KC80524KX466128SL3KC [INTEL]

RISC Microprocessor, 32-Bit, 466MHz, PBGA615;
KC80524KX466128SL3KC
型号: KC80524KX466128SL3KC
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 466MHz, PBGA615

文件: 总81页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOBILE INTEL® CELERON® PROCESSOR IN MICRO-PGA  
AND BGA PACKAGES AT 466 MHZ, 433 MHZ, 400 MHZ,  
366 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
+
Available at 266 MHz, 266 MHz at low  
voltage, 300 MHz, 333 MHz, 366 MHz, 400  
MHz, 433 MHz, and 466 MHz  
+
Fully compatible with previous Intel  
microprocessors  
— Binary compatible with all  
applications  
+
+
Supports Intel Architecture with  
Dynamic Execution  
— Support for MMX™ technology  
Integrated primary 16-Kbyte instruction  
cache and 16-Kbyte write back data  
cache  
+
+
Power Management Features  
— Quick Start and Deep Sleep modes  
provide extremely low power  
dissipation  
+
+
Integrated second level cache (128-  
Kbyte)  
Low-Power GTL+ processor system bus  
interface  
Micro-PGA and BGA packaging  
technology  
— Supports thin form factor notebook  
designs  
+
+
Integrated math co-processor  
Integrated thermal diode  
— Exposed die enables more efficient  
heat dissipation  
The mobile IntelÒ CeleronÒ (Micro-PGA and BGA) processor provides exceptional value to both businesses  
and consumers. The mobile Intel Celeron processor with multimedia enhancements and improved Internet  
and communications capabilities not only provides an excellent solution for business but also a great choice  
for home computing.  
The mobile Intel Celeron (Micro-PGA and BGA) processor may contain design defects or errors know as  
errata that may cause the product to deviate from published specifications. Current characterized errata are  
available upon request.  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or  
otherwise, to any intellectual property rights is granted by this document or by the sale of Intel products. Except as  
provided in Intel's terms and conditions of sale for such products, Intel assumes no liability whatsoever, and Intel disclaims  
any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Intel products are not intended for use in medical, life saving or life sustaining applications.  
Intel retains the right to make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”  
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising  
from future changes to them. Contact your local sales office or your distributor to obtain the latest specifications before  
placing your product order.  
Mobile Intel® CeleronÒ (Micro-PGA and BGA) processors may contain design defects or errors known as errata, which may  
cause the product to deviate from published specifications. Current characterized errata are available upon request.  
Copies of documents that have an ordering number and are referenced in this document, or other Intel literature, may be  
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation 1999. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of  
the I2C bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol or the SMBus bus/protocol may  
require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.  
* Third party brands and names are the property of their respective owners.  
ii  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
CONTENTS  
PAGE  
PAGE  
3.2.2 Voltage Planes.................................14  
3.3 System Bus Clock and Processor Clocking15  
3.4 Maximum Ratings ......................................16  
3.5 DC Specifications......................................16  
3.6 AC Specifications .....................................22  
1. INTRODUCTION ................................................1  
1.1 Overview ....................................................2  
1.2 Terminology.................................................2  
1.3 References .................................................2  
3.6.1 System Bus, Clock, APIC, TAP,  
CMOS, and Open-drain AC  
2. MOBILE INTEL CELERON PROCESSOR  
FEATURES.........................................................4  
Specifications ..................................22  
2.1 New Features in the Mobile Intel Celeron  
Processor ...................................................4  
4. SYSTEM SIGNAL SIMULATIONS ..................36  
2.1.1 Integrated L2 Cache ..........................4  
4.1 System Bus Clock (BCLK) Signal Quality  
Specifications ...........................................36  
2.1.2 Signal Differences from the Mini-  
Cartridge Processors ........................4  
4.2 Low Power GTL+ Signal Quality  
2.2 Power Management....................................5  
2.2.1 Clock Control Architecture.................5  
2.2.2 Normal State ......................................5  
2.2.3 Auto Halt State...................................5  
2.2.4 Stop Grant State................................7  
2.2.5 Quick Start State................................7  
2.2.6 Halt/Grant Snoop State......................8  
2.2.7 Sleep State ........................................8  
2.2.8 Deep Sleep State...............................8  
Specifications ...........................................37  
4.3 Non-Low Power GTL+ Signal Quality  
Specifications ...........................................38  
4.3.1 Overshoot and Undershoot  
Guidelines ........................................38  
4.3.2 Ringback Specification ....................41  
4.3.3 Settling Limit Guideline .....................41  
5. MECHANICAL SPECIFICATIONS ..................42  
5.1 Dimensions of the Micro-PGA Package ....42  
5.2 Dimensions of the BGA Package.............45  
5.3 Signal Listings ...........................................47  
2.2.9 Operating System Implications of  
Quick Start and Sleep States.............9  
2.3 Low Power GTL+ .......................................9  
2.3.1 GTL+ Signals .....................................9  
2.4 Mobile Intel Celeron Processor CPUID.......10  
6. THERMAL SPECIFICATIONS .........................60  
6.1 Thermal Diode ...........................................61  
6.2 Case Temperature ....................................63  
3. ELECTRICAL SPECIFICATIONS ....................11  
3.1 Processor System Signals........................11  
3.1.1 Power Sequencing Requirements ...12  
3.1.2 Test Access Port (TAP) Connection13  
3.1.3 Catastrophic Thermal Protection......13  
3.1.4 Unused Signals................................13  
3.1.5 Signal State in Low Power States...13  
3.2 Power Supply Requirements ....................14  
3.2.1 Decoupling Recommendations.........14  
7. PROCESSOR INITIALIZATION AND  
CONFIGURATION............................................64  
7.1 Description................................................64  
7.1.1 Quick Start Enable ...........................64  
7.1.2 System Bus Frequency...................64  
7.1.3 APIC Disable ....................................64  
7.2 Clock Frequencies and Ratios ..................64  
INTEL CORPORATION  
iii  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
8. PROCESSOR INTERFACE...............................65  
8.2 Signal Summaries......................................73  
8.1 Alphabetical Signal Reference..................65  
iv  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
LIST OF FIGURES  
PAGE  
Figure 1.1 Signal Groups of a Mobile Intel Celeron  
Processor-Based System......................1  
Figure 2.1 Clock Control States ..............................6  
Figure 3.1 Ramp Rate Requirement ......................13  
Figure 3.2 PLL LC Filter.........................................14  
Figure 3.3 Generic Clock Waveform.....................29  
Figure 3.4 Valid Delay Timings..............................30  
Figure 3.5 Setup and Hold Timings .......................30  
Figure 3.6 Reset and Configuration Timings .........31  
Figure 3.7 Power-on Reset Timings .....................32  
Figure 3.8 Test Timings (Boundary Scan)............33  
Figure 3.9 Test Reset Timings ..............................33  
Figure 3.10 Quick Start/Deep Sleep Timing...........34  
Figure 3.11 Stop Grant/Sleep/Deep Sleep Timing.35  
Figure 4.1 BCLK Generic Clock Waveform...........37  
Figure 4.2 Low to High, Low Power GTL+  
Receiver Ringback Tolerance...............38  
Figure 4.3 Non-GTL+ Overshoot/Undershoot and  
Ringback...............................................40  
Figure 5.1 Micro-PGA Package-Top and Side View 43  
Figure 5.2 Micro-PGA Package-Bottom View .......44  
Figure 5.3 Surface-mount BGA Package - Top and  
Side View .............................................46  
Figure 5.4 Surface-mount BGA Package - Bottom  
View .....................................................47  
Figure 5.5 Pin/Ball Map - Top View .......................48  
Figure 6.1 Technique for Measuring Case  
Temperature .........................................63  
Figure 8.1 PWRGOOD Relationship at Power-On.71  
INTEL CORPORATION  
v
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
LIST OF TABLES  
PAGE  
PAGE  
Table 2.1 New Mobile Intel Celeron Processor  
Signals ....................................................4  
Table 2.2 Removed Mini-Cartridge Processor  
Signals ....................................................4  
Table 2.3 Clock State Characteristics.....................7  
Table 2.4 Mobile Intel Celeron Processor CPUID...10  
Table 2.5 Mobile Intel Celeron Processor CPUID  
Cache and TLB Descriptors .................10  
Table 3.1 System Signal Groups ..........................11  
Table 3.2 Recommended Resistors for Open-drain  
Signals ..................................................12  
Table 3.3 LC Filter Specifications .........................14  
Table 3.4 Core Frequency to System Bus Ratio  
Configuration ........................................15  
Table 3.5 Mobile Intel Celeron Processor Absolute  
Maximum Ratings ..................................16  
Table 3.6 Mobile Intel Celeron Processor Power  
Specifications1......................................18  
Table 3.7 Mobile Intel Celeron Processor Power  
Specifications1......................................19  
Table 3.8 Low Voltage Mobile Intel Celeron  
Processor Power Specifications1 ........20  
Table 3.9 Low Power GTL+ Signal Group DC  
Specifications .......................................21  
Table 3.10. Low Power GTL+ Bus DC  
Table 4.2 Low Power GTL+ Signal Group Ringback  
Specification.........................................37  
Table 4.3 Signal Ringback Specifications for Non-  
GTL+ Signals ........................................41  
Table 5.1 Micro-PGA Package Mechanical  
Specifications .......................................42  
Table 5.2 Surface-mount BGA Package  
Specifications .......................................45  
Table 5.3 Signal Listing in Order by Pin/Ball Number49  
Table 5.4 Signal Listing in Order by Signal Name .55  
Table 5.5 Voltage and No-Connect Pin/Ball  
Locations ..............................................59  
Table 6.1 Mobile Intel Celeron® Processor Power  
Specifications .......................................60  
Table 6.2 Thermal Diode Interface........................61  
Table 6.3. Thermal Diode Specifications...............61  
Table 8.1 Input Signals..........................................73  
Table 8.2 Output Signals.......................................74  
Table 8.3 Input/Output Signals (Single Driver)......74  
Table 8.4 Input/Output Signals (Multiple Driver)....75  
Specifications .......................................21  
Table 3.11 Clock, APIC, TAP, CMOS and Open-  
Drain Signal Group DC Specifications ..22  
Table 3.12 System Bus Clock AC Specifications123  
Table 3.13 Valid Mobile Intel Celeron Processor  
Frequencies..........................................24  
Table 3.14 Low Power GTL+ Signal Groups AC  
Specifications1......................................24  
Table 3.15 CMOS and Open-Drain Signal Groups  
AC Specifications1, 2.............................25  
Table 3.16 Reset Configuration AC Specifications26  
Table 3.17 TAP Signal AC Specifications1............27  
Table 3.18 Quick Start/Deep Sleep AC  
Specifications .......................................28  
Table 3.19 Stop Grant/Sleep/Deep Sleep AC  
Specifications .......................................28  
Table 4.1 BCLK Signal Quality Specifications.......36  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
performance, it complements the system bus by  
1.  
INTRODUCTION  
providing critical data faster and reducing total  
system power consumption. The mobile Intel  
Celeron processor’s 64-bit wide Low Power  
Gunning Transceiver Logic (GTL+) system bus is  
compatible with the 443BX/DX/440MX AGPSet and  
provides a glue-less, point-to-point interface for an  
I/O bridge/memory controller. Figure 1.1 shows the  
various parts of a mobile Intel Celeron processor-  
based system and how the mobile Intel Celeron  
processor connects to them.  
The mobile Intel Celeron processor is the first  
mobile processor with an integrated L2 cache  
among the mobile processors. The mobile Intel  
Celeron processor is now offered at seven  
speeds: 466 MHz, 433 MHz, 400 MHz, 366 MHz,  
333 MHz, 300 MHz, and 266 MHz, with a system  
bus speed of 66 MHz. It consists of a mobile Intel  
Celeron processor with an integrated L2 cache and  
a
64-bit high performance system bus. The  
integrated L2 cache is designed to help improve  
Thermal  
Sensor  
Mobile Celeron  
Processor  
ä
TAP  
System  
Bus  
DRAM  
440MX  
PCIset  
OR  
System  
V0000-04  
Controller  
X-bus  
PCI  
Figure 1.1 Signal Groups of a Mobile Intel Celeron Processor-Based System  
INTEL CORPORATION  
1
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
1.1 Overview  
1.2  
Terminology  
Exceptional value and improved performance  
over existing mobile processors  
In this document a ‘#’ symbol following a signal  
name indicates that the signal is active low. This  
means that when the signal is asserted (based on  
the name of the signal) it is in an electrical low  
state. Otherwise, signals are driven in an electrical  
high state when they are asserted. In state  
machine diagrams, a signal name in a condition  
indicates the condition of that signal being  
asserted. If the signal name is preceded by a ‘!’  
symbol, then it indicates the condition of that signal  
not being asserted. For example, the condition  
‘!STPCLK# and HS’ is equivalent to ‘the active low  
signal STPCLK# is unasserted (i.e., it is at 2.5V)  
and the HS condition is true.” The symbols ‘L’ and  
‘H’ refer respectively to electrical low and electrical  
high signal levels. The symbols ‘0’ and ‘1’ refer  
respectively to logical low and logical high signal  
levels. For example, BD[3:0] = ‘1010’ = ‘HLHL’ refers  
to a hexadecimal ‘A’, and D[3:0]# = ‘1010’ = ‘LHLH’  
also refers to a hexadecimal ‘A’.  
Supports the Intel Architecture with  
Dynamic Execution  
Supports the Intel Architecture MMXÔ  
technology  
Integrated Intel Floating-Point Unit  
compatible with the IEEE Std 754  
Integrated primary (L1) instruction and data  
caches  
4-way set associative, 32-byte line size,  
1 line per sector  
16-Kbyte instruction cache and 16-Kbyte  
writeback data cache  
Cacheable range programmable by  
processor programmable registers  
Integrated second level (L2) cache  
4-way set associative, 32-byte line size,  
1 line per sector  
1.3  
References  
Operates at full core speed  
128-Kbyte, ECC protected cache data array  
4-Gbyte cacheable range  
Pentium® II Processor at 233 MHz, 266 MHz, 300  
MHz and 333 MHz (Order Number 243335)  
Low Power GTL+ system bus interface  
Pentium® II Processor Developer’s Manual  
(Order Number 243502)  
64-bit data bus, 66-MHz operation  
Uniprocessor, two loads only (processor  
and I/O bridge/memory controller)  
CKDM66-M Clock Driver Specification  
Short trace length and low capacitance  
allows for single ended termination  
(Contact your Intel Field Sales Representative)  
Intel Architecture Software Developer’s Manual  
(Order Number 243193)  
Voltage reduction technology  
Advanced processor clock control  
Volume I: Basic Architecture  
(Order Number 243190)  
Volume II: Instruction Set Reference  
(Order Number 243191)  
Volume III: System Programming Guide  
(Order Number 243192)  
Quick Start for low power, low exit latency  
clock “throttling”  
Deep Sleep mode for extremely low power  
dissipation  
Thermal diode for measuring processor  
temperature  
Mobile Intel® Celeron® Processor I/O Buffer  
Models, IBIS Format (Available in electronic  
format; contact your Intel Field Sales  
Representative)  
2
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Mobile Pentium® II Processor System Bus Layout  
Guideline (Order Number 243672-001)  
Mobile Pentium® II Processor Mechanical and  
Thermal User’s Guide  
(Order Number 243671-001)  
INTEL CORPORATION  
3
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
2.  
MOBILE INTEL CELERON  
PROCESSOR FEATURES  
2.1.1  
Integrated L2 Cache  
The mobile Intel Celeron processor has a 128-Kbyte  
L2 cache integrated onto the processor die. The L2  
cache is four-way set associative and runs at the  
speed of the processor core. The L2 cache can  
cache up to 4 Gbytes of memory.  
2.1 New Features in the Mobile Intel  
Celeron Processor  
New features include an integrated L2 cache and  
various signal differences from the mini-cartridge  
processors.  
2.1.2  
Signal Differences from the  
Mini-Cartridge Processors  
Table 2.1 New Mobile Intel Celeron Processor Signals  
Purpose  
Signals  
EDGCTRLN  
NC  
GTL+ output buffer edge rate control signals  
No Connect (same as RSVD signals on mini-cartridge)  
Bus speed select  
BSEL  
TESTHI, TESTHI3  
TESTHI2  
Testability signals. Pull-up to VCC  
.
Testability signals. Pull-up to VCCP  
.
TESTLO  
Testability signals. Connect to VSS  
Thermal diode  
.
THERMDA, THERMDC  
PLL1, PLL2  
VREF  
PLL analog power supply  
GTL+ reference voltage  
Table 2.2 Removed Mini-Cartridge Processor Signals  
Purpose  
Signals  
SMBALERT#, SMBCLK, SMBDATA  
SMBus interface for the thermal sensor  
Voltage sense signals  
VCC_S, VCCP_S, VSS_S  
VCC3  
3.3V supply for external L2 cache components  
Voltage identification  
VID[3:0]  
4
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
2.2 Power Management  
2.2.2  
Normal State  
The Normal state of the processor is the normal  
operating mode where the processor’s internal  
clock is running and the processor is actively  
executing instructions.  
2.2.1  
Clock Control Architecture  
The mobile Intel Celeron processor clock control  
architecture (Figure 2.1) has been optimized for  
leading edge deep green desktop and mobile  
computer designs. The clock control architecture  
consists of seven different clock states: Normal,  
Stop Grant, Auto Halt, Quick Start, HALT/Grant  
Snoop, Sleep, and Deep Sleep states. The Auto  
Halt state provides a low -power clock state that  
can be controlled through the software execution  
of the HLT instruction. The Quick Start state  
provides a very low power, low exit latency clock  
state that can be used for hardware controlled  
“idle” computer states. The Deep Sleep state  
provides an extremely low -power state that can be  
used for “Power-On Suspend” computer states,  
which is an alternative to shutting off the  
processor’s power. Compared to the Pentium  
processor exit latency of 1 msec, the exit latency  
of the Deep Sleep state has been reduced to 30  
msec in the mobile Intel Celeron processor. The  
Stop Grant and Sleep states shown are intended  
for use in “Deep Green” desktop and server  
systems — not in mobile systems. Performing state  
transitions not shown in Figure 2.1 is neither  
recommended nor supported.  
2.2.3  
Auto Halt State  
low -power mode entered by the  
This is  
a
processor through the execution of the HLT  
instruction. The power level of this mode is similar  
to the Stop Grant state. A transition to the Normal  
state is made by a halt break event (one of the  
following signals going active: NMI, INTR, BINIT#,  
INIT#, RESET#, FLUSH#, or SMI#).  
Asserting the STPCLK# signal while in the Auto Halt  
state will cause the processor to transition to the  
Stop Grant or Quick Start state, where a Stop  
Grant Acknowledge bus cycle will be issued.  
Deasserting STPCLK# will cause the processor to  
return to the Auto Halt state without issuing a new  
Halt bus cycle.  
The SMI# interrupt is recognized in the Auto Halt  
state. The return from the System Management  
Interrupt (SMI) handler can be to either the Normal  
state or the Auto Halt state. See the Intel  
Architecture Software Developer’s Manual, Volume  
III: System Programmer’s Guide for more  
information. No Halt bus cycle is issued when  
returning to the Auto Halt state from System  
Management Mode (SMM).  
The Stop Grant and Quick Start clock states are  
mutually exclusive, for example a strapping option  
on signal A15# chooses which state is entered  
when the STPCLK# signal is asserted. Strapping  
the A15# signal to ground at Reset enables the  
Quick Start state; otherwise, asserting the  
STPCLK# signal puts the processor into the Stop  
Grant state. The Stop Grant state has a higher  
power level than the Quick Start state and is  
designed for SMP platforms. The Quick Start state  
has a much lower power level, but it can only be  
used in uniprocessor platforms.  
The FLUSH# signal is serviced in the Auto Halt  
state. After the on-chip and off-chip caches have  
been flushed, the processor will return to the Auto  
Halt state without issuing  
a Halt bus cycle.  
Transitions in the A20M# and PREQ# signals are  
recognized while in the Auto Halt state.  
INTEL CORPORATION  
5
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
STPCLK# and  
QSE and SGA  
Normal  
HS=false  
Quick  
Start  
(!STPCLK# and !HS)  
or RESET#  
HLT and  
halt bus cycle  
STPCLK# and  
QSE and SGA  
BCLK  
stopped  
halt  
break  
!STPCLK#  
and HS  
BCLK on  
and QSE  
STPCLK# and  
!QSE and SGA  
Auto  
Halt  
HS=true  
Snoop  
serviced occurs  
Snoop  
Deep  
Sleep  
(!STPCLK#  
and !HS) or  
stop break  
!STPCLK#  
and HS  
Snoop  
occurs  
STPCLK# and  
!QSE and SGA  
Snoop  
Snoop  
serviced  
occurs  
Stop  
Grant  
HALT/Grant  
Snoop  
Snoop  
serviced  
SLP#  
BCLK on  
and !QSE  
BCLK  
stopped  
!SLP# or  
RESET#  
Sleep  
V0001-00  
NOTES: Halt break - A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#  
HLT - HLT instruction executed  
HS - Processor Halt State  
QSE - Quick Start State Enabled  
SGA - Stop Grant Acknowledge bus cycle issued  
Stop break - BINIT#, RESET#  
Figure 2.1 Clock Control States  
6
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 2.3 Clock State Characteristics  
Clock State  
Normal  
Exit Latency  
Snooping?  
Yes  
System Uses  
N/A  
Normal program execution  
S/W controlled entry idle mode  
Auto Halt  
Approximately 10 bus clocks  
Approximately 10 bus clocks  
Yes  
Stop Grant  
Yes  
H/W controlled entry/exit mobile  
throttling  
Quick Start  
Through snoop, to HALT/Grant Snoop  
state: immediate  
H/W controlled entry/exit mobile  
throttling  
Yes  
Through STPCLK#, to Normal state: 8  
bus clocks  
HALT/Grant  
Snoop  
A few bus clocks after the end of  
snoop activity.  
Yes  
No  
Supports snooping in the low  
power states  
Sleep  
To Stop Grant state,  
10 bus clocks  
H/W controlled entry/exit desktop  
idle mode support  
Deep Sleep  
30 µsec  
No  
H/W controlled entry/exit mobile  
powered-on suspend support  
assertion will cause the processor to immediately  
initialize itself, but the processor will stay in the  
Stop Grant state after initialization until STPCLK# is  
deasserted. A transition to the Sleep state can be  
made by the assertion of the SLP# signal.  
2.2.4  
Stop Grant State  
The processor enters this mode with the assertion  
of the STPCLK# signal when it is configured for  
Stop Grant state (via the A15# strapping option).  
The processor is still able to respond to snoop  
requests and it can latch interrupts. Latched  
interrupts will be serviced when the processor  
returns to the Normal state. Only one occurrence of  
each interrupt event will be latched. A transition  
back to the Normal state can be made by the  
deassertion of the STPCLK# signal or the  
occurrence of a stop break event (a BINIT# or  
RESET# assertion).  
While in the Stop Grant state, assertions of  
FLUSH#, SMI#, INIT#, INTR, and NMI will be latched  
by the processor. These latched events will not be  
serviced until the processor returns to the Normal  
state. Only one of each event will be recognized  
upon return to the Normal state.  
2.2.5  
Quick Start State  
This is a mode entered by the processor with the  
assertion of the STPCLK# signal when it is  
configured for the Quick Start state (via the A15#  
strapping option). In the Quick Start state the  
The processor will return to the Stop Grant state  
after the completion of a BINIT# bus initialization  
unless STPCLK# has been deasserted. RESET#  
INTEL CORPORATION  
7
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
processor is only capable of acting on snoop  
transactions generated by the system bus priority  
device. Because of its snooping behavior, Quick  
Start can only be used in a Uniprocessor (UP)  
configuration.  
2.2.7  
Sleep State  
The Sleep state is a very low -power state in which  
the processor maintains its context and the phase-  
locked loop (PLL) maintains phase lock. The Sleep  
state can only be entered from the Stop Grant  
state. After entering the Stop Grant state, the SLP#  
signal can be asserted, causing the processor to  
enter the Sleep state. The SLP# signal is not  
recognized in the Normal or Auto Halt states.  
A transition to the Deep Sleep state can be made  
by stopping the clock input to the processor. A  
transition back to the Normal state (from the Quick  
Start state) is made only if the STPCLK# signal is  
deasserted.  
The processor can be reset by the RESET# signal  
while in the Sleep state. If RESET# is driven active  
while the processor is in the Sleep state then SLP#  
and STPCLK# must immediately be driven inactive  
to ensure that the processor correctly initializes  
itself.  
While in this state the processor is limited in its  
ability to respond to input. It is incapable of latching  
any interrupts, servicing snoop transactions from  
symmetric bus masters or responding to FLUSH# or  
BINIT# assertions. While the processor is in the  
Quick Start state, it will not respond properly to any  
input signal other than STPCLK#, RESET#, or BPRI#.  
If any other input signal changes, then the behavior  
of the processor will be unpredictable. No serial  
interrupt messages may begin or be in progress  
while the processor is in the Quick Start state.  
Input signals (other than RESET#) may not change  
while the processor is in the Sleep state or  
transitioning into or out of the Sleep state. Input  
signal changes at these times will cause  
unpredictable behavior. Thus, the processor is  
incapable of snooping or latching any events in the  
Sleep state.  
RESET# assertion will cause the processor to  
immediately initialize itself, but the processor will  
stay in the Quick Start state after initialization until  
STPCLK# is deasserted.  
While in the Sleep state, the processor can enter its  
lowest power state, the Deep Sleep state.  
Removing the processor’s input clock puts the  
processor in the Deep Sleep state. PICCLK may be  
removed in the Sleep state.  
2.2.6  
Halt/Grant Snoop State  
The processor will respond to snoop transactions  
on the system bus while in the Auto Halt, Stop  
2.2.8  
Deep Sleep State  
Grant or Quick Start state. When  
a snoop  
transaction is presented on the system bus the  
processor will enter the HALT/Grant Snoop state.  
The processor will remain in this state until the  
snoop has been serviced and the system bus is  
quiet. After the snoop has been serviced, the  
processor will return to its previous state. If the  
HALT/Grant Snoop state is entered from the Quick  
Start state, then the input signal restrictions of the  
Quick Start state still apply in the HALT/Grant  
Snoop state, except for those signal transitions that  
are required to perform the snoop.  
The Deep Sleep state is the lowest power mode  
the processor can enter while maintaining its  
context. The Deep Sleep state is entered by  
stopping the BCLK input to the processor while it is  
in the Sleep or Quick Start state. For proper  
operation, the BCLK input should be stopped in the  
low state.  
The processor will return to the Sleep or Quick  
Start state from the Deep Sleep state when the  
BCLK input is restarted. Due to the PLL lock  
latency, there is a 30-msec delay after the clocks  
have started before this state transition happens.  
8
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
PICCLK may be removed in the Deep Sleep state.  
derating. Analog signal simulation of the system  
bus including trace lengths is highly recommended  
to ensure that there are no significant transmission  
line affects. Contact your field sales representative  
to receive the IBIS models for the mobile Intel  
Celeron processor.  
PICCLK should be designed to turn on when BCLK  
turns on when transitioning out of the Deep Sleep  
state.  
The input signal restrictions for the Deep Sleep  
state are the same as for the Sleep state, except  
that RESET# assertion will result in unpredictable  
behavior.  
The GTL+ system bus of the Pentium II processor  
was designed to support high-speed data  
transfers with multiple loads on a ol ng bus that  
behaves like a transmission line. However, in a  
mobile system, the system bus only has two loads  
(the processor and the chipset) and the bus traces  
are short enough that transmission line effects are  
not significant. It is possible to change the layout  
and termination of the system bus to take  
advantage of the mobile environment using the  
same GTL+ I/O buffers. The benefit is that it  
reduces the number of terminating resistors in half  
and substantially reduces the AC and DC power  
dissipation of the system bus. Low Power GTL+  
uses GTL+ I/O buffers but only two loads are  
allowed. The trace length is limited and the bus is  
terminated at one end only. Since the system bus is  
small and lightly loaded, it behaves like a capacitor,  
and the GTL+ I/O buffers behave like high-speed  
open-drain buffers. With a 66-MHz bus frequency,  
the pull-up would be 120W. VTT has been  
increased from 1.5V to processor VCC to eliminate  
2.2.9  
Operating System Implications of  
Quick Start and Sleep States  
There are a number of architectural features of the  
Mobile Intel Celeron processor that are not available  
when the Quick Start state is enabled or do not  
function in the Quick Start or Sleep state as they do  
in the Stop Grant state. These features are part of  
the APIC, time-stamp counter and performance  
monitor counters. The time-stamp counter and the  
performance monitor counters are not guaranteed  
to count in the Quick Start or Sleep states.  
2.3  
Low Power GTL+  
The mobile Intel Celeron processor system bus  
signals use a variation of the low voltage swing  
GTL signaling technology. The mobile Intel Celeron  
processor system bus specification is similar to the  
PentiumÒ II processor system bus specification,  
which is itself a version of GTL with enhanced  
noise margins and less ringing. The mobile Intel  
Celeron processor system bus specification  
reduces system cost and power consumption by  
raising the termination voltage and termination  
resistance and changing the termination from dual  
ended to single ended. Because the specification is  
different from the standard GTL specification and  
from the Pentium II processor GTL+ specification, it  
is referred to as Low Power GTL+.  
the need for  
a 1.5V power plane. If 100W  
termination resistors are used rather than 120W,  
then 20% more power will be dissipated in the  
termination resistors. Intel recommends 120-W  
termination to conserve power.  
Refer to the Mobile Pentium® II Processor System  
Bus Layout Guideline (Order Number 243672-001)  
for details on laying out the Low Power GTL+  
system bus.  
2.3.1  
GTL+ Signals  
The Pentium II processor GTL+ system bus  
depends on incident wave switching and uses  
flight time for timing calculations of the GTL+  
signals. The Low Power GTL+ system bus is short  
and lightly loaded. With Low Power GTL+ signals,  
timing calculations are based on capacitive  
Two signals of the system bus potentially may not  
meet the Low Power GTL+ layout requirements:  
PRDY# and RESET#. These two signals connect to  
the debug port and might not meet the maximum  
length requirements. If PRDY# or RESET# do not  
INTEL CORPORATION  
9
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
meet the layout requirements for Low Power GTL+,  
then they must be terminated using dual-ended  
termination at 120W. Higher resistor values can be  
used if simulations show that the signal quality  
specifications in Section 4 are met.  
cache descriptor information. A mobile Intel Celeron  
processor has a stepping number in the range of  
0AH to 0CH and an L2 cache descriptor of 041H  
(128-Kbyte L2 cache). If the L2 cache descriptor is  
042H, then the processor is a Pentium II processor.  
The L2 cache must be properly initialized for the L2  
cache descriptor information to be correct. After a  
power-on RESET or when the CPUID version  
information is loaded, the EAX register contains the  
values shown in Table 2.4. After the L2 cache is  
initialized, the CPUID cache/TLB descriptors will be  
the values shown in Table 2.5.  
2.4  
Mobile Intel Celeron Processor  
CPUID  
The mobile Intel Celeron processor has the same  
CPUID family and model number as some Pentium II  
processors. The mobile Intel Celeron processor can  
be distinguished from these Pentium II processors  
by looking at the stepping number and the CPUID  
Table 2.4 Mobile Intel Celeron Processor CPUID  
Reserved [31:14]  
Type [13:12]  
Family [11:8]  
Model [7:4]  
Stepping [3:0]  
X
0
6
6
A - C  
Table 2.5 Mobile Intel Celeron Processor CPUID Cache and TLB Descriptors  
Cache and TLB Descriptors 01H, 02H, 03H, 04H, 08H, 0CH, 41H  
10  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
All Low Power GTL+ signals are synchronous with  
the BCLK signal. All TAP signals are synchronous  
3.  
ELECTRICAL SPECIFICATIONS  
with the TCK signal except TRST#. All CMOS input  
signals can be applied asynchronously.  
3.1  
Processor System Signals  
Table 3.1 lists the processor system signals by  
type.  
Table 3.1 System Signal Groups  
Group Name  
Low Power GTL+ Input  
Low Power GTL+ Output  
Low Power GTL+ I/O  
Signals  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#  
PRDY#  
A[35:3]#, ADS#, AERR#1, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#,  
BPM[1:0]#, BREQ0#, D[63:0]#, DBSY#, DEP[7:0]#, DRDY#, HIT#, HITM#,  
LOCK#, REQ[4:0]#, RP#  
CMOS Input 2, 3  
A20M#, BSEL, FLUSH#, IGNNE#, INIT#, INTR, NMI, PREQ#, PWRGOOD, SLP#,  
SMI#, STPCLK#  
Open Drain Output 3  
Clock 3  
FERR#, IERR#  
BCLK  
APIC Clock 3  
APIC I/O 3  
PICCLK  
PICD[1:0]  
Thermal Diode  
TAP Input 3  
THERMDA, THERMDC  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output 3  
Power/Other 4  
EDGECTRLN, NC, PLL1, PLL2, TESTHI, TESTHI2, TESTHI3, TESTLO,  
VCC, VCCP, VREF, VSS  
NOTES:  
1. The AERR# processor bus pin is removed as a processor feature for mobile Intel Celeron processor at  
400MHz and above. The pin must still be terminated to Vcc through a 120W pull-up resistor. But the  
processor must not be configured to drive or observe the pin.  
2. See Section 8.1 for information on the PWRGOOD signal.  
3. These signals are tolerant to 2.5V only. See Table 3.2 for the recommended pull-up resistor.  
INTEL CORPORATION  
11  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
4. VCC is the power supply for the core logic; PLL1 and PLL2 are the power supply for the PLL analog  
section; VCCP is the power supply for the CMOS voltage references; VREF is the voltage reference for  
the Low Power GTL+ input buffers; VSS is system ground.  
Table 3.2 Recommended Resistors for Open-drain Signals  
Recommended  
Open-drain Signal 1  
Resistor Value (W )  
150 pull-up  
680 pull-up  
TDI, TDO  
STPCLK#  
1K pull-up  
INIT#, TCK, TESTHI, TESTHI2, TESTHI3, TMS  
TRST#  
680 - 1K pull-down  
4.7K pull-up  
A20M#, FERR#, FLUSH#, IERR#, IGNNE#, INTR, NMI, PREQ#, PWRGOOD,  
SLP#, SMI#  
NOTE:  
1. Refer to Section 3.1.4 for the required pull-up or pull-down resistors for signals that are not being used.  
The CMOS, Clock, APIC, and TAP inputs can be  
driven from ground to 2.5V. The TAP outputs are  
open drain and should be pulled up to 2.5V using  
resistors with the values shown in Table 3.2. If  
open-drain drivers are used for input signals, then  
they should also be pulled up to 2.5V using  
resistors with the values shown in Table 3.2.  
3.1.1  
Power Sequencing Requirements  
The mobile Intel Celeron processor has no power  
sequencing requirements. Intel recommends that all  
of the processor power planes rise to their  
specified values within one second of each other.  
The V power plane must not rise too fast. At  
CC  
least 200 msec (TR) must pass from the time that  
VCC is at 10% of its nominal value until the time that  
VCC is at 90% of its nominal value (see Figure 3.2).  
Vcc  
90% Vcc (nominal)  
Volts  
10% Vcc (nominal)  
TR  
Time  
12  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Figure 3.1 Ramp Rate Requirement  
The TESTHI3 signals can share a single 1kW pull-  
3.1.2  
Test Access Port (TAP) Connection  
up.  
The TAP interface is an implementation of the  
IEEE 1149.1 (“JTAG”) standard. Due to the voltage  
levels supported by the TAP interface, Intel  
recommends that the mobile Intel Celeron processor  
and the other 2.5V JTAG specification compliant  
devices be last in the JTAG chain after any devices  
with 3.3V or 5.0V JTAG interfaces within the  
system. A translation buffer should be used to  
reduce the TDO output voltage of the last 3.3/5.0V  
device down to the 2.5V range that the mobile Intel  
Celeron processor can tolerate. Multiple copies of  
TCK, TMS, and TRST# must be provided¾ one for  
each voltage level.  
Unused Low Power GTL+ inputs, outputs, and bi-  
directional signals should be individually connected  
to VCC with 120W pull-up resistors. Unused CMOS  
active low inputs should be connected to 2.5V and  
unused active high inputs should be connected to  
VSS  
.
Unused open-drain outputs should be  
unconnected. If the processor is configured to  
enter the Quick Start state rather than the Stop  
Grant state, then the SLP# signal should be  
connected to 2.5V. When tying any signal to power  
or ground,  
a resistor will allow for system  
testability. For unused signals, Intel suggests that  
10-kW resistors be used for pull-ups and 1-kW  
resistors be used for pull-downs.  
A Debug Port and connector may be placed at the  
start and end of the JTAG chain containing the  
processor, with TDI to the first component coming  
from the Debug Port and TDO from the last  
component going to the Debug Port. There are no  
requirements for placement of the mobile Intel  
Celeron processor in the JTAG chain, except for  
those that are dictated by voltage requirements of  
the TAP signals.  
PICCLK and PICD[1:0] must be tied to VSS with a 1-  
kW resistor. BSEL must be connected to VSS.  
3.1.5  
Signal State in Low Power States  
3.1.5.1 System Bus Signals  
All of the system bus signals have Low Power  
GTL+ input, output, or input/output drivers. Except  
when servicing snoops, the system bus signals  
are tri-stated and pulled up by the termination  
resistors. Snoops are not permitted in the Sleep  
and Deep Sleep states.  
3.1.3  
Catastrophic Thermal Protection  
The mobile Intel Celeron processor does not  
support catastrophic thermal protection or the  
THERMTRIP# signal. An external thermal sensor  
should use the thermal diode to protect the  
processor and the system against excessive  
temperatures.  
3.1.5.2 CMOS and Open-drain Signals  
The CMOS input signals are allowed to be in either  
the logic high or low state when the processor is in  
a low power state. In the Auto Halt and Stop Grant  
states these signals are allowed to toggle. These  
input buffers have no internal pull-up or pull-down  
resistors and system logic can use CMOS or open-  
drain drivers to drive them.  
3.1.4  
Unused Signals  
All signals named NC must be unconnected. All  
signals named TESTLO must be pulled down to VSS  
or tied directly to VSS. All signals named TESTHI or  
TESTHI3 must be pulled up to VCC with a resistor.  
All signals named TESTHI2 must be pulled up to  
VCCP with a resistor. Each TESTHI and TESTHI2  
signal must have an individual, 1kW pull-up resistor.  
INTEL CORPORATION  
13  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
The open-drain output signals have open-drain  
drivers and external pull-up resistors are required.  
One of the two output signals (IERR#) is a  
catastrophic error indicator and is tri-stated (and  
pulled-up) when the processor is functioning  
normally. The FERR# output can be either tri-stated  
or driven to VSS when the processor is in a low  
power state depending on the condition of the  
floating point unit. Since this signal is a DC current  
path when it is driven to VSS, Intel recommends that  
the software clear or mask any floating point error  
condition before putting the processor into the  
Deep Sleep state.  
tools to help determine how much decoupling is  
required. The processor core power plane (VCC  
)
should have at least twenty-six 0.1 mF high  
frequency decoupling capacitors. The CMOS  
voltage reference power plane (VCCP) requires  
50 mF to 100 mF of bulk decoupling and at least  
eight 0.1 mF high frequency decoupling capacitors.  
For the Low Power GTL+ pull-up resistors, one  
0.1 mF high frequency decoupling capacitor is  
recommended per resistor pack. There should be  
no more than eight pull-up resistors per resistor  
pack. The Low Power GTL+ voltage reference  
power plane (VREF) should have at least three  
0.1 mF high frequency decoupling capacitors.  
3.1.5.3 Other Signals  
3.2.2  
Voltage Planes  
The system bus clock (BCLK) must be driven in all  
of the low -power states except the Deep Sleep  
state.  
All VCC and V balls must be connected to the  
SS  
appropriate voltage plane. All VCCP and VREF balls  
must be connected to the appropriate traces on the  
system electronics.  
3.2  
Power Supply Requirements  
3.2.1  
Decoupling Recommendations  
In addition to the main VCC, VCCP, and VSS power  
supply signals, PLL1 and PLL2 provide isolated  
power to the PLL section. PLL1 and PLL2 should be  
connected according to Figure 3.2. Do not connect  
The amount of bulk decoupling required to meet the  
processor voltage tolerance requirements is a  
strong function of the power supply design.  
Contact your Intel Field Sales Representative for  
PLL2 directly to VSS  
.
Table 3.3 contains the  
requirements for C1 and L1.  
L1  
PLL1  
VCCP  
C1  
V0027-00  
PLL2  
Figure 3.2 PLL LC Filter  
Table 3.3 LC Filter Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
C1  
LC Filter Capacitance  
47  
mF  
£30% tolerance, 1W max series  
14  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.3 LC Filter Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
resistance, ~2 nH series inductance  
L1  
LC Filter Inductance  
20  
47  
mH  
low -Q type choke, £30% tolerance, 1.5W  
max series resistance, ³ 50 mA current,  
self-resonant frequency >10 MHz  
frequency only. In this case, the bus ratio  
configuration signals are not effective.  
3.3  
System Bus Clock and  
Processor Clocking  
Processors with marked core frequency at 366  
MHz and below are implemented with Bus Fraction  
Limiting scheme. The processor core frequency  
must be configured during Reset by using the  
A20M#, IGNNE#, NMI, and INTR pins (see Table  
3.4). The value on these pins during Reset  
The 2.5-V BCLK clock input directly controls the  
operating speed of the system bus interface. All  
system bus timing parameters are specified with  
respect to the rising edge of the BCLK input. The  
mobile Intel Celeron processor core frequency is a  
multiple of the BCLK frequency.  
determines the multiplier that the PLL will use for  
the internal core clock. See the Pentium® II  
Processor Developer's Manual (Order Number  
243502) for the definition of these pins during  
Reset and the operation of the pins after Reset.  
Processors at marked core frequency of 400 MHz  
and above are implemented with Bus Fraction  
Locking scheme. The Bus Fraction Locking scheme  
allows the processors to operate at the marked  
Table 3.4 Core Frequency to System Bus Ratio Configuration  
Processor Core Frequency to  
System Bus Frequency Ratio  
NMI  
INTR  
IGNNE# A20M# Power-Up Configuration  
[25:22]  
4 (266 MHz)  
9/2 (300 MHz)  
5 (333 MHz)  
L
L
L
H
L
L
L
H
H
H
H
L
0010  
0110  
0000  
0100  
1011  
1111  
1001  
L
H
H
L
11/2 (366 MHz)  
6 (400 MHz)  
13/2 (433 MHz)  
7 (466 MHz)  
L
H
L
H
H
H
H
L
L
L
H
L
INTEL CORPORATION  
15  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
In this case, a multiplexer is required between the  
system electronics and the processor to drive the  
bus ratio configuration signals during Reset. Figure  
3.6 and Table 3.16 describe the timing requirements  
for this operation. The 443BX CRESET# signal has  
suitable timing to control the multiplexer. After  
RESET# and PWRGOOD are asserted, the  
multiplexer logic must guarantee that the bus ratio  
configuration signals encode one of the bus ratios  
in Table 3.4 and that the bus ratio corresponds to a  
core frequency at or below the marked core  
frequency for the processor. The selected bus  
ratio is visible to software in the Power-On  
Configuration register, see Section 7.2 for details.  
The 440MX PCISet contains a multiplexer that meets  
the requirements described above.  
some amount of time to acquire the phase of BCLK.  
This time is called the PLL lock latency, which is  
specified in Section 3.6. The system bus frequency  
ratio can be changed when RESET# is active,  
assuming that all Reset specifications are met. The  
BCLK frequency should not be changed during  
Deep Sleep state (see Section 2.2.8).  
3.4  
Maximum Ratings  
Table 3.5 contains the mobile Intel Celeron  
processor stress ratings. Functional operation at  
the absolute maximum and minimum is neither  
implied nor guaranteed. The processor should not  
receive a clock while subjected to these conditions.  
Functional operating conditions are provided in the  
AC and DC tables. Extended exposure to the  
maximum ratings may affect device reliability.  
Furthermore, although the processor contains  
protective circuitry to resist damage from static  
electric discharge, one should always take  
precautions to avoid high static voltages or electric  
fields.  
Multiplying the bus clock frequency is necessary to  
increase performance while allowing for easier  
distribution of signals within the system. Clock  
multiplication within the processor is provided by  
the internal Phase Lock Loop (PLL), which requires  
a constant frequency BCLK input. During Reset or  
on exit from the Deep Sleep state, the PLL requires  
Table 3.5 Mobile Intel Celeron Processor Absolute Maximum Ratings  
Parameter Min Max Unit  
Storage Temperature –40 85  
Symbol  
TStorage  
Notes  
°C  
V
Note 1  
VCC(Abs)  
VCCP  
Supply Voltage with respect to VSS  
–0.5  
–0.3  
3.0  
3.0  
CMOS Reference Voltage with respect to VSS  
GTL+ Buffer DC Input Voltage with respect to VSS  
2.5V Buffer DC Input Voltage with respect to VSS  
V
VIN  
–0.3 VCC + 0.7  
–0.3 3.3  
V
Note 2  
Note 3  
VIN25  
V
NOTES:  
1. The shipping container is only rated for 65°C.  
2. Parameter applies to the Low Power GTL+ signal groups only.  
3. Parameter applies to CMOS, Open-Drain, APIC, and TAP bus signal groups only.  
3.5  
DC Specifications  
16  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Specifications are valid only while meeting  
Table 3.6 through Table 3.11 list the DC  
specifications for the mobile Intel Celeron  
processor.  
specifications for case temperature, clock  
frequency, and input voltages. Care should be  
taken to read all notes associated with each  
parameter.  
INTEL CORPORATION  
17  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.6 Mobile Intel Celeron Processor Power Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.9V ±135 mV; VCCP = 1.8V ±90 mV  
Symbol  
VCC  
Parameter  
Vcc of core logic  
Min  
Typ  
Max  
Unit  
V
Notes  
±135 mV  
1.765  
1.765  
1.710  
1.900  
1.900  
1.800  
2.035  
2.105  
1.890  
VCC,LP  
VCCP  
ICC  
VCC when ICC < 300 mA  
V
+205/-135 mV 2  
1.8V ±90 mV  
Note 5  
VCC for CMOS voltage references  
V
ICC for VCC  
at 466 MHz  
at 433 MHz  
12.30  
11.50  
A
A
at core frequency  
ICCP  
Current for VCCP  
75  
mA  
A
Notes 3, 4, 5  
Note 5  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
1.70  
ICC,QS  
Processor Quick Start and  
Sleep current  
1.30  
0.65  
20  
A
A
Note 5  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 5  
dICC/dt  
VCC power supply current slew rate  
A/ms  
Notes 6, 7  
NOTES:  
1. Specifications in this table apply to the listed frequencies.  
2. A higher VCC,MAX is allowed when the processor is in a low power state to enable high efficiency, low  
current modes in the power regulator.  
3. ICCP is the current supply for the CMOS voltage references.  
4. Not 100% tested. Specified by design/characterization.  
5. ICCx,max specifications are specified at VCC,max, VCCP,max , and 100°C and under maximum signal loading  
conditions. ICCx,max specifications are not specified at VCC,LP,max if that voltage specification is used then  
slightly higher currents can be expected.  
6. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
7. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
18  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.7 Mobile Intel Celeron Processor Power Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.6V ±135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
±135 mV  
VCC  
VCC of core logic for regular voltage  
processors  
1.465  
1.600  
1.735  
V
VCC,LP  
VCCP  
ICC  
VCC when ICC < 300 mA  
1.465  
1.710  
1.600  
1.800  
1.805  
1.890  
V
V
+205/-135 mV 2  
1.8V ±90 mV  
Note 5  
VCC for CMOS voltage references  
ICC for VCC  
at 400 MHz  
at 366 MHz  
at 333 MHz  
at 300 MHz  
at 266 MHz  
9.70  
8.80  
7.95  
7.49  
6.63  
A
A
A
A
A
at core frequency  
ICCP  
Current for VCCP  
75  
mA  
mA  
Notes 3, 4, 5  
Note 5  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
1190  
ICC,QS  
Processor Quick Start and  
Sleep current  
880  
650  
20  
mA  
mA  
Note 5  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 5  
dICC/dt  
VCC power supply current slew rate  
A/ms  
Notes 6, 7  
NOTES:  
1. Specifications in this table apply to the listed frequencies.  
2. A higher VCC,MAX is allowed when the processor is in a low power state to enable high efficiency, low  
current modes in the power regulator.  
3. ICCP is the current supply for the CMOS voltage references.  
4. Not 100% tested. Specified by design/characterization.  
5. ICCx,max specifications are specified at VCC,max, VCCP,max , and 100°C and under maximum signal loading  
conditions. ICCx,max specifications are not specified at VCC,LP,max if that voltage specification is used then  
slightly higher currents can be expected.  
6. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
7. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
INTEL CORPORATION  
19  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.8 Low Voltage Mobile Intel Celeron Processor Power Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.5V ±135 mV; VCCP = 1.8V ±90 mV  
Symbo Parameter  
l
Min  
Typ  
Max  
Unit  
Notes  
VCC  
Vcc of core logic for 266PE MHz at  
1.365  
1.500  
1.635  
V
±135 mV  
low voltage  
VCC,LP  
VCCP  
ICC  
VCC when ICC < 300 mA  
VCC for CMOS voltage references  
1.365  
1.710  
1.500  
1.800  
1.705  
1.890  
5.90  
V
V
A
+205/-135 mV 2  
1.8V ±90 mV  
Note 5  
ICC for VCC  
at 266 MHz  
at core frequency  
ICCP  
Current for VCCP  
75  
mA  
mA  
Notes 3, 4, 5  
Note 5  
ICC,SG  
Processor Stop Grant and  
Auto Halt current  
940  
ICC,QS  
Processor Quick Start and  
Sleep current  
630  
400  
20  
mA  
mA  
Note 5  
ICC,DSLP Processor Deep Sleep leakage  
current  
Note 5  
dICC/dt  
VCC power supply current slew rate  
A/ms  
Notes 6, 7  
NOTES:  
1. Specifications in this table apply to the listed frequency.  
2. A higher VCC,MAX is allowed when the processor is in a low -power state to enable high efficiency, low -  
current modes in the power regulator.  
3. ICCP is the current supply for the CMOS voltage references.  
4. Not 100% tested. Specified by design/characterization.  
5. ICCx,max specifications are specified at VCC,max, VCCP,max , and 100°C and under maximum signal loading  
conditions. ICCx,max specifications are not specified at VCC,LP,max if that voltage specification is used then  
slightly higher currents can be expected.  
6. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
7. Maximum values specified by design/characterization at nominal VCC and VCCP  
.
The signals on the mobile Intel Celeron processor  
system bus are included in the Low Power GTL+  
signal group. These signals are specified to be  
terminated to VCC. The DC specifications for these  
20  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
signals are listed in Table 3.9; the termination and  
reference voltage specifications for these signals  
are listed in Table 3.10. The mobile Intel Celeron  
Bus Layout Guideline (Order Number 243672-001)  
for full details of system VTT and VREF  
requirements.  
processor requires external termination and a VREF  
.
Refer to Mobile Pentium® II Processor System  
Table 3.9 Low Power GTL+ Signal Group DC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
VIL  
Parameter  
Input Low Voltage  
Input High Voltage  
Output High Voltage  
Min  
–0.3  
Max  
5/9VTT – 0.2  
VCC  
Unit  
V
Notes  
See Table 3.10 1  
Note 1  
VIH  
5/9VTT + 0.2  
V
VOH  
V
See VTT max in Table  
3.10.  
RON  
IL  
Output Low Drive Strength  
Leakage Current  
35  
ohms  
mA  
±100  
±30  
Note 2  
Note 3  
ILO  
Output Leakage Current  
mA  
NOTES:  
1. VREF worst case, not nominal. Noise on VREF should be accounted for.  
2. (0 £ VIN £ VCC).  
3. (0 £ VOUT £ VCC).  
Table 3.10. Low Power GTL+ Bus DC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
VTT  
Parameter  
Min  
Typ  
VCC  
Max  
Unit  
V
Notes  
Bus Termination Voltage  
Input Reference Voltage  
VCC,MIN  
VCC,MAX  
Note 1  
±2% 2  
VREF  
5/9VTT – 2%  
5/9VTT  
5/9VTT + 2%  
V
NOTES:  
1. The intent is to use the same power supply for VCC and VTT  
.
2. VREF for the system logic should be created from VTT by a voltage divider.  
INTEL CORPORATION  
21  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.11 Clock, APIC, TAP, CMOS and Open-Drain Signal Group DC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
Input Low Voltage  
Min  
–0.3  
–0.3  
1.7  
Max  
0.7  
Unit  
V
Notes  
VIL  
VIL,BCLK Input Low Voltage, BCLK  
VIH Input High Voltage  
VIH,BCLK Input High Voltage, BCLK  
0.7  
V
2.625  
2.625  
0.4  
V
1.8  
V
VOL  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
V
Note 1  
N/A  
2.625  
14  
V
All outputs are open-drain  
mA  
mA  
mA  
ILI  
±100  
±30  
Note 2  
Note 2  
ILO  
NOTES:  
1. Parameter measured at 14 mA.  
2. (0 £ VIN £ 2.625V).  
contains the system bus clock specifications; Table  
3.13 contains the processor core frequencies;  
Table 3.14 contains the Low Power GTL+  
specifications; Table 3.15 contains the CMOS and  
Open-Drain signal groups specifications; Table 3.16  
contains timings for the reset conditions; Table 3.17  
contains the TAP specifications; and Table 3.18  
and Table 3.19 contain the power management  
timing specifications.  
The Clock, CMOS, Open-drain, and TAP signals are  
designed to interface at 2.5V CMOS levels to allow  
connection to other devices. The DC specifications  
for these 2.5V tolerant signals are listed in Table  
3.11.  
3.6  
AC Specifications  
3.6.1  
System Bus, Clock, APIC, TAP,  
CMOS, and Open-drain AC  
Specifications  
All system bus AC specifications for the Low  
Power GTL+ signal group are relative to the rising  
edge of the BCLK input at 1.25V. All Low Power  
GTL+ timings are referenced to VREF for both ‘0’  
and ‘1’ logic levels unless otherwise specified.  
Table 3.12 through Table 3.19 provide AC  
specifications associated with the mobile Intel  
Celeron processor. The AC specifications are  
divided into the following categories: Table 3.12  
22  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.12 System Bus Clock AC Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
System Bus Frequency  
BCLK Period  
Min  
Typ  
66.67  
15  
Max  
Unit  
MHz  
ns  
Figure  
Notes  
T1  
T2  
T3  
T4  
T5  
T6  
3.3  
Note 2  
BCLK Period Stability  
BCLK High Time  
±250  
ps  
Notes 3, 4  
5.0  
5.0  
ns  
3.3  
3.3  
3.3  
3.3  
At >1.8V  
BCLK Low Time  
BCLK Rise Time  
ns  
At <0.7V  
0.125  
0.125  
0.875  
0.875  
ns  
(0.9V – 1.6V) 4  
(1.6V – 0.9V) 4  
BCLK Fall Time  
ns  
NOTES:  
1. All AC timings for Low Power GTL+ and CMOS signals are referenced to the BCLK rising edge at  
1.25V. All CMOS signals are referenced at 1.25V.  
2. The BCLK period allows a +0.5-ns tolerance for clock driver variation.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
INTEL CORPORATION  
23  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.13 Valid Mobile Intel Celeron Processor Frequencies  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
BCLK Frequency (MHz)  
Frequency Multiplier  
Core Frequency (MHz)  
266.67  
66.67  
66.67  
66.67  
66.67  
66.67  
66.67  
66.67  
4
9/2  
5
300.00  
333.00  
11/2  
6
366.67  
400.00  
13/2  
7
433.00  
466.00  
NOTE: While other combinations of bus and core frequencies are defined, operation at frequencies other  
than those listed in Table 3.13 will not be validated by Intel and are not guaranteed. The frequency  
multiplier is programmed into the processor when it is manufactured and it cannot be changed.  
Table 3.14 Low Power GTL+ Signal Groups AC Specifications1  
RTT = 120W terminated to VCC; VREF = 5/9 VCC; load = 0pF  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
Min  
0.00  
2.98  
0.90  
1
Max  
Unit  
ns  
Figure  
3.4  
Notes  
T7  
T8  
T9  
Low Power GTL+ Output Valid Delay  
Low Power GTL+ Input Setup Time  
Low Power GTL+ Input Hold Time  
RESET# Pulse Width  
7.78  
ns  
3.5  
Notes 2, 3  
Note 4  
ns  
3.5  
T10  
ms  
3.6, 3.7  
Note 5  
NOTES:  
1. All AC timings for Low Power GTL+ signals are referenced to the BCLK rising edge at 1.25V. All Low  
Power GTL+ signals are referenced at VREF  
.
2. RESET# can be asserted (active) asynchronously but must be deasserted synchronously.  
3. Specification is for a minimum 0.40V swing.  
4. Specification is for a maximum 1.0V swing.  
5. After VCC, VCCP, and BCLK become stable and PWRGOOD is asserted.  
24  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.15 CMOS and Open-Drain Signal Groups AC Specifications1, 2  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T14  
2.5V Input Pulse Width, except PWRGOOD  
2
BCLKs  
3.4  
Active and  
Inactive  
states  
T15  
PWRGOOD Inactive Pulse Width  
10  
BCLKs  
3.7  
Notes 3, 4  
NOTES:  
1. All AC timings for CMOS and Open-drain signals are referenced to the BCLK rising edge at 1.25V. All  
CMOS and Open-drain signals are referenced at 1.25V.  
2. Minimum output pulse width on CMOS outputs is 2 BCLKs.  
3. When driven inactive, or after VCC, VCCP, and BCLK become stable. PWRGOOD must remain below  
VIL,max from Table 3.11 until all the voltage planes meet the voltage tolerance specifications in Table 3.7,  
and BCLK has met the BCLK AC specifications in Table 3.12 for at least 10 clock cycles. PWRGOOD  
must rise error-free and monotonically to 2.5V.  
4. If the BCLK signal meets its AC specification within 150 ns of turning on then the PWRGOOD Inactive  
Pulse Width specification (T15) is waived and BCLK may start after PWRGOOD is asserted. PWRGOOD  
must still remain below VIL,max until all the voltage planes meet the voltage tolerance specifications.  
INTEL CORPORATION  
25  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.16 Reset Configuration AC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
Before  
T16  
Reset Configuration Signals  
(A[15:5]#, BR0#, FLUSH#, INIT#,  
PICD0) Setup Time  
4
BCLKs  
3.5, 3.6  
deassertion of  
RESET#  
T17  
T18  
Reset Configuration Signals  
(A[15:5]#, BR0#, FLUSH#, INIT#,  
PICD0) Hold Time  
2
1
20  
BCLKs  
ms  
3.5, 3.6  
After clock that  
deasserts  
RESET#  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Setup Time  
3.7  
Before  
deassertion of  
RESET#, Note 1  
T19  
T20  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Delay Time  
5
BCLKs  
BCLKs  
3.7  
After assertion of  
RESET#, Note  
Reset Configuration Signals (A20M#,  
IGNNE#, INTR, NMI) Hold Time  
2
20  
3.5, 3.7  
After clock that  
deasserts  
RESET#  
NOTES:  
1. At least 1 ms must pass after PWRGOOD rises above VIH,min from Table 3.11 and BCLK meets its AC  
timing specification, until RESET# may be deasserted.  
2. For a Reset, the clock ratio defined by these signals must be a safe value (their final value or a lower  
multiplier) within this delay after RESET# is asserted unless PWRGOOD is inactive (below VIL,max).  
26  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.17 TAP Signal AC Specifications1  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
T30  
Parameter  
TCK Frequency  
Min  
Max  
16.67  
Unit  
MHz  
ns  
Figure  
Notes  
T31  
TCK Period  
60  
3.3  
3.3  
3.3  
3.3  
T32  
T33  
T34  
T35  
TCK High Time  
TCK Low Time  
TCK Rise Time  
TCK Fall Time  
25.0  
25.0  
ns  
ns  
ns  
ns  
³ 1.7V 2  
£ 0.7V 2  
5.0  
5.0  
(0.7V-1.7V) 2,3  
(1.7V-0.7V) 2,3  
3.3  
3.9  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
T36  
T37  
T38  
T39  
T40  
T41  
T42  
T43  
TRST# Pulse Width  
40.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous 2  
Note 4  
TDI, TMS Setup Time  
TDI, TMS Hold Time  
14.0  
1.0  
Note 4  
TDO Valid Delay  
10.0  
25.0  
25.0  
25.0  
Notes 5, 6  
TDO Float Delay  
Notes 2, 5, 6  
Notes 5, 7, 8  
Notes 2, 5, 7, 8  
Notes 4, 7, 8  
Notes 4, 7, 8  
All Non-Test Outputs Valid Delay  
All Non-Test Outputs Float Delay  
All Non-Test Inputs Setup Time  
All Non-Test Inputs Hold Time  
2.0  
5.0  
T44  
13.0  
NOTES:  
1. All AC timings for TAP signals are referenced to the TCK rising edge at 1.25V. All CMOS signals are  
referenced at 1.25V.  
2. Not 100% tested. Specified by design/characterization.  
3. 1 ns can be added to the maximum TCK rise and fall times for every 1 MHz below 16 MHz.  
4. Referenced to TCK rising edge.  
5. Referenced to TCK falling edge.  
6. Valid delay timing for this signal is specified into 150W terminated to 2.5V and 0 pF of external load. For  
real system timings these specifications must be derated for external capacitance at 105 ps/pF.  
7. Non-Test Outputs and Inputs are the normal output or input signals (except TCK, TRST#, TDI, TDO, and  
TMS). These timings correspond to the response of these signals due to boundary scan operations.  
8. During Debug Port operation use the normal specified timings rather than the TAP signal timings.  
INTEL CORPORATION  
27  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 3.18 Quick Start/De ep Sleep AC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
T45  
Parameter  
Min  
Max  
Unit  
BCLKs  
ns  
Figure  
3.10  
3.10  
3.10  
3.10  
3.10  
Stop Grant Cycle Completion to Clock Stop  
Stop Grant Cycle Completion to Input Signals Stable  
Deep Sleep PLL Lock Latency  
100  
T46  
0
T47  
30  
ms  
T48  
STPCLK# Hold Time from PLL Lock  
0
8
ns  
T49  
Input Signal Hold Time from STPCLK# Deassertion  
BCLKs  
NOTE:  
1. Input signals other than RESET# and BPRI# must be held constant in the Quick Start state.  
Table 3.19 Stop Grant/Sleep/Deep Sleep AC Specifications  
TCASE = 0 to TCASE,max; VCC = 1.9V ± 135 mV, 1.6V ± 135 mV, or 1.5V ± 135 mV; VCCP = 1.8V ±90 mV  
Symbol  
T50  
Parameter  
Min  
Max  
Unit  
BCLKs  
ns  
Figure  
3.11  
3.11  
3.11  
3.11  
3.11  
3.11  
SLP# Signal Hold Time from Stop Grant Cycle Completion  
SLP# Assertion to Input Signals Stable  
SLP# Assertion to Clock Stop  
100  
T51  
0
T52  
10  
0
BCLKs  
ns  
T54  
SLP# Hold Time from PLL Lock  
T55  
STPCLK# Hold Time from SLP# Deassertion  
Input Signal Hold Time from SLP# Deassertion  
10  
10  
BCLKs  
BCLKs  
T56  
NOTE:  
1. Input signals other than RESET# must be held constant in the Sleep state.  
28  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Figure 3.3 through Figure 3.11 are to be used in conjunction with Table 3.12 through Table 3.19.  
T
r2  
T
h
T
r1  
VIH  
1.6V  
0.9V  
CLK  
VTRIP  
VIL  
T
f1  
T
f2  
T
l
T
p
D0003-02  
NOTES:  
Tr1  
Tf1  
Th  
Tl  
=
=
=
=
=
T5, Tr2 = T34 (Rise Time)  
T6, Tf2 = T35 (Fall Time)  
T3, T32 (High Time)  
T4, T33 (Low Time)  
T1, T31 (Period)  
Tp  
Figure 3.3 Generic Clock Waveform  
INTEL CORPORATION  
29  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
CLK  
T
x
T
x
Signal  
V
Valid  
Valid  
T
pw  
D0004-00  
NOTES:  
Tx  
Tpw  
V
=
=
=
T7, T11 (Valid Delay)  
T14 (Pulse Width)  
VREF for Low Power GTL+ signal group; 1.25V for CMOS, Open-Drain,  
and TAP signal groups  
Figure 3.4 Valid Delay Timings  
CLK  
T
s
T
h
Signal  
V Valid  
D0005-00  
NOTES:  
Ts  
Th  
V
=
=
=
T8, T12 (Setup Time)  
T9, T13 (Hold Time)  
VREF for Low Power GTL+ signals; 1.25V for CMOS and TAP signals  
Figure 3.5 Setup and Hold Timings  
30  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
BCLK  
T
u
T
t
RESET#  
T
v
T
T
z
T
x
y
Configuration  
(A20M#, IGNNE#,  
INTR, NMI)  
Safe  
Valid  
Valid  
T
w
Configuration  
(A[15:5], BREQ0#,  
FLUSH#, INIT#,  
PICD0)  
D0006-01  
NOTES:  
Tt  
=
=
=
=
T9 (Low Power GTL+ Input Hold Time)  
T8 (Low Power GTL+ Input Setup Time)  
T10 (RESET# Pulse Width)  
T16 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0)  
Setup Time)  
Tu  
Tv  
Tw  
Tx  
=
T17 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0)  
Hold Time)  
T20 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Hold Time)  
T19 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Delay Time)  
T18 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Setup Time)  
Ty  
Tz  
=
=
Figure 3.6 Reset and Configuration Timings  
INTEL CORPORATION  
31  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
BCLK  
V
,
CCP,  
V
,
CC  
REF  
V
VIH,min  
T
PWRGOOD  
RESET#  
VIL,max  
T
a
b
T
c
Configuration  
(A20M#, IGNNE#,  
INTR, NMI)  
Valid Ratio  
D0007-01  
NOTES:  
Ta  
Tb  
Tc  
=
=
=
T15 (PWRGOOD Inactive Pulse Width)  
T10 (RESET# Pulse Width)  
T20 (Reset Configuration Signals (A20M#, IGNNE#, INTR, NMI) Hold Time)  
Figure 3.7 Power-on Reset Timings  
32  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
TCK  
T
v
T
w
TDI, TMS  
1.25V  
T
T
s
r
Input  
Signals  
T
x
T
u
TDO  
T
y
T
z
Output  
Signals  
D0008-00  
NOTES:  
Tr  
=
=
=
=
=
=
=
=
T43 (All Non-Test Inputs Setup Time)  
T44 (All Non-Test Inputs Hold Time)  
T40 (TDO Float Delay)  
T37 (TDI, TMS Setup Time)  
T38 (TDI, TMS Hold Time)  
T39 (TDO Valid Delay)  
T41 (All Non-Test Outputs Valid Delay)  
T42 (All Non-Test Outputs Float Delay)  
Ts  
Tu  
Tv  
Tw  
Tx  
Ty  
Tz  
Figure 3.8 Test Timings (Boundary Scan)  
1.25V  
TRST#  
T
q
D0009-00  
NOTE:  
Tq  
=
T36 (TRST# Pulse Width)  
Figure 3.9 Test Reset Timings  
INTEL CORPORATION  
33  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Normal  
Quick Start  
Running  
Deep Sleep  
Normal  
Quick Start  
Running  
BCLK  
T
v
STPCLK#  
T
Ty  
x
CPU bus  
SLP#  
stpgnt  
T
Tw  
Changing  
z
Compatibility  
Signals  
Frozen  
V0010-00  
NOTES:  
Tv  
Tw  
Tx  
Ty  
Tz  
=
=
=
=
=
T45 (Stop Grant Acknowledge Bus Cycle Completion to Clock Shut Off Delay)  
T46 (Setup Time to Input Signal Hold Requirement)  
T47 (Deep Sleep PLL Lock Latency)  
T48 (PLL lock to STPCLK# Hold Time)  
T49 (Input Signal Hold Time)  
Figure 3.10 Quick Start/Deep Sleep Timing  
34  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Stop  
Grant  
Stop  
Grant  
Normal  
Running  
Sleep  
Deep Sleep  
Sleep  
Normal  
BCLK  
Running  
T
v
STPCLK#  
T
y
CPU bus  
SLP#  
stpgnt  
T
Tw  
Tx  
t
Tu  
T
z
Compatibility  
Signals  
Changing  
Changing  
Frozen  
V0011-00  
NOTES:  
Tt  
=
=
=
=
=
=
=
T50 (Stop Grant Acknowledge Bus Cycle Completion to SLP# Assertion Delay)  
T51 (Setup Time to Input Signal Hold Requirement)  
T52 (SLP# assertion to clock shut off delay)  
T47 (Deep Sleep PLL lock latency)  
T54 (SLP# Hold Time)  
T55 (STPCLK# Hold Time)  
Tu  
Tv  
Tw  
Tx  
Ty  
Tz  
T56 (Input Signal Hold Time)  
Figure 3.11 Stop Grant/Sleep/Deep Sleep Timing  
INTEL CORPORATION  
35  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
to determine if they are compliant with this  
specification.  
4.  
SYSTEM SIGNAL  
SIMULATIONS  
Many scenarios have been simulated to generate  
a set of Low Power GTL+ processor system  
bus layout guidelines which are available in the  
Mobile Pentium® II Processor System Bus  
Layout Guideline (Order Number 243672-001).  
Systems must be simulated using the IBIS model  
4.1  
System Bus Clock (BCLK)  
Signal Quality Specifications  
Table 4.1 and Figure 4.1 show the signal quality  
for the system bus clock (BCLK) signal at the  
processor. The timings illustrated in Figure 4.1  
are taken from Table 3.12. BCLK is a 2.5-V clock.  
Table 4.1 BCLK Signal Quality Specifications  
Symbol  
V1  
Parameter  
Min  
Max  
Unit  
V
Figure  
4.1  
Notes  
VIL,BCLK  
VIH,BCLK  
0.7  
Note 1  
Note 1  
V2  
1.8  
V
4.1  
V3  
VIN Absolute Voltage Range  
–0.7  
3.5  
0.7  
V
4.1  
Undershoot,  
Overshoot  
V4  
Rising Edge Ringback  
Falling Edge Ringback  
1.8  
V
V
4.1  
4.1  
Absolute Value 2  
Absolute Value 2  
V5  
NOTES:  
1. BCLK must rise/fall monotonically between VIL,BCLK and VIH,BCLK  
.
2. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling)  
absolute voltage the BCLK signal can dip back to after passing the VIH,BCLK (rising) or VIL,BCLK (falling)  
voltage limits.  
36  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
T3  
V3  
V4  
V2  
V1  
V5  
T6  
V3  
T5  
T4  
V0012-00  
Figure 4.1 BCLK Generic Clock Waveform  
GTL+ signal quality specifications for the mobile  
Intel Celeron processor. Refer to the Pentium® II  
Processor Developer’s Manual for the GTL+ buffer  
specification.  
4.2  
Low Power GTL+ Signal  
Quality Specifications  
Table 4.2 and Figure 4.2 illustrate the Low Power  
Table 4.2 Low Power GTL+ Signal Group Ringback Specification  
Parameter Min Unit Figure  
100 mV 4.2  
Symbol  
Notes  
Notes 1, 2  
Overshoot  
a
t
Minimum Time at High  
1
ns  
mV  
mV  
ns  
4.2  
4.2  
4.2  
4.2  
Notes 1, 2  
Notes 1, 2, 3  
Notes 1, 2  
Notes 1, 2  
Amplitude of Ringback  
Final Settling Voltage  
-100  
100  
N/A  
r
f
Duration of Sequential Ringback  
d
NOTES:  
1. Specified for the edge rate of 0.3 – 0.8 V/ns. See Figure 4.2 for the generic waveform.  
2. All values determined by design/characterization.  
INTEL CORPORATION  
37  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
3. Ringback below VREF +100 mV is not authorized during low to high transitions. Ringback above VREF  
100mV is not authorized during high to low transitions.  
-
t
V
IH,BCLK  
a
V
+0.2V  
REF  
f
V
REF  
r
V
-0.2V  
d
REF  
VIL,BCLK  
V
start  
Clock  
V0014-00  
Time  
NOTE: High-to-low case is analogous.  
Figure 4.2 Low to High, Low Power GTL+ Receiver Ringback Tolerance  
ringback and settling limit. All three signal quality  
parameters are shown in Figure 4.3 for non-GTL+  
signal groups.  
4.3  
Non-Low Power GTL+ Signal  
Quality Specifications  
4.3.1  
Overshoot and Undershoot  
Guidelines  
Signals driven to the mobile Intel Celeron processor  
should meet signal quality specifications to ensure  
that the processor reads data properly and that  
incoming signals do not affect the long-term  
reliability of the processor. There are three signal  
quality parameters defined: overshoot/undershoot,  
Overshoot (or undershoot) is the absolute value of  
the maximum voltage above the nominal high  
voltage or below V . The overshoot/undershoot  
SS  
38  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
guideline limits transitions beyond VCC or VSS due to  
However, excessive ringback is the dominant  
detrimental system timing effect resulting from  
overshoot/undershoot (for example, violating the  
overshoot/undershoot guideline will make it difficult  
to satisfy the ringback specification). The  
overshoot/undershoot guideline is 0.8V and  
assumes the absence of diodes on the input.  
These guidelines should be verified in simulations  
without the on-chip ESD protection diodes present  
because the diodes will begin clamping the 2.5-V  
tolerant signals beginning at approximately 1.25V  
above VCC and 0.5V below VSS. If the signals do  
not reach the clamping voltage, then this will not be  
an issue. A system should not rely on the diodes  
for overshoot/undershoot protection as this will  
negatively affect the life of the components and  
make meeting the ringback specification very  
difficult.  
the fast signal edge rates. The processor can be  
damaged by repeated overshoot events on 2.5V  
tolerant buffers if the charge is large enough (i.e., if  
the overshoot is great enough).  
Settling Limit  
Overshoot  
VHI=2.5V  
Rising-Edge  
Ringback  
Falling-Edge  
Ringback  
Settling Limit  
V
V
LO  
SS  
Undershoot  
Time  
V0015-00  
INTEL CORPORATION  
39  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Figure 4.3 Non-GTL+ Overshoot/Undershoot and Ringback  
40  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
4.3.2  
Ringback Specification  
4.3.3  
Settling Limit Guideline  
Ringback refers to the amount of reflection seen  
after signal has switched. The ringback  
Settling limit defines the maximum amount of ringing  
at the receiving signal that a signal may reach  
before its next transition. The amount allowed is  
10% of the total signal swing (VHI – VLO) above and  
below its final value. A signal should be within the  
settling limits of its final value, when either in its  
high state or low state, before its next transition.  
a
specification is the voltage that the signal rings  
back to after achieving its maximum absolute value.  
Excessive ringback can cause false signal  
detection or extend the propagation delay. The  
ringback specification applies to the input signal of  
each receiving agent. Violations of the signal  
ringback specification are not allowed under any  
circumstances for the non-GTL+ signals.  
Signals that are not within their settling limit before  
transitioning are at risk of unwanted oscillations  
that could jeopardize signal integrity. Simulations to  
verify settling limit may be done either with or  
without the input protection diodes present.  
Violation of the settling limit guideline is acceptable  
if simulations of five to ten successive transitions  
do not show the amplitude of the ringing increasing  
in the subsequent transitions.  
Ringback can be simulated with or without the input  
protection diodes that can be added to the input  
buffer model. However, signals that reach the  
clamping voltage should be evaluated further. See  
Table 4.3 for the signal ringback specifications for  
non-GTL+ signals.  
Table 4.3 Signal Ringback Specifications for Non-GTL+ Signals  
Input Signal Group Transition Maximum Ringback  
Figure  
(with Input Diodes Present)  
Non-GTL+ Signals  
Non-GTL+ Signals  
0 ® 1  
1 ® 0  
1.7 V  
0.7 V  
4.3  
4.3  
INTEL CORPORATION  
41  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
5.  
MECHANICAL SPECIFICATIONS  
5.1  
Dimensions of the Micro-PGA  
Package  
The mobile Intel Celeron processor is packaged in  
an PPGA-B615 package (also known as Micro-  
PGA) or an PBGA-B615 package (also known as  
BGA), with the back of the processor die exposed  
on top. This section contains information describing  
the packages and the signal pin assignments.  
The mechanical specifications for the Micro-PGA  
package are provided in Table 5.1 and shown in  
Figure 5.1 and Figure 5.2.  
Table 5.1 Micro-PGA Package Mechanical Specifications  
Parameter Min  
Overall height, top of die to seating plane of the interposer 3.23  
Symbol  
A
Max  
Unit  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
each  
mm  
mm  
kPa  
gram  
3.83  
A1  
A2  
B
Pin length  
1.25 REF  
Die Height  
0.854 REF  
0.30 REF  
Pin Diameter  
D
Die Substrate Width  
Die Width  
30.85  
31.15  
D1  
D2  
E
10.36 REF  
32.60 REF  
Package Width  
Die Substrate Length  
Die Length  
34.85  
35.15  
E1  
E2  
e
17.36 REF  
36.80 REF  
1.27 REF  
<= 0.127  
615  
Package Length  
Pin pitch  
N
Pin Tip Radial True Position  
Pin Count  
S1  
S2  
PDIE  
W
Pin row A to short edge of interposer  
Pin column 1 to long edge of interposer  
Allowable Pressure on the Die for Thermal Solution  
Package Weight  
2.220 REF  
1.415 REF  
689  
7.5 REF  
42  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.1 Micro-PGA Package-Top and Side View  
INTEL CORPORATION  
43  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
NOTE: Dimensions in parentheses are for reference only. All dimensions are in millimeters.  
Figure 5.2 Micro-PGA Package-Bottom View  
44  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
surface-mount package, and Figure 5.4 shows the  
Dimensions of the BGA  
5.2  
bottom view of the surface-mount package. For  
Package  
component handling, the substrate may only be  
contacted within the shaded region between the  
keep-out outline and the edge of the substrate.  
The mechanical specifications for the surface-  
mount BGA package are provided in Table 5.2.  
Figure 5.3 shows the top and side views of the  
Table 5.2 Surface-mount BGA Package Specifications  
Parameter Min  
2.29  
1.50 REF  
Symbol  
Max  
Unit  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
each  
mm  
mm  
kPa  
grams  
A
Overall Height, as delivered  
2.79  
A1  
A2  
B
Substrate Height, as delivered  
Die Height  
0.854 REF  
0.78 REF  
Ball Diameter  
D
Package Width  
30.85  
10.36 REF  
34.85 35.15  
31.15  
D1  
E
Die Width  
Package Length  
e
Ball Pitch  
1.27  
E
1
Die Length  
17.36 REF  
615  
N
Ball Count  
S1  
S2  
PDIE  
W
Outer Ball Center to Short Edge of Substrate  
Outer Ball Center to Long Edge of Substrate  
Allowable Pressure on the Die for Thermal Solution  
Package Weight  
1.625 REF  
0.895 REF  
689  
3.71  
4.52  
INTEL CORPORATION  
45  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
A1  
die  
(7.0 TYP)  
(Ø 0.65)  
(5.0 TYP)  
D
A2  
ink swatch  
ink swatch  
E
E1  
(2x 1.50)  
(2x 2.032)  
(2x 0.57)  
(Ø 1.15)  
D1  
A
0.20 REF  
substrate  
keepout  
outline  
(2x 1.800)  
V0026-00  
NOTE: Dimensions are for reference only. All dimensions are in millimeters.  
Figure 5.3 Surface-mount BGA Package - Top and Side View  
46  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
e
Øb  
S
S1  
2
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
e
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
V0025-01  
Figure 5.4 Surface-mount BGA Package - Bottom View  
voltage balls called out. Table 5.3 lists the signals  
in pin/ball number order. Table 5.4 and Table 5.5  
list the signals in signal name order.  
5.3  
Signal Listings  
Figure 5.5 is a topside view of the pin/ball map of  
the mobile Intel Celeron processor with the  
INTEL CORPORATION  
47  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
19 20 21 22 23 24  
A
B
VSS  
VSS  
A29#  
VSS  
A26# A34#  
VSS  
VSS  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
D0#  
D6#  
VSS  
VSS  
D5#  
D2#  
D3#  
D7#  
VSS  
D13#  
D18# D16#  
D26# D31#  
VSS  
NC  
EDG  
CTRLN  
VSS  
A35# A19#  
A22# A30#  
A17# A31#  
A24# TESTHI NC  
D15# D17#  
VSS  
VSS  
C
VSS  
NC  
NC  
A25#  
A33# RESET# BERR# NC  
NC  
NC  
NC  
NC  
NC  
NC  
D4#  
D1#  
D9#  
D10#  
VSS  
D14# D19#  
D20# D22#  
D21#  
VSS  
D24# D27#  
D32# D28#  
D29# D35#  
D
A28#  
VSS TESTLO TESTLO VSS  
A23#  
A20#  
VSS  
A27# VREF  
VSS  
VSS  
VREF  
VSS  
D33#  
E
A16# A12#  
A13# TESTLO VSS  
NC  
NC  
A21# VREF A18#  
A32#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D8#  
NC  
D12#  
NC  
D11# D30#  
D23# D25#  
VSS  
D37  
VREF D34#  
D36# D43#  
D39#  
NC  
NC  
F
A11#  
A3#  
A15#  
A5#  
A10#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCCP  
G
A8#  
A7#  
A6#  
A4#  
VSS  
A9#  
A14#  
AP0#  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
D38  
VSS  
D44#  
NC  
H
D45#  
D42# D51#  
D47# D41#  
D49#  
J
TESTHI3 BNR# RSP# AP1# VREF  
NC  
NC  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
NC  
NC  
D48#  
D52# D40#  
K
VSS TESTHI3 VSS  
VSS TESTHI3 NC  
NC  
NC  
NC  
NC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
D59#  
D54#  
VSS  
VSS  
D57#  
VSS  
L
REQ1# BPRI# REQ4# REQ0# TESTHI NC  
DEFER# REQ2# TESTHI3 LOCK# TRDY# NC  
VREF D55#  
D56# D50#  
D46# D53#  
D58# D60#  
M
N
NC  
NC  
NC  
NC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
D61#  
VSS REQ3# HITM# VSS  
VREF  
NC  
NC  
DEP7# VSS  
D63#  
D62#  
VSS  
P
VSS DBSY# RP# DRDY# HIT#  
NC  
NC  
NC  
NC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
DEP0# DEP3# DEP5# DEP6# VSS  
BPM1# VREF DEP1# DEP2# DEP4#  
R
BREQ0# RS0# RS2# RS1# PWRGOOD NC  
T
VSS ADS# THERMDA VSS  
AERR# VCCP THERMDC NC  
SLP#  
TDI  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
BP3#  
VSS PRDY# BINIT# VSS  
U
PICD1 PICCLKTESTHI3 BP2# BPM0#  
V
BSEL  
NC  
TMS  
VSS  
VCCP  
VCCP  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
INTR PREQ# TESTHI  
W
Y
TRST# VSS  
VSS  
VSS PICD0  
VSS  
TCK  
SMI# FERR# TESTLO NC  
NC  
NC  
NC  
NC  
VCC  
NC  
VSS  
NC  
VCC  
NC  
VSS  
NC  
VCC  
NC  
VSS  
NC  
VCC  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VCCP VCCP VSS  
AA  
AB  
AC  
AD  
AE  
AF  
STPCLK# A20M# INIT# IERR#  
NC  
NC  
NC  
NC  
NC  
NC  
NMI  
TDO IGNNE# NC  
FLUSH# TESTHI2 NC  
VCCP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS TESTLO NC  
VSS  
VSS  
VSS  
VCCP VCC TESTHI2 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS BCLK  
PLL2  
PLL1  
V0024-01  
VCC  
VCCP VSS  
Other  
Analog  
Decoupling  
Figure 5.5 Pin/Ball Map - Top View  
INTEL CORPORATION  
48  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
A2  
VSS  
VSS  
A29#  
VSS  
A26#  
A34#  
VSS  
VSS  
NC  
B8  
TESTHI  
NC  
C14  
NC  
D20  
VSS  
D32#  
D28#  
VSS  
D33#  
A16#  
A12#  
A13#  
TESTLO  
VSS  
NC  
A3  
B9  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
D1  
D4#  
D21  
D22  
D23  
D24  
E1  
A4  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
C1  
NC  
D1#  
A5  
NC  
D10#  
D14#  
D19#  
D21#  
D24#  
D27#  
D29#  
D35#  
A28#  
VSS  
TESTLO  
TESTLO  
VSS  
A23#  
A20#  
VSS  
A27#  
VREF  
VSS  
NC  
A6  
NC  
A7  
NC  
A8  
NC  
E2  
A9  
D6#  
D15#  
D17#  
D2#  
D7#  
D13#  
D26#  
D31#  
VSS  
VSS  
VSS  
NC  
E3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
B1  
E4  
VSS  
NC  
E5  
E6  
NC  
E7  
A21#  
VREF  
A18#  
A32#  
NC  
VSS  
D0#  
D2  
E8  
D3  
E9  
VSS  
VSS  
D5#  
D4  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
F1  
D5  
D6  
NC  
D3#  
D7  
NC  
VSS  
D18#  
D16#  
VSS  
NC  
C2  
D8  
D8#  
C3  
NC  
D9  
D12#  
D11#  
D30#  
D23#  
D25#  
VSS  
VREF  
D34#  
D39#  
NC  
C4  
A25#  
A17#  
A31#  
A33#  
RESET#  
BERR#  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
C5  
C6  
VSS  
EDGCTRLN  
A35#  
A19#  
A22#  
A30#  
A24#  
C7  
NC  
B2  
C8  
VSS  
VREF  
D9#  
B3  
C9  
B4  
C10  
C11  
C12  
C13  
B5  
NC  
VSS  
D20#  
D22#  
B6  
NC  
B7  
NC  
A11#  
INTEL CORPORATION  
49  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
F2  
A3#  
A15#  
A5#  
A10#  
NC  
G8  
NC  
H15  
VCC  
VSS  
NC  
J21  
D47#  
D41#  
D52#  
D40#  
VSS  
TESTHI3  
VSS  
VSS  
TESTHI3  
NC  
F3  
G9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
J1  
J22  
J23  
J24  
K1  
F4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
H2  
F5  
NC  
F6  
NC  
F7  
NC  
D45#  
D42#  
D51#  
D49#  
TESTHI3  
BNR#  
RSP#  
AP1#  
VREF  
NC  
K2  
F8  
NC  
K3  
F9  
NC  
K4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
G2  
NC  
K5  
NC  
K6  
NC  
NC  
J2  
K7  
NC  
NC  
NC  
J3  
K8  
NC  
NC  
D38#  
VSS  
D44#  
NC  
J4  
K9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
NC  
J5  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
NC  
J6  
NC  
J7  
NC  
NC  
A7#  
A4#  
A9#  
AP0#  
NC  
J8  
NC  
NC  
H3  
J9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
D37#  
D36#  
D43#  
NC  
H4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
H5  
H6  
H7  
NC  
NC  
VCCP  
A8#  
A6#  
VSS  
A14#  
NC  
H8  
NC  
NC  
H9  
VCC  
VSS  
VCC  
VSS  
VCC  
D59#  
VSS  
VSS  
D57#  
VSS  
G3  
H10  
H11  
H12  
H13  
G4  
G5  
NC  
G6  
NC  
50  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
G7  
NC  
H14  
VSS  
NC  
J20  
D48#  
VCC  
VSS  
VCC  
NC  
L1  
REQ1#  
DEP0#  
DEP3#  
DEP5#  
DEP6#  
VSS  
L2  
BPRI#  
REQ4#  
REQ0#  
TESTHI  
NC  
M8  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
P1  
P20  
P21  
P22  
P23  
P24  
R1  
L3  
M9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
L4  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
N1  
L5  
L6  
NC  
L7  
NC  
NC  
BREQ0#  
RS0#  
RS2#  
RS1#  
PWRGOOD  
NC  
L8  
NC  
DEP7#  
VSS  
D63#  
D62#  
VSS  
VSS  
DBSY#  
RP#  
R2  
L9  
VSS  
R3  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
M1  
VCC  
R4  
VSS  
R5  
VCC  
NC  
R6  
VSS  
NC  
R7  
NC  
VCC  
D61#  
D56#  
D50#  
D58#  
D60#  
VSS  
REQ3#  
HITM#  
VSS  
VREF  
NC  
P2  
R8  
NC  
VSS  
P3  
R9  
VSS  
VCC  
P4  
DRDY#  
HIT#  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
VCC  
NC  
P5  
VSS  
NC  
P6  
VCC  
NC  
P7  
NC  
VSS  
D54#  
VREF  
D55#  
D46#  
D53#  
DEFER#  
REQ2#  
TESTHI3  
LOCK#  
TRDY#  
N2  
P8  
NC  
VCC  
N3  
P9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
VSS  
N4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
VCC  
N5  
NC  
N6  
NC  
N7  
NC  
NC  
M2  
N8  
NC  
BPM1#  
VREF  
DEP1#  
DEP2#  
M3  
N9  
VSS  
VCC  
VSS  
M4  
N10  
N11  
M5  
INTEL CORPORATION  
51  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
M6  
NC  
N12  
VCC  
VSS  
NC  
P18  
NC  
R24  
DEP4#  
VSS  
PICD0  
VSS  
TCK  
M7  
NC  
N13  
U8  
P19  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
W2  
NC  
T1  
T2  
ADS#  
THERMDA  
VSS  
SLP#  
NC  
VCC  
VSS  
NC  
W23  
Y1  
T3  
U9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
T4  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
V2  
Y2  
T5  
NC  
Y3  
SMI#  
FERR#  
TESTLO  
NC  
T6  
NC  
Y4  
T7  
NC  
NC  
Y5  
T8  
NC  
INTR  
PREQ#  
TESTHI  
TRST#  
VSS  
VSS  
VCCP  
NC  
Y6  
T9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
Y7  
NC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
U1  
Y8  
NC  
Y9  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
NC  
NC  
W3  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
AA1  
AA2  
NC  
W4  
PICD1  
PICCLK  
TESTHI3  
BP2#  
BPM0#  
BSEL  
NC  
W5  
W6  
W7  
NC  
W8  
NC  
NC  
W9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
NC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
BP3#  
VSS  
PRDY#  
BINIT#  
VSS  
AERR#  
VCCP  
THERMDC  
NC  
V3  
NC  
V4  
TMS  
VCCP  
NC  
NC  
V5  
NC  
V6  
NC  
V7  
NC  
VCCP  
VCCP  
VSS  
STPCLK#  
A20M#  
V8  
NC  
U2  
V9  
VCC  
VSS  
VCC  
U3  
V10  
V11  
NC  
U4  
NC  
52  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
U5  
TDI  
NC  
V12  
VSS  
VCC  
VSS  
NC  
W20  
NC  
AA3  
INIT#  
IERR#  
NC  
U6  
V13  
W21  
VSS  
VSS  
NC  
AA4  
AA5  
AD24  
AE1  
U7  
NC  
V14  
W22  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AB1  
NC  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AC1  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AD1  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
AE2  
NC  
NC  
NC  
AE3  
NC  
NC  
NC  
AE4  
NC  
NC  
VSS  
VSS  
VSS  
VCCP  
VCC  
TESTHI2  
NC  
AE5  
NC  
NC  
AE6  
NC  
NC  
AE7  
NC  
NC  
AD2  
AE8  
NC  
NC  
AD3  
AE9  
NC  
NC  
NC  
AD4  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AF1  
NC  
NC  
NC  
AD5  
NC  
NC  
NC  
AD6  
NC  
NC  
NC  
FLUSH#  
TESTHI2  
NC  
AD7  
NC  
NC  
NC  
AC2  
AD8  
NC  
NC  
NC  
AC3  
AD9  
NC  
NC  
NC  
AC4  
VSS  
TESTLO  
NC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
NC  
NC  
NC  
AC5  
NC  
NC  
NMI  
TDO  
IGNNE#  
NC  
AC6  
NC  
NC  
AC7  
NC  
NC  
NC  
AB2  
AC8  
NC  
NC  
NC  
AB3  
AC9  
NC  
NC  
NC  
AB4  
VCCP  
NC  
AC10  
AC11  
AC12  
AC13  
NC  
NC  
NC  
AB5  
NC  
NC  
NC  
AB6  
NC  
NC  
NC  
NC  
AB7  
NC  
NC  
NC  
NC  
INTEL CORPORATION  
53  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.3 Signal Listing in Order by Pin/Ball Number  
Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name Pin/Ball Signal Name  
No.  
No.  
No.  
No.  
AB8  
NC  
AC14  
AC15  
AC16  
AC17  
AF11  
AF12  
AF13  
AF14  
AF15  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AD20  
AD21  
AD22  
AD23  
AF16  
AF17  
AF18  
AF19  
AF20  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AF2  
VSS  
BCLK  
VSS  
PLL2  
NC  
AB9  
AB10  
AB11  
AF6  
NC  
AF3  
NC  
AF4  
NC  
AF5  
PLL1  
VSS  
NC  
AF21  
AF22  
AF23  
AF24  
AF7  
NC  
AF8  
NC  
AF9  
NC  
NC  
AF10  
NC  
54  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.4 Signal Listing in Order by Signal Name  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
F2  
A3#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
C7  
A33#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
2.5V CMOS Input  
H3  
F4  
A4#  
A7  
A34#  
A35#  
A20M#  
ADS#  
AERR#  
AP0#  
AP1#  
BCLK  
BERR#  
BINIT#  
BNR#  
BP2#  
BP3#  
BPM0#  
BPM1#  
BPRI#  
BREQ0#  
BSEL  
D0#  
A5#  
B3  
G3  
H2  
G2  
H4  
F5  
A6#  
AA2  
T2  
A7#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Processor Clock Input  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
2.5V CMOS Input  
A8#  
U1  
A9#  
H5  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
J4  
F1  
AF3  
C9  
E2  
E3  
G5  
F3  
T23  
J2  
U23  
T20  
U24  
R20  
L2  
E1  
C5  
E9  
B4  
D7  
E7  
B5  
D6  
B7  
C4  
A6  
D9  
D1  
A4  
B6  
C6  
E10  
R1  
V2  
A15  
C16  
B18  
A19  
C15  
A18  
B15  
B19  
E14  
D16  
C17  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
D1#  
D2#  
D3#  
D4#  
D5#  
D6#  
D7#  
D8#  
D9#  
D10#  
INTEL CORPORATION  
55  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.4 Signal Listing in Order by Signal Name  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
E16  
E15  
B20  
C18  
B16  
A22  
B17  
A21  
C19  
D18  
C20  
D19  
E18  
C21  
E19  
B21  
C22  
D22  
C23  
E17  
B22  
D21  
D24  
E22  
C24  
F21  
F20  
G20  
E23  
J24  
D11#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
J22  
H21  
F22  
G22  
H20  
L23  
J21  
J20  
H23  
M22  
H22  
J23  
L24  
L20  
L22  
M21  
K23  
M23  
K20  
M24  
M20  
N23  
N22  
P2  
D41#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
DEP5#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBSY#  
DEFER#  
DEP0#  
DEP1#  
DEP2#  
DEP3#  
DEP4#  
RS0#  
M1  
P20  
R22  
R23  
P21  
R24  
R2  
P22  
56  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.4 Signal Listing in Order by Signal Name  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
P23  
N20  
P4  
DEP6#  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Control  
2.5V Open Drain Output  
2.5V CMOS Input  
R4  
RS1#  
Low Power GTL+ Input  
Low Power GTL+ Input  
Low Power GTL+ Input  
2.5V CMOS Input  
2.5V CMOS Input  
2.5V CMOS Input  
JTAG Clock Input  
JTAG Input  
DEP7#  
DRDY#  
EDGCTRLN  
FERR#  
FLUSH#  
HIT#  
R3  
RS2#  
J3  
RSP#  
B2  
T5  
SLP#  
Y4  
Y3  
AA1  
Y2  
U5  
SMI#  
AC1  
P5  
STPCLK#  
TCK  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
2.5V Open Drain Output  
2.5V CMOS Input  
N3  
HITM#  
IERR#  
TDI  
AA4  
AB2  
AA3  
V21  
M4  
AB1  
B8  
TDO  
JTAG Output  
IGNNE#  
INIT#  
TESTHI  
TESTHI  
TESTHI  
TESTHI2  
TESTHI2  
TESTHI3  
TESTHI3  
TESTHI3  
TESTHI3  
TESTHI3  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
CMOS Test Input  
CMOS Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
GTL+ Test Input  
2.5V CMOS Input  
L5  
INTR  
2.5V CMOS Input  
V23  
AC2  
AD4  
J1  
LOCK#  
NMI  
Low Power GTL+ I/O  
2.5V CMOS Input  
AA24  
U21  
W23  
U20  
AF6  
AF5  
T22  
V22  
R5  
PICCLK  
PICD0  
APIC Clock Input  
2.5V Open Drain I/O  
2.5V Open Drain I/O  
PLL Analog Voltage  
PLL Analog Voltage  
Low Power GTL+ Output  
2.5V CMOS Input  
K2  
PICD1  
K5  
PLL1  
M3  
U22  
PLL2  
PRDY#  
PREQ#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESET#  
RP#  
D3  
D4  
E4  
TESTLO  
TESTLO  
TESTLO  
TESTLO  
TESTLO  
THERMDA  
THERMDC  
TMS  
Test Input  
Test Input  
2.5V CMOS Input  
Test Input  
L4  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ I/O  
Low Power GTL+ Input  
Low Power GTL+ I/O  
GTL+ Reference Voltage  
Y5  
AC5  
T3  
Test Input  
L1  
Test Input  
M2  
Thermal Diode Anode  
Thermal Diode Cathode  
JTAG Input  
N2  
U3  
V4  
M5  
W2  
J5  
L3  
C8  
TRDY#  
TRST#  
Low Power GTL+ Input  
JTAG Input  
P3  
D10  
VREF  
VREF  
GTL+ Reference Voltage  
D15  
VREF  
GTL+ Reference Voltage  
L21  
VREF  
GTL+ Reference Voltage  
INTEL CORPORATION  
57  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.4 Signal Listing in Order by Signal Name  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
Pin/Ball  
No.  
Signal  
Name  
Signal Buffer Type  
E8  
VREF  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
N5  
VREF  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
E21  
R21  
58  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 5.5 Voltage and No-Connect Pin/Ball Locations  
Ball Numbers  
Signal  
Name  
NC  
A10, A12, A13, A24, B9, B10, B11, B12, B13, B14, C2, C3, C10, C11, C12, C13, C14, D12, D13,  
E6, E11, E12, E13, E24, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F23, G6,  
G7, G8, G17, G18, G19, G23, H6, H7, H8, H17, H18, H19, J6, J7, J8, J17, J18, J19, K6, K7, K8,  
K17, K18, K19, L6, L7, L8, L17, L18, L19, M6, M7, M8, M17, M18, M19, N6, N7, N8, N17, N18, N19,  
P6, P7, P8, P17, P18, P19, R6, R7, R8, R17, R18, R19, T6, T7, T8, T17, T18, T19, U4, U6, U7, U8,  
U17, U18, U19, V3, V6, V7, V8, V17, V18, V19, V20, W6, W7, W8, W17, W18, W19, W20, Y6,  
Y7, Y8, Y17, Y18, Y19, Y20, Y21, AA5, AA6, AA7, AA8, AA9, AA10, AA11, AA12, AA13,  
AA14, AA15, AA16, AA17, AA18, AA19, AA20, AA21, AA22, AA23, AB3, AB5, AB6, AB7,  
AB8, AB9, AB10, AB11, AB12, AB13, AB14, AB15, AB16, AB17, AB18, AB19, AB20, AB21,  
AB22, AB23, AB24, AC3, AC6, AC7, AC8, AC9, AC10, AC11, AC12, AC13, AC14, AC15, AC16,  
AC17, AC18, AC19, AC20, AC21, AC22, AD5, AD6, AD7, AD8, AD9, AD10, AD11, AD12, AD13,  
AD14, AD15, AD16, AD17, AD18, AD19, AD20, AD21, AD22, AD23, AD24, AE8, AE9, AE10,  
AE11, AE12, AE13, AE14, AE15, AE16, AE17, AE18, AE19, AE20, AE21, AE22, AE23, AE24, AF1,  
AF8, AF9, AF10, AF11, AF12, AF13, AF14, AF15, AF16, AF17, AF18, AF19, AF20, AF21, AF22,  
AF23, AF24  
VCC  
G10, G12, G14, G16, H9, H11, H13, H15, J10, J12, J14, J16, K9, K11, K13, K15, L10, L12, L14,  
L16, M9, M11, M13, M15, N10, N12, N14, N16, P9, P11, P13, P15, R10, R12, R14, R16, T9, T11,  
T13, T15, U10, U12, U14, U16, V9, V11, V13, V15, W10, W12, W14, W16, Y9, Y11, Y13, Y15,  
AD3  
VCCP  
VSS  
F24, U2, V5, W5, Y22, Y23, AB4, AD2  
A2, A3, A5, A8, A9, A11, A14, A16, A17, A20, A23, B1, B23, B24, C1, D2, D5, D8, D11, D14,  
D17, D20, D23, E5, E20, G4, G9, G11, G13, G15, G21, H10, H12, H14, H16, J9, J11, J13, J15, K1,  
K3, K4, K10, K12, K14, K16, K21, K22, K24, L9, L11, L13, L15, M10, M12, M14, M16, N1, N4, N9,  
N11, N13, N15, N21, N24, P1, P10, P12, P14, P16, P24, R9, R11, R13, R15, T1, T4, T10, T12, T14,  
T16, T21, T24, U9, U11, U13, U15, V10, V12, V14, V16, W3, W4, W9, W11, W13, W15, W21,  
W22, Y1, Y10, Y12, Y14, Y16, Y24, AC4, AC23, AC24, AD1, AE1, AE2, AE3, AE4, AE5, AE6,  
AE7, AF2, AF4, AF7  
INTEL CORPORATION  
59  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
6.  
THERMAL SPECIFICATIONS  
The processor die must be clean before the thermal  
solution is attached or the processor may be  
damaged.  
In order to achieve proper cooling of the processor,  
a thermal solution (for example a heat spreader,  
heat pipe, or other heat transfer system) must  
make firm contact to the exposed processor die.  
Table 6.1 Mobile Intel Celeron® Processor Power Specifications  
Symbol  
Parameter  
Thermal Design Power  
Min  
Typ1  
Max  
20.7  
Unit  
Notes  
TDP  
at 466 MHz  
at 433 MHz  
at 400 MHz  
at 366 MHz  
at 333 MHz  
at 300 MHz  
at 266 MHz  
W
At 100°C 2,3  
19.4  
13.8  
13.1  
11.8  
11.1  
9.8  
W
W
W
W
W
W
W
at 266 MHz at Low Voltage  
7.9  
PSGNT  
Stop Grant and Auto Halt power  
at 400 MHz and Below  
at 433 and 466 MHz  
At 50°C 3  
At 50°C 3  
At 50°C 3  
1.25  
2.00  
W
W
PQS  
Quick Start and Sleep power  
at 400 MHz and Below  
at 433 and 466 MHz  
0.50  
0.80  
W
W
PDSLP  
Deep Sleep power  
Case Temperature  
at 400 MHz and Below  
at 433 and 466 MHz  
0.15  
0.25  
W
W
0
100  
°C  
TCASE  
NOTES:  
1. TDPTYP is a recommendation based on the power dissipation of the processor while executing publicly  
available software under normal operating conditions at nominal voltages. Contact your Intel Field Sales  
Representative for further information.  
2. TDPMAX is a specification of the total power dissipation of the processor while executing a worst-case  
instruction mix under normal operating conditions at nominal voltages. It includes the power dissipated  
by all of the components within the processor. Specified by design/characterization.  
3. Not 100% tested or guaranteed. The power specifications are composed of the current of the  
processor on the various voltage planes. These currents are measured and specified at high  
temperature in Section 3.5. The 50°C power specifications are determined by characterization of the  
processor currents at higher temperatures.  
60  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
During all operating environments, the processor  
ensuring the thermal diode and A/D converter  
accurately tracks the processor temperature.  
The designer should verify this by correlating  
“sensor” output temperature with a thermocouple  
placed directly on the die surface. Refer to  
section 6.2 for more details.  
case temperature, TCASE, must be within the  
specified range of 0°C to 100°C. An A/D  
converter attached to the thermal diode can be  
used to measure the processor core  
temperature to ensure compliance with this  
specification. The designer is responsible for  
system electronics may use the diode to monitor  
the die temperature of the mobile Intel Celeron  
processor for thermal management purposes.  
Table 6.2 and Table 6.3 provide the diode interface  
and specifications.  
6.1  
Thermal Diode  
The mobile Intel Celeron processor has an on-die  
diode that can be used to monitor the die  
temperature. A thermal sensor located on the  
Table 6.2 Thermal Diode Interface  
Ball Number  
Signal Name  
Signal Description  
Thermal diode anode  
Thermal diode cathode  
THERMDA  
THERMDC  
T3  
U3  
Table 6.3. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Note 1  
Notes 2, 3, 4  
IFW  
Forward Bias Current  
Diode Ideality Factor  
5
500  
mA  
n
1.0000 1.0065 1.0173  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not  
support or recommend operation of the thermal diode when the processor power supplies are not  
within their specified tolerance range.  
2. At 35°C with a forward bias of 630mV.  
3. Not 100% tested. Specified by design/characterization.  
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode I/V  
equation:  
INTEL CORPORATION  
61  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
æ qVD  
I = I O × ç  
- 1÷÷ö  
ç
nkT  
e
è
ø
62  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
·
Attach the thermocouple bead or junction to  
the center of the die on the top package  
surface using highly thermally conductive  
cements. Intel’s laboratory testing was done  
using Omega Bond (part number: OB100).  
6.2  
Case Temperature  
To verify that the proper T  
(case temperature)  
CASE  
is maintained for the mobile Intel Celeron processor,  
it should be measured at the center of the die on  
the package top surface. To minimize any  
measurement errors, the following techniques are  
recommended:  
Thermal  
grease  
provides  
equivalent  
temperature measurement results when used  
correctly but is not as mechanically resilient as  
cement.  
·
Use 36 gauge or finer diameter K, T, or J type  
thermocouples. Intel’s laboratory testing was  
done using a thermocouple made by Omega  
(part number: 5TC-TTK-36-36).  
·
The thermocouple should be attached at a 90°  
angle as shown in Figure 6.1. A horizontal  
thermocouple mount is acceptable.  
V0028-00  
Figure 6.1 Technique for Measuring Case Temperature  
INTEL CORPORATION  
63  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
7.  
PROCESSOR INITIALIZATION  
AND CONFIGURATION  
7.1.2  
System Bus Frequency  
The current generation mobile Intel Celeron  
processor will only function with a system bus  
frequency of 66 MHz, but future generations  
may operate at 100 MHz. Bit position 19 of the  
Power-On Configuration register indicates at  
which speed a processor will run. A ‘0’ in bit 19  
indicates a 66-MHz bus frequency and a ‘1’  
indicates a 100-MHz bus frequency.  
7.1  
Description  
The mobile Intel Celeron processor has some  
configuration options that are determined by  
hardware and some that are determined by  
software. The processor samples its hardware  
configuration at reset, on the active-to-inactive  
transition of RESET#. Most of the configuration  
options for the mobile Intel Celeron processor are  
identical to those of the Pentium II processor.  
The Pentium® II Processor Developer’s Manual  
(order number 243502) describes these  
configuration options. New configuration options  
for the mobile Intel Celeron processor are  
described in the remainder of this section.  
7.1.3  
APIC Disable  
The APIC has been removed as a feature of the  
mobile Intel Celeron processor. The PICCLK and  
PICD[1:0] signals must be tied to VSS with a 1KW  
resistor to disable the APIC. Driving PICD0 low at  
reset has the effect of clearing the APIC Global  
Enable bit in the APIC Base MSR. This bit is  
normally set when the processor is reset, but  
when it is cleared the APIC is completely  
disabled until the next reset.  
7.1.1  
Quick Start Enable  
The processor normally enters the Stop Grant  
state when the STPCLK# signal is asserted, but  
it will enter the Quick Start state instead if A15#  
is sampled active on the RESET# signal’s active-  
to-inactive transition. The Quick Start state  
supports snoops from the bus priority device like  
the Stop Grant state, but it does not support  
symmetric master snoops, nor is the latching of  
interrupts supported. A ‘1’ in bit position 5 of the  
Power-On Configuration register indicates that  
the Quick Start state has been enabled.  
7.2  
Clock Frequencies and Ratios  
The mobile Intel Celeron processor uses a clock  
design in which the bus clock is multiplied by a  
ratio to produce the processor’s internal (or  
“core”) clock. The ratio used is programmed into  
the processor during Reset.  
Section 3.3  
describes how this is done. The bus ratio  
programmed into the processor is visible in bit  
positions 22 to 25 of the Power-On Configuration  
register. Table 3.4 shows the 4-bit codes in the  
Power-On Configuration register and their  
corresponding bus ratios.  
64  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
8.  
PROCESSOR INTERFACE  
ADS# (I/O - Low Power GTL+)  
The ADS# (Address Strobe) signal is asserted to  
indicate the validity of a transaction address on the  
A[35:3]# signals. Both bus agents observe the  
ADS# activation to begin parity checking, protocol  
checking, address decode, internal snoop, or  
deferred reply ID match operations associated with  
the new transaction. This signal must be connected  
to the appropriate balls on both agents on the  
system bus.  
8.1  
Alphabetical Signal Reference  
A[35:3]# (I/O - Low Power GTL+)  
36  
The A[35:3]# (Address) signals define a 2 -byte  
physical memory address space. When ADS# is  
active, these signals transmit the address of a  
transaction; when ADS# is inactive, these signals  
transmit transaction information. These signals  
must be connected to the appropriate balls of both  
agents on the system bus. The A[35:24]# signals  
are protected with the AP1# parity signal, and the  
A[23:3]# signals are protected with the AP0# parity  
signal.  
AERR# (I/O - Low Power GTL+)  
The AERR# (Address Parity Error) signal is  
observed and driven by both system bus agents  
and if used, must be connected to the appropriate  
balls of both agents on the system bus. AERR#  
observation is optionally enabled during power-on  
On the active-to-inactive transition of RESET#, each  
processor bus agent samples A[35:3]# signals to  
determine its power-on configuration. See Section  
7 of this document and the Pentium® II Processor  
Developer’s Manual for details.  
configuration; if enabled,  
a valid assertion of  
AERR# aborts the current transaction.  
If AERR# observation is disabled during power-on  
configuration, a central agent may handle an  
assertion of AERR# as appropriate to the error  
handling architecture of the system.  
A20M# (I - 2.5V tolerant)  
If the A20M# (Address-20 Mask) input signal is  
asserted, the processor masks physical address  
bit 20 (A20#) before looking up a line in any internal  
cache and before driving a read/write transaction  
on the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-Mbyte  
boundary. Assertion of A20M# is only supported in  
real mode.  
The AERR# processor bus pin is removed as a  
processor feature for mobile Intel Celeron  
processor at 400 MHz and above. The pin must still  
be terminated to Vcc through a 120W pull-up  
resistor. But the processor must not be configured  
to drive or observe the pin.  
AP[1:0]# (I/O - Low Power GTL+)  
During active RESET#, the processor begins  
sampling the A20M#, IGNNE#, INTR, and NMI values  
to determine the ratio of core-clock frequency to  
bus-clock frequency (see Table 3.4). On the  
active-to-inactive transition of RESET#, the  
processor latches these signals and freezes the  
frequency ratio internally. System logic must then  
release these signals for normal operation.  
The AP[1:0]# (Address Parity) signals are driven by  
the request initiator along with ADS#, A[35:3]#,  
REQ[4:0]# and RP#. AP1# covers A[35:24]#. AP0#  
covers A[23:3]#. A correct parity signal is high if an  
even number of covered signals are low and low if  
an odd number of covered signals are low. This  
allows parity to be high when all the covered  
signals are high. AP[1:0]# should be connected to  
the appropriate balls on both agents on the system  
bus.  
INTEL CORPORATION  
65  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
count information is lost. The L1 and L2 caches are  
BCLK (I - 2.5V tolerant)  
not affected.  
The BCLK (Bus Clock) signal determines the  
system bus frequency. Both system bus agents  
must receive this signal to drive their outputs and  
latch their inputs on the BCLK rising edge. All  
external timing parameters are specified with  
respect to the BCLK signal.  
If BINIT# is disabled during power-on configuration,  
a central agent may handle an assertion of BINIT#  
as appropriate to the Machine Check Architecture  
(MCA) of the system.  
BNR# (I/O - Low Power GTL+)  
BERR# (I/O - Low Power GTL+)  
The BNR# (Block Next Request) signal is used to  
assert a bus stall by any bus agent that is unable to  
accept new bus transactions. During a bus stall,  
the current bus owner cannot issue any new  
transactions.  
The BERR# (Bus Error) signal is asserted to  
indicate an unrecoverable error without a bus  
protocol violation. It may be driven by either system  
bus agent and must be connected to the  
appropriate balls of both agents, if used. However,  
mobile Intel Celeron processors do not observe  
assertions of the BERR# signal.  
Since multiple agents may need to request a bus  
stall simultaneously, BNR# is a wired-OR signal  
which must be connected to the appropriate balls  
of both agents on the system bus. In order to avoid  
wire-OR errors associated with simultaneous edge  
transitions driven by multiple drivers, BNR# is  
activated on specific clock edges and sampled on  
specific clock edges.  
BERR# assertion conditions are defined by the  
system configuration. Configuration options enable  
the BERR# driver as follows:  
·
·
Enabled or disabled  
Asserted optionally for internal errors along  
with IERR#  
BP[3:2]# (I/O - Low Power GTL+)  
·
·
Asserted optionally by the request initiator of a  
bus transaction after it observes an error  
The BP[3:2]# (Breakpoint) signals are the System  
Support group Breakpoint signals. They are outputs  
from the processor that indicate the status of  
breakpoints.  
Asserted by any bus agent when it observes  
an error in a bus transaction  
BINIT# (I/O - Low Power GTL+)  
BPM[1:0]# (I/O - Low Power GTL+)  
The BINIT# (Bus Initialization) signal may be  
observed and driven by both system bus agents  
and must be connected to the appropriate balls of  
both agents, if used. If the BINIT# driver is enabled  
during the power-on configuration, BINIT# is  
asserted to signal any bus condition that prevents  
reliable future information.  
The BPM[1:0]# (Breakpoint Monitor) signals are  
breakpoint and performance monitor signals. They  
are outputs from the processor that indicate the  
status of breakpoints and programmable counters  
used for monitoring processor performance.  
BPRI# (I - Low Power GTL+)  
If BINIT# is enabled during power-on configuration  
and BINIT# is sampled asserted, all bus state  
machines are reset and any data which was in  
transit is lost. All agents reset their rotating ID for  
bus arbitration to the state after reset, and internal  
The BPRI# (Bus Priority Request) signal is used to  
arbitrate for ownership of the system bus. It must  
be connected to the appropriate balls on both  
agents on the system bus. Observing BPRI# active  
(as asserted by the priority agent) causes the  
66  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
processor to stop issuing new requests, unless  
DEFER# (I - Low Power GTL+)  
such requests are part of an ongoing locked  
operation. The priority agent keeps BPRI# asserted  
until all of its requests are completed and then  
releases the bus by deasserting BPRI#.  
The DEFER# (Defer) signal is asserted by an agent  
to indicate that the transaction cannot be  
guaranteed in-order completion. Assertion of  
DEFER# is normally the responsibility of the  
addressed memory agent or I/O agent. This signal  
must be connected to the appropriate balls on both  
agents on the system bus.  
BREQ0# (I/O - Low Power GTL+)  
The BREQ0# (Bus Request) signal is a processor  
Arbitration Bus signal. The processor indicates that  
it wants ownership of the system bus by asserting  
the BREQ0# signal.  
DEP[7:0]# (I/O - Low Power GTL+)  
The DEP[7:0]# (Data Bus ECC Protection) signals  
provide optional ECC protection for the data bus.  
They are driven by the agent responsible for  
driving D[63:0]# and must be connected to the  
appropriate balls on both agents on the system bus  
if they are used. During power-on configuration,  
DEP[7:0]# signals can be enabled for ECC checking  
or disabled for no checking.  
During power-up configuration, the central agent  
must assert the BREQ0# bus signal. The processor  
samples BREQ0# on the active-to-inactive transition  
of RESET#.  
BSEL (I - 2.5V Tolerant)  
The BSEL (System Bus Speed Select) signal is  
used to configure the processor for the system  
bus frequency. A ‘1’ on this signal configures the  
DRDY# (I/O - Low Power GTL+)  
processor for 100-MHz operation and  
configures it for 66-MHz operation. This signal must  
be connected to VSS  
a ‘0’  
The DRDY# (Data Ready) signal is asserted by the  
data driver on each data transfer, indicating valid  
data on the data bus. In a multi-cycle data transfer,  
DRDY# can be deasserted to insert idle clocks.  
This signal must be connected to the appropriate  
balls on both agents on the system bus.  
.
D[63:0]# (I/O - Low Power GTL+)  
The D[63:0]# (Data) signals are the data signals.  
These signals provide a 64-bit data path between  
both system bus agents, and must be connected to  
the appropriate balls on both agents. The data  
driver asserts DRDY# to indicate a valid data  
transfer.  
EDGCTRLN (Analog)  
This signal is used to configure the edge rate of the  
Low Power GTL+ output buffers. Connect the  
EDGCTRLN (Edge Rate Control N-FET) signal to VCC  
with a 51-W, 1-% resistor.  
DBSY# (I/O - Low Power GTL+)  
FERR# (O - 2.5V Tolerant Open-drain)  
The DBSY# (Data Bus Busy) signal is asserted by  
the agent responsible for driving data on the  
system bus to indicate that the data bus is in use.  
The data bus is released after DBSY# is  
deasserted. This signal must be connected to the  
appropriate balls on both agents on the system  
bus.  
The FERR# (Floating-point Error) signal is asserted  
when the processor detects an unmasked floating-  
point error. FERR# is similar to the ERROR# signal  
on the Intel387 coprocessor and is included for  
compatibility with systems using DOS-type floating-  
point error reporting.  
INTEL CORPORATION  
67  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
error. IGNNE# has no affect when the NE bit in  
FLUSH# (I - 2.5V Tolerant)  
control register 0 (CR0) is set.  
When the FLUSH# (Flush) input signal is asserted,  
the processor writes back all internal cache lines in  
the Modified state and invalidates all internal cache  
lines. At the completion of a flush operation, the  
During active RESET#, the processor begins  
sampling the A20M#, IGNNE#, INTR, and NMI values  
to determine the ratio of core-clock frequency to  
bus-clock frequency (see Table 3.4). On the  
active-to-inactive transition of RESET#, the  
processor latches these signals and freezes the  
frequency ratio internally. System logic must then  
release these signals for normal operation.  
processor  
issues  
a
Flush  
Acknowledge  
transaction. The processor stops caching any new  
data while the FLUSH# signal remains asserted.  
On the active-to-inactive transition of RESET#, each  
processor bus agent samples FLUSH# to determine  
its power- on configuration.  
INIT# (I - 2.5V Tolerant)  
The INIT# (Initialization) signal is asserted to reset  
integer registers inside the processor without  
affecting the internal (L1 or L2) caches or the  
floating-point registers. The processor begins  
execution at the power-on reset vector configured  
during power-on configuration. The processor  
continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous input.  
HIT# (I/O - Low Power GTL+), HITM#  
(I/O - Low Power GTL+)  
The HIT# (Snoop Hit) and HITM# (Hit Modified)  
signals convey transaction snoop operation  
results, and must be connected to the appropriate  
balls on both agents on the system bus. Either bus  
agent can assert both HIT# and HITM# together to  
indicate that it requires a snoop stall, which can be  
continued by reasserting HIT# and HITM# together.  
If INIT# is sampled active on RESET#'s active-to-  
inactive transition, then the processor executes its  
built-in self test (BIST).  
IERR# (O - 2.5V Tolerant Open-drain)  
INTR (I - 2.5V Tolerant)  
The IERR# (Internal Error) signal is asserted by the  
processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the system bus. This  
transaction may optionally be converted to an  
external error signal (e.g., NMI) by system logic.  
The processor will keep IERR# asserted until it is  
handled in software or with the assertion of  
RESET#, BINIT, or INIT#.  
The INTR (Interrupt) signal indicates that an external  
interrupt has been generated. The interrupt is  
maskable using the IF bit in the EFLAGS register. If  
the IF bit is set, the processor vectors to the  
interrupt handler after completing the current  
instruction execution. Upon recognizing the  
interrupt request, the processor issues a single  
Interrupt Acknowledge (INTA) bus transaction.  
INTR must remain active until the INTA bus  
transaction to guarantee its recognition. INTR must  
be deasserted for a minimum of two clocks to  
guarantee its inactive recognition.  
IGNNE# (I - 2.5V Tolerant)  
The IGNNE# (Ignore Numeric Error) signal is  
asserted to force the processor to ignore a  
numeric error and continue to execute non-control  
floating-point instructions. If IGNNE# is deasserted,  
the processor freezes on a non-control floating-  
point instruction if a previous instruction caused an  
During active RESET#, the processor begins  
sampling the A20M#, IGNNE#, INTR, and NMI values  
to determine the ratio of core-clock frequency to  
bus-clock frequency (see Table 3.4). On the  
active-to-inactive transition of RESET#, the  
68  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
processor latches these signals and freezes the  
PICCLK (I - 2.5V Tolerant)  
frequency ratio internally. System logic must then  
release these signals for normal operation.  
The PICCLK (APIC Clock) signal is an input clock to  
the processor and system logic or I/O APIC that is  
required for operation of the processor, system  
logic and I/O APIC components on the APIC bus.  
LOCK# (I/O - Low Power GTL+)  
The LOCK# (Lock) signal indicates to the system  
that  
a sequence of transactions must occur  
PICD[1:0] (I/O - 2.5V Tolerant Open-drain)  
atomically. This signal must be connected to the  
appropriate balls on both agents on the system  
The PICD[1:0] (APIC Data) signals are used for bi-  
directional serial message passing on the APIC bus.  
They must be connected to the appropriate balls of  
all APIC bus agents, including the processor and  
the system logic or I/O APIC components. If the  
PICD0 signal is sampled low on the active-to-  
inactive transition of the RESET# signal, then the  
APIC is hardware disabled.  
bus. For  
a locked sequence of transactions,  
LOCK# is asserted from the beginning of the first  
transaction through the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate  
for bus ownership, it waits until it observes LOCK#  
deasserted. This enables the processor to retain  
bus ownership throughout the bus locked operation  
and guarantee the atomicity of lock.  
PRDY# (O - Low Power GTL+)  
The PRDY# (Probe Ready) signal is a processor  
output used by debug tools to determine processor  
debug readiness.  
NMI (I - 2.5V Tolerant)  
The NMI (Non-Maskable Interrupt) indicates that an  
external interrupt has been generated. Asserting  
NMI causes an interrupt with an internally supplied  
vector value of 2. An external interrupt-  
acknowledge transaction is not generated. If NMI is  
asserted during the execution of an NMI service  
routine, it remains pending and is recognized after  
the IRET is executed by the NMI service routine. At  
most, one assertion of NMI is held pending.  
PREQ# (I - 2.5V Tolerant)  
The PREQ# (Probe Request) signal is used by  
debug tools to request debug operation of the  
processor.  
PWRGOOD (I - 2.5V Tolerant)  
PWRGOOD (Power Good) is a 2.5V tolerant input.  
The processor requires this signal to be a clean  
NMI is rising-edge sensitive. Active and inactive  
pulse widths must be a minimum of two clocks.  
indication that clocks and the power supplies (VCC  
,
VCCP etc.) are stable and within their  
,
During active RESET#, the processor begins  
sampling the A20M#, IGNNE#, INTR, and NMI values  
to determine the ratio of core-clock frequency to  
bus-clock frequency (see Table 3.4). On the  
active-to-inactive transition of RESET#, the  
processor latches these signals and freezes the  
frequency ratio internally. System logic must then  
release these signals for normal operation.  
specifications. Clean implies that the signal will  
remain low, (capable of sinking leakage current)  
and without glitches, from the time that the power  
supplies are turned on, until they come within  
specification. The signal will then transition  
monotonically to a high (2.5V) state. Figure 8.1  
illustrates the relationship of PWRGOOD to other  
system signals. PWRGOOD can be driven inactive  
at any time, but clocks and power must again be  
stable before the rising edge of PWRGOOD. It must  
INTEL CORPORATION  
69  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
also meet the minimum pulse width specified in  
Table 3.14 (Section 3.5), and be followed by a 1 ms  
RESET# pulse.  
The PWRGOOD signal, which must be supplied to  
the processor, is used to protect internal circuits  
against voltage sequencing issues. The PWRGOOD  
signal should be driven high throughout boundary  
scan operation.  
REQ[4:0]# (I/O - Low Power GTL+)  
The REQ[4:0]# (Request Command) signals must be  
connected to the appropriate balls on both agents  
on the system bus. They are asserted by the  
current bus owner when it drives A[35:3]# to  
define the currently active transaction type.  
70  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
For a power-on type reset, RESET# must stay  
active for at least 1 msec after VCC and BCLK have  
reached their proper DC and AC specifications and  
after PWRGOOD has been asserted. When  
observing active RESET#, all bus agents will  
deassert their outputs within two clocks.  
RESET# (I - Low Power GTL+)  
Asserting the RESET# signal resets the processor  
to a known state and invalidates the L1 and L2  
caches without writing back Modified (M state)  
lines.  
BCLK  
VCC  
,
VCCP  
,
VREF  
VIH,min  
PWRGOOD  
1 msec  
RESET#  
D0026-00  
Figure 8.1 PWRGOOD Relationship at Power-On  
A number of bus signals are sampled at the active-  
to-inactive transition of RESET# for the power-on  
configuration. The configuration options are  
described in Section 7 and in the Pentium® II  
Processor Developer’s Manual.  
RP# (I/O - Low Power GTL+)  
The RP# (Request Parity) signal is driven by the  
request initiator and provides parity protection on  
ADS# and REQ[4:0]#. RP# should be connected to  
the appropriate balls on both agents on the system  
bus.  
Unless its outputs are tri-stated during power-on  
configuration, after an active-to-inactive transition  
of RESET#, the processor optionally executes its  
built-in self-test (BIST) and begins program  
A correct parity signal is high if an even number of  
covered signals are low and low if an odd number  
of covered signals are low. This definition allows  
parity to be high when all covered signals are high.  
execution  
at  
reset-vector  
000FFFF0H  
or  
FFFFFFF0H. RESET# must be connected to the  
appropriate balls on both agents on the system  
bus.  
RS[2:0]# (I - Low Power GTL+)  
The RS[2:0]# (Response Status) signals are driven  
by the response agent (the agent responsible for  
INTEL CORPORATION  
71  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
completion of the current transaction) and must be  
connected to the appropriate balls on both agents  
on the system bus.  
processor begins program execution from the SMM  
handler.  
STPCLK# (I - 2.5V Tolerant)  
RSP# (I - Low Power GTL+)  
The STPCLK# (Stop Clock) signal, when asserted,  
causes the processor to enter a low -power Stop  
Grant state. The processor issues a Stop Grant  
Acknowledge special transaction, and stops  
providing internal clock signals to all units except  
the bus and APIC units. The processor continues to  
snoop bus transactions and service interrupts  
while in the Stop Grant state. When STPCLK# is  
deasserted, the processor restarts its internal  
clock to all units and resumes execution. The  
assertion of STPCLK# has no effect on the bus  
clock.  
The RSP# (Response Parity) signal is driven by the  
response agent (the agent responsible for  
completion of the current transaction) during  
assertion of RS[2:0]#. RSP# provides parity  
protection for RS[2:0]#. RSP# should be connected  
to the appropriate balls on both agents on the  
system bus.  
A correct parity signal is high if an even number of  
covered signals are low and low if an odd number  
of covered signals are low. During Idle state of  
RS[2:0]# (RS[2:0]#=000), RSP# is also high since it  
is not driven by any agent guaranteeing correct  
parity.  
TCK (I - 2.5V Tolerant)  
The TCK (Test Clock) signal provides the clock  
input for the test bus (also known as the test  
access port).  
SLP# (I - 2.5V Tolerant)  
The SLP# (Sleep) signal, when asserted in the Stop  
Grant state, causes the processor to enter the  
Sleep state. During the Sleep state, the processor  
stops providing internal clock signals to all units,  
leaving only the Phase-Locked Loop (PLL) still  
running. The processor will not recognize snoop  
and interrupts in the Sleep state. The processor will  
only recognize changes in the SLP#, STPCLK#, and  
RESET# signals while in the Sleep state.  
TDI (I - 2.5V Tolerant)  
The TDI (Test Data In) signal transfers serial test  
data to the processor. TDI provides the serial input  
needed for JTAG support.  
TDO (O - 2.5V Tolerant Open-drain)  
The TDO (Test Data Out) signal transfers serial test  
data from the processor. TDO provides the serial  
output needed for JTAG support.  
If SLP# is deasserted, the processor exits Sleep  
state and returns to the Stop Grant state in which it  
restarts its internal clock to the bus and APIC  
processor units.  
THERMDA, THERMDC (Analog)  
SMI# (I - 2.5V Tolerant)  
The THERMDA (Thermal Diode Anode) and  
THERMDC (Thermal Diode Cathode) signals connect  
to the anode and cathode of the on-die thermal  
diode.  
The SMI# (System Management Interrupt) is  
asserted asynchronously by system logic. On  
accepting a System Management interrupt, the  
processor saves the current state and enters  
System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the  
72  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
TMS (I - 2.5V Tolerant)  
TRST# (I - 2.5V Tolerant)  
The TMS (Test Mode Select) signal is a JTAG  
support signal used by debug tools.  
The TRST# (Test Reset) signal resets the Test  
Access Port (TAP) logic. Mobile Intel Celeron  
processors do not self- reset during power on;  
therefore, it is necessary to drive this signal low  
during power-on reset.  
TRDY# (I - Low Power GTL+)  
The TRDY# (Target Ready) signal is asserted by  
the target to indicate that the target is ready to  
receive write or implicit writeback data transfer.  
TRDY# must be connected to the appropriate balls  
on both agents on the system bus.  
8.2  
Signal Summaries  
Table 8.1 through Table 8.4 list the attributes of the  
processor input, output, and I/O signals.  
Table 8.1 Input Signals  
Clock Signal Group  
Name  
A20M#  
Active Level  
Low  
Qualified  
Always  
Asynch  
CMOS  
BCLK  
High  
Low  
System Bus  
System Bus  
System Bus  
CMOS  
Always  
BPRI#  
BCLK  
Always  
DEFER#  
FLUSH#  
IGNNE#  
INIT#  
Low  
BCLK  
Always  
Low  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Always  
Low  
CMOS  
Always  
Low  
System Bus  
CMOS  
Always  
INTR  
High  
High  
High  
Low  
APIC disabled mode  
APIC disabled mode  
Always  
NMI  
CMOS  
PICCLK  
PREQ#  
PWRGOOD  
RESET#  
RS[2:0]#  
RSP#  
APIC  
Asynch  
Asynch  
BCLK  
Implementation  
Implementation  
System Bus  
System Bus  
System Bus  
Implementation  
Implementation  
Always  
High  
Low  
Always  
Always  
Low  
BCLK  
Always  
Low  
BCLK  
Always  
BSEL  
High  
Low  
Asynch  
Asynch  
Always  
SLP#  
Stop Grant state  
INTEL CORPORATION  
73  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 8.1 Input Signals  
Name  
Active Level  
Low  
Clock  
Asynch  
Asynch  
Signal Group  
CMOS  
Qualified  
Always  
SMI#  
STPCLK#  
TCK  
Low  
Implementation  
JTAG  
Always  
High  
TDI  
TCK  
JTAG  
TMS  
TCK  
JTAG  
TRDY#  
TRST#  
Low  
Low  
BCLK  
Asynch  
System Bus  
JTAG  
Response phase  
Table 8.2 Output Signals  
Name  
Active Level  
Clock  
Asynch  
Asynch  
BCLK  
Signal Group  
Open-Drain  
FERR#  
IERR#  
PRDY#  
TDO  
Low  
Low  
Low  
High  
Open-Drain  
Implementation  
JTAG  
TCK  
Table 8.3 Input/Output Signals (Single Driver)  
Name  
Active Level  
Low  
Clock  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
Signal Group  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
Qualified  
ADS#, ADS#+1  
Always  
A[35:3]#  
ADS#  
Low  
AP[1:0]#  
BREQ0#  
BP[3:2]#  
Low  
ADS#, ADS#+1  
Always  
Low  
Low  
Always  
BPM[1:0]#  
D[63:0]#  
Low  
Always  
Low  
DRDY#  
74  
INTEL CORPORATION  
MOBILE INTEL ® CELERON® PROCESSOR IN MICRO-PGA AND BGA PACKAGES AT  
466 MHZ, 433 MHZ, 400 MHZ, 366 MHZ, 333 MHZ, 300 MHZ, AND 266 MHZ DATASHEET  
Table 8.3 Input/Output Signals (Single Driver)  
Name  
DBSY#  
Active Level  
Low  
Clock  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
Signal Group  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
Qualified  
Always  
DEP[7:0]#  
DRDY#  
LOCK#  
REQ[4:0]#  
RP#  
Low  
DRDY#  
Low  
Always  
Low  
Always  
Low  
ADS#, ADS#+1  
ADS#, ADS#+1  
Low  
Table 8.4 Input/Output Signals (Multiple Driver)  
Name  
Active Level  
Low  
Clock  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
PICCLK  
Signal Group  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
APIC  
Qualified  
AERR#  
BERR#  
BINIT#  
BNR#  
ADS#+3  
Low  
Always  
Always  
Always  
Always  
Always  
Always  
Low  
Low  
HIT#  
Low  
HITM#  
PICD[1:0]  
Low  
High  
INTEL CORPORATION  
75  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY