SB80L186EC25 [INTEL]

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS; 16位高集成嵌入式处理器
SB80L186EC25
型号: SB80L186EC25
厂家: INTEL    INTEL
描述:

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
16位高集成嵌入式处理器

文件: 总57页 (文件大小:787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80C186EC/80C188EC AND 80L186EC/80L188EC  
16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS  
X
Fully Static Operation  
X
True CMOS Inputs and Outputs  
Y
Y
Integrated Feature Set:  
Ð Low-Power, Static, Enhanced 8086  
CPU Core  
Ð Two Independent DMA Supported  
UARTs, each with an Integral Baud  
Rate Generator  
Available in Extended Temperature  
b a  
Range ( 40 C to 85 C)  
§
§
Supports 80C187 Numerics Processor  
Y
Y
Extension (80C186EC only)  
Package Types:  
Ð 100-Pin EIAJ Quad Flat Pack (QFP)  
Ð 100-Pin Plastic Quad Flat Pack  
(PQFP)  
Ð 100-Pin Shrink Quad Flat Pack  
(SQFP)  
Ð Four Independent DMA Channels  
Ð 22 Multiplexed I/O Port Pins  
Ð Two 8259A Compatible  
Programmable Interrupt Controllers  
Ð Three Programmable 16-Bit Timer/  
Counters  
Ð 32-Bit Watchdog Timer  
Ð Ten Programmable Chip Selects with  
Integral Wait-State Generator  
Ð Memory Refresh Control Unit  
Ð Power Management Unit  
Ð On-Chip Oscillator  
Y
Y
Speed Versions Available (5V):  
Ð 25 MHz (80C186EC25/80C188EC25)  
Ð 20 MHz (80C186EC20/80C188EC20)  
Ð 13 MHz (80C186EC13/80C188EC13)  
Speed Version Available (3V):  
Ð 16 MHz (80L186EC16/80L188EC16)  
Ð 13 MHz (80L186EC13/80L188EC13)  
Ð System Level Testing Support  
(ONCE Mode)  
Y
Y
Direct Addressing Capability to 1 Mbyte  
Memory and 64 Kbyte I/O  
Low-Power Operating Modes:  
Ð Idle Mode Freezes CPU Clocks but  
Keeps Peripherals Active  
Ð Powerdown Mode Freezes All  
Internal Clocks  
Ð Powersave Mode Divides All Clocks  
by Programmable Prescalar  
The 80C186EC is a member of the 186 Integrated Processor Family. The 186 Integrated Processor Family  
incorporates several different VLSI devices all of which share a common CPU architecture: the 8086/8088.  
The 80C186EC uses the latest high density CHMOS technology to integrate several of the most common  
system peripherals with an enhanced 8086 CPU core to create a powerful system on a single monolithic  
silicon die.  
*Other brands and names are the property of their respective owners.  
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or  
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make  
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.  
©
COPYRIGHT INTEL CORPORATION, 1996  
May 1996  
Order Number: 272434-004  
80C186EC/80C188EC and 80L186EC/80L188EC  
16-BIT HIGH-INTEGRATION  
EMBEDDED PROCESSOR  
CONTENTS  
PAGE  
CONTENTS PAGE  
Recommended Connections ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25  
INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4  
DC SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 26  
80C186EC CORE ARCHITECTURE ÀÀÀÀÀÀÀ 4  
Bus Interface Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4  
Clock Generator ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4  
I
versus Frequency and Voltage ÀÀÀÀÀÀÀÀÀ 29  
CC  
PDTMR Pin Delay Calculation ÀÀÀÀÀÀÀÀÀÀÀÀÀ 29  
AC SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30  
AC CharacteristicsÐ80C186EC25 ÀÀÀÀÀÀÀÀÀ 30  
AC CharacteristicsÐ80C186EC20/13 ÀÀÀÀÀ 32  
AC CharacteristicsÐ80L186EC13 ÀÀÀÀÀÀÀÀÀ 33  
AC CharacteristicsÐ80L186EC16 ÀÀÀÀÀÀÀÀÀ 34  
Relative Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35  
Serial Port Mode 0 Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36  
80C186EC PERIPHERAL  
ARCHITECTURE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5  
Programmable Interrupt Controllers ÀÀÀÀÀÀÀÀÀ 7  
Timer/Counter Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Serial Communications Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
DMA Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Chip-Select Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
I/O Port Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Refresh Control Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Watchdog Timer Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Power Management Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
80C187 Interface (80C186EC only) ÀÀÀÀÀÀÀÀÀ 8  
ONCE Test Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
AC TEST CONDITIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37  
AC TIMING WAVEFORMS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37  
DERATING CURVES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40  
RESET ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40  
BUS CYCLE WAVEFORMS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 43  
EXECUTION TIMINGS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50  
INSTRUCTION SET SUMMARY ÀÀÀÀÀÀÀÀÀÀ 51  
ERRATA ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 57  
REVISION HISTORY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 57  
PACKAGE INFORMATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
Prefix Identification ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
Pin Descriptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
Pinout ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15  
Package Thermal Specifications ÀÀÀÀÀÀÀÀÀÀÀ 24  
ELECTRICAL SPECIFICATIONS ÀÀÀÀÀÀÀÀÀ 25  
Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 25  
2
80C186EC/188EC, 80L186EC/188EC  
272434–1  
NOTE:  
Pin names in parentheses apply to the 80C188EC/80L188EC  
Figure 1. 80C186EC/80L186EC Block Diagram  
3
80C186EC/188EC, 80L186EC/188EC  
INTRODUCTION  
80C186EC CORE ARCHITECTURE  
Bus Interface Unit  
Unless specifically noted, all references to the  
80C186EC apply to the 80C188EC, 80L186EC, and  
80L188EC. References to pins that differ between  
the 80C186EC/80L186EC and the 80C188EC/  
80L188EC are given in parentheses. The ‘‘L’’ in the  
part number denotes low voltage operation. Physi-  
cally and functionally, the ‘‘C’’ and ‘‘L’’ devices are  
identical.  
The 80C186EC core incorporates a bus controller  
that generates local bus control signals. In addition,  
it employs a HOLD/HLDA protocol to share the local  
bus with other bus masters.  
The bus controller is responsible for generating 20  
bits of address, read and write strobes, bus cycle  
status information and data (for write operations) in-  
formation. It is also responsible for reading data  
from the local bus during a read operation. A ready  
input pin is provided to extend a bus cycle beyond  
the minimum four states (clocks).  
The 80C186EC is one of the highest integration  
members of the 186 Integrated Processor Family.  
Two serial ports are provided for services such as  
interprocessor communication, diagnostics and mo-  
dem interfacing. Four DMA channels allow for high  
speed data movement as well as support of the on-  
board serial ports. A flexible chip select unit simpli-  
fies memory and peripheral interfacing. The three  
general purpose timer/counters can be used for a  
variety of time measurement and waveform genera-  
tion tasks. A watchdog timer is provided to insure  
system integrity even in the most hostile of environ-  
ments. Two 8259A compatible interrupt controllers  
handle internal interrupts, and, up to 57 external in-  
terrupt requests. A DRAM refresh unit and 24 multi-  
plexed I/O ports round out the feature set of the  
80C186EC.  
The bus controller also generates two control sig-  
nals (DEN and DT/R) when interfacing to external  
transceiver chips. This capability allows the addition  
of transceivers for simple buffering of the multi-  
plexed address/data bus.  
Clock Generator  
The 80C186EC provides an on-chip clock generator  
for both internal and external clock generation. The  
clock generator features a crystal oscillator, a divide-  
by-two counter and three low-power operating  
modes.  
The future set of the 80C186EC meets the needs of  
low-power, space-critical applications. Low-power  
applications benefit from the static design of the  
CPU and the integrated peripherals as well as low  
voltage operation. Minimum current consumption is  
achieved by providing a powerdown mode that halts  
operaton of the device and freezes the clock cir-  
cuits. Peripheral design enhancements ensure that  
non-initialized peripherals consume little current.  
The oscillator circuit is designed to be used with ei-  
ther a parallel resonant fundamental or third-over-  
tone mode crystal network. Alternatively, the oscilla-  
tor circuit may be driven from an external clock  
source. Figure 2 shows the various operating modes  
of the oscillator circuit.  
The 80L186EC is the 3V version of the 80C186EC.  
The 80L186EC is functionally identical to the  
The crystal or clock frequency chosen must be twice  
the required processor operating frequency due to  
the internal divide-by-two counter. This counter is  
used to drive all internal phase clocks and the exter-  
nal CLKOUT signal. CLKOUT is a 50% duty cycle  
processor clock and can be used to drive other sys-  
tem components. All AC timings are referenced to  
CLKOUT.  
80C186EC  
embedded  
processor.  
Current  
80C186EC users can easily upgrade their designs to  
use the 80L186EC and benefit from the reduced  
power consumption inherent in 3V operation.  
Figure 1 shows a block diagram of the 80C186EC/  
80C188EC. The execution unit (EU) is an enhanced  
8086 CPU core that includes: dedicated hardware to  
speed up effective address calculations, enhanced  
execution speed for multiple-bit shift and rotate in-  
structions and for multiply and divide instructions,  
string move instructions that operate at full bus  
bandwidth, ten new instructions and fully static oper-  
ation. The bus interface unit (BIU) is the same as  
that found on the original 186 family products, ex-  
cept the queue-status mode has been deleted and  
buffer interface control has been changed to ease  
system design timings. An independent internal bus  
is used for communication between the BIU and on-  
chip peripherals.  
The following parameters are recommended when  
choosing a crystal:  
Temperature Range:  
Application Specific  
ESR (Equivalent Series Res.):  
40X max  
C0 (Shunt Capacitance of Crystal):  
(Load Capacitance):  
7.0 pF max  
g
20 pF 2 pF  
C
L
Drive Level:  
1 mW (max)  
4
80C186EC/188EC, 80L186EC/188EC  
272434–2  
NOTE:  
1. The LC network is only required when using a third overtone crystal.  
Figure 2. 80C186EC Clock Connections  
Ð 10-Output Chip-Select Unit  
Ð 32-bit Watchdog Timer Unit  
80C186EC PERIPHERAL  
ARCHITECTURE  
Ð I/O Port Unit  
The 80C186EC integrates several common system  
peripherals with a CPU core to create a compact, yet  
powerful system. The integrated peripherals are de-  
signed to be flexbile and provide logical interconnec-  
tions between supporting units (e.g., the DMA unit  
can accept requests from the Serial Communica-  
tions Unit).  
Ð Refresh Control Unit  
Ð Power Management Unit  
The registers associated with each integrated pe-  
ripheral are contained within a 128 x 16-bit register  
file called the Peripheral Control Block (PCB). The  
base address of the PCB is programmable and can  
be located on any 256 byte address boundary in ei-  
ther memory or I/O space.  
The list of integrated peripherals includes:  
Ð Two cascaded, 8259A compatible, Programma-  
ble Interrupt Controllers  
Figure 3 provides a list of the registers associated  
with the PCB. The Register Bit Summary individually  
lists all of the registers and identifies each of their  
programming attributes.  
Ð 3-Channel Timer/Counter Unit  
Ð 2-Channel Serial Communications Unit  
Ð 4-Channel DMA Unit  
5
80C186EC/188EC, 80L186EC/188EC  
PCB  
PCB  
PCB  
PCB  
Function  
Function  
Function  
Function  
Offset  
Offset  
Offset  
Offset  
00H  
02H  
04H  
06H  
08H  
Master PIC Port 0  
Master PIC Port 1  
Slave PIC Port 0  
Slave PIC Port 1  
Reserved  
40H  
42H  
44H  
46H  
48H  
4AH  
T2 Count  
T2 Compare  
Reserved  
80H  
82H  
84H  
86H  
88H  
8AH  
8CH  
8EH  
90H  
92H  
94H  
96H  
98H  
9AH  
9CH  
9EH  
A0H  
A2H  
A4H  
A6H  
GCS0 Start  
GCS0 Stop  
GCS1 Start  
GCS1 Stop  
GCS2 Start  
GCS2 Stop  
GCS3 Start  
GCS3 Stop  
GCS4 Start  
GCS4 Stop  
GCS5 Start  
GCS5 Stop  
GCS6 Start  
GCS6 Stop  
GCS7 Start  
GCS7 Stop  
LCS Start  
C0H DMA 0 Source Low  
C2H DMA 0 Source High  
C4H  
DMA 0 Dest. Low  
T2 Control  
C6H DMA 0 Dest. High  
Port 3 Direction  
Port 3 Pin State  
C8H  
CAH  
CCH  
CEH  
DMA 0 Count  
DMA 0 Control  
DMA Module Pri.  
DMA Halt  
0AH SCU Int. Req. Ltch.  
0CH DMA Int. Req. Ltch.  
0EH TCU Int. Req. Ltch.  
4CH Port 3 Mux Control  
4EH  
50H  
52H  
Port 3 Data Latch  
Port 1 Direction  
Port 1 Pin State  
10H  
12H  
14H  
16H  
18H  
1AH  
1CH  
1EH  
20H  
22H  
24H  
26H  
28H  
2AH  
2CH  
2EH  
30H  
32H  
34H  
46H  
38H  
3AH  
3CH  
3EH  
Reserved  
Reserved  
D0H DMA 1 Source Low  
D2H DMA 1 Source High  
Reserved  
54H Port 1 Mux Control  
D4H  
DMA 1 Dest. Low  
Reserved  
56H  
58H  
5AH  
Port 1 Data Latch  
Port 2 Direction  
Port 2 Pin State  
D6H DMA 1 Dest. High  
Reserved  
D8H  
DAH  
DCH  
DEH  
DMA 1 Count  
DMA 1 Control  
Reserved  
Reserved  
Reserved  
5CH Port 2 Mux Control  
Reserved  
5EH  
60H  
62H  
64H  
66H  
68H  
6AH  
6CH  
6EH  
70H  
72H  
74H  
76H  
78H  
7AH  
7CH  
7EH  
Port 2 Data Latch  
SCU 0 Baud  
SCU 0 Count  
SCU 0 Control  
SCU 0 Status  
SCU 0 RBUF  
SCU 0 TBUF  
Reserved  
Reserved  
WDT Reload High  
WDT Reload Low  
WDT Count High  
WDT Count Low  
WDT Clear  
E0H DMA 2 Source Low  
E2H DMA 2 Source High  
LCS Stop  
UCS Start  
E4H  
DMA 2 Dest. Low  
UCS Stop  
E6H DMA 2 Dest. High  
A8H Relocation Register  
E8H  
EAH  
ECH  
EEH  
DMA 2 Count  
DMA 2 Control  
Reserved  
WDT Disable  
Reserved  
AAH  
ACH  
AEH  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
T0 Count  
SCU 1 Baud  
SCU 1 Count  
SCU 1 Control  
SCU 1 Status  
SCU 1 RBUF  
SCU 1 TBUF  
Reserved  
B0H Refresh Base Addr.  
F0H DMA 3 Source Low  
F2H DMA 3 Source High  
T0 Compare A  
T0 Compare B  
T0 Control  
B2H  
B4H  
B6H  
B8H  
BAH  
BCH  
BEH  
Refresh Time  
Refresh Control  
Refresh Address  
Power Control  
Reserved  
F4H  
DMA 3 Dest. Low  
F6H DMA 3 Dest. High  
T1 Count  
F8H  
FAH  
FCH  
FEH  
DMA 3 Count  
DMA 3 Control  
Reserved  
T1 Compare A  
T1 Compare B  
T1 Control  
Step ID  
Reserved  
Powersave  
Reserved  
Figure 3. Peripheral Control Block Registers  
6
80C186EC/188EC, 80L186EC/188EC  
DMA requests can be external (on the DRQ pins),  
internal (from Timer 2 or a serial channel) or soft-  
ware initiated.  
Programmable Interrupt Controllers  
The 80C186EC utilizes two 8259A compatible Pro-  
grammable Interrupt Controllers (PIC) to manage  
both internal and external interrupts. The 8259A  
modules are configured in a master/slave arrange-  
ment.  
The DMA Unit transfers data as bytes only. Each  
data transfer requires at least two bus cycles, one to  
fetch data and one to deposit. The minimum clock  
count for each transfer is 8, but this will vary depend-  
ing on synchronization and wait states.  
Seven of the external interrupt pins, INT0 through  
INT6, are connected to the master 8259A module.  
The eighth external interrupt pin, INT7, is connected  
to the slave 8259A module.  
Chip-Select Unit  
The 80C186EC Chip-Select Unit (CSU) integrates  
logic which provides up to ten programmable chip-  
selects to access both memories and peripherals. In  
addition, each chip-select can be programmed to  
automatically insert additional clocks (wait states)  
into the current bus cycle, and/or automatically ter-  
minate a bus cycle independent of the condition of  
the READY input pin.  
There are a total of 11 internal interrupt sources  
from the integrated peripherals: 4 Serial, 4 DMA and  
3 Timer/Counter.  
Timer/Counter Unit  
The 80C186EC Timer/Counter Unit (TCU) provides  
three 16-bit programmable timers. Two of these are  
highly flexible and are connected to external pins for  
external control or clocking. The third timer is not  
connected to any external pins and can only be  
clocked internally. However, it can be used to clock  
the other two timer channels. The TCU can be used  
to count external events, time external events, gen-  
erate non-repetitive waveforms or generate timed in-  
terrupts.  
I/O Port Unit  
The I/O Port Unit on the 80C186EC supports two  
8-bit channels and one 6-bit channel of input, output  
or input/output operation. Port 1 is multiplexed with  
the chip select pins and is output only. Port 2 is mul-  
tiplexed with the pins for serial channels 1 and 2. All  
Port 2 pins are input/output. Port 3 has a total of 6  
pins: four that are multiplexed with DMA and serial  
port interrupts and two that are non-multiplexed,  
open drain I/O.  
Serial Communications Unit  
The 80C186EC Serial Communications Unit (SCU)  
contains two independent channels. Each channel is  
identical in operation except that only channel 0 is  
directly supported by the integrated interrupt control-  
ler (the channel 1 interrupts are routed to external  
interrupt pins). Each channel has its own baud rate  
generator and can be internally or externally clocked  
up to one half the processor operating frequency.  
Both serial channels can request service from the  
DMA unit thus providing block reception and trans-  
mission without CPU intervention.  
Refresh Control Unit  
The Refresh Control Unit (RCU) automatically gen-  
erates a periodic memory read bus cycle to keep  
dynamic or pseudo-static memory refreshed. A 9-bit  
counter controls the number of clocks between re-  
fresh requests.  
A 12-bit address generator is maintained by the RCU  
and is presented on the A12:1 address lines during  
the refresh bus cycle. Address bits A19:13 are pro-  
grammable to allow the refresh address block to be  
located on any 8 Kbyte boundary.  
Independent baud rate generators are provided for  
each of the serial channels. For the asynchronous  
modes, the generator supplies an 8x baud clock to  
both the receive and transmit shifting register logic.  
A 1x baud clock is provided in the synchronous  
mode.  
Watchdog Timer Unit  
The Watchdog Timer Unit (WDT) allows for graceful  
recovery from unexpected hardware and software  
upsets. The WDT consists of a 32-bit counter that  
decrements every clock cycle. If the counter reach-  
es zero before being reset, the WDTOUT pin is  
DMA Unit  
The four channel Direct Memory Access (DMA) Unit  
is comprised of two modules with two channels  
each. All four channels are identical in operation.  
DMA transfers can take place from memory to mem-  
ory, I/O to memory, memory to I/O or I/O to I/O.  
7
80C186EC/188EC, 80L186EC/188EC  
pulled low for four clock cycles. Logically ANDing  
the WDTOUT pin with the power-on reset signal al-  
lows the WDT to reset the device in the event of a  
WDT timeout. If a less drastic method of recovery is  
desired, WDTOUT can be connected directly to NMI  
or one of the INT input pins. The WDT may also be  
used as a general purpose timer.  
and information, see the Intel Packaging Outlines  
and Dimensions Guide (Order Number: 231369).  
Prefix Identification  
Table 1 lists the prefix identifications.  
Table 1. Prefix Identification  
Package  
Type  
Temperature  
Range  
Prefix Note  
Power Management Unit  
TS  
QFP (EIAJ) Extended  
The 80C186EC Power Management Unit (PMU) is  
provided to control the power consumption of the  
device. The PMU provides four power management  
modes: Active, Powersave, Idle and Powerdown.  
KU  
SB  
S
1
1
1
PQFP  
SQFP  
Extended/Commercial  
Extended/Commercial  
QFP (EIAJ) Commercial  
Active Mode indicates that all units on the  
80C186EC are operating at (/2 the CLKIN frequency.  
NOTE:  
1. The 5V 25 MHz version is only available in commercial  
a
temperature range corresponding to 0 C to 70 C am-  
bient.  
§
§
Idle Mode freezes the clocks of the Execution and  
Bus units at a logic zero state (all peripherals contin-  
ue to operate normally).  
Pin Descriptions  
The Powerdown Mode freezes all internal clocks at  
a logic zero level and disables the crystal oscillator.  
Each pin or logical set of pins is described in Table  
2. There are four columns for each entry in the Pin  
Description Table. The following sections describe  
each column.  
In Powersave Mode, all internal clock signals are di-  
vided by a programmable prescalar (up to (/64 the  
normal frequency). Powersave Mode can be used  
with Idle Mode as well as during normal (Active  
Mode) operation.  
Column 1: Pin Name  
In this column is a mnemonic that de-  
scribes the pin function. Negation of the  
signal name (i.e. RESIN) implies that the  
signal is active low.  
80C187 Interface (80C186EC only)  
Column 2: Pin Type  
The 80C186EC supports the direct connection of  
the 80C187 Numerics Processor Extension. The  
80C187 can dramatically improve the performance  
of calculation intensive applications.  
A pin may be either power (P), ground  
(G), input only (I), output only (O) or in-  
put/output (I/O). Please note that some  
pins have more than  
1
function.  
A19/S6/ONCE, for example, is normally  
an output but functions as an input dur-  
ONCE Test Mode  
ing  
reset.  
For  
this  
reason  
A19/S6/ONCE is classified as an input/  
output pin.  
To facilitate testing and inspection of devices when  
fixed into a target system, the 80C186EC has a test  
mode available which forces all output and input/  
output pins to be placed in the high-impedance  
state. ONCE stands for ‘‘ON Circuit Emulation’’.  
The ONCE mode is selected by forcing the  
A19/S6/ONCE pin low during a processor reset  
(this pin is weakly held high during reset to prevent  
inadvertant entrance into ONCE Mode).  
Column 3: Input Type (for I and I/O types only)  
There are two different types of input  
pins on the 80C186EC: asynchronous  
and synchronous. Asynchronous pins  
require that setup and hold times be met  
only to guarantee recognition. Synchro-  
nous input pins require that the setup  
and hold times be met to guarantee  
proper operation. Stated simply, missing  
a setup or hold on an asynchronous pin  
will result in something minor (i.e. a timer  
count will be missed) whereas missing a  
setup or hold on a synchronous pin will  
result in system failure (the system will  
‘‘lock up’’).  
PACKAGE INFORMATION  
This section describes the pin functions, pinout and  
thermal characteristics for the 80C186EC in the  
Plastic Quad Flat Pack (JEDEC PQFP), the EIAJ  
Quad Flat Pack (QFP) and the Shrink Quad Flat  
Pack (SQFP). For complete package specifications  
An input pin may also be edge or level  
sensitive.  
8
80C186EC/188EC, 80L186EC/188EC  
Column 4: Output States (for O and I/O types  
only)  
the processor is in the Hold Acknowledge state.  
R(Z) indicates that these pins will float while RESIN  
is low. P(0) and I(0) indicate that these pins will drive  
0 when the device is in either Powerdown or Idle  
Mode.  
The state of an output or I/O pin is de-  
pendent on the operating mode of the  
device. There are four modes of opera-  
tion that are different from normal active  
mode: Bus Hold, Reset, Idle Mode, Pow-  
erdown Mode. This column describes  
the output pin state in each of these  
modes.  
Some pins, the I/O Ports for example, can be pro-  
grammed to perform more than one function. Multi-  
function pins have a ‘‘/’’ in their signal name be-  
tween the different functions (i.e. P3.0/RXI1). If the  
input pin type or output pin state differ between func-  
tions, then that will be indicated by separating the  
state (or type) with a ‘‘/’’ (i.e. H(X)/H(Q)). In this  
example when the pin is configured as P3.0 then its  
hold output state is H(X); when configured as RXI1  
its output state is H(Q).  
The legend for interpreting the information in the Pin  
Descriptions is shown in Table 1.  
As an example, please refer to the table entry for  
AD12:0. The ‘‘I/O’’ signifies that the pins are bidirec-  
tional (i.e. have both an input and output function).  
The ‘‘S’’ indicates that, as an input the signal must  
be synchronized to CLKOUT for proper operation.  
The ‘‘H(Z)’’ indicates that these pins will float while  
All pins float while the processor is in the ONCE  
Mode (with the exception of OSCOUT).  
Table 1. Pin Description Nomenclature  
Description  
Symbol  
a
Ground (connect to V  
Input only pin  
Output only pin  
Input/Output pin  
P
G
I
O
I/O  
Power Pin (apply  
V
)
SS  
voltage)  
CC  
S(E)  
S(L)  
A(E)  
A(L)  
Synchronous, edge sensitive  
Synchronous, level sensitive  
Asynchronous, edge sensitive  
Asynchronous, level sensitive  
H(1)  
H(0)  
H(Z)  
H(Q)  
H(X)  
Output driven to V during bus hold  
CC  
Output driven to V during bus hold  
Output floats during bus hold  
Output remains active during bus hold  
Output retains current state during bus hold  
SS  
R(WH)  
R(1)  
R(0)  
R(Z)  
R(Q)  
R(X)  
Output weakly held at V during reset  
CC  
Output driven to V during reset  
Output driven to V during reset  
SS  
Output floats during reset  
Output remains active during reset  
Output retains current state during reset  
CC  
I(1)  
I(0)  
I(Z)  
I(Q)  
I(X)  
Output driven to V during Idle Mode  
CC  
Output driven to V during Idle Mode  
Output floats during Idle Mode  
Output remains active during Idle Mode  
Output retains current state during Idle Mode  
SS  
P(1)  
P(0)  
P(Z)  
P(Q)  
P(X)  
Output driven to V during Powerdown Mode  
CC  
Output driven to V during Powerdown Mode  
Output floats during Powerdown Mode  
Output remains active during Powerdown Mode  
Output retains current state during Powerdown Mode  
SS  
9
80C186EC/188EC, 80L186EC/188EC  
Table 2. Pin Descriptions  
Output  
States  
Pin  
Type  
Input  
Type  
Pin Name  
Pin Description  
a
POWER 5V 10% power supply connection  
g
V
V
P
G
I
Ð
Ð
Ð
CC  
SS  
Ð
GROUND  
CLKIN  
A(E)  
Ð
CLocK INput is the external clock input. An external  
oscillator operating at two times the required processor  
operating frequency can be connected to CLKIN. For  
crystal operation, CLKIN (along with OSCOUT) are the  
crystal connections to an internal Pierce oscillator.  
OSCOUT  
O
Ð
H(Q)  
R(Q)  
I(Q)  
OSCillator OUTput is only used when using a crystal to  
generate the internal clock. OSCOUT (along with CLKIN)  
are the crystal connections to an internal Pierce oscillator.  
This pin can not be used as 2X clock output for non-  
crystal applications (i.e. this pin is not connected for non-  
crystal applications).  
P(X)  
CLKOUT  
RESIN  
O
I
Ð
H(Q)  
R(Q)  
I(Q)  
CLocK OUTput provides a timing reference for inputs and  
outputs of the processor, and is one-half the input clock  
(CLKIN) frequency. CLKOUT has a 50% duty cycle and  
transitions every falling edge of CLKIN.  
P(X)  
A(L)  
Ð
RESet IN causes the processor to immediately terminate  
any bus cycle in progress and assume an initialized state.  
All pins will be driven to a known state, and RESOUT will  
also be driven active. The rising edge (low-to-high)  
transition synchronizes CLKOUT with CLKIN before the  
processor begins fetching opcodes at memory location  
0FFFF0H.  
RESOUT  
PDTMR  
O
Ð
H(0)  
R(1)  
I(0)  
RESet OUTput that indicates the processor is currently in  
the reset state. RESOUT will remain active as long as  
RESIN remains active.  
P(0)  
I/O  
A(L)  
H(WH)  
R(Z)  
P(WH)  
I(WH)  
Power-Down TiMeR pin (normally connected to an  
external capacitor) that determines the amount of time the  
processors waits after an exit from Powerdown before  
resuming normal operation. The duration of time required  
will depend on the startup characteristics of the crystal  
oscillator.  
NMI  
I
I
A(E)  
A(E)  
Ð
Ð
Non-Maskable Interrupt input causes a TYPE-2 interrupt  
to be serviced by the CPU. NMI is latched internally.  
TEST/BUSY  
(TEST)  
TEST is used during the execution of the WAIT instruction  
to suspend CPU operation until the pin is sampled active  
(LOW). TEST is alternately known as BUSY when  
interfacing with an 80C187 numerics coprocessor  
(80C186EC only).  
A19/S6/ONCE  
I/O  
A(L)  
H(Z)  
R(WH)  
I(0)  
This pin drives address bit 19 during the address phase of  
the bus cycle. During T2 and T3 this pin functions as  
status bit 6. S6 is low to indicate CPU bus cycles and high  
to indicate DMA or refresh bus cycles. During a processor  
reset (RESIN active) this pin becomes the ONCE input  
pin. Holding this pin low during reset will force the part into  
ONCE Mode.  
P(0)  
NOTE:  
Pin names in parentheses apply to the 80C188EC/80L188EC.  
10  
80C186EC/188EC, 80L186EC/188EC  
Table 2. Pin Descriptions (Continued)  
Pin  
Input  
Type  
Output  
States  
Pin Name  
Pin Description  
Type  
A18/S5  
A17/S4  
A16/S3  
(A15:8)  
I/O  
A(L)  
H(Z)  
R(WH)  
I(0)  
These pins drive address information during the address  
phase of the bus cycle. During T2 and T3 these pins drive  
status information (which is always 0 on the 80C186EC).  
These pins are used as inputs during factory test; driving  
these pins low during reset will cause unspecified operation.  
On the 80C188EC, A15:8 provide valid address information  
for the entire bus cycle.  
P(0)  
AD15/CAS2  
AD14/CAS1  
AD13/CAS0  
I/O  
S(L)  
H(Z)  
R(Z)  
I(0)  
These pins are part of the multiplexed ADDRESS and DATA  
bus. During the address phase of the bus cycle, address bits  
15 through 13 are presented on these pins and can be  
latched using ALE. Data information is transferred during the  
data phase of the bus cycle. Pins AD15:13/CAS2:0 drive the  
82C59 slave address information during interrupt  
acknowledge cycles.  
P(0)  
AD12:0  
(AD7:0)  
I/O  
O
S(L)  
Ð
H(Z)  
R(Z)  
I(0)  
These pins provide a multiplexed ADDRESS and DATA bus.  
During the address phase of the bus cycle, address bits 0  
through 12 (0 through 7 on the 80C188EC) are presented on  
the bus and can be latched using ALE. Data information is  
transferred during the data phase of the bus cycle.  
P(0)  
S2:0  
H(Z)  
R(1)  
I(1)  
Bus cycle Status are encoded on these pins to provide bus  
transaction information. S2:0 are encoded as follows:  
P(1)  
S2  
S1  
S0  
Bus Cycle Initiated  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Interrupt Acknowledge  
Read I/O  
Write I/O  
Processor HALT  
Instruction Queue Fetch  
Read Memory  
Write Memory  
Passive (No bus activity)  
ALE  
O
O
Ð
Ð
H(0)  
R(0)  
I(0)  
Address Latch Enable output is used to strobe address  
information into a transparent type latch during the address  
phase of the bus cycle.  
P(0)  
BHE  
(RFSH)  
H(Z)  
R(Z)  
I(1)  
Byte High Enable output to indicate that the bus cycle in  
progress is transferring data over the upper half of the data  
bus. BHE and A0 have the following logical encoding:  
P(1)  
Encoding (for 80C186EC/  
80L186EC only)  
A0  
BHE  
0
0
1
1
0
1
0
1
Word transfer  
Even Byte transfer  
Odd Byte transfer  
Refresh operation  
On the 80C188EC/80L188EC, RFSH is asserted low to  
indicate a refresh bus cycle.  
NOTE:  
Pin names in parentheses apply to the 80C188EC/80L188EC.  
11  
80C186EC/188EC, 80L186EC/188EC  
Table 2. Pin Descriptions (Continued)  
Output  
Pin  
Input  
Type  
Pin Name  
Pin Description  
Type  
States  
RD  
O
Ð
H(Z)  
R(Z)  
I(1)  
ReaD output signals that the accessed memory or I/O  
device should drive data information onto the data bus.  
P(1)  
WR  
O
Ð
H(Z)  
R(Z)  
I(1)  
WRite output signals that data available on the data bus are  
to be written into the accessed memory or I/O device.  
P(1)  
READY  
DEN  
I
A(L)  
S(L)  
Ð
READY input to signal the completion of a bus cycle. READY  
must be active to terminate any 80C186EC bus cycle, unless  
it is ignored by correctly programming the Chip-Select unit.  
(Note 1)  
O
Ð
H(Z)  
R(Z)  
I(1)  
Data ENable output to control the enable of bi-directional  
transceivers in a buffered system. DEN is active only when  
data is to be transferred on the bus.  
P(1)  
DT/R  
LOCK  
O
Ð
H(Z)  
R(Z)  
I(X)  
Data Transmit/Receive output controls the direction of a bi-  
directional buffer in a buffered system.  
P(X)  
I/O  
A(L)  
H(Z)  
R(Z)  
I(X)  
LOCK output indicates that the bus cycle in progress is not  
interruptable. The processor will not service other bus  
requests (such as HOLD) while LOCK is active. This pin is  
configured as a weakly held high input while RESIN is active  
and must not be driven low.  
P(X)  
HOLD  
HLDA  
I
A(L)  
Ð
Ð
HOLD request input to signal that an external bus master  
wishes to gain control of the local bus. The processor will  
relinquish control of the local bus between instruction  
boundaries that are not LOCKed.  
O
H(1)  
R(0)  
I(0)  
HoLD Acknowledge output to indicate that the processor  
has relinquished control of the local bus. When HLDA is  
asserted, the processor will (or has) floated its data bus and  
control signals allowing another bus master to drive the  
signals directly.  
P(0)  
NCS  
O
I
Ð
H(1)  
R(1)  
I(1)  
Numerics Coprocessor Select output is generated when  
acessing a numerics coprocessor. This signal does not exist  
on the 80C188EC/80L188EC.  
P(1)  
ERROR  
A(L)  
Ð
ERROR input that indicates the last numerics processor  
extension operation resulted in an exception condition. An  
interrupt TYPE 16 is generated if ERROR is sampled active  
at the beginning of a numerics operation. Systems not using  
an 80C187 must tie ERROR to V . This signal does not  
CC  
exist on the 80C188EC/80L188EC.  
NOTE:  
Pin names in parentheses apply to the 80C188EC/80L188EC.  
12  
80C186EC/188EC, 80L186EC/188EC  
Table 2. Pin Descriptions (Continued)  
Pin  
Input  
Type  
Output  
States  
Pin Name  
Pin Description  
Type  
PEREQ  
I
A(L)  
Ð
Processor Extension REQuest signals that a data  
transfer between an 80C187 Numerics Processor  
Extension and Memory is pending. Systems not using an  
80C187 must tie this pin to V . This signal does not exist  
SS  
on the 80C188EC/80L188EC.  
UCS  
LCS  
O
Ð
H(1)  
R(1)  
I(1)  
Upper Chip Select will go active whenever the address of  
a memory or I/O bus cycle is within the address range  
programmed by the user. After reset, UCS is configured to  
be active for memory accesses between 0FFC00H and  
0FFFFFH.  
P(1)  
O
O
Ð
Ð
H(1)  
R(1)  
I(1)  
Lower Chip Select will go active whenever the address of  
a memory or I/O bus cycle is within the address range  
programmed by the user. LCS is inactive after a reset.  
P(1)  
P1.0/GCS0  
P1.1/GCS1  
P1.2/GCS2  
P1.3/GCS3  
P1.4/GCS4  
P1.5/GCS5  
P1.6/GCS6  
P1.7/GCS7  
H(X)/H(1)  
R(1)  
These pins provide a multiplexed function. If enabled,  
each pin can provide a General purpose Chip Select  
output which will go active whenever the address of a  
memory or I/O bus cycle is within the address limitations  
programmed by the user. When not programmed as a  
Chip-Select, each pin may be used as a general purpose  
output port.  
I(X)/I(1)  
P(X)/P(1)  
T0OUT  
T1OUT  
O
Ð
H(Q)  
R(1)  
I(Q)  
Timer OUTput pins can be programmed to provide single  
clock or continuous waveform generation, depending on  
the timer mode selected.  
P(X)  
T0IN  
T1IN  
I
I
A(L)  
A(E)  
Ð
Timer INput is used either as clock or control signals,  
depending on the timer mode selected. This pin may be  
either level or edge sensitive depending on the  
programming mode.  
INT7:0  
INTA  
A(L)  
A(E)  
Ð
Maskable INTerrupt input will cause a vector to a specific  
Type interrupt routine. The INT6:0 pins can be used as  
cascade inputs from slave 8259A devices. The INT pins  
can be configured as level or edge sensitive.  
O
Ð
A(L)  
Ð
H(1)  
R(1)  
I(1)  
INTerrupt Acknowledge output is a handshaking signal  
used by external 82C59A Programmable Interrupt  
Controllers.  
P(1)  
P3.5  
P3.4  
I/O  
O
H(X)  
R(Z)  
I(X)  
Bidirectional, open-drain port pins.  
H(X)  
P3.3/DMAI1  
P3.2/DMAI0  
H(X)  
R(0)  
I(Q)  
DMA Interrupt output goes active to indicate that the  
channel has completed a transfer. DMAI1 and DMAI0 are  
multiplexed with output only port functions.  
P(X)  
NOTE:  
Pin names in parentheses apply to the 80C188EC/80L188EC.  
13  
80C186EC/188EC, 80L186EC/188EC  
Table 2. Pin Descriptions (Continued)  
Output  
Pin  
Input  
Type  
Pin Name  
Pin Description  
Type  
States  
P3.1/TXI1  
O
Ð
H(X)/H(Q)  
R(0)  
I(Q)  
Transmit Interrupt output goes active to indicate that  
serial channel 1 has completed a transfer. TXI1 is  
multiplexed with an output only Port function.  
P(X)  
P3.0/RXI1  
WDTOUT  
O
Ð
H(X)/H(Q)  
R(0)  
I(Q)  
Receive Interrupt output goes active to indicate that  
serial channel 1 has completed a reception. RXI1 is  
multiplexed with an output only port function.  
P(X)  
O
Ð
H(Q)  
R(1)  
I(Q)  
WatchDog Timer OUTput is driven low for four clock  
cycles when the watchdog timer reaches zero. WDTOUT  
may be ANDed with the power-on reset signal to reset the  
processor when the watchdog timer is not properly reset.  
P(X)  
P2.7/CTS1  
P2.3/CTS0  
I/O  
I/O  
A(L)  
H(X)  
R(Z)  
I(X)  
Clear-To-Send input is used to prevent the transmission  
of serial data on the TXD signal pin. CTS1 and CTS0 are  
multiplexed with an I/O Port function.  
P(X)  
P2.6/BCLK1  
P2.2/BCLK0  
A(L)/  
A(E)  
H(X)  
R(Z)  
I(X)  
Baud CLocK input can be used as an alternate clock  
source for each of the integrated serial channels. The  
BCLK inputs are multiplexed with I/O Port functions. The  
BCLK input frequency cannot exceed (/2 the operating  
frequency of the processor .  
P(X)  
P2.5/TXD1  
P2.1/TXD0  
I/O  
I/O  
A(L)  
A(L)  
H(Q)  
R(Z)  
Transmit Data output provides serial data information.  
The TXD outputs are multiplexed with I/O Port functions.  
During synchronous serial communications, TXD will  
function as a clock output.  
I(X)/I(Q)  
P(X)  
P2.4/RXD1  
P2.0/RXD0  
H(X)/H(Q)  
R(Z)  
Receive Data input accepts serial data information. The  
RXD pins are multiplexed with I/O Port functions. During  
synchronous serial communications, RXD is bi-directional  
and will become an output for transmission of data (TXD  
becomes the clock).  
I(X)/I(Q)  
P(X)  
DRQ3:0  
I
A(L)  
Ð
DMA ReQuest input pins are used to request a DMA  
transfer. The timing of the request is dependent on the  
programmed synchronization mode.  
NOTES:  
1. READY is A(E) for the rising edge of CLKOUT, S(E) for the falling edge of CLKOUT.  
2. Pin names in parentheses apply to the 80C188EC/80L188EC.  
14  
80C186EC/188EC, 80L186EC/188EC  
from the top side of the component (i.e. contacts  
facing down).  
Pinout  
Tables 3 and 4 list the pin names with package loca-  
tion for the 100-pin Plastic Quad Flat Pack (PQFP)  
component. Figure 4 depicts the PQFP package as  
viewed from the top side of the component (i.e. con-  
tacts facing down).  
Tables 7 and 8 list the pin names with package loca-  
tion for the 100-pin Shrink Quad Flat Pack (SQFP)  
component. Figure 6 depicts the SQFP package as  
viewed from the top side of the component (i.e., con-  
tacts facing down).  
Tables 5 and 6 list the pin names with package loca-  
tion for the 100-pin EIAJ Quad Flat Pack (QFP) com-  
ponent. Figure 5 depicts the QFP package as viewed  
Table 3. PQFP Pin Functions with Location  
Bus Control Processor Control  
Name Name Pin  
ALE  
AD Bus  
Name  
I/O  
Name  
UCS  
LCS  
Pin  
Pin  
Pin  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
73  
72  
71  
70  
66  
65  
64  
63  
60  
59  
58  
57  
56  
55  
52  
51  
78  
79  
80  
50  
49  
85  
47  
46  
48  
44  
45  
34  
RESIN  
8
7
88  
89  
BHE (RFSH)  
S0  
S1  
RESOUT  
CLKIN  
10  
11  
6
OSCOUT  
CLKOUT  
TEST/BUSY  
(TEST)  
P1.7/GCS7  
P1.6/GCS6  
P1.5/GCS5  
P1.4/GCS4  
P1.3/GCS3  
P1.2/GCS2  
P1.1/GCS1  
P1.0/GCS0  
90  
91  
92  
93  
94  
95  
96  
97  
S2  
RD  
83  
WR  
READY  
DEN  
PEREQ (V  
SS  
NCS (N.C.)  
)
81  
35  
84  
9
AD8 (A8)  
AD9 (A9)  
DT/R  
LOCK  
HOLD  
HLDA  
INTA  
ERROR (V  
PDTMR  
NMI  
)
CC  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13/CAS0  
(A13/CAS0)  
AD14/CAS1  
(A14/CAS1)  
AD15/CAS2  
(A15/CAS2)  
A16/S3  
82  
30  
31  
32  
33  
40  
41  
42  
43  
INT0  
INT1  
P2.7/CTS1  
P2.6/BCLK1  
P2.5/TXD1  
P2.4/RXD1  
P2.3/CTS0  
P2.2/BCLK0  
P2.1/TXD0  
P2.0/RXD0  
23  
22  
21  
20  
19  
18  
17  
16  
INT2  
INT3  
54  
53  
Power and Ground  
INT4  
INT5  
Name  
Pin  
INT6  
INT7  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
13  
14  
38  
62  
67  
69  
86  
12  
15  
37  
39  
61  
68  
87  
77  
76  
75  
74  
A17/S4  
A18/S5  
A19/S6/ONCE  
P3.5  
P3.4  
29  
28  
27  
26  
25  
24  
P3.3/DMAI1  
P3.2/DMAI0  
P3.1/TXI1  
P3.0/RXI1  
T0IN  
3
2
5
4
T0OUT  
T1IN  
T1OUT  
DRQ0  
DRQ1  
DRQ2  
DRQ3  
98  
99  
100  
1
WDTOUT  
36  
15  
80C186EC/188EC, 80L186EC/188EC  
Table 4. PQFP Pin Locations with Pin Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
1
2
DRQ3  
T0OUT  
T0IN  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
DMAI0/P3.2  
DMAI1/P3.3  
P3.4  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
BHE (RFSH)  
ALE  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
A17/S4  
A16/S3  
S0  
3
AD15 (A15)  
AD14 (A14)  
AD13 (A13)  
AD12 (A12)  
AD11 (A11)  
AD10 (A10)  
AD9 (A9)  
4
T1OUT  
T1IN  
P3.5  
INT0  
S1  
S2  
5
6
CLKOUT  
RESOUT  
RESIN  
PDTMR  
CLKIN  
INT1  
INT2  
PEREQ (V  
NMI  
TEST  
)
SS  
7
8
INT3  
INTA  
9
ERROR (V )  
CC  
READY  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
NCS (N.C.)  
WDTOUT  
AD8 (A8)  
V
OSCOUT  
V
V
SS  
CC  
V
V
V
SS  
CC  
CC  
SS  
CC  
SS  
V
V
V
AD7  
AD6  
AD5  
AD4  
UCS  
LCS  
CC  
V
SS  
V
INT4  
INT5  
INT6  
INT7  
HOLD  
HLDA  
DT/R  
DEN  
LOCK  
WR  
P1.7/GCS7  
P1.6/GCS6  
P1.5/GCS5  
P1.4/GCS4  
P1.3/GCS3  
P1.2/GCS2  
P1.1/GCS1  
P1.0/GCS0  
DRQ0  
SS  
P2.0/RXD0  
P2.1/TXD0  
P2.2/BCLK0  
P2.3/CTS0  
P2.4/RXD1  
P2.5/TXD1  
P2.6/BCLK1  
P2.7/CTS1  
P3.0/RXI1  
P3.1/TXI1  
V
CC  
V
SS  
V
CC  
AD3  
AD2  
AD1  
AD0  
A19/S6/ONCE  
A18/S5  
DRQ1  
DRQ2  
RD  
16  
80C186EC/188EC, 80L186EC/188EC  
272434–3  
NOTE:  
This is the FPO number location (indicated by X’s).  
Figure 4. 100-Pin Plastic Quad Flat Pack Package (PQFP)  
17  
80C186EC/188EC, 80L186EC/188EC  
Table 5. QFP Pin Names with Package Location  
AD Bus  
Name  
Bus Control  
Name  
Processor Control  
Name Pin  
RESIN  
I/O  
Name  
UCS  
LCS  
Pin  
Pin  
Pin  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
76  
75  
74  
73  
69  
68  
67  
66  
63  
62  
61  
60  
59  
58  
ALE  
55  
54  
81  
82  
83  
53  
52  
88  
50  
49  
51  
47  
48  
37  
11  
10  
13  
14  
9
91  
92  
BHE (RFSH)  
S0  
S1  
RESOUT  
CLKIN  
OSCOUT  
CLKOUT  
TEST/BUSY  
(TEST)  
P1.7/GCS7  
P1.6/GCS6  
P1.5/GCS5  
P1.4/GCS4  
P1.3/GCS3  
P1.2/GCS2  
P1.1/GCS1  
P1.0/GCS0  
93  
94  
S2  
RD  
86  
95  
96  
WR  
READY  
DEN  
PEREQ (V  
SS  
NCS (N.C.)  
)
84  
38  
87  
12  
85  
33  
34  
35  
36  
43  
44  
45  
46  
97  
98  
AD8 (A8)  
AD9 (A9)  
DT/R  
LOCK  
HOLD  
HLDA  
INTA  
ERROR (V  
PDTMR  
NMI  
)
99  
100  
CC  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13/CAS0  
(A13/CAS0)  
AD14/CAS1  
(A14/CAS1)  
AD15/CAS2  
(A15/CAS2)  
A16/S3  
INT0  
INT1  
P2.7/CTS1  
P2.6/BCLK1  
P2.5/TXD1  
P2.4/RXD1  
P2.3/CTS0  
P2.2/BCLK0  
P2.1/TXD0  
P2.0/RXD0  
26  
25  
24  
23  
22  
21  
20  
19  
INT2  
INT3  
57  
56  
Power and Ground  
INT4  
INT5  
Name  
Pin  
INT6  
INT7  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
16  
17  
41  
65  
70  
72  
89  
15  
18  
40  
42  
64  
71  
90  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
80  
79  
78  
77  
A17/S4  
A18/S5  
A19/S6/ONCE  
P3.5  
P3.4  
32  
31  
30  
29  
28  
27  
P3.3/DMAI1  
P3.2/DMAI0  
P3.1/TXI1  
P3.0/RXI1  
T0IN  
6
5
8
7
T0OUT  
T1IN  
T1OUT  
DRQ0  
DRQ1  
DRQ2  
DRQ3  
1
2
3
4
WDTOUT  
39  
18  
80C186EC/188EC, 80L186EC/188EC  
Table 6. QFP Package Location with Pin Names  
Pin  
Name  
Pin  
Name  
Pin  
Name  
Pin  
Name  
1
2
DRQ0  
DRQ1  
DRQ2  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
P2.7/CTS1  
P3.0/RXI1  
P3.1/TXI1  
DMAI0/P3.2  
DMAI1/P3.3  
P3.4  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
LOCK  
WR  
RD  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AD0  
A19/S6/ONCE  
A18/S5  
A17/S4  
A16/S3  
S0  
3
4
DRQ3  
T0OUT  
T0IN  
BHE (RFSH)  
ALE  
5
6
AD15 (A15)  
AD14 (A14)  
AD13 (A13)  
AD12 (A12)  
AD11 (A11)  
AD10 (A10)  
AD9 (A9)  
AD8 (A8)  
7
T1OUT  
T1IN  
P3.5  
INT0  
S1  
S2  
8
9
CLKOUT  
RESOUT  
RESIN  
PDTMR  
CLKIN  
OSCOUT  
INT1  
INT2  
PEREQ (V  
NMI  
TEST  
)
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
INT3  
INTA  
ERROR (V )  
CC  
READY  
NCS (N.C.)  
WDTOUT  
V
V
CC  
V
SS  
UCS  
LCS  
SS  
V
V
V
SS  
CC  
CC  
SS  
CC  
V
V
V
AD7  
AD6  
AD5  
AD4  
CC  
V
SS  
V
INT4  
INT5  
INT6  
INT7  
HOLD  
HLDA  
DT/R  
DEN  
P1.7/GCS7  
P1.6/GCS6  
P1.5/GCS5  
P1.4/GCS4  
P1.3/GCS3  
P1.2/GCS2  
P1.1/GCS1  
P1.0/GCS0  
SS  
P2.0/RXD0  
P2.1/TXD0  
P2.2/BCLK0  
P2.3/CTS0  
P2.4/RXD1  
P2.5/TXD1  
P2.6/BCLK1  
V
CC  
V
SS  
V
CC  
AD3  
AD2  
AD1  
19  
80C186EC/188EC, 80L186EC/188EC  
272434–4  
NOTE:  
This is the FPO number location (indicated by X’s).  
Figure 5. Quad Flat Pack (EIAJ) Pinout Diagram  
20  
80C186EC/188EC, 80L186EC/188EC  
Table 7. SQFP Pin Functions with Location  
Bus Control Processor Control  
ALE  
AD Bus  
I/O  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
73  
72  
71  
70  
66  
65  
64  
63  
60  
59  
58  
57  
56  
55  
54  
53  
77  
76  
75  
74  
52  
51  
78  
79  
80  
50  
49  
85  
46  
47  
48  
44  
45  
RESIN  
RESOUT  
CLKIN  
OSCOUT  
CLKOUT  
TEST/BUSY  
NMI  
8
UCS  
LCS  
88  
89  
BHE (RFSH)  
S0  
S1  
7
10  
11  
6
P1.0/GCS0  
P1.1/GCS1  
P1.2/GCS2  
P1.3/GCS3  
P1.4/GCS4  
P1.5/GCS5  
P1.6/GCS6  
P1.7/GCS7  
97  
96  
95  
94  
93  
92  
91  
90  
S2  
RD  
83  
82  
30  
31  
32  
33  
40  
41  
42  
43  
34  
81  
84  
35  
9
WR  
READY  
DT/R  
DEN  
INT0  
INT1  
AD8 (A8)  
AD9 (A9)  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13 (A13)  
AD14 (A14)  
AD15 (A15)  
A16  
INT2  
INT3  
LOCK  
HOLD  
HLDA  
INT4  
INT5  
P2.0/RXD0  
P2.1/TXD0  
P2.2/BCLK0  
P2.3/CTS0  
P2.4/RXD1  
P2.5/TXD1  
P2.6/BCLK1  
P2.7/CTS1  
16  
17  
18  
19  
20  
21  
22  
23  
INT6  
INT7  
INTA  
PEREQ (V  
ERROR (V  
)
SS  
A17  
A18  
)
CC  
NCS (N.C.)  
PDTMR  
A19/ONCE  
P3.0/RXI1  
P3.1/TXI1  
P3.2/DMAI0  
P3.3/DMAI1  
P3.4  
24  
25  
26  
27  
28  
29  
Power and Ground  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
13  
14  
38  
62  
67  
69  
86  
12  
15  
37  
39  
61  
68  
87  
P3.5  
DRQ0  
DRQ1  
DRQ2  
DRQ3  
98  
99  
100  
1
T0IN  
T0OUT  
T1IN  
3
2
5
T1OUT  
WDTOUT  
4
36  
21  
80C186EC/188EC, 80L186EC/188EC  
Table 8. SQFP Pin Locations with Pin Names  
Pin  
Name  
Pin  
Name  
DRQ3  
Pin  
Name  
Pin  
Name  
76  
77  
78  
79  
80  
81  
82  
83  
A17  
A16  
S0  
1
2
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
P3.2/DMAI0  
P3.3/DMAI1  
P3.4  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
BHE (RFSH)  
ALE  
T0OUT  
T0IN  
3
AD15 (A15)  
AD14 (A14)  
AD13 (A13)  
AD12 (A12)  
AD11 (A11)  
AD10 (A10)  
AD9 (A9)  
S1  
S2  
4
T1OUT  
T1IN  
P3.5  
5
INT0  
PEREQ (V  
MNI  
)
SS  
6
CLKOUT  
RESOUT  
RESIN  
PDTMR  
CLKIN  
INT1  
7
INT2  
TEST/BUSY  
(TEST)  
8
INT3  
9
INTA  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
ERROR (V  
READY  
)
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
NSC (N.C.)  
WDTOUT  
AD8 (A8)  
OSCOUT  
V
V
SS  
CC  
V
V
CC  
V
V
V
V
V
V
V
SS  
CC  
CC  
SS  
SS  
CC  
SS  
SS  
AD7 (A7)  
AD6 (A6)  
AD5  
UCS  
LCS  
INT4  
INT5  
INT6  
INT7  
HOLD  
HLDA  
DT/R  
DEN  
LOCK  
WR  
P1.7/GCS7  
P1.6/GS6  
P1.5/GCS5  
P1.4/GCS4  
P1.3/GCS3  
P1.2/GCS2  
P1.1/GCS1  
P1.0/GCS0  
DRQ0  
P2.0/RXD0  
P2.1/TXD0  
P2.2/BCLK0  
P2.3/CTS0  
P2.4/RXD1  
P2.5/TXD1  
P2.6/BCLK1  
P2.7/CTS1  
P3.0/RXI1  
P3.1/TXI1  
AD4  
V
V
V
CC  
SS  
CC  
AD3  
AD2  
AD1  
AD0  
A19/ONCE  
AD18  
DRQ1  
DRQ2  
RD  
22  
80C186EC/188EC, 80L186EC/188EC  
272434–5  
NOTE:  
This is the FPO number location (indicated by X’s)  
Figure 6. 100-Pin Shrink Quad Flat Pack Package (SQFP)  
23  
80C186EC/188EC, 80L186EC/188EC  
T
(the ambient temperature) can be calculated  
A
Package Thermal Specifications  
from i (thermal resistance from the case to ambi-  
CA  
ent) with the following equation:  
The 80C186EC/80L186EC is specified for operation  
when T (the case temperature) is within the range  
C
e
b
P * i  
T
T
C
b
a
A
CA  
of 40 C to 100 C. T may be measured in any  
C
§
§
environment to determine whether the processor is  
within the specified operating range. The case tem-  
perature must be measured at the center of the top  
surface.  
Typical values for i  
in Table 9. P (the maximum power consumptionÐ  
specified in Watts) is calculated by using the maxi-  
at various airflows are given  
CA  
mum I  
and V  
of 5.5V.  
CC  
CC  
Table 9. Thermal Resistance (i ) at Various Airflows (in C/Watt)  
§
CA  
Airflow in ft/min (m/sec)  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.07)  
i
i
i
(PQFP)  
(QFP)  
27.0  
64.5  
62.0  
22.0  
55.5  
TBD  
18.0  
51.0  
TBD  
15.0  
TBD  
TBD  
14.0  
TBD  
TBD  
13.5  
TBD  
TBD  
CA  
CA  
CA  
(SQFP)  
24  
80C186EC/188EC, 80L186EC/188EC  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
NOTICE: This data sheet contains preliminary infor-  
mation on new products in production. The specifica-  
tions are subject to change without notice. Verify with  
your local Intel Sales office that you have the latest  
data sheet before finalizing a design.  
b
a
Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C  
§
§
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
b
a
Case Temperature Under BiasÀÀÀ 65 C to 100 C  
§
§
Supply Voltage  
b
a
with Respect to V ÀÀÀÀÀÀÀÀÀÀÀ 0.5V to 6.5V  
SS  
Voltage on Other Pins  
with Respect to V  
b
ÀÀÀÀÀÀ 0.5V to V  
a
0.5V  
SS  
CC  
Low inductance capacitors and interconnects are  
recommended for best high frequency electrical per-  
formance. Inductance is reduced by placing the de-  
coupling capacitors as close as possible to the proc-  
Recommended Connections  
Power and ground connections must be made to  
multiple V and V pins. Every 80C186EC-based  
essor V  
and V package pins.  
SS  
CC SS  
circuit board should include separate power (V  
CC  
)
CC  
pin must be  
and ground (V ) planes. Every V  
SS  
Always connect any unused input to an appropriate  
signal level. In particular, unused interrupt inputs  
(NMI, INT0:7) should be connected to V through a  
CC  
connected to the power plane, and every V  
pin  
SS  
must be connected to the ground plane. Liberal de-  
coupling capacitance should be placed near the  
processor. The processor can cause transient pow-  
er surges when its output buffers transition, particu-  
larly when connected to large capacitive loads.  
SS  
pull-down resistor. Leave any unused output pin un-  
connected.  
25  
80C186EC/188EC, 80L186EC/188EC  
DC SPECIFICATIONS (80C186EC/80C188EC)  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
V
Notes  
V
V
V
V
V
V
4.5  
5.5  
CC  
IL  
b
Input Low Voltage  
0.5  
0.7 V  
0.3 V  
V
CC  
a
V
CC  
Input High Voltage  
0.5  
V
IH  
CC  
e
Output Low Voltage  
Output High Voltage  
Input Hysteresis on RESIN  
0.45  
V
I
I
3 mA (Min)  
OL  
OH  
HYR  
OL  
b
e b  
2 mA (Min)  
V
0.5  
V
CC  
OH  
0.5  
V
s
s
V
g
I
Input Leakage Current for Pins:  
AD15:0 (AD7:0, A15:8), READY,  
HOLD, RESIN,  
15  
mA  
0
V
LI  
IN  
CC  
CLKIN, TEST/BUSY, NMI, INT7:0,  
T0IN, T1IN, P2.7P2.0, P3.5P3.0,  
DRQ3:0, PEREQ, ERROR  
b
b
e
0.7 V  
IN  
(Note 1)  
I
Input Leakage for Pins with Pullups  
Active During Reset:  
A19:16, LOCK  
0.275  
5
mA  
V
LIU  
CC  
s
s
V
g
I
I
Output Leakage for Floated Output  
Pins  
15  
mA  
0.45  
(Note 2)  
V
LO  
CC  
OUT  
CC  
Supply Current Cold (in RESET)  
80C186EC25  
80C186EC20  
125  
100  
70  
mA  
mA  
mA  
(Notes 3, 7)  
(Note 3)  
(Note 3)  
80C186EC13  
I
I
Supply Current in Idle Mode  
80C186EC25  
80C186EC20  
ID  
92  
76  
50  
mA  
mA  
mA  
(Notes 4, 7)  
(Note 4)  
(Note 4)  
80C186EC13  
Supply Current in Powerdown Mode  
80C186EC25  
80C186EC20  
PD  
100  
100  
100  
mA  
mA  
mA  
(Notes 5, 7)  
(Note 5)  
(Note 5)  
80C186EC13  
e
e
C
C
Input Pin Capacitance  
Output Pin Capacitance  
0
0
15  
15  
pF  
pF  
T
T
1 MHz  
1 MHz (Note 6)  
IN  
F
F
OUT  
NOTES:  
1. These pins have an internal pull-up device that is active while RESIN is low and ONCE Mode is not active. Sourcing more  
current than specified (on any of these pins) may invoke a factory test mode.  
2. Tested by outputs being floated by invoking ONCE Mode or by asserting HOLD.  
3. Measured with the device in RESET and at worst case frequency, V , and temperature with ALL outputs loaded as  
CC  
or GND.  
specified in AC Test Conditions, and all floating outputs driven to V  
4. Measured with the device in HALT (IDLE Mode active) and at worst case frequency, V , and temperature with ALL  
CC  
CC  
or GND.  
5. Measured with the device in HALT (Powerdown Mode active) and at worst case frequency, V , and temperature with  
outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
CC  
CC  
or GND.  
ALL outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
6. Output Capacitance is the capacitive load of a floating output pin.  
CC  
a
7. Operating conditions for 25 MHz is 0 C to 70 C, V  
e
g
5.0 10%.  
§
§
CC  
26  
80C186EC/188EC, 80L186EC/188EC  
DC SPECIFICATIONS (80L186EC13/80L188EC13)  
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
V
Notes  
V
V
V
V
V
V
2.7  
5.5  
CC  
IL  
b
Input Low Voltage  
0.5  
0.7 V  
0.3 V  
V
CC  
a
V
CC  
Input High Voltage  
0.5  
V
IH  
CC  
e
Output Low Voltage  
Output High Voltage  
Input Hysteresis on RESIN  
0.45  
V
I
I
3 mA (Min)  
OL  
OH  
HYR  
OL  
b
e b  
2 mA (Min)  
V
0.5  
V
CC  
OH  
0.5  
V
s
s
V
g
I
Input Leakage Current for Pins:  
AD15:0 (AD7:0, A15:8), READY,  
HOLD, RESIN, CLKIN,  
15  
mA  
0
V
LI  
IN  
CC  
TEST/BUSY, NMI, INT7:0,  
T0IN, T1IN, P2.7P2.0, P3.5P3.0,  
DRQ3:0, PEREQ, ERROR  
b
b
e
0.7 V  
IN  
(Note 1)  
I
Input Leakage for Pins with Pullups  
Active During Reset:  
A19:16, LOCK  
0.275  
5
mA  
V
LIU  
CC  
s
s
V
g
I
I
I
I
Output Leakage for Floated Output  
Pins  
15  
mA  
0.45  
(Note 2)  
V
LO  
CC  
ID  
OUT  
CC  
Supply Current Cold (in RESET)  
80L186EC-13  
(Note 3)  
(Note 4)  
(Note 5)  
36  
mA  
mA  
Supply Current in Idle Mode  
80L186EC-13  
24  
Supply Current in Powerdown Mode  
80L186EC-13  
PD  
30  
15  
15  
mA  
pF  
pF  
e
e
C
C
Input Pin Capacitance  
Output Pin Capacitance  
0
0
T
T
1 MHz  
1 MHz (Note 6)  
IN  
F
F
OUT  
NOTES:  
1. These pins have an internal pull-up device that is active while RESIN is low and ONCE Mode is not active. Sourcing more  
current than specified (on any of these pins) may invoke a factory test mode.  
2. Tested by outputs being floated by invoking ONCE Mode or by asserting HOLD.  
3. Measured with the device in RESET and at worst case frequency, V , and temperature with ALL outputs loaded as  
CC  
or GND.  
specified in AC Test Conditions, and all floating outputs driven to V  
4. Measured with the device in HALT (IDLE Mode active) and at worst case frequency, V , and temperature with ALL  
CC  
CC  
or GND.  
5. Measured with the device in HALT (Powerdown Mode active) and at worst case frequency, V , and temperature with  
outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
CC  
CC  
or GND.  
ALL outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
6. Output Capacitance is the capacitive load of a floating output pin.  
CC  
27  
80C186EC/188EC, 80L186EC/188EC  
DC SPECIFICATIONS (80L186EC16/80L188EC16) (Operating Temperature 0 C to 70 C)  
§
§
Symbol  
Parameter  
Supply Voltage  
Min  
Max  
Units  
V
Notes  
V
V
V
V
V
V
3.0  
5.5  
CC  
IL  
b
Input Low Voltage  
0.5  
0.7 V  
0.3 V  
V
CC  
a
V
CC  
Input High Voltage  
0.5  
V
IH  
CC  
e
Output Low Voltage  
Output High Voltage  
Input Hysteresis on RESIN  
0.45  
V
I
I
3 mA (Min)  
e b  
2 mA (Min)  
OL  
OH  
HYR  
OL  
b
V
0.5  
V
CC  
OH  
0.5  
V
s
s
V
g
I
Input Leakage Current for Pins:  
AD15:0 (AD7:0, A15:8), READY,  
HOLD, RESIN, CLKIN,  
15  
mA  
0
V
LI  
IN  
CC  
TEST/BUSY, NMI, INT7:0,  
T0IN, T1IN, P2.7P2.0, P3.5P3.0,  
DRQ3:0, PEREQ, ERROR  
b
b
e
0.7 V  
IN  
(Note 1)  
I
Input Leakage for Pins with Pullups  
Active During Reset:  
A19:16, LOCK  
0.275  
5
mA  
V
LIU  
CC  
s
s
V
g
I
I
I
I
Output Leakage for Floated Output  
Pins  
15  
mA  
0.45  
(Note 2)  
V
LO  
CC  
ID  
OUT  
CC  
Supply Current Cold (in RESET)  
80L186EC-16  
(Note 3)  
(Note 4)  
(Note 5)  
45  
mA  
mA  
Supply Current in Idle Mode  
80L186EC-16  
35  
Supply Current in Powerdown Mode  
80L186EC-16  
PD  
50  
15  
15  
mA  
pF  
pF  
e
e
C
C
Input Pin Capacitance  
Output Pin Capacitance  
0
0
T
T
1 MHz  
1 MHz (Note 6)  
IN  
F
F
OUT  
NOTES:  
1. These pins have an internal pull-up device that is active while RESIN is low and ONCE Mode is not active. Sourcing more  
current than specified (on any of these pins) may invoke a factory test mode.  
2. Tested by outputs being floated by invoking ONCE Mode or by asserting HOLD.  
3. Measured with the device in RESET and at worst case frequency, V , and temperature with ALL outputs loaded as  
CC  
or GND.  
specified in AC Test Conditions, and all floating outputs driven to V  
4. Measured with the device in HALT (IDLE Mode active) and at worst case frequency, V , and temperature with ALL  
CC  
CC  
or GND.  
5. Measured with the device in HALT (Powerdown Mode active) and at worst case frequency, V , and temperature with  
outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
CC  
CC  
or GND.  
ALL outputs loaded as specified in AC Test Conditions, and all floating outputs driven to V  
6. Output Capacitance is the capacitive load of a floating output pin.  
CC  
28  
80C186EC/188EC, 80L186EC/188EC  
PDTMR Pin Delay Calculation  
I
CC  
versus Frequency and Voltage  
The I consumed by the processor is composed of  
CC  
two components:  
The PDTMR pin provides a delay between the as-  
sertion of NMI and the enabling of the internal  
clocks when exiting Powerdown Mode. A delay is  
required only when using the on chip oscillator to  
allow the crystal or resonator circuit to stabilize.  
1. I ÐThe quiescent current that represents inter-  
PD  
nal device leakage. Measured with all inputs at  
either V  
or ground and no clock applied.  
CC  
2. I  
ÐThe switching current used to charge and  
CCS  
NOTE:  
discharge internal parasitic capacitance when  
changing logic levels. I is related to both the  
frequency of operation and the device supply  
The PDTMR pin function does not apply when  
RESIN is asserted (i.e. a device reset while in Pow-  
erdown is similar to a cold reset and RESIN must  
remain active until after the oscillator has stabilized.  
CCS  
voltage (V ). I  
is given by the formula:  
CC CCS  
2
e
e
V
Power  
.
V * I  
* C  
* f  
DEV  
To calculate the value of capacitor to use to provide  
a desired delay, use the equation:  
e
. . I  
V * C  
* f  
CCS  
DEV  
c
e
C
Where:  
440  
t
(5V, 25 C)  
§
PD  
e
V
C
f
Supply Voltage (V  
)
CC  
Where:  
e
Device Capacitance  
DEV  
e
e
Operating Frequency  
t
desired delay in seconds  
e
C
capacitive load on PDTMR in microfarads  
PD  
Measuring C  
would be difficult. Instead, C  
on a device like the 80C186EC  
is calculated using  
values measured at  
PD  
Example. For a delay of 300 ms, a capacitor value of  
PD  
b
e
0.132 mF is required.  
6
e
c
c
the above formula with I  
CC  
known V and frequency. Using the C value, the  
C
440 (300 10  
PD  
Round up to a standard (available) capacitor value.  
CC PD  
user can calculate I at any voltage and frequency  
CC  
within the specified operating range.  
NOTE:  
The above equation applies to delay time longer  
than 10 ms and will compute the TYPICAL capaci-  
tance needed to achieve the desired delay. A delay  
Example. Calculate typical I at 14 MHz, 5.2V V  
CC  
.
CC  
e
e
e
a
I
I
I
a
b
variance of  
temperature, voltage, and device process ex-  
tremes. In general, higher V and/or lower tem-  
50% to  
25% can occur due to  
CC  
PD  
0.1 mA  
56.2 mA  
CCS  
a
5.2V * 0.77 * 14 MHz  
CC  
peratures will decrease delay time, while lower V  
CC  
and/or higher temperature will increase delay time.  
Parameter  
CPD  
CPD (Idle Mode)  
Typical  
0.77  
Max  
1.37  
0.96  
Units  
Notes  
1, 2  
mA/V*MHz  
mA/V*MHz  
0.55  
1, 2  
NOTES:  
1. Maximum C is measured at 40 C with all outputs loaded as specified in the AC test conditions and the device in reset  
b
§
PD  
(or Idle Mode). Due to tester limitations, CLKOUT and OSCOUT also have 50 pF loads that increase I  
by V*C*F.  
CC  
2. Typical C is calculated at 25 C assuming no loads on CLKOUT or OSCOUT and the device in reset (or Idle Mode).  
§
PD  
29  
80C186EC/188EC, 80L186EC/188EC  
AC SPECIFICATIONS  
AC CharacteristicsÐ80C186EC25  
25 MHz  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
INPUT CLOCK  
T
T
T
T
T
T
CLKIN Frequency  
CLKIN Period  
0
20  
8
50  
%
%
%
10  
10  
MHz  
ns  
1
F
1
C
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
ns  
ns  
1, 2  
1, 2  
1, 3  
1, 3  
CH  
CL  
CR  
CF  
8
1
ns  
ns  
1
OUTPUT CLOCK  
T
T
T
T
T
T
CLKIN to CLKOUT Delay  
CLKOUT Period  
0
17  
ns  
ns  
ns  
ns  
ns  
ns  
1, 4  
1
CD  
2*T  
C
b
b
a
a
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
(T/2)  
(T/2)  
5
5
(T/2)  
(T/2)  
5
5
1
PH  
PL  
PR  
PF  
1
1
6
1, 5  
1, 5  
1
6
OUTPUT DELAYS  
T
ALE, S2:0, DEN, DT/R,  
BHE (RFSH), LOCK, A19:16  
3
17  
ns  
1, 4, 6, 7  
CHOV1  
T
T
GCS0:7, LCS, UCS, NCS, RD, WR  
3
3
20  
17  
ns  
ns  
1, 4, 6, 8  
1, 4, 6  
CHOV2  
BHE (RFSH), DEN, LOCK, RESOUT,  
HLDA, T0OUT, T1OUT, A19:16  
CLOV1  
T
T
T
RD, WR, GCS7:0, LCS, UCS, AD15:0  
(AD7:0, A15:8), NCS, INTA1:0, S2:0  
3
0
0
20  
20  
20  
ns  
ns  
ns  
1, 4, 6  
CLOV2  
CHOF  
CLOF  
RD, WR, BHE (RFSH), DT/R,  
LOCK, S2:0, A19:16  
1
1
DEN, AD15:0 (AD7:0, A15:8)  
30  
80C186EC/188EC, 80L186EC/188EC  
AC SPECIFICATIONS  
AC CharacteristicsÐ80C186EC25 (Continued)  
25 MHz  
Symbol  
Parameter  
Units  
Notes  
Min  
Max  
SYNCHRONOUS INPUTS  
T
TEST, NMI, INT4:0, BCLK1:0, T1:0IN, READY, CTS1:0,  
P2.6, P2.7  
10  
ns  
1, 9  
CHIS  
T
T
T
T
T
TEST, NMI, INT4:0, BCLK1:0, T1:0IN, READY, CTS1:0  
AD15:0 (AD7:0), READY  
3
10  
3
ns  
ns  
ns  
ns  
ns  
1, 9  
1, 10  
1, 10  
1, 9  
CHIH  
CLIS  
CLIH  
CLIS  
CLIH  
READY, AD15:0 (AD7:0)  
HOLD, PEREQ, ERROR  
10  
3
HOLD, PEREQ, ERROR  
1, 9  
NOTES:  
1. See AC Timing Waveforms, for waveforms and definition.  
2. Measure at V for high time, V for low time.  
IH IL  
3. Only required to guarantee I . Maximum limits are bounded by T , T  
C
and T  
.
CL  
CC  
CH  
4. Specified for a 50 pF load, see Figure 13 for capacitive derating information.  
5. Specified for a 50 pF load, see Figure 14 for rise and fall times outside 50 pF.  
6. See Figure 14 for rise and fall times.  
7. T  
8. T  
applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
applies to RD and WR only after a HOLD release.  
CHOV1  
CHOV2  
9. Setup and Hold are required to guarantee recognition.  
10. Setup and Hold are required for proper operation.  
31  
80C186EC/188EC, 80L186EC/188EC  
AC SPECIFICATIONS  
AC CharacteristicsÐ80C186EC-20/80C186EC-13  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit Notes  
INPUT CLOCK  
20 MHz  
13 MHz  
TF  
TC  
TCH  
TCL  
TCR  
TCF  
CLKIN Frequency  
CLKIN Period  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
0
25  
10  
10  
1
40  
%
%
%
10  
10  
0
38.5  
12  
12  
1
26  
%
%
%
10  
10  
MHz  
ns  
ns  
ns  
ns  
1
1
1, 2  
1, 2  
1, 3  
1, 3  
1
1
ns  
OUTPUT CLOCK  
T
T
T
T
T
T
CLKIN to CLKOUT Delay  
CLKOUT Period  
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
0
17  
0
23  
ns  
ns  
ns  
ns  
ns  
ns  
1, 4  
1
1
1
1, 5  
1, 5  
CD  
2 * TC  
2 * TC  
b
a
a
b
a
a
(T/2) 5 (T/2)  
b
(T/2) 5 (T/2)  
5 (T/2) 5 (T/2)  
b
5 (T/2) 5 (T/2)  
5
5
PH  
PL  
PR  
PF  
1
1
6
6
1
1
6
6
OUTPUT DELAYS  
T
T
T
T
T
T
ALE, S2:0, DEN, DT/R,  
BHE (RFSH), LOCK, A19:16  
3
3
3
3
0
0
20  
23  
20  
23  
25  
25  
3
3
3
3
0
0
25  
30  
25  
30  
30  
30  
ns 1, 4, 6, 7  
ns 1, 4, 6, 8  
ns 1, 4, 6  
ns 1, 4, 6  
CHOV1  
CHOV2  
CLOV1  
CLOV2  
CHOF  
GCS7:0, LCS, UCS,  
RD, WR, NCS, WDTOUT  
BHE (RFSH), DEN, LOCK, RESOUT,  
HLDA, T0OUT, T1OUT  
RD, WR, GSC7:0, LCS, UCS, AD15:0  
(AD7:0, A15:8), NCS, INTA, S2:0, A19:16  
RD, WR, BHE (RFSH), DT/R, LOCK,  
S2:0, A19:16  
ns  
ns  
1
1
DEN, AD15:0 (AD7:0, A15:8)  
CLOF  
INPUT REQUIREMENTS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
10  
3
10  
3
ns  
ns  
1, 9  
1, 9  
CHIS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
CHIH  
T
T
T
T
AD15:0 (AD7:0), READY  
10  
3
10  
3
ns  
ns  
ns  
ns  
1, 10  
1, 10  
1, 9  
CLIS  
CLIH  
CLIS  
CLIH  
AD15:0 (AD7:0), READY  
HOLD, RESIN, PEREQ, ERROR, DRQ3:0  
HOLD, RESIN, REREQ, ERROR, DRQ3:0  
10  
3
10  
3
1, 9  
NOTES:  
1. See AC Timing Waveforms, for waveforms and definition.  
2. Measure at V for high time, V for low time.  
IH IL  
3. Only required to guarantee I . Maximum limits are bounded by T , T  
C
and T  
.
CL  
CC  
CH  
4. Specified for a 50 pF load, see Figure 14 for capacitive derating information.  
5. Specified for a 50 pF load, see Figure 15 for rise and fall times outside 50 pF.  
6. See Figure 15 for rise and fall times.  
7. T  
8. T  
applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
applies to RD and WR only after a HOLD release.  
CHOV1  
CHOV2  
9. Setup and Hold are required to guarantee recognition.  
10. Setup and Hold are required for proper operation.  
32  
80C186EC/188EC, 80L186EC/188EC  
AC CharacteristicsÐ80L186EC13  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
INPUT CLOCK  
13 MHz  
T
T
T
T
T
T
CLKIN Frequency  
CLKIN Period  
0
38.5  
15  
15  
1
26  
%
%
%
10  
10  
MHz  
ns  
1
F
1
C
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
ns  
ns  
1, 2  
1, 2  
1, 3  
1, 3  
CH  
CL  
CR  
CF  
ns  
ns  
1
OUTPUT CLOCK  
T
T
T
T
T
T
CLKIN to CLKOUT Delay  
CLKOUT Period  
0
20  
ns  
ns  
ns  
ns  
ns  
ns  
1, 4  
1
CD  
2 * TC  
b
b
a
a
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
(T/2)  
(T/2)  
5
5
(T/2)  
(T/2)  
5
5
1
PH  
PL  
PR  
PF  
1
1
10  
10  
1, 5  
1, 5  
1
OUTPUT DELAYS  
T
T
S2:0, DT/R, BHE, LOCK  
3
3
28  
32  
ns  
ns  
1, 4, 6, 7  
1, 4, 6, 8  
CHOV1  
CHOV2  
LCS, UCS, DEN, A19:16, RD, WR, NCS,  
WDTOUT, ALE  
T
T
T
GCS7:0  
3
3
3
34  
28  
32  
ns  
ns  
ns  
1, 4, 6  
1, 4, 6  
1, 4, 6  
CHOV3  
CLOV1  
CLOV2  
LOCK, RESOUT, HLDA, T0OUT, T1OUT  
RD, WR, AD15:0 (AD7:0, A15:8), BHE  
(RFSH), NCS, INTA, DEN  
T
T
T
GSC7:0, LCS, UCS  
S2:0, A19:16  
3
3
0
34  
37  
30  
ns  
ns  
ns  
1, 4, 6  
1, 4, 6  
1
CLOV3  
CLOV4  
CHOF  
RD, WR, BHE (RFSH), DT/R, LOCK,  
S2:0, A19:16  
T
DEN, AD15:0 (AD7:0, A15:8)  
0
35  
ns  
1
CLOF  
INPUT REQUIREMENTS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
20  
3
ns  
ns  
1, 9  
1, 9  
CHIS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
CHIH  
T
T
T
T
AD15:0 (AD7:0), READY  
20  
3
ns  
ns  
ns  
ns  
1, 10  
1, 10  
1, 9  
CLIS  
CLIH  
CLIS  
CLIH  
AD15:0 (AD7:0), READY  
HOLD, RESIN, PEREQ, ERROR, DRQ3:0  
HOLD, RESIN, REREQ, ERROR, DRQ3:0  
20  
3
1, 9  
NOTES:  
1. See AC Timing Waveforms, for waveforms and definition.  
2. Measure at V for high time, V for low time.  
IH IL  
3. Only required to guarantee I . Maximum limits are bounded by T , T  
C
and T  
.
CL  
CC  
CH  
4. Specified for a 50 pF load, see Figure 14 for capacitive derating information.  
5. Specified for a 50 pF load, see Figure 15 for rise and fall times outside 50 pF.  
33  
80C186EC/188EC, 80L186EC/188EC  
AC CharacteristicsÐ80L186EC13 (Continued)  
NOTES:  
6. See Figure 15 for rise and fall times.  
7. T  
8. T  
applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
applies to RD and WR only after a HOLD release.  
CHOV1  
CHOV2  
9. Setup and Hold are required to guarantee recognition.  
10. Setup and Hold are required for proper operation.  
AC CharacteristicsÐ80L186EC16 (Operating Temperature 0 C to 70 C)  
§
§
Max  
Symbol  
Parameter  
Min  
Unit  
Notes  
INPUT CLOCK  
16 MHz  
T
T
T
T
T
T
CLKIN Frequency  
CLKIN Period  
0
31.25  
13  
13  
1
32  
%
%
%
10  
10  
MHz  
ns  
1
F
1
C
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
ns  
ns  
1, 2  
1, 2  
1, 3  
1, 3  
CH  
CL  
CR  
CF  
ns  
ns  
1
OUTPUT CLOCK  
T
T
T
T
T
T
CLKIN to CLKOUT Delay  
CLKOUT Period  
0
20  
ns  
ns  
ns  
ns  
ns  
ns  
1, 4  
1
CD  
2 * TC  
b
b
a
a
CLKOUT High Time  
CLKOUT Low Time  
CLKOUT Rise Time  
CLKOUT Fall Time  
(T/2)  
(T/2)  
5
5
(T/2)  
(T/2)  
5
5
1
PH  
PL  
PR  
PF  
1
1
9
1, 5  
1, 5  
1
9
OUTPUT DELAYS  
T
T
S2:0, DT/R, BHE, LOCK  
3
3
25  
30  
ns  
ns  
1, 4, 6, 7  
1, 4, 6, 8  
CHOV1  
CHOV2  
LCS, UCS, DEN, A19:16, RD, WR, NCS,  
WDTOUT, ALE  
T
T
T
GCS7:0  
3
3
3
32  
25  
30  
ns  
ns  
ns  
1, 4, 6  
1, 4, 6  
1, 4, 6  
CHOV3  
CLOV1  
CLOV2  
LOCK, RESOUT, HLDA, T0OUT, T1OUT  
RD, WR, AD15:0 (AD7:0, A15:8), BHE  
(RFSH), NCS, INTA, DEN  
T
T
T
GSC7:0, LCS, UCS  
S2:0, A19:16  
3
3
0
32  
34  
28  
ns  
ns  
ns  
1, 4, 6  
1, 4, 6  
1
CLOV3  
CLOV4  
CHOF  
RD, WR, BHE (RFSH), DT/R, LOCK,  
S2:0, A19:16  
T
DEN, AD15:0 (AD7:0, A15:8)  
0
32  
ns  
1
CLOF  
INPUT REQUIREMENTS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
15  
3
ns  
ns  
1, 9  
1, 9  
CHIS  
T
TEST, NMI, T1IN, T0IN, READY,  
CTS1:0, BCLK1:0, P3.4, P3.5  
CHIH  
T
T
T
T
AD15:0 (AD7:0), READY  
15  
3
ns  
ns  
ns  
ns  
1, 10  
1, 10  
1, 9  
CLIS  
CLIH  
CLIS  
CLIH  
AD15:0 (AD7:0), READY  
HOLD, RESIN, PEREQ, ERROR, DRQ3:0  
HOLD, RESIN, PEREQ, ERROR, DRQ3:0  
15  
3
1, 9  
34  
80C186EC/188EC, 80L186EC/188EC  
AC CharacteristicsÐ80L186EC16 (Continued)  
NOTES:  
1. See AC Timing Waveforms, for waveforms and definition.  
2. Measure at V for high time, V for low time.  
IH IL  
3. Only required to guarantee I . Maximum limits are bounded by T , T  
CC  
and T  
.
CL  
C
CH  
4. Specified for a 50 pF load, see Figure 14 for capacitive derating information.  
5. Specified for a 50 pF load, see Figure 15 for rise and fall times outside 50 pF.  
6. See Figure 15 for rise and fall times.  
7. T  
8. T  
applies to BHE (RFSH), LOCK and A19:16 only after a HOLD release.  
applies to RD and WR only after a HOLD release.  
CHOV1  
CHOV2  
9. Setup and Hold are required to guarantee recognition.  
10. Setup and Hold are required for proper operation.  
Relative Timings (80C186EC-25/20/13, 80L186EC-16/13)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
RELATIVE TIMINGS  
b
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
ALE Active Pulse Width  
T
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
b
AD Valid Setup before ALE Falls  
Chip Select Valid before ALE Falls  
AD Hold after ALE Falls  
(/2T  
(/2T  
(/2T  
(/2T  
(/2T  
(/2T  
10  
10  
10  
15  
15  
10  
AVLL  
PLLL  
b
b
b
b
b
1
LLAX  
LLWL  
LLRL  
ALE Falling to WR Falling  
ALE Falling to RD Falling  
1
1
1
WR Rising to Next ALE Rising  
AD Float to RD Falling  
WHLH  
AFRL  
RLRH  
WLWH  
RHAX  
WHDX  
WHPH  
RHPH  
PHPL  
0
b
b
RD Active Pulse Width  
2T  
2T  
5
5
2
2
WR Active Pulse Width  
b
15  
RD Rising to Next Address Active  
Output Data Hold after WR Rising  
WR Rise to Chip Select Rise  
RD Rise to Chip Select Rise  
T
T
b
15  
b
(/2T  
(/2T  
(/2T  
10  
10  
10  
1
1
1
b
b
Chip Select Inactive to Next Chip  
Select Active  
T
T
T
ONCE Active Setup to RESIN Rising  
ONCE Hold after RESIN Rise  
T
ns  
ns  
ns  
OVRH  
RHOX  
IHIL  
T
b
INTA High to Next INTA Low  
during INTA Cycle  
4T  
2T  
5
5
4
b
T
T
INTA Active Pulse Width  
ns  
ns  
2, 4  
2, 4  
ILIH  
CAS2:0 Setup before 2nd INTA  
Pulse Low  
8T  
CVIL  
T
T
T
T
CAS2:0 Hold after 2nd INTA Pulse Low  
Interrupt Resolution Time  
4T  
ns  
ns  
ns  
ns  
2, 4  
3
ILCX  
IRES  
IRLH  
IRHIF  
150  
IR Low Time to Reset Edge Detector  
IR Hold Time after 1st INTA Falling  
50  
25  
4, 5  
35  
80C186EC/188EC, 80L186EC/188EC  
Relative Timings (80C186EC-25/20/13, 80L186EC-16/13)  
NOTES:  
1. Assumes equal loading on both pins.  
2. Can be extended using wait states.  
3. Interrupt resolution time is the delay between an unmasked interrupt request going active and the interrupt output of the  
8259A module going active. This is not directly measureable by the user. For interrupt pin INT7 the delay from an active  
signal to an active input to the CPU would actually be twice the T  
modules.  
value since the signal must pass through two 8259A  
IRES  
4. See INTA Cycle Waveforms for definition.  
5. To guarantee interrupt is not spurious.  
Serial Port Mode 0 Timings (80C186EC-25/20/13, 80L186EC-16/13)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
RELATIVE TIMINGS  
a
T
T
T
T
T
T
TXD Clock Period  
TXD Clock Low to Clock High (N 1)  
T (n  
1)  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
1
XLXL  
XLXH  
XLXH  
XHXL  
XHXL  
QVXH  
l
b
a
35  
2T  
T
35  
2T  
T
e
l
b
a
35  
TXD Clock Low to Clock High (N  
1)  
35  
1
b
b
b
a
35  
TXD Clock High to Clock Low (N 1)  
(n  
(n  
1) T  
35  
35  
(n  
1) T  
a
1, 2  
1
e
b
TXD Clock High to Clock Low (N  
1)  
T
35  
T
35  
b
b
35  
35  
35  
RXD Output Data Setup to TXD  
l
Clock High (N 1)  
1)T  
1, 2  
b
T
T
T
T
T
T
RXD Output Data Setup to TXD  
e
T
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
QVXH  
XHQX  
XHQX  
XHQZ  
DVXH  
XHDX  
Clock High (N  
1)  
b
RXD Output Data Hold after TXD  
l
Clock High (N 1)  
2T  
T
b
RXD Output Data Hold after TXD  
e
Clock High (N  
1)  
a
20  
RXD Output Data Float after Last  
TXD Clock High  
T
a
RXD Input Data Setup to TXD  
Clock High  
T
20  
RXD Input Data Setup after TXD  
Clock High  
0
NOTES:  
1. See Figure 13 for Waveforms.  
2. n is the value in the BxCMP register ignoring the ICLK bit.  
36  
80C186EC/188EC, 80L186EC/188EC  
AC TEST CONDITIONS  
The AC specifications are tested with the 50 pF load  
shown in Figure 7. See the Derating Curves section  
to see how timings vary with load capacitance.  
272434–6  
e
C
L
50 pF for all signals  
Specifications are measured at the V /2 crossing  
CC  
point, unless otherwise specified. See AC Timing  
Waveforms for AC specification definitions, test pins  
and illustrations.  
Figure 7. AC Test Load  
AC TIMING WAVEFORMS  
272434–7  
Figure 8. Input and Output Clock Waveforms  
37  
80C186EC/188EC, 80L186EC/188EC  
272434–8  
Figure 9. Output Delay and Float Waveforms  
272434–9  
Figure 10. Input Setup and Hold  
27243410  
Figure 11. Relative Interrupt Signal Timings  
38  
80C186EC/188EC, 80L186EC/188EC  
27243411  
Figure 12. Relative Signal Waveform  
27243412  
Figure 13. Serial Port Mode 0 Waveform  
39  
80C186EC/188EC, 80L186EC/188EC  
DERATING CURVES  
27243413  
Figure 14. Typical Output Delay Variations versus Load Capacitance  
27243414  
Figure 15. Typical Rise and Fall Variations versus Load Capacitance  
rectly using a RC reset circuit, but the designer must  
ensure that the ramp time for V is not so long that  
RESET  
CC  
RESIN is never sampled at a logic low level when  
The processor will perform a reset operation any  
time the RESIN pin is active. The RESIN pin is syn-  
chronized before it is presented internally, which  
means that the clock must be operating before a  
reset can take effect. From a power-on state, RESIN  
must be held active (low) in order to guarantee cor-  
rect initialization of the processor. Failure to pro-  
vide RESIN while the device is powering up will  
result in unspecified operation of the device.  
V
CC  
reaches minimum operating conditions.  
Figure 17 shows the timing sequence when RESIN  
is applied after V is stable and the device has  
CC  
been operating. Note that a reset will terminate all  
activity and return the processor to a known operat-  
ing state. Any bus operation that is in progress at the  
time RESIN is asserted will terminate immediately  
(note that most control signals will be driven to their  
inactive state first before floating).  
Figure 16 shows the correct reset sequence when  
first applying power to the processor. An external  
clock connected to CLKIN must not exceed the V  
threshold being applied to the processor. This is nor-  
mally not a problem if the clock driver is supplied  
with the same V that supplies the processor.  
When attaching a crystal to the device, RESIN must  
remain active until both V and CLKOUT are stable  
CC  
While RESIN is active, bus signals LOCK,  
A19/S16/ONCE and A18:16 are configured as in-  
puts and weakly held high by internal pullup transis-  
tors. Only A19/ONCE can be overdriven to a low  
and is used to enable the ONCE Mode. Forcing  
LOCK or A18:16 low at any time while RESIN is low  
is prohibited and will cause unspecified device oper-  
ation.  
CC  
CC  
(the length of time is application specific and de-  
pends on the startup characteristics of the crystal  
circuit). The RESIN pin is designed to operate cor-  
40  
80C186EC/188EC, 80L186EC/188EC  
Figure 16. Cold RESET Waveforms  
41  
80C186EC/188EC, 80L186EC/188EC  
Figure 17. Warm RESET Waveforms  
42  
80C186EC/188EC, 80L186EC/188EC  
bus signals to CLKOUT. These figures along with  
the information present in AC Specifications allow  
the user to determine all the critical timing analysis  
needed for a given application.  
BUS CYCLE WAVEFORMS  
Figures 18 through 24 present the various bus cy-  
cles that are generated by the processor. What is  
shown in the figure is the relationship of the various  
27243417  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 18. Memory Read, I/O Read, Instruction Fetch and Refresh Waveforms  
43  
80C186EC/188EC, 80L186EC/188EC  
27243418  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 19. Memory Write and I/O Write Cycle Waveforms  
44  
80C186EC/188EC, 80L186EC/188EC  
27243419  
NOTES:  
1. Address information is invalid. If previous bus cycle was a read, then the AD15:0 (AD7:0) lines will float during T1.  
Otherwise, the AD15:0 (AD7:0) lines will continue to drive during T1 (data is invalid). All other control lines are in their  
inactive state.  
2. All address lines drive zeros while in Powerdown or Idle Mode.  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 20. Halt Cycle Waveforms  
45  
80C186EC/188EC, 80L186EC/188EC  
27243420  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 21. Interrupt Acknowledge Cycle Waveforms  
46  
80C186EC/188EC, 80L186EC/188EC  
27243421  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 22. HOLD/HLDA Cycle Waveforms  
47  
80C186EC/188EC, 80L186EC/188EC  
27243422  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 23. Refresh during HLDA Waveforms  
48  
80C186EC/188EC, 80L186EC/188EC  
27243423  
NOTES:  
1. READY must be low by either edge to cause a wait state.  
2. Lighter lines indicate READ cycles, darker lines indicate WRITE cycles.  
Pin names in parentheses apply to 80C188EC/80L188EC.  
Figure 24. READY Cycle Waveforms  
49  
80C186EC/188EC, 80L186EC/188EC  
All instructions which involve memory accesses can  
require one or two additional clocks above the mini-  
mum timings shown due to the asynchronous hand-  
shake between the bus interface unit (BIU) and exe-  
cution unit.  
80C186EC/80C188EC EXECUTION  
TIMINGS  
A determination of program execution timing must  
consider the bus cycles necessary to prefetch in-  
structions as well as the number of execution unit  
cycles necessary to execute instructions. The fol-  
lowing instruction timings represent the minimum  
execution time in clock cycles for each instruction.  
The timings given are based on the following as-  
sumptions:  
With a 16-bit BIU, the 80C186EC has sufficient bus  
performance to ensure that an adequate number of  
prefetched bytes will reside in the queue (6 bytes)  
most of the time. Therefore, actual program execu-  
tion time will not be substantially greater than that  
derived from adding the instruction timings shown.  
The opcode, along with any data or displacement  
#
required for execution of a particular instruction,  
has been prefetched and resides in the queue at  
the time it is needed.  
The 80C188EC 8-bit BIU is limited in its performance  
relative to the execution unit. A sufficient number of  
prefetched bytes may not reside in the prefetch  
queue (4 bytes) much of the time. Therefore, actual  
program execution time will be substantially greater  
than that derived from adding the instruction timings  
shown.  
No wait states or bus HOLDs occur.  
#
All word-data is located on even-address bound-  
aries (80C186EC only).  
#
All jumps and calls include the time required to fetch  
the opcode of the next instruction at the destination  
address.  
50  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY  
80C186EC 80C188EC  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
DATA TRANSFER  
e
MOV  
Move:  
Register to Register/Memory  
Register/memory to register  
Immediate to register/memory  
Immediate to register  
1 0 0 0 1 0 0 w  
1 0 0 0 1 0 1 w  
1 1 0 0 0 1 1 w  
1 0 1 1 w reg  
1 0 1 0 0 0 0 w  
1 0 1 0 0 0 1 w  
1 0 0 0 1 1 1 0  
1 0 0 0 1 1 0 0  
mod reg r/m  
mod reg r/m  
mod 000 r/m  
data  
2/12  
2/9  
12/13  
3/4  
8
2/12*  
2/9*  
12/13  
3/4  
e
data  
data if w  
1
8/16-bit  
8/16-bit  
e
data if w  
1
Memory to accumulator  
addr-low  
addr-high  
addr-high  
8*  
Accumulator to memory  
addr-low  
9
9*  
Register/memory to segment register  
Segment register to register/memory  
mod 0 reg r/m  
mod 0 reg r/m  
2/9  
2/11  
2/13  
2/15  
e
PUSH  
Push:  
Memory  
Register  
1 1 1 1 1 1 1 1  
0 1 0 1 0 reg  
0 0 0 reg 1 1 0  
0 1 1 0 1 0 s 0  
mod 1 1 0 r/m  
16  
10  
9
20  
14  
13  
14  
Segment register  
Immediate  
e
data  
data if s  
0
10  
e
PUSHA  
Push All  
Pop:  
Memory  
0 1 1 0 0 0 0 0  
36  
68  
e
POP  
1 0 0 0 1 1 1 1  
0 1 0 1 1 reg  
0 0 0 reg 1 1 1  
mod 0 0 0 r/m  
(regi01)  
20  
10  
8
24  
14  
12  
Register  
Segment register  
e
e
POPA  
Pop All  
0 1 1 0 0 0 0 1  
51  
83  
XCHG  
Exchange:  
Register/memory with register  
Register with accumulator  
1 0 0 0 0 1 1 w  
1 0 0 1 0 reg  
mod reg r/m  
4/17  
3
4/17*  
3
e
IN  
Input from:  
Fixed port  
1 1 1 0 0 1 0 w  
1 1 1 0 1 1 0 w  
port  
port  
10  
8
10*  
8*  
Variable port  
e
OUT  
Output to:  
Fixed port  
1 1 1 0 0 1 1 w  
1 1 1 0 1 1 1 w  
1 1 0 1 0 1 1 1  
1 0 0 0 1 1 0 1  
1 1 0 0 0 1 0 1  
1 1 0 0 0 1 0 0  
1 0 0 1 1 1 1 1  
1 0 0 1 1 1 1 0  
1 0 0 1 1 1 0 0  
1 0 0 1 1 1 0 1  
9
7
9*  
7*  
15  
6
Variable port  
e
XLAT  
Translate byte to AL  
11  
6
e
LEA  
LDS  
LES  
Load EA to register  
Load pointer to DS  
Load pointer to ES  
mod reg r/m  
mod reg r/m  
mod reg r/m  
(modi11)  
(modi11)  
18  
18  
2
26  
26  
2
e
e
e
LAHF  
SAHF  
Load AH with flags  
Store AH into flags  
e
3
3
e
PUSHF  
Push flags  
Pop flags  
9
13  
12  
e
POPF  
8
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
51  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY (Continued)  
80C186EC 80C188EC  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
DATA TRANSFER (Continued)  
e
SEGMENT  
Segment Override:  
CS  
0 0 1 0 1 1 1 0  
0 0 1 1 0 1 1 0  
0 0 1 1 1 1 1 0  
0 0 1 0 0 1 1 0  
2
2
2
2
2
2
2
2
SS  
DS  
ES  
ARITHMETIC  
e
ADD  
Add:  
Reg/memory with register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 0 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 0 0 1 0 w  
mod reg r/m  
mod 0 0 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
data if s w 01  
data  
e
e
data if w  
1
1
8/16-bit  
8/16-bit  
e
ADC  
Add with carry:  
Reg/memory with register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 1 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 0 1 0 w  
mod reg r/m  
mod 0 1 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
data if s w 01  
data  
data if w  
e
INC  
Increment:  
Register/memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 0 reg  
mod 0 0 0 r/m  
3/15  
3
3/15*  
3
e
SUB  
Subtract:  
Reg/memory and register to either  
Immediate from register/memory  
Immediate from accumulator  
0 0 1 0 1 0 d w  
1 0 0 0 0 0 s w  
0 0 1 0 1 1 0 w  
mod reg r/m  
mod 1 0 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
e
data if s w 01  
data  
e
e
data if w  
1
1
8/16-bit  
8/16-bit  
e
SBB  
Subtract with borrow:  
Reg/memory and register to either  
Immediate from register/memory  
Immediate from accumulator  
0 0 0 1 1 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 1 1 0 w  
mod reg r/m  
mod 0 1 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
e
data if s w 01  
data  
data if w  
e
DEC  
Decrement  
Register/memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 1 reg  
mod 0 0 1 r/m  
3/15  
3
3/15*  
3
e
CMP  
Compare:  
Register/memory with register  
Register with register/memory  
Immediate with register/memory  
Immediate with accumulator  
0 0 1 1 1 0 1 w  
0 0 1 1 1 0 0 w  
1 0 0 0 0 0 s w  
0 0 1 1 1 1 0 w  
1 1 1 1 0 1 1 w  
0 0 1 1 0 1 1 1  
0 0 1 0 0 1 1 1  
0 0 1 1 1 1 1 1  
0 0 1 0 1 1 1 1  
mod reg r/m  
mod reg r/m  
mod 1 1 1 r/m  
data  
3/10  
3/10  
3/10  
3/4  
3/10  
8
3/10*  
3/10*  
3/10*  
3/4  
3/10*  
8
e
data if s w 01  
data  
e
data if w  
1
8/16-bit  
e
e
e
e
e
NEG  
AAA  
DAA  
AAS  
DAS  
Change sign register/memory  
ASCII adjust for add  
mod 0 1 1 r/m  
Decimal adjust for add  
4
4
ASCII adjust for subtract  
Decimal adjust for subtract  
7
7
4
4
e
MUL  
Multiply (unsigned):  
1 1 1 1 0 1 1 w  
mod 100 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
2628  
3537  
3234  
4143  
2628  
3537  
3234  
4143*  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
52  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY (Continued)  
80C186EC  
Clock  
80C188EC  
Clock  
Function  
Format  
Comments  
Cycles  
Cycles  
ARITHMETIC (Continued)  
e
IMUL  
Integer multiply (signed):  
1 1 1 1 0 1 1 w  
mod 1 0 1 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
2528  
3437  
3134  
4043  
2528  
3437  
3234  
4043*  
e
(signed)  
e
0
IMUL  
Integer Immediate multiply  
0 1 1 0 1 0 s 1  
1 1 1 1 0 1 1 w  
mod reg r/m  
data  
data if s  
2225/  
2932  
2225/  
2932  
e
DIV  
Divide (unsigned):  
mod 1 1 0 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
29  
38  
35  
44  
29  
38  
35  
44*  
e
IDIV  
Integer divide (signed):  
1 1 1 1 0 1 1 w  
mod 1 1 1 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
4452  
5361  
5058  
5967  
4452  
5361  
5058  
5967*  
e
e
e
e
AAM  
AAD  
CBW  
CWD  
ASCII adjust for multiply  
ASCII adjust for divide  
Convert byte to word  
1 1 0 1 0 1 0 0  
1 1 0 1 0 1 0 1  
1 0 0 1 1 0 0 0  
1 0 0 1 1 0 0 1  
0 0 0 0 1 0 1 0  
0 0 0 0 1 0 1 0  
19  
15  
2
19  
15  
2
Convert word to double word  
4
4
LOGIC  
Shift/Rotate Instructions:  
Register/Memory by 1  
1 1 0 1 0 0 0 w  
1 1 0 1 0 0 1 w  
1 1 0 0 0 0 0 w  
mod TTT r/m  
mod TTT r/m  
2/15  
2/15  
a
a
a
a
Register/Memory by CL  
5
n/17  
n/17  
n
5
n/17  
n/17  
n
a
a
a
a
Register/Memory by Count  
mod TTT r/m  
count  
5
n
5
n
TTT Instruction  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
ROL  
ROR  
RCL  
RCR  
1 0 0 SHL/SAL  
1 0 1  
1 1 1  
SHR  
SAR  
e
AND  
And:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 1 0 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 0 0 1 0 w  
mod reg r/m  
mod 1 0 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
e
e
e
data  
data if w  
data if w  
data if w  
1
1
1
e
data if w  
1
1
1
8/16-bit  
8/16-bit  
8/16-bit  
e
TEST And function to flags, no result:  
Register/memory and register  
1 0 0 0 0 1 0 w  
1 1 1 1 0 1 1 w  
1 0 1 0 1 0 0 w  
mod reg r/m  
mod 0 0 0 r/m  
data  
3/10  
4/10  
3/4  
3/10  
4/10*  
3/4  
Immediate data and register/memory  
Immediate data and accumulator  
data  
e
e
data if w  
e
OR Or:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 0 1 0 d w  
1 0 0 0 0 0 0 w  
0 0 0 0 1 1 0 w  
mod reg r/m  
mod 0 0 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
data  
data if w  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
53  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY (Continued)  
80C186EC 80C188EC  
Function  
Format  
Comments  
Clock  
Clock  
Cycles  
Cycles  
LOGIC (Continued)  
e
XOR  
Exclusive or:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 1 1 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 1 0 1 0 w  
1 1 1 1 0 1 1 w  
mod reg r/m  
mod 1 1 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
1
data  
data if w  
e
data if w  
1
8/16-bit  
e
NOT  
Invert register/memory  
mod 0 1 0 r/m  
3/10  
3/10*  
STRING MANIPULATION  
e
e
e
e
e
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move byte/word  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
0 1 1 0 1 1 1 w  
14  
22  
15  
12  
10  
14  
14  
14*  
22*  
15*  
12*  
10*  
14  
Compare byte/word  
Scan byte/word  
Load byte/wd to AL/AX  
Store byte/wd from AL/AX  
e
INS  
Input byte/wd from DX port  
e
OUTS  
Output byte/wd to DX port  
14  
Repeated by count in CX (REP/REPE/REPZ/REPNE/REPNZ)  
e
e
e
e
e
a
a
8 8n*  
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move string  
Compare string  
Scan string  
Load string  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
8
8n  
a
a
5
5
6
22n  
15n  
11n  
5
5
6
22n*  
15n*  
11n*  
a
a
a
a
a
a
Store string  
6
9n  
8n  
6
9n*  
8n*  
e
a
a
a
a
INS  
Input string  
8
8
8
8
e
OUTS  
Output string  
1 1 1 1 0 0 1 0  
0 1 1 0 1 1 1 w  
8n  
8n*  
CONTROL TRANSFER  
e
CALL  
Call:  
Direct within segment  
1 1 1 0 1 0 0 0  
1 1 1 1 1 1 1 1  
disp-low  
disp-high  
15  
19  
Register/memory  
mod 0 1 0 r/m  
13/19  
17/27  
indirect within segment  
Direct intersegment  
1 0 0 1 1 0 1 0  
1 1 1 1 1 1 1 1  
segment offset  
segment selector  
23  
31  
i
(mod 11)  
Indirect intersegment  
mod 0 1 1 r/m  
38  
54  
e
JMP  
Unconditional jump:  
Short/long  
1 1 1 0 1 0 1 1  
1 1 1 0 1 0 0 1  
1 1 1 1 1 1 1 1  
disp-low  
disp-low  
14  
14  
14  
14  
Direct within segment  
disp-high  
Register/memory  
mod 1 0 0 r/m  
11/17  
11/21  
indirect within segment  
Direct intersegment  
Indirect intersegment  
1 1 1 0 1 0 1 0  
segment offset  
segment selector  
14  
26  
14  
34  
i
(mod 11)  
1 1 1 1 1 1 1 1  
mod 1 0 1 r/m  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
54  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY (Continued)  
80C186EC  
Clock  
80C188EC  
Clock  
Function  
Format  
Comments  
Cycles  
Cycles  
CONTROL TRANSFER (Continued)  
e
RET  
Return from CALL:  
Within segment  
1 1 0 0 0 0 1 1  
1 1 0 0 0 0 1 0  
1 1 0 0 1 0 1 1  
1 1 0 0 1 0 1 0  
0 1 1 1 0 1 0 0  
0 1 1 1 1 1 0 0  
0 1 1 1 1 1 1 0  
0 1 1 1 0 0 1 0  
0 1 1 1 0 1 1 0  
0 1 1 1 1 0 1 0  
0 1 1 1 0 0 0 0  
0 1 1 1 1 0 0 0  
0 1 1 1 0 1 0 1  
0 1 1 1 1 1 0 1  
0 1 1 1 1 1 1 1  
0 1 1 1 0 0 1 1  
0 1 1 1 0 1 1 1  
0 1 1 1 1 0 1 1  
0 1 1 1 0 0 0 1  
0 1 1 1 1 0 0 1  
1 1 1 0 0 0 1 1  
1 1 1 0 0 0 1 0  
1 1 1 0 0 0 0 1  
1 1 1 0 0 0 0 0  
16  
20  
Within seg adding immed to SP  
Intersegment  
data-low  
data-high  
data-high  
18  
22  
22  
30  
Intersegment adding immediate to SP  
data-low  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
25  
33  
e
JE/JZ  
Jump on equal/zero  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
5/15  
6/16  
6/16  
6/16  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
5/15  
6/16  
6/16  
6/16  
JMP not  
taken/JMP  
taken  
e
e
e
e
JL/JNGE  
JLE/JNG  
JB/JNAE  
JBE/JNA  
Jump on less/not greater or equal  
Jump on less or equal/not greater  
Jump on below/not above or equal  
Jump on below or equal/not above  
e
JP/JPE  
Jump on parity/parity even  
Jump on overflow  
Jump on sign  
e
e
JO  
JS  
e
e
e
e
e
e
JNE/JNZ  
JNL/JGE  
JNLE/JG  
JNB/JAE  
JNBE/JA  
JNP/JPO  
Jump on not equal/not zero  
Jump on not less/greater or equal  
Jump on not less or equal/greater  
Jump on not below/above or equal  
Jump on not below or equal/above  
Jump on not par/par odd  
e
e
JNO  
JNS  
Jump on not overflow  
Jump on not sign  
e
JCXZ  
LOOP  
Jump on CX zero  
Loop CX times  
e
LOOP not  
taken/LOOP  
taken  
e
LOOPZ/LOOPE  
LOOPNZ/LOOPNE  
Loop while zero/equal  
e
Loop while not zero/equal  
e
ENTER  
Enter Procedure  
1 1 0 0 1 0 0 0  
data-low  
data-high  
L
e
e
l
L
L
L
0
1
1
15  
25  
19  
29  
a
b
a
b
22 16(n 1) 26 20(n 1)  
e
LEAVE  
Leave Procedure  
1 1 0 0 1 0 0 1  
8
8
e
INT  
Interrupt:  
Type specified  
Type 3  
1 1 0 0 1 1 0 1  
1 1 0 0 1 1 0 0  
1 1 0 0 1 1 1 0  
type  
47  
45  
47  
45  
if INT. taken/  
if INT. not  
taken  
e
INTO  
Interrupt on overflow  
48/4  
48/4  
e
IRET  
Interrupt return  
1 1 0 0 1 1 1 1  
0 1 1 0 0 0 1 0  
28  
28  
e
BOUND  
Detect value out of range  
mod reg r/m  
3335  
3335  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
55  
80C186EC/188EC, 80L186EC/188EC  
INSTRUCTION SET SUMMARY (Continued)  
80C186EC 80C188EC  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
PROCESSOR CONTROL  
e
e
e
e
e
CLC  
CMC  
STC  
CLD  
STD  
Clear carry  
1 1 1 1 1 0 0 0  
1 1 1 1 0 1 0 1  
1 1 1 1 1 0 0 1  
1 1 1 1 1 1 0 0  
1 1 1 1 1 1 0 1  
1 1 1 1 1 0 1 0  
1 1 1 1 1 0 1 1  
1 1 1 1 0 1 0 0  
1 0 0 1 1 0 1 1  
1 1 1 1 0 0 0 0  
2
2
2
2
2
2
2
2
6
2
3
2
2
2
2
2
2
2
2
6
2
3
Complement carry  
Set carry  
Clear direction  
Set direction  
e
CLI  
STI  
Clear interrupt  
Set interrupt  
e
e
HLT  
Halt  
e
e
0
WAIT  
LOCK  
Wait  
if TEST  
e
Bus lock prefix  
e
NOP  
No Operation  
1 0 0 1 0 0 0 0  
(TTT LLL are opcode to processor extension)  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers, for word operations, add 4 clock cycles for all memory transfers.  
The Effective Address (EA) of the memory operand  
is computed according to the mod and r/m fields:  
Segment Override Prefix  
reg  
0
0
1
1
1
0
e
e
if mod  
if mod  
11 then r/m is treated as a REG field  
e
00 then DISP  
high are absent  
0*, disp-low and disp-  
reg is assigned according to the following:  
Segment  
e
e
01 then DISP disp-low sign-extended  
to 16-bits, disp-high is absent  
if mod  
reg  
00  
01  
10  
11  
Register  
ES  
CS  
e
e
e
e
e
e
e
e
e
e
(BX)  
if mod  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
10 then DISP  
disp-high: disp-low  
e
a
a
a
a
a
a
a
a
000 then EA  
001 then EA  
010 then EA  
011 then EA  
100 then EA  
101 then EA  
110 then EA  
111 then EA  
(SI)  
(DI)  
(SI)  
(DI)  
DISP  
DISP  
DISP  
DISP  
e
e
e
e
e
e
e
(BX)  
(BP)  
(BP)  
SS  
DS  
a
(SI)  
DISP  
REG is assigned according to the following table:  
e
0)  
a
(DI)  
(BP)  
(BX)  
DISP  
DISP*  
DISP  
e
16-Bit (w  
1)  
8-Bit (w  
000 AL  
a
a
000 AX  
001 CX  
010 DX  
011 BX  
100 SP  
101 BP  
110 SI  
001 CL  
010 DL  
011 BL  
100 AH  
101 CH  
110 DH  
111 BH  
DISP follows 2nd byte of instruction (before data if  
required)  
e
e
e
110 then EA  
*except if mod  
disp-high: disp-low.  
00 and r/m  
111 DI  
EA calculation time is 4 clock cycles for all modes,  
and is included in the execution times given whenev-  
er appropriate.  
The physical addresses of all operands addressed  
by the BP register are computed using the SS seg-  
ment register. The physical addresses of the desti-  
nation operands of the string primitive operations  
(those addressed by the DI register) are computed  
using the ES segment, which may not be overridden.  
56  
80C186EC/188EC, 80L186EC/188EC  
ERRATA  
REVISION HISTORY  
An 80C186EC/80L186EC with a STEPID value of  
0002H has no known errata. A device with a STEPID  
of 0002H can be visually identified by noting the  
presence of an ‘‘A’’ or ‘‘B’’ alpha character next to  
the FPO number or the absence of any alpha char-  
acter. The FPO number location is shown in Figures  
4, 5 and 6.  
This data sheet replaces the following data sheets:  
272072-003 80C186EC  
272076-003 80C188EC  
272332-001 80L186EC  
272333-001 80L188EC  
272373-001 SB80C188EC/SB80L188EC  
272372-001 SB80C186EC/SB80L186EC  
57  

相关型号:

SB80L188EA-13

16-BIT, 13MHz, MICROPROCESSOR, PQFP80, QFP-80
INTEL

SB80L188EA-8

16-BIT, 8MHz, MICROPROCESSOR, PQFP80, QFP-80
INTEL

SB80L188EB-13

Microprocessor, 16-Bit, 13MHz, CMOS, PQFP80, SHRINK, QFP-80
INTEL

SB80L188EB-16

16-BIT, 16MHz, MICROPROCESSOR, PQFP80, SHRINK, QFP-80
INTEL

SB80L188EB-8

16-BIT, 8MHz, MICROPROCESSOR, PQFP80, SHRINK, QFP-80
INTEL

SB80L188EB13

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

SB80L188EB13

8-Bit/16-Bit Microcontrollers
INNOVASIC

SB80L188EB16

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

SB80L188EB16

8-Bit/16-Bit Microcontrollers
INNOVASIC

SB80L188EB8

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL

SB80L188EC-13

Microprocessor, 16-Bit, 13MHz, CMOS, PQFP100, SHRINK, QFP-100
INTEL

SB80L188EC13

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
INTEL