T2500 [INTEL]

Intel Core Duo Processor and Intel Core Solo Processor on 65 nm Process; 在65纳米制程的英特尔酷睿双核处理器和英特尔酷睿单核处理器
T2500
型号: T2500
厂家: INTEL    INTEL
描述:

Intel Core Duo Processor and Intel Core Solo Processor on 65 nm Process
在65纳米制程的英特尔酷睿双核处理器和英特尔酷睿单核处理器

文件: 总91页 (文件大小:2037K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Core™ Duo Processor and  
Intel® Core™ Solo Processor  
on 65 nm Process  
Datasheet  
January 2007  
Document Number: 309221-006  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for  
use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® Core™ Duo processor and the Intel® Core™ Solo processor may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Intel Core Duo, Intel Core Solo, Pentium, Intel SpeedStep, MMX and the Intel logo are registered trademarks or trademarks of Intel Corporation  
and its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2006 - 2007, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................9  
References .........................................................................................................9  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low Power States .................................................................... 11  
2.1.1 Core Low-Power States ........................................................................... 13  
2.1.1.1 C0 State.................................................................................. 13  
2.1.1.2 C1/AutoHALT Powerdown State .................................................. 13  
2.1.1.3 C1/MWAIT Powerdown State ...................................................... 13  
2.1.1.4 Core C2 State........................................................................... 13  
2.1.1.5 Core C3 State........................................................................... 14  
2.1.1.6 Core C4 State........................................................................... 14  
2.1.2 Package Low Power States ...................................................................... 14  
2.1.2.1 Normal State............................................................................ 14  
2.1.2.2 Stop-Grant State ...................................................................... 14  
2.1.2.3 Stop Grant Snoop State............................................................. 15  
2.1.2.4 Sleep State.............................................................................. 15  
2.1.2.5 Deep Sleep State...................................................................... 16  
2.1.2.6 Deeper Sleep State................................................................... 16  
Enhanced Intel SpeedStep® Technology .............................................................. 17  
Extended Low Power States................................................................................ 18  
FSB Low Power Enhancements............................................................................ 19  
Processor Power Status Indicator (PSI#) Signal..................................................... 19  
2.2  
2.3  
2.4  
2.5  
3
Electrical Specifications........................................................................................... 21  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Power and Ground Pins ...................................................................................... 21  
FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 21  
Voltage Identification......................................................................................... 21  
Catastrophic Thermal Protection.......................................................................... 24  
Signal Terminations and Unused Pins................................................................... 25  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 25  
FSB Signal Groups............................................................................................. 25  
CMOS Signals ................................................................................................... 27  
Maximum Ratings.............................................................................................. 27  
3.10 Processor DC Specifications ................................................................................ 28  
4
5
Package Mechanical Specifications and Pin Information.......................................... 41  
4.1  
Package Mechanical Specifications....................................................................... 41  
4.1.1 Package Mechanical Drawings .................................................................. 41  
4.1.2 Processor Component Keep-Out Zones...................................................... 46  
4.1.3 Package Loading Specifications ................................................................ 46  
4.1.4 Processor Mass Specifications .................................................................. 46  
Processor Pinout and Pin List .............................................................................. 47  
Alphabetical Signals Reference............................................................................ 49  
4.2  
4.3  
Thermal Specifications and Design Considerations .................................................. 79  
5.1  
Thermal Specifications ....................................................................................... 85  
5.1.1 Thermal Diode ....................................................................................... 85  
5.1.2 Thermal Diode Offset.............................................................................. 87  
5.1.3 Intel® Thermal Monitor........................................................................... 87  
5.1.4 Digital Thermal Sensor (DTS)................................................................... 89  
5.1.5 Out of Specification Detection .................................................................. 90  
Datasheet  
3
5.1.6 PROCHOT# Signal Pin .............................................................................90  
Figures  
1
2
3
Package-Level Low Power States ................................................................................12  
Core Low Power States..............................................................................................12  
Active VCC and ICC Loadline for Intel Core Duo Processor (SV, LV & ULV) and  
Intel Core Solo Processor SV......................................................................................35  
Deeper Sleep VCC and ICC Loadline for Intel Core Duo Processor (SV, LV & ULV) and  
Intel Core Solo Processor SV......................................................................................36  
Active VCC and ICC Loadline for Intel Core Solo Processor ULV.......................................37  
Deeper Sleep VCC and ICC Loadline for Intel Core Solo Processor ULV ..............................38  
Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ................................................42  
Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ................................................43  
Micro-FCBGA Processor Package Drawing (Sheet 1 of 2) ................................................44  
4
5
6
7
8
9
10 Micro-FCBGA Processor Package Drawing (Sheet 2 of 2) ...............................................45  
Tables  
1
Coordination of Core-Level Low Power States at the Package Level .................................11  
2
3
4
5
6
7
8
9
Voltage Identification Definition..................................................................................21  
BSEL[2:0] Encoding for BCLK Frequency......................................................................25  
FSB Pin Groups ........................................................................................................26  
Processor DC Absolute Maximum Ratings.....................................................................27  
Voltage and Current Specifications for Intel Core Duo Processor SV (Standard Voltage) .....28  
Voltage and Current Specifications for Intel Core Solo Processor SV (Standard Voltage).....30  
Voltage and Current Specifications for Intel Core Duo Processor LV (Low Voltage).............31  
Voltage and Current Specifications Intel Core Duo Processor Ultra Low Voltage (ULV)........32  
10 Voltage and Current Specifications for Intel Core Solo Processor ULV (Ultra Low Voltage)...33  
11 FSB Differential BCLK Specifications............................................................................39  
12 AGTL+ Signal Group DC Specifications ........................................................................39  
13 CMOS Signal Group DC Specifications..........................................................................40  
14 Open Drain Signal Group DC Specifications ..................................................................40  
15 The Coordinates of the Processor Pins as Viewed from the Top of the Package..................47  
16 The Coordinates of the Processor Pins as Viewed from the Top of the Package .................48  
17 Signal Description.....................................................................................................49  
18 Pin Listing by Pin Name.............................................................................................59  
19 Pin Listing by Pin Number..........................................................................................69  
20 Power Specifications for the Intel Core Duo Processor SV (Standard Voltage) ...................80  
21 Power Specifications for the Intel Core Solo Processor SV (Standard Voltage)...................81  
22 Power Specifications for the Intel Core Duo Processor LV (Low Voltage)...........................82  
23 Power Specifications for the Intel Core Duo Processor, Ultra Low Voltage (ULV) ................83  
24 Power Specifications for the Intel Core Solo Processor ULV (Ultra Low Voltage).................84  
25 Thermal Diode Interface............................................................................................85  
26 Thermal Diode Parameters using Diode Mode...............................................................86  
27 Thermal Diode Parameters using Transistor Mode .........................................................86  
28 Thermal Diode ntrim and Diode Correction Toffset..........................................................87  
4
Datasheet  
Revision History  
Revision  
Description  
Date  
-001  
Initial Release  
January 2006  
Added references to ULV processor throughout the document  
Replaced references to the terminology Deep C4 voltage with Intel® Enhanced Deeper  
Sleep Voltage throughout the document.  
Replaced references to Enhanced Low Power states with CxE Low Power States  
Section 3.10  
— Included Table 10 Voltage and Current Specifications for Intel Core Solo Processor  
-002  
April 2006  
ULV  
— Included Figure 5 Active VCC and ICC Load Line for Intel Core Solo Processor ULV  
— Included Figure 6 Deeper Sleep VCC and ICC Load Line for Intel Core Solo  
Processor ULV  
Chapter 5  
— Included Table 24 Power Specifications for the Intel Core Solo Processor ULV (Ultra  
Low Voltage)  
Added Intel® Core™ Duo Processor T2300E and Intel® Core™ Solo Processor T1400  
specifications.  
-003  
-004  
May 2006  
June 2006  
Added references to Intel Core Duo Processor, Ultra Low Voltage (ULV) throughout the  
document  
CxE low power states now also referred to as Extended Low Power States  
Section 3.10  
— Updated Table 6 - Added Icc spec for T2700  
— Included Table 9 Voltage and Current Specifications Intel Core Duo Processor, Ultra  
Low Voltage (ULV)  
Chapter 5  
— Updated Table 20 - Added TDP for T2700  
— Included Table 23 - Power Specification for Intel Core Duo Processor Ultra Low  
Voltage (ULV)  
In Chapter 3:  
— Added L2500 processor specifications to Table 8.  
— Added U2400 processor specifications to Table 9.  
In Chapter 5:  
— Added L2500 processor power specifications to Table 22.  
— Added U2400 processor power specifications to Table 23.  
-005  
-006  
September 2006  
January 2007  
In Chapter 3:  
— Added U1500 processor specifications to Table 10.  
In Chapter 5:  
— Added U1500 processor power specifications to Table 24.  
§
Datasheet  
5
6
Datasheet  
Introduction  
1 Introduction  
The Intel® CoreTM Duo processor and the Intel® CoreTM Solo processor are built on  
Intel’s next generation 65 nanometer process technology with copper interconnect. The  
Intel Core Solo processor refers to a single core processor and the Intel Core Duo  
processor refers to a dual core processor. This document provides specifications for all  
Intel Core Duo processor and Intel Core Solo processor in standard voltage (SV), low  
voltage (LV) and ultra low voltage (ULV) products.  
Note:  
All instances of the “processor” in this document refer to the Intel Core Duo processor  
and Intel Core Solo processor with 2-MB L2 cache, unless specified otherwise.  
Intel processor numbers are not a measure of performance. Processor numbers  
differentiate features within each processor family, not across different processor  
families. See www.intel.com/products/processor_number for details.  
The following list provides some of the key features on this processor:  
• First dual core processor for mobile  
• Supports Intel® Architecture with Dynamic Execution  
• On-die, primary 32-KB instruction cache and 32-KB write-back data cache  
• On-die, 2-MB second level cache with Advanced Transfer Cache Architecture  
• Data Prefetch Logic  
• Streaming SIMD Extensions 2 (SSE2) and Streaming SIMD Extensions 3 (SSE3)  
• The Intel Core Duo processor and Intel Core Solo processor standard voltage and  
low voltage processors are offered at 667-MHz FSB  
• The Intel Core Duo processor and Intel Core Solo processor ultra low voltage are  
offered at 533-MHz FSB  
• Advanced power management features including Enhanced Intel SpeedStep®  
Technology  
• Digital thermal sensor (DTS)  
• The Intel Core Duo processor and Intel Core Solo processor standard voltage are  
offered in both the Micro-FCPGA and the Micro-FCBGA packages  
• Intel Core Duo processor low voltage is offered only in the Micro-FCBGA package  
• The Intel Core Duo processor and Intel Core Solo processor ultra low voltage are  
offered only in Micro-FCBGA package  
• Execute Disable Bit support for enhanced security  
• Intel® Virtualization Technology  
• Intel® Enhanced Deeper Sleep and Dynamic Cache Sizing  
The processor maintains support for MMX™ technology, Streaming SIMD instructions,  
and full compatibility with IA-32 software. The processor features on-die, 32-KB, Level  
1 instruction and data caches and a 2-MB level 2 cache with Advanced Transfer Cache  
Architecture. The processor’s Data Prefetch Logic speculatively fetches data to the L2  
cache before the L1 cache requests occurs, resulting in reduced bus cycle penalties.  
The processor includes the Data Cache Unit Streamer which enhances the performance  
of the L2 prefetcher by requesting L1 warm-ups earlier. In addition, the Writer Order  
Buffer depth is enhanced to help with the write-back latency performance.  
Datasheet  
7
Introduction  
In addition to supporting the existing Streaming SIMD Extensions 2 (SSE2), there are  
13 new instructions which extend the capabilities of Intel processor technology further.  
These new instructions are called Streaming SIMD Extensions 3 (SSE3). 3D graphics  
and other entertainment applications, such as gaming, will have the opportunity to take  
advantage of these new instructions as platforms with the processor and SSE3 become  
available in the market place.  
The processor’s FSB utilizes a split-transaction, deferred reply protocol. The FSB uses  
Source-Synchronous Transfer (SST) of address and data to improve performance by  
transferring data four times per bus clock. The 4X data bus can deliver data four times  
per bus clock and is referred as “quad-pumped” or 4X data bus, the address bus can  
deliver addresses two times per bus clock and is referred to as a “double-clocked” or 2X  
address bus. Working together, the 4X data bus and the 2X address bus provide a data  
bus bandwidth of up to 5.33 GB/second. The FSB uses Advanced Gunning Transceiver  
Logic (AGTL+) signaling technology, a variant of GTL+ signaling technology with low  
power enhancements.  
The processor features Enhanced Intel SpeedStep Technology, which enables real-time  
dynamic switching between multiple voltage and frequency points. The processor  
features the Auto Halt, Stop Grant, Deep Sleep, and Deeper Sleep low power C-states.  
The processor utilizes socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and  
surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The  
Micro-FCPGA package plugs into a 479-hole, surface-mount, Zero Insertion Force (ZIF)  
socket, which is referred to as the mPGA479M socket.  
The processor supports the Execute Disable Bit capability. This feature, combined with  
a support operating system, allows memory to be marked as executable or non  
executable. If code attempts to run in non-executable memory the processor raises an  
error to the operating system. This feature can prevent some classes of viruses or  
worms that exploit buffer overrun vulnerabilities and can thus help improve the overall  
security of the system. See the Intel® Architecture Software Developer's Manual for  
more detailed information.  
Intel Virtualization Technology is a set of hardware enhancements to Intel server and  
client systems that combined with the appropriate software, will enable enhanced  
virtualization robustness and performance for both enterprise and consumer uses. Intel  
Virtualization Technology forms the foundation of Intel technologies focused on  
improved virtualization, safer computing, and system stability. For client systems, Intel  
Virtualization Technology’s hardware-based isolation helps provide the foundation for  
highly available and more secure client virtualization partitions.  
8
Datasheet  
Introduction  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
XXXX means that the specification or value is yet to be determined.  
#
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document. Chipset references in this document are to the Mobile Intel®  
945 Express Chipset family unless specified otherwise.  
Document  
Document  
Number  
Intel® Core™ Duo Processor and Intel® Core™ Solo Processor on 65 nm  
Process Specification Update  
309222  
Mobile Intel® 945 Express Chipset Family Datasheet  
Mobile Intel® 945 Express Chipset Family Specification Update  
Intel® I/O Controller Hub 7 (ICH7) Family Datasheet  
Intel® I/O Controller Hub 7 (ICH7) Family Specification Update  
Intel® Architecture Software Developer's Manual  
Volume 1 Basic Architecture  
309219  
309220  
307013  
307014  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
AP-485, Intel® Processor Identification and CPUID Instruction Application  
Note  
241618  
§
Datasheet  
9
Introduction  
10  
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low Power States  
The Intel Core Duo processor and Intel Core Solo processor support low power states  
both at the individual core level and the package level for optimal power management.  
A core may independently enter the C1/AutoHALT, C1/MWAIT, C2, C3, and C4 low  
power states. Refer to Figure 2 for a visual representation of the core low power states  
for the Intel Core Duo processor and Intel Core Solo processor. When both cores  
coincide in a common core low power state, the central power management logic  
ensures the Intel Core Duo processor enters the respective package low power state by  
initiating a P_LVLx (P_LVL2, P_LVL3, and P_LVL4) I/O read to the Mobile Intel 945  
Express Chipset family. Package low power states include Normal, Stop Grant, Stop  
Grant Snoop, Sleep, Deep Sleep, and Deeper Sleep. Refer Figure 1 for a visual  
representation of the package low-power states for the Intel Core Duo processor and  
Intel Core Solo processor and to Table 1 for a mapping of core low power states to  
package low power states.  
The processor implements two software interfaces for requesting low power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The monitor address does not need to  
be setup before using the P_LVLx I/O read interface. The sub-state hints used for each  
P_LVLx read can be configured in a software programmable MSR.  
When software running on a core requests the C4 state, that core enters the core C4  
state, which is identical to the core C3 state. When both cores have requested C4 then  
the Intel Core Duo processor will enter the Deeper Sleep state.  
If a core encounters a chipset break event while STPCLK# is asserted, then it asserts  
the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to  
system logic that individual cores should return to the C0 state and the Intel Core Duo  
processor should return to the Normal state. Same mechanism is also applicable for the  
Intel Core Solo processor.  
Table 1.  
Coordination of Core-Level Low Power States at the Package Level  
Dual Core: Core1 State  
Single  
Resolved  
Package State  
Core  
C0  
C11  
C2  
C3  
C4  
C0  
C1†  
C2  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Stop Grant  
Deep Sleep  
Stop Grant  
Stop Grant  
Stop Grant  
Deep Sleep  
Stop Grant  
Deep Sleep  
C3  
Deeper Sleep /  
Intel®  
C4  
Deeper Sleep  
Normal  
Normal  
Stop Grant  
Deep Sleep  
Enhanced  
Deeper Sleep  
NOTE:  
1.  
AutoHALT or MWAIT/C1.  
Datasheet  
11  
Low Power Features  
Figure 1.  
Package-Level Low Power States  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
STPCLK# asserted  
Deeper  
Sleep†  
Stop  
Grant  
Deep  
Sleep  
Normal  
Sleep  
STPCLK# de-asserted  
SLP# de-asserted  
DPSLP# de-asserted  
DPRSTP# de-asserted  
Snoop  
Snoop  
serviced occurs  
Stop  
Grant  
Snoop  
† — Deeper Sleep includes the Deeper Sleep and the Intel Enhanced Deeper Sleep state.  
Figure 2.  
Core Low Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
STPCLK#  
de-asserted  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
asserted  
C1/  
MWAIT  
C1/Auto  
Halt  
Core state  
break  
HLT instruction  
Halt break  
MWAIT(C1)  
C0  
Core State  
break  
P_LVL2 or  
MWAIT(C2)  
P_LVL4 or  
MWAIT(C4)  
Core state  
break  
C4† ‡  
C2†  
Core  
state  
break  
P_LVL3 or  
MWAIT(C3)  
C3†  
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
† — STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4.  
‡ — Core C4 state supports the package level Intel Enhanced Deeper sleepstate.  
12  
Datasheet  
Low Power Features  
2.1.1  
Core Low-Power States  
2.1.1.1  
C0 State  
This is the normal operating state for the Intel Core Duo processor and Intel Core Solo  
processor.  
2.1.1.2  
C1/AutoHALT Powerdown State  
C1/AutoHALT is a low power state entered when the processor core executes the HALT  
instruction. The processor core will transition to the C0 state upon the occurrence of  
SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the  
processor to immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT Powerdown state. See the Intel® Architecture Software  
Developer's Manual, Volume 3A/3B: System Programmer's Guide for more information.  
The system can generate an STPCLK# while the processor is in the AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
will return execution to the HALT state.  
While in AutoHALT Powerdown state, the dual core processor will process bus snoops  
and snoops from the other core, and the single core processor will process only the bus  
snoops. The processor core will enter a snoopable sub-state (not shown in Figure 2) to  
process the snoop and then return to the AutoHALT Powerdown state.  
2.1.1.3  
2.1.1.4  
C1/MWAIT Powerdown State  
MWAIT is a low power state entered when the processor core executes the MWAIT  
instruction. Processor behavior in the MWAIT state is identical to the AutoHALT state  
except that there is an additional event that can cause the processor core to return to  
the C0 state: the Monitor event. See the Intel® Architecture Software Developer's  
Manual, Volumes 2A/2B: Instruction Set Reference, for more information.  
Core C2 State  
Individual cores of the Intel Core Duo processor and Intel Core Solo processor can  
enter the C2 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2)  
instruction, but the processor will not issue a Stop Grant Acknowledge special bus cycle  
unless the STPCLK# pin is also asserted.  
While in C2 state, the dual core processor will process bus snoops and snoops from the  
other core, and the single core processor will process only the bus snoops. The  
processor core will enter a snoopable sub-state (not shown in Figure 2) to process the  
snoop and then return to the C2 state.  
Datasheet  
13  
Low Power Features  
2.1.1.5  
Core C3 State  
Core C3 state is a very low power state the processor core can enter while maintaining  
context. Individual cores of the Intel Core Duo processor and Intel Core Solo processor  
can enter the C3 state by initiating a P_LVL3 I/O read to the P_BLK or an MWAIT(C3)  
instruction. Before entering the C3 state, the processor core flushes the contents of its  
L1 caches into the processor’s L2 cache. Except for the caches, the processor core  
maintains all its architectural state in the C3 state. The Monitor remains armed if it is  
configured. All of the clocks in the processor core are stopped in the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the dual core  
processor accesses cacheable memory. The processor core will transition to the C0  
state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or  
FSB interrupt message. RESET# will cause the processor core to immediately initialize  
itself.  
2.1.1.6  
Core C4 State  
Individual cores of the Intel Core Duo processor and Intel Core Solo processor can  
enter the C4 state by initiating a P_LVL4 I/O read to the P_BLK or an MWAIT(C4)  
instruction. The processor core behavior in the C4 state is identical to the behavior in  
the C3 state. The only difference is that if both processor cores are in C4, then the  
central power management logic will request that the entire dual core processor enter  
the Deeper Sleep package low power state (see Section 2.1.2.5). The single core  
processor would be put into the Deeper Sleep State in C4 state if the low power state  
coordination logic is enabled.  
To enable the package level Intel Enhanced Deeper Sleep Low Voltage, Dynamic Cache  
Sizing and Intel Enhanced Deeper Sleep state fields must be configured in the software  
programmable MSR.  
2.1.2  
Package Low Power States  
The package level low power states are applicable for the Intel Core Duo processor as  
well as the Intel Core Solo processor. The package level low power states are described  
in Section 2.1.2.1 through Section Section 2.1.2.6.  
2.1.2.1  
2.1.2.2  
Normal State  
This is the normal operating state for the processor. The processor enters the Normal  
state when at least one of its cores is in the C0, C1/AutoHALT, or C1/MWAIT state.  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the Intel Core Duo processor and Intel  
Core Solo processor enters the Stop-Grant state within 20 bus clocks after the  
response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Processor cores that are already in the C2, C3, or C4 state remain in their current low-  
power state. When the STPCLK# pin is deasserted, each core returns to its previous  
core low power state.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
14  
Datasheet  
Low Power Features  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#,  
DPSLP#, and DPRSTP# pins must be deasserted more than 450 µs prior to RESET#  
deassertion. When re-entering the Stop-Grant state from the Sleep state, STPCLK#  
should be deasserted ten or more bus clocks after the deassertion of SLP#.  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt or monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the entire dual core  
processor should return to the Normal state.  
A transition to the Stop Grant Snoop state will occur when the processor detects a  
snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see  
Section 2.1.2.4) will occur with the assertion of the SLP# signal.  
2.1.2.3  
2.1.2.4  
Stop Grant Snoop State  
The processor will respond to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor will return  
to the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through Stop-Grant State. If RESET# is driven active while the processor  
is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately  
after RESET# is asserted to ensure the processor correctly executes the Reset  
sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
Datasheet  
15  
Low Power Features  
2.1.2.5  
Deep Sleep State  
Deep Sleep state is a very low power state the processor can enter while maintaining  
context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on appropriate chipset-based platforms with  
the CK410M clock chip are as follows:  
• Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of  
DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
• Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep  
state, it will not respond to interrupts or snoop transactions. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable  
behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but reduces core voltage to  
one of two lower levels. One lower core voltage level is achieved by entering the base  
Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. The other lower core voltage level, the  
lowest possible in the processor, is achieved by entering the Intel Enhanced Deeper  
Sleep state of Deeper Sleep state. The Intel Enhanced Deeper Sleep state is entered  
through assertion of the DPRSTP# pin while in the Deep Sleep only when the L2 cache  
has been completely shut down. Refer to Section 2.1.2.6.1 and Section 2.1.2.6.2 for  
further details on reducing the L2 cache and entering Intel Enhanced Deeper Sleep  
state.  
In response to entering Deeper Sleep, the processor will drive the VID code  
corresponding to the Deeper Sleep core voltage on the VID[6:0] pins.  
Exit from the Deeper Sleep state or Intel Enhanced Deeper Sleep state is initiated by  
DPRSTP# deassertion when either core requests a core state other than C4 or either  
core requests a processor performance state other than the lowest operating point.  
2.1.2.6.1  
Intel Enhanced Deeper Sleep State  
Intel Enhanced Deeper Sleep state is a sub-state of Deeper Sleep that extends power  
saving capabilities by allowing the processor to further reduce core voltage once the L2  
cache has been reduced to zero ways and completely shut down. The following events  
occur when the processor enters Intel Enhanced Deeper Sleep state:  
• The last core entering C4 issues a P_LVL4 I/O read or an MWAIT(C4) instruction  
and then progressively reduces the L2 cache to zero.  
• The processor drives the VID code corresponding to the Intel Enhanced Deeper  
Sleep state core voltage on the VID[6:0] pins.  
16  
Datasheet  
Low Power Features  
2.1.2.6.2  
Dynamic Cache Sizing  
Dynamic Cache Sizing allows the processor to flush and disable a programmable  
number of L2 cache ways upon each Deeper Sleep entry under the following  
conditions:  
• The second core is already in C4 and the Intel Enhanced Deeper Sleep state is  
enabled (as specified in Section 2.1.2.6.1).  
• The C0 timer, which tracks continuous residency in the Normal package state, has  
not expired. This timer is cleared during the first entry into Deeper Sleep to allow  
consecutive Deeper Sleep entries to shrink the L2 cache as needed.  
• The FSB speed to processor core speed ratio is below the predefined L2 shrink  
threshold.  
If the FSB speed to processor core speed ratio is above the predefined L2 shrink  
threshold, then L2 cache expansion will be requested. If the ratio is zero, then the ratio  
will not be taken into account for Dynamic Cache Sizing decisions.  
Upon STPCLK# deassertion, the first core exiting the Intel Enhanced Deeper Sleep  
state will expand the L2 cache to 2 ways and invalidate previously disabled cache ways.  
If the L2 cache reduction conditions stated above still exist when the last core returns  
to C4 and the package enters Intel Enhanced Deeper Sleep state, then the L2 will be  
shrunk to zero again. If a core requests a processor performance state resulting in a  
higher ratio than the predefined L2 shrink threshold, the C0 timer expires, or the  
second core (not the one currently entering the interrupt routine) requests the C1, C2,  
or C3 states, then the whole L2 will be expanded when the next INTR event would  
occur.  
L2 cache shrink prevention may be enabled as needed on occasion through an  
MWAIT(C4) sub-state field. If shrink prevention is enabled, then the processor does not  
enter the Intel Enhanced Deeper Sleep state since the L2 cache remains valid and in  
full size.  
2.2  
Enhanced Intel SpeedStep® Technology  
Intel Core Duo processor and Intel Core Solo processor feature Enhanced Intel  
SpeedStep Technology. Following are the key features of Enhanced Intel SpeedStep  
Technology:  
• Multiple voltage/frequency operating points provide optimal performance at the  
lowest power.  
• Voltage/Frequency selection is software controlled by writing to processor MSR’s  
(Model Specific Registers).  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure glitch free  
transitions.  
• Low transition latency and large number of transitions possible per second.  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the  
frequency transition  
Datasheet  
17  
Low Power Features  
— The bus protocol (BNR# mechanism) is used to block snooping  
• Improved Intel® Thermal Monitor mode.  
— When the on-die thermal sensor indicates that the die temperature is too high,  
the processor can automatically perform a transition to a lower frequency/  
voltage specified in a software programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up transition to the previous frequency/voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system level thermal management.  
• Enhanced thermal management features.  
— Digital thermal sensor and thermal interrupts  
— TM1 in addition to TM2 in case of non successful TM2 transition.  
— dual core thermal management synchronization.  
Each core in the Intel Core Duo processor implements an independent MSR for  
controlling Enhanced Intel SpeedStep Technology, but both cores must operate at the  
same frequency and voltage. The processor has performance state coordination logic to  
resolve frequency and voltage requests from the two cores into a single frequency and  
voltage request for the package as a whole. If both cores request the same frequency  
and voltage then the Intel Core Duo processor will transition to the requested common  
frequency and voltage. If the two cores have different frequency and voltage requests  
then the Intel Core Duo processor will take the highest of the two frequencies and  
voltages as the resolved request and transition to that frequency and voltage.  
2.3  
Extended Low Power States  
The Extended low power states (C1E, C2E, C3E, C4E) optimize for power by forcibly  
reducing the performance state of the processor when it enters a package low power  
state. Instead of directly transitioning into the package low power states, the extended  
low power state first reduces the performance state of the processor by performing an  
Enhanced Intel SpeedStep Technology transition down to the lowest operating point.  
Upon receiving a break event from the package low power state, control will be  
returned to software while an Enhanced Intel SpeedStep Technology transition up to  
the initial operating point occurs. The advantage of this feature is that it significantly  
reduces leakage while in the package low power states.  
The processor implements two software interfaces for requesting extended low power  
states: MWAIT instruction extensions with sub-state hints and via BIOS by configuring  
a software programmable MSR bit to automatically promote package low power states  
to extended low power states.  
Note:  
C2E and C4E must be enabled via the BIOS for the processor to remain within  
specification.  
Enhanced Intel SpeedStep Technology transitions are multistep processes that require  
clocked control. These transitions cannot occur when the processor is in the Sleep or  
Deep Sleep package low power states since processor clocks are not active in these  
states. C4E is an exception to this rule when the Hard C4E configuration is enabled in a  
software programmable MSR bit. This C4E low power state configuration will lower core  
voltage to the Deeper Sleep level while in Deeper Sleep and, upon exit, will  
automatically transition to the lowest operating voltage and frequency to reduce snoop  
service latency. The transition to the lowest operating point or back to the original  
software requested point may not be instantaneous. Furthermore, upon very frequent  
transitions between active and idle states, the transitions may lag behind the idle state  
18  
Datasheet  
Low Power Features  
entry resulting in the processor either executing for a longer time at the lowest  
operating point or running idle at a high operating point. Observations and analyses  
show this behavior should not significantly impact total power savings or performance  
score while providing power benefits in most other cases.  
2.4  
FSB Low Power Enhancements  
The processor incorporates FSB low power enhancements:  
• Dynamic FSB Power Down  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On Die Termination disabling  
• Low VCCP (I/O termination voltage)  
The Intel Core Duo processor and Intel Core Solo processor incorporate the DPWR#  
signal that controls the data bus input buffers on the processor. The DPWR# signal  
disables the buffers when not used and activates them only when data bus activity  
occurs, resulting in significant power savings with no performance impact. BPRI#  
control also allows the processor address and control input buffers to be turned off  
when the BPRI# signal is inactive. Dynamic Bus Parking allows a reciprocal power  
reduction in chipset address and control input buffers when the processor deasserts its  
BR0# pin. The On Die Termination on the processor FSB buffers is disabled when the  
signals are driven low, resulting in additional power savings. The low I/O termination  
voltage is on a dedicated voltage plane independent of the core voltage, enabling low  
I/O switching power at all times.  
2.5  
Processor Power Status Indicator (PSI#) Signal  
The Intel Core Duo processor and Intel Core Solo processor incorporate the PSI# signal  
that is asserted when the processor is in a reduced power consumption state. PSI# can  
be used to improve intermediate and light load efficiency of the voltage regulator,  
resulting in platform power savings and improved battery life. The algorithm that the  
Intel Core Duo processor and Intel Core Solo processor use for determining when to  
assert PSI# is different from the algorithm used in previous Intel® Pentium® M  
processors.  
§
Datasheet  
19  
Low Power Features  
20  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power  
planes while all VSS pins must be connected to system ground planes. Use of multiple  
power and ground planes is recommended to reduce I*R drop. Please contact your  
Intel representative for more details. The processor VCC pins must be supplied the  
voltage determined by the VID (Voltage ID) pins.  
3.2  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the Intel Core Duo processor and Intel  
Core Solo processors’ core frequency is a multiple of the BCLK[1:0] frequency. The  
processor uses a differential clocking implementation.  
3.3  
Voltage Identification  
The processor uses seven voltage identification pins, VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for the processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 in this refers to a high-voltage level and a 0 refers to low-  
voltage level.  
Table 2.  
Voltage Identification Definition (Sheet 1 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
Datasheet  
21  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
22  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
Datasheet  
23  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 4 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
3.4  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough such that  
the processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of 125°C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the  
processor must be turned off within 500 ms to prevent permanent silicon damage due  
to thermal runaway of the processor.  
24  
Datasheet  
Electrical Specifications  
3.5  
Signal Terminations and Unused Pins  
All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to VCC,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected.  
The TEST1 pin must have a stuffing option connection to VSS. The TEST2 pin must have  
a 51 Ω ±5%, pull-down resistor to VSS.  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the Mobile Intel  
945 Express Chipset family on the platform. The BSEL encoding for BCLK[1:0] is shown  
in Table 3:  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BCLK  
BSEL[2]  
BSEL[1]  
BSEL[0]  
Frequency  
L
L
L
L
L
L
L
H
L
RESERVED  
133 MHz  
RESERVED  
166 MHz  
H
H
H
3.7  
FSB Signal Groups  
In order to simplify the following discussion, the FSB signals have been combined into  
groups by buffer type. AGTL+ input signals have differential input buffers, which use  
GTLREF as a reference level. In this document, the term “AGTL+ Input” refers to the  
AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+  
Output” refers to the AGTL+ output group as well as the AGTL+ I/O group when  
driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependant upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 4 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Datasheet  
25  
Electrical Specifications  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#,  
TRDY#  
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
Synchronous to  
BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#, DRDY#, HIT#,  
HITM#, LOCK#, PRDY#3  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[31:17]#  
ADSTB[0]#  
ADSTB[1]#  
Synchronous to  
Assoc. Strobe  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
AGTL+ Source Synchronous I/O  
Synchronous to  
BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/INTR,  
LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#  
Asynchronous  
Open Drain Output  
Open Drain I/O  
CMOS Output  
Asynchronous  
Asynchronous  
Asynchronous  
FERR#, IERR#, THERMTRIP#  
PROCHOT#4  
PSI#, VID[6:0], BSEL[2:0]  
Synchronous to  
TCK  
CMOS Input  
TCK, TDI, TMS, TRST#  
TDO  
Synchronous to  
TCK  
Open Drain Output  
FSB Clock  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,  
Power/Other  
THERMDA, THERMDC, VCC, VCCA, VCCP, VCCSENSE, VSS  
,
VSSSENSE  
NOTES:  
1.  
2.  
Refer to Table 17 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board, these signals are  
used to support a debug port interposer. In systems with the debug port implemented on the system  
board, these signals are no connects.  
3.  
4.  
BPM[2:1]# and PRDY# are AGTL+ output only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
26  
Datasheet  
Electrical Specifications  
3.8  
3.9  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for at least three BCLKs in order for  
the processor to recognize them. See Section 3.10 for the DC specifications for the  
CMOS signal groups.  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings. Only within specified  
operation limits, can functionality and long-term reliability be expected.  
At condition outside functional operation condition limits, but within absolute maximum  
and minimum ratings, neither functionality nor long term reliability can be expected. If  
a device is returned to conditions within functional operation limits after having been  
subjected to conditions outside these limits, but within the absolute maximum and  
minimum ratings, the device may be functional, but with its lifetime degraded on  
exposure to conditions exceeding the functional operation condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from electro static  
discharge, precautions should always be taken to avoid high static voltages or electric  
fields.  
Table 5.  
Processor DC Absolute Maximum Ratings  
Symbol  
TSTORAGE  
VCC  
Parameter  
Processor Storage Temperature  
Min  
Max  
Unit  
Notes  
-40  
-0.3  
-0.3  
-0.3  
85  
1.6  
1.6  
1.6  
°C  
V
2
Any Processor Supply Voltage with Respect to VSS  
AGTL+ Buffer DC Input Voltage with Respect to VSS  
1
VinAGTL+  
V
1, 2  
1, 2  
VinAsynch_CMOS CMOS Buffer DC iNput Voltage with Respect to VSS  
V
NOTES:  
1.  
2.  
This rating applies to any processor pin.  
Contact Intel for storage requirements in excess of one year.  
Datasheet  
27  
Electrical Specifications  
3.10  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and  
signal pin assignments. Most of the signals on the FSB are in the AGTL+ signal group.  
The DC specifications for these signals are listed in Table 12. DC specifications for the  
CMOS group are listed in Table 13.  
Table 6 through Table 14 list the DC specifications for the processor and are valid only  
while meeting specifications for junction temperature, clock frequency, and input  
voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer  
to the highest and lowest core operating frequencies supported on the processor. Active  
mode load line specifications apply in all states except in the Deep Sleep and Deeper  
Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power  
up in order to set the VID values. Unless specified otherwise, all specifications for the  
processor are at Tjunction = 100°C. Care should be taken to read all notes associated  
with each parameter.  
Table 6.  
Symbol  
Voltage and Current Specifications for Intel Core Duo Processor SV (Standard  
Voltage) (Sheet 1 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1, 2  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.1625  
0.7625  
1.3  
1.0  
V
V
V
V
V
V
1, 2  
2, 8  
2
1.20  
1.05  
1.5  
0.997  
1.425  
0.55  
1.102  
1.575  
0.85  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1, 2  
VCC at Intel Enhanced Deeper Sleep  
Voltage  
VCCDC4  
ICCDES  
0.50  
0.80  
36  
V
A
ICC for Intel® Core™ Duo Processor SV  
Recommended Design Target  
5
ICC for Intel Core Duo Processor SV  
Processor  
Core Frequency/Voltage  
Number  
T2700  
T2600  
T2500  
T2400  
T2300  
T2300E  
N/A  
2.33 GHz and HFM VCC  
2.16 GHz and HFM VCC  
2.00 GHz and HFM VCC  
1.83 GHz and HFM VCC  
1.66 GHz and HFM VCC  
1.66 GHz and HFM VCC  
1 GHz and LFM VCC  
34  
34  
ICC  
34  
34  
A
3,12,13  
34  
34  
15.5  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
12.5  
23.3  
A
A
3,4  
3,4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
12.4  
23.2  
HFM  
28  
Datasheet  
Electrical Specifications  
Table 6.  
Symbol  
IDSLP  
Voltage and Current Specifications for Intel Core Duo Processor SV (Standard  
Voltage) (Sheet 2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Deep Sleep  
LFM  
HFM  
11.8  
20.9  
A
3, 4  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
7.6  
6.7  
A
A
3, 4  
4
ICC Intel Enhanced Deeper Sleep  
VCC Power Supply Current Slew Rate at  
CPU Package Pin  
dICC/DT  
ICCA  
600  
120  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
6.0  
2.5  
A
A
10  
9
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or C1E).  
2.  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 36 A comprehends only Intel Core Duo processor SV HFM frequencies.  
Platforms should be designed to 44 A to be compatible with next generation processor.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
6.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
VCC, boot tolerance is shown in Figure 3.  
9.  
This is a steady-state ICCP current specification, which is applicable when both VCCP and VCC core are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC core is low.  
10.  
11.  
12.  
Specified at the nominal VCC  
.
If a given Operating Systems C-State model is not based on the use of MWAIT or I/O Redirection, the  
processor Deeper Sleep VID will be same as LFM VID.  
13.  
T2300E does not support Intel Virtualization Technology.  
Datasheet  
29  
Electrical Specifications  
Table 7.  
Symbol  
Voltage and Current Specifications for Intel Core Solo Processor SV (Standard  
Voltage)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1, 2  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.1625  
0.7625  
1.3  
1.0  
V
V
V
V
V
V
V
A
1, 2  
2, 8  
2
1.20  
1.05  
1.5  
0.997  
1.425  
0.55  
1.102  
1.575  
0.85  
0.80  
36  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCCDC4  
ICCDES  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1, 2  
VCC at Intel Enhanced Deeper Sleep Voltage  
ICC for Intel® Core™ Solo Processor SV  
ICC for Intel Core Solo Processor SV  
0.50  
5
Processor  
Core Frequency/Voltage  
Number  
ICC  
T1400  
T1300  
N/A  
1.83 GHz and HFM VCC  
1.66 GHz and HFM VCC  
1 GHz and LFM VCC  
34  
15.5  
A
A
A
A
3,11  
3,4  
3,4  
3,4  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
12.5  
23.3  
ISGNT  
ICC Sleep  
LFM  
ISLP  
12.4  
23.2  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
11.8  
20.9  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
7.6  
6.7  
A
A
3,4  
4
ICC Intel Enhanced Deeper Sleep  
VCC Power Supply Current Slew Rate at CPU  
Package Pin  
dICC/DT  
ICCA  
600  
120  
A/µs 6, 7  
mA  
ICC for VCCA Supply  
ICC for VCCP Supply before Vcc Stable  
ICC for VCCP Supply after Vcc Stable  
6.0  
2.5  
A
A
10  
9
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or C1E).  
2.  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 36 A comprehends only Intel Core Solo processor SV HFM frequencies.  
30  
Datasheet  
Electrical Specifications  
6.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
Measured at the bulk capacitors on the motherboard.  
7.  
8.  
VCC, boot tolerance is shown in Figure 3.  
9.  
This is a steady-state Iccp current specification, which is applicable when both VCCP and Vcc core are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and Vcc core is low.  
10.  
11.  
12.  
Specified at the nominal VCC  
.
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the  
processor Deeper Sleep VID will be same as LFM VID.  
Table 8.  
Voltage and Current Specifications for Intel Core Duo Processor LV (Low  
Voltage)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.0000  
0.7625  
1.2125  
1.0000  
V
V
V
V
V
V
1, 2, 3  
1, 2, 3  
2, 8  
1.20  
1.05  
1.5  
0.997  
1.425  
0.55  
1.102  
1.575  
0.85  
2
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1, 2  
VCC at Intel® Enhanced Deeper Sleep  
Voltage  
VCCDC4  
ICCDES  
0.50  
0.80  
19  
V
A
ICC for Intel® Core™ Duo Processor LV  
Icc for Intel Core Duo Processor LV  
5
Processor  
Core Frequency/Voltage  
Number  
ICC  
L2500  
L2400  
L2300  
N/A  
1.83 GHz and HFM VCC  
1.66 GHz and HFM VCC  
1.50 GHz and HFM VCC  
1 GHz and LFM VCC  
19  
19  
A
3,11  
19  
15.5  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
12.5  
13.5  
A
A
A
3,4  
3,4  
3,4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
12.4  
13.3  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
11.8  
12.0  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
7.6  
6.7  
A
A
3,4  
4
ICC Intel Enhanced Deeper Sleep  
VCC Power Supply Current Slew Rate at  
CPU Package Pin  
dICC/DT  
ICCA  
600  
120  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
6.0  
2.5  
A
A
10  
9
ICCP  
Datasheet  
31  
Electrical Specifications  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or C1E).  
2.  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 19 A comprehends only Intel Core Duo processor LV HFM frequencies.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
VCC, boot tolerance is shown in Figure 3.  
9.  
This is a steady-state Iccp current specification, which is applicable when both VCCP and VCC core are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC core is low.  
10.  
11.  
12.  
Specified at the nominal VCC  
.
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the  
processor Deeper Sleep VID will be same as LFM VID.  
Table 9.  
Voltage and Current Specifications Intel Core Duo Processor Ultra Low Voltage  
(ULV) (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1, 2  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCCat Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.85  
0.8  
1.1  
1.0  
V
V
V
V
V
V
V
A
1, 2  
2, 7, 9  
2
1.20  
1.05  
1.5  
0.997  
1.425  
0.55  
0.5  
1.102  
1.575  
0.85  
0.8  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCCDC4  
ICCDES  
VCC at Deeper Sleep voltage  
1, 2, 13  
5
VCC at Intel® Enhanced Deeper Sleep Voltage  
ICC for Intel® Core™ Duo Processor ULV  
Icc for Intel Core Duo Processor ULV  
14  
Processor  
Core Frequency/Voltage  
Number  
ICC  
U2500  
U2400  
N/A  
1.20 GHz and HFM VCC  
1.06 GHz and HFM VCC  
800 MHz and LFM VCC  
13.9  
13.9  
10.5  
A
A
A
3, 12  
3,4  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
5.4  
6.4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
5.3  
6.3  
3,4  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
4.8  
5.4  
A
A
3,4  
4
IDPRSLP  
ICC Deeper Sleep  
3.6  
32  
Datasheet  
Electrical Specifications  
Table 9.  
Voltage and Current Specifications Intel Core Duo Processor Ultra Low Voltage  
(ULV) (Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IDC4  
ICCC Intel Enhanced Deeper Sleep  
3.3  
A
4
VCC Power Supply Current Slew Rate at CPU  
Package Pin  
dICC/DT  
ICCA  
600  
120  
A/µs 6, 8  
mA  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP supply after VCC Stable  
6.0  
2.5  
A
A
11  
10  
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and can not be altered. Individual maximum VID values are calibrated during  
manufacturing such that two processors at the same frequency may have different settings within the VID  
range. Note that this differs from the VID employed by the processor during a power management event  
(Thermal Monitor 2, Enhanced Intel SpeedStep technology, or C1E).  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
2.  
3.  
4.  
5.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 14A comprehends Intel Core Duo processor ultra low voltage HFM  
frequencies.  
6.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Reserved.  
8.  
Measured at the bulk capacitors on the motherboard.  
9.  
VCC, boot tolerance is shown in Figure 3.  
10.  
11.  
12.  
13.  
This is a steady-state Iccp current specification, which is applicable when both VCCP and VCC_CORE are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
Specified at the nominal VCC  
.
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the  
processor Deeper Sleep VID will be same as LFM VID.  
Table 10.  
Voltage and Current Specifications for Intel Core Solo Processor ULV (Ultra  
Low Voltage) (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1, 2  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.85  
0.8  
1.1  
1.0  
V
V
V
V
V
V
1, 2  
2, 8  
2
1.20  
1.05  
1.5  
0.997  
1.425  
0.55  
1.102  
1.575  
0.85  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1, 2  
VCC at Intel Enhanced Deeper Sleep  
Voltage  
VCCDC4  
ICCDES  
0.50  
0.80  
8
V
A
ICC for Intel® Core™ Solo Processor ULV  
5
Datasheet  
33  
Electrical Specifications  
Table 10.  
Symbol  
Voltage and Current Specifications for Intel Core Solo Processor ULV (Ultra  
Low Voltage) (Sheet 2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC for Intel Core Solo Processor ULV  
Processor  
Core Frequency/Voltage  
Number  
ICC  
U1500  
U1400  
U1300  
N/A  
1.33 GHz and HFM VCC  
1.20 GHz and HFM VCC  
1.06 GHz and HFM VCC  
800 MHz and LFM VCC  
8
8
A
3,11  
8
6.4  
ICC Auto-Halt & Stop-Grant  
IAH  
,
LFM  
HFM  
3.9  
4.6  
A
A
A
3,4  
3,4  
3,4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
3.8  
4.5  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
3.3  
3.6  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
2.4  
2.3  
A
A
3,4  
4
ICC Intel Enhanced Deeper Sleep  
VCC Power Supply Current Slew Rate at  
CPU Package Pin  
dICC/DT  
ICCA  
600  
120  
A/µs 6, 7  
mA  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
6.0  
2.5  
A
A
10  
9
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or C1E).  
2.  
The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a  
100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
This specification comprehends Intel Core Duo processor ULV processor HFM frequencies.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
Vcc, boot tolerance is shown in Figure 5.  
9.  
This is a steady-state ICCP current specification, which is applicable when both VCCP and VCC_CORE are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
10.  
11.  
12.  
Specified at the nominal VCC  
.
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the  
processor Deeper Sleep VID will be same as LFM VID.  
34  
Datasheet  
Electrical Specifications  
Figure 3.  
Active VCC and ICC Loadline for Intel Core Duo Processor (SV, LV & ULV) and  
Intel Core Solo Processor SV  
VCC [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC max {HFM|LFM}  
VCC, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC nom {HFM|LFM}  
VCC, DC min {HFM|LFM}  
VCC min {HFM|LFM}  
+/-VCC nom * 1.5%  
= VR St. Pt. Error 1/  
ICC [A]  
0
ICC max {HFM|LFM}  
Note 1/ VCC Set Point Error Tolerance is per below:  
Tolerance Active Mode VID Code Range  
V
--------------- --C--C----------------------------------------------------  
+/-1.5%  
+/-11.5mV  
VCC > 0.7500V (VID 0111100).  
VCC < 0.7500V (VID 0111100)  
Datasheet  
35  
Electrical Specifications  
Figure 4.  
Deeper Sleep VCC and ICC Loadline for Intel Core Duo Processor (SV, LV & ULV)  
and Intel Core Solo Processor SV  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
V
CC-CORE max {Deeper Sleep}  
13mV= RIPPLE  
for PSI# Asserted  
V
CC-CORE, DC max  
{Deeper Sleep}  
VCC-CORE nom  
{Deeper Sleep}  
V
CC-CORE, DC min  
{Deeper Sleep}  
VCC-CORE min {Deeper Sleep}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{Deeper Sleep}  
Note 1/ Deeper Sleep VC C -C O R E Set Point Error Tolerance is per below :  
Tolerance - PSI# Ripple  
------------------------------  
+/-[(VID*1.5%) - 3 mV]  
VC C - C O R E VID Voltage Range  
--------------------------------------------------------  
VC C - C O R E > 0.7500V  
+/-(11.5 mV - 3 mV)  
+/- (25 mV - 3 mV)  
0.7500V < VC C -C O R E < 0.5000V  
0.5000V < VC C -C O R E < 0.4125V  
NOTE: For low voltage, if PSI# is not asserted, then the 13-mV ripple allowance becomes 10 mV.  
36  
Datasheet  
Electrical Specifications  
Figure 5.  
Active VCC and ICC Loadline for Intel Core Solo Processor ULV  
VCC-CORE [V]  
Slope = -5.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5% VCC-CORE > 0.7500V  
+/-11.5mV 0.75000V < VCC-CORE < 0.5000V  
Datasheet  
37  
Electrical Specifications  
Figure 6.  
Deeper Sleep VCC and ICC Loadline for Intel Core Solo Processor ULV  
VCC-CORE [V]  
Slope = -5.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
V
CC-CORE max {Deeper Sleep}  
CC-CORE, DC max  
{Deeper Sleep}  
V
10 mV= RIPPLE  
VCC-CORE nom  
{Deeper Sleep}  
VCC-CORE, DC min  
{Deeper Sleep}  
VCC-CORE min {Deeper Sleep}  
+/-VCC-CORE Tolerance  
=VRSt. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{Deeper Sleep}  
Note 1/ Deeper Sleep VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
------------------------------ --------------------------------------------------------  
+/- (VID*1.5%)  
+/- 11.5 mV  
+/- 25 mV  
VCC-CORE > 0.7500V  
0.7500V < VCC-CORE < 0.5000V  
0.5000V < VCC-CORE < 0.4125V  
38  
Datasheet  
Electrical Specifications  
Table 11.  
Symbol  
FSB Differential BCLK Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
VIL  
Input Low Voltage  
Input High Voltage  
Crossing Voltage  
0
V
V
VIH  
0.660  
0.25  
0.710  
0.35  
0.85  
0.55  
VCROSS  
ΔVCROSS  
VTH  
V
2
6
3
4
5
Range of Crossing Points  
Threshold Region  
0.14  
V
VCROSS -0.100  
0.95  
VCROSS+0.100  
± 100  
V
ILI  
Input Leakage Current  
Pad Capacitance  
µA  
pF  
Cpad  
1.2  
1.45  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of  
BCLK1.  
3.  
Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver  
switches. It includes input threshold hysteresis.  
4.  
5.  
6.  
For Vin between 0 V and VIH.  
Cpad includes die capacitance only. No package parasitics are included.  
ΔVCROSS is defined as the total variation of all crossing voltages as defined in note 2.  
Table 12.  
Symbol  
AGTL+ Signal Group DC Specifications  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCCP  
GTLREF  
VIH  
0.997  
1.05  
1.102  
V
V
V
V
Reference Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Termination Resistance  
Buffer on Resistance  
Input Leakage Current  
Pad Capacitance  
2/3 VCCP  
6
3,6  
2,4  
6
GTLREF+0.1  
-0.1  
VCCP+0.1  
VIL  
0
GTLREF-0.1  
VOH  
RTT  
VCCP  
55  
50  
61  
Ω
7,10  
5
RON  
ILI  
22.3  
25.5  
28.7  
± 100  
2.75  
Ω
µA  
pF  
8
Cpad  
1.8  
2.3  
9
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
value.  
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the  
V
3.  
4.  
V
V
signal quality specifications.  
5.  
6.  
This is the pull-down driver resistance.  
GTLREF should be generated from VCCP with a 1% tolerance resistor divider. Tolerance of resistor divider  
decides the tolerance of GTLREF. The VCCP referred to in these specifications is the instantaneous VCCP  
.
7.  
RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver.  
8.  
Specified with on die RTT and RON are turned off.  
9.  
10.  
Cpad includes die capacitance only. No package parasitics are included.  
This spec applies to all AGTL+ signals except for PREQ#. RTT for PREQ# is between 1.5 kΩ to 6.0 kΩ.  
Datasheet  
39  
Electrical Specifications  
.
Table 13.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIL  
1.0  
-0.1  
0.7  
-0.1  
0.9  
1.3  
1.3  
1.05  
0.0  
1.10  
0.33  
1.20  
0.11  
1.20  
4.1  
V
Input Low Voltage CMOS  
Input High Voltage  
V
V
2, 3  
2
VIH  
1.05  
0
VOL  
Output Low Voltage  
V
2
VOH  
IOL  
Output High Voltage  
Output Low Current  
Output High Current  
Input Leakage Current  
Pad Capacitance  
VCCP  
V
2
mA  
mA  
µA  
pF  
pF  
4
IOH  
4.1  
5
ILI  
±100  
2.75  
1.45  
6
Cpad1  
Cpad2  
1.8  
2.3  
1.2  
7
Pad Capacitance for CMOS Input  
0.95  
8
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Reserved.  
Measured at 0.1*VCCP  
.
.
Measured at 0.9*VCCP  
.
For Vin between 0 V and VCCP. Measured when the driver is tristated.  
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#,PWRGOOD. No package parasitics are included.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.  
Table 14.  
Symbol  
Open Drain Signal Group DC Specifications  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
1.0  
0
1.05  
1.10  
0.20  
50  
V
V
3
IOL  
11.40  
mA  
µA  
pF  
2
4
5
ILeak  
Cpad  
±200  
2.75  
1.8  
2.3  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2*VCCP  
OH is determined by value of the external pullup resistor to VCCP. Please contact your Intel representative  
.
V
for details.  
4.  
5.  
For Vin between 0 V and VOH.  
Cpad includes die capacitance only. No package parasitics are included.  
§
40  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The Intel Core Duo processor and Intel Core Solo processor are available in 478-pin  
Micro-FCPGA and 479-ball Micro-FCBGA packages. The package mechanical dimensions  
are shown in Figure 7 through Figure 10. Table 15 (two sheets) shows a top-view of  
package pin-out with their functionalities.  
Warning:  
The Micro-FCBGA package incorporates land-side capacitors. The land-side capacitors  
are electrically conductive, care should be taken to avoid contacting the capacitors with  
other electrically conductive materials on the motherboard. Doing so may short the  
capacitors, and possibly damage the device or render it inactive.  
4.1.1  
Package Mechanical Drawings  
Different views showing all pertinent dimensions of the Micro-FCPGA package are  
shown in Figure 7 and continued in Figure 8. Views and pertinent dimensions for Micro-  
FCBGA package are shown in Figure 9 and continued in Figure 10.  
Datasheet  
41  
Package Mechanical Specifications and Pin Information  
Figure 7.  
Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)  
42  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 8.  
Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
43  
Package Mechanical Specifications and Pin Information  
Figure 9.  
Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)  
44  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 10.  
Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
45  
Package Mechanical Specifications and Pin Information  
4.1.2  
4.1.3  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-  
out zone requirements. A thermal and mechanical solution design must not intrude into  
the required keep-out zones. Decoupling capacitors are typically mounted in the keep-  
out areas. The location and quantity of the capacitors may change, but will remain  
within the component keep-in. See Figure 7 and Figure 9 for keep-out zones.  
Package Loading Specifications  
Maximum mechanical package loading specifications are given in Figure 7 and Figure 9.  
These specifications are static compressive loading in the direction normal to the  
processor. This maximum load limit should not be exceeded during shipping conditions,  
standard use condition, or by thermal solution. In addition, there are additional load  
limitations against transient bend, shock, and tensile loading. These limitations are  
more platform specific, and should be obtained by contacting your field support.  
Moreover, the processor package substrate should not be used as a mechanical  
reference or load-bearing surface for thermal and mechanical solution.  
4.1.4  
Processor Mass Specifications  
The typical mass of the processor is given in Figure 7 and Figure 9. This mass includes  
all the components that are included in the package.  
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Table 15 shows the top view pinout of the processor. The pin list arranged in two  
different formats is shown in the following pages.  
Table 15.  
The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
SMI#  
INIT#  
VSS  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
B
C
RESET#  
RSVD  
RSVD  
VSS  
LINT1  
IGNNE  
#
THERM  
TRIP#  
RSVD  
RSVD  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
D
E
STPCLK  
#
PWRGO  
OD  
D
E
VSS  
RSVD  
BNR#  
VSS  
SLP#  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
F
BR0#  
VSS  
VSS  
RS[0]#  
RS[2]#  
RS[1]#  
VSS  
VSS  
RSVD  
HIT#  
F
G
TRDY#  
BPRI#  
G
REQ[1]  
#
H
J
ADS#  
A[9]#  
VSS  
VSS  
LOCK#  
A[3]#  
VSS  
DEFER#  
VSS  
VSS  
VCCP  
VCCP  
VSS  
H
J
REQ[3]  
#
VSS  
REQ[2]  
#
REQ[0]  
#
K
L
A[6]#  
K
L
ADSTB[  
0]#  
REQ[4]  
#
A[13]#  
VSS  
A[4]#  
M
N
P
R
T
A[7]#  
VSS  
VSS  
A[8]#  
A[12]#  
VSS  
A[5]#  
A[10]#  
VSS  
RSVD  
VSS  
VSS  
RSVD  
VCCP  
VCCP  
VSS  
M
N
P
R
T
A[15]#  
A[16]#  
VSS  
A[14]#  
A[24]#  
VSS  
A[11]#  
VSS  
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
RSVD  
A[23]#  
A[25]#  
A[18]#  
U
COMP[2]  
A[21]#  
U
ADSTB  
[1]#  
V
COMP[3]  
VSS  
RSVD  
VSS  
VCCP  
V
W
Y
VSS  
A[31]#  
RSVD  
VSS  
A[30]#  
A[17]#  
VSS  
A[27]#  
VSS  
VSS  
A[29]#  
RSVD  
VSS  
A[28]#  
A[22]#  
VSS  
A[20]#  
VSS  
W
Y
AA  
AB  
RSVD  
TDO  
TDI  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
AA  
AB  
RSVD  
TMS  
TRST#  
BPM[3]  
#
AC  
AD  
AE  
AF  
PREQ#  
BPM[2]#  
VSS  
PRDY#  
VSS  
VSS  
TCK  
VSS  
VSS  
VID[0]  
PSI#  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
AC  
AD  
AE  
AF  
BPM[1]  
#
BPM[0]  
#
VSS  
SENSE  
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
RSVD  
VID[5]  
VSS  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Table 16.  
The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 2 of 2)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
THRMDC  
RSVD  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
VSS  
A
B
C
VCC  
BSEL[1]  
RSVD  
VCCA  
TEST1  
DBR#  
BSEL[2]  
RSVD  
PROC  
HOT#  
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
VSS  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
D[1]#  
D[9]#  
VSS  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
G
H
DSTBP[0]#  
D[3]#  
VSS  
D[5]#  
D[15]#  
G
H
DSTBN[0]#  
D[12]#  
DINV[0  
]#  
J
VCCP  
VSS  
D[11]#  
D[10]#  
VSS  
J
K
L
VCCP  
VSS  
D[14]#  
D[21]#  
VSS  
D[8]#  
VSS  
D[17]#  
D[20]#  
VSS  
K
L
D[22]#  
D[29]#  
DINV[1  
]#  
M
VCCP  
VSS  
D[23]#  
DSTBN[1]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[25]#  
VSS  
D[31]#  
VSS  
DSTBP[1]#  
D[24]#  
VSS  
N
P
D[26]#  
D[18]#  
COMP  
[0]  
R
T
VCCP  
VCCP  
VSS  
VSS  
RSVD  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[30]#  
D[38]#  
VSS  
COMP  
[1]  
U
D[39]#  
D[37]#  
U
V
W
Y
VCCP  
VCCP  
VSS  
VSS  
DINV[2]#  
VSS  
D[34]#  
DSTBN[2]#  
VSS  
VSS  
D[35]#  
VSS  
V
W
Y
D[41]#  
D[45]#  
D[36]#  
D[42]#  
DSTBP[2]#  
D[44]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
D[51]#  
VSS  
D[32]#  
D[47]#  
VSS  
D[43]#  
VSS  
A
B
AB  
AC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
D[52]#  
VSS  
D[50]#  
D[48]#  
VSS  
VSS  
D[33]#  
VSS  
D[40]#  
D[53]#  
VSS  
DINV[3  
]#  
D[49]#  
D[46]# AC  
A
D
A
GTLREF  
D
D[54]#  
D[59]#  
DSTBN[3]#  
D[57]#  
AE  
AF  
VSS  
VCC  
14  
VCC  
VCC  
15  
VSS  
VSS  
16  
VCC  
VCC  
17  
VCC  
VCC  
18  
VSS  
VSS  
19  
VCC  
VCC  
20  
D[58]#  
VSS  
D[55]#  
D[62]#  
22  
VSS  
D[56]#  
23  
DSTBP[3]#  
VSS  
D[60]#  
D[61]#  
25  
VSS  
D[63]#  
26  
AE  
AF  
21  
24  
48  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.3  
Alphabetical Signals Reference  
Table 17.  
Signal Description (Sheet 1 of 9)  
Name  
Type  
Description  
A[31:3]# (Address) define a 232-byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit the  
address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the Intel® Core™ Duo processor  
and the Intel® Core™ Solo processor FSB. A[31:3]# are source  
synchronous signals and are latched into the receiving buffers by  
ADSTB[1:0]#. Address signals are used as straps which are  
sampled before RESET# is deasserted.  
Input/  
Output  
A[31:3]#  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[31:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[31:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Associated  
Input/  
Output  
Signals  
Strobe  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[31:17]#  
ADSTB[1]#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 2 of 9)  
Name  
Type  
Description  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[3:0]# should connect the  
appropriate pins of all processor FSB agents.This includes debug or  
performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
Please contact your Intel representative for more detailed  
information.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then releases  
the bus by deasserting BPRI#.  
BPRI#  
Input  
BR0# is used by the processor to request the bus. The arbitration is  
done between the processor (Symmetric Agent) and the Mobile  
Intel® 945 Express Chipset family (High Priority Agent).  
Input/  
Output  
BR0#  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 3 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency. The  
processor operates at 667-MHz or 533-MHz system bus frequency  
(166-MHz or 133-MHz BCLK[1:0] frequency, respectively).  
BSEL[2:0]  
COMP[3:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors. Please contact your Intel  
representative for more implementation details.  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 3 of 9)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#.  
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
Data  
Group  
DSTBN#/  
DSTBP#  
DINV#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBR# (Data Bus Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
DEFER#  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be guaranteed in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or Input/  
Output agent. This signal must connect the appropriate pins of both  
FSB agents.  
Input  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 4 of 9)  
Name  
Type  
Description  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted. The  
bus agent will invert the data bus signals if more than half the bits,  
within the covered group, would change level in the next cycle.  
DINV[3:0]# Assignment to Data Bus  
Input/  
Output  
Data Bus  
Bus Signal  
DINV[3:0]#  
Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP# when asserted on the platform causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state. In  
order to return to the Deep Sleep State, DPRSTP# must be  
deasserted. DPRSTP# is driven by the Intel® ICH7M chipset.  
DPRSTP#  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. In order to  
return to the Sleep State, DPSLP# must be deasserted. DPSLP# is  
driven by the ICH7M chipset.  
DPSLP#  
DPWR#  
DRDY#  
Input  
Input  
DPWR# is a control signal from the Mobile Intel 945 Express  
Chipset family used to reduce power on the processor data bus  
input buffers.  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Data strobe used to latch in D[63:0]#.  
Associated  
Signals  
Strobe  
Input/  
Output  
D[15:0]#, DINV[0]#  
DSTBN[0]#  
DSTBN[3:0]#  
D[31:16]#, DINV[1]# DSTBN[1]#  
D[47:32]#, DINV[2]# DSTBN[2]#  
D[63:48]#, DINV[3]# DSTBN[3]#  
Data strobe used to latch in D[63:0]#.  
Associated  
Signals  
Strobe  
Input/  
Output  
D[15:0]#, DINV[0]#  
DSTBP[0]#  
DSTBP[3:0]#  
D[31:16]#, DINV[1]# DSTBP[1]#  
D[47:32]#, DINV[2]# DSTBP[2]#  
D[63:48]#, DINV[3]# DSTBP[3]#  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 5 of 9)  
Name  
Type  
Description  
FERR# (Floating-point Error)PBE#(Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating point  
when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using  
MS-DOS*-type floating-point error reporting. When STPCLK# is  
asserted, an assertion of FERR#/PBE# indicates that the processor  
has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to the  
Normal state. When FERR#/PBE# is asserted, indicating a break  
event, it will remain asserted until STPCLK# is deasserted.  
Assertion of PREQ# when STPCLK# is active will also cause an  
FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volume 3 of the Intel ® Architecture Software  
Developer’s Manual and AP-485, Intel ® Processor Identification and  
CPUID Instruction Application Note.  
For termination requirements please contact your Intel  
representative.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a logical 0 or logical 1. Please  
contact your Intel representative for more information regarding  
GTLREF implementation.  
GTLREF  
Input  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall, which  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an  
internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may optionally  
be converted to an external error signal (e.g., NMI) by system core  
logic. The processor will keep IERR# asserted until the assertion of  
RESET#, BINIT#, or INIT#.  
IERR#  
Output  
For termination requirements please contact your Intel  
representative.  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute noncontrol  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a noncontrol floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 6 of 9)  
Name  
Type  
Description  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an Input/Output Write  
instruction, it must be valid along with the TRDY# assertion of the  
corresponding Input/Output Write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST).  
For termination requirements please contact your Intel  
representative.  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1  
becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
PRDY#  
PREQ#  
Output  
Input  
Please contact your Intel representative for more implementation  
details.  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
Please contact your Intel representative for more implementation  
details.  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 7 of 9)  
Name  
Type  
Description  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output only. Bidirectional  
PROCHOT# must be enabled via the BIOS.  
For termination requirements please contact your Intel  
representative.  
This signal may require voltage translation on the motherboard.  
Please contact your Intel representative for more details.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is in a normal state (HFM and LFM) and lower  
state (Deep Sleep and Deeper Sleep).  
PSI#  
Output  
Please contact your Intel representative for more details on the  
PSI# signal.  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
For termination requirements please contact your Intel  
representative.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
RESET#  
Input  
Input  
For termination requirements please contact your Intel  
representative and implementation details. There is a 55 Ω  
(nominal) on die pull-up resistor on this signal.  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
These pins are RESERVED and must be left unconnected on the  
board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use. Please  
contact your Intel representative for more details.  
Reserved  
/No  
Connect  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 8 of 9)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of SLP#,  
and removal of the BCLK input while in Sleep state. If SLP# is  
deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep state,  
the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enter System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
Input  
If SMI# is asserted during the deassertion of RESET# the processor  
will tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
Please contact your Intel representative for termination  
requirements and implementation details.  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
Please contact your Intel representative for termination  
requirements and implementation details.  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
Output  
Please contact your Intel representative for termination  
requirements and implementation details.  
TEST1 must have a stuffing option of separate pull-down resistor to  
VSS  
.
TEST1  
TEST2  
Input  
Input  
Please contact your Intel representative for more detailed  
information.  
TEST2 must have a 51 Ω ±5% pull-down resistor to VSS. Please  
contact your Intel representative for more details.  
THERMDA  
THERMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 17.  
Signal Description (Sheet 9 of 9)  
Name  
Type  
Description  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125°C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
For termination requirements please contact your Intel  
representative.  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Input  
Input  
Please contact your Intel representative for termination  
requirements and implementation details.  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST#  
Please contact your Intel representative for termination  
requirements and implementation details.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
Please contact your Intel representative for termination  
requirements and implementation details.  
VCC  
Input  
Input  
Input  
Processor core power supply.  
VCCA provides isolated power for the internal processor core PLL’s.  
Please contact your Intel representative for complete  
implementation details.  
VCCA  
VCCP  
Processor I/O Power Supply.  
VCCSENSE together with VSSSENSE are voltage feedback signals to  
IMVP6 that control the 2.1-mΩ loadline at the processor die. It  
should be used to sense voltage near the silicon with little noise.  
Please contact your Intel Representative for more information  
regarding termination and routing recommendations.  
VCCSENSE  
VID[6:0]  
VSSSENSE  
Output  
Output  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (VCC). Unlike some previous generations  
of processors, these are CMOS signals that are driven by the Intel  
Core Duo processor and Intel Core Solo processor. The voltage  
supply for these pins must be valid before the VR can supply VCC to  
the processor. Conversely, the VR output must be disabled until the  
voltage supply for the VID pins becomes valid. The VID pins are  
needed to support the processor voltage specification variations.  
See Table 2 for definitions of these pins. The VR must supply the  
voltage that is requested by the pins, or disable itself.  
V
SSSENSE together with VCCSENSE are voltage feedback signals to  
Intel® MVP6 that control the 2.1-mΩ loadline at the processor die.  
It should be used to sense ground near the silicon with little noise.  
Please contact your Intel Representative for more information  
regarding termination and routing recommendations.  
§
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Number  
Signal  
Buffer Type  
Direction  
Pin  
Number  
Signal  
Buffer Type  
Direction  
Source  
Synch  
Input/  
Output  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
Y5  
Source  
Synch  
Input/  
Output  
A[3]#  
J4  
Source  
Synch  
Input/  
Output  
U2  
R4  
T5  
Source  
Synch  
Input/  
Output  
A[4]#  
L4  
M3  
K5  
M1  
N2  
J1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[5]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[6]#  
Source  
Synch  
Input/  
Output  
T3  
Source  
Synch  
Input/  
Output  
A[7]#  
Source  
Synch  
Input/  
Output  
W3  
W5  
Y4  
Source  
Synch  
Input/  
Output  
A[8]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[9]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
N3  
P5  
P2  
L1  
P4  
P1  
R1  
Y2  
U5  
R3  
W6  
U4  
Source  
Synch  
Input/  
Output  
W2  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[31]#  
A20M#  
ADS#  
Y1  
A6  
H1  
Source  
Synch  
Input/  
Output  
CMOS  
Input  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
ADSTB[0]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
L2  
ADSTB[1]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
V4  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock  
Bus Clock  
Input  
Input  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
BNR#  
E2  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
BPM[0]#  
BPM[1]#  
BPM[2]#  
AD4  
AD3  
AD1  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Output  
Output  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Source  
Synch  
Input/  
Output  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
BPM[3]#  
BPRI#  
BR0#  
AC4  
G5  
F1  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
J24  
Common  
Clock  
Source  
Synch  
Input/  
Output  
Input  
J23  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
H26  
F26  
K22  
H25  
N22  
K25  
P26  
R23  
L25  
L22  
L23  
M23  
P25  
P22  
P23  
T24  
R24  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Input/  
Output  
Source  
Synch  
Input/  
Output  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
R26  
U26  
U1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Input/  
Output  
Source  
Synch  
Input/  
Output  
V1  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E22  
F24  
E26  
H22  
F23  
G25  
E25  
E23  
K24  
G24  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[1]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[2]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[3]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[4]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[5]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[6]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[7]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[8]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[9]#  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
L26  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
AC22  
AC23  
AB22  
AA21  
AB21  
AC25  
AD20  
AE22  
AF23  
AD24  
AE21  
AD21  
AE25  
AF25  
AF22  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
T25  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
N24  
AA23  
AB24  
V24  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
V26  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W25  
U23  
U25  
U22  
AB25  
W22  
Y23  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
AA26  
Y26  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[63]#  
DBR#  
AF26  
C20  
E1  
Source  
Synch  
Input/  
Output  
CMOS  
Output  
Y22  
Common  
Clock  
Input/  
Output  
DBSY#  
Source  
Synch  
Input/  
Output  
AC26  
AA24  
Common  
Clock  
DEFER#  
H5  
Input  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DINV[0]#  
J26  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
Source  
Synch  
Input/  
Output  
LINT0  
LINT1  
C6  
B4  
CMOS  
CMOS  
Input  
Input  
DINV[1]#  
DINV[2]#  
DINV[3]#  
M26  
V23  
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input/  
Output  
LOCK#  
PRDY#  
PREQ#  
H4  
Source  
Synch  
Input/  
Output  
AC20  
Common  
Clock  
AC2  
AC1  
D21  
Output  
Input  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Common  
Clock  
Common  
Clock  
PROCHOT  
#
Input/  
Output  
DPWR#  
DRDY#  
D24  
F21  
Input  
Open Drain  
Common  
Clock  
Input/  
Output  
PSI#  
AE6  
D6  
CMOS  
CMOS  
Output  
Input  
PWRGOOD  
DSTBN[0]  
#
Source  
Synch  
Input/  
Output  
H23  
M24  
W24  
AD23  
G22  
N25  
Y25  
Source  
Synch  
Input/  
Output  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
K3  
H2  
K2  
J3  
DSTBN[1]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN[2]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN[3]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBP[0]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
L5  
B1  
F3  
F4  
G3  
DSTBP[1]  
#
Source  
Synch  
Input/  
Output  
Common  
Clock  
Input  
Input  
Input  
Input  
DSTBP[2]  
#
Source  
Synch  
Input/  
Output  
Common  
Clock  
DSTBP[3]  
#
Source  
Synch  
Input/  
Output  
AE24  
Common  
Clock  
RS[1]#  
FERR#  
A5  
Open Drain  
Output  
Input  
Common  
Clock  
RS[2]#  
GTLREF  
AD26  
Power/Other  
Common  
Clock  
Input/  
Output  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
D2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HIT#  
G6  
E4  
F6  
Common  
Clock  
Input/  
Output  
HITM#  
D3  
C1  
IERR#  
IGNNE#  
INIT#  
D20  
C4  
Open Drain  
CMOS  
Output  
Input  
Input  
AF1  
D22  
B3  
CMOS  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
C23  
C24  
AA1  
AA4  
AB2  
AA3  
M4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMOS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AA20  
AF20  
AE20  
AB18  
AB17  
AA18  
AA17  
AD18  
AD17  
AC18  
AC17  
AF18  
AF17  
AE18  
AE17  
AB15  
AA15  
AD15  
AC15  
AF15  
AE15  
AB14  
AA13  
AD14  
AC13  
AF14  
AE13  
AB12  
AA12  
AD12  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N5  
T2  
V3  
B2  
C3  
T22  
B25  
D7  
Input  
Input  
Input  
Input  
Input  
Output  
SMI#  
STPCLK#  
TCK  
A3  
CMOS  
D5  
CMOS  
AC5  
AA6  
AB3  
C26  
D25  
A24  
A25  
CMOS  
TDI  
CMOS  
TDO  
Open Drain  
Test  
TEST1  
TEST2  
THERMDA  
THERMDC  
Test  
Power/Other  
Power/Other  
THERMTRI  
P#  
C7  
Open Drain  
CMOS  
Output  
Input  
Input  
Input  
TMS  
AB5  
G2  
Common  
Clock  
TRDY#  
TRST#  
VCC  
AB6  
CMOS  
AB20  
Power/Other  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AC12  
AF12  
AE12  
AB10  
AB9  
AA10  
AA9  
AD10  
AD9  
AC10  
AC9  
AF10  
AF9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
C17  
F18  
F17  
E18  
E17  
B15  
A15  
D15  
C15  
F15  
E15  
B14  
A13  
D14  
C13  
F14  
E13  
B12  
A12  
D12  
C12  
F12  
E12  
B10  
B9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE10  
AE9  
AB7  
AA7  
AD7  
AC7  
B20  
A20  
F20  
E20  
B18  
B17  
A18  
A10  
A9  
A17  
D18  
D17  
C18  
D10  
D9  
C10  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
VCC  
C9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF4  
CMOS  
Output  
Output  
Output  
Output  
VCC  
F10  
F9  
AE3  
CMOS  
VCC  
AF2  
CMOS  
VCC  
E10  
E9  
AE2  
CMOS  
VCC  
AB26  
AA25  
AD25  
AE26  
AB23  
AC24  
AF24  
AE23  
AA22  
AD22  
AC21  
AF21  
AB19  
AA19  
AD19  
AC19  
AF19  
AE19  
AB16  
AA16  
AD16  
AC16  
AF16  
AE16  
AB13  
AA14  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
B7  
VCC  
A7  
VCC  
F7  
VCC  
E7  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
B26  
K6  
J6  
M6  
N6  
T6  
R6  
K21  
J21  
M21  
N21  
T21  
R21  
V21  
W21  
V6  
G21  
AF7  
AD6  
AF5  
AE5  
Output  
Output  
Output  
CMOS  
CMOS  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD13  
AC14  
AF13  
AE14  
AB11  
AA11  
AD11  
AC11  
AF11  
AE11  
AB8  
AA8  
AD8  
AC8  
AF8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F5  
E6  
H6  
J5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M5  
L6  
P6  
R5  
V5  
U6  
Y6  
A4  
D4  
E3  
H3  
G4  
K4  
L3  
P3  
N4  
T4  
U3  
Y3  
W4  
D1  
C2  
F2  
G1  
K1  
J2  
AE8  
AA5  
AD5  
AC6  
AF6  
AB4  
AC3  
AF3  
AE4  
AB1  
AA2  
AD2  
AE1  
B6  
C5  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Pin  
Signal  
Direction  
Direction  
Number  
Buffer Type  
Number  
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B13  
A14  
D13  
C14  
F13  
E14  
B11  
A11  
D11  
C11  
F11  
E11  
B8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
N1  
T1  
R2  
V2  
W1  
A26  
D26  
C25  
F25  
B24  
A23  
D23  
E24  
B21  
C22  
F22  
E21  
B19  
A19  
D19  
C19  
F19  
E19  
B16  
A16  
D16  
C16  
F16  
E16  
A8  
D8  
C8  
F8  
E8  
G26  
K26  
J25  
M25  
N26  
T26  
R25  
V25  
W26  
H24  
G23  
K23  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Table 18.  
Pin Name  
Pin Listing by Pin Name  
Pin  
Signal  
Direction  
Number  
Buffer Type  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
L24  
P24  
N23  
T23  
U24  
Y24  
W23  
H21  
J22  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M22  
L21  
P21  
R22  
V22  
U21  
Y21  
AE7  
Output  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin Name  
Direction  
Buffer Type  
Pin  
Number  
Pin Name  
Direction  
Buffer Type  
AA7  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A3  
SMI#  
VSS  
CMOS  
Input  
AA8  
A4  
Power/Other  
Open Drain  
CMOS  
AA9  
A5  
FERR#  
A20M#  
VCC  
Output  
Input  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
A6  
A7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
A8  
VSS  
A9  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
Source  
Synch  
Input/  
Output  
AA21  
AA22  
AA23  
D[51]#  
VSS  
VCC  
Power/Other  
VCC  
Source  
Synch  
Input/  
Output  
D[32]#  
VSS  
VCC  
Source  
Synch  
Input/  
Output  
AA24  
AA25  
AA26  
D[47]#  
VSS  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
Power/Other  
Bus Clock  
Source  
Synch  
Input/  
Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Reserved  
D[43]#  
THERMDA  
THERMDC  
VSS  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
VSS  
Power/Other  
Reserved  
RSVD  
TDO  
VSS  
Open Drain  
Power/Other  
CMOS  
Output  
RSVD  
VSS  
Power/Other  
Reserved  
TMS  
TRST#  
VCC  
Input  
Input  
RSVD  
RSVD  
VSS  
CMOS  
Reserved  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VSS  
TDI  
Input  
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
AB9  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
Source  
Synch  
Input/  
Output  
AC20  
AC21  
AC22  
DINV[3]#  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
AB21  
D[52]#  
Source  
Synch  
Input/  
Output  
D[48]#  
Source  
Synch  
Input/  
Output  
AB22  
AB23  
AB24  
D[50]#  
VSS  
Source  
Synch  
Input/  
Output  
AC23  
AC24  
AC25  
D[49]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
D[33]#  
Source  
Synch  
Input/  
Output  
D[53]#  
Source  
Synch  
Input/  
Output  
AB25  
AB26  
AC1  
D[40]#  
VSS  
Source  
Synch  
Input/  
Output  
AC26  
D[46]#  
Power/Other  
Common  
Clock  
AD1  
AD2  
AD3  
BPM[2]#  
VSS  
Output  
Common  
Clock  
PREQ#  
Input  
Power/Other  
Common  
Clock  
AC2  
AC3  
AC4  
PRDY#  
VSS  
Output  
Common  
Clock  
BPM[1]#  
Output  
Power/Other  
Common  
Clock  
Input/  
Output  
AD4  
BPM[0]#  
Common  
Clock  
Input/  
Output  
BPM[3]#  
AD5  
AD6  
AD7  
AD8  
AD9  
VSS  
Power/Other  
CMOS  
AC5  
AC6  
AC7  
AC8  
AC9  
TCK  
VSS  
VCC  
VSS  
VCC  
CMOS  
Input  
VID[0]  
VCC  
Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCC  
70  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
AE21  
D[58]#  
Source  
Synch  
Input/  
Output  
AD20  
D[54]#  
Source  
Synch  
Input/  
Output  
AE22  
AE23  
AE24  
D[55]#  
VSS  
Source  
Synch  
Input/  
Output  
AD21  
AD22  
AD23  
D[59]#  
VSS  
Power/Other  
Power/Other  
DSTBP[3]  
#
Source  
Synch  
Input/  
Output  
DSTBN[3]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
AE25  
D[60]#  
Source  
Synch  
Input/  
Output  
AD24  
D[57]#  
AE26  
AF1  
VSS  
Power/Other  
Reserved  
AD25  
AD26  
AE1  
VSS  
Power/Other  
Power/Other  
Power/Other  
CMOS  
RSVD  
VID[5]  
VSS  
GTLREF  
VSS  
Input  
AF2  
CMOS  
Output  
AF3  
Power/Other  
CMOS  
AE2  
VID[6]  
VID[4]  
VSS  
Output  
Output  
AF4  
VID[3]  
VID[1]  
VSS  
Output  
Output  
AE3  
CMOS  
AF5  
CMOS  
AE4  
Power/Other  
CMOS  
AF6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AE5  
VID[2]  
PSI#  
Output  
Output  
Output  
AF7  
VCCSENSE  
VSS  
AE6  
CMOS  
AF8  
AE7  
VSSSENSE  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF9  
VCC  
AE8  
AF10  
AF11  
AF12  
AF13  
VCC  
AE9  
VCC  
VSS  
AE10  
AE11  
VCC  
VCC  
VSS  
VSS  
Datasheet  
71  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VCC  
VCC  
VSS  
VCC  
VSS  
BSEL[0]  
BSEL[1]  
VSS  
Output  
Output  
CMOS  
Source  
Synch  
Input/  
Output  
Power/Other  
Reserved  
AF22  
D[62]#  
RSVD  
VCCA  
RSVD  
VSS  
Source  
Synch  
Input/  
Output  
AF23  
AF24  
AF25  
D[56]#  
VSS  
Power/Other  
Reserved  
Power/Other  
C2  
Power/Other  
Reserved  
Source  
Synch  
Input/  
Output  
D[61]#  
C3  
RSVD  
IGNNE#  
VSS  
Source  
Synch  
Input/  
Output  
AF26  
B1  
D[63]#  
RESET#  
C4  
CMOS  
Input  
C5  
Power/Other  
CMOS  
Common  
Clock  
Input  
C6  
LINT0  
Input  
B2  
RSVD  
INIT#  
LINT1  
DPSLP#  
VSS  
Reserved  
THERMTRI  
P#  
C7  
Open Drain  
Output  
B3  
CMOS  
Input  
Input  
Input  
C8  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B4  
CMOS  
C9  
B5  
CMOS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
B6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B7  
VCC  
B8  
VSS  
B9  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
72  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
DBR#  
BSEL[2]  
VSS  
CMOS  
Output  
Output  
Common  
Clock  
D24  
DPWR#  
Input  
CMOS  
D25  
D26  
TEST2  
VSS  
Test  
Power/Other  
Reserved  
Power/Other  
RSVD  
RSVD  
VSS  
Common  
Clock  
Input/  
Output  
E1  
DBSY#  
Reserved  
Power/Other  
Test  
Common  
Clock  
Input/  
Output  
E2  
E3  
E4  
BNR#  
VSS  
TEST1  
VSS  
Power/Other  
Power/Other  
Reserved  
Common  
Clock  
Input/  
Output  
HITM#  
D2  
RSVD  
RSVD  
VSS  
D3  
Reserved  
E5  
DPRSTP#  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
CMOS  
Input  
D4  
Power/Other  
CMOS  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D5  
STPCLK#  
PWRGOOD  
SLP#  
VSS  
Input  
Input  
Input  
E7  
D6  
CMOS  
E8  
D7  
CMOS  
E9  
D8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
D9  
VCC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
Output  
Source  
Synch  
Input/  
Output  
E22  
D[0]#  
PROCHOT  
#
Input/  
Output  
D21  
Open Drain  
Source  
Synch  
Input/  
Output  
E23  
E24  
D[7]#  
VSS  
D22  
D23  
RSVD  
VSS  
Reserved  
Power/Other  
Power/Other  
Datasheet  
73  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
Source  
Synch  
Input/  
Output  
F25  
F26  
G1  
VSS  
Power/Other  
E25  
E26  
D[6]#  
D[2]#  
Source  
Synch  
Input/  
Output  
D[13]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
Common  
Clock  
Input/  
Output  
F1  
F2  
F3  
BR0#  
VSS  
Common  
Clock  
G2  
TRDY#  
Input  
Input  
Power/Other  
Common  
Clock  
G3  
G4  
G5  
RS[2]#  
VSS  
Common  
Clock  
RS[0]#  
Input  
Input  
Power/Other  
Common  
Clock  
F4  
RS[1]#  
Common  
Clock  
BPRI#  
Input  
F5  
VSS  
RSVD  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Reserved  
Common  
Clock  
Input/  
Output  
G6  
HIT#  
VCCP  
F6  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
G21  
G22  
G23  
G24  
Power/Other  
F8  
DSTBP[0]  
#
Source  
Synch  
Input/  
Output  
F9  
VSS  
Power/Other  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
Source  
Synch  
Input/  
Output  
D[9]#  
Source  
Synch  
Input/  
Output  
G25  
G26  
H1  
D[5]#  
VSS  
Power/Other  
Common  
Clock  
Input/  
Output  
ADS#  
Source  
Synch  
Input/  
Output  
H2  
H3  
H4  
REQ[1]#  
VSS  
Power/Other  
Common  
Clock  
Input/  
Output  
LOCK#  
Common  
Clock  
H5  
DEFER#  
Input  
Common  
Clock  
Input/  
Output  
F21  
F22  
F23  
DRDY#  
VSS  
H6  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
H21  
Source  
Synch  
Input/  
Output  
D[4]#  
Source  
Synch  
Input/  
Output  
H22  
H23  
D[3]#  
Source  
Synch  
Input/  
Output  
F24  
D[1]#  
DSTBN[0]  
#
Source  
Synch  
Input/  
Output  
74  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
H24  
H25  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
K24  
D[8]#  
Source  
Synch  
Input/  
Output  
D[15]#  
Source  
Synch  
Input/  
Output  
K25  
K26  
L1  
D[17]#  
VSS  
Source  
Synch  
Input/  
Output  
H26  
D[12]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
J1  
J2  
J3  
A[9]#  
VSS  
A[13]#  
Power/Other  
ADSTB[0]  
#
Source  
Synch  
Input/  
Output  
L2  
L3  
L4  
Source  
Synch  
Input/  
Output  
REQ[3]#  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
J4  
A[3]#  
A[4]#  
J5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
L5  
REQ[4]#  
J6  
VCCP  
VCCP  
VSS  
L6  
VSS  
VSS  
Power/Other  
Power/Other  
J21  
J22  
L21  
Source  
Synch  
Input/  
Output  
L22  
D[21]#  
Source  
Synch  
Input/  
Output  
J23  
D[11]#  
Source  
Synch  
Input/  
Output  
L23  
L24  
L25  
D[22]#  
VSS  
Source  
Synch  
Input/  
Output  
J24  
J25  
J26  
K1  
D[10]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
D[20]#  
Source  
Synch  
Input/  
Output  
DINV[0]#  
VSS  
Source  
Synch  
Input/  
Output  
L26  
D[29]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
K2  
REQ[2]#  
M1  
M2  
M3  
A[7]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
K3  
K4  
K5  
REQ[0]#  
VSS  
Source  
Synch  
Input/  
Output  
A[5]#  
Power/Other  
Source  
Synch  
Input/  
Output  
M4  
RSVD  
VSS  
Reserved  
A[6]#  
M5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
K6  
VCCP  
VCCP  
Power/Other  
Power/Other  
M6  
VCCP  
VCCP  
VSS  
K21  
M21  
M22  
Source  
Synch  
Input/  
Output  
K22  
K23  
D[14]#  
VSS  
Power/Other  
Datasheet  
75  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
M23  
D[23]#  
P22  
D[25]#  
DSTBN[1]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
M24  
M25  
M26  
N1  
P23  
P24  
P25  
D[26]#  
VSS  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DINV[1]#  
VSS  
D[24]#  
Power/Other  
Source  
Synch  
Input/  
Output  
P26  
D[18]#  
Source  
Synch  
Input/  
Output  
N2  
A[8]#  
Source  
Synch  
Input/  
Output  
R1  
R2  
R3  
A[16]#  
VSS  
Source  
Synch  
Input/  
Output  
N3  
A[10]#  
Power/Other  
N4  
VSS  
Power/Other  
Reserved  
Source  
Synch  
Input/  
Output  
A[19]#  
N5  
RSVD  
VCCP  
VCCP  
Source  
Synch  
Input/  
Output  
R4  
A[24]#  
N6  
Power/Other  
Power/Other  
N21  
R5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
R6  
VCCP  
VCCP  
VSS  
N22  
N23  
N24  
D[16]#  
VSS  
R21  
R22  
Power/Other  
Source  
Synch  
Input/  
Output  
D[31]#  
Source  
Synch  
Input/  
Output  
R23  
D[19]#  
DSTBP[1]  
#
Source  
Synch  
Input/  
Output  
N25  
N26  
P1  
Source  
Synch  
Input/  
Output  
R24  
R25  
R26  
D[28]#  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
A[15]#  
Input/  
Output  
COMP[0]  
Source  
Synch  
Input/  
Output  
P2  
P3  
P4  
A[12]#  
VSS  
T1  
T2  
VSS  
Power/Other  
Reserved  
Power/Other  
RSVD  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[14]#  
T3  
T4  
T5  
A[26]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
P5  
A[11]#  
Source  
Synch  
Input/  
Output  
A[25]#  
P6  
VSS  
VSS  
Power/Other  
Power/Other  
P21  
T6  
VCCP  
VCCP  
Power/Other  
Power/Other  
T21  
76  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Buffer Type  
Buffer Type  
T22  
T23  
RSVD  
VSS  
Reserved  
V22  
V23  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
DINV[2]#  
Source  
Synch  
Input/  
Output  
T24  
D[27]#  
Source  
Synch  
Input/  
Output  
V24  
V25  
V26  
W1  
D[34]#  
VSS  
Source  
Synch  
Input/  
Output  
T25  
T26  
U1  
D[30]#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
D[35]#  
VSS  
Input/  
Output  
COMP[2]  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U2  
U3  
U4  
A[23]#  
VSS  
W2  
A[30]#  
Power/Other  
Source  
Synch  
Input/  
Output  
W3  
W4  
W5  
A[27]#  
VSS  
Source  
Synch  
Input/  
Output  
A[21]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
U5  
A[18]#  
A[28]#  
U6  
VSS  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
W6  
A[20]#  
VCCP  
U21  
W21  
W22  
W23  
W24  
Power/Other  
Source  
Synch  
Input/  
Output  
U22  
D[39]#  
Source  
Synch  
Input/  
Output  
D[41]#  
VSS  
Source  
Synch  
Input/  
Output  
U23  
U24  
U25  
D[37]#  
VSS  
Power/Other  
Power/Other  
DSTBN[2]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[38]#  
Source  
Synch  
Input/  
Output  
W25  
W26  
Y1  
D[36]#  
VSS  
Input/  
Output  
U26  
V1  
COMP[1]  
COMP[3]  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[31]#  
V2  
V3  
VSS  
Power/Other  
Reserved  
Source  
Synch  
Input/  
Output  
Y2  
Y3  
Y4  
A[17]#  
VSS  
RSVD  
Power/Other  
ADSTB[1]  
#
Source  
Synch  
Input/  
Output  
V4  
Source  
Synch  
Input/  
Output  
A[29]#  
V5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Y5  
Y6  
A[22]#  
VSS  
V6  
VCCP  
VCCP  
V21  
Power/Other  
Datasheet  
77  
Package Mechanical Specifications and Pin Information  
Table 19.  
Pin Listing by Pin Number  
Signal  
Pin  
Number  
Pin Name  
Direction  
Buffer Type  
Y21  
Y22  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
D[45]#  
Source  
Synch  
Input/  
Output  
Y23  
Y24  
Y25  
D[42]#  
VSS  
Power/Other  
DSTBP[2]  
#
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
Y26  
D[44]#  
78  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
The processor requires a thermal solution to maintain temperatures within operating  
limits as set forth in Section 5.1. Any attempt to operate that processor outside these  
operating limits may result in permanent damage to the processor and potentially other  
components in the system. As processor technology changes, thermal management  
becomes increasingly crucial when building computer systems. Maintaining the proper  
thermal environment is key to reliable, long-term system operation. A complete  
thermal solution includes both component and system level thermal management  
features. Component level thermal solutions include active or passive heatsinks or heat  
exchangers attached to the processor exposed die. The solution should make firm  
contact to the die while maintaining processor mechanical specifications such as  
pressure. A typical system level thermal solution may consist of a processor fan ducted  
to a heat exchanger that is thermally coupled to the processor via a heat pipe or direct  
die attachment. A secondary fan or air from the processor fan may also be used to cool  
other platform components or to lower the internal ambient temperature within the  
system.  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum junction temperature (Tj)  
specifications at the corresponding thermal design power (TDP) value listed in Table 20  
to Table 22. Thermal solutions not designed to provide this level of thermal capability  
may affect the long-term reliability of the processor and system.  
The maximum junction temperature is defined by an activation of the processor Intel  
Thermal Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real  
applications are unlikely to cause the processor to consume the theoretical maximum  
power dissipation for sustained time periods. Intel recommends that complete thermal  
solution designs target the TDP indicated in Table 20 to Table 22. The Intel Thermal  
Monitor feature is designed to help protect the processor in the unlikely event that an  
application exceeds the TDP recommendation for a sustained period of time. For more  
details on the usage of this feature, refer to Section 5.1.3. In all cases, the Intel  
Thermal Monitor feature must be enabled for the processor to remain within  
specification.  
Datasheet  
79  
Thermal Specifications and Design Considerations  
Table 20.  
Power Specifications for the Intel Core Duo Processor SV (Standard Voltage)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
T2700  
31  
31  
2.33 GHz & HFM VCC  
T2600  
T2500  
T2400  
T2300  
T2300E  
N/A  
2.16 GHz & HFM VCC  
2.00 GHz & HFM VCC  
31  
At 100°C  
1.83 GHz & HFM VCC  
1.66 GHz & HFM VCC  
1.66 GHz & HFM VCC  
1.00 GHz & LFM VCC  
TDP  
31  
W
Notes 1, 4,  
5
31  
31  
13.1  
Symbol  
Parameter  
Min Typ Max Unit  
Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
At 50°C  
15.8  
4.8  
W
W
PSGNT  
Note 2  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
At 50°C  
PSLP  
15.5  
4.7  
Note 2  
Deep Sleep Power  
at HFM VCC  
At 35°C  
PDSLP  
10.5  
3.4  
W
W
Note 2  
at LFM VCC  
At 35°C  
PDPRSLP  
Deeper Sleep Power  
2.2  
Note 2  
At 35°C  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
1.8  
W
Note 2  
0
100  
°C  
Notes 3, 4  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
4.  
5.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specification.  
T2300E does not support Intel Virtualization Technology.  
80  
Datasheet  
Thermal Specifications and Design Considerations  
Table 21.  
Power Specifications for the Intel Core Solo Processor SV (Standard Voltage)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
T1400  
1.83 GHz & HFM VCC  
1.66 GHz & HFM VCC  
1.00 GHz & LFM VCC  
27  
27  
At 100°C  
TDP  
T1300  
N/A  
W
Notes 1, 4  
13.1  
Symbol  
Parameter  
Min Typ Max Unit  
Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
At 50°C  
15.8  
4.8  
W
W
PSGNT  
Note 2  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
At 50°C  
PSLP  
15.5  
4.7  
Note 2  
Deep Sleep Power  
at HFM VCC  
At 35°C  
PDSLP  
10.5  
3.4  
W
W
Note 2  
at LFM VCC  
At 35°C  
PDPRSLP  
Deeper Sleep Power  
2.2  
Note 2  
At 35°C  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
1.8  
W
Note 2  
0
100  
°C  
Notes 3, 4  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specification.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
Table 22.  
Power Specifications for the Intel Core Duo Processor LV (Low Voltage)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
L2500  
1.83 GHz & HFM VCC  
1.66 GHz & HFM VCC  
1.50 GHz & HFM VCC  
1.00 GHz & LFM VCC  
15  
15  
L2400  
L2300  
N/A  
At 100°C  
TDP  
W
15  
Notes 1, 4  
13.1  
Symbol  
Parameter  
Min Typ Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
At 50°C  
6.0  
4.8  
W
PSGNT  
Note 2  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
At 50°C  
PSLP  
5.8  
4.7  
W
Note 2  
Deep Sleep Power  
at HFM VCC  
At 35°C  
PDSLP  
5.7  
3.4  
W
W
Note 2  
at LFM VCC  
At 35°C  
PDPRSLP  
Deeper Sleep Power  
2.2  
1.8  
Note 2  
At 35°C  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
W
Note 2  
0
100  
°C  
Notes 3, 4  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specification.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
Table 23.  
Power Specifications for the Intel Core Duo Processor, Ultra Low Voltage  
(ULV)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
U2500  
1.20 GHz & HFM VCC  
1.06 GHz & HFM VCC  
800 MHz & LFM VCC  
9
9
At 100°C  
TDP  
U2400  
N/A  
W
Unit  
W
Notes1, 4  
7.5  
Symbol  
Parameter  
Min Typ Max  
Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
At 50°C  
3.7  
2.6  
PSGNT  
Note 2  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
At 50°C  
PSLP  
3.6  
2.5  
W
Note 2  
Deep Sleep Power  
at HFM VCC  
At 35°C  
PDSLP  
2.2  
1.8  
W
W
Note 2  
at LFM VCC  
At 35°C  
PDPRSLP  
Deeper Sleep Power  
1.3  
1.1  
Note 2  
At 35°C  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
W
Note 2  
0
100  
°C  
Notes 3, 4  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specification.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
Table 24.  
Power Specifications for the Intel Core Solo Processor ULV (Ultra Low  
Voltage)  
Processor  
Number  
Core Frequency  
& Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
1.33 GHz and HFM VCC  
1.20 GHz and HFM  
U1500  
5.5  
5.5  
5.5  
5
U1400  
U1300  
At 100°C  
TDP  
V
CC1.06 GHz and LFM  
W
Notes 1, 4  
VCC  
800 MHz and LFM VCC  
Symbol  
Parameter  
Min Typ Max  
Unit  
Notes  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
At 50°C  
3.0  
2.2  
W
PSGNT  
Note 2  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
At 50°C  
PSLP  
2.9  
2.1  
W
Note 2  
Deep Sleep Power  
at HFM VCC  
At 35°C  
PDSLP  
1.5  
1.2  
W
W
Note 2  
at LFM VCC  
At 35°C  
PDPRSLP  
Deeper Sleep Power  
0.7  
0.6  
Note 2  
At 35°C  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
W
Note 2  
0
100  
°C  
Notes 3, 4  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specification.  
84  
Datasheet  
Thermal Specifications and Design Considerations  
5.1  
Thermal Specifications  
The processor incorporates three methods of monitoring die temperature, the digital  
thermal sensor (DTS), Intel Thermal Monitor and the thermal diode. The Intel Thermal  
Monitor (detailed in Section 5.1.3) must be used to determine when the maximum  
specified processor junction temperature has been reached.  
5.1.1  
Thermal Diode  
The processor incorporates an on-die PNP transistor whose base emitter junction is  
used as a thermal diode, with its collector shorted to Ground. The thermal diode, can  
be read by an off-die analog/digital converter (a thermal sensor) located on the  
motherboard, or a stand-alone measurement kit. The thermal diode may be used to  
monitor the die temperature of the processor for thermal management or  
instrumentation purposes but is not a reliable indication that the maximum operating  
temperature of the processor has been reached. When using the thermal diode, a  
temperature offset value must be read from a processor Model Specific Register (MSR)  
and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal  
diode usage recommendation when the PROCHOT# signal is not asserted.  
Note:  
The reading of the external thermal sensor (on the motherboard) connected to the  
processor thermal diode signals, will not necessarily reflect the temperature of the  
hottest location on the die. This is due to inaccuracies in the external thermal sensor,  
on-die temperature gradients between the location of the thermal diode and the hottest  
location on the die, and time based variations in the die temperature measurement.  
Time based variations can occur when the sampling rate of the thermal diode (by the  
thermal sensor) is slower than the rate at which the TJ temperature can change.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of thermal control circuit. This temperature offset must be taken into  
account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor Model Specific Register (MSR).  
Table 25, Table 26, Table 27, and Table 28 provide the diode interface and  
specifications. Two different sets of diode parameters are listed in Table 26 and  
Table 27. The Diode Model parameters (Table 26) apply to traditional thermal sensors  
that use the Diode Equation to determine the processor temperature. Transistor Model  
parameters (Table 27) have been added to support thermal sensors that use the  
transistor equation method. The Transistor Model may provide more accurate  
temperature measurements when the diode ideality factor is closer to the maximum or  
minimum limits. Please contact your external thermal sensor supplier for their  
recommendation. This thermal diode is separate from the Intel Thermal Monitor's  
thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor.  
Table 25.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
A25  
Thermal diode anode  
Thermal diode cathode  
Datasheet  
85  
Thermal Specifications and Design Considerations  
Table 26.  
Thermal Diode Parameters using Diode Mode  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
n
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
-
200  
1.050  
6.24  
µA  
-
1
1.000  
2.79  
1.009  
4.52  
2, 3, 4  
2, 3, 5  
RT  
Ω
NOTES:  
1.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Intel does not support or recommend operation of the thermal diode when the processor  
power supplies are not within their specified tolerance range.  
Characterized across a temperature range of 50 - 100°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by  
the diode equation:  
2.  
3.  
4.  
I
FW = IS * (e qV /nkT –1)  
D
where IS = saturation current, q = electronic charge, VD = voltage across the diode, k =  
Boltzmann Constant, and T = absolute temperature (Kelvin).  
5.  
The series resistance, RT, is provided to allow for a more accurate measurement of the  
junction temperature. RT, as defined, includes the lands of the processor but does not  
include any socket resistance or board trace resistance between the socket and the  
external remote diode thermal sensor. RT can be used by remote diode thermal sensors  
with automatic series resistance cancellation to calibrate out this error term. Another  
application is that a temperature offset can be manually calculated and programmed into  
an offset register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT * (N-1) * IFWmin] / [nk/q * ln N]  
where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann  
Constant, q = electronic charge.  
Table 27.  
Thermal Diode Parameters using Transistor Mode  
Symbol  
IFW  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Forward Bias Current  
Emitter Current  
5
5
-
200  
200  
µA  
µA  
-
1, 2  
IE  
nQ  
Transistor Ideality  
0.997  
0.3  
1.001  
4.52  
1.005  
0.760  
6.24  
3, 4, 5  
3, 4  
Beta  
RT  
Series Resistance  
2.79  
Ω
3, 6  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Same as IFW in Table 25.  
Characterized across a temperature range of 50 - 100°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
/n  
I
C = IS * (e qVBE kT –1)  
Q
Where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
6.  
The series resistance, RT, provided in the Diode Model Table (Table 26) can be used for  
more accurate readings as needed.  
86  
Datasheet  
Thermal Specifications and Design Considerations  
When calculating a temperature based on thermal diode measurements, a number of  
parameters must be either measured or assumed. Most devices measure the diode  
ideality and assume a series resistance and ideality trim value, although some are  
capable of also measuring the series resistance. Calculating the temperature is then  
accomplished using the equations listed under Table 25. In most temperature sensing  
devices, an expected value for the diode ideality is designed-in to the temperature  
calculation equation. If the designer of the temperature sensing device assumes a  
perfect diode the ideality value (also called ntrim) will be 1.000. Given that most diodes  
are not perfect, the designers usually select an ntrim value that more closely matches  
the behavior of the diodes in the processor. If the processors diode ideality deviates  
from that of ntrim, each calculated temperature will be offset by a fixed amount. This  
temperature offset can be calculated with the equation:  
Terror(nf) = Tmeasured X (1 - nactual/ntrim  
)
Where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured  
ideality of the diode, and ntrim is the diode ideality assumed by the temperature  
sensing device.  
5.1.2  
Thermal Diode Offset  
In order to improve the accuracy of diode based temperature measurements, a  
temperature offset value (specified as Toffset) will be programmed into a processor  
Model Specific Register (MSR) which will contain thermal diode characterization data.  
During manufacturing each processors thermal diode will be evaluated for its behavior  
relative to a theoretical diode. Using the equation above, the temperature error created  
by the difference between ntrim and the actual ideality of the particular processor will  
be calculated.  
If the ntrim value used to calculate Toffset differs from the ntrim value used in a  
temperature sensing device, the Terror(nf) may not be accurate. If desired, the Toffset  
can be adjusted by calculating nactual and then recalculating the offset using the actual  
ntrim as defined in the temperature sensor manufacturers' datasheet.  
The ntrim used to calculate the Diode Correction Toffset are listed in the table below  
Table 28.  
Thermal Diode ntrim and Diode Correction Toffset  
Symbol  
ntrim  
Parameter  
Value  
Diode ideality used to calculate Toffset  
1.01  
5.1.3  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner, and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss, and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
Datasheet  
87  
Thermal Specifications and Design Considerations  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep  
Technology transition when the processor silicon reaches its maximum operating  
temperature. The Intel Thermal Monitor uses two modes to activate the TCC:  
Automatic mode and on-demand mode. If both modes are activated, Automatic mode  
takes precedence.  
Note:  
The Intel Thermal Monitor automatic mode must be enabled through BIOS for the  
processor to be operating within specifications.  
There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal  
Monitor 2 (TM2). These modes are selected by writing values to the Model Specific  
Registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will  
activate only when the internal die temperature reaches the maximum allowed value  
for operation.  
Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation  
exists, the processor will perform an Enhanced Intel SpeedStep Technology transition  
to a lower operating point. When the processor temperature drops below the critical  
level, the processor will make an Enhanced Intel SpeedStep Technology transition to  
the last requested operating point.  
TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in  
the auto-throttle MSR, TM2 will take precedence over TM1. However, if TM2 is not  
sufficient to cool the processor below the maximum operating temperature then TM1  
will also activate to help cool down the processor. Intel recommends Intel Thermal  
Monitor 1 and Intel Thermal Monitor 2 be enabled on the Intel Core Duo processor and  
Intel Core Solo processor.  
If a processor load-based Enhanced Intel SpeedStep Technology transition (through  
MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two  
possible results:  
1. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is higher than the Intel Thermal Monitor 2 transition-based target  
frequency, the processor load-based transition will be deferred until the Intel  
Thermal Monitor 2 event has been completed.  
2. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is lower than the Intel Thermal Monitor 2 transition-based target  
frequency, the processor will transition to the processor load-based Enhanced Intel  
SpeedStep Technology target frequency point.  
When Intel Thermal Monitor 1 is enabled while a high temperature situation exists, the  
clocks will be modulated by alternately turning the clocks off and on at a 50% duty  
cycle. Cycle times are processor speed dependent and will decrease linearly as  
processor core frequencies increase. Once the temperature has returned to a non-  
critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis  
has been included to prevent rapid active/inactive transitions of the TCC when the  
processor temperature is near the trip point. The duty cycle is factory configured and  
cannot be modified. Also, automatic mode does not require any additional hardware,  
software drivers, or interrupt handling routines. Processor performance will be  
decreased by the same amount as the duty cycle when the TCC is active.  
The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately,  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
88  
Datasheet  
Thermal Specifications and Design Considerations  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three model specific  
registers (MSR), and one I/O pin (PROCHOT#). All are available to monitor and control  
the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be  
configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.  
Note:  
PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep  
Sleep, and Deeper Sleep low power states (internal clocks stopped), hence the thermal  
diode reading must be used as a safeguard to maintain the processor junction  
temperature within maximum specification. If the platform thermal solution is not able  
to maintain the processor junction temperature within the maximum specification, the  
system must initiate an orderly shutdown to prevent damage. If the processor enters  
one of the above low power states with PROCHOT# already asserted, PROCHOT# will  
remain asserted until the processor exits the low power state and the processor  
junction temperature drops below the thermal trip point.  
If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out  
of specification. Regardless of enabling the automatic or on-demand modes, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached a temperature of approximately 125°C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
5.1.4  
Digital Thermal Sensor (DTS)  
The processor also contains an on-die DTS that can be read via a MSR (no I/O  
interface). In a dual core implementation of the Intel Core Duo processor, each core will  
have a unique DTS whose temperature is accessible via processor MSR. The DTS is the  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
Intel Thermal Monitor. The DTS is only valid while the processor is in the normal  
operating state (C0 state).  
Unlike traditional thermal devices, the DTS will output a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
Over temperature conditions are detectable via an Out Of Spec status bit. This bit is  
also part of the digital thermal sensor MSR. When this bit is set, the processor is  
.
operating out of specification and immediate shutdown of the system should occur. The  
processor operation and code execution is not guaranteed once the activation of the  
Out of Spec status bit is set.  
The DTS relative temperature readout corresponds to the Intel Thermal Monitor (TM1/  
TM2) trigger point. When the DTS indicates maximum processor core temperature has  
been reached the TM1 or TM2 hardware thermal control mechanism will activate. The  
DTS and TM1/TM2 temperature may not correspond to the thermal diode reading since  
the thermal diode is located in a separate portion of the die and thermal gradient  
between the individual core DTS. Additionally, the thermal gradient from DTS to  
thermal diode can vary substantially due to changes in processor power, mechanical  
Datasheet  
89  
Thermal Specifications and Design Considerations  
and thermal attach and software application. The system designer is required to use  
the DTS to guarantee proper operation of the processor within its temperature  
operating specifications  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC.  
5.1.5  
5.1.6  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shut down before the  
THERMTRIP# is activated. If the processor’s TM1 or TM2 are triggered and the  
temperature remains high, an “Out Of Spec” status and sticky bit are latched in the  
status MSR register and generates thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If the Intel Thermal  
Monitor 1 or Intel Thermal Monitor 2 is enabled (note that the Intel Thermal Monitor 1  
or Intel Thermal Monitor 2 must be enabled for the processor to be operating within  
specification), the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or deassertion of  
PROCHOT#.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from over-temperature situations. The  
PROCHOT# signal is bi-directional in that it can either signal when the processor has  
reached its maximum operating temperature or be driven from an external source to  
activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means  
for thermal protection of system components.  
In a dual core implementation, only a single PROCHOT# pin exists at a package level.  
When either core's thermal sensor trips, PROCHOT# signal will be driven by the  
processor package. If only TM1 is enabled, PROCHOT# will be asserted and only the  
core that is above TCC temperature trip point will have its core clocks modulated. If  
TM2 is enabled, then regardless of which core(s) are above TCC temperature trip point,  
both cores will enter the lowest programmed TM2 performance state.  
Note:  
It is important to note that Intel recommends both TM1 and TM2 be enabled.  
When PROCHOT# is driven by an external agent, if only TM1 is enabled on both cores,  
then both processor cores will have their core clocks modulated. If TM2 is enabled on  
both cores, then both processor core will enter the lowest programmed TM2  
performance state.  
One application is the thermal protection of voltage regulators (VR). System designers  
can create a circuit to monitor the VR temperature and activate the TCC when the  
temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and  
activating the TCC, the VR can cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in  
case of system cooling failure. The system thermal design should allow the power  
delivery circuitry to operate within its temperature specification even while the  
processor is operating at its TDP. With a properly designed and characterized thermal  
solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very  
90  
Datasheet  
Thermal Specifications and Design Considerations  
short periods of time when running the most power intensive applications. An under-  
designed thermal solution that is not able to prevent excessive assertion of PROCHOT#  
in the anticipated ambient environment may cause a noticeable performance loss.  
§
Datasheet  
91  

相关型号:

T2500B

200V, 6A, TRIAC, TO-220AB
MOTOROLA

T2500B

TRIAC SILICON BIDIRECTIONAL THYRISTORS
NJSEMI

T2500B-16

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220, 2 PIN
MOTOROLA

T2500B-A

200V, 6A, TRIAC, TO-220AB
MOTOROLA

T2500B-A16A

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220, 3 PIN
MOTOROLA

T2500B-AC

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA

T2500B-AF

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA

T2500B-AJ

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA

T2500B-AK

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA

T2500B-AN

200V, 6A, TRIAC, TO-220AB
MOTOROLA

T2500B-AS

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA

T2500B-AU

TRIAC, 200V V(DRM), 6A I(T)RMS, TO-220AB,
MOTOROLA