KC80526GY850256 [INTEL]

Microprocessor, 32-Bit, 850MHz, CMOS, PBGA495, BGA2-495;
KC80526GY850256
型号: KC80526GY850256
厂家: INTEL    INTEL
描述:

Microprocessor, 32-Bit, 850MHz, CMOS, PBGA495, BGA2-495

文件: 总68页 (文件大小:1464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Pentium® III Processor Low  
Power  
700 MHz, 500 MHz and 400 MHz Processors in a BGA2 Package  
Datasheet  
Product Features  
I Processor core/bus speeds:  
700/100 MHz  
I Power Management Features  
Quick Start and Deep Sleep modes  
provide low power dissipation  
500/100 MHz  
I On-die thermal diode  
400/100 MHz  
I Fully compatible with previous Intel  
I Supports the Intel Architecture with  
microprocessors  
Dynamic Execution  
Binary compatible with all applications  
Support for Intel® MMXtechnology  
Support for Streaming SIMD Extensions  
I BGA2 packaging technology  
I On-die primary 16-Kbyte instruction cache  
and 16-Kbyte write-back data cache  
I On-die second level cache (256-Kbyte)  
I Integrated GTL+ termination  
I Integrated math coprocessor  
Supports thin form factor designs  
I Intel Processor Serial Number  
Exposed die enables more efficient heat  
dissipation  
Order Number: 273500-003  
April 2002  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked reservedor undefined.Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® Pentium® III Processor Low Power may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled  
platforms may require licenses from various entities, including Intel Corporation.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2002  
AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,  
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,  
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel  
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,  
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer  
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,  
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,  
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and  
other countries.  
*Other names and brands may be claimed as the property of others.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction....................................................................................................................................9  
1.1  
1.2  
1.3  
Overview.............................................................................................................................10  
Terminology........................................................................................................................11  
References .........................................................................................................................11  
2.0 Pentium® III Processor Low Power Features.........................................................................12  
2.1  
2.2  
Features in the Pentium® III Processor Low Power.........................................................12  
2.1.1 On-die GTL+ Termination......................................................................................12  
2.1.2 Streaming SIMD Extensions..................................................................................12  
Power Management............................................................................................................12  
2.2.1 Clock Control Architecture .....................................................................................12  
2.2.2 Normal State..........................................................................................................12  
2.2.3 Auto Halt State.......................................................................................................13  
2.2.4 Stop Grant State ....................................................................................................14  
2.2.5 Quick Start State....................................................................................................14  
2.2.6 HALT/Grant Snoop State.......................................................................................14  
2.2.7 Sleep State ............................................................................................................15  
2.2.8 Deep Sleep State...................................................................................................15  
2.2.9 Operating System Implications of Low-power States ............................................16  
2.2.10 GTL+ Signals.........................................................................................................16  
2.2.11 Pentium® III Processor Low Power CPUID.........................................................17  
3.0 Electrical Specifications .............................................................................................................17  
3.1  
Processor System Signals..................................................................................................17  
3.1.1 Power Sequencing Requirements .........................................................................19  
3.1.2 Test Access Port (TAP) Connection ......................................................................19  
3.1.3 Catastrophic Thermal Protection ...........................................................................19  
3.1.4 Unused Signals......................................................................................................19  
3.1.5 Signal State in Low-power States..........................................................................20  
3.1.5.1 System Bus Signals...............................................................................20  
3.1.5.2 CMOS and Open-drain Signals .............................................................20  
3.1.5.3 Other Signals .........................................................................................20  
Power Supply Requirements ..............................................................................................21  
3.2.1 Decoupling Recommendations..............................................................................21  
3.2.2 Voltage Planes.......................................................................................................21  
System Bus Clock and Processor Clocking........................................................................22  
Maximum Ratings...............................................................................................................22  
DC Specifications ...............................................................................................................23  
AC Specifications................................................................................................................26  
3.6.1 System Bus, Clock, APIC, TAP, CMOS, and Open-drain AC Specifications ........26  
3.2  
3.3  
3.4  
3.5  
3.6  
4.0 System Signal Simulations.........................................................................................................35  
4.1  
4.2  
4.3  
System Bus Clock (BCLK) and PICCLK AC Signal Quality Specifications ........................35  
GTL+ AC Signal Quality Specifications ..............................................................................36  
Non-GTL+ Signal Quality Specifications.............................................................................39  
4.3.1 PWRGOOD Signal Quality Specifications .............................................................39  
Datasheet  
3
Contents  
5.0 Mechanical Specifications..........................................................................................................40  
5.1  
5.2  
Surface-mount BGA2 Package Dimensions.......................................................................40  
Signal Listings.....................................................................................................................42  
6.0 Thermal Specifications ...............................................................................................................50  
6.1 Thermal Diode ....................................................................................................................51  
7.0 Processor Initialization and Configuration ...............................................................................52  
7.1  
Description..........................................................................................................................52  
7.1.1 Quick Start Enable.................................................................................................52  
7.1.2 System Bus Frequency..........................................................................................52  
7.1.3 APIC Enable ..........................................................................................................52  
Clock Frequencies and Ratios............................................................................................52  
7.2  
8.0 Processor Interface.....................................................................................................................53  
8.1  
Alphabetical Signal Reference............................................................................................53  
8.1.1 A[35:3]# (I/O - GTL+).............................................................................................53  
8.1.2 A20M# (I - 1.5 V Tolerant) .....................................................................................53  
8.1.3 ADS# (I/O - GTL+).................................................................................................53  
8.1.4 AERR# (I/O - GTL+) ..............................................................................................53  
8.1.5 AP[1:0]# (I/O - GTL+) ............................................................................................53  
8.1.6 BCLK (I - 2.5 V Tolerant) .......................................................................................54  
8.1.7 BERR# (I/O - GTL+) ..............................................................................................54  
8.1.8 BINIT# (I/O - GTL+)...............................................................................................54  
8.1.9 BNR# (I/O - GTL+).................................................................................................54  
8.1.10 BP[3:2]# (I/O - GTL+) ............................................................................................55  
8.1.11 BPM[1:0]# (I/O - GTL+) .........................................................................................55  
8.1.12 BPRI# (I - GTL+)....................................................................................................55  
8.1.13 BREQ0# (I/O - GTL+) ............................................................................................55  
8.1.14 BSEL[1:0] (I 3.3 V Tolerant)................................................................................55  
8.1.15 CLKREF (Analog)..................................................................................................55  
8.1.16 CMOSREF (Analog) ..............................................................................................56  
8.1.17 D[63:0]# (I/O - GTL+).............................................................................................56  
8.1.18 DBSY# (I/O - GTL+) ..............................................................................................56  
8.1.19 DEFER# (I - GTL+)................................................................................................56  
8.1.20 DEP[7:0]# (I/O - GTL+)..........................................................................................56  
8.1.21 DRDY# (I/O - GTL+)..............................................................................................56  
8.1.22 EDGCTRLP (Analog).............................................................................................56  
8.1.23 FERR# (O - 1.5 V Tolerant Open-drain)................................................................57  
8.1.24 FLUSH# (I - 1.5 V Tolerant)...................................................................................57  
8.1.25 GHI# (I - 1.5 V Tolerant) ........................................................................................57  
8.1.26 HIT# (I/O - GTL+), HITM# (I/O - GTL+) .................................................................57  
8.1.27 IERR# (O - 1.5 V Tolerant Open-drain) .................................................................57  
8.1.28 IGNNE# (I - 1.5 V Tolerant) ...................................................................................57  
8.1.29 INIT# (I - 1.5 V Tolerant)........................................................................................58  
8.1.30 INTR (I - 1.5 V Tolerant) ........................................................................................58  
8.1.31 LINT[1:0] (I - 1.5 V Tolerant)..................................................................................58  
8.1.32 LOCK# (I/O - GTL+) ..............................................................................................58  
8.1.33 NMI (I - 1.5 V Tolerant)..........................................................................................58  
8.1.34 PICCLK (I - 2.5 V Tolerant)....................................................................................59  
4
Datasheet  
Contents  
8.1.35 PICD[1:0] (I/O - 1.5 V Tolerant Open-drain) ..........................................................59  
8.1.36 PLL1, PLL2 (Analog) .............................................................................................59  
8.1.37 PRDY# (O - GTL+) ................................................................................................59  
8.1.38 PREQ# (I - 1.5 V Tolerant) ....................................................................................59  
8.1.39 PWRGOOD (I - 2.5 V Tolerant) .............................................................................59  
8.1.40 REQ[4:0]# (I/O - GTL+)..........................................................................................60  
8.1.41 RESET# (I - GTL+) ................................................................................................60  
8.1.42 RP# (I/O - GTL+) ...................................................................................................60  
8.1.43 RS[2:0]# (I - GTL+) ................................................................................................61  
8.1.44 RSP# (I - GTL+).....................................................................................................61  
8.1.45 RSVD (TBD) ..........................................................................................................61  
8.1.46 RTTIMPEDP (Analog) ...........................................................................................61  
8.1.47 SLP# (I - 1.5 V Tolerant)........................................................................................61  
8.1.48 SMI# (I - 1.5 V Tolerant) ........................................................................................61  
8.1.49 STPCLK# (I - 1.5 V Tolerant).................................................................................61  
8.1.50 TCK (I - 1.5 V Tolerant) .........................................................................................62  
8.1.51 TDI (I - 1.5 V Tolerant)...........................................................................................62  
8.1.52 TDO (O - 1.5 V Tolerant Open-drain) ....................................................................62  
8.1.53 TESTHI (I - 1.5 V Tolerant)....................................................................................62  
8.1.54 TESTLO[2:1] (I - 1.5 V Tolerant)............................................................................62  
8.1.55 THERMDA, THERMDC (Analog)...........................................................................62  
8.1.56 TMS (I - 1.5 V Tolerant) .........................................................................................62  
8.1.57 TRDY# (I - GTL+) ..................................................................................................62  
8.1.58 TRST# (I - 1.5 V Tolerant) .....................................................................................63  
8.1.59 VID[4:0] (O Open-drain)......................................................................................63  
8.1.60 VREF (Analog).......................................................................................................63  
Signal Summaries...............................................................................................................63  
8.2  
9.0 PLL RLC Filter Specification ......................................................................................................66  
9.1  
9.2  
9.3  
9.4  
Introduction.........................................................................................................................66  
Filter Specification ..............................................................................................................66  
Recommendation for Low Power Systems.........................................................................67  
Comments ..........................................................................................................................68  
Datasheet  
5
Contents  
Figures  
1
2
3
4
5
6
7
8
9
Signal Groups of a Pentium® III Processor/440BX AGPset - Based System...............................9  
Signal Groups of a Pentium® III Processor/440MX Chipset - Based System ............................10  
Clock Control States...................................................................................................................13  
Vcc Ramp Rate Requirement.....................................................................................................19  
PLL RLC Filter............................................................................................................................21  
PICCLK/TCK Clock Timing Waveform .......................................................................................30  
BCLK Timing Waveform.............................................................................................................31  
Valid Delay Timings....................................................................................................................31  
Setup and Hold Timings .............................................................................................................31  
10 Cold/Warm Reset and Configuration Timings ............................................................................32  
11 Power-on Reset Timings ............................................................................................................32  
12 Test Timings (Boundary Scan)...................................................................................................33  
13 Test Reset Timings.....................................................................................................................33  
14 Quick Start/Deep Sleep Timing ..................................................................................................34  
15 Stop Grant/Sleep/Deep Sleep Timing ........................................................................................34  
16 BCLK/PICCLK Generic Clock Waveform ...................................................................................36  
17 Low to High, GTL+ Receiver Ringback Tolerance .....................................................................37  
18 High to Low, GTL+ Receiver Ringback Tolerance .....................................................................37  
19 Maximum Acceptable Overshoot/Undershoot Waveform...........................................................38  
20 Surface-mount BGA2 Package - Top and Side View.................................................................41  
21 Surface-mount BGA2 Package - Bottom View...........................................................................42  
22 Pin/Ball Map - Top View .............................................................................................................43  
23 PWRGOOD Relationship at Power On ......................................................................................60  
24 PLL Filter Specifications.............................................................................................................67  
6
Datasheet  
Contents  
Tables  
1
2
3
4
5
6
7
8
9
Clock State Characteristics.........................................................................................................16  
Pentium® III Processor Low Power CPUID .............................................................................17  
Pentium® III Processor Low Power CPUID Cache and TLB Descriptors ................................17  
System Signal Groups................................................................................................................17  
Recommended Resistors for Pentium III Processor Low Power Signals ................................18  
Pentium® III Processor Low Power Absolute Maximum Ratings.............................................22  
Power Specifications ..................................................................................................................23  
GTL+ Signal Group DC Specifications .......................................................................................24  
GTL+ Bus DC Specifications......................................................................................................24  
10 Clock, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications ............................25  
11 System Bus Clock AC Specifications .........................................................................................26  
12 Supported Processor Frequencies .............................................................................................26  
13 GTL+ Signal Groups AC Specifications......................................................................................27  
14 CMOS and Open-drain Signal Groups AC Specifications..........................................................27  
15 Reset Configuration AC Specifications.......................................................................................28  
16 APIC Bus Signal AC Specifications............................................................................................28  
17 TAP Signal AC Specifications.....................................................................................................29  
18 Quick Start/Deep Sleep AC Specifications.................................................................................30  
19 Stop Grant/Sleep/Deep Sleep AC Specifications .......................................................................30  
20 BCLK Signal Quality Specification..............................................................................................35  
21 PICCLK Signal Quality Specifications ........................................................................................35  
22 GTL+ Signal Group Ringback Specification ...............................................................................36  
23 GTL+ Signal Group Overshoot/Undershoot Tolerance at the Processor Core ..........................38  
24 Non-GTL+ Signal Group Overshoot/Undershoot Tolerance at the Processor Core...................39  
25 Surface-mount BGA2 Package Specifications ...........................................................................40  
26 Signal Listing in Order by Pin/Ball Number.................................................................................44  
27 Signal Listing in Order by Signal Name......................................................................................47  
28 Voltage and No-Connect Pin/Ball Locations...............................................................................49  
29 Power Specifications for the Pentium III Processor Low Power..............................................50  
30 Thermal Diode Interface .............................................................................................................51  
31 Thermal Diode Specifications.....................................................................................................51  
32 BSEL[1:0] Encoding....................................................................................................................55  
33 Voltage Identification Encoding ..................................................................................................63  
34 Input Signals...............................................................................................................................64  
35 Output Signals ............................................................................................................................65  
36 Input/Output Signals (Single Driver) ...........................................................................................65  
37 Input/Output Signals (Multiple Driver).........................................................................................65  
38 PLL Filter Inductor Recommendations .......................................................................................67  
39 PLL Filter Capacitor Recommendations.....................................................................................68  
40 PLL Filter Resistor Recommendations .......................................................................................68  
Datasheet  
7
Contents  
Revision History  
Date  
Revision  
Description  
April, 2002  
June, 2001  
March, 2001  
003  
002  
001  
Updated introduction  
Pins AD20, AA17, H4 and G4 changed to be NC.  
First release of this document.  
8
Datasheet  
Intel® Pentium® III Processor Low Power  
1.0  
Introduction  
The Intel® Pentium® III Processor Low Power offers high performance and low power  
consumption. Key performance advancements include Internet Streaming SIMD instructions, an  
advanced transfer cache architecture, and a processor system bus speed of 100 MHz. These  
features are offered in a BGA2 package.  
The integrated L2 cache improves performance, and complements the system bus by providing  
critical data faster and reducing total system power consumption. The processors 64-bit wide  
Gunning Transceiver Logic (GTL+) system bus provides a glueless, point-to-point interface for an  
I/O bridge/memory controller, and is compatible with the 440BX and 440ZX-M AGPset Chipsets,  
and the 440MX Chipset.  
This document provides the electrical, mechanical and thermal specifications for the 700 MHz, 500  
MHz and 400 MHz Pentium III Processor Low Power. Please note that the 700 MHz Intel®  
Pentium® III processor Low Power (product number KC80526GY850256) is the same silicon as  
the Mobile Intel® Pentium® III processor at 850/700 MHz with Intel® SpeedSteptechnology and  
is labeled as such. When Intel SpeedStep technology is not implemented, the processor defaults to  
700 MHz operation at 1.35 V. EID does not support Intel SpeedStep.  
Figure 1 shows the components of a Pentium III processor/440BX or 440ZX-M AGPset -based  
system and how the Pentium III Processor Low Power connects to them. Figure 2 shows an  
alternative Pentium III Processor Low Power/440MX Chipset - based system.  
Figure 1. Signal Groups of a Pentium® III Processor/440BX AGPset - Based System  
Thermal  
Sensor  
APIC  
Bus  
Pentium® III  
Processor –  
Low Power  
TAP  
System  
Bus  
443BX  
OR  
440ZX-M  
North Bridge  
DRAM  
PCI  
OR  
PIIX4E  
South Bridge  
System  
Controller  
IOAPIC  
(optional)  
V0000-03  
ISA/EIO  
Datasheet  
9
Intel® Pentium® III Processor Low Power  
Figure 2. Signal Groups of a Pentium® III Processor/440MX Chipset - Based System  
Thermal  
Sensor  
Pentium® III  
TAP  
Processor –  
Low Power  
System  
Bus  
DRAM  
440MX  
PCIset  
OR  
System  
V0000-04  
Controller  
X-bus  
PCI  
1.1  
Overview  
Performance features  
Supports the Intel Architecture with Dynamic Execution  
Supports Intel MMXtechnology  
Supports streaming SIMD extensions for enhanced video, sound, and 3D performance  
Integrated Intel Floating Point Unit compatible with the IEEE 754 standard  
On-die primary (L1) instruction and data caches  
4-way set associative, 32-byte line size, 1 line per sector  
16-Kbyte instruction cache and 16-Kbyte write-back data cache  
Cacheable range controlled by processor programmable registers  
10  
Datasheet  
Intel® Pentium® III Processor Low Power  
On-die second level (L2) cache  
8-way set associative, 32-byte line size, 1 line per sector  
Operates at full core speed  
256-Kbyte, ECC protected cache data array  
GTL+ system bus interface  
64-bit data bus, 100-MHz operation  
Uniprocessor, two loads only (processor and I/O bridge/memory controller)  
Integrated termination  
Processor clock control  
Quick Start for low power, low exit latency clock throttling”  
Deep Sleep mode for lower power dissipation  
Thermal diode for measuring processor temperature  
1.2  
Terminology  
In this document a #symbol following a signal name indicates that the signal is active low. This  
means that when the signal is asserted (based on the name of the signal) it is in an electrical low  
state. Otherwise, signals are driven in an electrical high state when they are asserted. In state  
machine diagrams, a signal name in a condition indicates the condition of that signal being  
asserted. If the signal name is preceded by a !symbol, then it indicates the condition of that  
signal not being asserted. For example, the condition !STPCLK# and HSis equivalent to the  
active low signal STPCLK# is unasserted (i.e., it is at 1.5 V) and the HS condition is true.The  
symbols Land Hrefer respectively to electrical low and electrical high signal levels. The  
symbols 0and 1refer respectively to logical low and logical high signal levels. For example,  
BD[3:0] = 1010= HLHLrefers to a hexadecimal A,and D[3:0]# = 1010= LHLHalso  
refers to a hexadecimal A.The symbol Xrefers to a Dont Carecondition, where a 0or a  
1results in the same behavior.  
1.3  
References  
CK97 Clock Driver Specification (Contact your Intel Field Sales Representative)  
Intel® Architecture Software Developers Manual (Order Number 243193)  
Volume I: Basic Architecture (Order Number 243190)  
Volume II: Instruction Set Reference (Order Number 243191)  
Volume III: System Programming Guide (Order Number 243192)  
Mobile Pentium® III Processor I/O Buffer Models, IBIS Format (Available in electronic form;  
Contact your Intel Field Sales Representative)  
Mobile Pentium® III Processor GTL+ System Bus Layout Guideline (Contact your Intel Field Sales  
Representative)  
Datasheet  
11  
Intel® Pentium® III Processor Low Power  
2.0  
Pentium® III Processor Low Power Features  
2.1  
Features in the Pentium® III Processor Low Power  
2.1.1  
On-die GTL+ Termination  
The termination resistors for the GTL+ system bus are integrated onto the processor die. The  
RESET# signal does not have on-die termination and requires an external 56.2 ±1% terminating  
resistor.  
2.1.2  
Streaming SIMD Extensions  
The Pentium III Processor Low Power implements Streaming SIMD (single instruction, multiple  
data) extensions. Streaming SIMD extensions can enhance floating point, video, sound, and 3-D  
application performance.  
2.2  
Power Management  
2.2.1  
Clock Control Architecture  
The Pentium III Processor Low Power clock control architecture (Figure 3) has been optimized  
for leading edge low power designs. The clock control architecture consists of seven different  
clock states: Normal, Stop Grant, Auto Halt, Quick Start, HALT/Grant Snoop, Sleep, and Deep  
Sleep states. The Auto Halt state provides a low-power clock state that can be controlled through  
the software execution of the HLT instruction. The Quick Start state provides a very low power and  
low exit latency clock state that can be used for hardware controlled idlecomputer states. The  
Deep Sleep state provides an extremely low-power state that can be used for Power-On-Suspend”  
computer states, which is an alternative to shutting off the processors power. Compared to the  
Pentium processor exit latency of 1 ms, the exit latency of the Deep Sleep state has been reduced to  
30 µs in the Pentium III Processor Low Power. Performing state transitions not shown in Figure 3  
is neither recommended nor supported.  
The Stop Grant and Quick Start clock states are mutually exclusive, i.e., a strapping option on  
signal A15# chooses which state is entered when the STPCLK# signal is asserted. The Quick Start  
state is enabled by strapping the A15# signal to ground at Reset; otherwise, asserting the STPCLK#  
signal puts the processor into the Stop Grant state. The Stop Grant state has a higher power level  
than the Quick Start state and is designed for Symmetric Multi-Processing (SMP) platforms. The  
Quick Start state has a much lower power level, but it can only be used in uniprocessor platforms.  
Table 1 provides clock state characteristics, which are described in detail in the following sections.  
2.2.2  
Normal State  
The Normal state of the processor is the normal operating mode where the processors core clock is  
running and the processor is actively executing instructions.  
12  
Datasheet  
Intel® Pentium® III Processor Low Power  
2.2.3  
Auto Halt State  
This is a low-power mode entered by the processor through the execution of the HLT instruction.  
The power level of this mode is similar to the Stop Grant state. A transition to the Normal state is  
made by a halt break event (one of the following signals going active: NMI, INTR, BINIT#, INIT#,  
RESET#, FLUSH#, or SMI#).  
Asserting the STPCLK# signal while in the Auto Halt state will cause the processor to transition to  
the Stop Grant or Quick Start state, where a Stop Grant Acknowledge bus cycle will be issued.  
Deasserting STPCLK# will cause the processor to return to the Auto Halt state without issuing a  
new Halt bus cycle.  
The SMI# interrupt is recognized in the Auto Halt state. The return from the System Management  
Interrupt (SMI) handler can be to either the Normal state or the Auto Halt state. See the Intel®  
Architecture Software Developers Manual, Volume III: System Programmers Guide for more  
information. No Halt bus cycle is issued when returning to the Auto Halt state from the System  
Management Mode (SMM).  
The FLUSH# signal is serviced in the Auto Halt state. After the on-chip and off-chip caches have  
been flushed, the processor will return to the Auto Halt state without issuing a Halt bus cycle.  
Transitions in the A20M# and PREQ# signals are recognized while in the Auto Halt state.  
Figure 3. Clock Control States  
STPCLK# and  
QSE and SGA  
Normal  
HS=false  
Quick  
Start  
(!STPCLK# and !HS)  
or RESET#  
HLT and  
halt bus cycle  
STPCLK# and  
QSE and SGA  
BCLK  
stopped  
halt  
break  
!STPCLK#  
and HS  
BCLK on  
and QSE  
STPCLK# and  
!QSE and SGA  
Auto  
Halt  
HS=true  
Snoop  
serviced  
Snoop  
occurs  
Deep  
Sleep  
(!STPCLK#  
and !HS) or  
stop break  
!STPCLK#  
and HS  
Snoop  
occurs  
Snoop  
serviced  
STPCLK# and  
!QSE and SGA  
Snoop  
occurs  
Stop  
Grant  
HALT/Grant  
Snoop  
Snoop  
serviced  
SLP#  
BCLK on  
and !QSE  
BCLK  
stopped  
!SLP# or  
RESET#  
Sleep  
V0001-00  
NOTES:  
halt break A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#  
HLT HLT instruction executed  
HS Processor Halt State  
QSE Quick Start State Enabled  
SGA Stop Grant Acknowledge bus cycle issued  
stop break BINIT#, RESET#  
Datasheet  
13  
Intel® Pentium® III Processor Low Power  
2.2.4  
Stop Grant State  
The processor enters this mode with the assertion of the STPCLK# signal when it is configured for  
Stop Grant state (via the A15# strapping option). The processor is still able to respond to snoop  
requests and latch interrupts. Latched interrupts will be serviced when the processor returns to the  
Normal state. Only one occurrence of each interrupt event will be latched. A transition back to the  
Normal state can be made by the deassertion of the STPCLK# signal or the occurrence of a stop  
break event (a BINIT# or RESET# assertion).  
The processor will return to the Stop Grant state after the completion of a BINIT# bus initialization  
unless STPCLK# has been de-asserted. RESET# assertion will cause the processor to immediately  
initialize itself, but the processor will stay in the Stop Grant state after initialization until STPCLK#  
is deasserted. A transition to the Sleep state can be made by the assertion of the SLP# signal.  
While in the Stop Grant state, assertions of FLUSH#, SMI#, INIT#, INTR, and NMI (or  
LINT[1:0]) will be latched by the processor. These latched events will not be serviced until the  
processor returns to the Normal state. Only one of each event will be recognized upon return to the  
Normal state.  
2.2.5  
Quick Start State  
This is a mode entered by the processor with the assertion of the STPCLK# signal when it is  
configured for the Quick Start state (via the A15# strapping option). In the Quick Start state the  
processor is only capable of acting on snoop transactions generated by the system bus priority  
device. Because of its snooping behavior, Quick Start can only be used in a uniprocessor (UP)  
configuration.  
A transition to the Deep Sleep state can be made by stopping the clock input to the processor. A  
transition back to the Normal state (from the Quick Start state) is made only if the STPCLK# signal  
is deasserted.  
While in this state the processor is limited in its ability to respond to input. It is incapable of  
latching any interrupts, servicing snoop transactions from symmetric bus masters or responding to  
FLUSH# or BINIT# assertions. While the processor is in the Quick Start state, it will not respond  
properly to any input signal other than STPCLK#, RESET#, or BPRI#. If any other input signal  
changes, then the behavior of the processor will be unpredictable. No serial interrupt messages may  
begin or be in progress while the processor is in the Quick Start state.  
RESET# assertion will cause the processor to immediately initialize itself, but the processor will  
stay in the Quick Start state after initialization until STPCLK# is deasserted.  
2.2.6  
HALT/Grant Snoop State  
The processor will respond to snoop transactions on the system bus while in the Auto Halt, Stop  
Grant, or Quick Start state. When a snoop transaction is presented on the system bus the processor  
will enter the HALT/Grant Snoop state. The processor will remain in this state until the snoop has  
been serviced and the system bus is quiet. After the snoop has been serviced, the processor will  
return to its previous state. If the HALT/Grant Snoop state is entered from the Quick Start state,  
then the input signal restrictions of the Quick Start state still apply in the HALT/Grant Snoop state,  
except for those signal transitions that are required to perform the snoop.  
14  
Datasheet  
Intel® Pentium® III Processor Low Power  
2.2.7  
Sleep State  
The Sleep state is a very low-power state in which the processor maintains its context and the  
phase-locked loop (PLL) maintains phase lock. The Sleep state can only be entered from the Stop  
Grant state. After entering the Stop Grant state, the SLP# signal can be asserted, causing the  
processor to enter the Sleep state. The SLP# signal is not recognized in the Normal or Auto Halt  
states.  
The processor can be reset by the RESET# signal while in the Sleep state. If RESET# is driven  
active while the processor is in the Sleep state then SLP# and STPCLK# must immediately be  
driven inactive to ensure that the processor correctly initializes itself.  
Input signals (other than RESET#) may not change while the processor is in the Sleep state or  
transitioning into or out of the Sleep state. Input signal changes at these times will cause  
unpredictable behavior. Thus, the processor is incapable of snooping or latching any events in the  
Sleep state.  
While in the Sleep state, the processor can enter its lowest power state, the Deep Sleep state.  
Removing the processors input clock puts the processor in the Deep Sleep state. PICCLK may be  
removed in the Sleep state.  
2.2.8  
Deep Sleep State  
The Deep Sleep state is the lowest power mode the processor can enter while maintaining its  
context. The Deep Sleep state is entered by stopping the BCLK input to the processor, while it is in  
the Sleep or Quick Start state. For proper operation, the BCLK input should be stopped in the Low  
state.  
The processor will return to the Sleep or Quick Start state from the Deep Sleep state when the  
BCLK input is restarted. Due to the PLL lock latency, there is a delay of up to 30 µs after the clocks  
have started before this state transition happens. PICCLK may be removed in the Deep Sleep state.  
PICCLK should be designed to turn on when BCLK turns on when transitioning out of the Deep  
Sleep state.  
The input signal restrictions for the Deep Sleep state are the same as for the Sleep state, except that  
RESET# assertion will result in unpredictable behavior.  
Datasheet  
15  
Intel® Pentium® III Processor Low Power  
Table 1. Clock State Characteristics  
Clock State  
Exit Latency  
Snooping?  
System Uses  
Normal  
N/A  
Yes  
Yes  
Yes  
Normal program execution  
Auto Halt  
Stop Grant  
Approximately 10 bus clocks  
10 bus clocks  
S/W controlled entry idle mode  
H/W controlled entry/exit throttling  
Through snoop, to HALT/Grant  
Snoop state: immediate  
Quick Start  
Yes  
H/W controlled entry/exit throttling  
Through STPCLK#, to Normal  
state: 8 bus clocks  
HALT/Grant  
Snoop  
A few bus clocks after the end  
of snoop activity  
Yes  
No  
No  
Supports snooping in the low power states  
To Stop Grant state 10 bus  
clocks  
H/W controlled entry/exit desktop idle mode  
support  
Sleep  
H/W controlled entry/exit powered-on  
suspend support  
Deep Sleep  
30 µs  
NOTE: See Table 29 for power dissipation in the low-power states.  
2.2.9  
Operating System Implications of Low-power States  
There are a number of architectural features of the Pentium III Processor Low Power that do not  
function in the Quick Start or Sleep state as they do in the Stop Grant state. The time-stamp counter  
and the performance monitor counters are not guaranteed to count in the Quick Start or Sleep  
states. The local APIC timer and performance monitor counter interrupts should be disabled before  
entering the Deep Sleep state or the resulting behavior will be unpredictable.  
2.2.10  
GTL+ Signals  
The Pentium III Processor Low Power system bus signals use a variation of the low-voltage  
swing GTL signaling technology. The Pentium III Processor Low Power system bus specification  
is similar to the Pentium II processor system bus specification, which is a version of GTL with  
enhanced noise margins and less ringing.  
The GTL+ system bus depends on incident wave switching and uses flight time for timing  
calculations of the GTL+ signals, as opposed to capacitive derating. Analog signal simulation of  
the system bus including trace lengths is highly recommended. Contact your field sales  
representative to receive the IBIS models for the Pentium III Processor Low Power.  
The GTL+ system bus of the Pentium II processor was designed to support high-speed data  
transfers with multiple loads on a long bus that behaves like a transmission line. However, in most  
embedded systems the system bus only has two loads (the processor and the chipset) and the bus  
traces are short. It is possible to change the layout and termination of the system bus to take  
advantage of the embedded environment using the same GTL+ I/O buffers. In embedded systems  
the GTL+ system bus is terminated at one end only. This termination is provided on the processor  
core (except for the RESET# signal). Refer to the Mobile Pentium® III Processor GTL+ System Bus  
Layout Guideline for details on laying out the GTL+ system bus.  
16  
Datasheet  
Intel® Pentium® III Processor Low Power  
2.2.11  
Pentium® III Processor Low Power CPUID  
The CPUID instruction does not distinguish between the Pentium III processor and the Pentium III  
Processor Low Power. After a power-on RESET or when the CPUID version information is  
loaded, the EAX register contains the values shown in  
Table 2. After the L2 cache is initialized, the CPUID cache/TLB descriptors will be the values  
shown in Table 3.  
Table 2. Pentium® III Processor Low Power CPUID  
EAX[31:0]  
EBX[7:0]  
Brand ID  
02  
Reserved [31:14] Type [13:12]  
Family [11:8]  
6
Model [7:4]  
8
Stepping [3:0]  
X
X
0
Table 3. Pentium® III Processor Low Power CPUID Cache and TLB Descriptors  
Cache and TLB Descriptors  
01H, 02H, 03H, 04H, 08H, 0CH, 82H  
3.0  
Electrical Specifications  
3.1  
Processor System Signals  
Table 4 lists the processor system signals by type. All GTL+ signals are synchronous with the  
BCLK signal. All TAP signals are synchronous with the TCK signal except TRST#. All CMOS  
input signals can be applied asynchronously.  
Table 4. System Signal Groups (Sheet 1 of 2)  
Group Name  
Signals  
GTL+ Input  
BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#  
PRDY#  
GTL+ Output  
A[35:3]#, ADS#, AERR#, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#,  
BPM[1:0]#, BREQ0#, D[63:0]#, DBSY#, DEP[7:0]#, DRDY#, HIT#, HITM#,  
LOCK#, REQ[4:0]#, RP#  
GTL+ I/O  
A20M#, FLUSH#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PREQ#, SLP#,  
SMI#, STPCLK#  
1.5 V CMOS Input 2  
2.5 V CMOS Input 1, 3  
1.5 V Open Drain Output 2  
3.3 V CMOS Input4  
NOTES:  
PWRGOOD  
FERR#, IERR#  
BSEL[1:0]  
1. See Section 8.1.39 for information on the PWRGOOD signal.  
2. These signals are tolerant to 1.5 V only. See Table 5 for the recommended pull-up resistor.  
3. These signals are tolerant to 2.5 V only. See Table 5 for the recommended pull-up resistor.  
4. These signals are tolerant to 3.3 V only. See Table 5 for the recommended pull-up resistor.  
5. V is the power supply for the core logic. PLL1 and PLL2 are the power supply for the PLL analog  
CC  
section. V  
is the power supply for the system bus buffers. V  
is the voltage reference for the GTL+  
CCT  
REF  
input buffers. V is system ground.  
SS  
Datasheet  
17  
Intel® Pentium® III Processor Low Power  
Table 4. System Signal Groups (Sheet 2 of 2)  
Group Name  
Signals  
Clock 3  
BCLK  
APIC Clock 3  
APIC I/O 2  
PICCLK  
PICD[1:0]  
Thermal Diode  
TAP Input 2  
TAP Output 2  
THERMDA, THERMDC  
TCK, TDI, TMS, TRST#  
TDO  
CLKREF, CMOSREF, EDGECTRLP, NC, PLL1, PLL2, RSVD, RTTIMPEDP,  
TESTHI, TESTLO[2:1], V , V , VID[4:0], V , V  
Power/Other 5  
CC  
CCT  
REF SS  
NOTES:  
1. See Section 8.1.39 for information on the PWRGOOD signal.  
2. These signals are tolerant to 1.5 V only. See Table 5 for the recommended pull-up resistor.  
3. These signals are tolerant to 2.5 V only. See Table 5 for the recommended pull-up resistor.  
4. These signals are tolerant to 3.3 V only. See Table 5 for the recommended pull-up resistor.  
5. V is the power supply for the core logic. PLL1 and PLL2 are the power supply for the PLL analog  
CC  
section. V  
is the power supply for the system bus buffers. V  
is the voltage reference for the GTL+  
CCT  
REF  
input buffers. V is system ground.  
SS  
The CMOS, APIC, and TAP inputs can be driven from ground to 1.5 V. BCLK, PICCLK, and  
PWRGOOD can be driven from ground to 2.5 V. The APIC data and TAP outputs are Open-drain  
and should be pulled up to 1.5 V using resistors with the values shown in Table 5. If Open-drain  
drivers are used for input signals, then they should also be pulled up to the appropriate voltage  
using resistors with the values shown in Table 5.  
Table 5. Recommended Resistors for Pentium III Processor Low Power Signals  
Recommended  
Resistor Value ()  
Pentium III Processor Low Power Signal1, 2  
10 pull-down  
56.2 pull-up  
150 pull-up  
270 pull-up  
680 pull-up  
1K pull-up  
BREQ0#3  
RESET#4  
PICD[1:0], TDI, TDO  
SMI#  
STPCLK#  
INIT#, TCK, TMS  
TRST#  
1K pull-down  
A20M#, FERR#, FLUSH#, IERR#, IGNNE#, LINT0/INTR, LINT1/  
NMI, PREQ#, PWRGOOD, SLP#  
1.5K pull-up  
NOTES:  
1. The recommendations above are only for signals that are being used. These recommendations are  
maximum values only; stronger pull-ups may be used. Pull-ups for the signals driven by the chipset should  
not violate the chipset specification. Refer to Section 3.1.4 for the required pull-up or pull-down resistors  
for signals that are not being used.  
2. Open-drain signals must never violate the undershoot specification in Section 4.3. Use stronger pull-ups if  
there is too much undershoot.  
3. A pull-down on BREQ0# is an alternative to having the central agent to drive BREQ0# low at reset.  
4. A 56.21% terminating resistor connected to V  
is required.  
CCT  
18  
Datasheet  
Intel® Pentium® III Processor Low Power  
3.1.1  
Power Sequencing Requirements  
The Pentium III Processor Low Power has no power sequencing requirements. Intel recommends  
that all of the processor power planes rise to their specified values within one second of each other.  
The VCC power plane must not rise too fast. At least 200 µs (TR) must pass from the time that VCC  
is at 10% of its nominal value until the time that VCC is at 90% of its nominal value (see Figure 4).  
Figure 4. Vcc Ramp Rate Requirement  
Vcc  
90% Vcc (nominal)  
10% Vcc (nominal)  
Volts  
TR  
Time  
3.1.2  
Test Access Port (TAP) Connection  
The TAP interface is an implementation of the IEEE 1149.1 (JTAG) standard. Due to the voltage  
levels supported by the TAP interface, Intel recommends that the Pentium III Processor Low  
Power and the other 1.5-V JTAG specification compliant devices be last in the JTAG chain after  
any devices with 3.3-V or 5.0-V JTAG interfaces within the system. A translation buffer should be  
used to reduce the TDO output voltage of the last 3.3/5.0 V device down to the 1.5 V range that the  
Pentium III Processor Low Power can tolerate. Multiple copies of TMS and TRST# must be  
provided, one for each voltage level.  
A Debug Port and connector may be placed at the start and end of the JTAG chain containing the  
processor, with TDI to the first component coming from the Debug Port and TDO from the last  
component going to the Debug Port. There are no requirements for placing the Pentium III  
Processor Low Power in the JTAG chain, except for those that are dictated by voltage  
requirements of the TAP signals.  
3.1.3  
3.1.4  
Catastrophic Thermal Protection  
The Pentium III Processor Low Power does not support catastrophic thermal protection or the  
THERMTRIP# signal. An external thermal sensor must be used to protect the processor and the  
system against excessive temperatures.  
Unused Signals  
All signals named NC and RSVD must be unconnected. The TESTHI signal should be pulled up to  
VCCT. The TESTLO1 and TESTLO2 signal should be pulled down to VSS. Unused GTL+ inputs,  
outputs and bidirectional signals should be unconnected. Unused CMOS active low inputs should  
be connected to VCCT and unused active high inputs should be connected to VSS. Unused Open-  
drain outputs should be unconnected. If the processor is configured to enter the Quick Start state  
Datasheet  
19  
Intel® Pentium® III Processor Low Power  
rather than the Stop Grant state, then the SLP# signal should be connected to VCCT. When tying  
any signal to power or ground, a resistor will allow for system testability. For unused signals, Intel  
suggests that 1.5-kresistors are used for pull-ups and 1-kresistors are used for pull-downs.  
If the local APIC is hardware disabled, then PICCLK and PICD[1:0] should be tied to VSS with a  
1-kresistor, one resistor can be used for the three signals. Otherwise PICCLK must be driven  
with a clock that meets specification (see Table 16) and the PICD[1:0] signals must be pulled up to  
V
CCT with 150-resistors, even if the local APIC is not used.  
BSEL1 must be connected to VSS and BSEL0 must be pulled up to VCCT. VID[4:0] should be  
connected to VSS if they are not used.  
If the TAP signals are not used then the inputs should be pulled to ground with 1-kresistors and  
TDO should be left unconnected.  
3.1.5  
Signal State in Low-power States  
System Bus Signals  
3.1.5.1  
All of the system bus signals have GTL+ input, output, or input/output drivers. Except when  
servicing snoops, the system bus signals are three-stated and pulled up by the termination resistors.  
Snoops are not permitted in the Sleep and Deep Sleep states.  
3.1.5.2  
CMOS and Open-drain Signals  
The CMOS input signals are allowed to be in either the logic high or low state when the processor  
is in a low-power state. In the Auto Halt and Stop Grant states these signals are allowed to toggle.  
These input buffers have no internal pull-up or pull-down resistors and system logic can use CMOS  
or Open-drain drivers to drive them.  
The Open-drain output signals have open drain drivers and external pull-up resistors are required.  
One of the two output signals (IERR#) is a catastrophic error indicator and is three-stated (and  
pulled-up) when the processor is functioning normally. The FERR# output can be either three-  
stated or driven to VSS when the processor is in a low-power state depending on the condition of  
the floating point unit. Since this signal is a DC current path when it is driven to VSS, Intel  
recommends that the software clears or masks any floating-point error condition before putting the  
processor into the Deep Sleep state.  
3.1.5.3  
Other Signals  
The system bus clock (BCLK) must be driven in all of the low-power states except the Deep Sleep  
state. The APIC clock (PICCLK) must be driven whenever BCLK is driven unless the APIC is  
hardware disabled or the processor is in the Sleep state. Otherwise, it is permitted to turn off  
PICCLK by holding it at VSS. The system bus clock should be held at VSS when it is stopped in the  
Deep Sleep state.  
In the Auto Halt and Stop Grant states the APIC bus data signals (PICD[1:0]) may toggle due to  
APIC bus messages. These signals are required to be three-stated and pulled-up when the processor  
is in the Quick Start, Sleep, or Deep Sleep states unless the APIC is hardware disabled.  
20  
Datasheet  
Intel® Pentium® III Processor Low Power  
3.2  
Power Supply Requirements  
3.2.1  
Decoupling Recommendations  
The amount of bulk decoupling required on the VCC and VCCT planes to meet the voltage tolerance  
requirements for the Pentium III Processor Low Power are a strong function of the power supply  
design. Contact your Intel Field Sales Representative for tools to help determine how much bulk  
decoupling is required.  
For 700 MHz processors, the following decoupling is recommended. The processor core power  
plane (VCC) should have fifteen 0.68 µF 0603 ceramic capacitors (using X7R dielectric for thermal  
reasons) placed directly under the package using two vias for power and two vias for ground to  
reduce the trace inductance. Also to minimize inductance, traces to those vias should be 22 mils (in  
width) from the capacitor pads to match the via-pad size (assuming 22-mil pad size). Twenty-four  
2.2 µF 0805, X5R mid frequency decoupling capacitors should be placed around the die as close to  
the die as flex solution allows. The system bus buffer power plane (VCCT) should have twenty 0.1-  
µF high frequency decoupling capacitors around the die.  
For 500 and 400 MHz processors, the processor core power plan (VCC) should have eight 0.1-µF  
high frequency decoupling capacitors placed underneath the die and twenty 0.1-µF mid frequency  
decoupling capacitors placed around the die as close to the die as flex solution allows. The system  
bus buffer power plane (VCCT) should have twenty 0.1-µF high frequency decoupling capacitors  
around the die.  
3.2.2  
Voltage Planes  
All VCC and VSS pins/balls must be connected to the appropriate voltage plane. All VCCT and  
V
REF pins/balls must be connected to the appropriate traces on the system electronics. In addition  
to the main VCC, VCCT, and VSS power supply signals, PLL1 and PLL2 provide analog decoupling  
to the PLL section. PLL1 and PLL2 should be connected according to Figure 5. Do not connect  
PLL2 directly to VSS. Section 9.0 contains the RLC filter specification.  
Figure 5. PLL RLC Filter  
L1  
R1  
PLL1  
PLL2  
VCCT  
C1  
V0027-01  
Datasheet  
21  
Intel® Pentium® III Processor Low Power  
3.3  
System Bus Clock and Processor Clocking  
The 2.5-V BCLK clock input directly controls the operating speed of the system bus interface. All  
system bus timing parameters are specified with respect to the rising edge of the BCLK input. The  
Pentium III Processor Low Power core frequency is a multiple of the BCLK frequency. The  
processor core frequency is configured during manufacturing. The configured bus ratio is visible to  
software in the Power-on configuration register, see Section 7.2 for details.  
Multiplying the bus clock frequency is necessary to increase performance while allowing for easier  
distribution of signals within the system. Clock multiplication within the processor is provided by  
the internal Phase Lock Loop (PLL), which requires a constant frequency BCLK input. During  
Reset or on exit from the Deep Sleep state, the PLL requires some amount of time to acquire the  
phase of BCLK. This time is called the PLL lock latency, which is specified in Section 3.6, AC  
timing parameters T18 and T47.  
3.4  
Maximum Ratings  
Table 6 contains the Pentium III Processor Low Power stress ratings. Functional operation at the  
absolute maximum and minimum is neither implied nor guaranteed. The processor should not  
receive a clock while subjected to these conditions. Functional operating conditions are provided in  
the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability.  
Furthermore, although the processor contains protective circuitry to resist damage from static  
electric discharge, one should always take precautions to avoid high static voltages or electric  
fields.  
Table 6. Pentium® III Processor Low Power Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
T
Storage Temperature  
(Abs) Supply Voltage with respect to V  
40  
0.5  
0.3  
0.3  
85  
2.1  
2.1  
2.1  
°C  
V
Note 1  
Storage  
V
CC  
SS  
V
System Bus Buffer Voltage with respect to V  
V
CCT  
SS  
V
System Bus Buffer DC Input Voltage with respect to V  
System Bus Buffer DC Input Voltage with respect to V  
V
Notes 2, 3  
Notes 2, 4  
IN GTL  
SS  
V
+
CCT  
V
V
IN GTL  
CCT  
0.7 V  
2.1  
3.3  
3.5  
5.5  
5
V
1.5 V Buffer DC Input Voltage with respect to V  
2.5 V Buffer DC Input Voltage with respect to V  
3.3 V Buffer DC Input Voltage with respect to V  
0.3  
0.3  
0.3  
V
V
Note 5  
Note 6  
Note 7  
IN15  
IN25  
IN33  
SS  
SS  
SS  
SS  
V
V
V
V
VID ball/pin DC Input Voltage with respect to V  
VID Current  
V
INVID  
I
mA  
Note 8  
VID  
NOTES:  
1. The shipping container is only rated for 65°C.  
2. Parameter applies to the GTL+ signal groups only. Compliance with both V  
specifications is required.  
IN GTL  
3. The voltage on the GTL+ signals must never be below 0.3 or above 2.1 V with respect to ground.  
4. The voltage on the GTL+ signals must never be above V  
short to ground may occur.  
+ 0.7 V even if it is less than V + 2.1 V, or a  
CCT  
SS  
5. Parameter applies to CMOS, Open-drain, APIC, and TAP bus signal groups only.  
6. Parameter applies to BCLK, CLKREF, PICCLK and PWRGOOD signals.  
7. Parameter applies to BSEL[1:0] signals.  
8. Parameter applies to each VID pin/ball individually.  
22  
Datasheet  
Intel® Pentium® III Processor Low Power  
3.5  
DC Specifications  
Table 7 through Table 10 lists the DC specifications for the Pentium III Processor Low Power.  
Specifications are valid only while meeting specifications for the junction temperature, clock  
frequency, and input voltages. Care should be taken to read all notes associated with each  
parameter.  
Table 7. Power Specifications  
T = 0°C to 100°C; 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CCT  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
±100 mV  
Notes 7, 8  
V
Transient V for core logic  
1.25  
1.35  
1.45  
V
CC  
CC  
±100 mV  
Note 2, 8  
V
Static V for core logic  
1.25  
1.35  
1.45  
V
V
V
CC,DC  
CC  
V
for System Bus Buffers, Transient  
±115 mV,  
Note 7, 8  
CC  
V
1.385 1.50 1.615  
1.455 1.50 1.545  
CCT  
tolerance  
V
for System Bus Buffers, Static  
CC  
V
±3%, Notes 2, 8  
CCT,DC  
tolerance  
Current for V at core frequency  
CC  
12.8  
9.5  
7.8  
A
A
A
at 700 MHz & 1.35 V  
at 500 MHz & 1.35 V  
at 400 MHz & 1.35 V  
I
Note 4  
CC  
I
Current for V  
2.5  
2.7  
A
A
Notes 3, 4  
Note 4  
CCT  
CCT  
Processor Stop Grant and Auto Halt  
current  
I
I
CC,SG  
at 1.35 V (for 700 MHz)  
Processor Quick Start and Sleep current  
at 1.35 V (for 700 MHz)  
2.4  
A
Note 4  
CC,QS  
Processor Deep Sleep Leakage current  
at 1.35 V (for 700 MHz)  
I
2.1  
A
Note 4  
CC,DSLP  
dI /dt  
V
power supply current slew rate  
CC  
1400  
A/µs  
Notes 5, 6  
CC  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. Static voltage regulation includes: DC output initial voltage set point adjust, output ripple and noise, output  
load ranges specified in this table, temperature, and warm up.  
3. I  
4. I  
is the current supply for the system bus buffers, including the on-die termination.  
CCT  
specifications are specified at V , and 100°C and under maximum signal  
, V  
CCx,max  
CC, DC max CCT,max  
loading conditions.  
5. Based on simulations and averaged over the duration of any change in current. Use to compute the  
maximum inductance and reaction time of the voltage regulator. This parameter is not tested.  
6. Maximum values specified by design/characterization at nominal V  
and V .  
CC  
must be within this range under all operating conditions, including maximum current transients.  
CCT  
7. V  
V
CCx  
CCx  
must return to within the static voltage specification, V  
, within 100 µs after a transient event.  
CCx,DC  
8. Voltages are measured at the package ball.  
The signals on the Pentium III Processor Low Power system bus are included in the GTL+ signal  
group. These signals are specified to be terminated to V . The DC specifications for these signals  
CC  
are listed in Table 8 and the termination and reference voltage specifications for these signals are  
listed in Table 9. The Pentium III Processor Low Power requires external termination and a  
V
. Refer to the Mobile Pentium III Processor GTL+ System Bus Layout Guideline for full  
REF  
details of system V  
and V  
requirements. The CMOS, Open-drain, and TAP signals are  
REF  
CCT  
designed to interface at 1.5 V levels to allow connection to other devices. BCLK and PICCLK are  
designed to receive a 2.5-V clock signal. The DC specifications for these signals are listed in Table  
10.  
Datasheet  
23  
Intel® Pentium® III Processor Low Power  
Table 8. GTL+ Signal Group DC Specifications  
T = 0°C to 100°C; V = 1.35 V ±100 mV; V = 1.50 V ±115 mV  
CCT  
J
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
in Table 9  
V
R
Output High Voltage  
V
See V  
CCT,max  
OH  
Output Low Drive Strength  
16.67  
±100  
ON  
I
Leakage Current for Inputs, Outputs and I/Os  
µA  
(0 V  
V )  
CCT  
L
IN/OUT  
Table 9. GTL+ Bus DC Specifications  
T = 0°C to 100°C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
Symbol  
Parameter  
Min  
Typ  
Max  
1.615  
Unit  
Notes  
V
V
Bus Termination Voltage  
Input Reference Voltage  
1.385  
1.5  
V
V
Note 1  
CCT  
2/ V  
2% 2/ V  
2/ V  
+ 2%  
±2%, Note 2  
REF  
3
CCT  
3
CCT  
3
CCT  
On-die R  
Note 3  
,
TT  
R
Bus Termination Strength  
50  
56  
65  
TT  
NOTES:  
1. For simulation use 1.50 V ±10%. For typical simulation conditions use V  
(1.5 V 10%).  
CCTmin  
2. V  
should be created from V  
by a voltage divider.  
REF  
3. The RESET# signal does not have an on-die R . It requires an off-die 56.2 ±1% terminating resistor  
CCT  
TT  
connected to V  
.
CCT  
24  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 10. Clock, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V = 1.50 V ±115 mV  
CCT  
J
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
V
V
CMOSREFmin  
200 mV  
V
V
V
Input Low Voltage, 1.5 V CMOS  
Input Low Voltage, 2.5 V CMOS  
Input Low Voltage, 3.3 V CMOS  
Input Low Voltage, BCLK  
0.15  
0.3  
0.3  
0.3  
V
V
V
V
V
V
V
IL15  
IL25  
IL33  
0.7  
Notes 1, 2  
Note 7  
CMOSREFmin  
200 mV  
V
0.5  
Note 2  
IL,BCLK  
V
V
CMOSREFmax  
+ 200 mV  
V
V
V
Input High Voltage, 1.5 V CMOS  
Input High Voltage, 2.5 V CMOS  
Input High Voltage, 3.3 V CMOS  
V
CCT  
IH15  
IH25  
IH33  
2.0  
2.625  
3.465  
Notes 1, 2  
Note 7  
CMOSREFmax  
+ 200 mV  
V
Input High Voltage, BCLK  
Output Low Voltage  
2.0  
2.625  
0.4  
V
V
Note 2  
Note 3  
IH,BCLK  
V
OL  
All outputs are  
Open-drain  
V
Output High Voltage, 1.5 V CMOS  
Output High Voltage, 2.5 V CMOS  
N/A  
N/A  
1.615  
2.625  
V
V
OH15  
OH25  
All outputs are  
Open-drain  
V
V
Output High Voltage, VID ball/pins  
CMOSREF Voltage  
N/A  
0.90  
1.175  
10  
5.50  
1.10  
V
V
5V + 10%  
Note 4  
OH,VID  
V
CMOSREF  
V
CLKREF Voltage  
1.325  
V
1.25V ±6%, Note 4  
Note 6  
CLKREF  
I
Output Low Current  
mA  
OL  
Leakage Current for Inputs,  
Outputs and I/Os  
I
±100  
µA  
Notes 5, 8  
L
NOTES:  
1. Parameter applies to the PICCLK and PWRGOOD signals only.  
2. V and V only apply when BCLK and PICCLK are stopped. BCLK and PICCLK should be  
ILx,min  
IHx,max  
stopped in the low state. See Table 20 for the BCLK voltage range specifications for when BCLK is running.  
See Table 21 for the PICCLK voltage range specifications for when PICCLK is running.  
3. Parameter measured at 10 mA.  
4. V  
and V  
should be created from a stable voltage supply using a voltage divider.  
CMOSREF  
CLKREF  
5. (0 ≤  
V  
).  
VIN/OUT  
IHx,max  
6. Specified as the minimum amount of current that the output buffer must be able to sink. However, V  
cannot be guaranteed if this specification is exceeded.  
OL,max  
7. Parameter applies to BSEL[1:0] signals only.  
8. For BSEL[1:0] signals, I  
(with 1 Kpull-up to 3.3 V)  
can be up to 100 µA (with 1 Kpull-up to 1.5 V), and can be up to 500 µA  
L, Max  
Datasheet  
25  
Intel® Pentium® III Processor Low Power  
3.6  
AC Specifications  
3.6.1  
System Bus, Clock, APIC, TAP, CMOS, and Open-drain AC  
Specifications  
Table 11 through Table 19 provide AC specifications associated with the Pentium III Processor –  
Low Power. The AC specifications are divided into the following categories: Table 11 contains the  
system bus clock specifications; Table 12 contains the processor core frequencies; Table 13  
contains the GTL+ specifications; Table 14 contains the CMOS and Open-drain signal groups  
specifications; Table 15 contains timings for the reset conditions; Table 16 contains the APIC  
specifications; Table 17 contains the TAP specifications; and Table 18 and Table 19 contain the  
power management timing specifications.  
All system bus AC specifications for the GTL+ signal group are relative to the rising edge of the  
BCLK input at 1.25 V. All GTL+ timings are referenced to VREF for both 0and 1logic levels  
unless otherwise specified. All APIC, TAP, CMOS, and Open-drain signals except PWRGOOD are  
referenced to 0.75 V.  
Table 11. System Bus Clock AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes1  
System Bus Frequency  
BCLK Period  
100  
10  
MHz  
ns  
T1  
T2  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
Note 2  
Notes 3, 4  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
BCLK Rise Time  
BCLK Fall Time  
±250  
ps  
T3  
2.70  
2.45  
ns  
at >2.0 V  
T4  
ns  
at <0.5 V  
T5  
0.175  
0.175  
0.875  
0.875  
ns  
(0.9 V 1.6 V)  
(1.6 V 0.9 V)  
T6  
ns  
NOTES:  
1. All AC timings for GTL+ and CMOS signals are referenced to the BCLK rising edge at 1.25 V. All CMOS  
signals are referenced at 0.75 V.  
2. The BCLK period allows a +0.5 ns tolerance for clock driver variation.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25 V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
Table 12. Supported Processor Frequencies  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
BCLK Frequency  
(MHz)  
Core Frequency  
Power-on Configuration  
bits [27, 25:22]  
Frequency Multiplier  
(MHz)  
100  
100  
100  
4
5
7
400  
500  
700  
0, 0010  
0, 0000  
0, 1001  
NOTE: While other combinations of bus and core frequencies are defined, operation at frequencies other  
than those listed above will not be validated by Intel and are not guaranteed. The frequency  
multiplier is programmed into the processor when it is manufactured and it cannot be changed.  
26  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 13. GTL+ Signal Groups AC Specifications  
R
= 56 Ω internally terminated to V  
; V  
= 2/ V  
; load = 0 pF;  
TT  
CCT REF  
3
CCT  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V = 1.50 V ±115 mV  
J
CC  
CCT  
Symbol  
Parameter1  
Min  
Max Unit  
Figure  
Notes  
T7  
T8  
T9  
GTL+ Output Valid Delay  
GTL+ Input Setup Time  
GTL+ Input Hold Time  
0.2  
1.2  
2.7  
ns  
ns  
ns  
Figure 8  
Figure 9  
Figure 9  
Notes 2, 3  
Notes 4  
0.80  
Figure 10  
Figure 11  
T10  
RESET# Pulse Width  
1
ms  
Note 5  
NOTES:  
1. All AC timings for GTL+ signals are referenced to the BCLK rising edge at 1.25 V. All GTL+ signals are  
referenced at V  
.
REF  
2. RESET# can be asserted (active) asynchronously, but must be de-asserted synchronously.  
3. Specification is for a minimum 0.40 V swing.  
4. Specification is for a maximum 1.0 V swing.  
5. After V , V  
, and BCLK become stable and PWRGOOD is asserted.  
CC CCT  
Table 14. CMOS and Open-drain Signal Groups AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
1, 2  
Parameter  
Symbol  
Min Max  
Unit  
Figure  
Notes  
1.5 V Input Pulse Width, except  
PWRGOOD and LINT[1:0]  
Active and  
Inactive states  
T14  
2
BCLKs  
BCLKs  
Figure 8  
Figure 8  
T14B  
T15  
LINT[1:0] Input Pulse Width  
6
Note 3  
PWRGOOD Inactive Pulse Width  
10  
BCLKs Figure 11  
Notes 4, 5  
NOTES:  
1. All AC timings for CMOS and Open-drain signals are referenced to the BCLK rising edge at 1.25 V. All  
CMOS and Open-drain signals are referenced at 0.75 V.  
2. Minimum output pulse width on CMOS outputs is 2 BCLKs.  
3. This specification only applies when the APIC is enabled and the LINT1 or LINT0 signal is configured as an  
edge triggered interrupt with fixed delivery, otherwise specification T14 applies.  
4. When driven inactive, or after V , V  
and BCLK become stable. PWRGOOD must remain below  
CC  
CCT  
V
from Table 10 until all the voltage planes meet the voltage tolerance specifications in Table 7 and  
IL25,max  
BCLK has met the BCLK AC specifications in Table 11 for at least 10 clock cycles. PWRGOOD must rise  
glitch-free and monotonically to 2.5 V.  
5. If the BCLK Settling Time specification (T60) can be guaranteed at power-on reset then the PWRGOOD  
Inactive Pulse Width specification (T15) is waived and BCLK may start after PWRGOOD is asserted.  
PWRGOOD must still remain below V  
specifications.  
until all the voltage planes meet the voltage tolerance  
IL25,max  
Datasheet  
27  
Intel® Pentium® III Processor Low Power  
Table 15. Reset Configuration AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
Symbol  
Parameter  
Reset Configuration Signals (A[15:5]#,  
BREQ0#, FLUSH#, INIT#, PICD0) Setup  
Time  
Min Max  
Unit  
Figure  
Notes  
Before  
deassertion of  
RESET#  
Figure 8  
Figure 9  
T16  
T17  
4
2
1
BCLKs  
After clock  
that deasserts  
RESET#  
Reset Configuration Signals (A[15:5]#,  
BREQ0#, FLUSH#, INIT#, PICD0) Hold Time  
Figure 8  
Figure 9  
20  
BCLKs  
ms  
Before  
T18  
RESET#/PWRGOOD Setup Time  
Figure 11 deassertion of  
RESET#1  
NOTE:  
1. At least 1 ms must pass after PWRGOOD rises above V  
timing specification until RESET# may be deasserted.  
from Table 10 and BCLK meets its AC  
IH25,min  
Table 16. APIC Bus Signal AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
PICCLK Frequency  
PICCLK Period  
2
33.3  
500  
MHz  
ns  
Note 2  
30  
Figure 6  
Figure 6  
Figure 6  
Figure 6  
Figure 6  
Figure 9  
Figure 9  
PICCLK High Time  
PICCLK Low Time  
PICCLK Rise Time  
PICCLK Fall Time  
PICD[1:0] Setup Time  
PICD[1:0] Hold Time  
10.5  
10.5  
0.25  
0.25  
5.0  
ns  
at >1. 7 V  
at <0.7 V  
ns  
3.0  
3.0  
ns  
(0.7 V 1.7 V)  
(1.7 V 0.7 V)  
Note 3  
ns  
ns  
2.5  
ns  
Note 3  
PICD[1:0] Valid Delay (Rising Edge)  
PICD[1:0] Valid Delay (Falling Edge)  
1.5  
1.5  
8.7  
12.0  
ns  
ns  
T29  
Figure 8  
Notes 3, 4, 5  
NOTES:  
1. All AC timings for APIC signals are referenced to the PICCLK rising edge at 1.25 V. All CMOS signals are  
referenced at 0.75 V.  
2. The minimum frequency is 2 MHz when PICD0 is at 1.5 V at reset. If PICD0 is strapped to V at reset then  
SS  
the minimum frequency is 0 MHz.  
3. Referenced to PICCLK Rising Edge.  
4. For Open-drain signals, Valid Delay is synonymous with Float Delay.  
5. Valid delay timings for these signals are specified into 150to 1.5 V and 0 pF of external load. For real  
system timings these specifications must be derated for external capacitance at 105 ps/pF.  
28  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 17. TAP Signal AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V = 1.50 V ±115 mV  
CCT  
J
CC  
Symbol  
Parameter1  
Min  
Max  
Unit  
Figure  
Notes  
T30  
T31  
T32  
T33  
TCK Frequency  
TCK Period  
60  
16.67  
MHz  
ns  
Figure 6  
Figure 6  
Figure 6  
TCK High Time  
TCK Low Time  
25.0  
25.0  
ns  
1.2 V, Note 2  
0.6 V, Note 2  
ns  
(0.6 V 1.2 V),  
Notes 2, 3  
T34  
T35  
T36  
TCK Rise Time  
TCK Fall Time  
5.0  
5.0  
ns  
ns  
ns  
Figure 6  
Figure 6  
Figure 13  
(1.2 V 1.6 V),  
Notes 2, 3  
Asynchronous,  
Note 2  
TRST# Pulse Width  
40.0  
T37  
T38  
TDI, TMS Setup Time  
5.0  
14.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Note 4  
Note 4  
TDI, TMS Hold Time  
T39  
TDO Valid Delay  
10.0  
25.0  
25.0  
25.0  
Notes 5, 6  
T40  
TDO Float Delay  
Notes 2, 5, 6  
Notes 5, 7, 8  
Notes 2, 5, 7, 8  
Notes 4, 7, 8  
Notes 4, 7, 8  
T41  
All Non-Test Outputs Valid Delay  
All Non-Test Outputs Float Delay  
All Non-Test Inputs Setup Time  
All Non-Test Inputs Hold Time  
2.0  
T42  
T43  
5.0  
T44  
13.0  
NOTES:  
1. All AC timings for TAP signals are referenced to the TCK rising edge at 0.75 V. All TAP and CMOS signals  
are referenced at 0.75 V.  
2. Not 100% tested. Specified by design/characterization.  
3. 1 ns can be added to the maximum TCK rise and fall times for every 1 MHz below 16 MHz.  
4. Referenced to TCK rising edge.  
5. Referenced to TCK falling edge.  
6. Valid delay timing for this signal is specified into 150terminated to 1.5 V and 0 pF of external load. For  
real system timings these specifications must be derated for external capacitance at 105 ps/pF.  
7. Non-Test Outputs and Inputs are the normal output or input signals (except TCK, TRST#, TDI, TDO, and  
TMS). These timings correspond to the response of these signals due to boundary scan operations.  
8. During Debug Port operation use the normal specified timings rather than the TAP signal timings.  
Datasheet  
29  
Intel® Pentium® III Processor Low Power  
Table 18. Quick Start/Deep Sleep AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V  
= 1.50 V ±115 mV  
J
CC  
CCT  
Symbol  
Parameter1  
Min Max  
Unit  
Figure  
Notes  
T45  
T46  
Stop Grant Cycle Completion to Clock Stop  
100  
BCLKs  
µs  
Figure 14  
Figure 14  
Stop Grant Cycle Completion to Input Signals Stable  
0
30  
Figure 14  
Figure 15  
T47  
Deep Sleep PLL Lock Latency  
0
µs  
Note 2  
T48  
T49  
STPCLK# Hold Time from PLL Lock  
0
8
ns  
Figure 14  
Figure 14  
Input Signal Hold Time from STPCLK# Deassertion  
BCLKs  
NOTES:  
1. Input signals other than RESET# and BPRI# must be held constant in the Quick Start state.  
2. The BCLK Settling Time specification (T60) applies to Deep Sleep state exit under all conditions.  
Table 19. Stop Grant/Sleep/Deep Sleep AC Specifications  
T = 0° C to 100° C; V = 1.35 V ±100 mV; V = 1.50 V ±115 mV  
CCT  
J
CC  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
T50  
T51  
T52  
T54  
T55  
T56  
SLP# Signal Hold Time from Stop Grant Cycle Completion 100  
SLP# Assertion to Input Signals Stable  
BCLKs  
ns  
Figure 15  
Figure 15  
Figure 15  
Figure 15  
Figure 15  
Figure 15  
0
SLP# Assertion to Clock Stop  
10  
0
BCLKs  
ns  
SLP# Hold Time from PLL Lock  
STPCLK# Hold Time from SLP# Deassertion  
Input Signal Hold Time from SLP# Deassertion  
10  
10  
BCLKs  
BCLKs  
NOTE: Input signals other than RESET# must be held constant in the Sleep state. The BCLK Settling Time  
specification (T60) applies to Deep Sleep state exit under all conditions.  
Figure 6 through Figure 16 are to be used in conjunction with Table 11 through Table 19.  
Figure 6. PICCLK/TCK Clock Timing Waveform  
T
h
T
r
VH  
VTRIP  
CLK  
VL  
T
f
T
l
NOTES:  
T
p
D0003-01  
Tr=T34, T25 (Rise Time)  
Tf=T35, T26 (Fall Time)  
Th=T32, T23 (High Time)  
Tl=T33, T24 (Low Time)  
Tp=T31, T22 (Period)  
VTRIP=1.25 V for PICCLK; 0.75 V for TCK  
VL=0.7 V for PICCLK; 0.6 V for TCK  
VH=2.0 V for PICCLK; 1.2 V for TCK  
30  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 7. BCLK Timing Waveform  
T
h
T
r
VH  
1.6V  
0.9V  
CLK  
VTRIP  
VL  
T
f
T
l
NOTES:  
Tr=T5 (Rise Time)  
Tf=T6 (Fall Time)  
T
p
D0003-02  
Th=T3 (High Time)  
Tl=T4 (Low Time)  
Tp=T1 (Period)  
VTRIP=1.25 V for BCLK  
VL=0.5 V for BCLK  
VH=2.0 V for BCLK  
Figure 8. Valid Delay Timings  
CLK  
TX  
T
x
V
Valid  
Valid  
Signal  
TPW  
NOTES:  
T =T7, T11, T29 (Valid Delay)  
D0004-00  
x
T
=T14, T14B (Pulse Width)  
pw  
V=V  
for GTL+ signal group; 0.75 V for CMOS,  
REF  
Open-drain, APIC, and TAP signal groups  
Figure 9. Setup and Hold Timings  
CLK  
Ts  
Th  
V
Valid  
ignal  
D0005-00  
NOTES:  
T =T8, T12, T27 (Setup Time)  
s
T =T9, T13, T28 (Hold Time)  
h
V=V  
for GTL+ signals; 0.75 V for CMOS, APIC, and TAP signals  
REF  
Datasheet  
31  
Intel® Pentium® III Processor Low Power  
Figure 10. Cold/Warm Reset and Configuration Timings  
BCLK  
T
u
T
t
RESET#  
T
v
T
T
x
w
Configuration  
(A[15:5], BREQ0#,  
FLUSH#, INIT#,  
PICD0)  
Valid  
D0006-01  
NOTES:  
Tt=T9 (GTL+ Input Hold Time)  
Tu=T8 (GTL+ Input Setup Time)  
Tv=T10 (RESET# Pulse Width)  
T18 (RESET#/PWRGOOD Setup Time)  
Tw=T16 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Setup Time)  
Tx=T17 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Hold Time)  
Figure 11. Power-on Reset Timings  
BCLK  
V
CCT  
V
CC  
REF  
V
VIH25,min  
WRGOOD  
VIL25,max  
T
T
b
a
RESET#  
D0007-01  
NOTES:  
Ta=T15 (PWRGOOD Inactive Pulse Width)  
Tb=T10 (RESET# Pulse Width)  
32  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 12. Test Timings (Boundary Scan)  
TCK  
T
T
w
v
0.75V  
TDI, TMS  
T
T
s
r
Input  
Signals  
T
T
u
x
TDO  
T
T
z
y
Output  
Signals  
D0008-01  
NOTES:  
Tr=T43 (All Non-Test Inputs Setup Time)  
Ts=T44 (All Non-Test Inputs Hold Time)  
Tu=T40 (TDO Float Delay)  
Tv=T37 (TDI, TMS Setup Time)  
Tw=T38 (TDI, TMS Hold Time)  
Tx=T39 (TDO Valid Delay)  
Ty=T41 (All Non-Test Outputs Valid Delay)  
Tz=T42 (All Non-Test Outputs Float Delay)  
Figure 13. Test Reset Timings  
0.75V  
TRST#  
T
q
D0009-01  
NOTE:  
Tq=T36 (TRST# Pulse Width)  
Datasheet  
33  
Intel® Pentium® III Processor Low Power  
Figure 14. Quick Start/Deep Sleep Timing  
Normal  
Quick Start  
Deep Sleep  
Normal  
Quick Start  
Running  
BCLK  
Running  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
SLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V0010-00  
NOTES:  
Tv=T45 (Stop Grant Acknowledge Bus Cycle Completion to Clock Shut Off Delay)  
Tw=T46 (Setup Time to Input Signal Hold Requirement)  
Tx=T47 (Deep Sleep PLL Lock Latency)  
Ty=T48 (PLL lock to STPCLK# Hold Time)  
Tz=T49 (Input Signal Hold Time)  
Figure 15. Stop Grant/Sleep/Deep Sleep Timing  
Stop  
Grant  
Stop  
Grant  
Normal  
Running  
Sleep  
Tv  
Deep Sleep  
Sleep  
Normal  
BCLK  
Running  
STPCLK#  
Ty  
CPU bus  
SLP#  
stpgnt  
Tw  
Tx  
Tt  
Tu  
Tz  
Compatibility  
Signals  
Changing  
Changing  
Frozen  
V0011-00  
NOTES:  
Tt=T50 (Stop Grant Acknowledge Bus Cycle Completion to SLP# Assertion Delay)  
Tu=T51 (Setup Time to Input Signal Hold Requirement)  
Tv=T52 (SLP# assertion to clock shut off delay)  
Tw=T47 (Deep Sleep PLL lock latency)  
Tx=T54 (SLP# Hold Time)  
Ty=T55 (STPCLK# Hold Time)  
Tz=T56 (Input Signal Hold Time)  
34  
Datasheet  
Intel® Pentium® III Processor Low Power  
4.0  
System Signal Simulations  
Many scenarios have been simulated to generate a set of GTL+ processor system bus layout  
guidelines, which are available in the Mobile Pentium III Processor GTL+ System Bus Layout  
Guideline. Systems must be simulated using the IBIS model to determine if they are compliant  
with this specification.  
4.1  
System Bus Clock (BCLK) and PICCLK AC Signal Quality  
Specifications  
Table 20 and Figure 17 show the signal quality for the system bus clock (BCLK) signal, and Table  
21 and Figure 17 show the signal quality for the APIC bus clock (PICCLK) signal at the processor.  
BCLK and PICCLK are 2.5 V clocks.  
Table 20. BCLK Signal Quality Specification  
Symbo  
Parameter  
l
Min  
Max Unit  
Figure  
Notes  
V1  
V2  
V
V
0.5  
V
V
Figure 17  
Figure 17  
Note 1  
Note 1  
IL,BCLK  
2.0  
-0.7  
2.0  
IH,BCLK  
Undershoot/Overshoot,  
Note 2  
V3  
V
Absolute Voltage Range  
3.5  
V
Figure 17  
IN  
V4  
V5  
BCLK Rising Edge Ringback  
BCLK Falling Edge Ringback  
V
V
Figure 17  
Figure 17  
Absolute Value, Note 3  
Absolute Value, Note 3  
0.5  
NOTES:  
1. The clock must rise/fall monotonically between V  
and V  
.
IH,BCLK  
IL,BCLK  
2. These specifications apply only when BCLK is running, see Table 10 for the DC specifications for when  
BCLK is stopped. BCLK may not be above V  
clock cycle.  
or below V  
for more than 50% of the  
IH,BCLK,max  
BCLK,min  
IL,  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the BCLK signal can go to after passing the V  
(rising) or V  
(falling) voltage limits.  
IH,BCLK  
IL,BCLK  
Table 21. PICCLK Signal Quality Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
V1  
V2  
V
V
0.7  
3.5  
0.7  
V
V
Figure 17  
Figure 17  
Note 1  
Note 1  
IL25  
IH25  
2.0  
0.7  
2.0  
Undershoot, Overshoot,  
Note 2  
V3  
V
Absolute Voltage Range  
V
Figure 17  
IN  
V4  
V5  
PICCLK Rising Edge Ringback  
PICCLK Falling Edge Ringback  
V
V
Figure 17  
Figure 17  
Absolute Value, Note 3  
Absolute Value, Note 3  
NOTES:  
1. The clock must rise/fall monotonically between V  
and V  
.
IL25  
IH25  
2. These specifications apply only when PICCLK is running, see Table 10 for the DC specifications for when  
PICCLK is stopped. PICCLK may not be above V  
clock cycle.  
or below V  
for more than 50% of the  
IH25,max  
IL25,min  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the PICCLK signal can go to after passing the V (rising) or V (falling) voltage limits.  
IH25  
IL25  
Datasheet  
35  
Intel® Pentium® III Processor Low Power  
Figure 16. BCLK/PICCLK Generic Clock Waveform  
V3max  
V4  
V2  
V1  
V5  
V3min  
V0012-01  
4.2  
GTL+ AC Signal Quality Specifications  
Table 22, Figure 18, and Figure 19 illustrate the GTL+ signal quality specifications for the Pentium  
III Processor Low Power. Refer to the Pentium® II Processor Developers Manual for the GTL+  
buffer specification. The Pentium III Processor Low Power maximum overshoot and undershoot  
specifications for a given duration of time are specified in Table 23. Contact your Intel Field Sales  
representative for a copy of the OVERSHOOT_CHECKER tool. The OVERSHOOT_CHECKER  
determines if a specific waveform meets the overshoot/undershoot specification. Figure 20 shows  
the overshoot/undershoot waveform. The tolerances listed in Table 23 are conservative. Signals  
that exceed these tolerances may still meet the processor overshoot/undershoot tolerance if the  
OVERSHOOT_CHECKER tool says that they pass.  
Table 22. GTL+ Signal Group Ringback Specification  
Symbol  
Parameter  
Min  
Unit  
Figure  
Notes  
Figure 18  
Figure 19  
α
Overshoot  
100  
mV  
Notes 1, 2  
Figure 18  
Figure 19  
τ
ρ
φ
Minimum Time at High  
Amplitude of Ringback  
Final Settling Voltage  
0.5  
-200  
200  
N/A  
ns  
mV  
mV  
ns  
Notes 1, 2  
Notes 1, 2, 3  
Notes 1, 2  
Notes 1, 2  
Figure 18  
Figure 19  
Figure 18  
Figure 19  
Figure 18  
Figure 19  
δ
Duration of Sequential Ringback  
NOTES:  
1. Specified for the edge rate of 0.3 0.8 V/ns. See Figure 18 for the generic waveform.  
2. All values determined by design/characterization.  
3. Ringback below V  
,max + 200 mV is not authorized during low to high transitions. Ringback above  
REF  
V
200 mV is not authorized during high to low transitions.  
REF,min  
36  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 17. Low to High, GTL+ Receiver Ringback Tolerance  
τ
VIH,BCLK  
α
VREF,max+0.2V  
φ
VREF,max  
ρ
VREF,min-0.2V  
δ
VIL,BCLK  
Vstart  
Clock  
V0014-01  
Time  
Figure 18. High to Low, GTL+ Receiver Ringback Tolerance  
VIH,BCLK  
Vstart  
VREF,max+0.2V  
δ
ρ
VREF,min  
φ
V
REF,min-0.2V  
VIL,BCLK  
α
τ
Clock  
V0014-02  
Time  
Datasheet  
37  
Intel® Pentium® III Processor Low Power  
Table 23. GTL+ Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Overshoot Amplitude  
Undershoot Amplitude  
Allowed Pulse Duration  
2.0 V  
1.9 V  
1.8 V  
-0.35 V  
-0.25 V  
-0.15 V  
0.35 ns  
1.2 ns  
4.3 ns  
NOTES:  
1. Under no circumstances should the GTL+ signal voltage ever exceed 2.0 V maximum with respect to  
ground or -2.0 V minimum with respect to V (i.e., V - 2.0 V) under operating conditions.  
CCT  
CCT  
2. Ringbacks below V  
longer or larger overshoot.  
cannot be subtracted from overshoots. Lesser undershoot does not allocate  
CCT  
3. Ringbacks above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate  
longer or larger undershoot.  
4. System designers are encouraged to follow Intel provided GTL+ layout guidelines.  
5. All values are specified by design characterization and are not tested.  
Figure 19. Maximum Acceptable Overshoot/Undershoot Waveform  
Time dependent Overshoot  
2.0V Max  
1.9V  
VCCT  
1.8V  
χ
α
β
α β  
χ
Vss  
-.15V  
-.25V  
-.35V Min  
Time dependent Undershoot  
NOTE:  
The total overshoot/undershoot budget for one clock cycle is fully consumed by the α, β, or χ waveforms.  
38  
Datasheet  
Intel® Pentium® III Processor Low Power  
4.3  
Non-GTL+ Signal Quality Specifications  
Signals driven to the Pentium III Processor Low Power should meet signal quality specifications  
to ensure that the processor reads data properly and that incoming signals do not affect the long-  
term reliability of the processor. The Pentium III Processor Low Power uses GTL+ buffers for  
non-GTL+ signals. The input and output paths of the buffers have been slowed down to match the  
requirements for the non-GTL+ signals. The signal quality specifications for the non-GTL+ signals  
are identical to the GTL+ signal quality specifications except that they are relative to VCMOSREF  
rather than VREF transitions OVERSHOOT_CHECKER can be used to verify non-GTL+ signal  
compliance with the signal overshoot and undershoot tolerance. The tolerances listed in Table 24  
are conservative. Signals that exceed these tolerances may still meet the processor overshoot and  
undershoot tolerance if the OVERSHOOT_CHECKER tool says that they pass.  
Table 24. Non-GTL+ Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Overshoot Amplitude  
Undershoot Amplitude  
Allowed Pulse Duration  
2.1 V  
2.0 V  
1.9 V  
1.8 V  
-0.45 V  
-0.35 V  
-0.25 V  
-0.15 V  
0.45 ns  
1.5 ns  
5.0 ns  
17 ns  
NOTES:  
1. Under no circumstances should the non-GTL+ signal voltage ever exceed 2.1 V maximum with respect to  
ground or -2.1 V minimum with respect to V (i.e., V - 2.1 V) under operating conditions.  
CCT  
CCT  
2. Ring-backs below V  
longer or larger overshoot.  
cannot be subtracted from overshoots. Lesser undershoot does not allocate  
CCT  
3. Ring-backs above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate  
longer or larger undershoot.  
4. System designers are encouraged to follow Intel provided non-GTL+ layout guidelines.  
5. All values are specified by design characterization, and are not tested.  
4.3.1  
PWRGOOD Signal Quality Specifications  
The processor requires PWRGOOD to be a clean indication that clocks and the power supplies  
(VCC, VCCT, etc.) are stable and within their specifications. Clean implies that the signal will  
remain below V  
and without errors from the time that the power supplies are turned on, until  
IL25  
they come within specification. The signal will then transition monotonically to a high (2.5 V)  
state. PWRGOOD may not ringback below 2.0 V after rising above V  
.
IH25  
Datasheet  
39  
Intel® Pentium® III Processor Low Power  
5.0  
Mechanical Specifications  
5.1  
Surface-mount BGA2 Package Dimensions  
The Pentium III Processor Low Power is packaged in a PBGA-B495 package (also known as  
BGA2) with the back of the processor die exposed on top. Unlike previous processors with  
exposed die, the back of the Pentium III Processor Low Power die may be polished and very  
smooth. The mechanical specifications for the surface-mount package are provided in Table 25.  
Figure 21 shows the top and side views of the surface-mount package, and Figure 22 shows the  
bottom view of the surface-mount package. The substrate may only be contacted within the shaded  
region between the keep-out outline and the edge of the substrate. The Pentium III Processor Low  
Power will have one or two label marks. These label marks will be located along the long edge of  
the substrate outside of the keep-out region and they will not encroach upon the 7-mm by 7-mm  
squares at the substrate corners. Please note that in order to implement VID on the BGA2 package,  
some VID[4:0] balls may be depopulated.  
Table 25. Surface-mount BGA2 Package Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
A
Overall Height, as delivered  
Substrate Height, as delivered  
Die Height  
2.29  
2.79  
mm  
mm  
mm  
mm  
mm  
A
1.50 REF  
0.854 REF  
0.78 REF  
1
2
A
b
Ball Diameter  
D
Package Width  
27.05  
27.35  
D0 Step 8.82 REF (CPUID = 068Ah)  
C0 Step 8.82 REF (CPUID = 0686h)  
B0 Step 9.28 REF (CPUID = 0683h)  
A2 Step 9.37 REF (CPUID = 0681h)  
D
Die Width  
mm  
1
E
e
Package Length  
Ball Pitch  
30.85  
31.15  
mm  
mm  
1.27  
D0 Step 11.00 REF (CPUID = 068Ah)  
C0 Step 10.79 REF (CPUID = 0686h)  
B0 Step 11.23 REF (CPUID = 0683h)  
A2 Step 11.27 REF (CPUID = 0681h)  
E
Die Length  
mm  
1
N
Ball Count  
4951  
each  
mm  
S
Outer Ball Center to Short Edge of Substrate  
Outer Ball Center to Long Edge of Substrate  
0.895 REF  
0.900 REF  
1
2
S
mm  
Allowable Pressure on the Die for Thermal  
Solution  
P
689  
kPa  
DIE  
W
Package Weight  
4.5 REF  
grams  
Note: 1. Exact ball count will vary depending on VID[4:0] encoding. See VID[4:0] signal description.  
40  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 20. Surface-mount BGA2 Package - Top and Side View  
D1  
E1  
NOTE: All dimensions are in millimeters. Dimensions in figure are for reference only, see Table 25 for  
specifications.  
Datasheet  
41  
Intel® Pentium® III Processor Low Power  
Figure 21. Surface-mount BGA2 Package - Bottom View  
NOTE: All dimensions are in millimeters. Dimensions in figure are for reference only, see Table 25 for  
specifications  
5.2  
Signal Listings  
Figure 22 is a top-side view of the ball or pin map of the Pentium III Processor Low Power with  
the voltage balls/pins called out. Table 26 lists the signals in ball/pin number order. Table 27 lists  
the signals in signal name order.  
42  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 22. Pin/Ball Map - Top View  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
16 17 18 19 20 21  
A
B
C
D
E
F
VSS  
A30#  
A31#  
VSS  
A23#  
A18#  
NC  
A29#  
A28#  
A26#  
A21#  
VSS  
VSS  
VSS  
NC  
A32#  
A34#  
A20#  
A25#  
A33# RESET# VSS  
VSS  
VSS  
D3#  
NC  
D5#  
D4#  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
D7#  
VSS  
D1#  
VSS  
VSS  
VSS  
D11#  
D8#  
D14#  
D9#  
D10#  
D18#  
NC  
NC  
VSS  
VSS  
D16#  
NC  
NC  
D13#  
VSS  
NC  
NC  
D23#  
VSS  
D21#  
D27#  
VSS  
D30#  
D29#  
D35#  
D37#  
D43#  
VSS  
VSS  
D31#  
D33#  
D38#  
D45#  
D42#  
D51#  
D47#  
D59#  
D53#  
D55#  
D56#  
VSS  
VSS  
A27#  
A22#  
A19#  
A16#  
A13#  
A14#  
A10#  
A9#  
VSS  
VSS  
VSS  
VSS  
D6#  
D0#  
VSS  
VSS  
D22#  
D24#  
D25#  
A35# BREQ0# D2#  
D20#  
D15#  
VSS  
VSS  
D26#  
D28#  
A24#  
VSS  
VSS  
D17#  
D12#  
VSS  
NC  
D32#  
VSS  
A15# VREF BERR# VSS  
VSS  
VSS  
D19#  
VSS  
VREF VREF D34#  
A17# VREF  
VSS  
VSS  
VSS  
VSS  
VREF D40#  
D36#  
VSS  
G
H
J
NC  
NC  
NC  
A8#  
VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT  
NC  
D49#  
VSS  
NC  
NC  
VSS  
A5#  
VCCT  
VCCT  
VCCT  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC VCCT D39#  
VSS VCCT D41#  
VCC VCCT D52#  
VSS VCCT D48#  
VCC VCCT D54#  
D44#  
VSS  
A11#  
A4#  
VSS  
A12#  
A6#  
NC  
D46#  
VSS  
K
L
VSS  
PLL1  
D57#  
VSS  
A7#  
A3#  
VSS VCCT  
D60#  
VSS  
M
N
P
R
T
DEFER# PLL2 BCLK  
NC  
VCCT  
D61#  
VSS  
VSS  
VSS  
VSS  
VSS TESTLO2 VCCT  
VSS VCCT  
VSS  
VSS  
VCC CLKREF NC  
NC  
VSS  
VSS  
VSS  
VCCT  
VCCT  
VCCT  
VCC VCCT D50#  
VSS VCCT D63#  
VSS DEP6# DEP5#  
LOCK# GHI#  
VSS  
VSS  
D56#  
VSS  
VSS DEP3#  
D58# DEP1#  
DRDY# REQ0# VSS  
BNR#  
VCC VCCT  
VSS  
U
V
W
Y
A
B
C
D
RS0# TRDY# DEFER# BPRI# VREF VCCT  
VSS VCCT D62# DEP7# VSS DEP2#  
HIT# REQ2# VSS REQ1# PWRGOOD VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT DEP4# VSS DEP0# BINIT#  
RS2#  
RP# REQ3# VSS REQ4# VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT VCCT  
VSS BPM1# PRDY# BPM0#  
RSP# AP1#  
VSS HITM#TESTLO1 VCCT VCCT VCCT  
VSS  
VSS  
INIT#  
SMI#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREF VREF  
VSS  
PICD1 BP3#  
CMOS  
REF  
THERM EDGE  
DA  
NC  
VSS  
NC  
AERR# RS1# DBSY# VSS  
NC  
VCCT VCCT VCCT  
VCCT VCCT VCCT  
TCK BSEL0 VSS TRST#  
PICCLK NC  
VSS  
BP2#  
CTRLP  
THERM  
DC  
AP0# ADS#  
VSS  
NC  
VID4  
VID3  
VSS  
VSS  
VSS  
VSS  
VSS  
SLP#  
VSS  
VSS BSEL1  
INTR RSVD PREQ# PICD0  
VSS  
VSS  
VSS  
VCCT VCCT VCCT FLUSH# VSS STPCLK# FERR# IGNNE# VSS  
TDO  
NC  
VSS  
VSS  
NMI  
NC  
NC  
VSS  
VSS  
CMOS RTT  
VSS TESTHI  
REF IMPEDP  
VID0  
VID1 VID2  
VCCT VCCT VCCT IERR# A20M# NC  
NC  
TDI  
TMS  
V0024-03  
VCC  
VCCT VSS  
Other  
Analog  
Decoupling  
NOTES:  
1. In order to implement VID on the BGA2 package, some VID[4:0] balls may be depopulated.  
2. Ball P1 must be connected to Vcc  
Datasheet  
43  
Intel® Pentium® III Processor Low Power  
Table 26. Signal Listing in Order by Pin/Ball Number (Sheet 1 of 3)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
A2  
A3  
VSS  
A29#  
A32#  
A33#  
RESET#  
VSS  
VSS  
D5#  
C3  
C4  
A26#  
A20#  
A35#  
BREQ0#  
D2#  
E2  
E3  
A23#  
VSS  
G1  
G2  
A13#  
NC  
A4  
C5  
E4  
A15#  
VREF  
BERR#  
VSS  
G3  
VSS  
A5  
C6  
E5  
G4  
NC  
A6  
C7  
E6  
G5  
NC  
A7  
C8  
D3#  
E7  
G6  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
NC  
A8  
C9  
VSS  
D6#  
E8  
VSS  
G7  
A9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
D1  
E9  
VSS  
G8  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
B1  
VSS  
D14#  
D10#  
NC  
VSS  
D8#  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
F1  
VSS  
G9  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
H1  
D20#  
NC  
D12#  
VSS  
NC  
VSS  
VSS  
D24#  
D26#  
VSS  
D35#  
D33#  
A22#  
VSS  
A21#  
A25#  
A24#  
VSS  
VSS  
NC  
D19#  
NC  
NC  
D23#  
D21#  
D30#  
VSS  
VSS  
A30#  
A28#  
A34#  
VSS  
VSS  
VSS  
VSS  
D4#  
VREF  
VREF  
D34#  
VSS  
D43#  
D45#  
A16#  
A18#  
VSS  
VSS  
B2  
D49#  
D51#  
A14#  
VSS  
B3  
D2  
B4  
D3  
F2  
B5  
D4  
F3  
H2  
B6  
D5  
F4  
A17#  
VREF  
VSS  
H3  
NC  
B7  
D6  
F5  
H4  
NC  
B8  
D7  
F6  
H5  
NC  
B9  
D8  
F7  
VSS  
H6  
VCCT  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
C1  
VSS  
D7#  
D9  
VSS  
D0#  
F8  
VSS  
H7  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
E1  
F9  
VSS  
H8  
VCC  
VSS  
D11#  
D9#  
D1#  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
VSS  
H9  
D17#  
D15#  
NC  
VSS  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
VCC  
VSS  
D18#  
VSS  
D13#  
D22#  
VSS  
D27#  
D29#  
D31#  
A27#  
A31#  
VSS  
VSS  
VCC  
VSS  
D16#  
NC  
VSS  
VSS  
VCC  
VSS  
D25#  
D28#  
D32#  
D37#  
D38#  
A19#  
VSS  
VREF  
D40#  
D36#  
VSS  
VCC  
VCCT  
D39#  
D44#  
VSS  
C2  
D42#  
44  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 26. Signal Listing in Order by Pin/Ball Number (Sheet 2 of 3)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
H21  
J1  
D47#  
A10#  
A5#  
K20  
K21  
L1  
VSS  
D53#  
A7#  
M20  
N2  
VSS  
VSS  
R1  
R2  
LOCK#  
NC  
J2  
N3  
VSS  
R3  
VSS  
J3  
A11#  
VSS  
NC  
L2  
PLL1  
A3#  
N4  
VSS  
R4  
VSS  
J4  
L3  
N5  
TESTLO2  
VCCT  
VCC  
VSS  
R5  
VSS  
J5  
L4  
A6#  
N6  
R6  
VCCT  
VCC  
VSS  
J6  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
D41#  
VSS  
D46#  
D59#  
A9#  
L5  
VSS  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
D48#  
VSS  
D60#  
D55#  
PLL2  
BCLK  
NC  
N7  
R7  
J7  
L6  
N8  
R8  
J8  
L7  
N9  
VCC  
VSS  
R9  
VCC  
VSS  
J9  
L8  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
P1  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
T1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
K1  
L9  
VCC  
VSS  
VCC  
VSS  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
M2  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
VSS  
VCCT  
D63#  
D56#  
VSS  
VSS  
VSS  
VCC  
CLKREF  
NC  
DEP3#  
DRDY#  
REQ0#  
VSS  
P2  
P3  
T2  
K2  
VSS  
A4#  
P4  
NC  
T3  
K3  
M3  
P5  
VSS  
T4  
BNR#  
VSS  
K4  
A12#  
A8#  
M4  
P6  
VCCT  
VSS  
T5  
K5  
M5  
NC  
P7  
T6  
VCCT  
VSS  
K6  
VCCT  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT  
D52#  
D57#  
M6  
VCCT  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT  
D54#  
D61#  
P8  
VCC  
VSS  
T7  
K7  
M7  
P9  
T8  
VCC  
VSS  
K8  
M8  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
VCC  
VSS  
T9  
K9  
M9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
VCC  
VSS  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT  
D50#  
VSS  
VCC  
VCCT  
VSS  
DEP6#  
DEP5#  
VSS  
D58#  
Datasheet  
45  
Intel® Pentium® III Processor Low Power  
Table 26. Signal Listing in Order by Pin/Ball Number (Sheet 3 of 3)  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
No.  
Signal Name  
T21  
U1  
DEP1#  
RS0#  
TRDY#  
DEFER#  
BPRI#  
VREF  
VCCT  
VCC  
V20  
V21  
W1  
DEP0#  
BINIT#  
RS2#  
RP#  
Y19  
Y20  
VSS  
PICD1  
BP3#  
AB18  
AB19  
AB20  
AB21  
AC1  
INTR/LINT0  
RSVD  
PREQ#  
PICD0  
VSS  
U2  
Y21  
U3  
W2  
AA1  
AERR#  
RS1#  
DBSY#  
VSS  
U4  
W3  
REQ3#  
VSS  
AA2  
U5  
W4  
AA3  
AC2  
VSS  
U6  
W5  
REQ4#  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VSS  
AA4  
AC3  
NC  
U7  
W6  
AA5  
NC  
AC4  
VID3  
U8  
VSS  
W7  
AA6  
VCCT  
VCCT  
VCCT  
CMOSREF  
INIT#  
AC5  
VSS  
U9  
VCC  
W8  
AA7  
AC6  
VCCT  
VCCT  
VCCT  
FLUSH#  
VSS  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
V1  
VSS  
W9  
AA8  
AC7  
VCC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
Y1  
AA9  
AC8  
VSS  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AB1  
AC9  
VCC  
TCK  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AD1  
VSS  
BSEL0  
VSS  
STPCLK#  
FERR#  
IGNNE#  
VSS  
VCC  
VSS  
TRST#  
THERMDA  
EDGECTRLP  
NC  
VCCT  
D62#  
TDO  
DEP7#  
VSS  
VSS  
BPM1#  
PRDY#  
BPM0#  
RSP#  
AP1#  
VSS  
PICCLK  
NC  
NC  
DEP2#  
HIT#  
VSS  
VSS  
NMI/LINT1  
NC  
V2  
REQ2#  
VSS  
BP2#  
V3  
Y2  
AP0#  
VSS  
V4  
REQ1#  
PWRGOOD  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
VCCT  
DEP4#  
VSS  
Y3  
AB2  
ADS#  
VSS  
VSS  
V5  
Y4  
HITM#  
TESTLO1  
VCCT  
VCCT  
VCCT  
VSS  
AB3  
AD2  
VID0  
V6  
Y5  
AB4  
VID4  
AD3  
VID1  
V7  
Y6  
AB5  
VSS  
AD4  
VID2  
V8  
Y7  
AB6  
VCCT  
VCCT  
VCCT  
VSS  
AD5  
VSS  
V9  
Y8  
AB7  
AD6  
VCCT  
VCCT  
VCCT  
IERR#  
A20M#  
TDI  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
Y9  
AB8  
AD7  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
VSS  
AB9  
AD8  
VSS  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
SMI#  
AD9  
VSS  
VSS  
AD10  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
VSS  
SLP#  
VSS  
VSS  
TMS  
VSS  
VSS  
NC  
VSS  
BSEL1  
THERMDC  
VSS  
VSS  
VREF  
VREF  
TESTHI  
CMOSREF  
AD19  
RTTIMPEDP  
AD20  
NC  
AD21  
VSS  
NOTE: Ball P1 must be connected to Vcc.  
46  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 27. Signal Listing in Order by Signal Name (Sheet 1 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
L3  
K3  
J2  
A3#  
A4#  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
1.5V CMOS Input  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
2.5V Clock Input  
GTL+ I/O  
GTL+ I/O  
T4  
AA21  
Y21  
W21  
W19  
U4  
BNR#  
BP2#  
BP3#  
BPM0#  
BPM1#  
BPRI#  
BREQ0#  
BSEL0  
BSEL1  
CLKREF  
CMOSREF  
CMOSREF  
D0#  
GTL+ I/O  
GTL+ I/O  
A5#  
GTL+ I/O  
L4  
A6#  
GTL+ I/O  
L1  
A7#  
GTL+ I/O  
K5  
K1  
J1  
A8#  
GTL+ Input  
GTL+ I/O  
A9#  
C6  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
AERR#  
AP0#  
AP1#  
BCLK  
BERR#  
BINIT#  
AA12  
AB15  
P2  
3.3V CMOS Input  
3.3V CMOS Input  
BCLK Reference Voltage  
CMOS Reference Voltage  
CMOS Reference Voltage  
GTL+ I/O  
J3  
K4  
G1  
H1  
E4  
F1  
AA9  
AD18  
D10  
D11  
C7  
D1#  
GTL+ I/O  
F4  
D2#  
GTL+ I/O  
F2  
C8  
D3#  
GTL+ I/O  
E1  
C4  
D3  
D1  
E2  
D5  
D4  
C3  
C1  
B3  
A3  
B2  
C2  
A4  
A5  
B4  
C5  
AD10  
AB2  
AA1  
AB1  
Y2  
M3  
E6  
V21  
B9  
D4#  
GTL+ I/O  
A9  
D5#  
GTL+ I/O  
C10  
B11  
C12  
B13  
A14  
B12  
E12  
B16  
A13  
D13  
D15  
D12  
B14  
E14  
C13  
A19  
B17  
A18  
C17  
D17  
C18  
B19  
D18  
D6#  
GTL+ I/O  
D7#  
GTL+ I/O  
D8#  
GTL+ I/O  
D9#  
GTL+ I/O  
D10#  
D11#  
GTL+ I/O  
GTL+ I/O  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
Datasheet  
47  
Intel® Pentium® III Processor Low Power  
Table 27. Signal Listing in Order by Signal Name (Sheet 2 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
B20  
A20  
B21  
D19  
C21  
E18  
C20  
F19  
D20  
D21  
H18  
F18  
J18  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBSY#  
DEFER#  
DEP0#  
DEP1#  
DEP2#  
DEP3#  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ Input  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
V18  
P21  
P20  
U19  
T1  
DEP4#  
DEP5#  
DEP6#  
DEP7#  
DRDY#  
EDGECTRLP  
FERR#  
FLUSH#  
HIT#  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
GTL+ I/O  
AA16  
AC12  
AC9  
V1  
GTL+ Control  
1.5V Open Drain Output  
1.5V CMOS Input  
GTL+ I/O  
Y4  
HITM#  
GTL+ I/O  
AD9  
AC13  
AA10  
AB18  
R1  
IERR#  
1.5V Open Drain Output  
1.5V CMOS Input  
1.5V CMOS Input  
1.5V CMOS Input  
GTL+ I/O  
IGNNE#  
INIT#  
F21  
E20  
H19  
E21  
J20  
INTR/LINT0  
LOCK#  
NMI/LINT1  
PICCLK  
PICD0  
AC19  
AA18  
AB21  
Y20  
L2  
1.5V CMOS Input  
2.5V APIC Clock Input  
1.5V Open Drain I/O  
1.5V Open Drain I/O  
PLL Analog Voltage  
PLL Analog Voltage  
GTL+ Output  
H21  
L18  
G20  
P18  
G21  
K18  
K21  
M18  
L21  
R19  
K19  
T20  
J21  
PICD1  
PLL1  
M2  
PLL2  
W20  
AB20  
V5  
PRDY#  
PREQ#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RS0#  
1.5V CMOS Input  
2.5V CMOS Input  
GTL+ I/O  
T2  
V4  
GTL+ I/O  
V2  
GTL+ I/O  
W3  
GTL+ I/O  
W5  
GTL+ I/O  
U1  
GTL+ Input  
A6  
RESET#  
RP#  
GTL+ Input  
L20  
M19  
U18  
R18  
AA3  
U3  
W2  
GTL+ I/O  
AA2  
W1  
RS1#  
GTL+ Input  
RS2#  
GTL+ Input  
Y1  
RSP#  
GTL+ Input  
AB19  
AD19  
AB12  
AB10  
AC11  
RSVD  
Reserved  
RTTIMPEDP  
SLP#  
GTL+ Pull-up Control  
1.5V CMOS Input  
1.5V CMOS Input  
1.5V CMOS Input  
V20  
T21  
U21  
R21  
SMI#  
STPCLK#  
48  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 27. Signal Listing in Order by Signal Name (Sheet 3 of 3)  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
Signal Buffer Type  
AA11  
AD13  
AC15  
AD17  
Y5  
TCK  
TDI  
1.5V JTAG Clock Input AA14  
TRST#  
VID0  
VID1  
VID2  
VID3  
VID4  
JTAG Input  
JTAG Input  
JTAG Output  
Test Input  
AD2  
AD3  
AD4  
AC4  
AB4  
Voltage Identification  
Voltage Identification  
Voltage Identification  
Voltage Identification  
Voltage Identification  
TDO  
TESTHI  
TESTLO1  
TESTLO2  
Test Input  
N5  
Test Input  
Core Voltage Test  
Point  
AD20  
H4  
NC  
NC  
NC  
E5  
VREF  
VREF  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
Core Voltage Test  
Point  
E16  
E17  
Core Voltage Test  
Point  
AA17  
Core Voltage Test  
Point  
G4  
NC  
F5  
F17  
U5  
VREF  
VREF  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
AA15  
AB16  
THERMDA  
THERMDC  
Thermal Diode Anode  
Thermal Diode  
Cathode  
AD14  
U2  
TMS  
JTAG Input  
GTL+ Input  
Y17  
Y18  
VREF  
VREF  
GTL+ Reference Voltage  
GTL+ Reference Voltage  
TRDY#  
Table 28. Voltage and No-Connect Pin/Ball Locations  
Signal  
Name  
Pin/Ball Numbers  
A15, A16, A17, C14, D8, D14, D16, E15, G2, G4, G5, G18, H3, H4, H5, J5, M4, M5, P3, P4, R2,  
AA5, AA17, AA19, AC3, AC17, AC20, AD15, AD20  
NC  
H8, H10, H12, H14, H16, J7, J9, J11, J13, J15, K8, K10, K12, K14, K16, L7, L9, L11, L13, L15, M8,  
M10, M12, M14, M16, N7, N9, N11, N13, N15, P1, P8, P10, P12, P14, P16, R7, R9, R11, R13,  
R15, T8, T10, T12, T14, T16, U7, U9, U11, U13, U15  
VCC  
G6, G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G17, H6, H17, J6, J17, K6, K17, L6, L17,  
M6, M17, N6, N17, P6, P17, R6, R17, T6, T17, U6, U17, V6, V7, V8, V9, V10, V11, V12, V13, V14,  
V15, V16, V17, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W17, Y6, Y7, Y8, AA6,  
AA7, AA8, AB6, AB7, AB8, AC6, AC7, AC8, AD6, AD7, AD8  
VCCT  
A2, A7, A8, A12, A21, B1, B5, B6, B7, B8, B10, B15, B18, C9, C11, C15, C16, C19, D2, D6, D7,  
D9, E3, E7, E8, E9, E10, E11, E13, E19, F3, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16,  
F20, G3, G19, H2, H7, H9, H11, H13, H15, H20, J4, J8, J10, J12, J14, J16, J19, K2, K7, K9, K11,  
K13, K15, K20, L5, L8, L10, L12, L14, L16, L19, M7, M9, M11, M13, M15, M20, N2, N3, N4, N8,  
N10, N12, N14, N16, N18, N19, N20, P5, P7, P9, P11, P13, P15, P19, R3, R4, R5, R8, R10, R12,  
R14, R16, R20, T3, T5, T7, T9, T11, T13, T15, T18, T19, U8, U10, U12, U14, U16, U20, V3, V19,  
W4, W18, Y3, Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16, Y19, AA4, AA13, AA20, AB3, AB5, AB9,  
AB11, AB13, AB14, AB17, AC1, AC2, AC5, AC10, AC14, AC16, AC18, AC21, AD1, AD5, AD16,  
AD21  
VSS  
NOTE: Pin/ball P1 must be connected to Vcc:  
Datasheet  
49  
Intel® Pentium® III Processor Low Power  
6.0  
Thermal Specifications  
This section provides needed data for designing a thermal solution. The Pentium III Processor –  
Low Power is a surface mount PBGA-B495 package with the back of the processor die exposed  
and has a specified operational junction temperature (TJ) limit.  
In order to achieve proper cooling of the processor, a thermal solution (e.g., heat spreader, heat  
pipe, or other heat transfer system) must make firm contact to the exposed processor die. The  
processor die must be clean before the thermal solution is attached or the processor may be  
damaged.  
Table 29 provides the maximum Thermal Design Power (TDPMAX) dissipation and the minimum  
and maximum TJ temperatures for the Pentium III Processor Low Power. A thermal solution  
should be designed to ensure the junction temperature never exceeds these specifications. If no  
closed loop thermal fail-safe mechanism (processor throttling) is present to maintain TJ within  
specification then the thermal solution should be designed to cool the TDPMAX condition. If a  
thermal fail-safe mechanism is present then thermal solution could possibly be designed to a  
typical Thermal Design Power (TDPTYP). TDPTYP is a thermal design power recommendation  
based on the power dissipation of the processor while executing publicly available software under  
normal operating conditions at nominal voltages. TDPTYP power is lower than TDPMAX. Contact  
your Intel Field Sales Representative for further information.  
Table 29. Power Specifications for the Pentium III Processor Low Power  
1
Symbol  
Parameter  
Min  
TDP  
Max  
Unit  
Notes  
TYP  
Thermal Design Power  
at 1.35 V (for 700 MHz)  
at 1.35 V (for 500 MHz)  
at 1.35 V (for 400 MHz)  
10.2  
7.9  
6.5  
16.1  
12.2  
10.1  
at 100°C  
Notes 2, 3  
TDP  
W
Stop Grant and Auto Halt power  
at 1.35 V (for 700 MHz)  
at 1.35 V (for 500 MHz)  
at 1.35 V (for 400 MHz)  
1.6  
1.1  
1.1  
W
W
W
at 50°C  
Note 3  
P
SGNT  
Quick Start and Sleep power  
at 1.35 V (for 700 MHz)  
at 1.35 V (for 500 MHz)  
at 1.35 V (for 400 MHz)  
1.2  
800  
650  
W
mW  
mW  
at 50°C  
Note 3  
P
QS  
Deep Sleep power  
0.4  
300  
150  
W
mW  
mW  
at 1.35 V (for 700 MHz)  
at 1.35 V (for 500 MHz)  
at 1.35 V (for 400 MHz)  
at 35°C  
Note 3  
P
DSLP  
T
Junction Temperature  
0
100  
°C  
Note 4  
J
NOTES:  
1. TDP  
is a recommendation based on the power dissipation of the processor while executing publicly  
TYP  
available software under normal operating conditions at nominal voltages. Contact your Intel Field Sales  
Representative for further information. Not 100% tested.  
2. TDP  
is a specification of the total power dissipation of the processor while executing a worst-case  
MAX  
instruction mix under normal operating conditions at nominal voltages. It includes the power dissipated by  
all of the components within the processor. Not 100% tested. Specified by design/characterization.  
3. Not 100% tested or guaranteed. The power specifications are composed of the current of the processor on  
the various voltage planes. These currents are measured and specified at high temperature in Table 7.  
These power specifications are determined by characterization of the processor currents at higher  
temperatures.  
4. T is measured with the on-die thermal diode.  
J
50  
Datasheet  
Intel® Pentium® III Processor Low Power  
6.1  
Thermal Diode  
The Pentium III Processor Low Power has an on-die thermal diode that can be used to monitor the  
die temperature (TJ). A thermal sensor located on the motherboard, or a stand-alone measurement  
kit, may monitor the die temperature of the processor for thermal management or instrumentation  
purposes. Table 30 and Table 31 provide the diode interface and specifications.  
Note: The reading of the thermal sensor connected to the thermal diode will not necessarily reflect  
the temperature of the hottest location on the die. This is due to inaccuracies in the thermal sensor,  
on-die temperature gradients between the location of the thermal diode and the hottest location on  
the die, and time based variations in the die temperature measurement. Time based variations can  
occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at  
which the TJ temperature can change.  
Table 30. Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
AA15  
AB16  
Thermal diode anode  
Thermal diode cathode  
Table 31. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
Forward Bias Current  
Diode Ideality Factor  
5
500  
µA  
Note 1  
FW  
n
1.0057  
1.0080  
1.0125  
Notes 2, 3, 4  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not  
support or recommend operation of the thermal diode when the processor power supplies are not within  
their specified tolerance range.  
2. Characterized at 100° C.  
3. Not 100% tested. Specified by design/characterization.  
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation:  
qV  
D
nkT  
I
= I  
e
– 1  
FW  
S
Where I = saturation current, q = electronic charge, V = voltage across the diode, k = Boltzmann  
s
D
Constant, and T = absolute temperature (Kelvin).  
Datasheet  
51  
Intel® Pentium® III Processor Low Power  
7.0  
Processor Initialization and Configuration  
7.1  
Description  
The Pentium III Processor Low Power has some configuration options that are determined by  
hardware and some that are determined by software. The processor samples its hardware  
configuration at reset on the active-to-inactive transition of RESET#. Most of the configuration  
options for the Pentium III Processor Low Power are identical to those of the Pentium II  
processor. The Pentium® II Processor Developers Manual describes these configuration options.  
New configuration options for the Pentium III Processor Low Power are described in the  
remainder of this section.  
7.1.1  
Quick Start Enable  
The processor normally enters the Stop Grant state when the STPCLK# signal is asserted but it will  
enter the Quick Start state instead if A15# is sampled active on the RESET# signals active-to-  
inactive transition. The Quick Start state supports snoops from the bus priority device like the Stop  
Grant state but it does not support symmetric master snoops nor is the latching of interrupts  
supported. A 1in bit position 5 of the Power-on Configuration register indicates that the Quick  
Start state has been enabled.  
7.1.2  
7.1.3  
System Bus Frequency  
The current generation Pentium III Processor Low Power will only function with a system bus  
frequency of 100 MHz. Bit positions 18 to 19 of the Power-on Configuration register indicates at  
which speed a processor will run. A 00in bits [19:18] indicates a 66-MHz bus frequency, a 10”  
indicates a 100-MHz bus frequency, and a 01indicates a 133-MHz bus frequency.  
APIC Enable  
If the PICD0 signal is sampled low on the active-to-inactive transition of the RESET# signal then  
the PICCLK signal can be tied to VSS. Otherwise the PICD[1:0] signals must be pulled up to VCCT  
and PICCLK must be supplied. Driving PICD0 low at reset also has the effect of clearing the APIC  
Global Enable bit in the APIC Base MSR. This bit is normally set when the processor is reset, but  
when it is cleared the APIC is completely disabled until the next reset.  
7.2  
Clock Frequencies and Ratios  
The Pentium III Processor Low Power uses a clock design in which the bus clock is multiplied by  
a ratio to produce the processors internal (or core) clock. Unlike some of the Pentium III  
Processor Low Power, the ratio used is programmed into the processor during manufacturing.  
The bus ratio programmed into the processor is visible in bit positions 22 to 25 and bit 27 of the  
Power-on Configuration register. Table 12 shows the 5-bit codes in the Power-on Configuration  
register and their corresponding bus ratios.  
52  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.0  
Processor Interface  
8.1  
Alphabetical Signal Reference  
8.1.1  
A[35:3]# (I/O - GTL+)  
The A[35:3]# (Address) signals define a 236-byte physical memory address space. When ADS# is  
active, these signals transmit the address of a transaction; when ADS# is inactive, these signals  
transmit transaction information. These signals must be connected to the appropriate pins/balls of  
both agents on the system bus. The A[35:24]# signals are protected with the AP1# parity signal,  
and the A[23:3]# signals are protected with the AP0# parity signal.  
On the active-to-inactive transition of RESET#, each processor bus agent samples A[35:3]# signals  
to determine its power-on configuration. See Section 4.0 of this document and the Pentium® II  
Processor Developers Manual for details.  
8.1.2  
8.1.3  
A20M# (I - 1.5 V Tolerant)  
If the A20M# (Address-20 Mask) input signal is asserted, the processor masks physical address bit  
20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction  
on the bus. Asserting A20M# emulates the 8086 processors address wrap-around at the 1-Mbyte  
boundary. Assertion of A20M# is only supported in Real mode.  
ADS# (I/O - GTL+)  
The ADS# (Address Strobe) signal is asserted to indicate the validity of a transaction address on  
the A[35:3]# signals. Both bus agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop or deferred reply ID match operations associated  
with the new transaction. This signal must be connected to the appropriate pins/balls on both agents  
on the system bus.  
8.1.4  
AERR# (I/O - GTL+)  
The AERR# (Address Parity Error) signal is observed and driven by both system bus agents, and if  
used, must be connected to the appropriate pins/balls of both agents on the system bus. AERR#  
observation is optionally enabled during power-on configuration; if enabled, a valid assertion of  
AERR# aborts the current transaction.  
If AERR# observation is disabled during power-on configuration, a central agent may handle an  
assertion of AERR# as appropriate to the error handling architecture of the system.  
8.1.5  
AP[1:0]# (I/O - GTL+)  
The AP[1:0]# (Address Parity) signals are driven by the request initiator along with ADS#,  
A[35:3]#, REQ[4:0]# and RP#. AP1# covers A[35:24]#. AP0# covers A[23:3]#. A correct parity  
signal is high if an even number of covered signals are low and low if an odd number of covered  
Datasheet  
53  
Intel® Pentium® III Processor Low Power  
signals are low. This allows parity to be high when all the covered signals are high. AP[1:0]#  
should be connected to the appropriate pins/balls on both agents on the system bus.  
8.1.6  
8.1.7  
BCLK (I - 2.5 V Tolerant)  
The BCLK (Bus Clock) signal determines the system bus frequency. Both system bus agents must  
receive this signal to drive their outputs and latch their inputs on the BCLK rising edge. All  
external timing parameters are specified with respect to the BCLK signal.  
BERR# (I/O - GTL+)  
The BERR# (Bus Error) signal is asserted to indicate an unrecoverable error without a bus protocol  
violation. It may be driven by either system bus agent and must be connected to the appropriate  
pins/balls of both agents, if used. However, the Pentium III Processor Low Power do not observe  
assertions of the BERR# signal.  
BERR# assertion conditions are defined by the system configuration. Configuration options enable  
the BERR# driver as follows:  
Enabled or disabled  
Asserted optionally for internal errors along with IERR#  
Asserted optionally by the request initiator of a bus transaction after it observes an error  
Asserted by any bus agent when it observes an error in a bus transaction  
8.1.8  
BINIT# (I/O - GTL+)  
The BINIT# (Bus Initialization) signal may be observed and driven by both system bus agents and  
must be connected to the appropriate pins/balls of both agents, if used. If the BINIT# driver is  
enabled during the power-on configuration, BINIT# is asserted to signal any bus condition that  
prevents reliable future information.  
If BINIT# is enabled during power-on configuration, and BINIT# is sampled asserted, all bus state  
machines are reset and any data which was in transit is lost. All agents reset their rotating ID for  
bus arbitration to the state after reset, and internal count information is lost. The L1 and L2 caches  
are not affected.  
If BINIT# is disabled during power-on configuration, a central agent may handle an assertion of  
BINIT# as appropriate to the Machine Check Architecture (MCA) of the system.  
8.1.9  
BNR# (I/O - GTL+)  
The BNR# (Block Next Request) signal is used to assert a bus stall by any bus agent that is unable  
to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new  
transactions.  
Since multiple agents may need to request a bus stall simultaneously, BNR# is a wired-OR signal  
that must be connected to the appropriate pins/balls of both agents on the system bus. In order to  
avoid wire-OR glitches associated with simultaneous edge transitions driven by multiple drivers,  
BNR# is activated on specific clock edges and sampled on specific clock edges.  
54  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.1.10  
8.1.11  
BP[3:2]# (I/O - GTL+)  
The BP[3:2]# (Breakpoint) signals are the System Support group Breakpoint signals. They are  
outputs from the processor that indicate the status of breakpoints.  
BPM[1:0]# (I/O - GTL+)  
The BPM[1:0]# (Breakpoint Monitor) signals are breakpoint and performance monitor signals.  
They are outputs from the processor that indicate the status of breakpoints and programmable  
counters used for monitoring processor performance.  
8.1.12  
8.1.13  
BPRI# (I - GTL+)  
The BPRI# (Bus Priority Request) signal is used to arbitrate for ownership of the system bus. It  
must be connected to the appropriate pins/balls on both agents on the system bus. Observing  
BPRI# active (as asserted by the priority agent) causes the processor to stop issuing new requests,  
unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI#  
asserted until all of its requests are completed and then releases the bus by deasserting BPRI#.  
BREQ0# (I/O - GTL+)  
The BREQ0# (Bus Request) signal is a processor Arbitration Bus signal. The processor indicates  
that it wants ownership of the system bus by asserting the BREQ0# signal.  
During power-up configuration, the central agent must assert the BREQ0# bus signal. The  
processor samples BREQ0# on the active-to-inactive transition of RESET#. Optionally, this signal  
may be grounded with a 10ohm resistor.  
8.1.14  
BSEL[1:0] (I 3.3 V Tolerant)  
The BSEL[1:0] (Select Processor System Bus Speed) signal is used to configure the processor for  
the system bus frequency. Table 32 shows the encoding scheme for BSEL[1:0]. The only supported  
system bus frequency for the Pentium III Processor Low Power is 100 MHz. If another frequency  
is used or if the BSEL[1:0] signals are not driven with 01then the processor is not guaranteed to  
function properly.  
Table 32. BSEL[1:0] Encoding  
BSEL[1:0]  
System Bus Frequency  
00  
01  
10  
11  
66 MHz  
100 MHz  
Reserved  
133 MHz  
8.1.15  
CLKREF (Analog)  
The CLKREF (System Bus Clock Reference) signal provides a reference voltage to define the trip  
point for the BCLK signal. This signal should be connected to a resistor divider to generate 1.25 V  
from the 2.5-V supply.  
Datasheet  
55  
Intel® Pentium® III Processor Low Power  
8.1.16  
CMOSREF (Analog)  
The CMOSREF (CMOS Reference Voltage) signal provides a DC level reference voltage for the  
CMOS input buffers. A voltage divider should be used to divide a stable voltage plane (e.g., 2.5 V  
or 3.3 V). This signal must be provided with a DC voltage that meets the VCMOSREF specification  
from Table 10.  
8.1.17  
8.1.18  
D[63:0]# (I/O - GTL+)  
The D[63:0]# (Data) signals are the data signals. These signals provide a 64-bit data path between  
both system bus agents, and must be connected to the appropriate pins/balls on both agents. The  
data driver asserts DRDY# to indicate a valid data transfer.  
DBSY# (I/O - GTL+)  
The DBSY# (Data Bus Busy) signal is asserted by the agent responsible for driving data on the  
system bus to indicate that the data bus is in use. The data bus is released after DBSY# is  
deasserted. This signal must be connected to the appropriate pins/balls on both agents on the  
system bus.  
8.1.19  
8.1.20  
8.1.21  
8.1.22  
DEFER# (I - GTL+)  
The DEFER# (Defer) signal is asserted by an agent to indicate that the transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the  
addressed memory agent or I/O agent. This signal must be connected to the appropriate pins/balls  
on both agents on the system bus.  
DEP[7:0]# (I/O - GTL+)  
The DEP[7:0]# (Data Bus ECC Protection) signals provide optional ECC protection for the data  
bus. They are driven by the agent responsible for driving D[63:0]#, and must be connected to the  
appropriate pins/balls on both agents on the system bus if they are used. During power-on  
configuration, DEP[7:0]# signals can be enabled for ECC checking or disabled for no checking.  
DRDY# (I/O - GTL+)  
The DRDY# (Data Ready) signal is asserted by the data driver on each data transfer, indicating  
valid data on the data bus. In a multi-cycle data transfer, DRDY# can be deasserted to insert idle  
clocks. This signal must be connected to the appropriate pins/balls on both agents on the system  
bus.  
EDGCTRLP (Analog)  
The EDGCTRLP (Edge Rate Control) signal is used to configure the edge rate of the GTL+ output  
buffers. Connect the signal to VSS with a 110-, 1% resistor.  
56  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.1.23  
8.1.24  
FERR# (O - 1.5 V Tolerant Open-drain)  
The FERR# (Floating-point Error) signal is asserted when the processor detects an unmasked  
floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and it is  
included for compatibility with systems using DOS-type floating-point error reporting.  
FLUSH# (I - 1.5 V Tolerant)  
When the FLUSH# (Flush) input signal is asserted, the processor writes back all internal cache  
lines in the Modified state and invalidates all internal cache lines. At the completion of a flush  
operation, the processor issues a Flush Acknowledge transaction. The processor stops caching any  
new data while the FLUSH# signal remains asserted.  
On the active-to-inactive transition of RESET#, each processor bus agent samples FLUSH# to  
determine its power-on configuration.  
8.1.25  
GHI# (I - 1.5 V Tolerant)  
Note: This is a No Connect on the Pentium III Processor Low Power.  
The GHI# signal controls which operating mode bus ratio is selected in a mobile Pentium III  
Processor featuring Intel SpeedSteptechnology. On the processor featuring Intel SpeedStep  
technology, this signal is latched when BCLK restarts in Deep Sleep state and determines which of  
two bus ratios is selected for operation. This signal is ignored when the processor is not in the Deep  
Sleep state. This signal is a Dont Care(No Connect) on processors that do not feature Intel  
SpeedStep technology. This signal has an on-die pull-up to VCCT and should be driven with an  
open-drain driver with no external pull-up.  
8.1.26  
8.1.27  
HIT# (I/O - GTL+), HITM# (I/O - GTL+)  
The HIT# (Snoop Hit) and HITM# (Hit Modified) signals convey transaction snoop operation  
results, and must be connected to the appropriate pins/balls on both agents on the system bus.  
Either bus agent can assert both HIT# and HITM# together to indicate that it requires a snoop stall,  
which can be continued by reasserting HIT# and HITM# together.  
IERR# (O - 1.5 V Tolerant Open-drain)  
The IERR# (Internal Error) signal is asserted by the processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the system bus. This  
transaction may optionally be converted to an external error signal (e.g., NMI) by system logic.  
The processor will keep IERR# asserted until it is handled in software or with the assertion of  
RESET#, BINIT, or INIT#.  
8.1.28  
IGNNE# (I - 1.5 V Tolerant)  
The IGNNE# (Ignore Numeric Error) signal is asserted to force the processor to ignore a numeric  
error and continue to execute non-control floating-point instructions. If IGNNE# is deasserted, the  
processor freezes on a non-control floating-point instruction if a previous instruction caused an  
error. IGNNE# has no affect when the NE bit in control register 0 (CR0) is set.  
Datasheet  
57  
Intel® Pentium® III Processor Low Power  
8.1.29  
INIT# (I - 1.5 V Tolerant)  
The INIT# (Initialization) signal is asserted to reset integer registers inside the processor without  
affecting the internal (L1 or L2) caches or the floating-point registers. The processor begins  
execution at the power-on reset vector configured during power-on configuration. The processor  
continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous input.  
If INIT# is sampled active on RESET#s active-to-inactive transition, then the processor executes  
its built-in self test (BIST).  
8.1.30  
8.1.31  
INTR (I - 1.5 V Tolerant)  
The INTR (Interrupt) signal indicates that an external interrupt has been generated. INTR becomes  
the LINT0 signal when the APIC is enabled. The interrupt is maskable using the IF bit in the  
EFLAGS register. If the IF bit is set, the processor vectors to the interrupt handler after completing  
the current instruction execution. Upon recognizing the interrupt request, the processor issues a  
single Interrupt Acknowledge (INTA) bus transaction. INTR must remain active until the INTA  
bus transaction to guarantee its recognition.  
LINT[1:0] (I - 1.5 V Tolerant)  
The LINT[1:0] (Local APIC Interrupt) signals must be connected to the appropriate pins/balls of  
all APIC bus agents, including the processor and the system logic or I/O APIC component. When  
APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and  
LINT1 becomes NMI, a non-maskable interrupt. INTR and NMI are backward compatible with the  
same signals for the Pentium processor. Both signals are asynchronous inputs.  
Both of these signals must be software configured by programming the APIC register space to be  
used either as NMI/INTR or LINT[1:0] in the BIOS. If the APIC is enabled at reset, then  
LINT[1:0] is the default configuration.  
8.1.32  
LOCK# (I/O - GTL+)  
The LOCK# (Lock) signal indicates to the system that a sequence of transactions must occur  
atomically. This signal must be connected to the appropriate pins/balls on both agents on the  
system bus. For a locked sequence of transactions, LOCK# is asserted from the beginning of the  
first transaction through the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for bus ownership, it waits until it observes  
LOCK# deasserted. This enables the processor to retain bus ownership throughout the bus locked  
operation and guarantee the atomicity of lock.  
8.1.33  
NMI (I - 1.5 V Tolerant)  
The NMI (Non-Maskable Interrupt) indicates that an external interrupt has been generated. NMI  
becomes the LINT1 signal when the APIC is disabled. Asserting NMI causes an interrupt with an  
internally supplied vector value of 2. An external interrupt-acknowledge transaction is not  
generated. If NMI is asserted during the execution of an NMI service routine, it remains pending  
and is recognized after the IRET is executed by the NMI service routine. At most, one assertion of  
NMI is held pending. NMI is rising edge sensitive.  
58  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.1.34  
8.1.35  
PICCLK (I - 2.5 V Tolerant)  
The PICCLK (APIC Clock) signal is an input clock to the processor and system logic or I/O APIC  
that is required for operation of the processor, system logic, and I/O APIC components on the  
APIC bus.  
PICD[1:0] (I/O - 1.5 V Tolerant Open-drain)  
The PICD[1:0] (APIC Data) signals are used for bidirectional serial message passing on the APIC  
bus. They must be connected to the appropriate pins/balls of all APIC bus agents, including the  
processor and the system logic or I/O APIC components. If the PICD0 signal is sampled low on the  
active-to-inactive transition of the RESET# signal, then the APIC is hardware disabled.  
8.1.36  
8.1.37  
8.1.38  
8.1.39  
PLL1, PLL2 (Analog)  
The PLL1 and PLL2 signals provide isolated analog decoupling is required for the internal PLL.  
See Section 3.2.2 for a description of the analog decoupling circuit.  
PRDY# (O - GTL+)  
The PRDY# (Probe Ready) signal is a processor output used by debug tools to determine processor  
debug readiness.  
PREQ# (I - 1.5 V Tolerant)  
The PREQ# (Probe Request) signal is used by debug tools to request debug operation of the  
processor.  
PWRGOOD (I - 2.5 V Tolerant)  
PWRGOOD (Power Good) is a 2.5-V tolerant input. The processor requires this signal to be a  
clean indication that clocks and the power supplies (VCC, VCCT, etc.) are stable and within their  
specifications. Clean implies that the signal will remain low, (capable of sinking leakage current)  
and without glitches, from the time that the power supplies are turned on, until they come within  
specification. The signal will then transition monotonically to a high (2.5 V) state. Figure 23  
illustrates the relationship of PWRGOOD to other system signals. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable before the rising edge of  
PWRGOOD. It must also meet the minimum pulse width specified in Table 14 on page 27 and be  
followed by a 1 ms RESET# pulse.  
Datasheet  
59  
Intel® Pentium® III Processor Low Power  
Figure 23. PWRGOOD Relationship at Power On  
BCLK  
VCC  
VCCT  
,
,
VREF  
VIH25,min  
PWRGOOD  
1 msec  
RESET#  
D0026-01  
The PWRGOOD signal, which must be supplied to the processor, is used to protect internal circuits  
against voltage sequencing issues. The PWRGOOD signal should be driven high throughout  
boundary scan operation.  
8.1.40  
8.1.41  
REQ[4:0]# (I/O - GTL+)  
The REQ[4:0]# (Request Command) signals must be connected to the appropriate pins/balls on  
both agents on the system bus. They are asserted by the current bus owner when it drives A[35:3]#  
to define the currently active transaction type.  
RESET# (I - GTL+)  
Asserting the RESET# signal resets the processor to a known state and invalidates the L1 and L2  
caches without writing back Modified (M state) lines. For a power-on type reset, RESET# must  
stay active for at least 1 ms after VCC and BCLK have reached their proper DC and AC  
specifications and after PWRGOOD has been asserted. When observing active RESET#, all bus  
agents will deassert their outputs within two clocks. RESET# is the only GTL+ signal that does not  
have on-die GTL+ termination. A 56.21% terminating resistor connected to V  
is required.  
CCT  
A number of bus signals are sampled at the active-to-inactive transition of RESET# for the power-  
on configuration. The configuration options are described in Section 4.0 and in the Pentium® II  
Processor Developers Manual.  
Unless its outputs are three-stated during power-on configuration, after an active-to-inactive  
transition of RESET#, the processor optionally executes its built-in self-test (BIST) and begins  
program execution at reset-vector 000FFFF0H or FFFFFFF0H. RESET# must be connected to the  
appropriate pins/balls on both agents on the system bus.  
8.1.42  
RP# (I/O - GTL+)  
The RP# (Request Parity) signal is driven by the request initiator and provides parity protection on  
ADS# and REQ[4:0]#. RP# should be connected to the appropriate pins/balls on both agents on the  
system bus.  
A correct parity signal is high if an even number of covered signals are low and low if an odd  
number of covered signals are low. This definition allows parity to be high when all covered  
signals are high.  
60  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.1.43  
8.1.44  
RS[2:0]# (I - GTL+)  
The RS[2:0]# (Response Status) signals are driven by the response agent (the agent responsible for  
completion of the current transaction) and must be connected to the appropriate pins/balls on both  
agents on the system bus.  
RSP# (I - GTL+)  
The RSP# (Response Parity) signal is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#. RSP# provides parity  
protection for RS[2:0]#. RSP# should be connected to the appropriate pins/balls on both agents on  
the system bus.  
A correct parity signal is high if an even number of covered signals are low, and it is low if an odd  
number of covered signals are low. During Idle state of RS[2:0]# (RS[2:0]#=000), RSP# is also  
high since it is not driven by any agent guaranteeing correct parity.  
8.1.45  
8.1.46  
8.1.47  
RSVD (TBD)  
The RSVD (Reserved) signal is currently unimplemented but is reserved for future use. Leave this  
signal unconnected. Intel recommends that a routing channel for this signal be allocated.  
RTTIMPEDP (Analog)  
The RTTIMPEDP (RTT Impedance/PMOS) signal is used to configure the on-die GTL+  
termination. Connect the RTTIMPEDP signal to VSS with a 56.2-, 1% resistor.  
SLP# (I - 1.5 V Tolerant)  
The SLP# (Sleep) signal, when asserted in the Stop Grant state, causes the processor to enter the  
Sleep state. During the Sleep state, the processor stops providing internal clock signals to all units,  
leaving only the Phase-Locked Loop (PLL) still running. The processor will not recognize snoop  
and interrupts in the Sleep state. The processor will only recognize changes in the SLP#, STPCLK#  
and RESET# signals while in the Sleep state. If SLP# is deasserted, the processor exits Sleep state  
and returns to the Stop Grant state in which it restarts its internal clock to the bus and APIC  
processor units.  
8.1.48  
8.1.49  
SMI# (I - 1.5 V Tolerant)  
The SMI# (System Management Interrupt) is asserted asynchronously by system logic. On  
accepting a System Management Interrupt, the processor saves the current state and enters System  
Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins  
program execution from the SMM handler.  
STPCLK# (I - 1.5 V Tolerant)  
The STPCLK# (Stop Clock) signal, when asserted, causes the processor to enter a low-power Stop  
Grant state. The processor issues a Stop Grant Acknowledge special transaction and stops  
providing internal clock signals to all units except the bus and APIC units. The processor continues  
Datasheet  
61  
Intel® Pentium® III Processor Low Power  
to snoop bus transactions and service interrupts while in the Stop Grant state. When STPCLK# is  
deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion  
of STPCLK# has no affect on the bus clock.  
8.1.50  
8.1.51  
8.1.52  
8.1.53  
8.1.54  
8.1.55  
TCK (I - 1.5 V Tolerant)  
The TCK (Test Clock) signal provides the clock input for the test bus (also known as the test access  
port).  
TDI (I - 1.5 V Tolerant)  
The TDI (Test Data In) signal transfers serial test data to the processor. TDI provides the serial  
input needed for JTAG support.  
TDO (O - 1.5 V Tolerant Open-drain)  
The TDO (Test Data Out) signal transfers serial test data from the processor. TDO provides the  
serial output needed for JTAG support.  
TESTHI (I - 1.5 V Tolerant)  
The TESTHI (Test input High) is used during processor test and needs to be pulled high during  
normal operation.  
TESTLO[2:1] (I - 1.5 V Tolerant)  
The TESTLO[2:1] (Test input Low) signals are used during processor test and needs to be pulled to  
ground during normal operation.  
THERMDA, THERMDC (Analog)  
The THERMDA (Thermal Diode Anode) and THERMDC (Thermal Diode Cathode) signals  
connect to the anode and cathode of the on-die thermal diode.  
8.1.56  
8.1.57  
TMS (I - 1.5 V Tolerant)  
The TMS (Test Mode Select) signal is a JTAG support signal used by debug tools.  
TRDY# (I - GTL+)  
The TRDY# (Target Ready) signal is asserted by the target to indicate that the target is ready to  
receive write or implicit write-back data transfer. TRDY# must be connected to the appropriate  
pins/balls on both agents on the system bus.  
62  
Datasheet  
Intel® Pentium® III Processor Low Power  
8.1.58  
8.1.59  
TRST# (I - 1.5 V Tolerant)  
The TRST# (Test Reset) signal resets the Test Access Port (TAP) logic. The Pentium III Processor  
Low Power do not self-reset during power on; therefore, it is necessary to drive this signal low  
during power-on reset.  
VID[4:0] (O Open-drain)  
The VID[4:0] (Voltage ID) pins/balls can be used to support automatic selection of power supply  
voltages. These pins/balls are not signals, they are either an open circuit or a short to VSS on the  
processor substrate. The combination of opens and shorts encodes the voltage required by the  
processor. External to pull-ups are required to sense the encoded VID. For processors that have  
Intel SpeedStep technology enabled, VID[4:0] encode the voltage required in the battery-optimized  
mode. VID[4:0] are needed to cleanly support voltage specification changes on Pentium III  
Processor Low Power. The voltage encoded by VID[4:0] is defined in Table 33. A 1in this  
table refers to an open pin/ball and a 0refers to a short to VSS. The power supply must provide  
the requested voltage or disable itself.  
Please note that in order to implement VID on the BGA2 package, some VID[4:0] balls may be  
depopulated. For the BGA2 package, a 1in Table 33 implies that the corresponding VID ball is  
depopulated, while a 0implies that the corresponding VID ball is not depopulated.  
Table 33. Voltage Identification Encoding  
VID[4:0]  
V
VID[4:0]  
V
VID[4:0]  
V
VID[4:0]  
V
CC  
CC  
CC  
CC  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.60  
1.55  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
No CPU  
1.50  
1.45  
1.40  
1.35  
1.30  
No CPU  
8.1.60  
VREF (Analog)  
The VREF (GTL+ Reference Voltage) signal provides a DC level reference voltage for the GTL+  
input buffers. A voltage divider should be used to divide VCCT by 2/3. Resistor values of 1.00 KΩ  
and 2.00 Kare recommended. Decouple the VREF signal with three 0.1-µF high frequency  
capacitors close to the processor.  
8.2  
Signal Summaries  
Table 34 through Table 37 list the attributes of the processor input, output, and I/O signals.  
Datasheet  
63  
Intel® Pentium® III Processor Low Power  
Table 34. Input Signals  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
A20M#  
BCLK  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
Asynch  
CMOS  
System Bus  
System Bus  
Implementation  
System Bus  
CMOS  
Always  
Always  
Always  
Always  
Always  
Always  
Always  
Always  
BPRI#  
BCLK  
Asynch  
BCLK  
Asynch  
Asynch  
Asynch  
BSEL[1:0]  
DEFER#  
FLUSH#  
IGNNE#  
INIT#  
CMOS  
System Bus  
APIC disabled  
mode  
INTR  
LINT[1:0]  
NMI  
High  
High  
High  
Asynch  
Asynch  
Asynch  
CMOS  
APIC  
APIC enabled  
mode  
APIC disabled  
mode  
CMOS  
PICCLK  
PREQ#  
PWRGOOD  
RESET#  
RS[2:0]#  
RSP#  
High  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Low  
High  
APIC  
Implementation  
Implementation  
System Bus  
System Bus  
System Bus  
Implementation  
CMOS  
Always  
Always  
Asynch  
Asynch  
BCLK  
BCLK  
BCLK  
Asynch  
Asynch  
Asynch  
Always  
Always  
Always  
Always  
SLP#  
Stop Grant state  
Always  
SMI#  
STPCLK#  
TCK  
Implementation  
JTAG  
Always  
TDI  
TCK  
JTAG  
TMS  
TCK  
JTAG  
TRDY#  
TRST#  
Low  
Low  
BCLK  
Asynch  
System Bus  
JTAG  
Response phase  
64  
Datasheet  
Intel® Pentium® III Processor Low Power  
Table 35. Output Signals  
Name  
Active Level  
Clock  
Signal Group  
FERR#  
IERR#  
PRDY#  
TDO  
Low  
Low  
Low  
High  
High  
Asynch  
Asynch  
BCLK  
Open-drain  
Open-drain  
Implementation  
JTAG  
TCK  
VID[4:0]  
Asynch  
Implementation  
Table 36. Input/Output Signals (Single Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
A[35:3]#  
ADS#  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
ADS#, ADS#+1  
Always  
AP[1:0]#  
BREQ0#  
BP[3:2]#  
BPM[1:0]#  
D[63:0]#  
DBSY#  
ADS#, ADS#+1  
Always  
Always  
Always  
DRDY#  
Always  
DEP[7:0]#  
DRDY#  
LOCK#  
DRDY#  
Always  
Always  
REQ[4:0]#  
RP#  
ADS#, ADS#+1  
ADS#, ADS#+1  
Table 37. Input/Output Signals (Multiple Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
AERR#  
BERR#  
BINIT#  
BNR#  
Low  
Low  
Low  
Low  
Low  
Low  
High  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
PICCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
APIC  
ADS#+3  
Always  
Always  
Always  
Always  
Always  
Always  
HIT#  
HITM#  
PICD[1:0]  
Datasheet  
65  
Intel® Pentium® III Processor Low Power  
9.0  
PLL RLC Filter Specification  
9.1  
Introduction  
The Pentium III Processor Low Power processor has an internal PLL clock generator, which are  
analog in nature and require quiet power supplies for minimum jitter. Jitter is detrimental to a  
system; it degrades external I/O timings as well as internal core timings (i.e., maximum frequency).  
In mobile Pentium II processors, the power supply filter was specified as an external LC network.  
This remains largely the same for the Pentium III Processor Low Power. However, due to  
increased current flow, the value of the inductor has to be reduced, thereby requiring new  
components. The general desired topology is shown in Figure 5. Excluded from the external  
circuitry are parasitics associated with each component.  
9.2  
Filter Specification  
The function of the filter is two fold. It protects the PLL from external noise through low-pass  
attenuation. It also protects the PLL from internal noise through high-pass filtering. In general, the  
low-pass description forms an adequate description for the filter.  
The AC low-pass specification, with input at V  
follows:  
and output measured across the capacitor, is as  
CCT  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz (see DC drop in next set of requirements)  
34 dB attenuation from 1 MHz to 66 MHz  
28 dB attenuation from 66 MHz to core frequency  
The filter specification (AC) is graphically shown in Figure 24.  
Other requirements:  
Use a shielded type inductor to minimize magnetic pickup  
The filter should support a DC current of at least 30 mA  
The DC voltage drop from V  
CCT  
to PLL1 should be less than 60 mV, which in practice  
implies series resistance of less than 2. This also means that the pass band (from DC to 1Hz)  
attenuation below 0.5 dB is for V = 1.1 V and below 0.35 dB for V = 1.5 V.  
CCT  
CCT  
66  
Datasheet  
Intel® Pentium® III Processor Low Power  
Figure 24. PLL Filter Specifications  
0.2 dB  
0 dB  
x dB  
forbidden  
zone  
-28 dB  
forbidden  
zone  
-34 dB  
DC  
passband  
x = 20.log[(Vcct-60 mV)/  
1 Hz  
fpeak  
1 MHz 66 MHz  
fcore  
high frequency  
band  
Vcct]  
NOTES:  
Diagram is not to scale  
No specification for frequencies beyond f  
core  
F
, if existent, should be less than 0.05 MHz  
peak  
9.3  
Recommendation for Low Power Systems  
The following LC components are recommended. The tables will be updated as other suitable  
components and specifications are identified.  
Table 38. PLL Filter Inductor Recommendations  
Rated  
I
Min Damping  
R needed  
Inductor  
Part Number  
Value  
Tol  
SRF  
DCR  
L1  
L2  
TDK MLF2012A4R7KT  
Murata LQG21N4R7K10  
4.7 µH 10% 35 MHz 30 mA 0.56(1max)  
0Ω  
0Ω  
4.7 µH 10% 47 MHz 30 mA  
0.7(+/-50%)  
0.3max  
0.2Ω  
(assumed)  
L3  
Murata LQG21C4R7N00  
4.7 µH 30% 35 MHz 30 mA  
NOTE: Minimum damping resistance is calculated from 0.35DCR . From vendor provided data, L1 and  
min  
L2 DCR  
is 0.4 and 0.5 respectively, qualifying them for zero required trace resistance. DCR  
min  
min  
for L3 is not known and is assumed to be 0.15 . There may be other vendors who might provide  
parts of equivalent characteristics and the OEMs should consider doing their own testing for selecting  
their own vendors.  
Datasheet  
67  
Intel® Pentium® III Processor Low Power  
Table 39. PLL Filter Capacitor Recommendations  
Capacitor  
Part Number  
Value  
Tolerance  
ESL  
ESR  
C1  
C2  
Kemet T495D336M016AS  
AVX TPSD336M020S0200  
33 µF  
33 µF  
20%  
20%  
2.5 nH  
0.225Ω  
0.2Ω  
unknown  
NOTE: There may be other vendors who might provide parts of equivalent characteristics and the OEMs  
should consider doing their own testing for selecting their own vendors.  
Table 40. PLL Filter Resistor Recommendations  
Resistor  
Part Number  
Value  
Tolerance  
Power  
R1  
various  
1Ω  
10%  
1/16W  
To satisfy damping requirements, total series resistance in the filter (from V  
CCT  
to the top plate of  
the capacitor) must be at least 0.35. This resistor can be in the form of a discrete component, or  
routing, or both. For example, if the picked inductor has minimum DCR of 0.25, then a routing  
resistance of at least 0.10is required. Be careful not to exceed the maximum resistance rule (2).  
For example, if using discrete R1, the maximum DCR of the L should be less than 2.0 - 1.1 = 0.9,  
which precludes using L2 and possibly L1.  
Other routing requirements:  
The capacitor should be close to the PLL1 and PLL2 pins, with less than 0.1per route (These  
routes do not count towards the minimum damping resistance requirement).  
The PLL2 route should be parallel and next to the PLL1 route (minimize loop area).  
The inductor should be close to the capacitor; any routing resistance should be inserted  
between VCCT and the inductor.  
Any discrete resistor should be inserted between VCCT and the inductor.  
9.4  
Comments  
A magnetically shielded inductor protects the circuit from picking up external flux noise. This  
should provide better timing margins than with an unshielded inductor.  
A discrete or routed resistor is required because the LC filter by nature has an under-damped  
response, which can cause resonance at the LC pole. Noise amplification at this band, although  
not in the PLL-sensitive spectrum, could cause a fatal headroom reduction for analog circuitry.  
The resistor serves to dampen the response. Systems with tight space constraints should  
consider a discrete resistor to provide the required damping resistance. Too large of a damping  
resistance can cause a large IR drop, which means less analog headroom and lower frequency.  
Ceramic capacitors have very high self-resonance frequencies, but they are not available in  
large capacitance values. A high self-resonant frequency coupled with low ESL/ESR is crucial  
for sufficient rejection in the PLL and high frequency band. The recommended tantalum  
capacitors have acceptably low ESR and ESL.  
The capacitor must be close to the PLL1 and PLL2 pins, otherwise the value of the low ESR  
tantalum capacitor is wasted. Note the distance constraint should be translated from the 0.1-Ω  
requirement.  
The mobile Pentium II processor LC filter cannot be used with the Pentium III Processor Low  
Power. The larger inductor of the old LC filter imposes a lower current rating. Due to increased  
current requirements for the Pentium III Processor Low Power, a lower value inductor is required.  
68  
Datasheet  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY