AD590 [INTERSIL]

2-Wire, Current Output Temperature Transducer; 2线,电流输出温度传感器
AD590
型号: AD590
厂家: Intersil    Intersil
描述:

2-Wire, Current Output Temperature Transducer
2线,电流输出温度传感器

传感器 温度传感器
文件: 总10页 (文件大小:99K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AD590  
2-Wire, Current Output  
Temperature Transducer  
August 1997  
Features  
Description  
o
The AD590 is an integrated-circuit temperature transducer  
which produces an output current proportional to absolute tem-  
perature. The device acts as a high impedance constant current  
• Linear Current Output . . . . . . . . . . . . . . . . . . . . 1µA/ K  
o
o
• Wide Temperature Range . . . . . . . . . . . -55 C to 150 C  
• Two-Terminal Device Voltage In/Current Out  
• Wide Power Supply Range . . . . . . . . . . . . .+4V to +30V  
• Sensor Isolation From Case  
o
regulator, passing 1µA/ K for supply voltages between +4V and  
+30V. Laser trimming of the chip's thin film resistors is used to  
calibrate the device to 298.2µA output at 298.2 K (25 C).  
o
o
The AD590 should be used in any temperature-sensing  
o
o
application between -55 C to 150 C in which conventional  
electrical temperature sensors are currently employed. The  
inherent low cost of a monolithic integrated circuit combined  
with the elimination of support circuitry makes the AD590 an  
attractive alternative for many temperature measurement sit-  
uations. Linearization circuitry, precision voltage amplifiers,  
resistance measuring circuitry and cold junction compensa-  
tion are not needed in applying the AD590. In the simplest  
application, a resistor, a power source and any voltmeter can  
be used to measure temperature.  
• Low Cost  
Ordering Information  
NON-  
PART  
LINEARITY TEMP. RANGE  
PKG.  
NO.  
o
o
NUMBER  
( C)  
( C)  
PACKAGE  
AD590IH  
±3.0  
±1.5  
-55 to 150  
-55 to 150  
3 Ld Metal Can T3.A  
(TO-52)  
AD590JH  
3 Ld Metal Can T3.A  
(TO-52)  
In addition to temperature measurement, applications include  
temperature compensation or correction of discrete  
components, and biasing proportional to absolute temperature.  
The AD590 is particularly useful in remote sensing applica-  
tions. The device is insensitive to voltage drops over long  
lines due to its high-impedance current output. Any well  
insulated twisted pair is sufficient for operation hundreds of  
feet from the receiving circuitry. The output characteristics  
also make the AD590 easy to multiplex: the current can be  
switched by a CMOS multiplexer or the supply voltage can  
be switched by a logic gate output.  
Pinout  
Functional Diagram  
+
AD590  
(METAL CAN)  
R1 260R2 1040Ω  
Q5  
Q3  
Q2  
+
Q1  
Q4  
1
Q6  
CASE  
3
C1 26pF  
Q12  
Q7  
Q8  
2
-
CHIP  
SUBSTRATE  
R3 5kΩ  
R4 11kΩ  
Q10  
Q9  
8
Q11  
1
1
R6 820Ω  
R5 146Ω  
-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 3171.1  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
12-3  
AD590  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
o
Supply Forward Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . +44V  
Supply Reverse Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . .-20V  
Breakdown Voltage (Case to V+ to V-). . . . . . . . . . . . . . . . . . ±200V  
Thermal Resistance (Typical, Note 1)  
Metal Can Package . . . . . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
200  
120  
o
Maximum Junction Temperature (Metal Can Package) . . . . . . . 175 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
o
o
o
o
Rated Performance Temperature Range TO-52. . . . -55 C to 150 C  
o
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to 150 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
ο
Electrical Specifications Typical Values at T = 25 C, V+ = 5V, Unless Otherwise Specified  
A
PARAMETER  
TEST CONDITIONS  
AD590I  
298.2  
AD590J  
298.2  
UNITS  
o
o
Nominal Output Current at 2 C (298.2 K)  
µA  
o
Nominal Temperature Coefficient  
1.0  
1.0  
µA/ K  
o
o
Calibration Error at 25 C  
Notes 1, 5  
±10.0 Max  
±5.0 Max  
C
o
o
Absolute Error  
-55 C to 150 C, Note 7  
o
Without External Calibration Adjustment  
±20.0 Max  
±5.8 Max  
±3.0 Max  
±0.1 Max  
±0.1 Max  
40  
±10.0 Max  
±3.0 Max  
±1.5 Max  
±0.1 Max  
±0.1 Max  
40  
C
o
With External Calibration Adjustment  
Non-Linearity  
C
o
Note 6  
C
o
Repeatability  
Notes 2, 6  
Notes 3, 6  
C
o
Long Term Drift  
C/Month  
Current Noise  
pA/√Hz  
Power Supply Rejection  
+4V < V+ < +5V  
0.5  
0.2  
0.1  
0.5  
0.2  
0.1  
µA/V  
µA/V  
µA/V  
+5V < V+ < +15V  
+15V < V+ < +30V  
10  
10  
Case Isolation to Either Lead  
Effective Shunt Capacitance  
Electrical Turn-On Time  
Reverse Bias Leakage Current  
Power Supply Range  
NOTES:  
10  
10  
100  
20  
100  
20  
pF  
Note 1  
Note 4  
µs  
10  
10  
pA  
+4 to +30  
+4 to +30  
V
2. Does not include self heating effects.  
o
o
o
3. Maximum deviation between 25 C reading after temperature cycling between -55 C and 150 C.  
o
4. Conditions constant +5V, constant 125 C.  
o
5. Leakage current doubles every 10 C.  
6. Mechanical strain on package may disturb calibration of device.  
7. Guaranteed but not tested.  
o
o
o
8. -55 C Guaranteed by testing at 25 C and 150 C.  
12-4  
AD590  
Trimming Out Errors  
+10V  
The ideal graph of current versus temperature for the AD590  
is a straight line, but as Figure 1 shows, the actual shape is  
slightly different. Since the sensor is limited to the range of  
-55oC to 150oC, it is possible to optimize the accuracy by  
trimming. Trimming also permits extracting maximum  
performance from the lower-cost sensors.  
35.7kΩ  
2kΩ  
97.6kΩ  
R 5kΩ  
2
R
1
+
o
V
= 100mV/ C  
OUT  
AD590  
-
The circuit of Figure 2 trims the slope of the AD590 output.  
The effect of this is shown in Figure 3.  
R
R
= OFFSET  
= SLOPE  
1
2
V-  
The circuit of Figure 4 trims both the slope and the offset.  
This is shown in Figure 5. The diagrams are exaggerated to  
show effects, but it should be clear that these trims can be  
used to minimize errors over the whole range, or over any  
selected part of the range. In fact, it is possible to adjust the  
I-grade device to give less than 0.1oC error over the range  
0oC to 90oC and less than 0.05oC error from 25oC to 60oC.  
FIGURE 4. SLOPE AND OFFSET TRIMMING  
IDEAL  
ACTUAL  
(GREATLY  
EXAGGERATED)  
FIGURE 5A. UNTRIMMED  
FIGURE 5B. TRIM ONE: OFFSET  
FIGURE 5C. TRIM TWO: SLOPE  
o
T ( K)  
FIGURE 1. TRIMMING OUT ERRORS  
+5V  
+
+
AD590  
-
+
R 100Ω  
o
V
= 1mV/ K  
OUT  
950Ω  
R = SLOPE  
FIGURE 2. SLOPE TRIMMING  
IDEAL  
ACTUAL  
TRIMMED  
o
T ( K)  
FIGURE 3. EFFECT OF SLOPE TRIM  
12-5  
AD590  
Accuracy  
Maximum errors over limited temperature spans, with  
= +5V, are listed by device grade in the following tables.  
V
S
The tables reflect the worst-case linearities, which invariably  
occur at the extremities of the specified temperature range.  
The trimming conditions for the data in the tables are shown  
in Figure 2 and Figure 4.  
All errors listed in the tables are ±oC. For example, if ±1oC  
maximum error is required over the 25oC to 75oC range (i.e.,  
lowest temperature of 25oC and span of 50oC), then the  
trimming of a J-grade device, using the single-trim circuit  
(Figure 2), will result in output having the required accuracy  
over the stated range. An I-grade device with two trims  
(Figure 4) will have less than ±0.2oC error. If the requirement  
is for less than ±1.4oC maximum error, from -25oC to 75oC  
(100oC span from -25oC), it can be satisfied by an I-grade  
device with two trims.  
FIGURE 5D. TRIM THREE: OFFSET AGAIN  
FIGURE 5. EFFECT OF SLOPE AND OFFSET TRIMMING  
o
I Grade Maximum Errors ( C)  
o
LOWEST TEMPERATURE IN SPAN ( C)  
NUMBER OF  
TRIMS  
TEMPERATURE  
o
SPAN ( C)  
-55  
8.4  
-25  
9.2  
10.4  
13.0  
16.0  
19.0  
-
0
10.0  
11.0  
12.8  
16.6  
19.2  
-
25  
50  
11.6  
12.0  
14.6  
18.8  
-
75  
100  
125  
None  
None  
None  
None  
None  
None  
One  
10  
25  
10.8  
12.4  
13.2  
14.4  
10.0  
13.0  
15.2  
18.4  
20.0  
0.6  
11.8  
13.8  
15.0  
16.0  
50  
13.8  
16.4  
18.0  
-
100  
150  
205  
10  
17.4  
-
-
-
-
-
-
-
-
-
-
-
-
0.4  
1.2  
3.0  
4.5  
4.8  
-
0.4  
1.0  
2.0  
4.2  
5.5  
-
0.4  
0.4  
1.0  
2.0  
5.0  
-
0.4  
1.2  
3.0  
-
0.4  
1.6  
3.8  
-
0.6  
One  
25  
1.8  
1.0  
1.8  
One  
50  
3.8  
2.0  
-
One  
100  
150  
205  
10  
4.8  
4.2  
-
One  
5.5  
-
-
-
-
One  
5.8  
-
-
-
-
-
Two  
0.3  
0.2  
0.3  
0.6  
1.4  
2.0  
-
0.1  
0.2  
0.4  
1.0  
2.8  
-
(Note 9)  
(Note 9)  
0.1  
0.2  
2.5  
-
0.1  
0.2  
0.3  
-
0.2  
0.3  
0.7  
-
0.3  
Two  
25  
0.5  
(Note 9)  
0.5  
Two  
50  
1.2  
0.2  
2.0  
-
-
-
-
-
Two  
100  
150  
205  
1.8  
Two  
2.6  
-
-
Two  
3.0  
-
-
-
-
NOTE:  
o
9. Less than ±0.05 C.  
12-6  
AD590  
o
J Grade Maximum Errors ( C)  
o
LOWEST TEMPERATURE IN SPAN ( C)  
NUMBER OF  
TRIMS  
TEMPERATURE  
o
SPAN ( C)  
-55  
4.2  
5.0  
6.5  
7.7  
9.2  
10.0  
0.3  
0.9  
1.9  
2.3  
2.5  
3.0  
0.1  
0.2  
0.4  
0.7  
1.0  
1.6  
-25  
4.6  
5.2  
6.5  
8.0  
9.5  
-
0
25  
5.4  
5.9  
6.9  
8.7  
-
50  
5.8  
6.0  
7.3  
9.4  
-
75  
6.2  
6.9  
8.2  
-
100  
6.6  
7.5  
9.0  
-
125  
None  
10  
25  
5.0  
5.5  
6.4  
8.3  
9.6  
-
7.2  
None  
None  
None  
None  
None  
One  
8.0  
50  
-
100  
150  
205  
10  
-
-
-
-
-
-
-
-
-
0.2  
0.6  
1.5  
2.2  
2.4  
-
0.2  
0.5  
1.0  
2.0  
2.5  
-
0.2  
0.5  
1.0  
2.0  
-
0.2  
0.5  
1.0  
2.3  
-
0.2  
0.6  
1.5  
-
0.2  
0.8  
1.9  
-
0.3  
One  
25  
0.9  
One  
50  
-
One  
100  
150  
205  
10  
-
One  
-
-
-
One  
-
-
-
-
-
Two  
(Note 10) (Note 10) (Note 10) (Note 10) (Note 10) (Note 10)  
0.1  
Two  
25  
0.1  
0.2  
0.5  
0.7  
-
(Note 10) (Note 10) (Note 10) (Note 10)  
0.1  
0.2  
Two  
50  
0.1  
0.3  
1.2  
-
(Note 10) (Note 10)  
0.1  
0.2  
(Note 10)  
Two  
100  
150  
205  
0.7  
1.0  
-
-
-
-
-
-
-
-
-
Two  
-
-
-
-
Two  
NOTE:  
o
10. Less than ±0.05 C.  
NOTES  
Repeatability Errors arise from a strain hysteresis of the  
package. The magnitude of this error is solely a function of  
the magnitude of the temperature span over which the  
1. Maximum errors over all ranges are guaranteed based on  
the known behavior characteristic of the AD590.  
o
device is used. For example, thermal shocks between 0 C  
o
o
2. For one-trim accuracy specifications, the 205 C span is  
and 100 C involve extremely low hysteresis and result in  
o
o
assumed to be trimmed at 25 C; for all other spans, it is  
assumed that the device is trimmed at the midpoint.  
repeatability errors of less than ±0.05 C. When the thermal-  
o
o
shock excursion is widened to -55 C to 150 C, the device  
o
will typIcally exhibit a repeatability error of ±0.05 C (±0.10  
o
3. For the 205 C span, it is assumed that the two-trim  
guaranteed maximum).  
o
o
temperatures are in the vicinity of 0 C and 140 C; for all  
other spans, the specified trims are at the endpoints.  
Long Term Drift Errors are related to the average operating  
temperature and the magnitude of the thermal-shocks  
experienced by the device. Extended use of the AD590 at  
4. In precision applications, the actual errors encountered  
are usually dependent upon sources of error which are  
often overlooked in error budgets. These typically  
include:  
o
temperatures above 100 C typically results in long-term drift  
o
o
of ±0.03 C per month; the guaranteed maximum is ±0.10 C  
per month. Continuous operation at temperatures below  
a. Trim error in the calibration technique used  
b. Repeatability error  
o
100 C induces no measurable drifts in the device. Besides  
the effects of operating temperature, the severity of thermal  
shocks incurred will also affect absolute stability. For  
c. Long term drift errors  
o
thermal-shock excursions less than 100 C, the drift is diffi-  
o
o
o
Trim Error is usually the largest error source. This error  
arises from such causes as poor thermal coupling between  
the device to be calibrated and the reference sensor; refer-  
ence sensor errors; lack of adequate time for the device  
being calibrated to settle to the final temperature; radically  
different thermal resistances between the case and the sur-  
cult to measure (<0.03 C). However, for 200 C excursions,  
the device may drift by as much as ±0.10 C after twenty  
such shocks. If severe, quick shocks are necessary in the  
application of the device, realistic simulated life tests are rec-  
ommended for a thorough evaluation of the error introduced  
by such shocks.  
roundings (R  
device.  
) when trimming and when applying the  
CA  
θ
12-7  
AD590  
Typical Applications  
+15V  
+
+5V  
+
+
(ADDITIONAL SENSORS)  
-
-
-
+
AD590  
-
Σ
V
(AVG) = (R)  
i
OUT  
n
o
V
= 1mV/ K  
OUT  
333.3Ω  
0.1%  
1kΩ  
(FOR 3 SENSORS)  
FIGURE 8. AVERAGE TEMPERATURE SENSING SCHEME  
FIGURE 6A.  
The sum of the AD590 currents appears across R, which is  
10kΩ  
chosen by the formula:  
,
R = --------------  
n
where n = the number of sensors. See Figure 8.  
HEATER  
ELEMENT  
423  
298.2  
218  
+15V  
+
R
AD590  
B
LM311  
3
-
7
2
R
1
1
4
o
o
o
218 K  
298.2 K  
423 K  
R
0.1%  
o
o
o
R
R
(-55 C)  
(25 C)  
(150 C)  
2
C
ICL8069  
1.23V  
TEMPERATURE  
FIGURE 6B.  
V
ZERO  
3
FIGURE 6. SIMPLE CONNECTION. OUTPUT IS PROPORTIONAL  
TO ABSOLUTE TEMPERATURE  
FIGURE 9. SINGLE SETPOINT TEMPERATURE CONTROLLER  
The AD590 produces a temperature-dependent voltage  
across R (C is for filtering noise). Setting R produces a  
scale-zero voltage. For the celsius scale, make R = 1kΩ  
+15V  
+
2
and V  
= 0.273V. For Fahrenheit, R = 1.8kand  
ZERO  
= 0.460V. See Figure 9.  
V
ZERO  
-
+
500µA  
-
+
M
AD590 (AS MANY AS DESIRED)  
-
+
4V < V  
BATT  
<30V  
+
+
-
AD590  
V
(MIN)  
-
OUT  
-
10kΩ  
0.1%  
FIGURE 7. LOWEST TEMPERATURE SENSING SCHEME.  
AVAILABLE CURRENT IS THAT OF THE  
“COLDEST” SENSOR  
FIGURE 10. SIMPLEST THERMOMETER  
Meter displays current output directly in degrees Kelvin.  
using the AD590J, sensor output is within ±10 degrees over  
the entire range. See Figure 10.  
12-8  
AD590  
o
The Kelvin scale version reads from  
0
to 1999 K  
theoretically, and from 223 K to 473 K actually. The 2.26kΩ  
resistor brings the input within the ICL7106 V range: 2  
V+  
o
o
CM  
R
R
R
1
2
3
general-purpose silicon diodes or an LED may be substi-  
tuted. See Figure 12 and notes below.  
REF HI  
REF LO  
R
ICL8069  
1.235V  
V+  
ICL7106  
7.5kΩ  
R
IN HI  
4
5
12kΩ  
SCALE  
ADJ  
ZERO  
ADJ  
REF HI  
R
5kΩ  
REF LO  
COMMON  
IN LO  
1.000V  
5kΩ  
15kΩ  
+
ICL7106  
402Ω  
26.1kΩ  
AD590  
IN HI  
-
V-  
1kΩ  
0.1%  
COMMON  
IN LO  
FIGURE 11. BASIC DIGITAL THERMOMETER, CELSIUS AND  
FAHRENHEIT SCALES  
+
R
R
R
R
R
R
5
1
2
3
4
AD590  
o
o
-
F
9.00  
5.00  
4.02  
4.02  
2.0  
2.0  
12.4  
5.11  
10.0  
5.0  
0
V-  
C
11.8  
FIGURE 13. BASIC DIGITAL THERMOMETER, KELVIN SCALE  
WITH ZERO ADJUST  
5
R
= 28knominal  
n
n = 1  
This circuit allows “zero adjustment” as well as slope  
adjustment. the ICL8069 brings the input within the com-  
mon-mode range, while the 5kpots trim any offset at  
ALL values are in kΩ.  
o
o
The ICL7106 has a V span of ±2.0V and a V  
range of 218 K (-55 C), and set the scale factor. See Figure 13 and  
IN CM  
(V+ -0.5V) to (V- +1V). R is scaled to bring each range within notes below.  
while not exceeding V . V for both scales is  
V
CM  
IN  
REF  
Notes for Figure 11, Figure 12 and Figure 13  
o
500mV maximum rending on the celsius range 199.9 C  
limited by the (short-term) maximum allowable sensor tem-  
perature. Maximum reading on the fahrenheit range is  
199.9 F (93.3 C) limited by the number of display digits.  
See Figure 11 and notes below.  
Since all 3 scales have narrow V spans, some optimization  
lN  
of ICL7106 components can be made to lower noise and  
preserve CMR. The table below shows the suggested val-  
ues. Similar scaling can be used with the ICL7126 and  
ICL7136.  
o
o
V+  
SCALE  
V
RANGE (V)  
R
(k)  
C
(µF)  
lN  
lNT  
AZ  
7.5kΩ  
REF HI  
SCALE  
K
C
F
0.223 to 0.473  
-0.25 to +1.0  
220  
0.47  
ADJ  
5kΩ  
REF LO  
220  
220  
0.1  
0.1  
ICL7106  
2.26kΩ  
1.00kΩ  
15kΩ  
-0.29 to +0.996  
IN HI  
For all:  
C
C
C
R
= 0.1µF  
= 0.22µF  
=100pF  
= 100kΩ  
REF  
lNT  
COMMON  
IN LO  
OSC  
OSC  
+
AD590  
-
V-  
FIGURE 12. BASIC DIGITAL THERMOMETER, KELVIN SCALE  
12-9  
AD590  
+15V  
1kΩ  
ZERO SET  
+
+
NO. 1  
AD590  
44.2kΩ  
-
-
10kΩ  
741  
5MΩ  
o
ICL7611  
10mV/ C  
V+  
50kΩ  
-
+
-
V
= (T - T ) x  
2 1  
+
OUT  
(8V MIN)  
o
+
(10mV/ C)  
118kΩ  
20kΩ  
FULL-SCALE  
ADJUST  
V-  
115kΩ  
NO. 2  
10kΩ  
0.1%  
-
10kΩ  
100Ω  
+100µA  
M
10kΩ  
2.7315V  
-
FIGURE 15. DIFFERENTIAL THERMOMETER  
o
o
FIGURE 14. CENTIGRADE THERMOMETER (0 C-100 C)  
The reference junction(s) should be in close thermal contact  
with the AD590 case. V+ must be at least 4V, while ICL8069  
current should be set at 1mA - 2mA. Calibration does not  
The ultra-low bias current of the ICL7611 allows the use of  
large value gain resistors, keeping meter current error under  
/ %, and therefore saving the expense of an extra meter  
2
require shorting or removal of the thermocouple: set R for  
1
1
V
= 10.98mV. If very precise measurements are needed,  
2
adjust R to the exact Seebeck coefficient for the thermo-  
driving amplifier. See Figure 14.  
2
couple used (measured or from table) note V , and set R to  
1
1
The 50kpot trims offsets in the devices whether internal or  
external, so it can be used to set the size of the difference  
interval. this also makes it useful for liquid level detection  
(where there will be a measurable temperature difference).  
See Figure 15.  
buck out this voltage (i.e., set V = V ). For other thermocou-  
2
1
ple types, adjust values to the appropriate Seebeck  
coefficient. See Figure 16.  
V+  
+
o
1µA/ K  
SEEBECK  
o
-
COEFFICIENT = 40µV/ K  
-
TYPE K  
+
o
R
40.2Ω  
T
= 40µV/ K  
V = 10.98mV  
1
2
C
V+  
+
V
OUT  
-
1.235V  
R
4521Ω  
1
V
= 10.98mV  
2
40.2Ω  
4.7µF  
ICL8069  
FIGURE 16. COLD JUNCTION COMPENSATION FOR TYPE K THERMOCOUPLE  
12-10  
AD590  
COLUMN  
SELECT  
ROW  
SELECT  
+15V  
+15V  
ENABLE  
2
ENABLE  
2
R
13  
15  
16  
1
15 16 1  
(OPTIONAL)  
8
13  
2
1
0
D
HI-0548  
8-CHANNEL  
MUX  
4
GND V- 7  
6
5
3
2
1
0
4
3
14  
9
10  
11  
12  
7
6
5
4
5
0
1
2
6
7
HI-0548  
8-CHANNEL  
MUX  
3
12  
11  
4
5
6
7
10  
9
3
V-  
D
GND  
8
14  
R
(OPTIONAL)  
V
10k0.1%  
OUT  
AD590 (64)  
FIGURE 17. MULTIPLEXING SENSORS  
If shorted sensors are possible, a series resistor in series  
with the D line will limit the current (shown as R, above: only  
one is needed). A six-bit digital word will select one of 64  
sensors.  
12-11  
AD590  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
37 mils x 58 mils x 14 mils ±1 mil  
Type: PSG/Nitride  
PSG Thickness: 7kÅ ±1.4kÅ  
Nitride Thickness: 8kÅ ±1.2kÅ  
METALLIZATION:  
Type: Aluminum 100%  
Thickness: 15kÅ ±1kÅ  
Metallization Mask Layout  
AD590  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
12-12  

相关型号:

AD590-02

Analog Resistance Sensor, 298.2uA, Rectangular, Through Hole Mount
SENSITRON

AD590H

Industrial Control IC
ETC

AD590IF

Temperature Transducer/Sensor
ETC

AD590IF/883B

Temperature Transducer/Sensor
ETC

AD590IH

2-Wire, Current Output Temperature Transducer
INTERSIL

AD590IH/883B

Temperature Transducer/Sensor
ETC

AD590IZR

ANALOG TEMP SENSOR-CURRENT, 298.2uA, RECTANGULAR, THROUGH HOLE MOUNT, TO-92, 3 PIN
RENESAS

AD590J

Two-Terminal IC Temperature Transducer
ADI

AD590JCHIPS

Two-Twrminal IC Temperature Transducer
ADI

AD590JCPZ-R5

2-Terminal IC Temperature Transducer
ADI

AD590JCPZ-RL7

2-Terminal IC Temperature Transducer
ADI

AD590JF

Two-Terminal IC Temperature Transducer
ADI