/LXT9785E is in auto-negotiation mode  
8
Auto-Negotiation  
R
R
Note 3  
This signal is based upon Register bit 0.12.  
Auto-Negotiation 0 = Auto-negotiation process is not complete  
7
6
0
0
Complete  
1 = Auto-negotiation process is complete  
0 = No FIFO error occurred  
1 = FIFO error occurred (overflow or underflow)  
R
LH  
FIFO Error  
0 = Polarity is not reversed  
1 = Polarity is reversed  
5
Polarity  
R
0
NOTE: During 100 Mbps operation, this bit is not valid  
and may vary. Auto MDIX activity may increase  
the variability.  
1. R = Read Only, LH = Latching High – cleared when read.  
2. The default values are updated on completion of reset and reflect the status or change in status at that  
time. Intel recommends that the register status be read on completion of reset.  
3. The default value is determined by the default value of Register bit 0.12.  
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a  
Pause hardware configuration pin. The default for the BGA15 package is 0.  
Datasheet  
209  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 93. Quick Status Register (Address 17, Hex 11) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type 1  
Default2  
0 = The LXT9785/LXT9785E is not Pause capable  
1 = The LXT9785/LXT9785E is pause capable  
4
Pause  
R
LSHR4,5  
NOTE: This bit is not affected by Register bit 4.10.  
NOTE: The default for the BGA15 package is 0.  
0 = No error occurred  
1 = Error Occurred (remote fault, RxERCntFUL, FIFO  
error, jabber, parallel detect fault)  
3
Error  
R
R
0
0
NOTE: The register is cleared when the registers that  
generated the error condition are read.  
2:0  
Reserved  
Write as 0, ignore on Read.  
1. R = Read Only, LH = Latching High – cleared when read.  
2. The default values are updated on completion of reset and reflect the status or change in status at that  
time. Intel recommends that the register status be read on completion of reset.  
3. The default value is determined by the default value of Register bit 0.12.  
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a  
Pause hardware configuration pin. The default for the BGA15 package is 0.  
210  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 94. Interrupt Enable Register (Address 18, Hex 12)  
Bit  
Name  
Description  
Type 1  
Default  
00 =Reserved  
01 =Low, 16 bits  
RxFIFO Initial  
Fill  
15:142  
R/W  
LSHR4,5  
10 =Normal, 32 bits (default)  
11 = Jumbo packets, 128 bits  
When Register bit 16.5 = 1, preamble is  
not suppressed.  
0 = Disabled  
1 = Enabled  
10 Mbps  
R/W  
R/W  
0
0
SFD Frame  
Alignment3  
When Register bit 16.5 = 0, SFD is always  
aligned, and preamble is suppressed.  
13  
(RxDV asserts  
with CRS when  
enabled)  
0 = Disabled  
1 = Enabled  
100 Mbps  
When enabled, all but one byte of  
preamble is suppressed.  
12:9  
8
Reserved  
Write as 0, ignore on Read  
R/W  
R/W  
0000  
0
Mask for Counter Full  
CNTRMSK  
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
Mask for Auto-Negotiate Complete  
7
6
5
4
3
ANMSK  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
Mask for Speed Interrupt  
SPEEDMSK  
DUPLEXMSK  
LINKMSK  
ISOLMSK  
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
Mask for Duplex Interrupt  
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
Mask for Link Status Interrupt  
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
Mask for Isolate Interrupt  
0 = Do not allow event to cause interrupt  
1 = Enable event to cause interrupt  
2
1
Reserved  
INTEN  
R/W  
R/W  
0
0
Write as 0, ignore on Read  
0 = Disable interrupts on this port  
1 = Enable interrupts on this port  
0 = Normal operation  
1 = Test force interrupt on MDINT_L  
0
TINT  
R/W  
0
1. R/W = Read/Write  
2. In 10 Mbps operation, Register bit 18.13 = 1 cannot be used when Register bits 18.15:14 = “11” and in  
RMII mode, Registers bits 18.15:14 = “11” or “10” cannot be used because the minimum Inter Gap Packet  
becomes less than specified in the *IEEE 802.3 specification.  
3. SFD Frame Alignment is applicable to SMII and SS-SMII only.  
4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset  
5. Default values are set by hardware configuration pins FIFOSEL1 and FIFOSEL0 (see Table 17, “Receive  
FIFO Depth Considerations” on page 49).  
Datasheet  
211  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 95. Interrupt Status Register (Address 19, Hex 13)  
Bit  
Name  
Description  
Type 1  
Default2  
15:9  
Reserved  
Write as 0, ignore on Read  
R
0
RxER Counter Full Status.  
0 = The internal counters have not reached maximum  
8
7
6
RxERCntFUL  
ANDONE  
R/LH  
R/LH  
R/LH  
0
N/A  
0
values  
1 = One of the internal counters has reached its maximum  
value  
Auto-Negotiation Status.  
0 = Auto-negotiation has not completed  
1 = Auto-negotiation has completed  
Speed Change Status.  
0 = A speed change has not occurred since last reading  
SPEEDCHG  
this register  
1 = A speed change has occurred since last reading this  
register  
Duplex Change Status.  
0 = A duplex change has not occurred since last reading this  
5
DUPLEXCHG register  
R/LH  
0
1 = A duplex change has occurred since last reading this  
register  
Link Status Change Status.  
0 = A link change has not occurred since last reading this  
register  
4
3
LINKCHG  
Isolate  
R/LH  
R/LH  
0
0
1 = A link change has occurred since last reading this  
register  
MII Isolate Change Status.  
0 = An Isolate change has not occurred since last reading  
this register  
1 = An Isolate change has occurred since last reading this  
register  
0 = Interrupt not pending  
1 = Interrupt pending  
2
MDINT  
R/LH  
R
0
0
1:0  
Reserved  
Reserved  
1. R = Read Only, LH = Latching High – cleared when read  
2. The default values are updated on completion of reset and reflect the status or change in status at that  
time. Intel recommends that the register status be read on completion of reset.  
212  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 96. LED Configuration Register (Address 20, Hex 14) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type1  
Default  
0000 = Display Speed Status (Continuous, Default)  
0001 = Display Transmit Status (Stretched)  
0010 = Display Receive Status (Stretched)  
0011 = Display Collision Status (Stretched)  
0100 = Display Link Status (Continuous)  
0101 = Display Duplex Status (Continuous)  
0110 = Display Isolate Status (Continuous)  
0111= Display Receive or Transmit Activity (Stretched)  
1000= est mode- turn LED on (Continuous)  
1001= Test mode- turn LED off (Continuous)  
1010= Test mode- blink LED fast (Continuous)  
1011= Test mode- blink LED slow (Continuous)  
LED1  
15:12  
R/W  
0000  
Programming  
bits  
1100= Display Link and Receive Status combined2  
(Stretched)3  
1101= Display Link and Activity Status combined2  
(Stretched)3  
1110= Display Duplex and Collision Status combined4  
(Stretched)3  
1111 = Display Link and RxER Status combined2 (Blink)  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111= Display Receive or Transmit Activity  
1000= Test mode- turn LED on  
1001= Test mode- turn LED off  
1010= Test mode- blink LED fast  
1011= Test mode- blink LED slow  
LED2  
11:8  
R/W  
1101  
Programming  
bits  
1100= Display Link and Receive Status combined2  
(Stretched)3  
1101= Display Link and Activity Status combined2 (Default)  
(Stretched)3  
1110= Display Duplex and Collision Status combined4  
(Stretched)3  
1111= Display Link and RxER Status combined 2 (Blink)  
1. R/W = Read/Write  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings  
are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Datasheet  
213  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 96. LED Configuration Register (Address 20, Hex 14) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type1  
Default  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111= Display Receive or Transmit Activity  
1000= Test mode- turn LED on  
1001= Test mode- turn LED off  
1010= Test mode- blink LED fast  
1011= Test mode- blink LED slow  
LED3  
7:4  
R/W  
1110  
Programming  
bits  
1100= Display Link and Receive Status combined2  
(Stretched)3  
1101= Display Link and Activity Status combined2  
(Stretched)3  
1110= Display Duplex and Collision Status combined4  
(Default) (Blink)3  
1111 = Display Link and RxER Status combined 2 (Blink)  
00 =Stretch LED events to 30 ms  
01 =Stretch LED events to 60 ms  
10 =Stretch LED events to 100 ms  
11 = Reserved  
3:2  
LEDFREQ  
R/W  
00  
0 = Disable pulse stretching of all LEDs3  
1 = Enable pulse stretching of all LEDs  
PULSE-  
1
0
R/W  
R/W  
1
0
STRETCH  
NOTE: Receive activity LEDs are initially active based upon  
carrier sense.  
Reserved  
Write as 0, ignore on Read  
1. R/W = Read/Write  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings  
are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Table 97. Receive Error Count Register (Address 21, Hex 15)  
Bit  
Name  
Description  
Type1  
Default  
A 16-bit counter value indicating the number of times a  
Receive Error receive packet with errors occurred. Only one event gets  
R/  
15:0  
0x0000  
Count  
counted per packet. When maximum count is reached, the  
16-bit counter remains full until cleared.  
LH  
1. R = Read Only, LH = Latching High – cleared when read  
NOTE: Intel recommends reading this register once every time link is established to clear the register.  
214  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 98. RMII Out-of-Band Signaling Register (Address 25, Hex 19)  
Bit  
Name  
Description  
Type1  
Default  
BGA15  
Write as 0, ignore on Read.  
PQFP and BGA23  
Reserved for  
BGA15  
15:0  
15:7  
R/W  
R/W  
0x0000  
0x000  
Reserved  
Write as 0, ignore on Read  
These three bits select which status information is  
available on the RxData(1) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
6:4  
BIT1  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Reserved  
These three bits select which status information is  
available on the RxData(0) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
3:1  
BIT0  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Reserved  
0 = Disable Out-of-Band signaling.  
1 = Enable programmable RMII Out-of-Band  
signaling. When enabled, Register bits 6:1 specify  
which status bits are available on the RMII  
RxData data bus.  
0
PROGRMII  
R/W  
0
Note: Out-of-Band signaling is disabled when the  
Isolate mode is enabled by setting Register bit 0.10.  
1. R/W = Read/Write  
NOTE: The BGA15 package does not support RMII operation.  
Datasheet  
215  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 99. Trim Enable Register (Address 27, Hex 1B) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type5  
Default  
15:13  
12  
Reserved  
Reserved  
Write as 0, ignore on Read  
Write as 0, ignore on Read.  
R
N/A  
0
R/W  
00 =3.3 ns  
01 =3.6 ns  
10 =3.9 ns  
11 = 4.2 ns  
Per-Port  
Rise Time  
Control  
11:10  
R/W  
R/W  
LSHR1,2  
LSHR1,3  
NOTE: Values represent nominal load conditions.  
0 = Disable auto MDI/MDIX  
1 = Enable auto MDI/MDIX  
9
AMDIX_EN  
0 = MDI, transmit on pair A (TPFINn/TPFIPn) and receive on  
pair B (TPFONn/TPFOPn)  
1 = MDIX transmit on pair B (TPFONn/TPFOPn) and receive  
on pair A (TPFINn/TPFIPn)  
8
7
MDIX  
R/W  
R/W  
LSHR1,4  
NOTE: Manual MDI/MDIX selection (This bit is ignored when  
Register bit 27.9 = 1).  
NOTE: BGA15 does not support the MDIX hardware  
configuration.  
0 = Disable analog loopback  
1 = Enable analog loopback (twisted-pair transmit outputs are  
Analog  
Loopback  
active)  
0
NOTE: In fiber mode, SD for the port must be asserted.  
DTE Discovery Process Enable.  
0 = Disable DTE discovery process  
1 = Enable DTE discovery process  
6
5
Dis_EN  
R/W  
R/W  
0
0
Restart auto-negotiation after writing to this bit to ensure  
proper operation.  
Reserved  
Write as 0, ignore on Read.  
Power Enable (Requires Auto-Negotiation Enable  
Register bit 0.12 = 1).  
0 = Remote-Power DTE not discovered; process may not be  
complete.  
4
Power_EN  
R
0
1 = Potential Remote-Power DTE discovered; indication to  
turn on power over the cable.  
1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins.  
3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin.  
4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX  
hardware configuration. The BGA15 default = 0.  
5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read.  
6.  
216  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 99. Trim Enable Register (Address 27, Hex 1B) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type5  
Default  
Standard Link Partner Detected.  
0 = Standard link partner not discovered; process may not be  
complete.  
1 = Standard link partner discovered; indication not to turn on  
power over the cable.  
3
SLP_Det  
R, LH  
0
Note: This bit is only valid while link is down.  
Link Fail Inhibit Timer expiration indicator. Valid only  
when SLP_Det = 1.  
LFIT  
Expired  
0 = Link Fail Inhibit Timer has not expired or standard link  
partner not discovered  
1 = Link Fail Inhibit Timer expired with a standard link partner  
2
R, LH  
R
0
detected since last register read or link establishment  
1:0  
Reserved  
Write as 0, ignore on Read.  
00  
1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins.  
3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin.  
4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX  
hardware configuration. The BGA15 default = 0.  
5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read.  
6.  
Table 100. Cable Diagnostics Register (Address 29, Hex 1D) (Sheet 1 of 2)  
Bit  
Name  
Description  
Type1 Default2  
15:14  
Reserved  
Start-Test  
Write as 01, ignore on read  
R/W  
01  
000 = Do not perform cable fault test (Default)  
101 = Perform long cable fault test only  
110 = Perform short cable fault test only  
R/W  
LH  
13:11  
000  
Once Register bit 29.9 is set, the Start-Test  
bits will clear when read.  
Any other combination of the Register bit  
settings are reserved and should not be used.  
0 = Normal operation  
1 = Enable cable diagnostic tests. Forces  
10  
CD_EN  
R/W  
0
link to drop.  
1. R/W = Read/Write, R = Read only, LH = Latching High, cleared when read  
2. Recommended default value.  
Datasheet  
217  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 100. Cable Diagnostics Register (Address 29, Hex 1D) (Sheet 2 of 2)  
Bit  
Name  
Description  
Type1 Default2  
0 = Testing is still in progress  
1 = Testing is complete  
R
LH  
9
Test_Done  
0
The Line Fault Counter and Fault_Type bits  
are valid.  
0 = Open condition has been detected  
1 = Short Condition has been detected  
R
LH  
8
Fault_Type  
0
“FF” if no line fault is found, or  
Distance to fault, approximately 1 m * counter  
value (refer to Section 4.13, “Cable  
Diagnostics Overview” on page 159 for  
details).  
R
7:0  
Line Fault Counter  
0x00  
LH  
(Valid only when Test_Done bit is set.)  
1. R/W = Read/Write, R = Read only, LH = Latching High, cleared when read  
2. Recommended default value.  
218  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Datasheet  
219  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
220  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
8.0  
Package Specifications  
Figure 64. 208-Pin PQFP Plastic Package Specification  
208-Pin Plastic Quad Flat Package  
Part Number LXT9785HC, LXT9785EHC,  
LXT9785HE  
Commercial Temperature Range (0 °C to 70 °C)  
Extended Temperature Range (-40 °C to +85 °C)  
D
D1  
Millimeters  
Max  
Dim  
Min  
A
-
4.10  
-
e
A1  
A2  
b
0.25  
E1  
E
3.20  
3.60  
0.27  
30.90  
28.30  
30.90  
28.30  
e
0.17  
/
2
D
30.30  
27.70  
30.30  
27.70  
D1  
E
E1  
e
θ2  
.50 BASIC  
L1  
L
0.50  
0.75  
A2  
A
L1  
q
1.30 REF  
θ
0°  
5°  
5°  
7°  
A1  
θ3  
θ2  
θ3  
16°  
16°  
b
L
Datasheet  
221  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 65. 241-Ball BGA23 Package Specificationss - Top/Side Views (LXT9785BC)  
D
D1  
Pin A1 corner  
Pin A1 I.D.  
14.70 REF  
E1  
E
14.70 REF  
45° Chamfer  
(4 places)  
Top View  
A2  
A
c
30°  
A1  
Side View  
Seating Plane  
241_pkg1.vsd  
222  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 66. 241-Ball BGA23 Package Specificationss - Bottom View (LXT9785BC)  
Pin A1 corner  
16  
14  
12  
10  
8
6
4
2
17  
15  
13  
11  
9
7
5
3
1
A
B
C
D
E
F
b
G
H
J
e
K
L
M
N
P
R
T
U
J
e
241 BGA  
Bottom View  
l
Table 102. 241-Ball BGA23 Package Dimensions  
Symbol  
Min  
Nominal  
2.38  
Max  
Units  
Note  
A
A1  
A2  
D
D1  
E
2.19  
0.50  
1.12  
2.57  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
0.60  
0.70  
1.17  
1.22  
22.90  
19.30  
22.90  
19.30  
23.00  
19.50  
23.00  
19.50  
23.10  
19.70  
23.10  
19.70  
E1  
e
1.27 (solder ball pitch)  
1.34 REF.  
I
J
1.34 REF.  
M
b
17 x 17 Matrix  
0.60  
0.52  
0.75  
0.56  
1.27  
0.90  
0.60  
c
e
All dimensions and tolerances conform to ANSI Y14.5-1982. Dimension is measured at maximum solder ball  
diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined by the spherical  
crowns of the solder balls.  
Datasheet  
223  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 67. 196-Ball BGA15 Package Specs - Top/Side Views (LXT9785MBC)  
224  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 68. 196-Ball BGA15 Package – Bottom View (LXT9785MBC )  
Datasheet  
225  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Table 103. 196-Ball BGA15 Package Dimensions (LXT9785MBC )  
Symbol  
Min  
Nominal  
Max  
Units  
Note  
A
A1  
A2  
D
D1  
E
1.62  
1.81  
0.40  
2.00  
0.50  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
0.30  
0.80  
0.85  
0.90  
14.90  
12.80  
14.90  
12.80  
15.00  
13.00  
15.00  
13.00  
15.10  
13.20  
15.10  
13.20  
E1  
e
1.00 (solder ball pitch)  
1.00 REF.  
1.00 REF.  
14 x 14 Matrix  
0.40  
I
J
M
b
0.50  
0.56  
1.00  
0.60  
0.60  
c
0.52  
e
NOTE: All dimensions and tolerances conform to ANSI Y14.5-1982.Dimension is measured at maximum  
solder ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are  
defined by the spherical crowns of the solder balls.  
226  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
9.0  
Ordering Information  
Table 104. Product Information  
Number  
Revision  
Qualification  
MM Number  
Ship Media  
HBLXT9785HC.D0 853353  
HBLXT9785HC.D0 853355  
FWLXT9785BC.D0 853308  
FWLXT9785BC.D0 853312  
HBLXT9785EHC.D0 853334  
HBLXT9785EHC.D0 853335  
FWLXT9785EBC.D0 853300  
FWLXT9785EBC.D0 853304  
HBLXT9785HE.D0 853357  
HBLXT9785HE.D0 853363  
GDLXT9785MBC.D0 854705  
GDLXT9785MBC.D0 854707  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
S
S
S
S
S
S
S
S
S
S
S
S
853353  
853355  
853308  
853312  
853334  
853335  
853300  
853304  
853357  
853363  
854705  
854707  
Tray  
Tape & reel  
Tray  
Tape & reel  
Tray  
Tape & reel  
Tray  
Tape & reel  
Tray  
Tape & reel  
Tray  
Tape & reel  
Datasheet  
227  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  
LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers  
Figure 69. Ordering Information - Sample  
9785  
B
C
D0  
S
E001  
FW  
LXT  
Build Format  
= Tray  
= Tape and reel  
E000  
E001  
Qualification  
= Pre-production material  
= Production material  
Q
S
Product Revision  
= 2 Alphanumeric characters  
xn  
Temperature Range  
= Ambient (0 - 55° C)  
= Commercial (0 - 70° C)  
= Extended (-40 - +85° C)  
A
C
E
Internal Package Designator  
= LQFP  
L
= PLCC  
= DIP  
= PQFP  
= QFP with heat spreader  
= TQFP  
P
N
Q
H
T
= BGA (PBGA or array molded BGA)  
= CBGA  
= BGA (Die down, thermally enhanced)  
= HSBGA (BGA with heat slug)  
B
C
E
K
xxxxx1  
= 3-5 Digit Alphanumeric Product Code  
IXA Product Prefix  
= PHY layer device  
= Switching engine  
= Formatting device (MAC)  
= Network processor  
LXT  
IXE  
IXF  
IXP  
Intel Package Designator  
= LQFP  
= TQFP  
DJ  
FA  
FL  
GD  
FW  
HB  
HD  
HF  
HG  
S
= PBGA (<1.0 mm pitch)  
= PBGA (1.0 mm pitch)  
= PBGA (1.27 mm pitch)  
= QFP with heat spreader  
= QFP with heat slug  
= CBGA  
= SOIC  
= QFP  
= TBGA  
= PLCC  
GC  
N
B3408-01  
1. LXT9785 = Nominal device  
LXT9785E = DTE detection feature  
LXT9785MBC = 196 ball BGA with DTE detection feature  
228  
Datasheet  
Document Number: 249241  
Revision Number: 009  
Revision Date: April 30, 2004  

相关型号:

HBLXT9785EHCD0

Interface Circuit, PQFP208, PLASTIC, HQFP-208
INTEL

HBLXT9785EHCD0SE001

Interface Circuit, PQFP208, PLASTIC, QFP-208
INTEL

HBLXT9785HC.B2SE001

Ethernet Transceiver, 8-Trnsvr, PQFP208,
INTEL

HBLXT9785HCD0SE001

Interface Circuit, PQFP208, PLASTIC, QFP-208
INTEL

HBLXT9785HE.B2SE000

Ethernet Transceiver, 8-Trnsvr, PQFP208,
INTEL

HBLXT9785HE.D0SE001

Ethernet Transceiver, 8-Trnsvr, PQFP208,
INTEL

HBLXT9785HED0SE001

Interface Circuit, PQFP208, PLASTIC, QFP-208
INTEL

HBLXT9860AHC.B4SE001

Micro Peripheral IC
INTEL

HBLXT9863AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9880AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9883AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9883AHC.B4SE001

Micro Peripheral IC
INTEL