QG41210 [INTEL]

Micro Peripheral IC, CBGA567;
QG41210
型号: QG41210
厂家: INTEL    INTEL
描述:

Micro Peripheral IC, CBGA567

文件: 总52页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® 41210 Serial to Parallel PCI Bridge  
Datasheet  
Product Features  
PCI Express Specification, Revision 1.0a  
2-level programmable round-robin internal  
arbiter with Multi-Transaction Timer  
(MTT)  
Support for single x8, single x4 or single x1  
PCI Express operation.  
External PCI clock-feed support for  
asynchronous primary and secondary  
domain operation.  
64-bit addressing support  
32-bit CRC (cyclic redundancy checking)  
covering all transmitted data packets.  
64-bit addressing for upstream and  
16-bit CRC on all link message  
downstream transactions  
information.  
Downstream LOCK# support.  
No upstream LOCK# support.  
PCI fast Back-to-Back capable as target.  
Raw bit-rate on the data pins of 2.5 Gbit/s,  
resulting in a raw bandwidth per pin of  
250 MB/s.  
Maximum realized bandwidth on PCI  
Express interface is 2 GB/s (in x8 mode) in  
each direction simultaneously, for an  
aggregate of 4 GB/s.  
Up to four active and four pending  
upstream memory read transactions  
Up to two downstream delayed (memory  
read, I/O read/write and configuration read/  
write) transaction.  
PCI Local Bus Specification, Revision 2.3.  
PCI-to-PCI Bridge Specification,  
Tunable inbound read prefetch algorithm  
Revision 1.1.  
for PCI MRM/MRL commands  
PCI-X Addendum to the PCI Local Bus  
Specification, Revision 1.0b  
Device hiding support for secondary PCI  
devices.  
64-bit 66 MHz, 3.3 V, NOT 5 V tolerant.  
Secondary bus Private Memory support via  
Opaque memory region  
On Die Termination (ODT) with 8.3KOhm  
pull-up to 3.3V for PCI signals.  
Local initialization via SMBus  
Six external REQ/GNT Pairs for internal  
Secondary side initialization via Type 0  
arbiter on segment A and B respectively.  
configuration cycles.  
Programmable bus parking on either the  
Full peer-to-peer read/write capability  
last agent or always on the 41210 Bridge  
between the two secondary PCI segments.  
Order Number: 278875-005US  
May 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS  
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS  
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO  
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER  
INTELLECTUAL PROPERTY RIGHT.  
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by  
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
The Intel® 41210 Serial to Parallel PCI Bridge may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486,  
i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade,  
Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel  
SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,  
Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie,  
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are  
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2005, Intel Corporation  
2
Contents  
Contents  
1
Introduction....................................................................................................................................7  
1.1  
1.2  
About This Document ...........................................................................................................7  
Product Overview .................................................................................................................7  
2
Signal Description.........................................................................................................................8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
On Die Termination (ODT)....................................................................................................8  
PCI Express Interface.........................................................................................................10  
PCI Bus Interface (Two Instances).....................................................................................10  
PCI Bus Interface 64-Bit Extension (Two Interfaces) .........................................................12  
PCI Bus Interface Clocks and, Reset and Power Management (Two Interfaces) ..............13  
Interrupt Interface (Two Interfaces) ....................................................................................13  
Reset Straps.......................................................................................................................13  
SMBus Interface .................................................................................................................15  
Miscellaneous Pins.............................................................................................................15  
3
Electrical and Thermal Characteristics .....................................................................................17  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
DC Voltage and Current Specifications ..............................................................................17  
AC Specifications................................................................................................................25  
Voltage Filter Specifications ...............................................................................................27  
VCC15 and VCC33 Voltage Requirements........................................................................27  
Timing Specifications..........................................................................................................28  
41210 Bridge Power Consumption.....................................................................................36  
Power Delivery Guidelines..................................................................................................37  
Reference and Compensation Pins....................................................................................37  
Thermal Specifications .......................................................................................................38  
4
Package Specification and Ballout............................................................................................40  
4.1  
4.2  
4.3  
4.4  
Package Specification ........................................................................................................40  
Ball Map..............................................................................................................................42  
Signal List, sorted by Ball Location.....................................................................................44  
Signal List, sorted by Signal Name.....................................................................................48  
Figures  
1
2
3
4
5
6
7
8
9
Minimum Transmitter Timing and Voltage Output Compliance Specification.............................22  
Compliance Test/Measurement Load.........................................................................................23  
Minimum Receiver Eye Timing and Voltage Compliance Specification .....................................23  
Voltage Requirements VCC33 versus VCC15 ...........................................................................27  
PCI Output Timing ......................................................................................................................31  
PCI Input Timing.........................................................................................................................31  
PCI-X 3.3V Clock Waveform ......................................................................................................33  
41210 Bridge Reference and Compensation Circuit Implementations.......................................38  
41210 Bridge Package Dimensions (Top View) .........................................................................40  
10 41210 Bridge Package Dimensions (Side View) ........................................................................41  
3
Contents  
Tables  
1
2
3
4
5
6
7
8
9
ODT Signals .................................................................................................................................9  
PCI Express Interface Pins.........................................................................................................10  
PCI Interface Pins.......................................................................................................................11  
PCI Interface Pins: 64-Bit Extensions.........................................................................................12  
PCI Clock and Reset Pins ..........................................................................................................13  
Interrupt Interface Pins ...............................................................................................................13  
Reset Strap Pins.........................................................................................................................14  
SMBus Interface Pins.................................................................................................................15  
Miscellaneous Pins.....................................................................................................................15  
10 Intel® 41210 Bridge DC Voltage Specifications .........................................................................17  
11 DC Characteristics Input Signal Association ..............................................................................18  
12 DC Input Characteristics.............................................................................................................18  
13 DC Characteristic Output Signal Association .............................................................................18  
14 DC Output Characteristic............................................................................................................19  
15 Differential Transmitter (TX) DC Output Specifications..............................................................19  
16 Differential Receiver (RX) DC Input Specifications ....................................................................21  
17 DC Specifications for PCI and PCI-X 3.3 V Signaling ................................................................24  
18 DC Specification for Input Clock Signals....................................................................................25  
19 DC Specification for Output Clock Signals .................................................................................25  
20 Conventional PCI 3.3V AC Characteristics ................................................................................25  
21 PCI-X 3.3V AC Characteristics...................................................................................................26  
22 Differential Transmitter (TX) AC Output Specifications ..............................................................28  
23 Differential Receiver (RX) AC Input Specifications.....................................................................29  
24 PCI Interface Timing...................................................................................................................30  
25 PCI-X 3.3V Signal Timing Parameters .......................................................................................31  
26 PCI and PCI-X Clock Timings ....................................................................................................33  
27 41210 Bridge Clock Timings.......................................................................................................35  
28 41210 Bridge Maximum Voltage Plane Currents .......................................................................37  
29 41210 Bridge Thermal Voltage Plane Currents..........................................................................37  
30 41210 Bridge Thermal Specifications.........................................................................................39  
31 Signal List, sorted by Ball Name.................................................................................................44  
32 Signal List, sorted by Signal Name.............................................................................................48  
4
Contents  
Revision History  
Date  
Revision  
Description  
Revised Table 1, Table 9, and Section 3.8  
May 2005  
April 2005  
005  
004  
003  
Revised Table 26 “PCI and PCI-X Clock Timings” on page 33 CLK Cycle Time parameters  
Revised first page PCI Express operation description; updated information in Table 2.  
September 2004  
Added Chapter 2. Removed original Sections 3.6 and 3.7. Updated VCC information to  
VCC15.  
June 2004  
002  
001  
September 2003  
Initial release  
5
Order Number: 278875-005US  
May 2005  
Datasheet — 41210 Bridge  
Introduction  
1
1.1  
About This Document  
This document provides information on the Intel® 41210 Serial to Parallel PCI Bridge, including a  
functional overview, signal descriptions, mechanical data, package signal location and bus  
functional waveforms.  
1.2  
Product Overview  
The Intel® 41210 Serial to Parallel PCI Bridge (also called the 41210 Bridge) integrates two PCI  
Express-to-PCI/PCI-X bridges. Each bridge follows the PCI-to-PCI Bridge programming model.  
The PCI Express port is compatible with the PCI Express Specification, Revision 1.0a. The two  
PCI bus interfaces are compatible with the PCI Local Bus Specification, Revision 2.3 and PCI-X  
Addendum to the PCI Local Bus Specification, Revision 1.0b.  
7
41210 Bridge — Datasheet  
Signal Description  
2
The “#” symbol at the end of a signal name indicates that the active, or asserted state occurs when  
the signal is at a low voltage level. When “#” is not present after the signal name the signal is  
asserted when at the high voltage level. The following notations are used to describe the signal  
type:  
I:  
Input pin  
O:  
Output pin  
OD:  
I/O:  
Open-drain Output pin  
Bidirectional Input/Output pin  
I/OD: Bidirectional Input/Open-drain Output pin  
2.1  
On Die Termination (ODT)  
The 41210 Bridge incorporates on-die termination for most of the PCI interface signals. This  
eliminates the need for the system designer to incorporate external pull-up resistors in the design.  
The following signals have an on die termination of 8.33KOhm @40%:  
8
Datasheet — 41210 Bridge  
Table 1.  
ODT Signals  
A_ACK64#  
A_AD[63:32]  
A_CBE#[7:4]  
A_DEVSEL#  
A_FRAME#  
A_GNT#[5:0]  
A_IRDY#  
A_PAR  
B_ACK64#  
B_AD[63:32]  
B_CBE#[7:4]  
B_DEVSEL#  
B_FRAME#  
B_GNT#[5:0]  
B_IRDY#  
B_PAR  
A_PAR64  
A_PERR#  
A_LOCK#  
A_REQ#[5:0]  
A_REQ64#  
A_SERR#  
A_STOP#  
A_TRDY#  
A_INTA#  
A_INTB#  
A_INTC#  
A_INTD#  
TCK  
B_PAR64  
B_PERR#  
B_LOCK#  
B_REQ#[5:0]  
B_REQ64#  
B_SERR#  
B_STOP#  
B_TRDY#  
B_INTA#  
B_INTB#  
B_INTC#  
B_INTD#  
TDI  
TDO  
TMS  
9
41210 Bridge — Datasheet  
2.2  
PCI Express Interface  
Table 2.  
PCI Express Interface Pins  
Signal  
I/O  
Description  
REFCLKp/  
REFCLKn  
PCI Express Reference Clocks: 100 MHz differential clock pair.  
I
PCI Express Serial Data Transmit: PCI Express differential data transmit  
signals.  
PETp[7:0]/  
PETn[7:0]  
X8 Mode: All PETp[7:0]/ PETn[7:0] are used  
X4 Mode: Only PETp[3:0]/ PETn[3:0] are used  
O
x1 Mode: Either PETp[0]/ PETn[0] is used or PETp[7]/ PETn[7] is used  
PCI Express Serial Data Receive: PCI Express differential data receive  
signals.  
PERp[7:0]/  
PERn[7:0]  
X8 Mode: All PERp[7:0]/ PERn[7:0] are used  
X4 Mode: Only PERp[3:0]/ PERn[3:0] are used  
I
x1 Mode: Either PERp[0]/ PERn[0] is used or PERp[7]/ PERn[7] is used  
PCI Express Compensation Inputs: Analog signals. Connect to a  
24.9Ω±1% pull-up resitor to 1.5V. A single resistor can be used for both  
signals.  
PE_RCOMP[1:0]  
Total  
I
36  
2.3  
PCI Bus Interface (Two Instances)  
Each interface is marked by either the letter “A” or “B” to signify the interface. Therefore, A_AD  
refers to the AD bus on PCI bus A, and B_AD refers to the AD bus on PCI bus B. For pin names  
described in the following sections, an ‘X’ in the name indicates either A or B, for the PCI bus A  
and PCI bus B sides. For example, X_PAR signal would be called A_PAR on the PCI bus A and  
B_PAR on the PCI bus B.  
10  
Datasheet — 41210 Bridge  
Table 3.  
PCI Interface Pins (Sheet 1 of 2)  
Signal  
I/O  
Description  
PCI Address/Data: These signals are a multiplexed address and data bus. During the address  
phase or phases of a transaction, the initiator drives a physical address on X_AD[31:0]. During the  
data phases of a transaction, the initiator drives write data, or the target drives read data.  
A_AD[31:0]  
B_AD[31:0]  
I/O  
I/O  
No External pull-up resistors are required on the system board for these signals.  
Bus Command and Byte Enables: These signals are a multiplexed command field and byte enable  
field. During the address phase or phases of a transaction, the initiator drives the transaction type on  
C/BE#[3:0]. When there are two address phases, the first address phase carries the dual address  
command and the second address phase carries the transaction type. For both read and write  
transactions, the initiator drives byte enables on C/BE#[3:0] during the data phases.  
A_C/BE#[3:0]  
B_C/BE#[3:0]  
No External pull-up resistors are required on the system board for these signals.  
Parity: Even parity calculated on 36 bits - AD[31:0] plus C/BE[3:0]#. It is calculated on all 36 bits  
regardless of the valid byte enables. It is generated for address and data phases. It is driven  
identically to the AD[31:0] lines, except it is delayed by exactly one PCI clock. It is an output during  
the address phase for all 41210 Bridge initiated transactions and all data phases when the 41210  
Bridge is the initiator of a PCI write transaction, and when it is the target of a read transaction.  
A_PAR  
B_PAR  
I/O  
I/O  
41210 Bridge checks parity when it is the initiator of PCI read transactions and when it is the target of  
PCI write transactions.  
No External pull-up resistors are required on the system board for these signals.  
Device Select: The bridge asserts DEVSEL# to claim a PCI transaction. As a target, the 41210 Bridge  
asserts DEVSEL# when a PCI master peripheral attempts an access an address destined for PCI  
Express. As an initiator, DEVSEL# indicates the response to a 41210 Bridge initiated transaction on the  
PCI bus. DEVSEL# is tri-stated from the leading edge of PCIRST#. DEVSEL# remains tri-stated by  
the 41210 Bridge until driven as a target.  
A_DEVSEL#  
B_DEVSEL#  
No External pull-up resistors are required on the system board for these signals.  
Frame: FRAME# is driven by the Initiator to indicate the beginning and duration of an access. While  
FRAME# is asserted data transfers continue. When FRAME# is negated the transaction is in the final  
data phase.  
A_FRAME#  
B_FRAME#  
I/O  
I/O  
No External pull-up resistors are required on the system board for these signals.  
Initiator Ready: IRDY# indicates the ability of the initiator to complete the current data phase of the  
transaction. A data phase is completed when both IRDY# and TRDY# are sampled asserted.  
A_IRDY#  
B_IRDY#  
No External pull-up resistors are required on the system board for these signals.  
Target Ready: Indicates the ability of the target to complete the current data phase of the transaction.  
A data phase is completed when both TRDY# and IRDY# are sampled asserted. TRDY# is tri-stated  
from the leading edge of RST#. TRDY# remains tri-stated by the 41210 Bridge until driven as a target.  
A_TRDY#  
B_TRDY#  
I/O  
I/O  
I/O  
No External pull-up resistors are required on the system board for these signals.  
Stop: Indicates that the target is requesting an initiator to stop the current transaction.  
A_STOP#  
B_STOP#  
No External pull-up resistors are required on the system board for these signals.  
Parity Error: Driven by an external PCI device when it receives data that has a parity error. Driven by  
41210 Bridge when, as a initiator it detects a parity error during a read transaction and as a target  
during write transactions.  
A_PERR#  
B_PERR#  
No External pull-up resistors are required on the system board for these signals.  
System Error: The 41210 Bridge samples SERR# as an input and conditionally forwards it to the  
A_SERR#  
B_SERR#  
PCI Express.  
I
No External pull-up resistors are required on the system board for these signals.  
66 MHz Enable: This input signal from the PCI Bus indicates the speed of the PCI Bus. If it is high  
then the Bus speed is 66 MHz and if it is low then the bus speed is 33 MHz. This signal will be used  
to generate appropriate clock (33 or 66 MHz) on the PCI Bus.  
A_M66EN  
B_M66EN  
I/OD  
Use an approximately 8.2Kresistor to pull to VCC33 or pull-down to ground.  
11  
41210 Bridge — Datasheet  
Table 3.  
PCI Interface Pins (Sheet 2 of 2)  
Signal  
I/O  
Description  
A_PCIXCAP  
B_PCIXCAP  
PCI-X Capable: Indicates whether all devices on the PCI bus are PCI-X devices, so that the 41210  
Bridge can switch into PCI-X mode. Use an approximately 8.2Kresistor to pull to VCC33.  
I
PCI Lock: Indicates an exclusive bus operation and may require multiple transactions to complete.  
This signal is an output from the bridge when it is initiating exclusive transactions on PCI. LOCK# is  
ignored when PCI masters are granted the bus. Locked transaction do not propagate upstream.  
A_LOCK#  
B_LOCK#  
O
No External pull-up resistors are required on the system board for these signals.  
Total  
118  
2.4  
PCI Bus Interface 64-Bit Extension (Two Interfaces)  
Table 4.  
PCI Interface Pins: 64-Bit Extensions  
Signal  
I/O  
Description  
PCI Address/Data: These signals are a multiplexed address and data bus. This bus provides an  
additional 32 bits to the PCI bus. During the data phases of a transaction, the initiator drives the  
upper 32 bits of 64-bit write data, or the target drives the upper 32 bits of 64-bit read data, when  
REQ64# and ACK64# are both asserted.  
A_AD[63:32]  
B_AD[63:32]  
I/O  
Bus Command and Byte enables upper 4 bits: These signals are a multiplexed command field and  
byte enable field. For both reads and write transactions, the initiator will drive byte enables for the  
AD[63:32] data bits on C/BE7:4] during the data phases when REQ64# and ACK64# are both  
A_C/BE#[7:4]  
B_C/BE#[7:4]  
I/O  
asserted.  
A_PAR64  
B_PAR64  
PCI interface upper 32 bits parity: This carries the even parity of the 36 bits of AD[63:32] and C/  
BE#[7:4] for both address and data phases.  
I/O  
I/O  
PCI interface request 64-bit transfer: This is asserted by the initiator to indicate that the initiator is  
requesting a 64-bit data transfer. It has the same timing as FRAME#. When the 41210 Bridge is  
the initiator, this signal is an output. When the 41210 Bridge is the target this signal is an input.  
A_REQ64#  
B_REQ64#  
PCI interface acknowledge 64-bit transfer: This is asserted by the target only when REQ64# is  
asserted by the initiator, to indicate the target ability to transfer data using 64 bits. It has the same  
timing as DEVSEL#.  
A_ACK64#  
B_ACK64#  
I/O  
78  
Total  
12  
Datasheet — 41210 Bridge  
2.5  
PCI Bus Interface Clocks and, Reset and Power  
Management (Two Interfaces)  
Table 5.  
PCI Clock and Reset Pins  
Signal  
I/O  
Description  
PCI Clock Output: 33/66/100/133 MHz clock for a PCI device. X_CLK[6] must be connected to the  
respective X_CLKIN input. for feeding the PCI interface logic. Unused clock outputs may be  
disabled via the “Offset 43: PCLKC – PCI Clock Control” register and should be treated as no  
connects on the board.  
A_CLKO[6:0]  
B_CLKO[6:0]  
O
Note: Registers are listed in the Intel® 41210 Serial to Parallel PCI Bridge  
Developers Manual.  
A_CLKIN  
B_CLKIN  
PCI Clock In: This signal is PCI clock feedback input. This pin should be connected to the  
corresponding X_CLKO[6] through a 22Ω±1% series resistor.  
I
A_RST#  
B_RST#  
O
PCI Reset: The bridge asserts RST# to reset devices that reside on the secondary PCI bus.  
PCI Power Management Event: PCI bus power management event signal. This is a shared open  
drain input from all the PCI cards on the corresponding PCI bus segment. This is a level sensitive  
signal that will be converted to a PME event on PCI Express.  
A_PME#  
B_PME#  
I
This pin does not have on-die 8.3K pull-up. This pull-up must be provided externally.  
Total  
20  
2.6  
Interrupt Interface (Two Interfaces)  
This section lists the interrupt interface signals. There are two sets of interrupt signals for the  
standard INTA:INTD pci signals.  
Table 6.  
Interrupt Interface Pins  
Signal  
I/O  
Description  
A_INTA#  
A_INTB#  
A_INTC#  
A_INTD#  
Interrupt Request Bus: The interrupt lines from PCI interrupts INTA#:INTD# can be routed to these  
interrupt lines.  
I
B_INTA#  
B_INTB#  
B_INTC#  
B_INTD#  
Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for more information on device  
numbering.  
Total  
8
2.7  
Reset Straps  
The following signals are used for static configuration. These signals are all sampled on the rising  
edge of PERST#.  
13  
41210 Bridge — Datasheet  
Table 7.  
Reset Strap Pins  
Signal  
I/O  
Description  
PCI-X 133 MHz Enable: This pin, when high, allows the PCI-X segment to  
run at 133 MHz when X_PCIXCAP is sampled high. When low, the PCI-X  
segment will only run at 100 MHz when X_PCIXCAP is sampled high.  
A_133EN  
B_133EN  
I
Use an approximately 8.2Kresistor to pull to VCC33 or pull-down to  
ground.  
Internal Test Modes: Straps 6, 2:0 should be pulled low and straps 5:3  
must be pulled high for normal operation.  
X_STRAP Logic Level  
0
1
2
3
4
5
6
‘0’  
‘0’  
‘0’  
‘1’  
‘1’  
‘1’  
‘0’  
A_STRAP[6:0  
]
I
B_STRAP[6:0  
]
Use approximately an 8.2Kresistor to pull-up to VCC33 or pull-down to  
VSS  
Internal Test Modes: These straps should be pulled high to VCC33.  
Use approximately an 8.2Kresistor to pull-up to VCC33.  
A_TEST[2:1]  
B_TEST{2:1]  
I
I
Configuration Retry: This pin, when sampled high sets the Configuration  
Cycle Retry Bit (bit 3) in the Bridge Initialization Register at Offset FC.  
If no local initialization is needed, this pin should be pulled low to VSS.  
CFGRETRY  
Total  
Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for  
more information.  
19  
14  
Datasheet — 41210 Bridge  
2.8  
SMBus Interface  
Table 8.  
SMBus Interface Pins  
Signal  
I/O  
Description  
SMBus Clock: This signal should be pulled to 3.3V via an 8.2KOhm  
resistor.  
SMBCLK  
I/OD  
SMBus Data: This signal should be pulled to 3.3V via an 8.2KOhm  
resistor.  
SMBDAT  
I/OD  
SMBus Addressing Straps: These straps set the SMBus Address for  
41210 Bridge. The address is determined as indicated below:  
Bit 7‘1’  
Bit 6‘1’  
Bit 5SMBUS[5]  
Bit 4‘0’  
SMBUS[5]  
I
SMBUS[3:1]  
Bit 3SMBUS[3]  
Bit 2SMBUS[2]  
Bit 1SMBUS[1]  
These signals (bits 5, 3:1) should be pulled up to 3.3V or down to  
ground. Sampled at the rising edge of PERST#.  
Total  
6
2.9  
Miscellaneous Pins  
Table 9.  
Miscellaneous Pins  
Signal  
I/O  
Description  
Configuration Reset: This signal is asserted low when ever the bridge goes  
through a fundemental reset (PERST#, RSTIN#, or PCI Express Reset). This  
signal should be used to indicate when the local initialization methods should be  
executed.  
CFGRST#  
O
Refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide for more  
information.  
PCI Express Fundamental Reset: When low, asynchronously resets the  
internal logic (including sticky bits).  
PERST#  
RSTIN#  
I
I
Reset In: When Asserted, this signal asynchronously resets the internal logic  
and asserts X_RST# output for both PCI interfaces. This signal should be pulled  
high for adapter card usage.  
TAP Clock In: This is the input clock to the JTAG TAP controller. Acceptable  
frequency is 0-16MHz  
TCK  
I
If not utilizing JTAG, this signal can be left as a no connect.  
Test Data In: This is the serial data input to the JTAG BSCAN shift register  
chain and to the JTAG BSCAN control logic. This is latched in on the rising edge  
of TCK.  
TDI  
I
If not utilizing JTAG, this signal can be left as a no connect.  
Test Data Output: This is the serial data output from the JTAG BSCAN logic  
If not utilizing JTAG, this signal can be left as a no connect.  
TDO  
O
15  
41210 Bridge — Datasheet  
Signal  
I/O  
Description  
Test Mode Select: This signal controls the TAP controller state machine to  
move to different states and is sampled on the rising edge of TCK.  
If not utilizing JTAG, this signal can be left as a no connect.  
TMS  
I
Test Reset In: This signal is used to asynchronously reset the JTAG BSCAN  
logic.  
TRST#  
I
I
If not utilizing JTAG, connect this signal to ground through a 1Kpull-down  
resistor.  
Reserved: (8 pins) These input pins should be pulled low  
Use an approximately 8.2Kresistor to pull-down to ground.  
RESERVED[8:1]  
NC[19:18], NC[16:1]  
A_NC[10:1]  
O
O
No Connect: (39 pins) These output pins should be left floating  
B_NC[10:1]  
NC[17]  
Total  
This signal requires an external pull-up, 8.2K ohm to 3.3V  
57  
16  
Datasheet — 41210 Bridge  
Electrical and Thermal Characteristics 3  
3.1  
DC Voltage and Current Specifications  
3.1.1  
41210 Bridge DC Specifications  
Table 10.  
Intel® 41210 Bridge DC Voltage Specifications  
Symbol  
VCC15  
Parameter  
Min  
1.425  
Typ  
Max  
1.575  
Unit  
Notes  
Intel® 41210 Bridge Core  
PCI-X I/O Voltage  
1.5  
1.5  
1.5  
1.5  
2.5  
1.5  
3.3  
V
V
V
VCC15  
1.425  
1.455  
1.455  
2.425  
1.46  
1.575  
1.545  
1.545  
2.575  
1.55  
VCCAPE  
Analog PCI Express Voltage  
1
VCCAPCI[2:0] Analog PCI Voltages  
VCCBGPE  
VCCPE  
Analog Bandgap Voltage  
PCI Express Interface Voltage  
PCI Bus Interface Voltage  
2
V
V
VCC33  
3.0  
3.6  
P
Thermal Design Power  
10.2  
W
TDP  
1. Transient tolerance ±5 mV above 1 MHz at package pin under DC load conditions.  
2. Transient tolerance ±10 mV above 1 MHz at package pin under DC load conditions.  
17  
41210 Bridge — Datasheet  
3.1.2  
Input Characteristic Signal Association  
Table 11.  
DC Characteristics Input Signal Association  
Symbol  
Signals  
Interrupt Signals: A_IRQ[15:0]#, B_IRQ[15:0]#  
PCI Signals: A_AD[63:0], B_AD[63:0], A_CBE[7:0]#, B_CBE[7:0]#, A_PAR, B_PAR,  
A_DEVSEL#, B_DEVSEL#, A_FRAME#, B_FRAME#, A_IRDY#, B_IRDY#, A_TRDY#,  
B_TRDY#, A_STOP#, B_STOP#, A_PERR#, B_PERR#, A_SERR#, B_SERR#, A_REQ[5:0]#,  
B_REQ[5:0]#, A_M66EN, B_M66EN, A_133EN, B_133EN, A_PCIXCAP, B_PCIXCAP,  
A_PAR64, B_PAR64, A_REQ64#, B_REQ64#, A_ACK64#, B_ACK64#  
V
/V  
IH1 IL1  
Clock Signals (3.3 V Only): A_CLKI, B_CLKI  
Miscellaneous Signals: PERST#  
V
V
/V  
PCI Express Signals: REFCLK, REFCLK#, PETP[7:0], PETN[7:0], PE_RCOMP[1:0]  
SMB Signals: SMBDAT, SMBCLK  
IH2 IL2  
/V  
IH3 IL3  
3.1.3  
DC Input Characteristics  
Table 12.  
DC Input Characteristics  
3.3 V Signal  
Max  
Symbol  
Parameter  
Unit  
Min  
V
Input Low Voltage  
Input High Voltage  
-0.5  
0.35 VCC33  
VCC33 +0.5  
V
V
IL1  
V
0.5 VCC33  
IH1  
Symbol  
Parameter  
Max  
V
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
N/A  
N/A  
0.6  
V
V
V
V
IL2  
IH2  
IL3  
IH3  
V
V
V
VCC33 + 0.5  
3.1.4  
DC Characteristic Output Signal Association  
Table 13.  
DC Characteristic Output Signal Association  
Symbol  
Signals  
PCI Signals: A_AD[63:0], B_AD[63:0], A_CBE[7:0]#, B_CBE[7:0]#, A_PAR, B_PAR,  
A_DEVSEL#, B_DEVSEL#, A_FRAME#, B_FRAME#, A_IRDY#, B_IRDY#, A_TRDY#,  
B_TRDY#, A_STOP#, B_STOP#, A_PERR#, B_PERR#, A_M66EN, B_M66EN,  
A_GNT[6:0]#, B_GNT[5:0]#, A_LOCK#, B_LOCK#, A_PAR64, B_PAR64, A_REQ64#,  
B_REQ64#, A_ACK64#, B_ACK64#  
V
/V  
OH1 OL1  
PCI Clock Signals (3.3 V Only): A_CLKO[6:0], B_CLKO[6:0], A_RST#, B_RST#  
Miscellaneous Signals: RASERR#  
V
V
/V  
PCI Express Signals: PERP[7:0], PERN[7:0]  
SMBus Signals: SMBDAT, SMBCLK  
OH2 OL2  
/V  
OH3 OL3  
18  
Datasheet — 41210 Bridge  
3.1.5  
DC Output Characteristics  
Table 14.  
DC Output Characteristic  
3.3 V Signal  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
0.1VCC33  
(5 V) Iout = 6 mA  
V
Output Low Voltage  
V
V
OL1  
(3.3 V) Iout = 1500 uA  
(5 V) Iout = -2 mA  
V
Output High Voltage  
0.9VCC33  
OH1  
(3.3 V) Iout = -500 uA  
Symbol  
Parameter  
Max  
Unit  
Notes  
V
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
N/A  
N/A  
0.4  
V
V
V
V
OL2  
OH2  
OL3  
OH3  
V
V
V
I
=14 mA  
OL4  
N/A  
Open Drain  
3.1.6  
PCI Express Interface DC Specifications  
3.1.6.1  
Differential Transmitter (TX) DC Output Specifications  
Table 15 defines the DC specifications of parameters for the differential output at all transmitters  
(TXs). The parameters are specified at the component pins.  
Table 15.  
Differential Transmitter (TX) DC Output Specifications (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Nom Max Units  
Comments  
= 2*|V  
Differential Peak to  
Peak Output  
Voltage  
V
V
TX-D+- TX-D-  
|
TX-DIFFp-p  
V
0.80  
1.2  
V
TX-DIFFp-p  
See Note 1.  
This is the ratio of the V  
second and following bits after a  
transition divided by the V  
of the  
of  
TX-DIFFp-p  
De-Emphasized  
Differential Output  
Voltage (Ratio)  
V
-3.0  
-3.5  
-4.0  
dB  
TX-DIFFp-p  
TX-DE-RATIO  
the first bit after a transition  
See Note 1.  
V
= |V  
+ v  
| / 2 – v  
TX-  
TX-CM-ACp  
CM-DC  
TX-D+  
TX-D-  
AC Peak  
V
V
Common Mode  
Output Voltage  
20  
mV  
mV  
v
= DC  
during L0  
of |V  
+ V  
TX-D-|  
TX-CM-ACp  
TX-CM-DC  
(avg)  
TX-D+  
/ 2  
See Note 1.  
|V  
V
TX-CM-DC [during L0] – TX-CM-Idle-  
Absolute Delta of  
DC Common Mode  
Voltage During L0  
and Electrical Idle  
| <= 100mv  
DC[during electrical idle]  
TX-CM-DC-  
0
100  
V
DC  
of |V  
+ V  
|
ACTIVE-IDLE-  
DELTA  
TX-CM-DC =  
(avg)  
TX-D+  
TX-D-  
/ 2 [electrical idle]  
See Note 1.  
19  
 
41210 Bridge — Datasheet  
Table 15.  
Differential Transmitter (TX) DC Output Specifications (Sheet 2 of 2)  
|V  
V
TX-CM-DC-D+ [during L0] – TX-CM-DC-D-  
|<=25mV  
[During L0.]  
Absolute Delta of  
DC Common Mode  
Voltage between D+  
and D-.  
V
DC  
of |V  
|
TX-D+  
TX-CM-DC-D+ =  
(avg)  
V
TX-CM-DC-  
LINE-DELTA  
[during L0]  
0
0
25  
mV  
V
DC  
|V  
of |V  
|
TX-D-  
TX-CM-DC-D- =  
(avg)  
[during L0]  
See Note 1.  
V
V
Electrical Idle  
Differential Peak  
Output Voltage  
TX-IDLE-DIFFp = TX-Idle-D+ - Tx-Idle-D-  
V
TX-IDLE-  
DIFFp  
|<=20mV  
20  
mV  
mV  
See Note 1.  
The amount of  
voltage change  
allowed during  
The total amount of voltage change that  
a transmitter can apply to sense  
whether a low impedance receiver is  
present.  
V
TX-RCV-  
DETECT  
600  
Receiver Detection.  
Differential Return  
Loss  
Measured over 50 MHz to 1.25 GHz  
See Note 2.  
RL  
RL  
12  
6
dB  
dB  
W
TX-DIFF  
Common Mode  
Return Loss  
Measured over 50 MHz to 1.25 GHz  
See Note 2.  
TX-CM  
DC Differential TX  
Impedance  
TX DC Differential Mode Low  
impedance  
Z
Z
80  
100  
120  
20k  
TX-DIFF-DC  
Transmitter  
TX-COM-  
Common Mode  
High Impedance  
State (DC)  
5 k  
75  
W
TX DC High Impedance.  
High-  
IMP-DC  
All transmitters shall be AC coupled.  
The AC coupling is required either  
within the media or within the  
AC Coupling  
Capacitor  
C
200  
nF  
TX  
transmitting component itself.  
1. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 2,  
“Compliance Test/Measurement Load” on page 23 and measured over any 250 consecutive TX UIs. (Also  
refer to the Transmitter Compliance Eye Diagram as shown in Minimum Transmitter Timing and Voltage  
Output Compliance Specification.)  
2. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a  
common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This  
input impedance requirement applies to all valid input levels. The reference impedance for return loss  
measurements is 50W to ground for both the D+ and D- line (i.e., as measured by a Vector Network Analyzer  
with 50W probes – see Figure 2). Note that the series capacitors CTX is optional for the return loss  
measurement.  
20  
Datasheet — 41210 Bridge  
3.1.6.2  
Differential Receiver (RX) DC Input Specifications  
Table 16 defines the DC specifications of parameters for all differential Receivers (RXs). The  
parameters are specified at the component pins.  
Table 16.  
Differential Receiver (RX) DC Input Specifications  
Symbol  
Parameter  
Min  
Nom Max Units  
Comments  
= 2*|V  
Differential Input  
Peak to Peak  
Voltage  
V
V
|
0.17  
5
1.20  
V
RX-DIFFp-p  
RX-D+ - RX-D-  
V
RX-DIFFp-p  
0
See Note 1.  
V
=
RX-CM-AC  
|V  
+
|/2– V  
RX-CM-DC  
RX-D+ VRX-D-  
V
RX-CM-DC =  
AC Peak Common  
Mode Input Voltage  
V
150  
mV  
RX-CM-ACp  
DC  
of |V  
+V  
|/2 during L0  
RX-D-  
(avg)  
RX-D+  
See Note 1.  
Measured over 50 MHz to 1.25 GHz  
See Note 2.  
Differential Return  
Loss  
RL  
RL  
15  
6
dB  
dB  
W
RX-DIFF  
Measured over 50 MHz to 1.25 GHz  
See Note 2  
Common Mode  
Return Loss  
RX-CM  
RX DC Differential Mode impedance.  
See Note 3.  
DC Differential Input  
Impedance  
Z
Z
80  
100  
50  
120  
60  
RX-DIFF-DC  
RX DC Common Mode impedance 50  
?+/-20% tolerance.  
DC Input Common  
Mode Input  
Impedance  
RX-COM-  
40  
5
W
W
DC  
See Notes 1 and 3.  
RX DC Common Mode impedance  
allowed when the receiver terminations  
are first powered on.  
Initial DC Input  
Common Mode  
Input Impedance  
Z
RX-COM-  
INITIAL-DC  
50  
60  
See Note 4.  
RX DC Common Mode impedance when  
the receiver terminations are not  
powered (i.e., no power).  
Powered Down DC  
Input Common  
Mode Input  
Z
RX-COM-  
200 k  
65  
W
HIGH-IMP-  
DC  
Impedance  
See Note 5.  
V
V
=2*|V  
-
|
RX-IDLE-  
RX-IDLE-DET-DIFFp-p  
RX-D+ VRX-D-  
Electrical Idle  
Detect Threshold  
175  
mV  
Measured at the package pins of the  
Receiver.  
DET-DIFFp-  
p
1. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 2,  
“Compliance Test/Measurement Load” on page 23 should be used as the RX device when taking  
measurements (also refer to the Receiver Compliance Eye Diagram as shown in Figure 3, “Minimum  
Receiver Eye Timing and Voltage Compliance Specification” on page 23). If the clocks to the RX and TX are  
not derived from the same clock chip the TX UI must be used as a reference for the eye diagram.  
2. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB and a  
common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This  
input impedance requirement applies to all valid input levels. The reference impedance for return loss  
measurements for is 50 to ground for both the D+ and D- line (i.e., as measured by a Vector Network  
Analyzer with 50probes - see Figure 2). Note: that the series capacitors C is optional for the return loss  
TX  
measurement.  
3. Impedance during all operating conditions.  
4. The Rx DC Common Mode Impedance that must be present when the receiver terminations are first enabled  
to ensure that the Receiver Detect occurs properly. Compensation of this impedance can start immediately  
and the (Z  
)RxDC Common Mode Impedance must be with in the specified range by the time  
RX-COM-DC  
Detect is entered.  
5. The Rx DC Common Mode Impedance that exists when the receiver terminations are disabled or when no  
power is present. This helps ensure that the Receiver Detect circuit will not falsely assume a receiver is  
powered on when it is not.  
21  
 
41210 Bridge — Datasheet  
Figure 1.  
Minimum Transmitter Timing and Voltage Output Compliance Specification  
There are two eye diagrams that must be met for the transmitter. Both eye diagrams must be  
aligned in time using the jitter median to locate the center of the eye diagram. The different eye  
diagrams will differ in voltage depending whether it is a transition bit or a de-emphasized bit.  
The eye diagram must be valid for any 250 consecutive UIs. An appropriate average TX UI must  
be used as the interval for measuring the eye diagram.  
3.1.6.3  
Compliance Test and Measurement Load  
The AC timing and voltage parameters must be verified at the measurement point, as specified by  
the device vendor within 0.2 inches of the package pins, into a test/measurement load shown in  
Figure 2.  
Note:  
The allowance of the measurement point to be within 0.2 inches of the package pins is meant to  
acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at  
the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the  
measurement point is assumed to be the D+ and D-package pins.  
22  
 
Datasheet — 41210 Bridge  
Figure 2.  
Compliance Test/Measurement Load  
The test load is shown at the transmitter package reference plane, but the same Test/Measurement  
load is applicable to the receiver package reference plane. CTX is an optional portion of the  
measurement test load. The measurement should be taken on the opposite side of the capacitor  
from the package, and the value of the CTX must be in the range of 75 nF to 200 nF.  
.
Figure 3.  
Minimum Receiver Eye Timing and Voltage Compliance Specification  
The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye  
diagram. The eye diagram must be valid for any 250 consecutive UIs. An appropriate average TX  
UI must be used as the interval for measuring the eye diagram.  
23  
 
 
41210 Bridge — Datasheet  
3.1.6.4  
PCI and PCI-X Interface DC Specifications  
Table 17 summarizes the DC specifications for 3.3V signaling.  
Table 17.  
DC Specifications for PCI and PCI-X 3.3 V Signaling  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
Condition  
Notes  
VCC33  
3.0  
3.6  
V
V
V
V
Input High Voltage  
0.5 VCC33 VCC33 +0.5  
V
ih  
il  
Input Low Voltage  
-0.5  
0.3VCC33  
V
Input Pull-up Voltage  
Input Leakage Current  
Output High Voltage  
Output Low Voltage  
Input Pin Capacitance  
X_CLKIN Pin Capacitance  
IDSEL Pin Capacitance  
Pin Inductance  
0.7VCC33  
V
1
2
ipu  
I
±10  
µA  
V
0 < V < VCC33  
in  
il  
V
0.9VCC33  
I
I
= -500 µA  
= 1500 µA  
oh  
out  
out  
V
0.1VCC33  
V
ol  
C
10  
8
pF  
pF  
pF  
nH  
3
in  
C
C
5
clk  
8
4
5
IDSEL  
pin  
L
20  
V 3.6 VCC33 off or  
floating  
o
I
X_PME# input leakage  
-
1
µA  
6
Off  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are  
calculated to pull a floated network. Applications sensitive to static power utilization must assure that the  
input buffer is conducting minimum current at this input voltage.  
2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.  
3. Absolute maximum pin capacitance for a PCI/PCIX input except X_CLKIN and X_IDSEL.  
4. For conventional PCI only, lower capacitance on this input-only pin allows for non-resistive coupling to  
X_AD[xx]. PCI-X configuration transactions drive the AD bus four clocks before X_FRAME# asserts (see  
Section 2.7.2.1, “Configuration Transaction Timing,” in the PCI-X Protocol Addendum to the PCI Local Bus  
Specification Revision 2.0a).  
5. For conventional PCI, this is a recommendation, not an absolute requirement. For PCI-X, this is a  
requirement.  
6. This input leakage is the maximum allowable leakage into the X_PME# open drain driver when power is  
removed from VCC33 of the component. This assumes that no event has occurred to cause the device to  
attempt to assert X_PME#.  
24  
 
Datasheet — 41210 Bridge  
3.1.6.5  
Input Clock DC Specifications  
Table 18.  
DC Specification for Input Clock Signals  
Symbol  
CLK100  
Parameter  
Input Low Voltage  
Min  
Max  
Units  
-0.5  
2.0  
0.8  
V
V
V
V
CLK100  
CLK133  
CLK133  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
VCC3.3 + 0.5  
0.8  
-0.5  
2.0  
VCC3.3 + 0.5  
3.1.6.6  
Output Clock DC Specifications  
Table 19.  
DC Specification for Output Clock Signals  
Symbol  
CLK33  
Parameter  
Output Low Voltage  
Min  
Max  
0.4  
Units  
Condition  
V
V
V
V
V
V
V
V
Iol = 1 mA  
Ioh= -1 mA  
CLK33  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
2.4  
CLK66  
0.4  
0.4  
0.4  
Iol = 1 mA  
Ioh= -1 mA  
Iol = 1 mA  
Ioh= -1 mA  
Iol = 1 mA  
Ioh= -1 mA  
CLK66  
2.4  
2.4  
2.4  
CLK100  
CLK100  
CLK133  
CLK133  
3.2  
AC Specifications  
3.2.1  
PCI and PCI-X AC Characteristics  
Table 20.  
Conventional PCI 3.3V AC Characteristics (Sheet 1 of 2)  
Sym  
Parameter  
Condition  
Min  
Max  
Unit  
mA  
Note  
V
V
V
= 0.7VCC33  
= 0.3VCC33  
= 0.18VCC33  
-32VCC33  
out  
out  
out  
Switching Current  
High  
I
I
oh(AC)  
-12VCC33  
mA  
mA  
1
38VCC33  
Switching Current  
Low  
ol(AC)  
1
V
= 0.6VCC33  
16VCC33  
mA  
mA  
out  
25 + (V  
in  
VCC33 + 4 > V  
VCC33 + 1  
in  
I
High Clamp Current  
VCC33 – 1) /  
0.015  
ch  
25  
41210 Bridge — Datasheet  
Table 20.  
Conventional PCI 3.3V AC Characteristics (Sheet 2 of 2)  
I
Low Clamp Current  
-3 < V -1  
-25 + (V + 1) /  
mA  
cl  
in  
in  
0.015  
1
slew  
slew  
Output Rise Slew  
Rate  
0.3VCC33 to  
0.6VCC33  
4
4
V/ns  
V/ns  
2
r
f
2
Output Fall Slew  
Rate  
0.6VCC33 to  
0.3VCC33  
1
1. In conventional PCI switching, current characteristics for X_REQ# and X_GNT# are permitted to be one half  
of that specified here; i.e., half size drivers may be used on these signals. This specification does not apply to  
CLK and RSTIN# which are system outputs. “Switching Current High” specifications are not relevant to  
X_SERR# which is an open drain output.  
2. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the  
instantaneous rate at any point within the transition range. For more details on slew rate measurement  
conditions please refer to the PCI-X Electrical and Mechanical Addendum to the PCI Local Bus Specification,  
Revision 2.0a  
Table 21.  
PCI-X 3.3V AC Characteristics  
Sym  
Parameter  
Condition  
Min  
Max  
Unit  
mA  
Note  
0 < VCC33 –  
-74(VCC33 -  
V
3.6V  
V
)
out  
out  
0 < VCC33 –  
1.2V  
-32 (VCC33 –  
mA  
mA  
1
1
1
V
V
)
out  
out  
I
Switching Current High  
oh(AC)  
1.2V < VCC33 – -11 (VCC33 -  
1.9V ) – 25.2  
V
V
out  
out  
1.9V < VCC33 – -1.8 (VCC33 -  
mA  
mA  
V
3.6V  
V
) – 42.7  
out  
out  
0 V  
3.6V  
100V  
out  
out  
0 < V  
1.3V  
48V  
1
1
out  
out  
I
I
I
Switching Current Low  
Low Clamp Current  
High Clamp Current  
ol(AC)  
1.3V < V  
3.6V  
out  
5.7V + 55  
out  
-3V < V -  
0.8875V  
-40 + (V + 1) /  
0.005  
in  
in  
mA  
mA  
cl  
-0.8875V < V  
-0.625V  
-25 + (V + 1) /  
0.015  
in  
in  
40 + (V  
VCC33 - 1) /  
0.005  
in  
0.8875V < V  
VCC33 -4V  
in  
mA  
mA  
ch  
0.625V < V  
VCC33 ≤  
0.8875V  
25 + (V –  
in  
VCC33 - 1) /  
0.015  
in  
0.3VCC33 to  
0.6VCC33  
slew  
slew  
Output Rise Slew Rate  
Output Fall Slew Rate  
1
1
4
4
V/ns  
V/ns  
2
2
r
f
0.6VCC33 to  
0.3VCC33  
1. In conventional PCI switching, current characteristics for X_REQ# and X_GNT# are permitted to be one half  
of that specified here; i.e., half size drivers may be used on these signals. This specification does not apply to  
CLK and RST# which are system outputs. “Switching Current High” specifications are not relevant to  
X_SERR#, which is an open drain output.  
26  
Datasheet — 41210 Bridge  
2. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the  
instantaneous rate at any point within the transition range. For more details on slew rate measurement  
conditions please refer to the PCI-X Electrical and Mechanical Addendum to the PCI Local Bus Specification,  
Revision 2.0a.  
3.3  
3.4  
Voltage Filter Specifications  
The 41210 Bridge requires voltage filtering to reduce noise on critical voltage planes. There are  
two filter types necessary on the platform:  
Analog Voltage Filter (PCI-Express and PCI)  
Bandgap Filter  
Note:  
For filter specifications, refer to the 41210 Serial to Parallel PCI Bridge Design Guide.  
VCC15 and VCC33 Voltage Requirements  
The 41210 Bridge requires that the VCC33 voltage rail be equal to or no less than 0.5V below  
VCC15 (absolute voltage value) at all times during 41210 Bridge operation, including during  
system power up and power down. In other words, the following must always be true:  
VCC33 (VCC15 –0.5V)  
Figure 4 graphically illustrates this requirement. This can be accomplished by placing a diode (with  
a voltage drop < 0.5V) between VCC15 and VCC33. Anode will be connected to VCC15 and  
cathode will be connected to VCC33.  
Figure 4.  
Voltage Requirements VCC33 versus VCC15  
27  
 
41210 Bridge — Datasheet  
3.5  
Timing Specifications  
3.5.1  
PCI Express Interface Timing  
3.5.1.1  
Differential Transmitter (TX) AC Output Specifications  
Table 22 defines the AC specifications of parameters for the differential output at all transmitters  
(TXs). The parameters are specified at the component pins.  
Table 22.  
Differential Transmitter (TX) AC Output Specifications  
Symbol  
Parameter  
Min  
Nom  
Max  
Units  
Comments  
Each UI is 400 ps +/-300 ppm. UI  
does not account for SSC dictated  
variations.  
UI  
Unit Interval  
399.88 400  
400.12 ps  
See Note 1.  
The maximum transmitter jitter  
can be derived as T  
Minimum TX Eye  
Width  
TX-MAX-JITTER  
T
T
0.70  
UI  
TX-EYE  
= 1 - T  
= .3 UI  
TX-EYE  
See Notes 2 and 3.  
Jitter is defined as the  
measurement variation of the  
Maximum time  
between the jitter  
median and  
maximum deviation  
for the median  
TX-EYE-  
crossing points (V  
= 0V)  
TX-DIFFp-p  
0.15  
UI  
MEDIAN-to-  
MAX-JITTER  
in relation to an appropriate  
average TX UI.  
See Notes 2 and 3.  
T
T
D+/D- TX Output  
Rise/Fall Time  
TX-RISE,  
TX-FALL  
0.125  
50  
UI  
UI  
See Notes 2 and 4.  
T
Minimum time spent  
in Electrical Idle  
Minimum time a transmitter must  
be in electrical idle.  
TX-IDLE-  
MIN  
Maximum time to  
transition to a valid  
Electrical Idle after  
sending an Electrical  
Idle ordered-set  
After sending an electrical idle  
ordered-set, the transmitter must  
meet all electrical idle  
T
TX-IDLE-  
20  
UI  
SET-  
TO-IDLE  
specifications within this time.  
Maximum time spent  
in Electrical Idle  
before initiating a  
receiver detect  
sequence.  
T
TX-IDLE-  
Maximum time spent in Electrical  
Idle before initiating a receiver  
detect sequence.  
RCV-  
100  
500  
ms  
ps  
DETECT-  
MAX  
Lane-to-Lane Output  
Skew  
Between any two Lanes within a  
single Transmitter.  
L
TX-SKEW  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 2,  
“Compliance Test/Measurement Load” on page 23 and measured over any 250 consecutive TX UIs. (Also  
refer to the Transmitter Compliance Eye Diagram as shown in Minimum Transmitter Timing and Voltage  
Output Compliance Specification.)  
3. A T  
= 0.70 UI provides for a total sum of deterministic and random jitter budget of T  
=
TX-EYE  
TX-JITTER-MAX  
0.30 UI for the transmitter collected over any 250 consecutive TX UIs. The T  
TX-EYE-MEDIAN-to-MAX-JITTER  
specification ensures a jitter distribution in which the median and the maximum deviation from the median is  
less than half of the total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that  
the median is not the same as the mean. The jitter median describes the point in time where the number of  
jitter points on either side is approximately equal as opposed to the averaged time value.  
28  
 
 
Datasheet — 41210 Bridge  
4. Measured between 20-80% at Transmitter package pins into a test load as shown in Figure 2 for both V  
TX-D+  
and V  
TX-D-.  
3.5.1.2  
Differential Receiver (RX) AC Input Specifications  
Table 23 defines the AC specifications of parameters for all differential Receivers (RXs). The  
parameters are specified at the component pins.  
Table 23.  
Differential Receiver (RX) AC Input Specifications  
Symbol  
Parameter  
Min  
Nom  
Max  
Units  
Comments  
The UI is 400 ps +/-300 ppm. UI  
does not account for SSC dictated  
variations. See Note 1.  
UI  
Unit Interval  
399.88 400  
400.12 ps  
The maximum interconnect media  
and transmitter jitter that can be  
tolerated by the receiver can be  
Minimum  
Receiver Eye  
Width  
T
0.4  
UI  
RX-EYE  
derived asT  
=1 -T  
RX-MAX-JITTER  
RX-  
=0.6 UI  
EYE  
See Notes 2 and 3.  
Jitter is defined as the  
Maximum time  
between the jitter  
median and  
maximum  
deviation from  
the median.  
measurement variation of the  
crossing points (V = 0 V)  
T
RX-EYE-  
RX- DIFFp-p  
0.3  
UI  
MEDIAN-to-  
in relation to an appropriate  
average TX UI.  
MAX-JITTER  
See Notes 2 and 3.  
Unexpected  
Electrical Idle  
Enter Detect  
Threshold  
An unexpected electrical idle (V  
RX-  
T
<V  
) must  
RX-IDLE-DET-  
DIFFp-p  
RX-IDLE-DET- DIFFp-p  
10  
20  
ms  
ns  
be recognized no longer than T  
DIFF-  
RX-  
to signal  
ENTERTIME  
IDLE-DET- DIFF-ENTERTIME  
Integration Time  
an unexpected idle condition.  
Across all Lanes on a port. This  
includes variation in the length of a  
skip ordered-set (e.g., COM and 1  
to 5 SKP symbols) at the RX as well  
as any delay differences arising  
from the interconnect itself.  
L
Total Skew  
RX-SKEW  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 2,  
“Compliance Test/Measurement Load” on page 23 should be used as the RX device when taking  
measurements (also refer to the Receiver Compliance Eye Diagram as shown in Figure 3, “Minimum  
Receiver Eye Timing and Voltage Compliance Specification” on page 23). If the clocks to the RX and TX are  
not derived from the same clock chip the TX UI must be used as a reference for the eye diagram.  
3. A T  
= 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the  
RX-EYE  
transmitter and interconnect collected any 250 consecutive UIs. The T  
RX-EYE-MEDIAN-to-MAX-JITTER  
specification ensures a jitter distribution in which the median and the maximum deviation from the median is  
less than half of the total .6 UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that  
the median is not the same as the mean. The jitter median describes the point in time where the number of  
jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the  
RX and TX are not derived from the same clock chip, the appropriate average TX UI must be used as the  
reference for the eye diagram.  
29  
 
41210 Bridge — Datasheet  
3.5.2  
PCI and PCI-X Interface Timing  
Table 24.  
PCI Interface Timing  
Functional Operating Range (VCC33 = 3.3 V + 5%, Tcase=0°C to 105°C)  
66 MHz 33 MHz  
Min Max Min Max  
Symbol  
Parameter  
Units  
ns  
Notes  
CLK to Signal Valid Delay;  
bused signals  
T
2
6
6
2
11  
12  
1, 2, 3  
val  
val  
CLK to Signal Valid Delay;  
point-to-point signals  
T
(ptp)  
2
2
2
2
ns  
1, 2, 3  
T
Float to Active Delay  
Active to Float Delay  
ns  
ns  
1, 7  
1, 7  
on  
T
14  
28  
off  
Input Setup Time to CLK;  
Bused signals  
T
3
7
ns  
3, 4, 8  
su  
Input Setup Time to CLK;  
point-to-point  
T
(ptp)  
5
0
1
10,12  
ns  
ns  
ms  
3, 4  
4
su  
T
Input Hold Time from CLK  
0
1
h
Reset Active Time after power  
stable  
T
T
5
rst  
Reset Active Time after CLK  
stable  
100  
100  
µs  
5
rst-clk  
T
T
T
Reset Active to output float delay  
40  
50  
40  
50  
ns  
5, 6  
rst-off  
rrsu  
rrh  
PxREQ64# to RSTIN# setup time 10  
10  
0
clocks  
ns  
RSTIN# to PxREQ64# hold Time  
0
9
RSTIN# high to first configuration  
access  
T
225  
225  
clocks  
rhfa  
RSTIN# high to first PxFRAME#  
Assertion  
T
T
5
5
clocks  
ms  
rhff  
Power Valid to RSTIN# High  
100  
100  
pvrh  
1. It is important that all driven signal transitions drive to their V or V level within one T .  
cyc  
oh  
ol  
2. Minimum times are measured at the package pin (not the test point) with the load circuit shown in the PCI-X  
Electrical and Mechanical Addendum, Revision 2.0a. Maximum times are measured with the test point and  
load circuit shown in the PCI-X Electrical and Mechanical Addendum, Revision 2.0a.  
3. X_REQ_[5:0]# and X_GNT_[5:0]# are point-to-point signals and have different input setup times than do  
bused signals. X_GNT_[5:0]# and X_REQ_[5:0]# have a setup of 5 ns at 66 MHz. All other signals are  
bused.  
4. See Section 3.5, “Timing Specifications” on page 28 and the measurement conditions in the PCI-X Electrical  
and Mechanical Addendum, Revision 2.0a.  
5. If X_M66EN is asserted, CLK is stable when it meets the requirements in the PCI Local Bus Specification  
Revision 2.3. RSTIN# is asserted and deasserted asynchronously with respect to CLK.  
6. When X_M66EN is asserted, the minimum specification for T (min), T (ptp)(min), and T may be reduced  
val  
val  
on  
to 1 ns if a mechanism is provided to guarantee a minimum value of 2 ns when X_M66EN is deasserted.  
7. For purposes of active/float timing measurements, the Hi-Z or “off” state is defined to be when the total  
current delivered through the component pin is less than or equal to the leakage current specification.  
8. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at  
the same time. Refer to the PCI Local Bus Specification Revision 2.3 for more details.  
9. Maximum value is also limited by delay to the first transaction (T ).  
rhff  
30  
Datasheet — 41210 Bridge  
Figure 5.  
PCI Output Timing  
Figure 6.  
PCI Input Timing  
Table 25.  
PCI-X 3.3V Signal Timing Parameters (Sheet 1 of 2)  
Sym  
Parameter  
PCI-X 133  
Min Max  
0.7 3.8  
PCI-X 66  
Min Max  
0.7 3.8  
Units  
Notes  
T
CLK to Signal Valid Delay  
ns  
1, 2, 8  
val  
31  
41210 Bridge — Datasheet  
Table 25.  
PCI-X 3.3V Signal Timing Parameters (Sheet 2 of 2)  
T
Float to Active Delay  
Active to Float Delay  
Input Setup Time to CLK  
0
0
ns  
ns  
ns  
1, 6, 8  
1, 6, 8  
3, 7  
on  
T
7
7
off  
T
1.2  
1.7  
su  
T
T
Input Hold Time from CLK  
0.5  
1
0.5  
1
ns  
3
4
h
Reset Active Time after power  
stable  
ms  
rst  
T
T
T
T
Reset Active Time after CLK stable 100  
Reset Active to output float delay  
100  
µs  
ns  
ns  
ns  
4
4
rst-clk  
rst-off  
rrsu  
40  
50  
40  
50  
PxREQ64# to RSTIN# setup time  
RSTIN# to PxREQ64# hold Time  
10  
0
10  
0
7
rrh  
RSTIN# high to first configuration  
access  
T
226  
226  
clocks  
rhfa  
RSTIN# high to first PxFRAME#  
Assertion  
T
T
T
5
5
clocks  
ms  
rhff  
Power valid to RSTIN# high  
100  
10  
100  
10  
pvrh  
prsu  
PCI-X initialization pattern to  
RSTIN# setup time  
clocks  
RSTIN# to PCI-X initialization  
pattern hold time  
T
T
0
0
50  
0
0
50  
ns  
ns  
7
prh  
rlcx  
Delay from RSTIN# low to CLK  
frequency change  
1. See the timing measurement conditions in Section 3.5, “Timing Specifications” on page 28.  
2. Minimum times are measured at the package pin (not the test point) with the load circuit shown in the PCI-X  
Electrical and Mechanical Addendum, Revision 2.0a. Maximum times are measured with the test point and  
load circuit shown in PCI-X Electrical and Mechanical Addendum, Revision 2.0a.  
3. See the timing measurement conditions in Section 3.5, “Timing Specifications” on page 28 and the PCI-X  
Electrical and Mechanical Addendum, Revision 2.0a.  
4. RST# is asserted and deasserted asynchronously with respect to CLK.  
5. For purposes of Active/Float timing measurements, the Hi-Z or "off" state is defined to be when the total  
current delivered through the component pin is less than or equal to the leakage current specification  
6. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at  
the same time.  
7. Maximum value is also limited by delay to the first transaction (T ). The PCI-X initialization pattern control  
rhfa  
signals after the rising edge of RSTIN# must be deasserted no later than two clocks before the first  
PxFRAME# and must be floated no later than one clock before PxFRAME# is asserted.  
8. Device must meet this specification independent of how many outputs switch simultaneously.  
32  
Datasheet — 41210 Bridge  
3.5.3  
PCI and PCI-X Clock Specification  
Clock measurement conditions are the same for PCI-X devices as for conventional PCI devices in a  
3.3V signaling environment except for voltage levels specified in Table 26, “PCI and PCI-X Clock  
Timings” on page 33. The same spread-spectrum clocking techniques are allowed in PCI-X as for  
66 MHz conventional PCI. If a device includes a PLL, that PLL must track the input variations of  
spread-spectrum clocking specified in Table 26.  
Figure 7. PCI-X 3.3V Clock Waveform  
Table 26.  
PCI and PCI-X Clock Timings  
PCI-X 133  
PCI-X 66  
Min Max  
PCI 66  
PCI 33  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
Notes  
Average  
7.5  
20  
15  
20  
15  
30  
30  
ns  
1,3,4  
Tcyc  
CLK Cycle  
Absolute  
Minimum  
7.375  
3
14.8  
14.8  
29.7  
ns  
ns  
ns  
ps  
1,3  
Time  
T
CLK high  
time  
6
6
6
6
11  
11  
high  
T
CLK low  
time  
3
low  
T
CLKPeriod  
Jitter  
125  
-125  
4
200  
-200  
200  
-200  
4
300  
-300  
4
5
2
jit  
Slew Rate  
1.5  
CLK slew  
rate  
1.5  
4
1.5  
1
V/ns  
Spread Spectrum Requirements  
fmod  
Modulation  
frequency  
30  
33  
30  
33  
30  
33  
0
kHz  
%
fsprea  
d
Frequency  
spread  
-1  
0
-1  
0
-1  
1. For clock frequencies above 33 MHz, the clock frequency may not change beyond the spread-spectrum and  
jitter limits except while RSTIN# is asserted.  
2. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in the  
PCI-X Electrical and Mechanical Addendum, Revision 2.0a.  
3. The minimum clock period must not be violated for any single clock cycle (i.e. accounting for all system jitter).  
4. Average T is measured over any 1 µs period of time and must include all sources of clock variation.  
cyc  
33  
 
41210 Bridge — Datasheet  
5. Period jitter is the deviation between any single period of the clock, T , and the average period of the clock,  
cyc  
T
.
cyc(average)  
34  
Datasheet — 41210 Bridge  
3.5.4  
41210 Bridge Clock Timings  
Table 27.  
41210 Bridge Clock Timings  
Symbol  
CLK100  
Parameter  
Min  
Max  
Units  
Notes  
T
Average Period  
Rise time across 600 mV  
Fall time across 600 mV  
Rise/Fall Matching  
10.0  
300  
300  
10.2  
600  
600  
20%  
0.76  
200  
55  
ns  
ps  
ps  
6
period  
T
7,8  
7,8  
7,9  
rise  
T
fall  
Cross point at 1 V  
0.51  
45  
V
ps  
%
V
T
Cycle to Cycle jitter  
ccjitter  
Duty Cycle  
Maximum voltage allowed at input  
Minimum voltage allowed at input  
Rising edge ringback  
Falling edge ring back  
1.45  
-200  
mV  
V
0.85  
0.35  
V
CLK133  
T
Average Period  
7.5  
300  
300  
7.65  
600  
600  
ns  
ps  
ps  
6
period  
T
Rise time across 600 mV  
Fall time across 600 mV  
7,8  
7,8  
7,9  
rise  
T
fall  
Rise/Fall Matching  
Cross point at 1V  
Cycle to Cycle jitter  
20%  
0.76  
125  
0.51  
45  
V
T
ps  
10  
ccjitter  
Duty Cycle  
55  
%
V
Maximum voltage allowed at input  
Minimum voltage allowed at input  
Rising edge ringback  
1.45  
-200  
mV  
V
0.85  
Falling edge ring back  
0.35  
V
CLK33  
T
CLK period  
30.0  
12.0  
12.0  
N/A  
N/A  
N/A  
ns  
ns  
ns  
1,2  
3
period  
T
CLK high time  
CLK low time  
high  
T
4
low  
Rising edge rate  
Falling edge rate  
CLK rise time  
1.0  
1.0  
0.5  
4.0  
4.0  
2.0  
V/ns  
V/ns  
ns  
5
5
5
T
rise  
T
CLK fall time  
0.5  
2.0  
ns  
5
fall  
1. Period, jitter, offset and skew measured on rising edge @ 1.5V for 3.3V clocks.  
35  
41210 Bridge — Datasheet  
2. The average period over any 1 us period of time must be greater than the minimum specified period.  
3. T is measured at 2.4V for non-host outputs.  
high  
4. T is measured at 0.4V for all outputs.  
low  
5. For 3.3V clocks T  
and T are measured as a transition through the threshold region V = 0.4V and V  
=
rise  
fall  
ol  
oh  
2.4V (1 mA) JEDEC Specification.  
6. Measured at crossing point.  
7. Measured from V = 0.2V to V = 0.8V.  
ol  
oh  
8. Still simulating to determine [0.2–0.8 V] or [0.3–0.9 V].  
9. Determined as a fraction of 2*(T – T ) / (T + T ).  
rise  
fall  
rise  
fall  
10.Period jitter is the deviation between any single period of the clock, T , and the average period of the clock,  
cyc  
T
(average).  
cyc  
3.5.4.1  
Spread Spectrum Clocking  
Spread spectrum clocking can be used on the 41210 Bridge to reduce energy. Spread Spectrum  
clocking is a common technique used by system designers to meet FCC emissions, where the  
frequency is deliberately shifted around to spread the energy off of the peak. The following is to be  
observed when using Spread Spectrum clocking:  
All device timings (including jitter, skew, min/max clock period, output rise/fall time) MUST  
meet the existing non-spread spectrum specifications  
All non-spread Host and PCI functionality must be maintained in the spread spectrum mode  
(includes all power management functions.)  
The minimum clock period cannot be violated. The preferred method is to adjust the spread  
technique to not allow for modulation above the nominal frequency. This technique is often  
called “down-spreading”. The modulation profile in a modulation period can be expressed as:  
Equations:  
1
(1 δ ) fnom + 2 fm  
δ
fnom  
fnom  
t
when 0 < t <  
;
2 fm  
f =  
1
1
(1 + δ ) fnom 2 fm  
δ
t
when  
< t <  
,
2 fm  
fm  
where:  
nom is the nominal frequency in the non-SSC mode  
f
fm is the modulation frequency  
fm is the modulation amount  
t is time.  
3.6  
41210 Bridge Power Consumption  
Table 28 provides details on the maximum draw from the power planes by the 41210 Bridge for  
use in voltage regulation.  
36  
Datasheet — 41210 Bridge  
Table 28.  
41210 Bridge Maximum Voltage Plane Currents  
Power Plane  
Frequency (MHz)  
Number of Slots  
Maximum Voltage Plane Current (Amps)  
133  
1
100  
2
66  
4
I
VCC15 (core 1.5V)  
1.68  
0.22  
0.005  
0.70  
1.05  
1.61  
0.22  
0.005  
0.70  
1.14  
1.55  
0.22  
0.005  
0.70  
1.22  
I
VCC15 (I/O 1.5V)  
VCCBGPE  
I
VCCPE (PCI Express 1.5V)  
I
(PCI/PCI-X Mode 1 3.3V) 1  
VCC33  
1.  
Per PCI-X Bus segment  
Table 29 provides details on the maximum nominal draw from the power planes by the 41210  
Bridge for use in thermal design.  
Table 29.  
41210 Bridge Thermal Voltage Plane Currents  
Power Plane  
Frequency (MHz)  
Number of Slots  
Thermal Voltage Plane Current (Amps)  
133  
1
100  
2
66  
4
I
VCC15 (core 1.5V)  
IVCC15 (I/O 1.5V)  
VCCBGPE  
1.24  
1.18  
1.11  
0.22  
0.22  
0.22  
0.005  
0.005  
0.005  
I
VCCPE (PCI Express 1.5V)  
0.69  
0.99  
0.69  
1.04  
0.69  
1.10  
I
(PCI/PCI-X Mode 1 3.3V) 1  
VCC33  
1.  
Per PCI-X Bus segment  
3.7  
3.8  
Power Delivery Guidelines  
Please refer to the Intel® 41210 Serial to Parallel PCI Bridge Design Guide.  
Reference and Compensation Pins  
The 41210 Bridge has one reference pin and three compensation pins:  
PE_RCOMP[1:0] are two separate pins that provide voltage compensation for the PCI  
Express interface on the 41210 Bridge. The nominal compensation voltage is 0.5V. An  
external 24.9 ±1% pull-up resistor should be used to connect to VCC15. A single pull-up  
resistor can be used to for both of these signals.  
37  
 
41210 Bridge — Datasheet  
RCOMP is an analog PCI interface compensation pin to the 41210 Bridge. A 100 ±1% pull-  
down resistor should be used to connect the RCOMP pin to ground.  
All three of these implementations are shown in Figure 8.  
Figure 8.  
41210 Bridge Reference and Compensation Circuit Implementations  
3.9  
Thermal Specifications  
3.9.1  
Power  
For TDP specifications, see 41210 Bridge Thermal Specifications for the 41210 Bridge  
component. FC-BGA packages have poor heat transfer capability into the board and have minimal  
thermal capability without thermal solutions. Intel recommends that system designers plan for a  
heatsink when using the 41210 Bridge component.  
3.9.2  
Die Temperature  
To ensure proper operation and reliability of the 41210 Bridge component, the die temperatures  
must be at or below the values specified in Table 30. System and/or component level thermal  
solutions are required to maintain die temperatures below the maximum temperature  
specifications.  
38  
 
Datasheet — 41210 Bridge  
Table 30.  
41210 Bridge Thermal Specifications  
Parameter  
Maxinum  
T
105×C  
8.70W  
8.30W  
8.10W  
case  
TDP  
TDP  
Mode#1/Mode#1  
Mode#1/No Connect  
TDP  
DDR/No Connect  
Note:  
Mode 1: PCI-X 66MHz, 64-bit, 4 slots/devices  
No Connect: Unused PCI segment (no slots/devices on PCI bus segment)  
3.9.3  
Thermal Solution Component Suppliers  
3.9.3.1  
Torsional Clip Heatsink Thermal Solution  
Supplier  
(Part Number)  
Part  
Intel Part Number  
Contact Information  
Harry Lin (USA)  
714-739-5797  
hlinack@aol.com  
Heatsink Assembly includes:  
Unidirectional Fin Heatsink  
Thermal Interface Material  
Torsional Clip  
C76435-001  
CCI/ACK  
Monica Chih (Taiwan)  
866-2-29952666, x131  
monica_chih@ccic.com.tw  
Harry Lin (USA)  
714-739-5797  
hlinack@aol.com  
Unidirectional Fin Heatsink  
(31.0 x 31.0 x 12.2mm)  
C76434-001  
A69230-001  
CCI/ACK  
Monica Chih (Taiwan)  
866-2-29952666, x131  
monica_chih@ccic.com.tw  
Todd Sousa (USA)  
360-606-8171  
tsousa@parker.com  
Chomerics  
Thermal Interface  
(Chomerics T-710)  
69-12-22066-T710  
Harry Lin (USA)  
714-739-5797  
hlinack@aol.com  
Heatsink Attach Clip  
C17725-001  
A13494-005  
CCI/ACK  
Monica Chih (Taiwan)  
866-2-29952666, x131  
monica_chih@ccic.com.tw  
Julia Jiang (USA)  
408-919-6178  
juliaj@foxconn.com  
Foxconn  
(HB96030-DW)  
Solder-Down Anchor  
Note:  
The enabled components may not be currently available from all suppliers. Contact the supplier  
directly to verify time of component availability.  
39  
41210 Bridge — Datasheet  
Package Specification and Ballout 4  
4.1  
Package Specification  
The 41210 Bridge is in a 567-ball FCBGA package, 31mm X 31mm in size, with a 1.27mm ball  
pitch (see Figure 9 and Figure 10).  
Figure 9.  
41210 Bridge Package Dimensions (Top View)  
Handling  
Exclusion  
Area  
0.550 in.  
Die Area  
21.00 mm  
17.00 mm  
0.550 in.  
31.00 mm  
17.00 mm  
21.00 mm  
31.00 mm  
Pkg_567-Ball_Top  
40  
 
Datasheet — 41210 Bridge  
Figure 10.  
41210 Bridge Package Dimensions (Side View)  
Note:  
Note:  
Primary datum -C- and seating plane are defined by the spherical crowns of the solder balls.  
All dimensions and tolerances conform to ANSI Y14.5M-1982  
41  
41210 Bridge — Datasheet  
4.2  
Ball Map  
42  
Datasheet — 41210 Bridge  
43  
41210 Bridge — Datasheet  
4.3  
Signal List, sorted by Ball Location  
Table 31.  
Signal List, sorted by Ball Name (Sheet 1 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
A1  
A2  
C1  
C2  
B_INTD#  
VSS  
E1  
E2  
B_NC4  
VSS  
B_STRAP5  
RESERVED5  
VSS  
A3  
C3  
B_TEST1  
NC4  
E3  
B_NC9  
B_NC2  
VSS  
A4  
C4  
E4  
A5  
NC2  
C5  
VSS  
E5  
A6  
TDO  
C6  
NC18  
E6  
B_STRAP4  
TMS  
A7  
VCC33  
VSS  
C7  
SMBCLK  
VSS  
E7  
A8  
C8  
E8  
VSS  
A9  
PETN[5]  
PETP[5]  
C9  
PERN[5]  
PERN[4]  
PERP[4]  
VCCPE  
PERN[2]  
VCCBGPE  
VCCPE  
REFCLKP  
REFCLKN  
A_STRAP0  
A_STRAP3  
VSS  
E9  
TDI  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
B1  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
D1  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
F1  
VSS  
PETP[7]  
PERN[6]  
VSS  
VSSBGPE  
VCCPE  
PERN[0]  
PERP[0]  
PE_RCOMP[0]  
A_PCIXCAP  
CFGRST#  
NC6  
PERN[1]  
PERP[1]  
VSS  
SMBUS[3]  
B_STRAP0  
VSS  
VSS  
A_STRAP4  
NC3  
RESERVED1  
VCC33  
A_NC10  
A_NC8  
VSS  
A_NC2  
VSS  
VSS  
A_INTD#  
B_TEST2  
B_NC3  
VCC33  
VCC33  
B_INTA#  
B_INTC#  
B_NC10  
RESERVED8  
NC7  
B_NC7  
B2  
B_NC1  
D2  
F2  
B3  
B_STRAP1  
RESERVED6  
B_STRAP6  
NC19  
D3  
B_NC6  
F3  
B4  
D4  
RESERVED7  
VCC33  
F4  
B5  
D5  
F5  
B6  
D6  
NC5  
F6  
B7  
TCK  
D7  
B_PCIXCAP  
SMBDAT  
PETN[6]  
PETP[6]  
VSS  
F7  
NC9  
B8  
CFGRETRY  
PERP[5]  
VSS  
D8  
F8  
NC8  
B9  
D9  
F9  
TRST#  
PERP[7]  
PETN[7]  
VCCPE  
PETN[0]  
PETP[0]  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
PETN[4]  
PETP[4]  
VSS  
PERP[6]  
PERP[2]  
VSS  
PETN[2]  
PETP[2]  
VSS  
PETN[1]  
PETP[1]  
VSS  
VSSAPE  
PERST#  
NC1  
PE_RCOMP[1]  
VCC33  
A_STRAP1  
A_STRAP5  
SMBUS[5]  
RESERVED3  
A_NC6  
B_STRAP2  
SMBUS[2]  
RESERVED2  
A_STRAP2  
A_TEST2  
A_NC1  
A_STRAP6  
RESERVED4  
A_NC9  
A_TEST1  
A_NC4  
A_INTB#  
A_INTC#  
A_NC3  
44  
Datasheet — 41210 Bridge  
Table 31.  
Signal List, sorted by Ball Name (Sheet 2 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
G1  
G2  
B_INTB#  
VSS  
J1  
J2  
VSS  
B_AD[45]  
B_AD[46]  
VSS  
L1  
L2  
B_AD[41]  
B_AD[42]  
VCC15  
B_REQ0#  
B_AD[56]  
VCC33  
B_AD[57]  
B_GNT5#  
VSS  
G3  
B_NC5  
B_NC8  
VSS  
J3  
L3  
G4  
J4  
L4  
G5  
J5  
B_GNT0#  
B_AD[60]  
B_AD[61]  
VCCAPCI1  
VSS  
L5  
G6  
B_CBE6#  
B_CBE7#  
VSS  
J6  
L6  
G7  
J7  
L7  
G8  
J8  
L8  
G9  
B_CBE4#  
PERN[7]  
VSS  
J9  
L9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
H1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
K1  
VCCPE  
VSS  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
M1  
VCC15  
VSS  
PERN[3]  
PETP[3]  
VSS  
VCCPE  
VSS  
VCC15  
VSS  
VCCPE  
VSS  
VCC15  
VSS  
VCCAPE  
SMBUS[1]  
VSS  
VCC15  
A_AD[63]  
A_CBE5#  
VSS  
VCC15  
A_AD[59]  
VSS  
NC11  
NC12  
A_AD[58]  
A_AD[43]  
VSS  
VSS  
A_PAR64  
A_AD[47]  
VSS  
A_NC5  
A_NC7  
VSS  
A_REQ4#  
A_AD[42]  
VSS  
A_AD[46]  
A_GNT1#  
B_GNT1#  
VSS  
A_INTA#  
B_AD[48]  
B_AD[49]  
VCC33  
B_AD[47]  
B_AD[62]  
VSS  
H2  
K2  
M2  
B_AD[39]  
B_AD[40]  
VSS  
H3  
K3  
B_AD[43]  
B_AD[44]  
VSS  
M3  
H4  
K4  
M4  
H5  
K5  
M5  
B_AD[54]  
B_AD[55]  
VSS  
H6  
K6  
B_AD[58]  
B_AD[59]  
VSS  
M6  
H7  
B_PAR64  
B_AD[63]  
B_CBE5#  
VSS  
K7  
M7  
H8  
K8  
M8  
NC14  
H9  
K9  
VCC15  
VSS  
M9  
VCC15  
VSS  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
VCCPE  
PERP[3]  
PETN[3]  
VSS  
VCC15  
VSS  
VCC15  
VSS  
VCC15  
VSS  
VCC15  
VSS  
VCCPE  
RSTIN#  
A_CBE4#  
VCC33  
A_CBE6#  
A_CBE7#  
VCC33  
A_AD[49]  
A_AD[48]  
VCC33  
VCC15  
VSS  
VCC15  
VSS  
A_AD[61]  
A_AD[60]  
A_AD[62]  
VSS  
A_AD[57]  
A_AD[56]  
VCC33  
NC15  
NC13  
A_AD[41]  
VCC15  
A_AD[40]  
A_AD[45]  
VSS  
A_AD[44]  
45  
41210 Bridge — Datasheet  
Table 31.  
Signal List, sorted by Ball Name (Sheet 3 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
N1  
N2  
R1  
R2  
VSS  
B_AD[32]  
B_AD[33]  
VSS  
U1  
U2  
B_M66EN  
B_PERR#  
VSS  
VSS  
B_AD[37]  
B_AD[38]  
VSS  
N3  
R3  
U3  
N4  
R4  
U4  
B_FRAME#  
B_IRDY#  
VSS  
N5  
R5  
B_PME#  
NC16  
U5  
N6  
B_AD[52]  
B_AD[53]  
B_RST#  
VSS  
R6  
U6  
N7  
R7  
VCC33  
VCCAPCI2  
VSS  
U7  
B_CLKO[5]  
B_CLKO[6]  
VCC33  
N8  
R8  
U8  
N9  
R9  
U9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
P1  
VCC15  
VSS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
T1  
VCC15  
VSS  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
V1  
B_CLKIN  
B_STRAP3  
VSS  
VCC15  
VSS  
VCC15  
VSS  
A_CLKIN  
A_CLKO[4]  
VSS  
VCC15  
VSS  
VCC15  
VSS  
VCC15  
A_AD[55]  
A_REQ3#  
A_AD[54]  
VSS  
VCC15  
VCCAPCI3  
A_AD[51]  
VSS  
A_CLKO[5]  
A_CLKO[3]  
VSS  
A_STOP#  
A_DEVSEL#  
VSS  
A_AD[50]  
A_LOCK#  
VSS  
A_AD[39]  
A_AD[38]  
VSS  
A_TRDY#  
A_GNT5#  
VSS  
A_AD[35]  
A_AD[34]  
B_REQ3#  
VSS  
B_AD[34]  
B_133EN  
VSS  
VSS  
P2  
T2  
V2  
B_SERR#  
B_STOP#  
VCC33  
P3  
T3  
B_DEVSEL#  
NC10  
V3  
P4  
B_AD[35]  
B_AD[36]  
VSS  
T4  
V4  
P5  
T5  
VCC33  
B_REQ2#  
B_CLKO[3]  
VSS  
V5  
B_REQ4#  
B_CLKO[4]  
VSS  
P6  
T6  
V6  
P7  
B_AD[50]  
B_AD[51]  
VCC15  
VSS  
T7  
V7  
P8  
T8  
V8  
B_CLKO[2]  
B_CLKO[1]  
VSS  
P9  
T9  
VCC15  
VSS  
V9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
VCC15  
VSS  
VCC15  
VSS  
RCOMP  
VCC15  
VCC15  
VSS  
VCC15  
VSS  
VSS  
A_CLKO[0]  
A_CLKO[6]  
VCC15  
VCC15  
VSS  
VCC15  
VSS  
A_AD[53]  
VSS  
VCC33  
A_M66EN  
A_SERR#  
VCC33  
A_AD[33]  
A_AD[32]  
VCC33  
NC17  
A_CLKO[2]  
A_REQ2#  
VSS  
A_AD[52]  
A_PERR#  
VSS  
A_133EN  
A_PME#  
VSS  
A_AD[37]  
A_AD[36]  
VSS  
A_FRAME#  
A_IRDY#  
46  
Datasheet — 41210 Bridge  
Table 31.  
Signal List, sorted by Ball Name (Sheet 4 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
W1  
W2  
B_AD[16]  
VCC33  
AA1  
AA2  
VCC33  
B_AD[18]  
B_AD[19]  
VSS  
AC1  
AC2  
B_REQ64#  
B_AD[0]  
VCC15  
B_AD[4]  
B_AD[5]  
VCC33  
B_AD[9]  
B_CBE0#  
VSS  
W3  
B_LOCK#  
B_TRDY#  
VSS  
AA3  
AC3  
W4  
AA4  
AC4  
W5  
AA5  
B_CBE3#  
B_AD[24]  
VSS  
AC5  
W6  
B_AD[23]  
B_AD[25]  
VSS  
AA6  
AC6  
W7  
AA7  
AC7  
W8  
AA8  
B_AD[28]  
B_AD[31]  
VSS  
AC8  
W9  
B_AD[29]  
B_CLKO[0]  
VCC33  
AA9  
AC9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
Y1  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AB1  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AD1  
B_AD[14]  
B_PAR  
VSS  
B_GNT3#  
B_REQ5#  
VSS  
B_GNT4#  
A_REQ5#  
VSS  
A_AD[15]  
A_CBE1#  
VSS  
A_GNT4#  
A_AD[31]  
VSS  
A_AD[30]  
A_CLKO[1]  
VSS  
A_AD[11]  
A_AD[9]  
VSS  
A_RST#  
A_AD[26]  
VSS  
A_AD[25]  
A_GNT0#  
VSS  
A_AD[7]  
A_AD[5]  
VSS  
A_CBE3#  
A_AD[21]  
VSS  
A_REQ0#  
A_REQ1#  
VSS  
A_AD[2]  
A_AD[0]  
A_REQ64#  
VSS  
A_AD[18]  
A_CBE2#  
B_ACK64#  
VSS  
A_AD[16]  
B_CBE2#  
B_AD[17]  
VSS  
Y2  
AB2  
AD2  
B_AD[1]  
B_AD[2]  
VSS  
Y3  
AB3  
B_AD[20]  
B_AD[3]  
VSS  
AD3  
Y4  
B_AD[21]  
B_AD[22]  
VCC15  
AB4  
AD4  
Y5  
AB5  
AD5  
B_AD[6]  
B_AD[7]  
VSS  
Y6  
AB6  
B_REQ1#  
B_AD[8]  
VCC33  
AD6  
Y7  
B_AD[26]  
B_AD[27]  
VCC33  
AB7  
AD7  
Y8  
AB8  
AD8  
B_AD[10]  
B_AD[12]  
VSS  
Y9  
AB9  
B_AD[11]  
B_AD[13]  
VSS  
AD9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
B_AD[30]  
B_GNT2#  
VSS  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
B_AD[15]  
B_CBE1#  
A_PAR  
A_GNT3#  
A_GNT2#  
VCC33  
VCC33  
A_AD[14]  
A_AD[13]  
VSS  
A_AD[12]  
A_AD[29]  
VSS  
A_AD[28]  
A_AD[27]  
VSS  
A_AD[10]  
A_CBE0#  
VCC33  
A_AD[6]  
A_AD[4]  
VSS  
A_AD[8]  
A_AD[24]  
VCC15  
A_AD[23]  
A_AD[22]  
VCC33  
A_AD[3]  
A_AD[20]  
VSS  
A_AD[19]  
A_AD[17]  
VCC33  
A_AD[1]  
VSS  
A_ACK64#  
47  
41210 Bridge — Datasheet  
4.4  
Signal List, sorted by Signal Name  
Table 32. Signal List, sorted by Signal Name (Sheet 1 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
V20  
AB24  
AC23  
AD23  
AC22  
AB21  
AD21  
AC20  
AD20  
AC19  
AB18  
AC17  
AD17  
AC16  
AB15  
AD15  
AD14  
AC13  
W24  
Y23  
A_133EN  
A_ACK64#  
A_AD[0]  
J23  
J21  
A_AD[46]  
A_AD[47]  
A_AD[48]  
A_AD[49]  
A_AD[50]  
A_AD[51]  
A_AD[52]  
A_AD[53]  
A_AD[54]  
A_AD[55]  
A_AD[56]  
A_AD[57]  
A_AD[58]  
A_AD[59]  
A_AD[60]  
A_AD[61]  
A_AD[62]  
A_AD[63]  
A_CBE0#  
A_CBE1#  
A_CBE2#  
A_CBE3#  
A_CBE4#  
A_CBE5#  
A_CBE6#  
A_CBE7#  
A_CLKIN  
A_CLKO[0]  
A_CLKO[1]  
A_CLKO[2]  
A_CLKO[3]  
A_CLKO[4]  
A_CLKO[5]  
A_CLKO[6]  
A_DEVSEL#  
A_FRAME#  
A_GNT0#  
A_GNT1#  
A_GNT2#  
A_GNT3#  
A_GNT4#  
A_GNT5#  
A_IRDY#  
A_INTA#  
A23  
D24  
F23  
G21  
D22  
G22  
E22  
F21  
E21  
R21  
T18  
AB13  
J20  
A_NC2  
A_NC3  
H23  
H22  
R20  
R18  
P19  
P17  
N19  
N17  
M18  
M17  
L19  
A_NC4  
A_AD[1]  
A_NC5  
A_AD[2]  
A_NC6  
A_AD[3]  
A_NC7  
A_AD[4]  
A_NC8  
A_AD[5]  
A_NC9  
A_AD[6]  
A_NC10  
A_AD[7]  
A_LOCK#  
A_M66EN  
A_PAR  
A_AD[8]  
A_AD[9]  
A_AD[10]  
A_AD[11]  
A_AD[12]  
A_AD[13]  
A_AD[14]  
A_AD[15]  
A_AD[16]  
A_AD[17]  
A_AD[18]  
A_AD[19]  
A_AD[20]  
A_AD[21]  
A_AD[22]  
A_AD[23]  
A_AD[24]  
A_AD[25]  
A_AD[26]  
A_AD[27]  
A_AD[28]  
A_AD[29]  
A_AD[30]  
A_AD[31]  
A_AD[32]  
A_AD[33]  
A_AD[34]  
A_AD[35]  
A_AD[36]  
A_AD[37]  
A_AD[38]  
A_AD[39]  
A_AD[40]  
A_AD[41]  
A_AD[42]  
A_AD[43]  
A_AD[44]  
A_AD[45]  
A_PAR64  
A_PCIXCAP  
A_PERR#  
A_PME#  
A_REQ0#  
A_REQ1#  
A_REQ2#  
A_REQ3#  
A_REQ4#  
A_REQ5#  
A_REQ64#  
A_RST#  
L17  
E17  
P20  
V21  
W21  
W22  
V18  
N18  
L22  
K18  
K17  
K19  
J17  
AD18  
AC14  
AA24  
AA20  
H17  
J18  
AA23  
Y22  
W13  
AC24  
AA17  
T19  
U19  
C18  
D18  
B22  
C19  
A21  
D19  
F19  
F22  
B23  
U22  
P2  
AB22  
AA21  
Y20  
H19  
H20  
U13  
V14  
W16  
V17  
U17  
U14  
U16  
V15  
U20  
V23  
W19  
J24  
A_SERR#  
A_STOP#  
A_STRAP0  
A_STRAP1  
A_STRAP2  
A_STRAP3  
A_STRAP4  
A_STRAP5  
A_STRAP6  
A_TEST1  
A_TEST2  
A_TRDY#  
B_133EN  
B_ACK64#  
B_AD[0]  
Y19  
AB19  
W18  
AA18  
Y17  
Y16  
AB16  
W15  
AA15  
T22  
T21  
R24  
R23  
AB1  
AC2  
AD2  
AD3  
AB4  
AC4  
AC5  
AD5  
AD6  
AB7  
AC7  
P23  
Y14  
Y13  
AA14  
U23  
V24  
G24  
F24  
D23  
C24  
B24  
P22  
B_AD[1]  
N22  
B_AD[2]  
N21  
B_AD[3]  
M23  
B_AD[4]  
M21  
B_AD[5]  
L23  
A_INTB#  
A_INTC#  
A_INTD#  
A_NC1  
B_AD[6]  
L20  
B_AD[7]  
K24  
B_AD[8]  
K22  
B_AD[9]  
48  
Datasheet — 41210 Bridge  
Table 32. Signal List, sorted by Signal Name (Sheet 2 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
AD8  
AB9  
AD9  
AB10  
AC10  
AD11  
W1  
Y2  
B_AD[10]  
B_AD[11]  
B_AD[12]  
B_AD[13]  
B_AD[14]  
B_AD[15]  
B_AD[16]  
B_AD[17]  
B_AD[18]  
B_AD[19]  
B_AD[20]  
B_AD[21]  
B_AD[22]  
B_AD[23]  
B_AD[24]  
B_AD[25]  
B_AD[26]  
B_AD[27]  
B_AD[28]  
B_AD[29]  
B_AD[30]  
B_AD[31]  
B_AD[32]  
B_AD[33]  
B_AD[34]  
B_AD[35]  
B_AD[36]  
B_AD[37]  
B_AD[38]  
B_AD[39]  
B_AD[40]  
B_AD[41]  
B_AD[42]  
B_AD[43]  
B_AD[44]  
B_AD[45]  
B_AD[46]  
B_AD[47]  
B_AD[48]  
B_AD[49]  
B_AD[50]  
B_AD[51]  
B_AD[52]  
B_AD[53]  
B_AD[54]  
B_AD[55]  
B_AD[56]  
B_AD[57]  
K6  
K7  
B_AD[58]  
B_AD[59]  
B_AD[60]  
B_AD[61]  
B_AD[62]  
B_AD[63]  
B_CBE0#  
B_CBE1#  
B_CBE2#  
B_CBE3#  
B_CBE4#  
B_CBE5#  
B_CBE6#  
B_CBE7#  
B_CLKIN  
B_CLKO[0]  
B_CLKO[1]  
B_CLKO[2]  
B_CLKO[3]  
B_CLKO[4]  
B_CLKO[5]  
B_CLKO[6]  
B_DEVSEL#  
B_FRAME#  
B_GNT0#  
B_GNT1#  
B_GNT2#  
B_GNT3#  
B_GNT4#  
B_GNT5#  
B_IRDY#  
B_INTA#  
B_INTB#  
B_INTC#  
B_INTD#  
B_NC1  
H7  
D7  
B_PAR64  
B_PCIXCAP  
B_PERR#  
B_PME#  
B_REQ0#  
B_REQ1#  
B_REQ2#  
B_REQ3#  
B_REQ4#  
B_REQ5#  
B_REQ64#  
B_RST#  
B_SERR#  
B_STOP#  
B_STRAP0  
B_STRAP1  
B_STRAP2  
B_STRAP3  
B_STRAP4  
B_STRAP5  
B_STRAP6  
B_TEST1  
B_TEST2  
B_TRDY#  
CFGRETRY  
CFGRST#  
NC1  
J6  
U2  
J7  
R5  
H5  
L4  
H8  
AB6  
T6  
AC8  
AB12  
Y1  
T1  
AA2  
AA3  
AB3  
Y4  
V5  
AA5  
G9  
H9  
AA12  
AC1  
N8  
Y5  
G6  
G7  
U10  
W10  
V9  
V2  
W6  
AA6  
W7  
Y7  
V3  
A19  
B3  
B19  
U11  
E6  
Y8  
V8  
AA8  
W9  
Y10  
AA9  
R2  
T7  
V6  
A2  
U7  
B5  
U8  
C3  
T3  
D1  
R3  
U4  
W4  
B8  
P1  
J5  
P4  
K1  
E18  
F18  
A5  
P5  
Y11  
AA11  
W12  
L8  
N3  
NC2  
N4  
A22  
C4  
NC3  
M2  
M3  
L1  
NC4  
U5  
D6  
NC5  
F2  
E19  
F6  
NC6  
L2  
G1  
F3  
NC7  
K3  
F8  
NC8  
K4  
C1  
F7  
NC9  
J2  
B2  
T4  
NC10  
J3  
E4  
B_NC2  
G18  
G19  
K21  
M8  
M20  
R6  
NC11  
H4  
D2  
B_NC3  
NC12  
H1  
E1  
B_NC4  
NC13  
H2  
G3  
D3  
B_NC5  
NC14  
P7  
B_NC6  
NC15  
P8  
B1  
B_NC7  
NC16  
N6  
G4  
E3  
B_NC8  
T24  
C6  
NC17  
N7  
B_NC9  
NC18  
M5  
M6  
L5  
F4  
B_NC10  
B6  
NC19  
W3  
U1  
B_LOCK#  
B_M66EN  
B_PAR  
E16  
B17  
E14  
PE_RCOMP[0]  
PE_RCOMP[1]  
PERN[0]  
L7  
AC11  
49  
41210 Bridge — Datasheet  
Table 32. Signal List, sorted by Signal Name (Sheet 3 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
A15  
C13  
G12  
C10  
C9  
PERN[1]  
PERN[2]  
PERN[3]  
PERN[4]  
PERN[5]  
PERN[6]  
PERN[7]  
PERP[0]  
A18  
D20  
B7  
SMBUS[3]  
SMBUS[5]  
TCK  
F1  
H3  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCCAPCI1  
VCCAPCI2  
VCCAPCI3  
VCCAPE  
VCCBGPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VCCPE  
VSS  
H18  
H21  
H24  
L6  
E9  
TDI  
A6  
TDO  
E12  
G10  
E15  
A16  
D13  
H12  
C11  
B9  
E7  
TMS  
F9  
TRST#  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC15  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
M19  
R7  
J16  
K9  
PERP[1]  
T5  
PERP[2]  
K11  
K13  
K15  
L3  
T17  
T20  
T23  
U9  
PERP[3]  
PERP[4]  
PERP[5]  
D12  
F10  
F17  
F13  
D15  
B14  
H13  
B11  
A9  
PERP[6]  
L10  
L12  
L14  
L16  
M9  
V4  
PERP[7]  
W2  
PERST#  
W11  
Y9  
PETN[0]  
PETN[1]  
Y15  
Y21  
Y24  
AA1  
AB8  
AB14  
AC6  
AD19  
J8  
PETN[2]  
M11  
M13  
M15  
M22  
N10  
N12  
N14  
N16  
P9  
PETN[3]  
PETN[4]  
PETN[5]  
D9  
PETN[6]  
F11  
F14  
D16  
B15  
G13  
B12  
A10  
D10  
E11  
V11  
C17  
C16  
C21  
B21  
D21  
F20  
A3  
PETN[7]  
PETP[0]  
PETP[1]  
PETP[2]  
R8  
PETP[3]  
P11  
P13  
P15  
R10  
R12  
R14  
R16  
T9  
R17  
G15  
C14  
A14  
C12  
C15  
F12  
H11  
H15  
J10  
J12  
J14  
A4  
PETP[4]  
PETP[5]  
PETP[6]  
PETP[7]  
RCOMP  
REFCLKN  
REFCLKP  
RESERVED1  
RESERVED2  
RESERVED3  
RESERVED4  
RESERVED5  
RESERVED6  
RESERVED7  
RESERVED8  
RSTIN#  
T11  
T13  
T15  
V12  
V16  
Y6  
B4  
A8  
VSS  
D4  
AB20  
AC3  
A7  
A17  
A20  
A24  
B10  
B13  
B16  
C2  
VSS  
F5  
VSS  
H16  
C7  
VSS  
SMBCLK  
SMBDAT  
SMBUS[1]  
SMBUS[2]  
B18  
C22  
D5  
VSS  
D8  
VSS  
G16  
B20  
VSS  
E24  
VSS  
50  
Datasheet — 41210 Bridge  
Table 32. Signal List, sorted by Signal Name (Sheet 4 of 4)  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
C5  
C8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L21  
L24  
M4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V10  
V13  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSAPE  
VSSBGPE  
C20  
C23  
D11  
D14  
D17  
E2  
V19  
M7  
V22  
M10  
M12  
M14  
M16  
N2  
W5  
W8  
W14  
W17  
W20  
W23  
Y3  
E5  
E8  
N5  
E10  
E13  
E20  
E23  
F15  
G2  
N9  
N11  
N13  
N15  
N20  
N23  
P3  
Y12  
Y18  
AA4  
AA7  
AA10  
AA13  
AA16  
AA19  
AA22  
AB2  
AB5  
AB11  
AB17  
AB23  
AC9  
AC12  
AC15  
AC18  
AC21  
AD1  
AD4  
AD7  
AD10  
AD16  
AD22  
AD24  
F16  
G5  
G8  
P6  
G11  
G14  
G17  
G20  
G23  
H6  
P10  
P12  
P14  
P16  
P18  
P21  
P24  
R1  
H10  
H14  
J1  
R4  
J4  
R9  
J9  
R11  
R13  
R15  
R19  
R22  
T2  
J11  
J13  
J15  
J19  
J22  
K2  
T8  
K5  
T10  
T12  
T14  
T16  
U3  
K8  
K10  
K12  
K14  
K16  
K20  
K23  
L9  
A13  
A1  
U6  
A11  
U12  
U15  
U18  
U21  
U24  
V1  
A12  
M1  
M24  
N1  
L11  
L13  
L15  
L18  
N24  
AD12  
AD13  
V7  
51  
41210 Bridge — Datasheet  
This page intentionally left blank.  
§ §  
§ §  
52  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY