TE28F160B3BC80 [INTEL]

3 Volt Advanced Boot Block Flash Memory; 3伏高级启动区块快闪记忆体
TE28F160B3BC80
型号: TE28F160B3BC80
厂家: INTEL    INTEL
描述:

3 Volt Advanced Boot Block Flash Memory
3伏高级启动区块快闪记忆体

闪存 存储 内存集成电路 光电二极管
文件: 总58页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 Volt Advanced Boot Block Flash  
Memory  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Preliminary Datasheet  
Product Features  
Flexible SmartVoltage Technology  
2.7 V–3.6 V Read/Program/Erase  
12 V VPP Fast Production Programming  
2.7 V or 1.65 V I/O Option  
Reduces Overall System Power  
High Performance  
Intel® Flash Data Integrator Software  
Flash Memory Manager  
System Interrupt Manager  
Supports Parameter Storage, Streaming  
Data (e.g., Voice)  
Extended Cycling Capability  
Minimum 100,000 Block Erase Cycles  
Guaranteed  
2.7 V–3.6 V: 70 ns Max Access Time  
Optimized Block Sizes  
Automatic Power Savings Feature  
Typical ICCS after Bus Inactivity  
Standard Surface Mount Packaging  
48-Ball CSP Packages  
Eight 8-KB Blocks for Data,Top or  
Bottom Locations  
Up to One Hundred Twenty-Seven 64-  
KB Blocks for Code  
Block Locking  
40- and 48-Lead TSOP Packages  
VCC-Level Control through WP#  
Low Power Consumption  
—9 mA Typical Read Current  
Absolute Hardware-Protection  
VPP = GND Option  
Density and Footprint Upgradeable for  
common package  
4-, 8-, 16-, 32- and 64-Mbit Densities  
ETOX™ VII (0.18 µ) Flash Technology  
28F160/320/640B3xC  
4-, 8-, 16-, and 32-Mbit also exist on  
ETOX™ V (0.4µ) and/or ETOX ™ VI  
(0.25µ) Flash Technology  
VCC Lockout Voltage  
Extended Temperature Operation  
40 °C to +85 °C  
x8 not recommended for new designs  
Automated Program and Block Erase  
Status Registers  
4-Mbit density not recommended for new  
designs  
The 3 Volt Advanced Boot Block flash memory, manufactured on Intel’s latest 0.18 µm  
technology, represents a feature-rich solution at overall lower system cost. The 3 Volt Advanced  
Boot Block flash memory products in x16 will be available in 48-lead TSOP and 48-ball CSP  
packages. The x8 option of this product family will only be available in 40-lead TSOP and 48-  
ball µBGA* packages. Additional information on this product family can be obtained by  
accessing Intel’s website at: http://www.intel.com/design/flash.  
Notice: This document contains preliminary information on new products in production. The  
specifications are subject to change without notice. Verify with your local Intel sales office that  
you have the latest datasheet before finalizing a design.  
Order Number: 290580-012  
October 2000  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no  
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products  
are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3 may contain design defects or errors known as errata which may cause  
the product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation 1999– 2000.  
*Other brands and names are the property of their respective owners.  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Contents  
1.0  
Introduction..................................................................................................................1  
1.1 Product Overview..................................................................................................2  
Product Description..................................................................................................3  
2.0  
2.1  
2.2  
Package Pinouts ...................................................................................................3  
Block Organization ................................................................................................7  
2.2.1 Parameter Blocks.....................................................................................7  
2.2.2 Main Blocks..............................................................................................7  
3.0  
Principles of Operation............................................................................................7  
3.1  
3.2  
3.3  
Bus Operation .......................................................................................................7  
3.1.1 Read.........................................................................................................8  
3.1.2 Output Disable..........................................................................................8  
3.1.3 Standby ....................................................................................................8  
3.1.4 Deep Power-Down / Reset.......................................................................8  
3.1.5 Write.........................................................................................................9  
Modes of Operation...............................................................................................9  
3.2.1 Read Array ...............................................................................................9  
3.2.2 Read Identifier........................................................................................11  
3.2.3 Read Status Register .............................................................................11  
3.2.4 Program Mode........................................................................................12  
3.2.5 Erase Mode............................................................................................12  
Block Locking ......................................................................................................14  
3.3.1 WP# = VIL for Block Locking ..................................................................14  
3.3.2 WP# = VIH for Block Unlocking ..............................................................15  
3.4  
3.5  
V
PP Program and Erase Voltages.......................................................................15  
3.4.1 PP = VIL for Complete Protection .........................................................15  
V
Power Consumption............................................................................................15  
3.5.1 Active Power ..........................................................................................16  
3.5.2 Automatic Power Savings (APS)............................................................16  
3.5.3 Standby Power.......................................................................................16  
3.5.4 Deep Power-Down Mode .......................................................................16  
Power-Up/Down Operation .................................................................................16  
3.6.1 RP# Connected to System Reset...........................................................17  
3.6  
3.7  
3.6.2  
VCC, VPP and RP# Transitions...............................................................17  
Power Supply Decoupling ...................................................................................17  
4.0  
Electrical Specifications........................................................................................18  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Absolute Maximum Ratings.................................................................................18  
Operating Conditions...........................................................................................19  
Capacitance ........................................................................................................19  
DC Characteristics ..............................................................................................20  
AC Characteristics —Read Operations...............................................................23  
AC Characteristics —Write Operations...............................................................27  
Program and Erase Timings................................................................................31  
3UHOLPLQDU\  
iii  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
5.0  
6.0  
7.0  
Reset Operations .....................................................................................................33  
Ordering Information..............................................................................................34  
Additional Information...........................................................................................36  
Appendix A Write State Machine Current/Next States .................................................37  
Appendix B Architecture Block Diagram...........................................................................38  
Appendix C Word-Wide Memory Map Diagrams.............................................................39  
Appendix D Byte-Wide Memory Map Diagrams ..............................................................45  
Appendix E Program and Erase Flowcharts....................................................................48  
iv  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Revision History  
Number  
Description  
-001  
Original version  
Section 3.4, V Program and Erase Voltages, added  
PP  
Updated Figure 9: Automated Block Erase Flowchart  
Updated Figure 10: Erase Suspend/Resume Flowchart (added program to table)  
Updated Figure 16: AC Waveform: Program and Erase Operations (updated notes)  
-002  
I
maximum specification change from ±25 µA to ±50 µA  
PPR  
Program and Erase Suspend Latency specification change  
Updated Appendix A: Ordering Information (included 8 M and 4 M information)  
Updated Figure, Appendix D: Architecture Block Diagram (Block info. in words not bytes)  
Minor wording changes  
Combined byte-wide specification (previously 290605) with this document  
Improved speed specification to 80 ns (3.0 V) and 90 ns (2.7 V)  
Improved 1.8 V I/O option to minimum 1.65 V (Section 3.4)  
Improved several DC characteristics (Section 4.4)  
Improved several AC characteristics (Sections 4.5 and 4.6)  
Combined 2.7 V and 1.8 V DC characteristics (Section 4.4)  
Added 5 V V read specification (Section 3.4)  
PP  
Removed 120 ns and 150 ns speed offerings  
-003  
Moved Ordering Information from Appendix to Section 6.0; updated information  
Moved Additional Information from Appendix to Section 7.0  
Updated figure Appendix B, Access Time vs. Capacitive Load  
Updated figure Appendix C, Architecture Block Diagram  
Moved Program and Erase Flowcharts to Appendix E  
Updated Program Flowchart  
Updated Program Suspend/Resume Flowchart  
Minor text edits throughout  
Added 32-Mbit density  
Added 98H as a reserved command (Table 4)  
A –A = 0 when in read identifier mode (Section 3.2.2)  
1
20  
Status register clarification for SR3 (Table 7)  
V
and V absolute maximum specification = 3.7 V (Section 4.1)  
CC  
CCQ  
Combined I  
Combined I  
and I  
into one specification (Section 4.4)  
into one specification (Section 4.4)  
PPW  
PPE  
CCW  
and I  
CCE  
Max Parameter Block Erase Time (t  
/t  
) reduced to 4 sec (Section 4.7)  
) reduced to 5 sec (Section 4.7)  
) changed to 5 µs typical and 20 µs maximum  
WHQV2 EHQV2  
/t  
/t  
-004  
Max Main Block Erase Time (t  
Erase suspend time @ 12 V (t  
(Section 4.7)  
WHQV3 EHQV3  
WHRH2 EHRH2  
Ordering Information updated (Section 6.0)  
Write State Machine Current/Next States Table updated (Appendix A)  
Program Suspend/Resume Flowchart updated (Appendix F)  
Erase Suspend/Resume Flowchart updated (Appendix F)  
Text clarifications throughout  
µBGA package diagrams corrected (Figures 3 and 4)  
I
test conditions corrected (Section 4.4)  
PPD  
-005  
32-Mbit ordering information corrected (Section 6)  
µBGA package top side mark information added (Section 6)  
V
and V Specification change (Section 4.4)  
IH  
IL  
I
test conditions clarification (Section 4.4)  
CCS  
Added Command Sequence Error Note (Table 7)  
Datasheet renamed from Smart 3 Advanced Boot Block 4-Mbit, 8-Mbit, 16-Mbit Flash  
Memory Family.  
Added device ID information for 4-Mbit x8 device  
Removed 32-Mbit x8 to reflect product offerings  
Minor text changes  
-006  
-007  
Corrected RP# pin description in Table 2, 3 Volt Advanced Boot Block Pin Descriptions  
Corrected typographical error fixed in Ordering Information  
3UHOLPLQDU\  
v
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Number  
Description  
-008  
-009  
4-Mbit packaging and addressing information corrected throughout document  
Corrected 4-Mbit memory addressing tables in Appendices D and E  
Max I  
changed to 25 µA  
CCD  
-010  
V
Max on 32 M (28F320B3) changed to 3.3 V  
CC  
Added 64-Mbit density and faster speed offerings  
Removed access time vs. capacitance load curve  
-011  
Changed references of 32Mbit 80ns devices to 70ns devices to reflect the faster product  
offering.  
-012  
Changed VccMax=3.3V reference to indicate the affected product is the 0.25µm 32Mbit  
device.  
Minor text edits throughout document.  
vi  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
1.0  
Introduction  
This datasheet contains the specifications for the 3 Volt Advanced Boot Block flash memory  
family, which is optimized for low power, portable systems. This family of products features  
1.65 V–2.5 V or 2.7 V–3.6 V I/Os and a low VCC/VPP operating range of 2.7 V–3.6 V for read,  
program, and erase operations. In addition this family is capable of fast programming at 12 V.  
Throughout this document, the term “2.7 V” refers to the full voltage range 2.7 V–3.6 V (except  
where noted otherwise) and “VPP = 12 V” refers to 12 V ±5%. Section 1.0 and 2.0 provide an  
overview of the flash memory family including applications, pinouts and pin descriptions. Section  
3.0 describes the memory organization and operation for these products. Sections 4.0 and 5.0  
contain the operating specifications. Finally, Sections 6.0 and 7.0 provide ordering and other  
reference information.  
The 3 Volt Advanced Boot Block flash memory features:  
Enhanced blocking for easy segmentation of code and data or additional design flexibility  
Program Suspend to Read command  
VCCQ input of 1.65 V–2.5 V on all I/Os. See Figures 1 through 4 for pinout diagrams and  
V
CCQ location  
Maximum program and erase time specification for improved data storage.  
Table 1. 3 Volt Advanced Boot Block Feature Summary  
28F400B3(2), 28F800B3,  
28F004B3(2), 28F008B3,  
28F016B3  
Feature  
28F160B3, 28F320B3(3)  
28F640B3  
,
Reference  
Section 4.2,  
Section 4.4  
Section 4.2, 4.4  
Section 4.2, 4.4  
Table 3  
V
Read Voltage  
2.7 V– 3.6 V  
CC  
V
V
I/O Voltage  
1.65 V–2.5 V or 2.7 V– 3.6 V  
2.7 V– 3.6 V or 11.4 V– 12.6 V  
CCQ  
Program/Erase Voltage  
PP  
Bus Width  
Speed  
8 bit  
16 bit  
70 ns, 80 ns, 90 ns, 100 ns, 110 ns  
Section 4.5  
256 Kbit x 16 (4 Mbit),  
512 Kbit x 16 (8 Mbit),  
1024 Kbit x 16 (16 Mbit),  
2048 Kbit x 16 (32 Mbit),  
4096 Kbit x 16 (64 Mbit)  
512 Kbit x 8 (4 Mbit)  
1024 Kbit x 8 (8 Mbit),  
2048 Kbit x 8 (16 Mbit)  
Memory Arrangement  
Section 2.2  
Eight 8-Kbyte parameter blocks and  
Seven 64-Kbyte blocks (4 Mbit) or  
Fifteen 64-Kbyte blocks (8 Mbit) or  
Thirty-one 64-Kbyte main blocks (16 Mbit)  
Sixty-three 64-Kbyte main blocks (32 Mbit)  
One hundred twenty-seven 64-Kbyte main blocks (64 Mbit)  
Section 2.2  
Appendix C  
Blocking (top or bottom)  
Locking  
WP# locks/unlocks parameter blocks  
Section 3.3  
Table 8  
All other blocks protected using V  
Extended: –40 °C to +85 °C  
100,000 cycles  
PP  
Operating Temperature  
Program/Erase Cycling  
Section 4.2, 4.4  
Section 4.2, 4.4  
48-Lead TSOP,  
48-Ball µBGA CSP(2)  
48-Ball VF BGA(4)  
40-lead TSOP(1)  
48-Ball µBGA* CSP(2)  
,
Packages  
,
Figure 3, Figure 4  
NOTES:  
1. 32-Mbit and 64-Mbit densities not available in 40-lead TSOP.  
2. 4-Mbit density not available in µBGA* CSP.  
3. V Max is 3.3 V on 0.25µm 32-Mbit devices.  
CC  
4. 4- and 64-Mbit densities not available on 48-Ball VF BGA.  
3UHOLPLQDU\  
1
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
1.1  
Product Overview  
Intel provides the most flexible voltage solution in the flash industry, providing three discrete  
voltage supply pins: VCC for read operation, VCCQ for output swing, and VPP for program and  
erase operation. All 3 Volt Advanced Boot Block flash memory products provide program/erase  
capability at 2.7 V or 12 V (for fast production programming) and read with VCC at 2.7 V. Since  
many designs read from the flash memory a large percentage of the time, 2.7 V VCC operation can  
provide substantial power savings.  
The 3 Volt Advanced Boot Block flash memory products are available in either x8 or x16 packages  
in the following densities: (see Section 6.0, “Ordering Information” on page 34 for availability.)  
4-Mbit (4,194,304-bit) flash memory organized as 256 Kwords of 16 bits each or 512 Kbytes  
of 8-bits each  
8-Mbit (8,388,608-bit) flash memory organized as 512 Kwords of 16 bits each or 1024 Kbytes  
of 8-bits each  
16-Mbit (16,777,216-bit) flash memory organized as 1024 Kwords of 16 bits each or  
2048 Kbytes of 8-bits each  
32-Mbit (33,554,432-bit) flash memory organized as 2048 Kwords of 16 bits each  
64-Mbit (67,108,864-bit) flash memory organized as 4096 Kwords of 16 bits each  
The parameter blocks are located at either the top (denoted by -T suffix) or the bottom (-B suffix)  
of the address map in order to accommodate different microprocessor protocols for kernel code  
location. The upper two (or lower two) parameter blocks can be locked to provide complete code  
security for system initialization code. Locking and unlocking is controlled by WP# (see Section  
3.3, “Block Locking” on page 14 for details).  
The Command User Interface (CUI) serves as the interface between the microprocessor or  
microcontroller and the internal operation of the flash memory. The internal Write State Machine  
(WSM) automatically executes the algorithms and timings necessary for program and erase  
operations, including verification, thereby un-burdening the microprocessor or microcontroller.  
The status register indicates the status of the WSM by signifying block erase or word program  
completion and status.  
The 3 Volt Advanced Boot Block flash memory is also designed with an Automatic Power Savings  
(APS) feature which minimizes system current drain, allowing for very low power designs. This  
mode is entered following the completion of a read cycle (approximately 300 ns later).  
The RP# pin provides additional protection against unwanted command writes that may occur  
during system reset and power-up/down sequences due to invalid system bus conditions (see  
Section 3.6, “Power-Up/Down Operation” on page 16).  
Section 3.0, “Principles of Operation” on page 7 gives detailed explanation of the different modes  
of operation. Complete current and voltage specifications can be found in Section 4.4, “DC  
Characteristics” on page 20. Refer to Section 4.5, “AC Characteristics —Read Operations” on  
page 23 for read, program and erase performance specifications.  
2
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
2.0  
Product Description  
This section explains device pin description and package pinouts.  
2.1  
Package Pinouts  
The 3 Volt Advanced Boot Block flash memory is available in 40-lead TSOP (x8, Figure 1),  
48-lead TSOP (x16, Figure 2) and 48-ball µBGA(x8 and x16, Figure 3 and Figure 4, respectively)  
and 48-ball VF BGA (x16, Figure 4) packages. In all figures, pin changes necessary for density  
upgrades have been circled.  
Figure 1. 40-Lead TSOP Package for x8 Configurations  
A16  
A15  
A14  
A13  
A12  
A11  
A9  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A17  
GND  
A20  
A19  
A10  
16 M  
8 M  
DQ7  
DQ6  
DQ5  
DQ4  
VCCQ  
VCC  
NC  
DQ3  
DQ2  
DQ1  
DQ0  
OE#  
GND  
CE#  
A0  
A8  
Advanced Boot Block  
40-Lead TSOP  
10 mm x 20 mm  
WE#  
RP#  
VPP  
WP#  
A18  
A7  
A6  
A5  
A4  
A3  
TOP VIEW  
4 M  
A2  
A1  
0580_01  
NOTES:  
1. 40-Lead TSOP available for 8- and 16-Mbit densities only.  
2. Lower densities will have NC on the upper address pins. For example, an 8-Mbit device will have NC on  
Pin 38.  
3UHOLPLQDU\  
3
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 2. 48-Lead TSOP Package for x16 Configurations  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
VCCQ  
GND  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
A8  
64 M  
32 M  
A21  
A20  
WE#  
RP#  
VPP  
WP#  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
Advanced Boot Block  
48-Lead TSOP  
12 mm x 20 mm  
TOP VIEW  
16 M  
0580_02  
NOTE: Lower densities will have NC on the upper address pins. For example, an 16-Mbit device will have NC  
on Pins 9 and 10.  
Figure 3. x8 48-Ball µBGA* Chip Size Package (Top View, Ball Down)  
1
2
3
4
5
6
7
8
16M  
A
B
C
D
E
F
A14  
A12  
A8  
VPP  
WP#  
A20  
A7  
A4  
8M  
A15  
A10  
A13  
NC  
A11  
D7  
WE#  
A9  
RP#  
A19  
A18  
A5  
A3  
A2  
A1  
A16  
A6  
A17  
D5  
NC  
NC  
D4  
D2  
D3  
NC  
NC  
NC  
CE#  
D0  
A0  
VCCQ  
GND  
D6  
GND  
OE#  
NC  
VCC  
D1  
0580_04  
NOTES:  
1. Shaded connections indicate the upgrade address connections. Lower density devices will not have the  
upper address solder balls. Routing is not recommended in this area. A is the upgrade address for the  
20  
16-Mbit device.  
2. 4-Mbit density not available in µBGA* CSP.  
4
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 4. x16 48-Ball Very Thin Profile Pitch BGA and µBGA* Chip Size Package (Top View,  
Ball Down)  
1
2
3
4
5
6
7
8
16M  
A
B
C
D
E
F
A13  
A11  
A8  
VPP  
WP#  
A19  
A7  
A4  
A14  
A10  
WE#  
A9  
RP#  
A21  
A18  
A17  
A5  
A3  
A2  
A1  
32M  
64M  
A15  
A12  
A20  
A6  
A16  
D14  
D15  
D7  
D5  
D6  
D11  
D12  
D4  
D2  
D3  
D8  
D9  
CE#  
D0  
A0  
VCCQ  
GND  
GND  
OE#  
D13  
VCC  
D10  
D1  
0580_03  
NOTES:  
1. Shaded connections indicate the upgrade address connections. Lower density devices will not have the  
upper address solder balls. Routing is not recommended in this area. A is the upgrade address for the  
19  
16-Mbit device. A is the upgrade address for the 32-Mbit device. A is the upgrade address for the 64-Mbit  
20  
21  
device.  
2. 4-Mbit density not available in µBGA CSP.  
Table 2, “3 Volt Advanced Boot Block Pin Descriptions” on page 6 details the usage of each device  
pin.  
3UHOLPLQDU\  
5
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Table 2. 3 Volt Advanced Boot Block Pin Descriptions  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS for memory addresses. Addresses are internally latched during a program or  
erase cycle.  
A –A  
INPUT  
28F004B3: A[0-18], 28F008B3: A[0-19], 28F016B3: A[0-20],  
28F400B3: A[0-17], 28F800B3: A[0-18], 28F160B3: A[0-19],  
28F320B3: A[0-20], 28F640B3: A[0-21]  
0
21  
DATA INPUTS/OUTPUTS: Inputs array data on the second CE# and WE# cycle during a Program  
INPUT/  
command. Inputs commands to the Command User Interface when CE# and WE# are active. Data is  
DQ –DQ  
0
7
OUTPUT internally latched. Outputs array, identifier and status register data. The data pins float to tri-state when  
the chip is de-selected or the outputs are disabled.  
DATA INPUTS/OUTPUTS: Inputs array data on the second CE# and WE# cycle during a Program  
command. Data is internally latched. Outputs array and identifier data. The data pins float to tri-state  
when the chip is de-selected. Not included on x8 products.  
DQ –  
INPUT/  
OUTPUT  
8
DQ  
15  
CHIP ENABLE: Activates the internal control logic, input buffers, decoders and sense amplifiers. CE#  
CE#  
INPUT  
is active low. CE# high de-selects the memory device and reduces power consumption to standby  
levels.  
OUTPUT ENABLE: Enables the device’s outputs through the data buffers during a read operation.  
OE# is active low.  
OE#  
WE#  
INPUT  
INPUT  
WRITE ENABLE: Controls writes to the Command Register and memory array. WE# is active low.  
Addresses and data are latched on the rising edge of the second WE# pulse.  
RESET/DEEP POWER-DOWN: Uses two voltage levels (V , V ) to control reset/deep power-down  
IL  
IH  
mode.  
When RP# is at logic low, the device is in reset/deep power-down mode, which drives the outputs  
to High-Z, resets the Write State Machine, and minimizes current levels (I ).  
RP#  
INPUT  
CCD  
When RP# is at logic high, the device is in standard operation. When RP# transitions from logic-  
low to logic-high, the device defaults to the read array mode.  
WRITE PROTECT: Provides a method for locking and unlocking the two lockable parameter blocks.  
When WP# is at logic low, the lockable blocks are locked, preventing program and erase  
operations to those blocks. If a program or erase operation is attempted on a locked block, SR.1 and  
either SR.4 [program] or SR.5 [erase] will be set to indicate the operation failed.  
WP#  
INPUT  
INPUT  
When WP# is at logic high, the lockable blocks are unlocked and can be programmed or erased.  
See Section 3.3 for details on write protection.  
OUTPUT V : Enables all outputs to be driven to 1.8 V – 2.5 V while the V is at 2.7 V–3.3 V. If the  
CC  
CC  
V
is regulated to 2.7 V–2.85 V, V  
can be driven at 1.65 V–2.5 V to achieve lowest power  
CC  
CCQ  
V
V
CCQ  
CC  
operation (see Section 4.4).  
This input may be tied directly to V (2.7 V–3.6 V).  
CC  
DEVICE POWER SUPPLY: 2.7 V–3.6 V  
PROGRAM/ERASE POWER SUPPLY: Supplies power for program and erase operations. V may  
PP  
be the same as V (2.7 V–3.6 V) for single supply voltage operation. For fast programming at  
CC  
manufacturing, 11.4 V–12.6 V may be supplied to V . This pin cannot be left floating. Applying  
PP  
11.4 V–12.6 V to V can only be done for a maximum of 1000 cycles on the main blocks and 2500  
PP  
V
PP  
cycles on the parameter blocks. V may be connected to 12 V for a total of 80 hours maximum (see  
PP  
Section 3.4 for details).  
V
< V  
protects memory contents against inadvertent or unintended program and erase  
PPLK  
PP  
commands.  
GND  
NC  
GROUND: For all internal circuitry. All ground inputs must be connected.  
NO CONNECT: Pin may be driven or left floating.  
6
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
2.2  
Block Organization  
The 3 Volt Advanced Boot Block is an asymmetrically-blocked architecture that enables system  
integration of code and data within a single flash device. Each block can be erased independently  
of the others up to 100,000 times. For the address locations of each block, see the memory maps in  
Appendix C.  
2.2.1  
Parameter Blocks  
The 3 Volt Advanced Boot Block flash memory architecture includes parameter blocks to facilitate  
storage of frequently updated small parameters (e.g., data that would normally be stored in an  
EEPROM). By using software techniques, the word-rewrite functionality of EEPROMs can be  
emulated. Each device contains eight parameter blocks of 8-Kbytes/4-Kwords (8192 bytes/4,096  
words) each.  
2.2.2  
Main Blocks  
After the parameter blocks, the remainder of the array is divided into equal size main blocks  
(65,536 bytes/32,768 words) for data or code storage. The 4-Mbit device contains seven main  
blocks; 8-Mbit device contains fifteen main blocks; 16-Mbit flash has thirty-one main blocks;  
32-Mbit has sixty-three main blocks; 64-Mbit has one hundred twenty-seven main blocks.  
3.0  
Principles of Operation  
Flash memory combines EEPROM functionality with in-circuit electrical program and erase  
capability. The 3 Volt Advanced Boot Block flash memory family utilizes a Command User  
Interface (CUI) and automated algorithms to simplify program and erase operations. The CUI  
allows for 100% CMOS-level control inputs and fixed power supplies during erasure and  
programming.  
When VPP < VPPLK, the device will only execute the following commands successfully: Read  
Array, Read Status Register, Clear Status Register and Read Identifier. The device provides  
standard EEPROM read, standby and output disable operations. Manufacturer identification and  
device identification data can be accessed through the CUI. All functions associated with altering  
memory contents, namely program and erase, are accessible via the CUI. The internal Write State  
Machine (WSM) completely automates program and erase operations while the CUI signals the  
start of an operation and the status register reports status. The CUI handles the WE# interface to the  
data and address latches, as well as system status requests during WSM operation.  
3.1  
Bus Operation  
3 Volt Advanced Boot Block flash memory devices read, program and erase in-system via the local  
CPU or microcontroller. All bus cycles to or from the flash memory conform to standard micro-  
controller bus cycles. Four control pins dictate the data flow in and out of the flash component:  
CE#, OE#, WE# and RP#. These bus operations are summarized in Table 3.  
3UHOLPLQDU\  
7
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Table 3. Bus Operations(1)  
Mode  
Note  
RP#  
CE#  
OE#  
WE#  
DQ  
DQ  
8–15  
0–7  
Read (Array, Status, or Identifier)  
2–4  
2
V
V
V
V
V
V
V
V
D
D
OUT  
IH  
IH  
IH  
IL  
IL  
IH  
IL  
IH  
IH  
OUT  
Output Disable  
Standby  
Reset  
V
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
IH  
2
V
X
X
2, 7  
2, 5–7  
V
X
X
X
IL  
Write  
V
V
V
V
D
D
IN  
IH  
IL  
IH  
IL  
IN  
NOTES:  
1. 8-bit devices use only DQ[0:7], 16-bit devices use DQ[0:15].  
2. X must be V , V for control pins and addresses.  
IL  
IH  
3. See DC Characteristics for V  
, V  
, V  
, V  
, V  
voltages.  
PPLK  
PP1  
PP2  
PP3  
PP4  
4. Manufacturer and device codes may also be accessed in read identifier mode (A –A = 0). See Table 5.  
1
21  
5. Refer to Table 6 for valid D during a write operation.  
IN  
6. To program or erase the lockable blocks, hold WP# at V  
.
IH  
7. RP# must be at GND ± 0.2 V to meet the maximum deep power-down current specified.  
3.1.1  
Read  
The flash memory has four read modes available: read array, read identifier, read status and read  
query. These modes are accessible independent of the VPP voltage. The appropriate Read Mode  
command must be issued to the CUI to enter the corresponding mode. Upon initial device power-  
up or after exit from reset, the device automatically defaults to read array mode.  
CE# and OE# must be driven active to obtain data at the outputs. CE# is the device selection  
control; when active it enables the flash memory device. OE# is the data output control and it  
drives the selected memory data onto the I/O bus. For all read modes, WE# and RP# must be at  
VIH. Figure 7 illustrates a read cycle.  
3.1.2  
3.1.3  
Output Disable  
With OE# at a logic-high level (VIH), the device outputs are disabled. Output pins are placed in a  
high-impedance state.  
Standby  
Deselecting the device by bringing CE# to a logic-high level (VIH) places the device in standby  
mode, which substantially reduces device power consumption without any latency for subsequent  
read accesses. In standby, outputs are placed in a high-impedance state independent of OE#. If  
deselected during program or erase operation, the device continues to consume active power until  
the program or erase operation is complete.  
3.1.4  
Deep Power-Down / Reset  
From read mode, RP# at VIL for time tPLPH deselects the memory, places output drivers in a high-  
impedance state, and turns off all internal circuits. After return from reset, a time tPHQV is required  
until the initial read access outputs are valid. A delay (tPHWL or tPHEL) is required after return from  
reset before a write can be initiated. After this wake-up interval, normal operation is restored. The  
CUI resets to read array mode, and the status register is set to 80H. This case is shown in  
Figure 9A.  
8
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
If RP# is taken low for time tPLPH during a program or erase operation, the operation will be  
aborted and the memory contents at the aborted location (for a program) or block (for an erase) are  
no longer valid, since the data may be partially erased or written. The abort process goes through  
the following sequence: When RP# goes low, the device shuts down the operation in progress, a  
process which takes time tPLRH to complete. After this time tPLRH, the part will either reset to read  
array mode (if RP# has gone high during tPLRH, Figure 9B) or enter reset mode (if RP# is still logic  
low after tPLRH, Figure 9C). In both cases, after returning from an aborted operation, the relevant  
time tPHQV or tPHWL/tPHEL must be waited before a read or write operation is initiated, as  
discussed in the previous paragraph. However, in this case, these delays are referenced to the end  
of tPLRH rather than when RP# goes high.  
As with any automated device, it is important to assert RP# during system reset. When the system  
comes out of reset, processor expects to read from the flash memory. Automated flash memories  
provide status information when read during program or block erase operations. If a CPU reset  
occurs with no flash memory reset, proper CPU initialization may not occur because the flash  
memory may be providing status information instead of array data. Intel® Flash memories allow  
proper CPU initialization following a system reset through the use of the RP# input. In this  
application, RP# is controlled by the same RESET# signal that resets the system CPU.  
3.1.5  
Write  
A write takes place when both CE# and WE# are low and OE# is high. Commands are written to  
the Command User Interface (CUI) using standard microprocessor write timings to control flash  
operations. The CUI does not occupy an addressable memory location. The address and data buses  
are latched on the rising edge of the second WE# or CE# pulse, whichever occurs first. Figure 8  
illustrates a program and erase operation. The available commands are shown in Table 6, and  
Appendix A provides detailed information on moving between the different modes of operation  
using CUI commands.  
There are two commands that modify array data: Program (40H) and Erase (20H). Writing either of  
these commands to the internal Command User Interface (CUI) initiates a sequence of internally-  
timed functions that culminate in the completion of the requested task (unless that operation is  
aborted by either RP# being driven to VIL for tPLRH or an appropriate suspend command).  
3.2  
Modes of Operation  
The flash memory has four read modes and two write modes. The read modes are read array, read  
identifier, read status and read query (see Appendix B). The write modes are program and block  
erase. Three additional modes (erase suspend to program, erase suspend to read and program  
suspend to read) are available only during suspended operations. These modes are reached using  
the commands summarized in Table 4. A comprehensive chart showing the state transitions is in  
Appendix A.  
3.2.1  
Read Array  
When RP# transitions from VIL (reset) to VIH, the device defaults to read array mode and will  
respond to the read control inputs (CE#, address inputs, and OE#) without any additional CUI  
commands.  
3UHOLPLQDU\  
9
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
When the device is in read array mode, four control signals control data output:  
WE# must be logic high (VIH)  
CE# must be logic low (VIL)  
OE# must be logic low (VIL)  
RP# must be logic high (VIH)  
In addition, the address of the desired location must be applied to the address pins. If the device is  
not in read array mode, as would be the case after a program or erase operation, the Read Array  
command (FFH) must be written to the CUI before array reads can take place.  
Table 4. Command Codes and Descriptions  
Code  
Device Mode  
Description  
00, 01,  
60, 2F,  
C0, 98  
Invalid/  
Reserved  
Unassigned commands that should not be used. Intel reserves the right to redefine these  
codes for future functions.  
FF  
Read Array  
Places the device in read array mode, such that array data will be output on the data pins.  
This is a two-cycle command. The first cycle prepares the CUI for a program operation. The  
second cycle latches addresses and data information and initiates the WSM to execute the  
Program algorithm. The flash outputs status register data when CE# or OE# is toggled. A Read  
Array command is required after programming to read array data. See Section 3.2.4.  
40  
Program Set-Up  
Alternate  
Program Set-Up  
10  
20  
(See 40H/Program Set-Up)  
Prepares the CUI for the Erase Confirm command. If the next command is not an Erase  
Confirm command, then the CUI will (a) set both SR.4 and SR.5 of the status register to a “1,”  
(b) place the device into the read status register mode, and (c) wait for another command. See  
Section 3.2.5.  
Erase Set-Up  
Erase Confirm  
If the previous command was an Erase Set-Up command, then the CUI will close the address  
and data latches, and begin erasing the block indicated on the address pins. During erase, the  
device will only respond to the Read Status Register and Erase Suspend commands. The  
device will output status register data when CE# or OE# is toggled.  
D0  
If a program or erase operation was previously suspended, this command will resume that  
operation  
Program / Erase  
Resume  
Issuing this command will begin to suspend the currently executing program/erase operation.  
The status register will indicate when the operation has been successfully suspended by  
Program / Erase setting either the program suspend (SR.2) or erase suspend (SR.6) and the WSM status bit  
B0  
70  
Suspend  
(SR.7) to a “1” (ready). The WSM will continue to idle in the SUSPEND state, regardless of the  
state of all input control pins except RP#, which will immediately shut down the WSM and the  
remainder of the chip if it is driven to V . See Section 3.2.4.1 and Section 3.2.4.1.  
IL  
This command places the device into read status register mode. Reading the device will output  
the contents of the status register, regardless of the address presented to the device. The  
device automatically enters this mode after a program or erase operation has been initiated.  
See Section 3.2.3.  
Read Status  
Register  
The WSM can set the block lock status (SR.1) , V status (SR.3), program status (SR.4), and  
erase status (SR.5) bits in the status register to “1,” but it cannot clear them to “0.” Issuing this  
command clears those bits to “0.”  
PP  
Clear Status  
Register  
50  
90  
Puts the device into the intelligent identifier read mode, so that reading the device will output  
Read Identifier  
the manufacturer and device codes (A = 0 for manufacturer, A = 1 for device, all other  
0
0
address inputs must be 0). See Section Section 3.2.2.  
NOTE: See Appendix A for mode transition information.  
10  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
3.2.2  
Read Identifier  
To read the manufacturer and device codes, the device must be in read identifier mode, which can  
be reached by writing the Read Identifier command (90H). Once in read identifier mode, A0 = 0  
outputs the manufacturer’s identification code and A0 = 1 outputs the device identifier (see  
Table 5) Note: A1–A21 = 0. To return to read array mode, write the Read Array command (FFH).  
Table 5. Read Identifier Table  
Device Identifier  
Size  
Mfr. ID  
0089H  
0089H  
-T  
-B  
(Top Boot)  
(Bottom Boot)  
28F004B3  
28F400B3  
28F008B3  
28F800B3  
28F016B3  
28F160B3  
28F320B3  
28F640B3  
D4H  
8894H  
D2H  
D5H  
8895H  
D3H  
8892H  
D0H  
8893H  
D1H  
8890H  
8896H  
8898H  
8891H  
8897H  
8899H  
0089H  
3.2.3  
Read Status Register  
The device status register indicates when a program or erase operation is complete and the success  
or failure of that operation. To read the status register issue the Read Status Register (70H)  
command to the CUI. This causes all subsequent read operations to output data from the status  
register until another command is written to the CUI. To return to reading from the array, issue the  
Read Array (FFH) command.  
The status register bits are output on DQ0–DQ7. The upper byte, DQ8–DQ15, outputs 00H during a  
Read Status Register command.  
The contents of the status register are latched on the falling edge of OE# or CE#. This prevents  
possible bus errors which might occur if status register contents change while being read. CE# or  
OE# must be toggled with each subsequent status read, or the status register will not indicate  
completion of a program or erase operation.  
When the WSM is active, SR.7 will indicate the status of the WSM; the remaining bits in the status  
register indicate whether or not the WSM was successful in performing the desired operation (see  
Table 7 on page 14).  
3.2.3.1  
Clearing the Status Register  
The WSM sets status bits 1 through 7 to “1,” and clears bits 2, 6 and 7 to “0,” but cannot clear  
status bits 1 or 3 through 5 to “0.” Because bits 1, 3, 4 and 5 indicate various error conditions, these  
bits can only be cleared through the Clear Status Register (50H) command. By allowing the system  
software to control the resetting of these bits, several operations may be performed (such as  
cumulatively programming several addresses or erasing multiple blocks in sequence) before  
3UHOLPLQDU\  
11  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
reading the status register to determine if an error occurred during that series. Clear the status  
register before beginning another command or sequence. Note, again, that the Read Array  
command must be issued before data can be read from the memory array.  
3.2.4  
Program Mode  
Programming is executed using a two-write sequence. The Program Setup command (40H) is  
written to the CUI followed by a second write which specifies the address and data to be  
programmed. The WSM will execute a sequence of internally timed events to program desired bits  
of the addressed location, then verify the bits are sufficiently programmed. Programming the  
memory results in specific bits within an address location being changed to a “0.” If the user  
attempts to program “1”s, the memory cell contents do not change and no error occurs.  
The status register indicates programming status: while the program sequence executes, status bit 7  
is “0.” The status register can be polled by toggling either CE# or OE#. While programming, the  
only valid commands are Read Status Register, Program Suspend, and Program Resume.  
When programming is complete, the Program Status bits should be checked. If the programming  
operation was unsuccessful, bit SR.4 of the status register is set to indicate a program failure. If  
SR.3 is set then VPP was not within acceptable limits, and the WSM did not execute the program  
command. If SR.1 is set, a program operation was attempted on a locked block and the operation  
was aborted.  
The status register should be cleared before attempting the next operation. Any CUI instruction can  
follow after programming is completed; however, to prevent inadvertent status register reads, be  
sure to reset the CUI to read array mode.  
3.2.4.1  
Suspending and Resuming Program  
The Program Suspend halts the in-progress program operation to read data from another location of  
memory. Once the programming process starts, writing the Program Suspend command to the CUI  
requests that the WSM suspend the program sequence (at predetermined points in the program  
algorithm). The device continues to output status register data after the Program Suspend command  
is written. Polling status register bits SR.7 and SR.2 will determine when the program operation  
has been suspended (both will be set to “1”). tWHRH1/tEHRH1 specify the program suspend latency.  
A Read Array command can now be written to the CUI to read data from blocks other than that  
which is suspended. The only other valid commands while program is suspended, are Read Status  
Register, Read Identifier, and Program Resume. After the Program Resume command is written to  
the flash memory, the WSM will continue with the program process and status register bits SR.2  
and SR.7 will automatically be cleared. After the Program Resume command is written, the device  
automatically outputs status register data when read (see Appendix E for Program Suspend and  
Resume Flowchart). VPP must remain at the same VPP level used for program while in program  
suspend mode. RP# must also remain at VIH.  
3.2.5  
Erase Mode  
To erase a block, write the Erase Set-up and Erase Confirm commands to the CUI, along with an  
address identifying the block to be erased. This address is latched internally when the Erase  
Confirm command is issued. Block erasure results in all bits within the block being set to “1.” Only  
one block can be erased at a time. The WSM will execute a sequence of internally-timed events to  
program all bits within the block to “0,” erase all bits within the block to “1,” then verify that all  
bits within the block are sufficiently erased. While the erase executes, status bit 7 is a “0.”  
12  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
When the status register indicates that erasure is complete, check the erase status bit to verify that  
the erase operation was successful. If the erase operation was unsuccessful, SR.5 of the status  
register will be set to a “1,” indicating an erase failure. If VPP was not within acceptable limits after  
the Erase Confirm command was issued, the WSM will not execute the erase sequence; instead,  
SR.5 of the status register is set to indicate an erase error, and SR.3 is set to a “1” to identify that  
V
PP supply voltage was not within acceptable limits.  
After an erase operation, clear the status register (50H) before attempting the next operation. Any  
CUI instruction can follow after erasure is completed; however, to prevent inadvertent status  
register reads, it is advisable to place the flash in read array mode after the erase is complete.  
3.2.5.1  
Suspending and Resuming Erase  
Since an erase operation requires on the order of seconds to complete, an Erase Suspend command  
is provided to allow erase-sequence interruption in order to read data from or program data to  
another block in memory. Once the erase sequence is started, writing the Erase Suspend command  
to the CUI requests that the WSM pause the erase sequence at a predetermined point in the erase  
algorithm. The status register will indicate if/when the erase operation has been suspended.  
A Read Array/Program command can now be written to the CUI in order to read data from/  
program data to blocks other than the one currently suspended. The Program command can  
subsequently be suspended to read yet another array location. The only valid commands while  
erase is suspended are Erase Resume, Program, Read Array, Read Status Register, or Read  
Identifier. During erase suspend mode, the chip can be placed in a pseudo-standby mode by taking  
CE# to VIH. This reduces active current consumption.  
Erase Resume continues the erase sequence when CE# = VIL. As with the end of a standard erase  
operation, the status register must be read and cleared before the next instruction is issued.  
Table 6. Command Bus Definitions (1,4)  
First Bus Cycle  
Addr  
Second Bus Cycle  
Command  
Read Array  
Notes  
Oper  
Data  
Oper  
Addr  
Data  
Write  
Write  
Write  
Write  
X
X
X
X
FFH  
90H  
70H  
50H  
Read Identifier  
2
Read  
Read  
IA  
X
ID  
Read Status Register  
Clear Status Register  
SRD  
40H /  
10H  
Program  
3
Write  
X
Write  
Write  
PA  
BA  
PD  
Block Erase/Confirm  
Write  
Write  
Write  
X
X
X
20H  
B0H  
D0H  
D0H  
Program/Erase Suspend  
Program/Erase Resume  
NOTES:  
PA: Program Address  
PD: Program Data  
ID: Identifier Data  
BA: Block Address  
IA: Identifier Address  
SRD: Status Register Data  
1. Bus operations are defined in Table 3.  
2. Following the Intelligent Identifier command, two read operations access manufacturer and device codes.  
= 0 for manufacturer code, A = 1 for device code. A –A = 0.  
A
0
0
1
21  
3. Either 40H or 10H command is valid although the standard is 40H.  
4. When writing commands to the device, the upper data bus [DQ –DQ ] should be either V or V , to  
8
15  
IL  
IH  
minimize current draw.  
3UHOLPLQDU\  
13  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Table 7. Status Register Bit Definition  
WSMS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
R
0
NOTES:  
SR.7 = WRITE STATE MACHINE STATUS (WSMS)  
Check Write State Machine bit first to determine word program  
or block erase completion, before checking program or erase  
status bits.  
1 = Ready  
0 = Busy  
SR.6 = ERASE-SUSPEND STATUS (ESS)  
1 = Erase Suspended  
When erase suspend is issued, WSM halts execution and sets  
both WSMS and ESS bits to “1.” ESS bit remains set at “1” until  
an Erase Resume command is issued.  
0 = Erase In Progress/Completed  
SR.5 = ERASE STATUS (ES)  
1 = Error In Block Erasure  
0 = Successful Block Erase  
When this bit is set to “1,” WSM has applied the max. number  
of erase pulses to the block and is still unable to verify  
successful block erasure.  
SR.4 = PROGRAM STATUS (PS)  
1 = Error in Word Program  
When this bit is set to “1,” WSM has attempted but failed to  
program a word.  
0 = Successful Word Program  
SR.3 = V STATUS (VPPS)  
The V status bit does not provide continuous indication of  
PP  
PP  
1 = V Low Detect, Operation Abort  
V
level. The WSM interrogates V level only after the  
PP  
PP PP  
0 = V OK  
Program or Erase command sequences have been entered,  
and informs the system if V has not been switched on. The  
PP  
PP  
V
is also checked before the operation is verified by the  
PP  
WSM. The V status bit is not guaranteed to report accurate  
PP  
feedback between V  
max and V  
min or between V  
PPLK  
PP1 PP1  
max and V  
min.  
PP4  
SR.2 = PROGRAM SUSPEND STATUS (PSS)  
1 = Program Suspended  
When program suspend is issued, WSM halts execution and  
sets both WSMS and PSS bits to “1.” PSS bit remains set to “1”  
until a Program Resume command is issued.  
0 = Program in Progress/Completed  
SR.1 = BLOCK LOCK STATUS  
1 = Program/Erase attempted on locked block;  
Operation aborted  
If a program or erase operation is attempted to one of the  
locked blocks, this bit is set by the WSM. The operation  
specified is aborted and the device is returned to read status  
mode.  
0 = No operation to locked blocks  
SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)  
This bit is reserved for future use and should be masked out  
when polling the status register.  
NOTE: A Command Sequence Error is indicated when both SR.4, SR.5 and SR.7 are set.  
3.3  
Block Locking  
The 3 Volt Advanced Boot Block flash memory architecture features two hardware-lockable  
parameter blocks.  
3.3.1  
WP# = V for Block Locking  
IL  
The lockable blocks are locked when WP# = VIL; any program or erase operation to a locked block  
will result in an error, which will be reflected in the status register. For top configuration, the top  
two parameter blocks (blocks #133 and #134 for the 64 Mbit, #69 and #70 for the 32 Mbit, blocks  
#37 and #38 for the 16 Mbit, blocks #21 and #22 for the 8 Mbit, blocks #13 and #14 for the 4 Mbit)  
are lockable. For the bottom configuration, the bottom two parameter blocks (blocks #0 and #1 for  
4 /8 /16 /32/64 Mbit) are lockable. Unlocked blocks can be programmed or erased normally (unless  
V
PP is below VPPLK).  
14  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
3.3.2  
WP# = V for Block Unlocking  
IH  
WP# = VIH unlocks all lockable blocks.  
These blocks can now be programmed or erased.  
Note that RP# does not override WP# locking as in previous Boot Block devices. WP# controls all  
block locking and VPP provides protection against spurious writes. Table 8 defines the write  
protection methods.  
Table 8. Write Protection Truth Table for the Advanced Boot Block Flash Memory Family  
V
WP#  
RP#  
Write Protection Provided  
PP  
X
X
X
V
All Blocks Locked  
IL  
IH  
IH  
IH  
V
V
V
V
All Blocks Locked  
IL  
V  
V  
V
Lockable Blocks Locked  
All Blocks Unlocked  
PPLK  
PPLK  
IL  
V
IH  
3.4  
V
Program and Erase Voltages  
PP  
Intel® 3 Volt Advanced Boot Block products provide in-system programming and erase at 2.7 V.  
For customers requiring fast programming in their manufacturing environment, 3 Volt Advanced  
Boot Block includes an additional low-cost 12 V programming feature.  
The 12 V VPP mode enhances programming performance during the short period of time typically  
found in manufacturing processes; however, it is not intended for extended use. 12 V may be  
applied to VPP during program and erase operations for a maximum of 1000 cycles on the main  
blocks and 2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of 80  
hours maximum.  
Warning: Stressing the device beyond these limits may cause permanent damage.  
During read operations or idle times, VPP may be tied to a 5 V supply. For program and erase  
operations, a 5 V supply is not permitted. The VPP must be supplied with either 2.7 V–3.6 V or  
11.4 V–12.6 V during program and erase operations.  
3.4.1  
V
= V for Complete Protection  
PP IL  
The VPP programming voltage can be held low for complete write protection of all blocks in the  
flash device. When VPP is below VPPLK, any program or erase operation will result in a error,  
prompting the corresponding status register bit (SR.3) to be set.  
3.5  
Power Consumption  
Intel Flash devices have a tiered approach to power savings that can significantly reduce overall  
system power consumption. The Automatic Power Savings (APS) feature reduces power  
consumption when the device is selected but idle. If the CE# is deasserted, the flash enters its  
standby mode, where current consumption is even lower. The combination of these features can  
minimize memory power consumption, and therefore, overall system power consumption.  
3UHOLPLQDU\  
15  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
3.5.1  
3.5.2  
3.5.3  
Active Power  
With CE# at a logic-low level and RP# at a logic-high level, the device is in the active mode. Refer  
to the DC Characteristic tables for ICC current values. Active power is the largest contributor to  
overall system power consumption. Minimizing the active current could have a profound effect on  
system power consumption, especially for battery-operated devices.  
Automatic Power Savings (APS)  
Automatic Power Savings provides low-power operation during read mode. After data is read from  
the memory array and the address lines are quiescent, APS circuitry places the device in a mode  
where typical current is comparable to ICCS. The flash stays in this static state with outputs valid  
until a new location is read.  
Standby Power  
With CE# at a logic-high level (VIH) and device in read mode, the flash memory is in standby  
mode, which disables much of the device’s circuitry and substantially reduces power consumption.  
Outputs are placed in a high-impedance state independent of the status of the OE# signal. If CE#  
transitions to a logic-high level during erase or program operations, the device will continue to  
perform the operation and consume corresponding active power until the operation is completed.  
System engineers should analyze the breakdown of standby time versus active time and quantify  
the respective power consumption in each mode for their specific application. This will provide a  
more accurate measure of application-specific power and energy requirements.  
3.5.4  
Deep Power-Down Mode  
The deep power-down mode is activated when RP# = VIL (GND ± 0.2 V). During read modes,  
RP# going low de-selects the memory and places the outputs in a high impedance state. Recovery  
from deep power-down requires a minimum time of tPHQV (see AC Characteristics—Read  
Operations, Section 4.5).  
During program or erase modes, RP# transitioning low will abort the in-progress operation. The  
memory contents of the address being programmed or the block being erased are no longer valid as  
the data integrity has been compromised by the abort. During deep power-down, all internal  
circuits are switched to a low power savings mode (RP# transitioning to VIL or turning off power to  
the device clears the status register).  
3.6  
Power-Up/Down Operation  
The device is protected against accidental block erasure or programming during power transitions.  
Power supply sequencing is not required, since the device is indifferent as to which power supply,  
V
PP or VCC, powers-up first.  
16  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
3.6.1  
RP# Connected to System Reset  
The use of RP# during system reset is important with automated program/erase devices since the  
system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. Intel recommends connecting RP# to the  
system CPU RESET# signal to allow proper CPU/flash initialization following system reset.  
System designers must guard against spurious writes when VCC voltages are above VLKO. Since  
both WE# and CE# must be low for a command write, driving either signal to VIH will inhibit  
writes to the device. The CUI architecture provides additional protection since alteration of  
memory contents can only occur after successful completion of the two-step command sequences.  
The device is also disabled until RP# is brought to VIH, regardless of the state of its control inputs.  
By holding the device in reset (RP# connected to system POWERGOOD) during power-up/down,  
invalid bus conditions during power-up can be masked, providing yet another level of memory  
protection.  
3.6.2  
V
, V and RP# Transitions  
CC PP  
The CUI latches commands as issued by system software and is not altered by VPP or CE#  
transitions or WSM actions. Its default state upon power-up, after exit from reset mode or after  
V
CC transitions above VLKO (Lockout voltage), is read array mode.  
After any program or block erase operation is complete (even after VPP transitions down to  
V
PPLK), the CUI must be reset to read array mode via the Read Array command if access to the  
flash memory array is desired.  
3.7  
Power Supply Decoupling  
Flash memory’s power switching characteristics require careful device decoupling. System  
designers should consider three supply current issues:  
1. Standby current levels (ICCS  
2. Read current levels (ICCR  
)
)
3. Transient peaks produced by falling and rising edges of CE#.  
Transient current magnitudes depend on the device outputs’ capacitive and inductive loading.  
Two-line control and proper decoupling capacitor selection will suppress these transient voltage  
peaks. Each flash device should have a 0.1 µF ceramic capacitor connected between each VCC and  
GND, and between its VPP and GND. These high-frequency, inherently low-inductance capacitors  
should be placed as close as possible to the package leads.  
3UHOLPLQDU\  
17  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Extended Operating Temperature  
During Read  
–40 °C to +85 °C  
During Block Erase and Program  
Temperature under Bias  
Storage Temperature  
–40 °C to +85 °C  
–40 °C to +85 °C  
–65 °C to +125 °C  
Voltage On Any Pin (except V , V  
and V ) with Respect to GND –0.5 V to +3.7 V(1)  
PP  
CC  
CCQ  
V
V
Voltage (for Block Erase and Program) with Respect to GND  
–0.5 V to +13.5 V(1,2,3)  
–0.2 V to +3.7 V(4)  
100 mA(5)  
PP  
CC  
and V  
Supply Voltage with Respect to GND  
CCQ  
Output Short Circuit Current  
NOTES:  
1. Minimum DC voltage is -0.5 V on input/output pins, with allowable undershoot to -2.0 V for periods <20 ns.  
Maximum DC voltage on input/output pins is V +0.5 V, with allowable overshoot to V +1.5 for periods of  
CC  
CC  
<20 ns  
2. Maximum DC voltage on V may overshoot to +14.0 V for periods <20 ns.  
PP  
3. V Program voltage is normally 2.7 V–3.6 V. Connection to a 11.4 V–12.6 V supply can be done for a  
PP  
maximum of 1000 cycles on the main blocks and 2500 cycles on the parameter blocks during program/erase.  
V
may be connected to 12 V for a total of 80 hours maximum. See Section 3.4 for details.  
PP  
4. Minimum DC voltage is -0.5 V on V and V  
, with allowable undershoot to -2.0 V for periods <20 ns.  
CC  
CCQ  
Maximum DC voltage on V and V  
pins is V +0.5 V, with allowable overshoot to V +1.5 for periods  
CC  
CCQ  
CC CC  
of <20 ns.  
5. Output shorted for no more than one second. No more than one output shorted at a time.  
NOTICE: This datasheet contains preliminary information on new products in production. Specifications are  
subject to change without notice. Verify with your local Intel Sales office that you have the latest datasheet before  
finalizing a design.  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
18  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.2  
Operating Conditions  
Symbol  
Parameter  
Notes  
Min  
Max  
Units  
T
Operating Temperature  
–40  
2.7  
+85  
3.6  
°C  
A
V
V
V
V
V
V
V
V
V
V
1, 2  
CC1  
V
Supply Voltage  
2.7  
2.85  
3.3  
Volts  
Volts  
CC2  
CC  
2.7  
CC3  
1
1
2.7  
3.6  
CCQ1  
CCQ2  
CCQ3  
PP1  
I/O Supply Voltage  
1.65  
1.8  
2.5  
2.5  
2.7  
3.6  
2.7  
2.85  
3.3  
PP2  
Program and Erase Voltage  
Block Erase Cycling  
Volts  
2.7  
PP3  
3, 4  
4
11.4  
100,000  
12.6  
PP4  
Cycling  
Cycles  
NOTES:  
1. V  
, V  
, and V  
must share the same supply when all three are between 2.7 V and 3.6 V.  
PP3  
CC1  
CCQ1  
2. V Max is 3.3 V on 0.25µm 32-Mbit devices.  
CC  
3. During read operations or idle time, 5 V may be applied to V indefinitely. V must be at valid levels for  
PP  
PP  
program and erase operations  
4. Applying V = 11.4 V–12.6 V during a program/erase can only be done for a maximum of 1000 cycles on  
PP  
the main blocks and 2500 cycles on the parameter blocks. V may be connected to 12 V for a total of  
PP  
80 hours maximum. See Section 3.4 for details.  
4.3  
Capacitance  
T
= 25 °C, f = 1 MHz  
A
Sym  
Parameter  
Notes  
Typ  
Max  
Units  
Conditions  
= 0 V  
C
C
Input Capacitance  
Output Capacitance  
1
1
6
8
pF  
pF  
V
IN  
IN  
10  
12  
V
= 0 V  
OUT  
OUT  
NOTE: Sampled, not 100% tested.  
3UHOLPLQDU\  
19  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.4  
DC Characteristics  
V
2.7 V–3.6 V  
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Note  
Typ  
Max  
Typ  
Max  
Typ  
Max  
V
V
V
= V Max  
CC  
CC  
I
Input Load Current  
1,2  
± 1  
± 1  
± 1  
µA  
= V  
Max  
LI  
CCQ  
CCQ  
= V  
or GND  
IN  
CCQ  
V
V
V
= V Max  
CC  
CC  
I
Output Leakage Current  
1,2  
1,2  
± 10  
15  
35  
15  
25  
18  
18  
5
± 10  
50  
50  
20  
25  
15  
15  
5
± 10  
250  
250  
20  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
µA  
= V  
Max  
LO  
CCQ  
CCQ  
= V  
or GND  
IN  
CCQ  
V
Standby Current for  
V
= V Max  
CC  
CC  
CC  
7
18  
7
20  
20  
7
150  
150  
7
0.18 Micron Product  
CE# = RP# = V  
or during Program/  
Erase Suspend  
CCQ  
I
I
I
CCS  
CCD  
CCR  
V
Standby Current for  
CC  
0.25 Micron and  
0.4 Micron Product  
1,2  
WP# = V  
or GND  
CCQ  
V
Power-Down Current  
CC  
1,2  
V
V
V
= V Max  
CC  
for 0.18 Micron Product  
CC  
= V  
Max  
CCQ  
CCQ  
V
Power-Down Current  
= V  
or GND  
CC  
IN  
CCQ  
for 0.25 Micron and  
0.4 Micron Product  
1,2  
7
7
7
25  
RP# = GND ± 0.2 V  
V
Read Current for  
CC  
V
V
= V Max  
CC  
1,2,3  
1,2,3  
9
8
9
15  
CC  
0.18 Micron Product  
= V  
Max  
CCQ  
CCQ  
OE# = V , CE# =V  
f = 5 MHz, I  
Inputs = V or V  
IH  
IL  
V
Read Current for  
CC  
=0 mA  
OUT  
0.25 and 0.4 Micron  
Product  
10  
0.2  
8
9
15  
IL  
IH  
V
Deep Power-Down  
RP# = GND ± 0.2 V  
PP  
I
I
0.2  
0.2  
5
PPD  
PPR  
Current  
V
V
V
V
V  
V  
> V  
PP  
PP  
PP  
PP  
CC  
2
±15  
2
±15  
2
±15  
µA  
µA  
CC  
V
Read Current  
1,4  
PP  
50  
200  
50  
200  
50  
200  
CC  
=V  
PP1, 2, 3  
18  
8
55  
15  
55  
30  
18  
10  
18  
10  
55  
30  
55  
30  
18  
10  
18  
10  
55  
30  
55  
30  
mA  
mA  
mA  
mA  
V
+ V Program  
Program in Progress  
CC  
PP  
Current for 0.18 Micron  
Product  
1,2,4  
V
= V  
PP  
PP4  
Program in Progress  
I
I
CCW+  
PPW  
V
=V  
PP  
PP1, 2, 3  
18  
10  
V
+ V Program  
PP  
Program in Progress  
CC  
Current for 0.25 Micron  
and 0.4 Micron Product  
1,2,4  
V
= V  
PP  
PP4  
Program in Progress  
20  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
DC Characteristics, Continued  
V
2.7 V–3.6 V  
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Note  
Typ  
Max  
Typ  
Max  
Typ  
Max  
V
= V  
PP1, 2, 3  
PP  
16  
45  
21  
45  
21  
45  
mA  
mA  
mA  
mA  
Program in  
Progress  
V
+ V Erase Current  
PP  
CC  
1,2,4  
for 0.18 Micron Product  
V
= V  
PP4  
PP  
16  
20  
16  
45  
45  
45  
16  
21  
16  
45  
45  
45  
16  
21  
16  
45  
45  
45  
Program in  
Progress  
I
CCE  
+I  
PPE  
V
= V  
PP PP1, 2, 3  
Program in  
Progress  
V
+ V Erase Current  
PP  
CC  
for 0.25 Micron and 0.4  
Micron Product  
1,2,4  
1,4  
V
= V  
PP4  
PP  
Program in  
Progress  
V
= V  
PP1, 2, 3, 4  
PP  
I
V
Erase Suspend  
Program or Erase  
Suspend in  
Progress  
PPES  
PP  
50  
200  
50  
200  
50  
200  
µA  
Current  
I
PPWS  
DC Characteristics, Continued  
V
2.7 V–3.6 V  
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
V
*
CC  
V
Input Low Voltage  
–0.4  
–0.4  
0.4  
–0.4  
0.4  
V
V
IL  
0.22 V  
V
V
V
V
V
CCQ  
CCQ  
CCQ  
CCQ  
CCQ  
V
Input High Voltage  
2.0  
IH  
+0.3V –0.4V +0.3V –0.4V +0.3V  
V
V
= V Min  
CC  
CC  
V
Output Low Voltage  
Output High Voltage  
–0.1  
0.1  
-0.1  
0.1  
-0.1  
0.1  
1.5  
V
= V  
Min  
OL  
CCQ  
CCQ  
I
= 100 µA  
OL  
V
V
= V Min  
CC  
CC  
V
V
V
CCQ  
–0.1V  
CCQ  
CCQ  
V
V
V
V
= V  
Min  
OH  
CCQ  
CCQ  
–0.1V  
–0.1V  
I
= –100 µA  
OH  
Complete Write  
Protection  
V
Lock-Out Voltage  
5
1.5  
3.6  
1.5  
PPLK  
PP  
V
V
V
V
5
5
2.7  
V
V
V
V
PP1  
PP2  
PP3  
PP4  
2.7  
2.85  
12.6  
V
during Program and  
PP  
Erase Operations  
5
2.7  
3.3  
5,6  
11.4  
1.5  
12.6  
11.4  
1.5  
11.4  
12.6  
V
Prog/Erase  
CC  
V
1.5  
1.2  
V
V
LKO  
Lock Voltage  
V
Prog/Erase  
CCQ  
V
1.2  
1.2  
LKO2  
Lock Voltage  
NOTES:  
1. All currents are in RMS unless otherwise noted. Typical values at nominal V , T = +25 °C.  
CC  
A
3UHOLPLQDU\  
21  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
2. Since each column lists specifications for a different V and V  
voltage range combination, the test  
CCQ  
CC  
conditions V Max, V  
Max, V Min, and V  
Min refer to the maximum or minimum V or V  
CC  
CCQ  
CC  
CCQ CC CCQ  
voltage listed at the top of each column. V Max is 3.3 V on 0.25µm 32-Mbit devices.  
CC  
3. Automatic Power Savings (APS) reduces I  
4. Sampled, not 100% tested.  
to approximately standby levels in static operation.  
CCR  
5. Erase and program are inhibited when V < V  
and not guaranteed outside the valid V ranges of  
PP  
PP  
PPLK  
V
, V  
V
and V  
For read operations or during idle time, a 5 V supply may be applied to V  
PP1  
PP2, PP3  
P
P
4
.
P
P
indefinitely. However, V must be at valid levels for program and erase operations.  
PP  
6. Applying V = 11.4 V–12.6 V during program/erase can only be done for a maximum of 1000 cycles on the  
PP  
main blocks and 2500 cycles on the parameter blocks. V may be connected to 12 V for a total of 80 hours  
PP  
maximum. See Section 3.4 for details. For read operations or during idle time, a 5 V supply may be applied to  
V
indefinitely. However, V must be at valid levels for program and erase operations.  
PP  
PP  
Figure 5. Input/Output Reference Waveform  
VCCQ  
VCCQ  
VCCQ  
2
OUTPUT  
INPUT  
TEST POINTS  
2
0.0  
0580_05  
NOTE: AC test inputs are driven at V  
for a logic “1” and 0.0V for a logic “0.” Input timing begins, and output  
CCQ  
timing ends, at V  
/2. Input rise and fall times (10%–90%) <10 ns. Worst case speed conditions are  
CCQ  
when V  
= V  
Min.  
CCQ  
CCQ  
Figure 6. Test Configuration  
V
CCQ  
R
R
1
Device  
under  
Test  
Out  
CL  
2
0580_06  
NOTE: See table for component values.  
Test Configuration Component Values for Worst  
Case Speed Conditions  
Test Configuration  
CL (pF)  
R1 ()  
R2 ()  
V
V
V
Standard Test  
Standard Test  
Standard Test  
50  
50  
50  
25 K  
14.5 K  
16 K  
25 K  
14.5 K  
16 K  
CCQ1  
CCQ2  
CCQ3  
NOTE: C includes jig capacitance.  
L
22  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.5  
AC Characteristics —Read Operations  
Density  
Product  
4/8 Mbit  
90 ns  
110 ns  
3.0 V–3.6 V 2.7 V–3.6 V  
#
Sym  
Parameter  
Unit  
V
3.0 V–3.6 V  
2.7 V–3.6 V  
CC  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
t
Read Cycle Time  
80  
90  
100  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address to Output Delay  
CE# to Output Delay(1)  
OE# to Output Delay(1)  
RP# to Output Delay  
CE# to Output in Low Z(2)  
OE# to Output in Low Z(2)  
CE# to Output in High Z(2)  
OE# to Output in High Z(2)  
80  
80  
90  
90  
100  
100  
30  
110  
110  
30  
AVQV  
t
t
ELQV  
30  
30  
GLQV  
PHQV  
t
600  
600  
600  
600  
t
0
0
0
0
0
0
0
0
ELQX  
GLQX  
EHQZ  
t
t
t
25  
25  
25  
25  
25  
25  
25  
25  
GHQZ  
Output Hold from Address,  
CE#, or OE# Change,  
R10  
t
0
0
0
0
ns  
OH  
Whichever Occurs First(2)  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 7, “AC Waveform: Read Operations” on page 26.  
See Figure 5, “Input/Output Reference Waveform” on page 22 for timing measurements and maximum allowable  
input slew rate.  
3UHOLPLQDU\  
23  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics, Continued  
Density  
Product  
VCC  
16 Mbit  
90 ns  
70 ns  
80 ns  
110 ns  
3.0 V–3.6 V 2.7 V–3.6 V  
Para-  
meter  
#
Sym  
Unit  
2.7 V–3.6 V  
2.7 V–3.6 V  
3.0 V–3.6 V  
2.7 V–3.6 V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
R2  
tAVAV Read Cycle Time  
70  
80  
80  
90  
100  
110  
ns  
ns  
Address to Output  
tAVQV  
Delay  
70  
70  
80  
80  
80  
80  
90  
90  
100  
100  
110  
110  
CE# to Output  
tELQV  
R3  
ns  
Delay(1)  
OE# to Output  
tGLQV  
R4  
R5  
R6  
20  
20  
30  
30  
30  
30  
ns  
ns  
ns  
Delay(1)  
tPHQV RP# to Output Delay  
150  
150  
600  
600  
600  
600  
CE# to Output in  
tELQX  
0
0
0
0
0
0
0
0
0
0
0
0
Low Z(2)  
OE# to Output in  
R7  
R8  
R9  
tGLQX  
ns  
ns  
ns  
Low Z(2)  
CE# to Output in  
tEHQZ  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
High Z(2)  
OE# to Output in  
tGHQZ  
High Z(2)  
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever Occurs  
First(2)  
R10  
tOH  
0
0
0
0
0
0
ns  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 7, “AC Waveform: Read Operations” on page 26.  
See Figure 5, “Input/Output Reference Waveform” on page 22 for timing measurements and maximum  
allowable input slew rate.  
24  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics, Continued  
Density  
Product  
32 Mbit  
100 ns  
70 ns  
90 ns  
110 ns  
Para-  
meter  
#
Sym  
Unit  
V
2.7 V–3.6 V 2.7 V–3.6 V 3.0 V–3.3 V 2.7 V–3.3 V 3.0 V–3.3 V 2.7 V–3.3 V  
CC  
Min Max Min Max Min Max Min Max Min Max Min Max  
R1  
R2  
t
Read Cycle Time  
70  
90  
90  
100  
100  
110  
ns  
ns  
AVAV  
Address to Output  
Delay  
t
70  
70  
90  
90  
90  
90  
100  
100  
30  
100  
100  
30  
110  
110  
30  
AVQV  
CE# to Output  
Delay(1)  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
GLQV  
PHQV  
OE# to Output  
Delay(1)  
t
20  
20  
30  
RP# to Output  
Delay  
t
150  
150  
600  
600  
600  
600  
CE# to Output in  
Low Z(2)  
t
0
0
0
0
0
0
0
0
0
0
0
0
ELQX  
GLQX  
EHQZ  
GHQZ  
OE# to Output in  
Low Z(2)  
t
t
CE# to Output in  
High Z(2)  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
OE# to Output in  
High Z(2)  
t
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever Occurs  
First(2)  
R10  
t
0
0
0
0
0
0
ns  
OH  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 7, “AC Waveform: Read Operations” on page 26.  
See Figure 5, “Input/Output Reference Waveform” on page 22 for timing measurements and maximum  
allowable input slew rate.  
3UHOLPLQDU\  
25  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics, Continued  
Density  
Product  
64 Mbit  
90 ns  
2.7 V–3.6 V  
100 ns  
#
Sym  
Parameter  
Unit  
V
2.7 V–3.6 V  
CC  
Note  
Min  
Max  
Min  
Max  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
t
Read Cycle Time  
90  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
Address to Output Delay  
CE# to Output Delay  
90  
90  
100  
100  
20  
AVQV  
ELQV  
GLQV  
PHQV  
1
1
t
OE# to Output Delay  
20  
t
RP# to Output Delay  
150  
150  
t
CE# to Output in Low Z  
OE# to Output in Low Z  
CE# to Output in High Z  
OE# to Output in High Z  
Output Hold from Address, CE#, or  
2
2
2
2
0
0
0
0
ELQX  
GLQX  
EHQZ  
GHQZ  
t
t
20  
20  
20  
20  
t
R10  
t
2
0
0
ns  
OH  
OE# Change, Whichever Occurs First  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 7 for the AC waveform for read operations.  
See Figure 5, “Input/Output Reference Waveform” on page 22 for timing measurements and maximum  
allowable input slew rate.  
Figure 7. AC Waveform: Read Operations  
Device  
Address Selection  
Standby  
Data Valid  
VIH  
Address Stable  
ADDRESSES (A)  
CE# (E)  
VIL  
VIH  
R1  
VIL  
R8  
R9  
VIH  
VIL  
OE# (G)  
VIH  
VIL  
WE# (W)  
R4  
R3  
R7  
R10  
VOH  
VOL  
R6  
High Z  
High Z  
DATA (D/Q)  
Valid Output  
R2  
VIH  
VIL  
RP# (P)  
R5  
26  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.6  
AC Characteristics —Write Operations  
Density  
Product  
4/8 Mbit  
90 ns  
110 ns  
#
Sym  
Parameter  
Unit  
3.0 V – 2.7 V –  
3.0 V –  
3.6 V  
2.7 V –  
3.6 V  
V
CC  
3.6 V  
Min  
3.6 V  
Min  
Note  
Min  
Min  
t
t
/
PHWL  
PHEL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
600  
0
600  
0
600  
0
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
/
ELWL  
WLEL  
0
70  
60  
70  
0
t
t
/
ELEH  
1
2
2
70  
50  
70  
0
70  
50  
70  
0
70  
60  
70  
0
WLWH  
t
t
/
/
/
/
/
DVWH  
DVEH  
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
t
t
AVWH  
AVEH  
t
t
WHEH  
EHWH  
t
t
WHDX  
EHDX  
2
2
1
0
0
0
0
t
t
WHAX  
EHAX  
0
0
0
0
t
t
WHWL /  
EHEL  
30  
30  
30  
30  
t
t
/
VPWH  
VPEH  
W10  
W11  
V
V
Setup to WE# (CE#) Going High  
Hold from Valid SRD  
3
3
200  
0
200  
0
200  
0
200  
0
ns  
ns  
PP  
t
QVVL  
PP  
NOTES:  
1. Refer to command definition table (Table 6) for valid A or D  
.
IN  
IN  
2. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, Write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
3. Sampled, but not 100% tested.  
Read timing characteristics during program suspend and erase suspend are the same as during read-only  
operations.  
See Figure 5 for timing measurements and maximum allowable input slew rate.  
See Figure 8, “AC Waveform: Program and Erase Operations” on page 32.  
3UHOLPLQDU\  
27  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics—Write Operations, continued  
Density  
Product  
16 Mbit  
90 ns  
3.0 V –  
70 ns  
80 ns  
110 ns  
#
Sym  
Parameter  
Unit  
2.7 V –  
3.6 V  
2.7 V –  
3.6 V  
2.7 V –  
3.6 V  
3.0 V –  
2.7 V –  
3.6 V  
VCC  
3.6 V  
3.6 V  
Note  
Min  
Min  
Min  
Min  
Min  
Min  
tPHWL  
tPHEL  
/
RP# High Recovery to WE# (CE#)  
Going Low  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
150  
150  
600  
0
600  
600  
0
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELWL  
tWLEL  
/
CE# (WE#) Setup to WE# (CE#) Going  
Low  
0
45  
40  
50  
0
0
50  
40  
50  
0
0
70  
50  
70  
0
0
70  
60  
70  
0
tELEH  
tWLWH  
/
WE# (CE#) Pulse Width  
1
2
2
70  
50  
70  
0
70  
60  
70  
0
tDVWH  
tDVEH  
/
/
/
/
/
Data Setup to WE# (CE#) Going High  
tAVWH  
tAVEH  
Address Setup to WE# (CE#) Going  
High  
tWHEH  
tEHWH  
CE# (WE#) Hold Time from WE#  
(CE#) High  
tWHDX  
tEHDX  
Data Hold Time from WE# (CE#) High  
2
2
1
0
0
0
0
0
0
tWHAX  
tEHAX  
Address Hold Time from WE# (CE#)  
High  
0
0
0
0
0
0
tWHWL /  
tEHEL  
WE# (CE#) Pulse Width High  
25  
30  
30  
30  
30  
30  
tVPWH  
tVPEH  
/
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3
3
200  
0
200  
0
200  
0
200  
0
200  
0
200  
0
ns  
ns  
W11 tQVVL  
NOTES:  
1. Refer to command definition table (Table 6) for valid A or D  
.
IN  
IN  
2. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last)to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, Write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
3. Sampled, but not 100% tested.  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
Read timing characteristics during program suspend and erase suspend are the same as during read-only  
operations.  
See Figure 5 for timing measurements and maximum allowable input slew rate.  
See Figure 8, “AC Waveform: Program and Erase Operations” on page 32.  
28  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics—Write Operations, continued  
Density  
Product  
32 Mbit  
90 ns  
70 ns  
90 ns  
110 ns  
#
Sym  
Parameter  
Unit  
2.7 V –  
3.6 V  
2.7 V –  
3.6 V  
3.0 V –  
3.3 V  
2.7 V –  
3.3 V  
3.0 V –  
3.3 V  
2.7 V –  
3.3 V  
VCC  
Note  
Min  
Min  
Min  
Min  
Min  
Min  
tPHWL  
tPHEL  
/
RP# High Recovery to WE# (CE#)  
Going Low  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
150  
150  
600  
0
600  
600  
0
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELWL  
tWLEL  
/
CE# (WE#) Setup to WE# (CE#) Going  
Low  
0
45  
40  
50  
0
0
60  
40  
60  
0
0
70  
50  
70  
0
0
70  
60  
70  
0
tELEH  
tWLWH  
/
WE# (CE#) Pulse Width  
1
2
2
70  
50  
70  
0
70  
60  
70  
0
tDVWH  
tDVEH  
/
/
/
/
/
Data Setup to WE# (CE#) Going High  
tAVWH  
tAVEH  
Address Setup to WE# (CE#) Going  
High  
tWHEH  
tEHWH  
CE# (WE#) Hold Time from WE#  
(CE#) High  
tWHDX  
tEHDX  
Data Hold Time from WE# (CE#) High  
2
2
1
0
0
0
0
0
0
tWHAX  
tEHAX  
Address Hold Time from WE# (CE#)  
High  
0
0
0
0
0
0
tWHWL /  
tEHEL  
WE# (CE#) Pulse Width High  
25  
30  
30  
30  
30  
30  
tVPWH  
tVPEH  
/
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3
3
200  
0
200  
0
200  
0
200  
0
200  
0
200  
0
ns  
ns  
W11 tQVVL  
NOTES:  
1. Refer to command definition table (Table 6) for valid A or D  
.
IN  
IN  
2. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, Write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
3. Sampled, but not 100% tested.  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
Read timing characteristics during program suspend and erase suspend are the same as during read-only  
operations.  
See Figure 5 for timing measurements and maximum allowable input slew rate.  
See Figure 8, “AC Waveform: Program and Erase Operations” on page 32.  
3UHOLPLQDU\  
29  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
AC Characteristics—Write Operations, continued  
Density  
Product  
64 Mbit  
90 ns  
100 ns  
#
Sym  
Parameter  
Unit  
2.7 V –  
3.6 V  
2.7 V –  
3.6 V  
V
CC  
Note  
Min  
Min  
t
/
PHWL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
150  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
PHEL  
t
/
ELWL  
0
60  
40  
60  
0
0
70  
40  
60  
0
t
WLEL  
t
t
/
ELEH  
1
2
2
WLWH  
t
/
DVWH  
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
t
DVEH  
t
/
/
AVWH  
t
AVEH  
t
t
t
t
t
WHEH  
t
EHWH  
/
WHDX  
2
2
1
0
0
t
EHDX  
/
WHAX  
0
0
t
EHAX  
WHWL /  
30  
30  
t
EHEL  
/
VPWH  
W10  
W11  
V
V
Setup to WE# (CE#) Going High  
Hold from Valid SRD  
3
3
200  
0
200  
0
ns  
ns  
PP  
PP  
t
VPEH  
t
QVVL  
NOTES:  
1. Refer to command definition table (Table 6) for valid A or D  
.
IN  
IN  
2. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last)to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, Write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
3. Sampled, but not 100% tested.  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
Read timing characteristics during program suspend and erase suspend are the same as during read-only  
operations.  
See Figure 5 for timing measurements and maximum allowable input slew rate.  
See Figure 8, “AC Waveform: Program and Erase Operations” on page 32.  
30  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4.7  
Program and Erase Timings  
V
2.7 V–3.6 V  
11.4 V–12.6 V  
PP  
Symbol  
Parameter  
Units  
Notes  
Typ(1)  
Max  
Typ(1)  
Max  
8-KB Parameter Block  
Program Time (Byte)  
2, 3  
0.16  
0.10  
1.2  
0.48  
0.08  
0.24  
s
s
s
t
t
BWPB  
4-KW Parameter Block  
Program Time (Word)  
2, 3  
0.30  
3.7  
0.03  
0.6  
0.12  
1.7  
64-KB Main Block  
Program Time (Byte)  
2, 3, 4  
BWMB  
32-KW Main Block  
Program Time(Word)  
2, 3  
2, 3, 4  
2,3  
0.8  
17  
12  
2.4  
165  
200  
0.24  
8
1
s
Byte Program Time  
185  
185  
µs  
µs  
Word Program Time for  
0.18 Micron Product  
8
t
/ t  
WHQV1 EHQV1  
Word Program Time for 0.25  
Micron and 0.4 Micron Products  
2, 3  
2, 3, 4  
2, 3  
22  
1
200  
4
8
185  
4
µs  
s
8-KB Parameter Block  
Erase Time (Byte)  
0.8  
0.4  
1
t
t
/ t  
WHQV2 EHQV2  
4-KW Parameter Block  
Erase Time (Word)  
0.5  
1
4
4
s
64-KB Main Block  
Erase Time (Byte)  
2, 3, 4  
2, 3  
5
5
s
/ t  
WHQV3 EHQV3  
32-KW Main Block  
Erase Time (Word)  
1
5
0.6  
5
s
t
t
/ t  
Program Suspend Latency  
Erase Suspend Latency  
5
5
10  
20  
5
5
10  
20  
µs  
µs  
WHRH1 EHRH1  
/ t  
WHRH2 EHRH2  
NOTES:  
1. Typical values measured at nominal voltages and T = +25 °C.  
A
2. Excludes external system-level overhead.  
3. Sampled, not 100% tested.  
4. x8 not available on 0.18 µm offerings  
3UHOLPLQDU\  
31  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 8. AC Waveform: Program and Erase Operations  
A
B
C
D
E
F
VIH  
ADDRESSES [A]  
CE#(WE#) [E(W)]  
AIN  
AIN  
VIL  
VIH  
W8  
(Note 1)  
W5  
VIL  
VIH  
W6  
W2  
OE# [G]  
VIL  
VIH  
W9  
(Note 1)  
WE#(CE#) [W(E)]  
VIL  
W3  
W4  
W7  
VIH  
VIL  
High Z  
W1  
Valid  
SRD  
DATA [D/Q]  
DIN  
DIN  
DIN  
VIH  
VIL  
VIH  
VIL  
RP# [P]  
WP#  
W10  
W11  
VPPH 2  
VPPH  
VPPLK  
VIL  
1
V
[V]  
PP  
0580_08  
NOTES:  
1. CE# must be toggled low when reading Status Register Data. WE# must be inactive (high) when reading  
Status Register Data.  
A. V Power-Up and Standby.  
CC  
B. Write Program or Erase Setup Command.  
C. Write Valid Address and Data (for Program) or Erase Confirm Command.  
D. Automated Program or Erase Delay.  
E. Read Status Register Data (SRD): reflects completed program/erase operation.  
F.Write Read Array Command.  
32  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
5.0  
Reset Operations  
Figure 9. AC Waveform: Deep Power-Down/Reset Operation  
V
IH  
RP# (P)  
tPHQV  
tPHWL  
tPHEL  
VIL  
tPLPH  
(A) Reset during Read Mode  
Abort  
Complete  
t PLRH  
tPHQV  
tPHWL  
tPHEL  
VIH  
VIL  
RP# (P)  
t PLPH  
tPLPH  
t PLRH  
<
(B) Reset during Program or Block Erase,  
Abort Deep  
Complete Power-  
tPHQV  
tPHWL  
tPHEL  
Down  
t PLRH  
VIH  
VIL  
RP# (P)  
t PLPH  
(C) Reset Program or Block Erase,  
>
tPLPH t PLRH  
0580_09  
Reset Specifications  
V
= 2.7 V–3.6 V  
CC  
Symbol  
Parameter  
Notes  
Unit  
Min  
Max  
RP# Low to Reset during Read  
t
t
1,2  
2,3  
100  
ns  
PLPH  
(If RP# is tied to V , this specification is not applicable)  
CC  
RP# Low to Reset during Block Erase or Program  
22  
µs  
PLRH  
NOTES:  
1. If t  
is <100 ns the device may still RESET but this is not guaranteed  
PLPH  
2. .Sampled, but not 100% tested.  
3. If RP# is asserted while a block erase or word program operation is not executing, the reset will complete  
within 100 ns.  
3UHOLPLQDU\  
33  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
6.0  
Ordering Information  
T E 2 8 F 3 2 0 B 3 T C 7 0  
Access Speed (ns)  
(70, 80, 90, 100, 110)  
Package  
TE = 40-Lead/48-Lead TSOP  
GT = 48-Ball µBGA* CSP  
GE = VF BGA CSP  
Lithography  
Not Present = 0.4 µm  
A = 0.25 µm  
Product line designator  
for all Intel® Flash products  
C = 0.18 µm  
T = Top Blocking  
Device Density  
B = Bottom Blocking  
640 = x16 (64 Mbit)  
320 = x16 (32 Mbit)  
160 = x16 (16 Mbit)  
800 = x16 (8 Mbit)  
400 = x16 (4 Mbit)  
Product Family  
B3 = 3 Volt Advanced Boot Block  
V
V
CC = 2.7 V - 3.6 V  
PP = 2.7 V - 3.6 V or  
11.4 V - 12.6 V  
016 = x8 (16 Mbit)  
008 = x8 (8 Mbit)  
004 = x8 (4 Mbit)  
34  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Ordering Information Valid Combinations  
40-Lead TSOP  
48-Ball µBGA* CSP(1,2)  
48-Lead TSOP  
48-Ball µBGA CSP(1,2)  
48-Ball VF BGA  
TE28F640B3TC90  
TE28F640B3BC90  
TE28F640B3TC100  
TE28F640B3BC100  
TE28F320B3TC70  
TE28F320B3BC70  
TE28F320B3TC90  
TE28F320B3BC90  
TE28F320B3TA100  
TE28F320B3BA100  
TE28F320B3TA110  
TE28F320B3BA110  
TE28F160B3TC70  
TE28F160B3BC70  
TE28F160B3TC80  
TE28F160B3BC80  
TE28F160B3TA90(3)  
TE28F160B3BA90(3)  
TE28F160B3TA110(3)  
TE28F160B3BA110(3)  
TE28F800B3TA90(3)  
TE28F800B3BA90(3)  
TE28F800B3TA110(3)  
TE28F800B3BA110(3)  
TE28F400B3T90  
GT28F640B3TC90  
GT28F640B3BC90  
GT28F640B3TC100  
GT28F640B3BC100  
Ext. Temp.  
64 Mbit  
GE28F320B3TC70  
GE28F320B3BC70  
GE28F320B3TC90  
GE28F320B3BC90  
Ext. Temp.  
32 Mbit  
GT28F320B3TA100  
GT28F320B3BA100  
GT28F320B3TA110  
GT28F320B3BA110  
GE28F160B3TC70  
GE28F160B3BC70  
GE28F160B3TC80  
GE28F160B3BC80  
Ext. Temp.  
16 Mbit  
TE28F016B3TA90(3)  
TE28F016B3BA90(3)  
TE28F016B3TA110(3)  
TE28F016B3BA110(3)  
TE28F008B3TA90(3)  
TE28F008B3BA90(3)  
TE28F008B3TA110(3)  
TE28F008B3BA110(3)  
TE28F004B3T90  
GT28F016B3TA90(3)  
GT28F016B3BA90(3)  
GT28F016B3TA110(3)  
GT28F016B3BA110(3)  
GT28F008B3T90  
GT28F160B3TA90(3)  
GT28F160B3BA90(3)  
GT28F160B3TA110(3)  
GT28F160B3BA110(3)  
GT28F800B3T90  
GE28F800B3TA90  
GE28F800B3BA90  
GE28F008B3TA90  
GE28F008B3BA90  
GT28F008B3B90  
GT28F800B3B90  
Ext. Temp.  
8 Mbit  
GT28F008B3T110  
GT28F008B3B110  
GT28F800B3T110  
GT28F800B3B110  
TE28F004B3B90  
TE28F400B3B90  
Ext. Temp  
4 Mbit  
TE28F004B3T110  
TE28F004B3B110  
TE28F400B3T110  
TE28F400B3B110  
NOTES:  
1. The 48-ball µBGA package top side mark reads F160B3 [or F800B3]. This mark is identical for both x8 and  
x16 products. All product shipping boxes or trays provide the correct information regarding bus architecture.  
However, once the devices are removed from the shipping media, it may be difficult to differentiate based on  
the top side mark. The device identifier (accessible through the Device ID command: see Section 3.2.2 for  
further details) enables x8 and x16 µBGA package product differentiation.  
2. The second line of the 48-ball µBGA package top side mark specifies assembly codes. For samples only, the  
first character signifies either “E” for engineering samples or “S” for silicon daisy chain samples. All other  
assembly codes without an “E” or “S” as the first character are production units.  
3. Product can be ordered in either 0.25 µm or 0.4 µm material. The “A” before the access speed specifies  
0.25 µm material. For new designs, Intel recommends using 0.25 µm Advanced Boot Block devices.  
3UHOLPLQDU\  
35  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
7.0  
Additional Information  
Order Number  
Document/Tool  
297948  
292199  
292200  
Note 2  
3 Volt Advanced Boot Block Flash Memory Family Specification Update  
AP-641 Achieving Low Power with the 3 Volt Advanced Boot Block Flash Memory  
AP-642 Designing for Upgrade to the 3 Volt Advanced Boot Block Flash Memory  
3 Volt Advanced Boot Block Algorithms (‘C’ and assembly)  
http://developer.intel.com/design/flash/swtools  
Contact your Intel Representative  
297874  
Intel® Flash Data Integrator (IFDI) Software Developer’s Kit  
IFDI Interactive: Play with Intel® Flash Data Integrator on Your PC  
NOTES:  
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International  
customers should contact their local Intel or distribution sales office.  
2. Visit Intel’s World Wide Web home page at http://www.Intel.com or http://developer.intel.com for technical  
documentation and tools.  
3. For the most current information on Intel Advanced and Advanced+ Boot Block Flash memory, visit our  
microsite at http://developer.intel.com/design/flash/abblock.  
36  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Appendix A Write State Machine Current/Next States  
Command Input (and Next State)  
Data  
When  
Read  
Read  
Array  
(FFH)  
Program  
Setup (10/  
40H)  
Erase  
Setup  
(20H)  
Erase  
Confirm  
(D0H)  
Prog/Ers  
Suspend  
(B0H)  
Prog/Ers  
Resume  
(D0H)  
Read  
Status  
(70H)  
Clear  
Status  
(50H)  
Read  
Identifier.  
(90H)  
Current State SR.7  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Read  
Array  
Read  
Read Array  
“1”  
“1”  
Array  
Read Array  
Read Array  
Read Array  
Status  
Identifier  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Read  
Array  
Read  
Identifier  
Read Status  
Status  
Read  
Identifier  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Read  
Array  
Read  
Identifier  
“1”  
“1”  
Identifier  
Status  
Prog. Setup  
Program (Command Input = Data to be Programmed)  
Prog.Susp.  
Program  
(continue)  
“0”  
“1”  
Status  
Status  
Program (continue)  
to Rd.  
Status  
Program (continue)  
Prog.  
Sus. to  
Read  
Prog.  
Susp. to  
Read  
Prog.  
Sus. to  
Read  
Prog.  
Susp. to  
Read  
Program  
Suspend to  
Read Status  
Program  
Susp. to  
Read Array  
Program Suspend  
to Read Array  
Program  
(continue)  
Program  
(continue)  
Array  
Status  
Array  
Identifier  
Prog.  
Susp. to  
Read  
Prog.  
Susp. to  
Read  
Prog.  
Sus. to  
Read  
Prog.  
Susp. to  
Read  
Program  
Suspend to  
Read Array  
Program  
Susp. to  
Program Suspend  
to Read Array  
Program  
Program  
“1”  
“1”  
Array  
(continue)  
(continue)  
Read Array  
Array  
Status  
Array  
Identifier  
Prog.  
Susp. to  
Read  
Prog.  
Susp. to  
Read  
Prog.  
Sus. to  
Read  
Prog.  
Susp. to  
Read  
Prog.Susp.to  
Read  
Identifier  
Program  
Susp. to  
Read Array  
Program Suspend  
to Read Array  
Program  
(continue)  
Program  
(continue)  
Identifier  
Array  
Status  
Array  
Identifier  
Program  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Read  
Array  
Read  
“1”  
“1”  
“1”  
Status  
Status  
Status  
Read Array  
Erase  
(complete)  
Status  
Identifier  
Erase  
Erase  
Erase Setup  
Erase Command Error  
Erase Command Error  
(continue) Cmd. Error (continue)  
Erase Cmd.  
Error  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Read  
Array  
Read  
Identifier  
Read Array  
EraseSus.  
to Read  
Status  
Erase  
“0”  
“1”  
Status  
Status  
Erase (continue)  
Erase (continue)  
(continue)  
Erase  
Susp. to  
Read  
Erase  
Erase  
Erase  
Erase  
Suspend to  
Status  
Erase  
Ers. Susp.  
to Read  
Identifier  
Program  
Setup  
Susp. to  
Read  
Susp. to Susp. to  
Erase  
Erase  
Erase  
Susp. to  
Erase  
Erase  
Erase  
Read  
Status  
Read  
Array  
Read Array  
Array  
Array  
Erase  
Susp. to  
Read  
Erase  
Susp. to  
Read  
Erase  
Erase  
Erase Susp.  
to Read  
Array  
Erase  
Susp. to  
Read Array  
Ers. Susp.  
to Read  
Identifier  
Program  
Setup  
Susp. to Susp. to  
“1”  
Array  
Read  
Status  
Read  
Array  
Array  
Array  
Erase  
Susp. to  
Read  
Erase  
Susp. to  
Read  
Erase  
Erase  
Erase Susp.  
to Read  
Identifier  
Erase  
Susp. to  
Read Array  
Ers. Susp.  
to Read  
Identifier  
Program  
Setup  
Susp. to Susp. to  
“1”  
“1”  
Identifier  
Status  
Read  
Status  
Read  
Array  
Array  
Array  
Erase  
(complete)  
Read  
Array  
Program  
Setup  
Erase  
Setup  
Read  
Status  
Read  
Array  
Read  
Identifier  
Read Array  
3UHOLPLQDU\  
37  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Appendix B Architecture Block Diagram  
DQ0-DQ15  
VCCQ  
Output Buffer  
Input Buffer  
Identifier  
Register  
Status  
Register  
I/O Logic  
CE#  
WE#  
OE#  
RP#  
Command  
User  
Interface  
Power  
Reduction  
Control  
Data  
Comparator  
WP#  
A0-A19  
Y-Decoder  
Y-Gating/Sensing  
Write State  
Machine  
Program/Erase  
Voltage Switch  
Input Buffer  
VPP  
Address  
Latch  
X-Decoder  
VCC  
GND  
Address  
Counter  
0580-C1  
38  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Appendix C Word-Wide Memory Map Diagrams  
16-Mbit and 32-Mbit Word-Wide Memory Addressing  
Top Boot Bottom Boot  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
32 Mbit  
8 Mbit  
16 Mbit  
32 Mbit  
4
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
4
4
4
4
4
4
4
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF 0E8000-0EFFFF  
E0000-E7FFF 0E0000-0E7FFF  
D8000-DFFFF 0D8000-0DFFFF  
D0000-D7FFF 0D0000-0D7FFF  
C8000-CFFFF 0C8000-0CFFFF  
This column continues on next page  
This column continues on next page  
3UHOLPLQDU\  
39  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
16-Mbit and 32-Mbit Word-Wide Memory Addressing (Continued)  
Top Boot  
16 Mbit  
Bottom Boot  
16 Mbit  
Size  
(KW)  
Size  
(KW)  
32 Mbit  
32 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
C0000-C7FFF 0C0000-0C7FFF  
B8000-BFFFF 0B8000-0BFFFF  
B0000-B7FFF  
0B0000-0B7FFF  
A8000-AFFFF 0A8000-0AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
4
4
4
4
4
4
4
40  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4-Mbit and 8-Mbit Word-Wide Memory Addressing  
Top Boot  
Bottom Boot  
Size  
(KW)  
Size  
(KW)  
4 Mbit  
4 Mbit  
8 Mbit  
3F000-3FFFF  
3E000-3EFFF  
3D000-3DFFF  
3C000-3CFFF  
3B000-3BFFF  
3A000-3AFFF  
39000-39FFF  
38000-38FFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
7F000-7FFFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
7E000-7EFFF  
7D000-7DFFF  
7C000-7CFFF  
7B000-7BFFF  
7A000-7AFFF  
79000-79FFF  
78000-78FFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
4
4
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
4
4
4
4
4
4
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
3UHOLPLQDU\  
41  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing  
Top Boot  
32 Mbit  
Bottom Boot  
32 Mbit  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
64 Mbit  
16 Mbit  
64 Mbit  
4
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
4
4
4
4
4
4
4
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
This column continues on next page  
This column continues on next page  
42  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing (Continued)  
Top Boot  
32 Mbit  
Bottom Boot  
32 Mbit  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
64 Mbit  
16 Mbit  
64 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-21FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
F8000-FFFFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
F8000-FFFFF  
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
F0000-F7FFF  
F0000-F7FFF  
E8000-EFFFF  
E8000-EFFFF  
E0000-E7FFF  
E0000-E7FFF  
D8000-DFFFF  
D8000-DFFFF  
D0000-D7FFF  
D0000-D7FFF  
C8000-CFFFF  
C8000-CFFFF  
This column continues on next page  
This column continues on next page  
3UHOLPLQDU\  
43  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing (Continued)  
Top Boot  
32 Mbit  
Bottom Boot  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
64 Mbit  
16 Mbit  
32 Mbit  
64 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
4
4
4
4
4
4
4
44  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Appendix D Byte-Wide Memory Map Diagrams  
8-Mbit and 16-Mbit Byte-Wide Byte-Wide Memory Addressing  
Top Boot Bottom Boot  
8 Mbit  
Size (KB)  
8 Mbit  
16 Mbit  
Size (KB)  
16 Mbit  
8
FE000-FFFFF  
FC000-FDFFF  
FA000-FBFFF  
F8000-F9FFF  
F6000-F7FFF  
F4000-F5FFF  
F2000-F3FFF  
F0000-F1FFF  
E0000-EFFFF  
D0000-DFFFF  
C0000-CFFFF  
B0000-BFFFF  
A0000-AFFFF  
90000-9FFFF  
80000-8FFFF  
70000-7FFFF  
60000-6FFFF  
50000-5FFFF  
40000-4FFFF  
30000-3FFFF  
20000-2FFFF  
10000-1FFFF  
00000-0FFFF  
1FE000-1FFFFF  
1FC000-1FDFFF  
1FA000-1FBFFF  
1F8000-1F9FFF  
1F6000-1F7FFF  
1F4000-1F5FFF  
1F2000-1F3FFF  
1F0000-1F1FFF  
1E0000-1EFFFF  
1D0000-1DFFFF  
1C0000-1CFFFF  
1B0000-1BFFFF  
1A0000-1AFFFF  
190000-19FFFF  
180000-18FFFF  
170000-17FFFF  
160000-16FFFF  
150000-15FFFF  
140000-14FFFF  
130000-13FFFF  
120000-12FFFF  
110000-11FFFF  
100000-10FFFF  
0F0000-0FFFFF  
0E0000-0EFFFF  
0D0000-0DFFFF  
0C0000-0CFFFF  
0B0000-0BFFFF  
0A0000-0AFFFF  
090000-09FFFF  
080000-08FFFF  
070000-07FFFF  
060000-06FFFF  
050000-05FFFF  
040000-04FFFF  
030000-03FFFF  
020000-02FFFF  
010000-01FFFF  
000000-00FFFF  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
8
8
8
8
8
8
8
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1F0000-1FFFFF  
1E0000-1EFFFF  
1D0000-1DFFFF  
1C0000-1CFFFF  
1B0000-1BFFFF  
1A0000-1AFFFF  
190000-19FFFF  
This column continues on next page  
This column continues on next page  
3UHOLPLQDU\  
45  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
8-Mbit and 16-Mbit Byte-Wide Memory Addressing (Continued)  
Top Boot  
8 Mbit  
Bottom Boot  
Size (KB)  
16 Mbit  
Size (KB)  
8 Mbit  
16 Mbit  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
8
180000-18FFFF  
170000-17FFFF  
160000-16FFFF  
150000-15FFFF  
140000-14FFFF  
130000-13FFFF  
120000-12FFFF  
110000-11FFFF  
100000-10FFFF  
0F0000-0FFFFF  
0E0000-0EFFFF  
0D0000-0DFFFF  
0C0000-0CFFFF  
0B0000-0BFFFF  
0A0000-0AFFFF  
090000-09FFFF  
080000-08FFFF  
070000-07FFFF  
060000-06FFFF  
050000-05FFFF  
040000-04FFFF  
030000-03FFFF  
020000-02FFFF  
010000-01FFFF  
00E000-00FFFF  
00C000-00DFFF  
00A000-00BFFF  
008000-009FFF  
006000-007FFF  
004000-005FFF  
002000-003FFF  
000000-001FFF  
F0000-FFFFF  
E0000-EFFFF  
D0000-DFFFF  
C0000-CFFFF  
B0000-BFFFF  
A0000-AFFFF  
90000-9FFFF  
80000-8FFFF  
70000-7FFFF  
60000-6FFFF  
50000-5FFFF  
40000-4FFFF  
30000-3FFFF  
20000-2FFFF  
10000-1FFFF  
0E000-0FFFF  
0C000-0DFFF  
0A000-0BFFF  
08000-09FFF  
06000-07FFF  
04000-05FFF  
02000-03FFF  
00000-01FFF  
8
8
8
8
8
8
8
46  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
4-Mbit Byte-Wide Memory Addressing  
Bottom Boot  
Top Boot  
Size  
(KB)  
Size  
4 Mbit  
4 Mbit  
(KB)  
8
8
7E000-7FFFF  
7C000-7DFFF  
7A000-7BFFF  
78000-79FFF  
76000-77FFF  
74000-75FFF  
72000-73FFF  
70000-71FFF  
60000-6FFFF  
50000-5FFFF  
40000-4FFFF  
30000-3FFFF  
20000-2FFFF  
10000-1FFFF  
00000-0FFFF  
64  
64  
64  
64  
64  
64  
64  
8
70000-7FFFF  
60000-6FFFF  
50000-5FFFF  
40000-4FFFF  
30000-3FFFF  
20000-2FFFF  
10000-1FFFF  
0E000-0FFFF  
0C000-0DFFF  
0A000-0BFFF  
08000-09FFF  
06000-07FFF  
04000-05FFF  
02000-03FFF  
00000-01FFF  
8
8
8
8
8
8
64  
64  
64  
64  
64  
64  
64  
8
8
8
8
8
8
8
3UHOLPLQDU\  
47  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Appendix E Program and Erase Flowcharts  
Figure 10. Program Flowchart  
Start  
Bus Operation  
Command  
Comments  
Write  
Write  
Program Setup  
Program  
Data = 40H  
Write 40H  
Data = Data to Program  
Addr = Location to Program  
Program Address/Data  
Read Status Register  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Read  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Standby  
Repeat for subsequent programming operations.  
No  
SR.7 = 1?  
Yes  
SR Full Status Check can be done after each program or after a sequence of  
program operations.  
Write FFH after the last program operation to reset device to read array mode.  
Full Status  
Check if Desired  
Program Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Standby  
Command  
Comments  
Check SR.3  
1
1 = VPP Low Detect  
SR.3 =  
VPP Range Error  
Check SR.4  
1 = VPP Program Error  
Standby  
0
SR.4 =  
0
Check SR.1  
1
1
1 = Attempted Program to  
Locked Block - Program  
Aborted  
Standby  
Programming Error  
SR.3 MUST be cleared, if set during a program attempt, before further  
attempts are allowed by the Write State Machine.  
Attempted Program to  
Locked Block - Aborted  
SR.1 =  
SR.1, SR.3 and SR.4 are only cleared by the Clear Staus Register Command,  
in cases where multiple bytes are programmed before full status is checked.  
0
If an error is detected, clear the status register before attempting retry or other  
error recovery.  
Program Successful  
0580_E1  
48  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 11. Program Suspend/Resume Flowchart  
Bus  
Operation  
Command  
Comments  
Data = B0H  
Start  
Write B0H  
Program  
Suspend  
Write  
Write  
Addr = X  
Data = 70H  
Addr = X  
Read Status  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Write 70H  
Read  
Addr = X  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Standby  
Check SR.2  
1 = Program Suspended  
0 = Program Completed  
0
0
Standby  
Write  
SR.7 =  
1
Data = FFH  
Addr = X  
Read Array  
SR.2 =  
Program Completed  
Read array data from block  
other than the one being  
programmed.  
Read  
1
Program  
Resume  
Data = D0H  
Addr = X  
Write  
Write FFH  
Read Array Data  
No  
Done  
Reading  
Yes  
Write D0H  
Write FFH  
Program Resumed  
Read Array Data  
0580_E2  
3UHOLPLQDU\  
49  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 12. Block Erase Flowchart  
Start  
Bus Operation  
Command  
Comments  
Data = 20H  
Write  
Erase Setup  
Addr = Within Block to Be  
Erased  
Write 20H  
Data = D0H  
Write  
Erase Confirm  
Addr = Within Block to Be  
Erased  
Write D0H and  
Block Address  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Read  
Read Status Register  
Suspend  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Erase Loop  
Standby  
No  
0
Yes  
SR.7 =  
Suspend Erase  
Repeat for subsequent block erasures.  
Full Status Check can be done after each block erase or after a sequence of  
block erasures.  
1
Full Status  
Check if Desired  
Write FFH after the last write operation to reset device to read array mode.  
Block Erase Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Command  
Comments  
Check SR.3  
Standby  
1
1 = VPP Low Detect  
SR.3 =  
VPP Range Error  
Check SR.4,5  
Standby  
Standby  
Standby  
Both 1 = Command Sequence  
Error  
0
SR.4,5 =  
0
1
1
1
Check SR.5  
1 = Block Erase Error  
Command Sequence  
Error  
Check SR.1  
1 = Attempted Erase of  
Locked Block - Erase Aborted  
SR.5 =  
0
Block Erase Error  
SR. 1 and 3 MUST be cleared, if set during an erase attempt, before further  
attempts are allowed by the Write State Machine.  
SR.1, 3, 4, 5 are only cleared by the Clear Staus Register Command, in cases  
where multiple bytes are erased before full status is checked.  
Attempted Erase of  
Locked Block - Aborted  
SR.1 =  
0
If an error is detected, clear the status register before attempting retry or other  
error recovery.  
Block Erase  
Successful  
0580_E3  
50  
3UHOLPLQDU\  
28F004/400B3, 28F008/800B3, 28F016/160B3, 28F320B3, 28F640B3  
Figure 13. Erase Suspend/Resume Flowchart  
Bus Operation  
Write  
Command  
Erase Suspend  
Read Status  
Comments  
Data = B0H  
Start  
Write B0H  
Addr = X  
Data = 70H  
Addr = X  
Write  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Write 70H  
Read  
Addr = X  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Standby  
Check SR.6  
1 = Erase Suspended  
0 = Erase Completed  
0
Standby  
Write  
SR.7 =  
1
Data = FFH  
Addr = X  
Read Array  
0
SR.6 =  
Erase Completed  
Read array data from block  
other than the one being  
erased.  
Read  
1
Data = D0H  
Addr = X  
Write  
Erase Resume  
Write FFH  
Read Array Data  
No  
Done  
Reading  
Yes  
Write D0H  
Write FFH  
Erase Resumed  
Read Array Data  
0580_E4  
3UHOLPLQDU\  
51  

相关型号:

TE28F160B3T110

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F160B3T120

SMART 3 ADVANCED BOOT BLOCK WORD-WIDE
INTEL

TE28F160B3T150

SMART 3 ADVANCED BOOT BLOCK WORD-WIDE
INTEL

TE28F160B3T90

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F160B3TA110

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F160B3TA90

SMART 3 ADVANCED BOOT BLOCK 4-, 8-, 16-, 32-MBIT FLASH MEMORY FAMILY
INTEL

TE28F160B3TC70

3 Volt Advanced Boot Block Flash Memory
INTEL

TE28F160B3TC80

3 Volt Advanced Boot Block Flash Memory
INTEL

TE28F160C18B120

Flash, 1MX16, 120ns, PDSO48, 12 X 20 MM, TSOP-48
NUMONYX

TE28F160C18T120

Flash, 1MX16, 120ns, PDSO48, 12 X 20 MM, TSOP-48
NUMONYX

TE28F160C18T90

Flash, 1MX16, 90ns, PDSO48, 12 X 20 MM, TSOP-48
NUMONYX

TE28F160C2TA100

Flash, 1MX16, 100ns, PDSO48, 12 X 20 MM, TSOP-48
INTEL