T5600 [INTEL]

Intel Core2 Duo Mobile Processor for Intel Centrino Duo Mobile Processor Technology; 英特尔酷睿2双核移动处理器的英特尔迅驰双核移动处理器技术
T5600
型号: T5600
厂家: INTEL    INTEL
描述:

Intel Core2 Duo Mobile Processor for Intel Centrino Duo Mobile Processor Technology
英特尔酷睿2双核移动处理器的英特尔迅驰双核移动处理器技术

文件: 总91页 (文件大小:1914K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Core™2 Duo Mobile Processor  
for Intel® Centrino® Duo Mobile  
Processor Technology  
Datasheet  
September 2007  
Document Number: 314078-004  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS  
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,  
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING  
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY  
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY  
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH  
MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the  
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future  
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The  
information here is subject to change without notice. Do not finalize a design with this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Enhanced Intel SpeedStep® Technology for specified units of this processor available Q2/06. See the Processor Spec Finder at  
http://processorfinder.intel.com or contact your Intel representative for more information  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device  
drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an  
Intel 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with  
your system vendor for more information.  
Intel, Centrino, Pentium, Intel Core 2, Intel SpeedStep, MMX, and the Intel logo are trademarks or registered trademarks of Intel  
Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2006 - 2007, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................9  
References ....................................................................................................... 10  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low Power States .................................................................... 11  
2.1.1 Core Low Power State Descriptions........................................................... 13  
2.1.2 Package Low Power State Descriptions...................................................... 15  
Enhanced Intel SpeedStep® Technology .............................................................. 18  
Extended Low Power States................................................................................ 19  
FSB Low Power Enhancements............................................................................ 19  
Processor Power Status Indicator (PSI#) Signal..................................................... 20  
2.2  
2.3  
2.4  
2.5  
3
Electrical Specifications........................................................................................... 21  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Power and Ground Pins ...................................................................................... 21  
FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 21  
Voltage Identification......................................................................................... 21  
Catastrophic Thermal Protection.......................................................................... 25  
Reserved and Unused Pins.................................................................................. 25  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 26  
FSB Signal Groups............................................................................................. 26  
CMOS Signals ................................................................................................... 28  
Maximum Ratings.............................................................................................. 28  
3.10 Processor DC Specifications ................................................................................ 29  
4
5
Package Mechanical Specifications and Pin Information.......................................... 39  
4.1  
4.2  
4.3  
Package Mechanical Specifications....................................................................... 39  
Processor Pinout and Pin List .............................................................................. 49  
Alphabetical Signals Reference............................................................................ 73  
Thermal Specifications and Design Considerations .................................................. 81  
5.1  
Thermal Specifications ....................................................................................... 85  
5.1.1 Thermal Diode ....................................................................................... 85  
5.1.2 Thermal Diode Offset.............................................................................. 85  
5.1.3 Intel® Thermal Monitor........................................................................... 87  
5.1.4 Digital Thermal Sensor............................................................................ 89  
5.1.5 Out of Specification Detection .................................................................. 90  
5.1.6 PROCHOT# Signal Pin............................................................................. 90  
Datasheet  
3
Figures  
1
2
3
4
Core Low Power States..............................................................................................12  
Package Low Power States.........................................................................................13  
Deeper Sleep VCC and ICC Loadline for Dual-core Standard Voltage Processors..................34  
Deeper Sleep VCC and ICC Loadline for Dual-core Low Voltage and  
Ultra Low Voltage Processor.......................................................................................35  
Active VCC and ICC Loadline for Intel Core 2 Solo Processor, Ultra Low Voltage..................36  
4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing .....................................40  
4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing .....................................41  
2-MB Micro-FCPGA Processor Package Drawing.............................................................42  
2-MB Micro-FCPGA Processor Package Drawing.............................................................43  
5
6
7
8
9
10 4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing .....................................44  
11 4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing .....................................45  
12 2-MB Micro-FCBGA Processor Package Drawing ............................................................46  
13 1-MB Micro-FCBGA Processor Package Drawing (2 of 2).................................................47  
14 1-MB Micro-FCBGA Processor Package Drawing (2 of 2).................................................48  
Tables  
1
Coordination of Core Low Power States at the Package Level..........................................13  
2
3
4
5
6
7
8
9
Voltage Identification Definition..................................................................................22  
BSEL[2:0] Encoding for BCLK Frequency......................................................................26  
FSB Pin Groups ........................................................................................................27  
Processor Absolute Maximum Ratings..........................................................................28  
Voltage and Current Specifications for Dual-core Standard Voltage Processors..................29  
Voltage and Current Specifications for Dual-core Low Voltage Processors .........................31  
Voltage and Current Specifications for Single and Dual-core Ultra Low Voltage Processors..32  
AGTL+ Signal Group DC Specifications ........................................................................37  
10 CMOS Signal Group DC Specifications..........................................................................38  
11 Open Drain Signal Group DC Specifications ..................................................................38  
12 The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2)..........................................................................................................50  
13 The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 2 of 2)..........................................................................................................51  
14 Pin Listing by Pin Name.............................................................................................53  
15 Pin Listing by Pin Number..........................................................................................64  
16 Signal Description.....................................................................................................73  
17 Power Specifications for the Dual-core Standard Voltage Processor..................................82  
18 Power Specifications for the Dual-core Low Voltage Processor.........................................83  
19 Power Specifications for the Single and Dual-core Ultra Low Voltage Processor..................84  
20 Thermal Diode ntrim and Diode Correction Toffset ........................................................86  
21 Thermal Diode Interface............................................................................................86  
22 Thermal Diode Parameters using Diode Mode...............................................................86  
23 Thermal Diode Parameters Using Transistor Model ........................................................87  
4
Datasheet  
Revision History  
Revision  
Number  
Description  
Revision Date  
-001  
-002  
-003  
Initial release  
August 2006  
Added Information for L7400 and L7200 Low-Voltage Processors  
Updated Table 08 in Chapter 3  
Updated Table 17 in Chapter 5  
December 2006  
May 2007  
Added L-2 die package information  
Added Information for U2200 and U2100 Ultra Low-Voltage Processors  
Updated Electrical Specifications in Chapter 3 for ULV Processors  
Updated Thermal Specifications in Chapter 5 for ULV Processors  
Added A-1 die package information  
-004  
September 2007  
§ §  
Datasheet  
5
6
Datasheet  
Introduction  
1
Introduction  
The Intel® Core™2 Duo mobile processor for Intel® Centrino® Duo mobile technology  
based on the Intel® 945 Express Chipset family is built on 65-nanometer process  
technology and is the next generation high-performance, low-power mobile processor  
based on the Intel® Core™ architecture.  
Note:  
All references to the word “processor” in this document are references to the Intel Core  
2 Duo mobile processor with 533- and 667-MHz front side bus (FSB), unless specified  
otherwise.  
The following list provides some of the key features on this processor:  
• Dual-core processor for mobile with enhanced performance  
• Intel® 64 architecture  
• Supports Intel Architecture with Dynamic Execution  
• On-die, primary 32-kB instruction cache and 32-kB write-back data cache per core  
• On-die, up to 4-MB second level shared cache with Advanced Transfer Cache  
Architecture  
• Data Prefetch Logic  
• Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and  
Supplemental Streaming SIMD Extensions 3 (SSSE3)  
• 667-MHz, Source-Synchronous FSB for Standard Voltage processors  
• Advanced Power Management features including Enhanced Intel SpeedStep®  
Technology  
• Intel® Enhanced Deeper Sleep state and Dynamic Cache Sizing  
• Digital Thermal Sensor  
• Micro-FCPGA and Micro-FCBGA packaging technologies  
• Intel® Virtualization Technology  
• Execute Disable Bit support for enhanced security  
Note:  
64-bit computing on Intel architecture requires a computer system with a processor,  
chipset, BIOS, operating system, device drivers and applications enabled for Intel 64  
architecture. Processors will not operate (including 32-bit operation) without an Intel  
64 architecture-enabled BIOS. Performance will vary depending on your hardware and  
software configurations. Consult with your system vendor for more information.  
The Intel Core 2 Duo mobile processor will be manufactured on Intel’s 65-nanometer  
process technology. The processor maintains support for MMXTM technology, Streaming  
SIMD instructions, and full compatibility with IA-32 software. In addition, the Intel Core  
2 Duo mobile processor supports Intel 64 architecture which is enabled by 64-bit  
operating systems and consists of 64-bit instructions and registers. Further details on  
Intel Extended Memory 64 Technology and its programming model can be found in the  
Intel Extended Memory 64 Technology Software Developer’s Guide. The Intel Core 2  
Duo mobile processor features on-die, 32-kB level 1 instruction and data caches and  
features up to a 4-MB level 2 cache with Advanced Transfer Cache Architecture. The  
processor’s Data Prefetch Logic speculatively fetches data to the L2 cache before the L1  
cache requests occurs, resulting in reduced bus cycle penalties. The processor includes  
the Data Cache Unit Streamer which enhances the performance of the L2 prefetcher by  
requesting L1 warm-ups earlier. In addition, the Write Order Buffer depth is enhanced  
to help with the write-back latency performance.  
Datasheet  
7
Introduction  
In addition to supporting the existing Streaming SIMD Extensions 2 (SSE2) and  
Streaming SIMD Extensions 3 (SSE3), the processor supports Supplemental Streaming  
SIMD Extensions 3 (SSSE3) to speed up media algorithms like encoding and decoding.  
Advanced Dynamic Execution improves speculative execution and branch prediction  
internal to the processor. The floating point and multi-media units include 128-bit wide  
registers and a separate register for data movement. Streaming SIMD3 (SSE3)  
instructions provide highly efficient double-precision floating point, SIMD integer, and  
memory management operations. Also, these instructions enhance the performance of  
optimized applications for the digital home such as video, image processing and media  
compression technology.  
The processor features Enhanced Intel SpeedStep Technology, which enables real-time  
dynamic switching between multiple voltage and frequency points. The processor  
features the Auto Halt, Stop Grant, Deep Sleep, and Intel Enhanced Deeper Sleep C-  
states. Enhanced thermal management capabilities are implemented including Intel®  
Thermal Monitor 1 and Intel Thermal Monitor 2 to provide efficient and effective cooling  
in high temperatures.  
The Intel Core 2 Duo mobile processor utilizes socketable Micro Flip-Chip Pin Grid Array  
(Micro-FCPGA) and surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA)  
package technology. The Micro-FCPGA package plugs into a 479-hole, surface-mount,  
Zero Insertion Force (ZIF) socket, which is referred to as the mPGA479M socket.  
Intel Core 2 Duo mobile processor supports the Execute Disable Bit capability. This  
feature combined with a supporting operating system allows memory to be marked as  
executable or non executable. If code attempts to run in non-executable memory the  
processor raises an error to the operating system. This feature can prevent some  
classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help  
improve the overall security of the system. See the Intel® 64 and IA-32 Intel®  
Architectures Software Developer's Manual for more detailed information.  
Intel Virtualization Technology is a set of hardware enhancements to Intel server and  
client systems that combined with the appropriate software, will enable enhanced  
virtualization robustness and performance for both enterprise and consumer uses. Intel  
Virtualization Technology forms the foundation of Intel technologies focused on  
improved virtualization, safer computing, and system stability. For client systems, Intel  
Virtualization Technology’s hardware-based isolation helps provide the foundation for  
highly available and more secure client virtualization partitions.  
8
Datasheet  
Introduction  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A, and XXXX  
means that the specification or value is yet to be determined.  
#
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel processors.  
AGTL+  
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Intel®  
Virtualization  
Technology  
Processor virtualization which when used in conjunction with Virtual  
Machine Monitor software enables multiple, robust independent software  
environments inside a single platform.  
Processor core die with integrated L1 and L2 cache. All AC timing and  
signal integrity specifications are at the pads of the processor core.  
Processor Core  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor lands should not be  
connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
VCC  
VSS  
The processor core power supply  
The processor ground reference  
Datasheet  
9
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when  
reading this document. Also note that with Intel Centrino Duo technology, the Intel  
Core 2 Duo mobile processor supports Mobile Intel® 945GM/GT/GMS/PM and 940GML  
Express Chipset family and Intel® 82801GBM (also known as ICH7M).  
Document  
Document  
Number  
Intel® Core™2 Duo Processor for Intel® Centrino® Duo Technology  
Specification Update  
314079  
Mobile Intel® 945 Express Chipset Family Chipset Datasheet  
Mobile Intel® 945 Express Chipset Family Chipset Specification Update  
Intel® I/O Controller Hub 7 (ICH7) Family Datasheet  
Intel® I/O Controller Hub 7 (ICH7) Family Specification Update  
Intel® 64 and IA-32 Intel® Architectures Software Developer's Manual  
Volume 1: Basic Architecture  
309219  
309220  
307013  
307014  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
Intel® 64 and IA-32 Architectures Software Developer's Manual  
Documentation Changes  
252046  
241618  
AP-485 Intel® Processor Identification and the CPUID Instruction  
§ §  
10  
Datasheet  
Low Power Features  
2
Low Power Features  
2.1  
Clock Control and Low Power States  
The Intel Core 2 Duo mobile processor supports low power states both at the individual  
core level and the package level for optimal power management. A core may  
independently enter the C1/AutoHALT, C1/MWAIT, C2, C3, and C4 low power states.  
Refer to Figure 1 for a visual representation of the core low power states for the  
processor. When both cores coincide in a common core low power state, the central  
power management logic ensures the entire Intel Core 2 Duo mobile processor enters  
the respective package low power state by initiating a P_LVLx (P_LVL2, P_LVL3, and  
P_LVL4) I/O read to the Intel 945GM/GT/GMS/PM and 940GML Express Chipset family.  
Package low power states include Normal, Stop Grant, Stop Grant Snoop, Sleep, Deep  
Sleep, and Deeper Sleep. Refer to Figure 2 for a visual representation of the package  
low power states for the Intel Core 2 Duo mobile processor and to Table 1 for a  
mapping of core low power states to package low power states.  
The Intel Core 2 Duo mobile processor implements two software interfaces for  
requesting low power states: MWAIT instruction extensions with sub-state hints and  
P_LVLx reads to the ACPI P_BLK register block mapped in the processor’s I/O address  
space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests  
inside the processor and do not directly result in I/O reads on the processor FSB. The  
monitor address does not need to be setup before using the P_LVLx I/O read interface.  
The sub-state hints used for each P_LVLx read can be configured through a software  
programmable Model Specific Register (MSR).  
If a core encounters a chipset break event while STPCLK# is asserted, then it asserts  
the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to  
system logic that individual cores should return to the C0 state and the Intel Core 2  
Duo mobile processor should return to the Normal state.  
Datasheet  
11  
Low Power Features  
Figure 1.  
Core Low Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
STPCLK#  
de-asserted  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
asserted  
C1/  
MWAIT  
C1/Auto  
Halt  
Core state  
break  
HLT instruction  
MWAIT(C1)  
Halt break  
C0  
Core State  
break  
P_LVL2 or  
MWAIT(C2)  
P_LVL4 or  
MWAIT(C4)  
Core state  
break  
C4† ‡  
C2†  
Core  
state  
break  
P_LVL3 or  
MWAIT(C3)  
C3†  
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
† — STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4.  
‡ — Core C4 state includes the Intel Enhanced Deeper Sleep state.  
12  
Datasheet  
Low Power Features  
Figure 2.  
Package Low Power States  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
STPCLK# asserted  
Deeper  
Sleep†  
Stop  
Grant  
Deep  
Sleep  
Normal  
Sleep  
STPCLK# de-asserted  
SLP# de-asserted  
DPSLP# de-asserted  
DPRSTP# de-asserted  
Snoop  
Snoop  
serviced occurs  
Stop  
Grant  
Snoop  
† — Deeper Sleep includes the Deeper Sleep state and Intel Enhanced Deeper Sleep state.  
Table 1.  
Coordination of Core Low Power States at the Package Level  
Package State  
Core1 State  
C1/Auto  
HALT/  
MWAIT  
Core0 State  
C0  
C0  
C2  
C3  
C4  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
C1/AutoHALT/  
MWAIT  
C2  
C3  
Normal  
Normal  
Normal  
Normal  
Stop-Grant  
Stop-Grant  
Stop-Grant  
Deep Sleep  
Stop-Grant  
Deep Sleep  
Deeper Sleep/  
Intel®  
Enhanced  
C4  
Normal  
Normal  
Stop-Grant  
Deep Sleep  
Deeper Sleep  
2.1.1  
Core Low Power State Descriptions  
2.1.1.1  
Core C0 State  
This is the normal operating state for cores in the processor.  
2.1.1.2  
Core C1/AutoHALT Powerdown State  
C1/AutoHALT is a low power state entered when a core executes the HALT instruction.  
The processor core will transition to the C0 state upon occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to  
immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT Powerdown state. See the Intel® 64 and IA-32 Intel®  
Architectures Software Developer's Manual, Volume 3A/3B: System Programmer's  
Guide for more information.  
The system can generate a STPCLK# while the processor is in the AutoHALT  
Powerdown state. When the system deasserts the STPCLK# interrupt, the processor  
will return execution to the HALT state.  
Datasheet  
13  
Low Power Features  
While in AutoHALT Powerdown state, the Intel Core 2 Duo mobile processor will process  
bus snoops and snoops from the other core. The processor core will enter a snoopable  
sub-state (not shown in Figure 1) to process the snoop and then return to the  
AutoHALT Powerdown state.  
2.1.1.3  
2.1.1.4  
Core C1/MWAIT Powerdown State  
C1/MWAIT is a low power state entered when the processor core executes the  
MWAIT(C1) instruction. Processor behavior in the MWAIT state is identical to the  
AutoHALT state except that Monitor events can cause the processor core to return to  
the C0 state. See the Intel® 64 and IA-32 Intel® Architectures Software Developer's  
Manual, Volume 2A/2B: Instruction Set Reference for more information.  
Core C2 State  
Individual cores of the Intel Core 2 Duo mobile processor can enter the C2 state by  
initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction, but the  
processor will not issue a Stop-Grant Acknowledge special bus cycle unless the  
STPCLK# pin is also asserted.  
While in the C2 state, the Intel Core 2 Duo mobile processor will process bus snoops  
and snoops from the other core. The processor core will enter a snoopable sub-state  
(not shown in Figure 1) to process the snoop and then return to the C2 state.  
2.1.1.5  
Core C3 State  
Individual cores of the Intel Core 2 Duo mobile processor can enter the C3 state by  
initiating a P_LVL3 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering  
C3, the processor core flushes the contents of its L1 caches into the processor’s L2  
cache. Except for the caches, the processor core maintains all its architectural state in  
the C3 state. The Monitor remains armed if it is configured. All of the clocks in the  
processor core are stopped in the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the Intel  
Core 2 Duo mobile processor accesses cacheable memory. The processor core will  
transition to the C0 state upon occurrence of a Monitor event, SMI#, INIT#, LINT[1:0]  
(NMI, INTR), or FSB interrupt message. RESET# will cause the processor core to  
immediately initialize itself.  
2.1.1.6  
Core C4 State  
Individual cores of the Intel Core 2 Duo mobile processor can enter the C4 state by  
initiating a P_LVL4 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor  
core behavior in the C4 state is nearly identical to the behavior in the C3 state. The  
only difference is that if both processor cores are in C4, then the central power  
management logic will request that the entire Intel Core 2 Duo mobile processor enter  
the Deeper Sleep package low power state (see Section 2.1.2.6).  
To enable the package level Intel® Enhanced Deeper Sleep state, Dynamic Cache  
Sizing and Intel Enhanced Deeper Sleep state fields must be configured in the software  
programmable MSR to enable the Intel Enhanced Deeper Sleep state.  
14  
Datasheet  
Low Power Features  
2.1.2  
Package Low Power State Descriptions  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The Intel Core 2 Duo mobile  
processor remains in the Normal state when at least one of its cores is in the C0, C1/  
AutoHALT, or C1/MWAIT state.  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the Intel Core 2 Duo mobile processor  
enters the Stop-Grant state within 20 bus clocks after the response phase of the  
processor-issued Stop-Grant Acknowledge special bus cycle. Processor cores that are  
already in the C2, C3, or C4 state remain in their current low power state. When the  
STPCLK# pin is deasserted, each core returns to its previous core low power state.  
Note:  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
RESET# will cause the processor to immediately initialize itself, but the processor will  
stay in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#,  
SLP#, DPSLP#, and DPRSTP# pins must be deasserted more than 480 µs prior to  
RESET# deassertion (AC Specification T45). When re-entering the Stop-Grant state  
from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the  
deassertion of SLP# (AC Specification T75).  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be  
asserted if there is any pending interrupt or monitor event latched within the processor.  
Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause  
assertion of PBE#. Assertion of PBE# indicates to system logic that the entire processor  
should return to the Normal state.  
A transition to the Stop-Grant Snoop state will occur when the processor detects a  
snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see  
Section 2.1.2.4) will occur with the assertion of the SLP# signal.  
2.1.2.3  
2.1.2.4  
Stop-Grant Snoop State  
The processor will respond to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor will return  
to the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
Datasheet  
15  
Low Power Features  
Note:  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through Stop-Grant state. If RESET# is driven active while the processor  
is in the Sleep state, the SLP# and STPCLK# signals should be deasserted immediately  
after RESET# is asserted to ensure the processor correctly executes the Reset  
sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 2.1.2.5.). While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
2.1.2.5  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on Intel 945GM/GT/GMS/PM and 940GML  
Express Chipset family based platforms with the CK410M clock chip are as follows:  
• Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of  
DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
• Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in Deep Sleep state, the processor is incapable of responding tosnoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep  
state, it will not respond to interrupts or snoop transactions. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable  
behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but reduces core voltage to  
one of two lower levels. One lower core voltage level is achieved by entering the base  
Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. The other lower core voltage level, the  
lowest possible in the processor, is achieved by entering the Intel Enhanced Deeper  
Sleep state of Deeper Sleep state. The Intel Enhanced Deeper Sleep state is entered  
through assertion of the DPRSTP# pin while in the Deep Sleep only when the L2 cache  
has been completely shut down. Refer to Section 2.1.2.6.1 and Section 2.1.2.6.2 for  
further details on reducing the L2 cache and entering Intel Enhanced Deeper Sleep  
state.  
In response to entering Deeper Sleep, the Intel Core 2 Duo mobile processor will drive  
the VID code corresponding to the Deeper Sleep core voltage on the VID[6:0] pins.  
16  
Datasheet  
Low Power Features  
Exit from the Deeper Sleep state or Intel Enhanced Deeper Sleep state is initiated by  
DPRSTP# deassertion when either core requests a core state other than C4 or either  
core requests a processor performance state other than the lowest operating point.  
2.1.2.6.1  
Intel Enhanced Deeper Sleep State  
Intel Enhanced Deeper Sleep state is a sub-state of Deeper Sleep that extends power  
saving capabilities by allowing the processor to further reduce core voltage once the L2  
cache has been reduced to zero ways and completely shut down. The following events  
occur when the processor enters Intel Enhanced Deeper Sleep state:  
• The last core entering C4 issues a P_LVL4 I/O Read or an MWAIT(C4).  
• The processor triggers a special chipset sequence to notify the chipset to redirect  
all FSB traffic, except APIC messages, to memory. The snoops are replied as misses  
by the chipset and are directed to main memory instead of the L2 cache.  
• The processor will drive the VID code corresponding to the Intel Enhanced Deeper  
Sleep state core voltage on the VID[6:0] pins.  
2.1.2.6.2  
Dynamic Cache Sizing  
Dynamic Cache Sizing allows the processor to flush and disable a programmable  
number of L2 cache ways upon each Deeper Sleep entry under the following  
conditions:  
• The second core is already in C4 and core sub-state Intel Enhanced Deeper Sleep  
state is enabled (as specified in Section 2.1.2.6.1).  
• The C0 timer, which tracks continuous residency in the Normal package state, has  
not expired. This timer is cleared during the first entry into Deeper Sleep to allow  
consecutive Deeper Sleep entries to shrink the L2 cache as needed.  
• The FSB speed to processor core speed ratio is below the predefined L2 shrink  
threshold.  
If the FSB speed to processor core speed ratio is above the predefined L2 shrink  
threshold, then L2 cache expansion will be requested. If the ratio is zero, then the ratio  
will not be taken into account for Dynamic Cache Sizing decisions.  
Upon STPCLK# deassertion, the first core exiting the Intel Enhanced Deeper Sleep  
state will expand the L2 cache to 2 ways and invalidate previously disabled cache ways.  
If the L2 cache reduction conditions stated above still exist when the last core returns  
to C4 and the package enters Intel Enhanced Deeper Sleep state, then the L2 will be  
shrunk to zero again. If a core requests a processor performance state resulting in a  
higher ratio than the predefined L2 shrink threshold, the C0 timer expires, or the  
second core (not the one currently entering the interrupt routine) requests the C1, C2,  
or C3 states, then the whole L2 will be expanded when the next INTR event would  
occur.  
L2 cache shrink prevention may be enabled as needed on occasion through an  
MWAIT(C4) sub-state field. If shrink prevention is enabled, then the Intel Core 2 Duo  
mobile processor does not enter the Intel Enhanced Deeper Sleep state since the L2  
cache remains valid and in full size.  
Datasheet  
17  
Low Power Features  
2.2  
Enhanced Intel SpeedStep® Technology  
The Intel Core 2 Duo mobile processor features Enhanced Intel SpeedStep Technology.  
Following are the key features of Enhanced Intel SpeedStep Technology:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software controlled by writing to processor  
MSRs:  
— . If the target frequency is higher than the current frequency, Vcc is ramped up  
in steps by placing new values on the VID pins and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress, the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure glitch free  
transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the  
frequency transition.  
— The bus protocol (BNR# mechanism) is used to block snooping.  
• Improved Intel Thermal Monitor mode:  
— When the on-die thermal sensor indicates that the die temperature is too high,  
the processor can automatically perform a transition to a lower frequency and  
voltage specified in a software programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up transition to the previous frequency and voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system level thermal management.  
• Enhanced thermal management features.  
— Digital Thermal Sensor and Out of Specification detection.  
— Intel Thermal Monitor 1 in addition to Intel Thermal Monitor 2 in case of  
unsuccessful Intel Thermal Monitor 2 transition.  
— Dual-core thermal management synchronization.  
Each core in the processor implements an independent MSR for controlling Enhanced  
Intel SpeedStep Technology, but both cores must operate at the same frequency and  
voltage. The processor has performance state coordination logic to resolve frequency  
and voltage requests from the two cores into a single frequency and voltage request for  
the package as a whole. If both cores request the same frequency and voltage, then  
the processor will transition to the requested common frequency and voltage. If the  
two cores have different frequency and voltage requests, then the processor will take  
the highest of the two frequencies and voltages as the resolved request and transition  
to that frequency and voltage.  
18  
Datasheet  
Low Power Features  
2.3  
Extended Low Power States  
Extended low power states (C1E, C2E, C3E, C4E) optimize for power by forcibly  
reducing the performance state of the processor when it enters a package low power  
state. Instead of directly transitioning into the package low power state, the extended  
low power state first reduces the performance state of the processor by performing an  
Enhanced Intel SpeedStep Technology transition down to the lowest operating point.  
Upon receiving a break event from the package low power state, control will be  
returned to software while an Enhanced Intel SpeedStep Technology transition up to  
the initial operating point occurs. The advantage of this feature is that it significantly  
reduces leakage while in the package low power states.  
Note:  
Note:  
Long-term reliability may not be assured if Extended Low Power States are not  
enabled.  
The processor implements two software interfaces for requesting extended package  
low power states: MWAIT instruction extensions with sub-state hints and via BIOS by  
configuring a software programmable MSR to automatically promote package low  
power states to extended package low power states.  
Extended Stop-Grant and Extended Deeper Sleep must be enabled via the BIOS for the  
processor to remain within specification.  
Enhanced Intel SpeedStep Technology transitions are multistep processes that require  
clocked control. These transitions cannot occur when the processor is in the Sleep or  
Deep Sleep package low power states since processor clocks are not active in these  
states. Extended Deeper Sleep is an exception to this rule when the Hard C4E  
configuration is enabled through a software programmable MSR. This Extended Deeper  
Sleep state configuration will lower the core voltage to the Deeper Sleep level while in  
Deeper Sleep and, upon exit, will automatically transition to the lowest operating  
voltage and frequency to reduce snoop service latency. The transition to the lowest  
operating point or back to the original software requested point may not be  
instantaneous. Furthermore, upon very frequent transitions between active and idle  
states, the transitions may lag behind the idle state entry resulting in the processor  
either executing for a longer time at the lowest operating point or running idle at a high  
operating point. Observations and analyses show this behavior should not significantly  
impact total power savings or performance score while providing power benefits in  
most other cases.  
2.4  
FSB Low Power Enhancements  
The processor incorporates FSB low power enhancements:  
• Dynamic FSB Power Down  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On-die Termination disabling  
• Low VCCP (I/O termination voltage)  
Datasheet  
19  
Low Power Features  
The processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates  
them only when data bus activity occurs, resulting in significant power savings with no  
performance impact. BPRI# control also allows the processor address and control input  
buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows  
a reciprocal power reduction in chipset address and control input buffers when the  
processor deasserts its BR0# pin. The On-die Termination on the processor FSB buffers  
is disabled when the signals are driven low, resulting in additional power savings. The  
low I/O termination voltage is on a dedicated voltage plane independent of the core  
voltage, enabling low I/O switching power at all times.  
2.5  
Processor Power Status Indicator (PSI#) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve intermediate and light  
load efficiency of the voltage regulator, resulting in platform power savings and  
extended battery life. The algorithm that the processor uses for determining when to  
assert PSI# is different from the algorithm used in previous Intel® Pentium® M  
processors. For Intel Core 2 processor with Intel Centrino Duo mobile technology, PSI#  
signal functionality is supported only in idle state.  
§ §  
20  
Datasheet  
Electrical Specifications  
3
Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power planes  
while all VSS pins must be connected to system ground planes. Use of multiple power  
and ground planes is recommended to reduce I*R drop. Please contact your Intel  
representative for more details. The processor VCC pins must be supplied the voltage  
determined by the VID (Voltage ID) pins.  
3.2  
3.3  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous generation processors, the core frequency is a multiple of the  
BCLK[1:0] frequency. The processor uses a differential clocking implementation.  
Voltage Identification  
The processor uses seven voltage identification pins, VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 in this refers to a high-voltage level and a 0 refers to low-  
voltage level.  
Datasheet  
21  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 1 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Vcc (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
22  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Vcc (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
Datasheet  
23  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Vcc (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
24  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 4 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
Vcc (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3.4  
3.5  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough such that  
the processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of 125°C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the  
processor must be turned off within 500 ms to prevent permanent silicon damage due  
to thermal runaway of the processor. THERMTRIP# functionality is not guaranteed if the  
PWRGOOD signal is not asserted.  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Figure 12 for a pin listing of the processor  
and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected.  
The TEST1 and TEST2 pin must have a stuffing option connection to VSS separately via  
1-kΩ, pull-down resistors.  
Datasheet  
25  
Electrical Specifications  
For testing purposes it is recommended, but not required, to route the TEST3 and  
TEST4 pins through a ground referenced 55-Ω trace that ends in a via that is near a  
GND via and is accessible through an oscilloscope connection.  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the Intel 945GM/  
GT/GMS/PM and 940GML Express Chipset family on the platform. The BSEL encoding  
for BCLK[1:0] is shown in Table 3.  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BCLK  
BSEL[2]  
BSEL[1]  
BSEL[0]  
Frequency  
L
L
L
L
L
L
L
H
L
RESERVED  
133 MHz  
H
H
RESERVED  
166 MHz  
H
3.7  
FSB Signal Groups  
In order to simplify the following discussion, the FSB signals have been combined into  
groups by buffer type. AGTL+ input signals have differential input buffers, which use  
GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the  
AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+  
Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when  
driving.  
With the implementation of a source synchronous data bus comes the need to specify  
two sets of timing parameters. One set is for common clock signals which are  
dependent upon the rising edge of BCLK0 ADS#, HIT#, HITM#, etc.) and the second  
set is for the source synchronous signals which are relative to their respective strobe  
lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are  
still present (A20M#, IGNNE#, etc.) and can become active at any time during the  
clock cycle. Table 4 identifies which signals are common clock, source synchronous,  
and asynchronous.  
26  
Datasheet  
Electrical Specifications  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
Synchronous  
to BCLK[1:0]  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#, DPWR#,  
TRDY#  
AGTL+ Common Clock Input  
AGTL+ Common Clock I/O  
Synchronous  
to BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#, DRDY#, HIT#,  
HITM#, LOCK#, PRDY#3  
AGTL+ Source Synchronous I/O Synchronous  
to assoc.  
strobe  
Signals  
REQ[4:0]#,  
Associated Strobe  
ADSTB[0]#  
ADSTB[1]#  
A[16:3]#  
A[35:17]#6  
DSTBP0#,  
DSTBN0#  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP1#,  
DSTBN1#  
DSTBP2#,  
DSTBN2#  
DSTBP3#,  
DSTBN3#  
Synchronous  
AGTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
to BCLK[1:0]  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/INTR,  
LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#  
CMOS Input  
Asynchronous  
Open Drain Output  
Open Drain I/O  
CMOS Output  
Asynchronous FERR#, IERR#, THERMTRIP#  
Asynchronous PROCHOT#4  
Asynchronous PSI#, VID[6:0], BSEL[2:0]  
Synchronous  
TCK, TDI, TMS, TRST#  
to TCK  
CMOS Input  
Synchronous  
TDO  
Open Drain Output  
FSB Clock  
to TCK  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,  
THERMDA, THERMDC, VCC, VCCA, VCCP, VCC_SENSE, VSS,  
VSS_SENSE  
Power/Other  
NOTES:  
1.  
Refer to Chapter 4, “Package Mechanical Specifications and Pin Information” for signal descriptions and  
termination requirements.  
2.  
In processor systems without a debug port implemented on the board, these signals are used to support  
debug port interposers. In systems with the debug port implemented on the board, these signals are no  
connects.  
3.  
4.  
5.  
BPM[2:1]# and PRDY# are AGTL+ output only signals.  
PROCHOT# signal type is open drain output and CMOS input.  
On-die termination differs from other AGTL+ signals, please contact your Intel representative for more  
details.  
6.  
When paired with a chipset limited to 32-bit addressing, A[35:32] should remain unconnected.  
Datasheet  
27  
Electrical Specifications  
3.8  
3.9  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs in order  
for the processor to recognize them. See Section 3.10 for the DC specifications for the  
CMOS signal groups.  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings. Within functional operation  
limits, functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute  
maximum and minimum ratings, neither functionality nor long term reliability can be  
expected. If a device is returned to conditions within functional operation limits after  
having been subjected to conditions outside these limits, but within the absolute  
maximum and minimum ratings, the device may be functional, but with its lifetime  
degraded depending on exposure to conditions exceeding the functional operation  
condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 5.  
Processor Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes1  
TSTORAGE  
Processor storage temperature  
-40  
85  
°C  
2,3,4  
Any processor supply voltage with  
respect to VSS  
VCC  
-0.3  
-0.1  
-0.1  
1.55  
1.55  
1.55  
V
V
V
AGTL+ buffer DC input voltage with  
respect to VSS  
VinAGTL+  
VinAsynch_CMOS  
NOTES:  
CMOS buffer DC input voltage with  
respect to VSS  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be satisfied.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias. For  
functional operation, please refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
3.  
4.  
28  
Datasheet  
Electrical Specifications  
3.10  
Processor DC Specifications  
Note:  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise.  
See Table 4 for the pin signal definitions and signal pin assignments. Most of the signals  
on the FSB are in the AGTL+ signal group. The DC specifications for these signals are  
listed in Table 9. DC specifications for the CMOS group are listed in Table 10.  
Table 6 through Table 11 list the DC specifications for the processor and are valid only  
while meeting specifications for junction temperature, clock frequency, and input  
voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer  
to the highest and lowest core operating frequencies supported on the processor. Active  
mode load line specifications apply in all states except in the Deep Sleep and Deeper  
Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power  
up in order to set the VID values. Unless specified otherwise, all specifications for the  
processor are at Tjunction = 100°C. Care should be taken to read all notes associated  
with each parameter.  
Table 6.  
Symbol  
Voltage and Current Specifications for Dual-core Standard Voltage Processors  
(Sheet 1 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
1.0375  
0.75  
1.3000  
0.95  
V
V
V
V
V
V
V
1, 2  
1, 2  
2, 8  
1.20  
1.05  
1.5  
1.00  
1.425  
0.60  
1.10  
1.575  
0.80  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCCDC4  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1,2  
VCC at Intel® Enhanced Deeper Sleep Voltage  
0.55  
0.70  
ICC for Processors  
ICCDES  
Recommended Design Targets:  
44  
A
5
ICC for Processors  
Processor  
Core Frequency/Voltage  
Number  
T7600  
T7400  
T7200  
T5600  
T5500  
2.33 GHz and HFM VCC  
2.17 GHz and HFM VCC  
2.00 GHz and HFM VCC  
1.83 GHz and HFM VCC  
1.67 GHz and HFM VCC  
1.00 GHz and LFM VCC  
41  
41  
3, 8, 12  
3, 8, 12  
3, 8, 12  
3, 8, 13  
3, 8, 13  
ICC  
41  
A
41  
41  
27.3  
ICC Auto-Halt and Stop-Grant  
IAH,  
LFM  
HFM  
18.0  
26.7  
A
A
3,4  
3,4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
17.8  
26.1  
HFM  
Datasheet  
29  
Electrical Specifications  
Table 6.  
Symbol  
IDSLP  
Voltage and Current Specifications for Dual-core Standard Voltage Processors  
(Sheet 2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ICC Deep Sleep  
LFM  
HFM  
17.0  
23.7  
A
A
3,4  
IDPRSLP  
ICCDC4  
ICC Deeper Sleep  
12.1  
9.9  
3,4  
4
ICC Intel Enhanced Deeper Sleep  
VCC Power Supply Current Slew Rate at CPU  
Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
9
ICCP  
10  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Extended Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
2.  
3.  
4.  
5.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 44 A comprehends processor ICC design target for Intel Core2 Duo mobile  
processor for Intel Centrino Duo mobile technology.  
6.  
Base on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
Specified at nominal VCC.  
9.  
10.  
11.  
This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the Intel  
Core 2 Duo mobile processor Deeper Sleep VID will be same as LFM VID.  
12.  
13.  
T7600, T7400, T7200 processors feature 4-MB cache.  
T5600, T5500 processors feature 2-MB cache.  
30  
Datasheet  
Electrical Specifications  
Table 7.  
Symbol  
Voltage and Current Specifications for Dual-core Low Voltage Processors  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.9  
1.1  
V
V
V
V
V
V
1, 2  
1, 2  
2, 8  
0.75  
0.95  
1.20  
1.05  
1.5  
1.00  
1.425  
0.6  
1.10  
1.575  
0.8  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1,2  
VCC at Intel® Enhanced Deeper Sleep  
Voltage  
VCCDC4  
0.55  
0.7  
V
ICC for Processors  
ICCDES  
Recommended Design Targets:  
23  
A
5
Processor  
Core Frequency/Voltage  
Number  
ICC  
L7400  
L7200  
1.50 GHz and HFM VCC  
1.33 GHz and HFM VCC  
1.00 GHz and LFM VCC  
23  
23  
3,9,13  
3,9,13  
A
19.7  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
10.4  
11.5  
A
A
3,4  
3,4  
3,4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
10.1  
11.2  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
9.4  
9.9  
A
A
IDPRSLP  
IDC4  
ICC Deeper Sleep  
7.4  
5.4  
3,4  
3,4  
ICC Intel Enhanced Deeper Sleep State  
VCC Power Supply Current Slew Rate at CPU  
Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 7  
ICC for VCCA Supply  
ICC for VCCP Supply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
10  
11  
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Extended Halt State).  
2.  
3.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
Specified at 100°C Tj.  
Datasheet  
31  
Electrical Specifications  
4.  
5.  
Specified at the VID voltage.  
The ICCDES(max) specification of 23 A comprehends only Intel Core 2 Duo mobile processor HFM  
frequencies with Intel Centrino Duo mobile technology.  
6.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
V
CC,BOOT tolerance shown in Figure 3.  
9.  
Specified at nominal VCC  
.
10.  
11.  
12.  
This is a steady-state Icc current specification, which is applicable when both VCCP and VCC_CORE are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the Intel  
Core 2 Duo mobile processor Deeper Sleep VID will be same as LFM VID  
Table 8.  
Voltage and Current Specifications for Single and Dual-core Ultra Low Voltage  
Processors (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
Default VCC Voltage for Initial Power Up  
AGTL+ Termination Voltage  
0.8  
0.975  
0.95  
V
V
V
V
V
V
1, 2  
1, 2  
2, 8  
0.75  
1.20  
1.05  
1.5  
1.00  
1.425  
0.60  
1.10  
1.575  
0.80  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VCC at Deeper Sleep Voltage  
1, 2, 12  
1, 2  
VCC at Intel® Enhanced Deeper Sleep  
Voltage  
VCCDC4  
0.55  
0.70  
V
17 (dual  
core)  
ICC for Processors  
ICCDES  
A
5
Recommended Design Targets:  
8 (single  
core)  
Processor  
Core Frequency/Voltage  
Number  
16  
16  
U7600  
U7500  
U2200  
U2100  
1.20 GHz and HFM VCC  
1.06 GHz and HFM VCC  
1.20 GHz and HFM VCC  
1.06 GHz and HFM VCC  
0.80 GHz and LFM VCC  
ICC  
8
A
3, 9  
8
13.8-DC  
6.9-SC  
ICC Auto-Halt & Stop-Grant  
IAH,  
LFM  
HFM  
6.5  
7.4  
A
A
A
3, 4  
3, 4  
3, 4  
ISGNT  
ICC Sleep  
LFM  
ISLP  
6.3  
7.3  
HFM  
ICC Deep Sleep  
IDSLP  
LFM  
HFM  
5.7  
6.2  
IDPRSLP  
ICCDC4  
ICC Deeper Sleep  
4.9  
4.0  
A
A
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
32  
Datasheet  
Electrical Specifications  
Table 8.  
Symbol  
Voltage and Current Specifications for Single and Dual-core Ultra Low Voltage  
Processors (Sheet 2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC Power Supply Current Slew Rate at CPU  
Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 7  
ICC for VCCASupply  
ICC for VCCPSupply before VCC Stable  
ICC for VCCP Supply after VCC Stable  
4.5  
2.5  
A
A
10  
11  
ICCP  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Extended Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
2.  
3.  
4.  
5.  
Specified at 100°C Tj.  
Specified at the VID voltage.  
The ICCDES(max) specification of 17 A comprehends only Intel Core 2 Duo mobile processor HFM  
frequencies on Intel Centrino Duo mobile technology.  
6.  
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
7.  
Measured at the bulk capacitors on the motherboard.  
8.  
V
CC,BOOT tolerance shown in Figure 3.  
9.  
Specified at nominal VCC  
.
10.  
11.  
12.  
This is a steady-state Icc current specification, which is applicable when both VCCP and VCC_CORE are high.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
If a given Operating System C-State model is not based on the use of MWAIT or I/O Redirection, the Intel  
Core 2 Duo mobile processor Deeper Sleep VID will be same as LFM VID  
13.  
2-M cache.  
Datasheet  
33  
Electrical Specifications  
Figure 3.  
Deeper Sleep VCC and ICC Loadline for Dual-core Standard Voltage Processors  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {Deeper Sleep}  
13mV= RIPPLE  
for PSI# Asserted  
VCC-CORE, DC max  
{Deeper Sleep}  
VCC-CORE nom  
{Deeper Sleep}  
VCC-CORE, DC min  
{Deeper Sleep}  
VCC-CORE min {Deeper Sleep}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{Deeper Sleep}  
Note 1/ Deeper Sleep VCC-CORE Set Point Error Tolerance is per below:  
Tolerance - PSI# Ripple VID Voltage Range  
V
------------------------------ --C--C---C-O-R--E----------------------------------------------  
+/-[(VID*1.5%) - 3 mV]  
+/-(11.5 mV - 3 mV)  
+/- (25 mV - 3 mV)  
VCC-CORE > 0.7500V  
0.7500V < VCC-CORE < 0.5000V  
0.5000V < VCC-CORE < 0.4125V  
34  
Datasheet  
Electrical Specifications  
Figure 4.  
Deeper Sleep VCC and ICC Loadline for Dual-core Low Voltage and  
Ultra Low Voltage Processor  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {Deeper Sleep}  
VCC-CORE, DC max  
{Deeper Sleep}  
10 mV= RIPPLE  
VCC-CORE nom  
{Deeper Sleep}  
VCC-CORE, DC min  
{Deeper Sleep}  
VCC-CORE min {Deeper Sleep}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{Deeper Sleep}  
Note 1/ Deeper Sleep VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
------------------------------ --------------------------------------------------------  
+/- (VID*1.5%)  
+/- 11.5 mV  
+/- 25 mV  
VCC-CORE > 0.7500V  
0.7500V < VCC-CORE < 0.5000V  
0.5000V < VCC-CORE < 0.4125V  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the  
falling edge of BCLK1.  
3.  
Threshold Region is defined as a region entered about the crossing voltage in which the  
differential receiver switches. It includes input threshold hysteresis.  
For Vin (Input Voltage) between 0 V and VH.  
Cpad includes die capacitance only. No package parasitics are included.  
ΔVCROSS is defined as the total variation of all crossing voltages as defined in note 2.  
4.  
5.  
6.  
Datasheet  
35  
Electrical Specifications  
Figure 5.  
Active VCC and ICC Loadline for Intel Core 2 Solo Processor, Ultra Low Voltage  
VCC-CORE [V]  
Slope = -5.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5% VCC-CORE > 0.7500V  
+/-11.5mV 0.75000V < VCC-CORE < 0.5000V  
36  
Datasheet  
Electrical Specifications  
Table 9.  
Symbol  
AGTL+ Signal Group DC Specifications  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
VCCP  
GTLREF  
RCOMP  
1.00  
1.05  
2/3 VCCP  
27.5  
1.10  
V
V
Reference Voltage  
6
Compensation Resistor  
27.23  
27.78  
10  
Ω
RODT  
VIH  
Termination Resistor  
Input High Voltage  
Input Low Voltage  
55  
VCCP  
0
11  
3,6  
2,4  
6
Ω
V
GTLREF +0.10  
VCCP +0.10  
GTLREF-0.10  
VCCP  
VIL  
-0.10  
VCCP -0.10  
50  
V
VOH  
RTT  
Output High Voltage  
Termination Resistance  
Buffer On Resistance  
Input Leakage Current  
Pad Capacitance  
VCCP  
55  
61  
Ω
7
RON  
ILI  
22  
25  
28  
5
Ω
µA  
pF  
±100  
8
Cpad  
1.6  
2.1  
2.55  
9
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low  
value.  
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the  
signal quality specifications.  
This is the pull-down driver resistance. Measured at 0.31*VCCP. RON (min) = 0.38*RTT. RON (typ) =  
0.45*RTT. RON (max) = 0.52*RTT.  
V
3.  
4.  
5.  
6.  
7.  
V
V
GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in these  
specifications is the instantaneous VCCP  
TT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at  
0.31*VCCP. RTT is connected to VCCP on-die.  
.
R
8.  
9.  
10.  
11.  
Specified with on-die RTT and RON are turned off. Vin (Input Voltage) between 0 and VCCP  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
.
On-die termination resistance, measured at 0.33*VCCP  
.
Datasheet  
37  
Electrical Specifications  
.
Table 10.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIH  
I/O Voltage  
1.00  
0.7*VCCP  
-0.10  
1.05  
VCCP  
0.00  
VCCP  
0
1.10  
VCCP+0.1  
0.3*VCCP  
VCCP+0.1  
0.1*VCCP  
4.1  
V
Input High Voltage  
V
V
2
2
2
2
4
3
5
6
7
VIL  
Input Low Voltage CMOS  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
0.9*VCCP  
-0.10  
V
V
IOH  
Output High Current  
Output Low Current  
Input Leakage Current  
Pad Capacitance  
1.5  
mA  
mA  
µA  
pF  
IOL  
1.5  
4.1  
ILI  
± 100  
2.55  
Cpad1  
Cpad2  
1.6  
2.1  
1.2  
Pad Capacitance for CMOS Input  
0.95  
1.45  
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Measured at 0.1*VCCP  
Measured at 0.9*VCCP  
For Vin (Input Voltage) between 0 V and VCCP. Measured when the driver is tristated.  
.
.
.
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are  
included.  
7.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.  
Table 11.  
Symbol  
Open Drain Signal Group DC Specifications  
Parameter  
Output High Voltage  
Min  
Typ  
Max  
Unit Notes1  
VOH  
VOL  
IOL  
VCCP-5%  
VCCP  
VCCP+5%  
0.20  
V
V
3
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
0
16  
50  
mA  
µA  
pF  
2
4
5
ILO  
± 200  
2.45  
Cpad  
1.9  
2.2  
NOTES:  
1.  
2.  
3.  
4.  
5.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
OH is determined by value of the external pull-up resistor to VCCP  
.
For Vin (Input Voltage) between 0 V and VOH  
.
Cpad includes die capacitance only. No package parasitics are included.  
§ §  
38  
Datasheet  
Package Mechanical Specifications and Pin Information  
4
Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The processor will be available in 4-MB and 2-MB L2 cache versions for 478-pin micro-  
FCPGA and 4-MB, 2-MB and 1-MB L2 Cache 479-ball micro-FCBGA packages. The  
package mechanical dimensions are shown in Figure 6 through Figure 14. Table 12  
shows a top-view of package pinout.  
The micro-FCBGA package incorporates land-side capacitors. The land-side capacitors  
are electrically conductive so care should be taken to avoid contacting the capacitors  
with other electrically conductive materials on the motherboard. Doing so may short  
the capacitors and possibly damage the device or render it inactive.  
Datasheet  
39  
Package Mechanical Specifications and Pin Information  
Figure 6.  
4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing  
40  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 7.  
4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing  
Datasheet  
41  
Package Mechanical Specifications and Pin Information  
Figure 8.  
2-MB Micro-FCPGA Processor Package Drawing  
G
1
B
H
1
B
1
G
2
C
B
2
2
H
2
J2  
J1  
C
A
1
Bottom View  
Top View  
478 Pins  
A
Front View  
MILLIMETERS  
SYMBOL  
COMMENTS  
Side View  
MIN  
MAX  
B
1
34.95  
35.05  
B
2
34.95  
35.05  
Die  
C
1
10  
Underfill  
Package Substrate  
C
2
10.3  
0.89  
F
2
F
3
1.823  
2.063  
0.37 MAX  
G
1
31.75 BASIC  
31.75 BASIC  
F
2
F
G
3
2
0.65 MAX  
H
1
15.875 BASIC  
15.875 BASIC  
H
ø0.356  
ø0.254  
C
C
A B  
M
M
2
J
1.27 BASIC  
1.27 BASIC  
1
2.03 0.08  
C
J
2
P
P DIE  
W
0.255  
689 kPa  
6g  
Keying Pins  
0.355  
0.65 MAX  
oP  
Detail A  
Scale 20  
A1, B1  
B6152-02  
42  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 9.  
2-MB Micro-FCPGA Processor Package Drawing  
Datasheet  
43  
Package Mechanical Specifications and Pin Information  
Figure 10.  
4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing  
44  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 11.  
4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing  
Datasheet  
45  
Package Mechanical Specifications and Pin Information  
Figure 12.  
2-MB Micro-FCBGA Processor Package Drawing  
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 13.  
1-MB Micro-FCBGA Processor Package Drawing (2 of 2)  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Figure 14.  
1-MB Micro-FCBGA Processor Package Drawing (2 of 2)  
48  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Table 12 shows the top view pinout of the processor. The pin list, arranged in two  
different formats, is shown in the following pages.  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 12. The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 1 of 2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
SMI#  
INIT#  
VSS  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
RESET#  
RSVD]  
RSVD  
VSS  
LINT1  
IGNNE  
#
THERM  
TRIP#  
C
D
E
RSVD  
RSVD  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
D
E
STPCLK  
#
PWRGO  
OD  
VSS  
RSVD  
BNR#  
VSS  
SLP#  
DPRSTP  
#
DBSY#  
HITM#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
F
BR0#  
VSS  
VSS  
RS[0]#  
RS[2]#  
RS[1]#  
VSS  
VSS  
RSVD  
HIT#  
F
G
TRDY#  
BPRI#  
G
REQ[1]  
#
H
J
ADS#  
A[9]#  
VSS  
VSS  
LOCK#  
A[3]#  
VSS  
DEFER#  
VSS  
VSS  
VCCP  
VCCP  
VSS  
H
J
REQ[3]  
#
VSS  
REQ[2]  
#
REQ[0]  
#
K
L
A[6]#  
K
L
ADSTB[  
0]#  
REQ[4]  
#
A[13]#  
VSS  
A[4]#  
M
N
P
R
T
A[7]#  
VSS  
VSS  
A[8]#  
A[12]#  
VSS  
A[5]#  
A[10]#  
VSS  
RSVD  
VSS  
VSS  
RSVD  
VCCP  
VCCP  
VSS  
M
N
P
R
T
A[15]#  
A[16]#  
VSS  
A[14]#  
A[24]#  
VSS  
A[11]#  
VSS  
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
RSVD  
A[23]#  
A[25]#  
A[18]#  
U
COMP[2]  
A[21]#  
U
ADSTB[  
1]#  
V
COMP[3]  
VSS  
RSVD  
VSS  
VCCP  
V
W
Y
VSS  
A[31]#  
A[32]#  
VSS  
A[30]#  
A[17]#  
VSS  
A[27]#  
VSS  
VSS  
A[29]#  
A[33]#  
VSS  
A[28]#  
A[22]#  
VSS  
A[20]#  
VSS  
W
Y
AA  
AB  
A[35]#  
TDO  
TDI  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
AA  
AB  
A[34]#  
TMS  
TRST#  
BPM[3]  
#
AC  
AD  
AE  
AF  
PREQ#  
BPM[2]#  
VSS  
PRDY#  
VSS  
VSS  
TCK  
VSS  
VSS  
VID[0]  
PSI#  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
AC  
AD  
AE  
AF  
BPM[1]  
#
BPM[0]  
#
VSS  
SENSE  
VID[6]  
VID[4]  
VSS  
VID[2]  
VCC  
SENSE  
TEST3  
VID[5]  
VSS  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
The Coordinates of the Processor Pins as Viewed from the Top of the Package  
(Sheet 2 of 2)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
THRMDA  
VSS  
25  
THRMDC  
TEST4  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
VSS  
A
B
C
VCC  
BSEL[1]  
RSVD  
VCCA  
TEST1  
DBR#  
BSEL[2]  
RSVD  
PROCHO  
T#  
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
D[6]#  
VSS  
D[2]#  
E
F
DRDY#  
D[1]#  
D[13]#  
DSTBP[0]  
#
G
H
J
VCCP  
VSS  
VSS  
D[9]#  
VSS  
D[5]#  
D[15]#  
VSS  
VSS  
G
H
J
DSTBN[0]  
#
D[3]#  
VSS  
D[12]#  
DINV[0  
]#  
VCCP  
D[11]#  
D[10]#  
K
L
VCCP  
VSS  
D[14]#  
D[21]#  
VSS  
D[8]#  
VSS  
D[17]#  
D[20]#  
VSS  
K
L
D[22]#  
D[29]#  
DSTBN[1]  
#
DINV[1  
]#  
M
VCCP  
VSS  
D[23]#  
VSS  
M
DSTBP[1]  
#
N
P
VCCP  
VSS  
D[16]#  
D[25]#  
VSS  
VSS  
D[26]#  
D[19]#  
VSS  
D[31]#  
VSS  
VSS  
N
P
D[24]#  
VSS  
D[18]#  
COMP  
[0]  
R
T
VCCP  
VCCP  
VSS  
D[28]#  
D[27]#  
VSS  
R
T
RSVD  
D[30]#  
D[38]#  
VSS  
VSS  
COMP[1  
]
U
V
D[39]#  
VSS  
D[37]#  
DINV[2]#  
VSS  
U
V
VCCP  
VCCP  
D[34]#  
D[35]#  
VSS  
DSTBN[2]  
#
W
D[41]#  
D[36]#  
W
DSTBP[2]  
#
Y
VSS  
D[45]#  
VSS  
D[42]#  
D[32]#  
VSS  
D[44]#  
D[43]#  
Y
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
D[51]#  
D[47]#  
VSS  
A
B
AB  
AC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
D[52]#  
VSS  
D[50]#  
D[48]#  
VSS  
VSS  
D[33]#  
VSS  
D[40]#  
D[53]#  
VSS  
VSS  
DINV[3  
]#  
D[49]#  
D[46]# AC  
A
D
DSTBN[3]  
#
A
GTLREF  
D
D[54]#  
VCC  
D[59]#  
D[58]#  
D[57]#  
DSTBP[3]  
#
AE  
AF  
D[55]#  
VSS  
D[60]#  
VSS  
AE  
AF  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
D[62]#  
D[56]#  
VSS  
D[61]#  
D[63]#  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
This page is intentionally left blank.  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 2 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 1 of 22)  
Signal  
Pin  
Number  
Signal  
Pin  
Number  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Source  
Synch  
A[24]#  
A[25]#  
A[26]#  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
R4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
A[3]#  
J4  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
T5  
Source  
Synch  
A[4]#  
L4  
M3  
K5  
M1  
N2  
J1  
Source  
Synch  
T3  
Source  
Synch  
A[5]#  
Source  
Synch  
W3  
W5  
Y4  
Source  
Synch  
A[6]#  
Source  
Synch  
Source  
Synch  
A[7]#  
Source  
Synch  
Source  
Synch  
A[8]#  
Source  
Synch  
W2  
Y1  
Source  
Synch  
A[9]#  
Source  
Synch  
Source  
Synch  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
N3  
P5  
P2  
L1  
P4  
P1  
R1  
Y2  
U5  
R3  
W6  
U4  
Y5  
U2  
Source  
Synch  
AA1  
AA4  
AB2  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
A[35]#  
A20M#  
ADS#  
AA3  
A6  
Input/Output  
Input  
Source  
Synch  
CMOS  
Source  
Synch  
Common  
Clock  
H1  
Input/Output  
Source  
Synch  
Source  
Synch  
ADSTB[0]#  
ADSTB[1]#  
L2  
Input/Output  
Input/Output  
Source  
Synch  
Source  
Synch  
V4  
Source  
Synch  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock  
Bus Clock  
Input  
Input  
Source  
Synch  
Common  
Clock  
BNR#  
E2  
Input/Output  
Input/Output  
Output  
Source  
Synch  
Common  
Clock  
BPM[0]#  
BPM[1]#  
BPM[2]#  
AD4  
AD3  
AD1  
Source  
Synch  
Common  
Clock  
Source  
Synch  
Common  
Clock  
Output  
Source  
Synch  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 3 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 4 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Common  
Clock  
Source  
Synch  
BPM[3]#  
BPRI#  
BR0#  
AC4  
G5  
F1  
Input/Output  
Input  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
H26  
F26  
K22  
H25  
N22  
K25  
P26  
R23  
L25  
L22  
L23  
M23  
P25  
P22  
P23  
T24  
R24  
L26  
T25  
N24  
AA23  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Common  
Clock  
Source  
Synch  
Common  
Clock  
Source  
Synch  
Input/Output  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Source  
Synch  
Source  
Synch  
Power/  
Other  
COMP[0]  
COMP[1]  
COMP[2]  
COMP[3]  
D[0]#  
R26  
U26  
U1  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
Power/  
Other  
Source  
Synch  
Power/  
Other  
Source  
Synch  
Power/  
Other  
V1  
Source  
Synch  
Source  
Synch  
E22  
F24  
E26  
H22  
F23  
G25  
E25  
E23  
K24  
G24  
J24  
J23  
Source  
Synch  
Source  
Synch  
D[1]#  
Source  
Synch  
Source  
Synch  
D[2]#  
Source  
Synch  
Source  
Synch  
D[3]#  
Source  
Synch  
Source  
Synch  
D[4]#  
Source  
Synch  
Source  
Synch  
D[5]#  
Source  
Synch  
Source  
Synch  
D[6]#  
Source  
Synch  
Source  
Synch  
D[7]#  
Source  
Synch  
Source  
Synch  
D[8]#  
Source  
Synch  
Source  
Synch  
D[9]#  
Source  
Synch  
Source  
Synch  
D[10]#  
D[11]#  
Source  
Synch  
Source  
Synch  
Source  
Synch  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 5 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 6 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Source  
Synch  
Source  
Synch  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
AB24  
V24  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
AD20  
AE22  
AF23  
AD24  
AE21  
AD21  
AE25  
AF25  
AF22  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
V26  
Source  
Synch  
Source  
Synch  
W25  
U23  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
U25  
Source  
Synch  
Source  
Synch  
U22  
Source  
Synch  
Source  
Synch  
AB25  
W22  
Y23  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
D[63]#  
DBR#  
AF26  
C20  
E1  
Input/Output  
Output  
Source  
Synch  
CMOS  
AA26  
Y26  
Common  
Clock  
DBSY#  
Input/Output  
Source  
Synch  
Common  
Clock  
DEFER#  
H5  
Input  
Source  
Synch  
Y22  
Source  
Synch  
DINV[0]#  
DINV[1]#  
DINV[2]#  
DINV[3]#  
J26  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
AC26  
AA24  
AC22  
AC23  
AB22  
AA21  
AB21  
AC25  
Source  
Synch  
M26  
V23  
AC20  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
Source  
Synch  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Source  
Synch  
Common  
Clock  
Source  
Synch  
DPWR#  
D24  
F21  
H23  
Input  
Common  
Clock  
Source  
Synch  
DRDY#  
Input/Output  
Input/Output  
Source  
Synch  
Source  
Synch  
DSTBN[0]#  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 7 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 8 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Source  
Synch  
Source  
Synch  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
M24  
W24  
AD23  
G22  
N25  
Y25  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
REQ[3]#  
REQ[4]#  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
J3  
Input/Output  
Input/Output  
Input  
Source  
Synch  
Source  
Synch  
L5  
B1  
F3  
F4  
G3  
Source  
Synch  
Common  
Clock  
Source  
Synch  
Common  
Clock  
Input  
Source  
Synch  
Common  
Clock  
Input  
Source  
Synch  
Common  
Clock  
Input  
Source  
Synch  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
SMI#  
STPCLK#  
TCK  
D2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMOS  
DSTBP[3]#  
FERR#  
AE24  
A5  
F6  
Open Drain Output  
D3  
Power/  
Input  
GTLREF  
AD26  
C1  
Other  
D22  
C23  
C24  
M4  
Common  
Clock  
HIT#  
G6  
E4  
Input/Output  
Input/Output  
Common  
Clock  
HITM#  
IERR#  
IGNNE#  
INIT#  
LINT0  
LINT1  
D20  
C4  
Open Drain Output  
N5  
CMOS  
CMOS  
CMOS  
CMOS  
Input  
Input  
Input  
Input  
T2  
B3  
V3  
C6  
B2  
B4  
C3  
Common  
Clock  
LOCK#  
PRDY#  
PREQ#  
H4  
Input/Output  
Output  
T22  
D7  
Input  
Input  
Input  
Input  
Input  
Common  
Clock  
AC2  
AC1  
A3  
CMOS  
Common  
Clock  
D5  
CMOS  
Input  
AC5  
AA6  
AB3  
C26  
D25  
AF1  
B25  
CMOS  
PROCHOT#  
PSI#  
D21  
AE6  
D6  
Open Drain Input/Output  
TDI  
CMOS  
CMOS  
CMOS  
Output  
Input  
TDO  
Open Drain Output  
PWRGOOD  
TEST1  
TEST2  
TEST3  
TEST4  
Test  
Test  
Test  
Test  
Source  
Synch  
REQ[0]#  
REQ[1]#  
REQ[2]#  
K3  
H2  
K2  
Input/Output  
Input/Output  
Input/Output  
Source  
Synch  
Source  
Synch  
Power/  
Other  
THERMDA  
A24  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Listing by Pin Name  
(Sheet 9 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 10 of 22)  
Signal  
Pin  
Signal  
Pin  
Pin Name  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
THERMDC  
A25  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AA15  
AD15  
AC15  
AF15  
AE15  
AB14  
AA13  
AD14  
AC13  
AF14  
AE13  
AB12  
AA12  
AD12  
AC12  
AF12  
AE12  
AB10  
AB9  
THERMTRIP# C7  
Open Drain Output  
Power/  
Other  
TMS  
AB5  
CMOS  
Input  
Input  
Input  
Power/  
Other  
Common  
Clock  
TRDY#  
TRST#  
VCC  
G2  
Power/  
Other  
AB6  
AB20  
CMOS  
Power/  
Other  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AA20  
AF20  
AE20  
AB18  
AB17  
AA18  
AA17  
AD18  
AD17  
AC18  
AC17  
AF18  
AF17  
AE18  
AE17  
AB15  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AA10  
AA9  
Power/  
Other  
Power/  
Other  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 11 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 12 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD10  
AD9  
AC10  
AC9  
AF10  
AF9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
D17  
C18  
C17  
F18  
F17  
E18  
E17  
B15  
A15  
D15  
C15  
F15  
E15  
B14  
A13  
D14  
C13  
F14  
E13  
B12  
A12  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AE10  
AE9  
AB7  
AA7  
AD7  
AC7  
B20  
A20  
F20  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
E20  
Power/  
Other  
Power/  
Other  
B18  
B17  
A18  
A17  
D18  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 13 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 14 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
D12  
C12  
F12  
E12  
B10  
B9  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
K6  
Power/  
Other  
Power/  
Other  
J6  
Power/  
Other  
Power/  
Other  
M6  
Power/  
Other  
Power/  
Other  
N6  
Power/  
Other  
Power/  
Other  
T6  
Power/  
Other  
Power/  
Other  
R6  
Power/  
Other  
Power/  
Other  
A10  
A9  
K21  
J21  
M21  
N21  
T21  
R21  
V21  
W21  
V6  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
D10  
D9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
C10  
C9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
F10  
F9  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
E10  
E9  
Power/  
Other  
Power/  
Other  
G21  
AF7  
Power/  
Other  
Power/  
Other  
B7  
Power/  
Other  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
AD6  
AF5  
AE5  
AF4  
AE3  
AF2  
AE2  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
A7  
Power/  
Other  
F7  
Power/  
Other  
E7  
Power/  
Other  
B26  
Datasheet  
59  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 15 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 16 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AB26  
AA25  
AD25  
AE26  
AB23  
AC24  
AF24  
AE23  
AA22  
AD22  
AC21  
AF21  
AB19  
AA19  
AD19  
AC19  
AF19  
AE19  
AB16  
AA16  
AD16  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC16  
AF16  
AE16  
AB13  
AA14  
AD13  
AC14  
AF13  
AE14  
AB11  
AA11  
AD11  
AC11  
AF11  
AE11  
AB8  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
AA8  
Power/  
Other  
Power/  
Other  
AD8  
Power/  
Other  
Power/  
Other  
AC8  
Power/  
Other  
Power/  
Other  
AF8  
Power/  
Other  
Power/  
Other  
AE8  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 17 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 18 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA5  
AD5  
AC6  
AF6  
AB4  
AC3  
AF3  
AE4  
AB1  
AA2  
AD2  
AE1  
B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R5  
V5  
U6  
Y6  
A4  
D4  
E3  
H3  
G4  
K4  
L3  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
P3  
N4  
T4  
U3  
Y3  
W4  
D1  
C2  
F2  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
C5  
Power/  
Other  
Power/  
Other  
F5  
Power/  
Other  
Power/  
Other  
E6  
Power/  
Other  
Power/  
Other  
H6  
Power/  
Other  
Power/  
Other  
J5  
Power/  
Other  
Power/  
Other  
M5  
Power/  
Other  
Power/  
Other  
L6  
Power/  
Other  
Power/  
Other  
P6  
G1  
Datasheet  
61  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 19 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 20 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A19  
D19  
C19  
F19  
E19  
B16  
A16  
D16  
C16  
F16  
E16  
B13  
A14  
D13  
C14  
F13  
E14  
B11  
A11  
D11  
C11  
Power/  
Other  
Power/  
Other  
J2  
Power/  
Other  
Power/  
Other  
M2  
Power/  
Other  
Power/  
Other  
N1  
Power/  
Other  
Power/  
Other  
T1  
Power/  
Other  
Power/  
Other  
R2  
Power/  
Other  
Power/  
Other  
V2  
Power/  
Other  
Power/  
Other  
W1  
A26  
D26  
C25  
F25  
B24  
A23  
D23  
E24  
B21  
C22  
F22  
E21  
B19  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 21 of 22)  
Table 14.  
Pin Name  
Pin Listing by Pin Name  
(Sheet 22 of 22)  
Signal  
Pin  
Signal  
Pin  
Buffer  
Type  
Direction  
Buffer  
Type  
Direction  
Number  
Number  
Power/  
Other  
Power/  
Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F11  
E11  
B8  
VSS  
P24  
N23  
T23  
U24  
Y24  
W23  
H21  
J22  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
A8  
VSS  
Power/  
Other  
Power/  
Other  
D8  
VSS  
Power/  
Other  
Power/  
Other  
C8  
VSS  
Power/  
Other  
Power/  
Other  
F8  
VSS  
Power/  
Other  
Power/  
Other  
E8  
VSS  
Power/  
Other  
Power/  
Other  
G26  
K26  
J25  
M25  
N26  
T26  
R25  
V25  
W26  
H24  
G23  
K23  
L24  
VSS  
M22  
L21  
P21  
R22  
V22  
U21  
Y21  
AE7  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSS  
Power/  
Other  
Power/  
Other  
VSSSENSE  
Output  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Power/  
Other  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 2 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 1 of 17)  
Signal  
Buffer  
Type  
Pin  
Number  
Pin Name  
Direction  
Signal  
Pin  
Number  
Pin Name  
Buffer  
Type  
Direction  
AA9  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
A3  
SMI#  
CMOS  
Input  
A4  
VSS  
Power/Other  
Open Drain  
CMOS  
A5  
FERR#  
A20M#  
VCC  
Output  
Input  
A6  
A7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
A8  
VSS  
A9  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
VCC  
VSS  
VCC  
VCC  
Source  
Synch  
Input/  
Output  
AA21  
AA22  
AA23  
D[51]#  
VSS  
VSS  
VCC  
Power/Other  
VSS  
Source  
Synch  
Input/  
Output  
D[32]#  
VCC  
Source  
Synch  
Input/  
Output  
VCC  
AA24  
AA25  
AA26  
AB1  
D[47]#  
VSS  
VSS  
Power/Other  
VCC  
Source  
Synch  
Input/  
Output  
D[43]#  
VSS  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
Bus Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
AB2  
A[34]#  
THERMDA  
THERMDC  
VSS  
AB3  
TDO  
VSS  
TMS  
TRST#  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
Open Drain  
Power/Other  
CMOS  
Output  
AB4  
AB5  
Input  
Input  
Source  
Synch  
Input/  
Output  
AA1  
AA2  
AA3  
A[32]#  
VSS  
AB6  
CMOS  
Power/Other  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
AB8  
A[35]#  
AB9  
Source  
Synch  
Input/  
Output  
AA4  
A[33]#  
AB10  
AB11  
AB12  
AB13  
AB14  
AA5  
AA6  
AA7  
AA8  
VSS  
TDI  
Power/Other  
CMOS  
Input  
VCC  
VSS  
Power/Other  
Power/other  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 3 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 4 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
AC20  
AC21  
AC22  
DINV[3]#  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Source  
Synch  
Input/  
Output  
D[48]#  
Source  
Synch  
Input/  
Output  
AC23  
AC24  
AC25  
D[49]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
AB21  
D[52]#  
Source  
Synch  
Input/  
Output  
D[53]#  
Source  
Synch  
Input/  
Output  
AB22  
AB23  
AB24  
D[50]#  
VSS  
Source  
Synch  
Input/  
Output  
AC26  
D[46]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Common  
Clock  
D[33]#  
AD1  
AD2  
AD3  
BPM[2]#  
VSS  
Output  
Source  
Synch  
Input/  
Output  
Power/Other  
AB25  
AB26  
AC1  
D[40]#  
VSS  
Common  
Clock  
BPM[1]#  
Output  
Power/Other  
Common  
Clock  
Common  
Clock  
Input/  
Output  
PREQ#  
Input  
AD4  
BPM[0]#  
Common  
Clock  
AD5  
VSS  
VID[0]  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
Power/Other  
CMOS  
AC2  
AC3  
AC4  
PRDY#  
VSS  
Output  
AD6  
Output  
Power/Other  
AD7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common  
Clock  
Input/  
Output  
BPM[3]#  
AD8  
AD9  
AC5  
TCK  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
CMOS  
Input  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AC6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC7  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
Source  
Synch  
Input/  
Output  
AD20  
D[54]#  
Source  
Synch  
Input/  
Output  
AD21  
AD22  
D[59]#  
VSS  
Power/Other  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 5 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 6 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Source  
Synch  
Input/  
Output  
AF3  
VSS  
Power/Other  
CMOS  
AD23  
AD24  
DSTBN[3]#  
D[57]#  
AF4  
VID[3]  
VID[1]  
VSS  
Output  
Output  
Source  
Synch  
Input/  
Output  
AF5  
CMOS  
AF6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AD25  
AD26  
AE1  
VSS  
Power/Other  
AF7  
VCCSENSE  
VSS  
GTLREF  
VSS  
Power/Other Input  
Power/Other  
AF8  
AF9  
VCC  
AE2  
VID[6]  
VID[4]  
VSS  
CMOS  
Output  
Output  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
VCC  
AE3  
CMOS  
VSS  
AE4  
Power/Other  
CMOS  
VCC  
AE5  
VID[2]  
PSI#  
VSSSENSE  
VSS  
Output  
Output  
VSS  
AE6  
CMOS  
VCC  
AE7  
Power/Other Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AE8  
VSS  
AE9  
VCC  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
Source  
Synch  
Input/  
Output  
VCC  
AF22  
D[62]#  
VSS  
Source  
Synch  
Input/  
Output  
AF23  
AF24  
AF25  
D[56]#  
VSS  
VCC  
VCC  
Power/Other  
VSS  
Source  
Synch  
Input/  
Output  
D[61]#  
VCC  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
AF26  
B1  
D[63]#  
RESET#  
AE21  
D[58]#  
Common  
Clock  
Source  
Synch  
Input/  
Output  
Input  
AE22  
AE23  
AE24  
D[55]#  
VSS  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
RSVD  
INIT#  
LINT1  
DPSLP#  
VSS  
Reserved  
CMOS  
Power/Other  
Input  
Input  
Input  
Source  
Synch  
Input/  
Output  
DSTBP[3]#  
CMOS  
Source  
Synch  
Input/  
Output  
CMOS  
AE25  
D[60]#  
Power/Other  
Power/Other  
Power/Other  
AE26  
AF1  
VSS  
Power/Other  
Test  
VCC  
TEST3  
VID[5]  
VSS  
AF2  
CMOS  
Output  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 7 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 8 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
B9  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VSS  
Power/Other  
CMOS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VCC  
DBR#  
BSEL[2]  
VSS  
Output  
Output  
VSS  
CMOS  
VCC  
Power/Other  
Reserved  
VSS  
RSVD  
RSVD  
VSS  
VCC  
Reserved  
VCC  
Power/Other  
Test  
VSS  
TEST1  
VSS  
VCC  
Power/Other  
Reserved  
VCC  
D2  
RSVD  
RSVD  
VSS  
VSS  
D3  
Reserved  
VCC  
D4  
Power/Other  
CMOS  
VSS  
D5  
STPCLK#  
PWRGOOD  
SLP#  
VSS  
Input  
Input  
Input  
BSEL[0]  
BSEL[1]  
VSS  
Output  
Output  
D6  
CMOS  
CMOS  
D7  
CMOS  
Power/Other  
Test  
D8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
TEST4  
VCCA  
RSVD  
VSS  
D9  
VCC  
Power/Other  
Reserved  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
VSS  
C2  
Power/Other  
Reserved  
VCC  
C3  
RSVD  
IGNNE#  
VSS  
VSS  
C4  
CMOS  
Input  
VCC  
C5  
Power/Other  
CMOS  
VCC  
C6  
LINT0  
Input  
VSS  
C7  
THERMTRIP# Open Drain  
Output  
VCC  
C8  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
C9  
VSS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
IERR#  
Output  
Input/  
Output  
D21  
PROCHOT#  
Open Drain  
D22  
D23  
RSVD  
VSS  
Reserved  
Power/Other  
Common  
Clock  
D24  
DPWR#  
Input  
D25  
D26  
TEST2  
VSS  
Test  
Power/Other  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 9 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 10 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Common  
Clock  
Input/  
Output  
Common  
Clock  
E1  
DBSY#  
F4  
RS[1]#  
Input  
Common  
Clock  
Input/  
Output  
F5  
VSS  
RSVD  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
Power/Other  
Reserved  
E2  
E3  
E4  
BNR#  
VSS  
F6  
Power/Other  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Common  
Clock  
Input/  
Output  
HITM#  
F8  
F9  
E5  
DPRSTP#  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
CMOS  
Input  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
Common  
Clock  
Input/  
Output  
F21  
F22  
F23  
DRDY#  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
D[4]#  
Source  
Synch  
Input/  
Output  
F24  
F25  
F26  
G1  
D[1]#  
VSS  
Source  
Synch  
Input/  
Output  
E22  
D[0]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
E23  
E24  
E25  
D[7]#  
VSS  
D[13]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Common  
Clock  
D[6]#  
G2  
TRDY#  
Input  
Input  
Source  
Synch  
Input/  
Output  
Common  
Clock  
E26  
D[2]#  
G3  
G4  
G5  
RS[2]#  
VSS  
Common  
Clock  
Input/  
Output  
Power/Other  
F1  
F2  
F3  
BR0#  
VSS  
Common  
Clock  
BPRI#  
Input  
Power/Other  
Common  
Clock  
Common  
Clock  
Input/  
Output  
RS[0]#  
Input  
G6  
HIT#  
VCCP  
G21  
Power/Other  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 11 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 12 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
G22  
G23  
G24  
DSTBP[0]#  
VSS  
J24  
J25  
J26  
K1  
D[10]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[9]#  
DINV[0]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
G25  
G26  
H1  
D[5]#  
VSS  
Source  
Synch  
Input/  
Output  
K2  
REQ[2]#  
Power/Other  
Common  
Clock  
Input/  
Output  
Source  
Synch  
Input/  
Output  
ADS#  
K3  
K4  
K5  
REQ[0]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
H2  
H3  
H4  
REQ[1]#  
VSS  
Source  
Synch  
Input/  
Output  
A[6]#  
Power/Other  
Common  
Clock  
Input/  
Output  
K6  
VCCP  
VCCP  
Power/Other  
Power/Other  
LOCK#  
K21  
Common  
Clock  
H5  
DEFER#  
Input  
Source  
Synch  
Input/  
Output  
K22  
K23  
K24  
D[14]#  
VSS  
H6  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
H21  
Source  
Synch  
Input/  
Output  
D[8]#  
Source  
Synch  
Input/  
Output  
H22  
D[3]#  
Source  
Synch  
Input/  
Output  
K25  
K26  
L1  
D[17]#  
VSS  
Source  
Synch  
Input/  
Output  
H23  
H24  
H25  
DSTBN[0]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
A[13]#  
Source  
Synch  
Input/  
Output  
D[15]#  
Source  
Synch  
Input/  
Output  
L2  
L3  
L4  
ADSTB[0]#  
VSS  
Source  
Synch  
Input/  
Output  
H26  
D[12]#  
Power/Other  
Source  
Synch  
Input/  
Output  
J1  
J2  
J3  
A[9]#  
VSS  
Source  
Synch  
Input/  
Output  
A[4]#  
Power/Other  
Source  
Synch  
Input/  
Output  
L5  
REQ[4]#  
Source  
Synch  
Input/  
Output  
REQ[3]#  
L6  
VSS  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
J4  
A[3]#  
L21  
Source  
Synch  
Input/  
Output  
J5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
L22  
D[21]#  
J6  
VCCP  
VCCP  
VSS  
Source  
Synch  
Input/  
Output  
L23  
L24  
L25  
D[22]#  
VSS  
J21  
J22  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
J23  
D[11]#  
D[20]#  
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 13 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 14 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Source  
Synch  
Input/  
Output  
P3  
P4  
VSS  
Power/Other  
L26  
D[29]#  
Source  
Synch  
Input/  
Output  
A[14]#  
A[11]#  
Source  
Synch  
Input/  
Output  
M1  
M2  
M3  
A[7]#  
VSS  
Source  
Synch  
Input/  
Output  
P5  
Power/Other  
Source  
Synch  
Input/  
Output  
P6  
VSS  
VSS  
Power/Other  
Power/Other  
A[5]#  
P21  
M4  
RSVD  
VSS  
Reserved  
Source  
Synch  
Input/  
Output  
P22  
D[25]#  
M5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M6  
VCCP  
VCCP  
VSS  
Source  
Synch  
Input/  
Output  
P23  
P24  
P25  
D[26]#  
VSS  
M21  
M22  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[24]#  
M23  
D[23]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
P26  
D[18]#  
M24  
M25  
M26  
N1  
DSTBN[1]#  
VSS  
Source  
Synch  
Input/  
Output  
Power/Other  
R1  
R2  
R3  
A[16]#  
VSS  
Source  
Synch  
Input/  
Output  
DINV[1]#  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
Power/Other  
A[19]#  
Source  
Synch  
Input/  
Output  
N2  
A[8]#  
Source  
Synch  
Input/  
Output  
R4  
A[24]#  
Source  
Synch  
Input/  
Output  
N3  
A[10]#  
R5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
R6  
VCCP  
VCCP  
VSS  
N4  
VSS  
Power/Other  
Reserved  
R21  
R22  
N5  
RSVD  
VCCP  
VCCP  
N6  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
N21  
R23  
D[19]#  
Source  
Synch  
Input/  
Output  
N22  
N23  
N24  
D[16]#  
VSS  
Source  
Synch  
Input/  
Output  
R24  
R25  
R26  
D[28]#  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
D[31]#  
Input/  
Output  
COMP[0]  
Source  
Synch  
Input/  
Output  
N25  
N26  
P1  
DSTBP[1]#  
VSS  
T1  
T2  
VSS  
Power/Other  
Reserved  
RSVD  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
T3  
T4  
A[26]#  
VSS  
A[15]#  
Power/Other  
Source  
Synch  
Input/  
Output  
P2  
A[12]#  
70  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 15 of 17)  
Table 15.  
Pin Listing by Pin Number  
(Sheet 16 of 17)  
Signal  
Buffer  
Type  
Signal  
Buffer  
Type  
Pin  
Number  
Pin  
Number  
Pin Name  
Direction  
Pin Name  
Direction  
Source  
Synch  
Input/  
Output  
V22  
V23  
VSS  
Power/Other  
T5  
A[25]#  
Source  
Synch  
Input/  
Output  
DINV[2]#  
T6  
VCCP  
VCCP  
RSVD  
VSS  
Power/Other  
Power/Other  
Reserved  
T21  
T22  
T23  
Source  
Synch  
Input/  
Output  
V24  
V25  
V26  
W1  
D[34]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
D[35]#  
VSS  
T24  
D[27]#  
Power/Other  
Source  
Synch  
Input/  
Output  
T25  
T26  
U1  
D[30]#  
VSS  
Source  
Synch  
Input/  
Output  
W2  
A[30]#  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Input/  
Output  
W3  
W4  
W5  
A[27]#  
VSS  
COMP[2]  
Power/Other  
Source  
Synch  
Input/  
Output  
U2  
U3  
U4  
A[23]#  
VSS  
Source  
Synch  
Input/  
Output  
A[28]#  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W6  
A[20]#  
VCCP  
A[21]#  
W21  
W22  
W23  
W24  
Power/Other  
Source  
Synch  
Input/  
Output  
U5  
A[18]#  
Source  
Synch  
Input/  
Output  
D[41]#  
VSS  
U6  
VSS  
VSS  
Power/Other  
Power/Other  
Power/Other  
U21  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
DSTBN[2]#  
U22  
D[39]#  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
W25  
W26  
Y1  
D[36]#  
VSS  
U23  
U24  
U25  
D[37]#  
VSS  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[31]#  
D[38]#  
Source  
Synch  
Input/  
Output  
Input/  
Output  
Y2  
Y3  
Y4  
A[17]#  
VSS  
U26  
V1  
COMP[1]  
COMP[3]  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
Source  
Synch  
Input/  
Output  
A[29]#  
V2  
V3  
VSS  
Power/Other  
Reserved  
Source  
Synch  
Input/  
Output  
RSVD  
Y5  
A[22]#  
Source  
Synch  
Input/  
Output  
V4  
ADSTB[1]#  
Y6  
VSS  
VSS  
Power/Other  
Power/Other  
Y21  
V5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Source  
Synch  
Input/  
Output  
V6  
VCCP  
VCCP  
Y22  
D[45]#  
V21  
Datasheet  
71  
Package Mechanical Specifications and Pin Information  
Table 15.  
Pin Listing by Pin Number  
(Sheet 17 of 17)  
Signal  
Buffer  
Type  
Pin  
Number  
Pin Name  
Direction  
Source  
Synch  
Input/  
Output  
Y23  
Y24  
Y25  
D[42]#  
VSS  
Power/Other  
Source  
Synch  
Input/  
Output  
DSTBP[2]#  
Source  
Synch  
Input/  
Output  
Y26  
D[44]#  
§
72  
Datasheet  
Package Mechanical Specifications and Pin Information  
4.3  
Alphabetical Signals Reference  
Table 16.  
Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit  
the address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the processor FSB. A[35:3]#  
are source synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#. Address signals are used as straps which  
are sampled before RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
NOTE: When paired with a chipset limited to 32-bit addressing,  
A[35:32] should remain unconnected.  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on  
their rising and falling edges. Strobes are associated with signals  
as shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]# ADSTB[1]#  
Associated Strobe  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
Datasheet  
73  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor which  
indicate the status of breakpoints and programmable counters  
used for monitoring processor performance. BPM[3:0]# should  
connect the appropriate pins of all processor FSB agents.This  
includes debug or performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then  
releases the bus by deasserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# is used by the processor to request the bus. The arbitration  
is done between processor (Symmetric Agent) and GMCH-M (High  
Priority Agent).  
Input/  
Output  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 3 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency. The  
processor operates at 667-MHz system bus frequency (166-MHz  
BCLK[1:0] frequency).  
BSEL[2:0]  
COMP[3:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors.  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#.  
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
Data  
Group  
DSTBN#/  
DSTBP#  
DINV#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
74  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
DBR# (Data Bus Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by  
a debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no  
connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be guaranteed in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or Input/  
Output agent. This signal must connect the appropriate pins of  
both FSB agents.  
DEFER#  
Input  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted.  
The bus agent will invert the data bus signals if more than half the  
bits, within the covered group, would change level in the next  
cycle.  
DINV[3:0]# Assignment To Data Bus  
Input/  
Output  
Data Bus  
Bus Signal  
DINV[3:0]#  
Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP# when asserted on the platform causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state. In  
order to return to the Deep Sleep State, DPRSTP# must be  
deasserted. DPRSTP# is driven by the ICH7M chipset.  
DPRSTP#  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. In order to  
return to the Sleep State, DPSLP# must be deasserted. DPSLP# is  
driven by the ICH7M chipset.  
DPSLP#  
DPWR#  
DRDY#  
Input  
Input  
DPWR# is a control signal from the Intel® 945GM/GT/GMS/PM and  
940GML Express Chipset family used to reduce power on the  
processor data bus input buffers.  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Datasheet  
75  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
DSTBN[0]#  
Input/  
Output  
DSTBN[3:0]#  
D[31:16]#, DINV[1]# DSTBN[1]#  
D[47:32]#, DINV[2]# DSTBN[2]#  
D[63:48]#, DINV[3]# DSTBN[3]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
DSTBP[0]#  
D[15:0]#, DINV[0]#  
Input/  
Output  
DSTBP[3:0]#  
D[31:16]#, DINV[1]# DSTBP[1]#  
D[47:32]#, DINV[2]# DSTBP[2]#  
D[63:48]#, DINV[3]# DSTBP[3]#  
FERR# (Floating-point Error)PBE#(Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#.  
When STPCLK# is not asserted, FERR#/PBE# indicates a floating  
point when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using  
MS-DOS*-type floating-point error reporting. When STPCLK# is  
asserted, an assertion of FERR#/PBE# indicates that the processor  
has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to  
the Normal state. When FERR#/PBE# is asserted, indicating a  
break event, it will remain asserted until STPCLK# is deasserted.  
Assertion of PREQ# when STPCLK# is active will also cause an  
FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volumes 3A/3B of the Intel® 64 and IA-32  
Intel® Architectures Software Developer's Manual and AP-485  
Intel® Processor Identification and the CPUID Instruction  
application note.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a logical 0 or logical 1.  
GTLREF  
Input  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall, which  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
HITM#  
Input/  
Output  
76  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
IERR# (Internal Error) is asserted by a processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may  
optionally be converted to an external error signal (e.g., NMI) by  
system core logic. The processor will keep IERR# asserted until the  
assertion of RESET#, BINIT#, or INIT#.  
IERR#  
Output  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute noncontrol  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a noncontrol floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an Input/Output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding Input/  
Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers  
inside the processor without affecting its internal caches or  
floating-point registers. The processor then begins execution at the  
power-on Reset vector configured during power-on configuration.  
The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an Input/Output Write  
instruction, it must be valid along with the TRDY# assertion of the  
corresponding Input/Output Write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
INIT#  
Input  
If INIT# is sampled active on the active to inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST)  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1  
becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
PRDY#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
Output  
Datasheet  
77  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 6 of 8)  
Name  
PREQ#  
Type  
Description  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
Input  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
This signal may require voltage translation on the motherboard.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is in a lower state (Deep Sleep and Deeper  
Sleep).  
PSI#  
Output  
Input  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal will remain low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state.  
PWRGOOD  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
RESET#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
Input  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
Input  
Reserved These pins are RESERVED and must be left unconnected on the  
/No board. However, it is recommended that routing channels to these  
Connect pins on the board be kept open for possible future use.  
78  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of  
SLP#, and removal of the BCLK input while in Sleep state. If SLP#  
is deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep  
state, the processor will exit the Sleep state and transition to the  
Deep Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt,  
the processor saves the current state and enter System  
Management Mode (SMM). An SMI Acknowledge transaction is  
issued, and the processor begins program execution from the SMM  
handler.  
SMI#  
Input  
If SMI# is asserted during the deassertion of RESET# the  
processor will tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low power Stop-Grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
Input  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
Output  
TEST1 and TEST2 must have a stuffing option of separate pull  
down resistors to VSS  
.
TEST1,  
For testing purposes it is recommended, but not required, to route  
the TEST3 and TEST4 pins through a ground referenced 55-Ω trace  
that ends in a via that is near a GND via and is accessible through  
an oscilloscope connection.  
TEST2, TEST3,  
TEST4  
Input  
THERMDA  
THERMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125°C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
Datasheet  
79  
Package Mechanical Specifications and Pin Information  
Table 16.  
Signal Description (Sheet 8 of 8)  
Name  
Type  
Description  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
TMS  
Input  
Please contact your Intel representative for termination  
requirements  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST#  
Input  
Input  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC  
Input  
Input  
Input  
Processor core power supply.  
VCCA  
VCCP  
VCCA provides isolated power for the internal processor core PLL’s.  
Processor I/O Power Supply.  
VCC_SENSE together with VSS_SENSE are voltage feedback signals to  
Intel® MVP 6 that control the 2.1-mΩ loadline at the processor die.  
It should be used to sense or measure power near the silicon with  
little noise.  
VCC_SENSE  
VID[6:0]  
VSS_SENSE  
Output  
Output  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (VCC). Unlike some previous generations  
of processors, these are CMOS signals that are driven by the  
processor. The voltage supply for these pins must be valid before  
the VR can supply VCC to the processor. Conversely, the VR output  
must be disabled until the voltage supply for the VID pins becomes  
valid. The VID pins are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these pins.  
The VR must supply the voltage that is requested by the pins, or  
disable itself.  
VSS_SENSE together with VCC_SENSE are voltage feedback signals to  
Intel MVP 6 that control the 2.1-mΩ loadline at the processor die. It  
should be used to sense or measure ground near the silicon with  
little noise.  
§ §  
80  
Datasheet  
Thermal Specifications and Design Considerations  
5
Thermal Specifications and  
Design Considerations  
The processor requires a thermal solution to maintain temperatures within operating  
limits as set forth in Section 5.1. Any attempt to operate the processor outside these  
operating limits may result in permanent damage to the processor and potentially other  
components in the system. As processor technology changes, thermal management  
becomes increasingly crucial when building computer systems. Maintaining the proper  
thermal environment is key to reliable, long-term system operation. A complete  
thermal solution includes both component and system level thermal management  
features. Component level thermal solutions include active or passive heatsinks or heat  
exchangers attached to the exposed processor die. The solution should make firm  
contact to the die while maintaining processor mechanical specifications such as  
pressure. A typical system level thermal solution may consist of a processor fan ducted  
to a heat exchanger that is thermally-coupled to the processor via a heat pipe or direct  
die attachment. A secondary fan or air from the processor fan may also be used to cool  
other platform components or to lower the internal ambient temperature within the  
system.  
To allow for the optimal operation and long-term reliability of Intel processor-based  
systems, the system/processor thermal solution should be designed such that the  
processor remains within the minimum and maximum junction temperature (Tj)  
specifications at the corresponding thermal design power (TDP) value listed in Table 17.  
Thermal solutions not designed to provide this level of thermal capability may affect the  
long-term reliability of the processor and system.  
The maximum junction temperature is defined by an activation of the processor Intel  
Thermal Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real  
applications are unlikely to cause the processor to consume the theoretical maximum  
power dissipation for sustained time periods. Intel recommends that complete thermal  
solution designs target the TDP indicated in Table 17. The Intel Thermal Monitor feature  
is designed to help protect the processor in the unlikely event that an application  
exceeds the TDP recommendation for a sustained period of time. For more details on  
the usage of this feature, refer to Section 5.1.3. In all cases, the Intel Thermal Monitor  
feature must be enabled for the processor to remain within specification.  
Datasheet  
81  
Thermal Specifications and Design Considerations  
Table 17.  
Power Specifications for the Dual-core Standard Voltage Processor  
Processor  
Number  
Core Frequency &  
Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
2.33 GHz & HFM VCC  
2.17 GHz & HFM VCC  
2.00 GHz & HFM VCC  
1.83 GHz & HFM VCC  
1.67 GHz & HFM VCC  
1.00 GHz & LFM VCC  
34  
34  
34  
34  
34  
20  
T7600  
1,4,5,7  
1,4,5,7  
1,4,5,7  
1,4,6,7  
1,4,6,7  
T7400  
T7200  
T5600  
T5500  
TDP  
W
Symbol  
Parameter  
Min Typ Max  
Unit  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
13.0  
7.3  
W
2, 8  
2, 8  
2, 9  
PSGNT  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
PSLP  
12.4  
7.0  
W
W
Deep Sleep Power  
at HFM VCC  
PDSLP  
7.6  
4.5  
at LFM VCC  
PDPRSLP  
PDC4  
TJ  
Deeper Sleep Power  
2.0  
1.2  
W
W
°C  
2, 9  
2, 9  
3, 4  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
0
100  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
5.  
6.  
7.  
8.  
9.  
T7600, T7400, T7200 processors feature 4-MB cache.  
T5600, T5500 processors feature 2-MB cache.  
At Tj of 100°C.  
At Tj of 50°C.  
At Tj of 35°C.  
82  
Datasheet  
Thermal Specifications and Design Considerations  
Table 18.  
Power Specifications for the Dual-core Low Voltage Processor  
Processor  
Number  
Core Frequency &  
Voltage  
Thermal Design  
Power  
Symbol  
Unit  
Notes  
L7400  
L7200  
1.50 GHz & HFM VCC  
1.33 GHz & HFM VCC  
1.00 GHz & LFM VCC  
17  
17  
TDP  
W
Unit  
W
1, 4, 7  
15.1  
Symbol  
Parameter  
Min Typ  
Max  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
5.2  
4.6  
2, 8  
2, 8  
2, 9  
PSGNT  
at LFM VCC  
Sleep Power  
at HFM VCC  
at LFM VCC  
PSLP  
4.9  
4.4  
W
W
Deep Sleep Power  
at HFM VCC  
PDSLP  
2.9  
2.8  
at LFM VCC  
PDPRSLP  
PDC4  
TJ  
Deeper Sleep Power  
1.5  
0.9  
100  
W
W
°C  
2, 9  
2, 9  
3, 4  
Intel Enhanced Deeper Sleep Power  
Junction Temperature  
0
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
4-M cache.  
2-M cache.  
At Tj of 100°C.  
At Tj of 50°C.  
At Tj of 35°C.  
5.  
6.  
7.  
8.  
9.  
Datasheet  
83  
Thermal Specifications and Design Considerations  
Table 19.  
Power Specifications for the Single and Dual-core Ultra Low Voltage Processor  
Processor  
Number  
Core Frequency &  
Voltage  
Symbol  
Thermal Design Power Unit  
Notes  
10  
10  
1.20 GHz & HFM VCC  
1.06 GHz & HFM VCC  
1.20 GHz & HFM VCC  
1.06 GHz & HFM VCC  
0.80 GHz & LFM VCC  
U7600  
U7500  
U2200  
U2100  
5.5  
TDP  
W
1, 4, 7  
5.5  
9.2- DC  
4.6-SC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
3.1- DC  
2.6-DC  
1.7-SC  
1.4-SC  
Auto Halt, Stop Grant Power  
at HFM VCC  
PAH,  
W
2, 8  
2, 8  
PSGNT  
at LFM VCC  
3.0-DC  
2.5-DC  
1.6- SC  
1.3-SC  
Sleep Power  
at HFM VCC  
at LFM VCC  
PSLP  
W
1.5-DC  
1.3-DC  
0.8-SC  
0.7-SC  
Deep Sleep Power  
at HFM VCC  
PDSLP  
W
W
2, 9  
2, 9  
at LFM VCC  
1.0-DC  
0.6-SC  
PDPRSLP  
Deeper Sleep Power  
0.7-DC  
0.4-SC  
PDC4  
TJ  
Intel® Enhanced Deeper Sleep Power  
Junction Temperature  
W
2, 9  
3, 4  
0
100  
°C  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
2.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
3.  
4.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
4-M cache.  
2-M cache.  
At Tj of 100°C.  
At Tj of 50°C.  
At Tj of 35°C.  
5.  
6.  
7.  
8.  
9.  
84  
Datasheet  
Thermal Specifications and Design Considerations  
5.1  
Thermal Specifications  
The processor incorporates three methods of monitoring die temperature: the digital  
thermal sensor, Intel Thermal Monitor and the thermal “diode.The Intel Thermal  
Monitor (detailed in Section 5.1.3) must be used to determine when the maximum  
specified processor junction temperature has been reached.  
5.1.1  
Thermal Diode  
The processor incorporates an on-die PNP transistor whose base emitter junction is  
used as a thermal diode, with its collector shorted to Ground. The thermal diode can be  
read by an off-die analog/digital converter (a thermal sensor) located on the  
motherboard or a stand-alone measurement kit. The thermal diode may be used to  
monitor the die temperature of the processor for thermal management or  
instrumentation purposes but is not a reliable indication that the maximum operating  
temperature of the processor has been reached. When using the thermal diode, a  
temperature offset value must be read from a processor Model Specific Register (MSR)  
and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal  
diode usage recommendation when the PROCHOT# signal is not asserted.  
Note:  
The reading of the external thermal sensor (on the motherboard) connected to the  
processor thermal diode signals will not necessarily reflect the temperature of the  
hottest location on the die. This is due to inaccuracies in the external thermal sensor,  
on-die temperature gradients between the location of the thermal diode and the hottest  
location on the die, and time based variations in the die temperature measurement.  
Time based variations can occur when the sampling rate of the thermal diode (by the  
thermal sensor) is slower than the rate at which the TJ temperature can change.  
Offset between the thermal diode based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of the thermal control circuit. This temperature offset must be taken  
into account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor MSR.  
Table 20 through Table 23 provides the diode interface and specifications. Two different  
sets of diode parameters are listed in Table 22 and Table 23. The diode model  
parameters apply to the traditional thermal sensors that use the diode equation to  
determine the processor temperature. Transistor model parameters have been added  
to support thermal sensors that use the transistor equation method. The Transistor  
model may provide more accurate temperature measurements when the diode ideality  
factor is closer to the maximum or minimum limits. Please contact your external sensor  
supplier for their recommendation. The thermal diode is separate from the Intel  
Thermal Monitor’s thermal sensor and cannot be used to predict the behavior of the  
Intel Thermal Monitor.  
5.1.2  
Thermal Diode Offset  
In order to improve the accuracy of the diode based temperature measurements, a  
temperature offset value (specified as Toffset) will be programmed in the processor  
Model Specific Register (MSR) which will contain thermal diode characterization data.  
During manufacturing each processor thermal diode will be evaluated for its behavior  
relative to the theoretical diode. Using the equation above, the temperature error  
created by the difference ntrim and the actual ideality of the particular processor will be  
calculated.  
Datasheet  
85  
Thermal Specifications and Design Considerations  
If the ntrim value used to calculate the Toffset differs from the ntrim value used to in a  
temperature sensing device, the Terror(nf) may not be accurate. If desired, the Toffset  
can be adjusted by calculating nactual and then recalculating the offset using the ntrim as  
defined in the temperature sensor manufacturer’s datasheet.  
The ntrim used to calculate the Diode Correction Toffset are listed in Table 20.  
Table 20.  
Table 21.  
Thermal Diode ntrim and Diode Correction Toffset  
Symbol  
Parameter  
Unit  
ntrim  
Diode Ideality used to calculate Toffset  
1.01  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
A25  
Thermal diode anode  
Thermal diode cathode  
Table 22.  
Thermal Diode Parameters using Diode Mode  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
n
Forward Bias Current  
Diode Ideality Factor  
Series Resistance  
5
N/A  
1.009  
4.52  
200  
1.050  
6.24  
µA  
N/A  
Ω
1
1.000  
2.79  
2, 3, 4  
2, 3, 5  
RTT  
NOTES:  
1.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Intel does not support or recommend operation of the thermal diode when the processor  
power supplies are not within their specified tolerance range.  
Characterized across a temperature range of 50-100 °C.  
2.  
3.  
4.  
Not 100% tested. Specified by design characterization.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by  
the diode equation:  
I
FW=Is *(e(qVD/nkT) -1),  
where IS = saturation current, q = electronic charge, VD = voltage across the diode, k =  
Boltzmann Constant, and T = absolute temperature (Kelvin).  
5.  
The series resistance, RTT, is provided to allow for a more accurate measurement of the  
diode junction temperature. RTT as defined includes the pins of the processor but does not  
include any socket resistance or board trace resistance between the socket and the  
external remote diode thermal sensor. RTT can be used by remote diode thermal sensors  
with automatic series resistance cancellation to calibrate out this error term. Another  
application is that a temperature offset can be manually calculated and programmed into  
an offset register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RTT*(N-1)*IFWmin]/[(no/q)*ln N]  
where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann  
Constant, and q = electronic charge.  
86  
Datasheet  
Thermal Specifications and Design Considerations  
Table 23.  
Thermal Diode Parameters Using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
IFW  
IE  
Forward Bias Current  
Emitter Current  
5
5
200  
200  
µA  
µA  
1, 2  
1
nQ  
Transistor Ideality  
0.997  
0.3  
1.001  
4.52  
1.005  
0.760  
6.24  
3, 4, 5  
3, 4  
3, 6  
Beta  
RTT  
Series Resistance  
2.79  
Ω
NOTES:  
1.  
2.  
3.  
4.  
5.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Same as IFW in Table 22  
Characterized across a temperature range of 50-100 °C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal diode behavior as exemplified  
by the equation for the collector current:  
IC=Is *(e(qVBE/nQkT) -1)  
where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
6.  
The series resistance, RTT, provided in the Diode Model Table (Table 22) can be used for  
more accurate readings as needed.  
When calculating a temperature based on the thermal diode measurements, a number  
of parameters must be either measured or assumed. Most devices measure the diode  
ideality and assume a series resistance and ideality trim value, although are capable of  
also measuring the series resistance. Calculating the temperature is then accomplished  
using the equations listed under Table 22. In most sensing devices, an expected value  
for the diode ideality is designed-in to the temperature calculation equation. If the  
designer of the temperature sensing device assumes a perfect diode, the ideality value  
(also called ntrim) will be 1.000. Given that most diodes are not perfect, the designers  
usually select an ntrim value that more closely matches the behavior of the diodes in  
the processor. If the processor diode ideality deviates from that of the ntrim, each  
calculated temperature will be offset by a fixed amount. This temperature offset can be  
calculated with the equation:  
Terror(nf) = Tmeasured * (1 - nactual/ntrim  
)
Where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured  
ideality of the diode, and ntrim is the diode ideality assumed by the temperature  
sensing device.  
5.1.3  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (Thermal Control Circuit) when the processor silicon reaches its maximum  
operating temperature. The temperature at which the Intel Thermal Monitor activates  
the TCC is not user configurable. Bus traffic is snooped in the normal manner and  
interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
Datasheet  
87  
Thermal Specifications and Design Considerations  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep  
Technology transition when the processor silicon reaches its maximum operating  
temperature. The Intel Thermal Monitor uses two modes to activate the TCC:  
Automatic mode and on-demand mode. If both modes are activated, automatic mode  
takes precedence.  
Note:  
The Intel Thermal Monitor automatic mode must be enabled through BIOS for the  
processor to be operating within specifications.  
There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal  
Monitor 2. These modes are selected by writing values to the MSRs of the processor.  
After automatic mode is enabled, the TCC will activate only when the internal die  
temperature reaches the maximum allowed value for operation.  
Likewise, when Intel Thermal Monitor 2 is enabled and a high temperature situation  
exists, the processor will perform an Enhanced Intel SpeedStep Technology transition  
to a lower operating point. When the processor temperature drops below the critical  
level, the processor will make an Enhanced Intel SpeedStep Technology transition to  
the last requested operating point.  
Intel Thermal Monitor 1 and Intel Thermal Monitor 2 can co-exist within the processor.  
If both Intel Thermal Monitor 1 and Intel Thermal Monitor 2 bits are enabled in the  
auto-throttle MSR, Intel Thermal Monitor 2 will take precedence over Intel Thermal  
Monitor 1. However, if Intel Thermal Monitor 2 is not sufficient to cool the processor  
below the maximum operating temperature then Intel Thermal Monitor 1 will also  
activate to help cool down the processor. Intel recommends Intel Thermal Monitor 1  
and Intel Thermal Monitor 2 be enabled on the processors.  
If a processor load based Enhanced Intel SpeedStep Technology transition (through  
MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two  
possible results:  
1. If the processor load based Enhanced Intel SpeedStep Technology transition target  
frequency is higher than the Intel Thermal Monitor 2 transition based target  
frequency, the processor load-based transition will be deferred until the Intel  
Thermal Monitor 2 event has been completed.  
2. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is lower than the Intel Thermal Monitor 2 transition based target  
frequency, the processor will transition to the processor load-based Enhanced Intel  
SpeedStep Technology target frequency point.  
When Intel Thermal Monitor 1 is enabled while a high temperature situation exists, the  
clocks will be modulated by alternately turning the clocks off and on at a 50% duty  
cycle. Cycle times are processor speed dependent and will decrease linearly as  
processor core frequencies increase. Once the temperature has returned to a non-  
critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis  
has been included to prevent rapid active/inactive transitions of the TCC when the  
processor temperature is near the trip point. The duty cycle is factory configured and  
cannot be modified. Also, automatic mode does not require any additional hardware,  
software drivers, or interrupt handling routines. Processor performance will be  
decreased by the same amount as the duty cycle when the TCC is active.  
88  
Datasheet  
Thermal Specifications and Design Considerations  
The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be  
programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
Note:  
PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep  
Sleep, and Deeper Sleep low power states, hence the thermal diode reading must be  
used as a safeguard to maintain the processor junction temperature within maximum  
specification. If the platform thermal solution is not able to maintain the processor  
junction temperature within the maximum specification, the system must initiate an  
orderly shutdown to prevent damage. If the processor enters one of the above low  
power states with PROCHOT# already asserted, PROCHOT# will remain asserted until  
the processor exits the low power state and the processor junction temperature drops  
below the thermal trip point.  
If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out  
of specification. Regardless of enabling the automatic or on-demand modes, in the  
event of a catastrophic cooling failure, the processor will automatically shut down when  
the silicon has reached a temperature of approximately 125°C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
5.1.4  
Digital Thermal Sensor  
The processor also contains an on-die digital thermal sensor that can be read via a MSR  
(no I/O interface). In a dual-core implementation of the processor, each core will have  
a unique digital thermal sensor whose temperature is accessible via processor MSR.  
The digital thermal sensor is the preferred method of reading the processor die  
temperature since it can be located much closer to the hottest portions of the die and  
can thus more accurately track the die temperature and potential activation of  
processor core clock modulation via the Intel Thermal Monitor. The digital thermal  
sensor is only valid while the processor is in the normal operating state (C0 state).  
Unlike traditional thermal devices, the Digital Thermal sensor will output a temperature  
relative to the maximum supported operating temperature of the processor (TJ,max). It  
is the responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the digital thermal sensor will always be at  
or below TJ,max. Over temperature conditions are detectable via an Out Of Spec status  
bit. This bit is also part of the Digital Thermal sensor MSR. When this bit is set, the  
processor is operating out of specification and immediate shutdown of the system  
should occur. The processor operation and code execution is not guaranteed once the  
activation of the Out of Spec status bit is set.  
Datasheet  
89  
Thermal Specifications and Design Considerations  
The Digital Thermal Sensor (DTS) relative temperature readout corresponds to the  
Intel Thermal Monitor (Intel Thermal Monitor 1/Intel Thermal Monitor 2) trigger point.  
When the DTS indicates maximum processor core temperature has been reached the  
Intel Thermal Monitor 1 or Intel Thermal Monitor 2 hardware thermal control  
mechanism will activate. The DTS and Intel Thermal Monitor 1/Intel Thermal Monitor 2  
temperature may not correspond to the thermal diode reading since the thermal diode  
is located in a separate portion of the die and thermal gradient between the individual  
core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary  
substantially due to changes in processor power, mechanical and thermal attach and  
software application. The system designer is required to use the DTS to guarantee  
proper operation of the processor within its temperature operating specifications.  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Intel® Architectures  
Software Developer's Manual for specific register and programming details.  
5.1.5  
5.1.6  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shut down before the  
THERMTRIP# is activated. If the processor’s Intel Thermal Monitor 1 or Intel Thermal  
Monitor 2 are triggered and the temperature remains high, an “Out Of Spec” status and  
sticky bit are latched in the status MSR register and generates thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If the Intel Thermal  
Monitor 1 or Intel Thermal Monitor 2 is enabled (note that the Intel Thermal Monitor 1  
or Intel Thermal Monitor 2 must be enabled for the processor to be operating within  
specification), the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or deassertion of  
PROCHOT#.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from over-heating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
In a dual-core implementation, only a single PROCHOT# pin exists at a package level.  
When either core's thermal sensor trips, PROCHOT# signal will be driven by the  
processor package. If only Intel Thermal Monitor 1 is enabled, PROCHOT# will be  
asserted and only the core that is above TCC temperature trip point will have its core  
clocks modulated. If Intel Thermal Monitor 2 is enabled, then regardless of which  
core(s) are above TCC temperature trip point, both cores will enter the lowest  
programmed Intel Thermal Monitor 2 performance state. It is important to note that  
Intel recommends both Intel Thermal Monitor 1 and Intel Thermal Monitor 2 to be  
enabled.  
When PROCHOT# is driven by an external agent, if only Intel Thermal Monitor 1 is  
enabled on both cores, then both processor cores will have their core clocks modulated.  
If Intel Thermal Monitor 2 is enabled on both cores, then both processor core will enter  
the lowest programmed Intel Thermal Monitor 2 performance state.  
One application is the thermal protection of voltage regulators (VR). System designers  
can create a circuit to monitor the VR temperature and activate the TCC when the  
temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and  
90  
Datasheet  
Thermal Specifications and Design Considerations  
activating the TCC, the VR can cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in  
case of system cooling failure. The system thermal design should allow the power  
delivery circuitry to operate within its temperature specification even while the  
processor is operating at its TDP. With a properly designed and characterized thermal  
solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very  
short periods of time when running the most power intensive applications. An under-  
designed thermal solution that is not able to prevent excessive assertion of PROCHOT#  
in the anticipated ambient environment may cause a noticeable performance loss.  
§ §  
Datasheet  
91  

相关型号:

T560N

Netz-Thyristor Phase Control Thyristor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N12TOFHOSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N12TOFXPSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1200V V(DRM), 1200V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N14TOF

Silicon Controlled Rectifier, 1260A I(T)RMS, 559000mA I(T), 1400V V(DRM), 1400V V(RRM), 1 Element

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N14TOFXPSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1400V V(DRM), 1400V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N16TOF

Silicon Controlled Rectifier, 1260A I(T)RMS, 559000mA I(T), 1600V V(DRM), 1600V V(RRM), 1 Element

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N16TOFHOSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1600V V(DRM), 1600V V(RRM), 1 Element

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N16TOFXPSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1600V V(DRM), 1600V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N18TOF

Silicon Controlled Rectifier, 1260A I(T)RMS, 559000mA I(T), 1800V V(DRM), 1800V V(RRM), 1 Element

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N18TOFHOSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1800V V(DRM), 1800V V(RRM), 1 Element

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T560N18TOFXPSA1

Silicon Controlled Rectifier, 1260A I(T)RMS, 1800V V(DRM), 1800V V(RRM), 1 Element,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

T5621-0.0016M

HCMOS Output Clock Oscillator, 0.0016MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, SMD, LCC-4

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS