EL4544_07 [INTERSIL]

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes; 工作在单端或差分输入模式三重16x5差分交叉点开关,能够
EL4544_07
型号: EL4544_07
厂家: Intersil    Intersil
描述:

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
工作在单端或差分输入模式三重16x5差分交叉点开关,能够

开关
文件: 总26页 (文件大小:783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL4544  
®
Data Sheet  
April 3, 2007  
FN7362.3  
Triple 16x5 Differential Crosspoint Switch  
Capable of Operation in Single-Ended or  
Differential Input Modes  
Features  
• Serial programming of switch array  
• Parallel or serial modes  
The EL4544 is a high bandwidth 16-channel differential RGB  
to 5-channel RGB single-ended RGB-HV video crosspoint  
switch with embedded sync extraction. Four 16-channel  
input muxes, each capable of receiving a complete RGB  
video signal, and five output muxes, each capable of  
“seeing” any one of the four RGB inputs. Additionally, the  
fifth input mux has an overlay “screen on screen” function  
that can be displayed in conjunction with any of the stacked  
RGB inputs.  
• High Z output disable  
• Drives 150Ω loads  
• 60MHz 0.1dB gain flatness  
• -3dB bandwidth of 300MHz  
• Crosstalk rejection: 75dB @ 100MHz  
• Channels settle to 5% within 10ns after overlay switching  
• 356 pin BGA packaging  
The EL4544 has a fast disable feature to reduce power  
consumption. The device also provides a presence of signal  
indicator by looking for syncs on a designated channel.  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
Ordering Information  
• Video switching  
PART  
PART  
PKG.  
NUMBER  
MARKING  
PACKAGE  
DWG. #  
EL4544IGZ EL4544IGZ 356 Pin (27x27mm) BGA V356.27x27  
(Note) (Pb-Free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005-2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL4544  
Pinout  
EL4544  
(356 PIN BGA)  
TOP VIEW  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Vp  
Vm BpF BpE BpD BpC BpB BpA Bp9 Bp8 Bp7 Bp6 Bp5 Bp4 Bp3 Bp2 Bp1 Bp0 Vm  
Vp  
Vm Vm BnF BnE BnD BnC BnB BnA Bn9 Bn8 Bn7 Bn6 Bn5 Bn4 Bn3 Bn2 Bn1 Bn0 Vm Vm  
RpF RnF TMon1 Vm Vm Vm Vm Vm Vm Vp Vm Vm Vm Vm Vm Vm Vm TMon2 GnF GpF  
RpE RnE Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm GnE GpE  
RpD RnD Vm Vm  
RpC RnC Vm Vm  
RpB RnB Vm Vm  
RpA RnA Vm Vm  
Rp9 Rn9 Vm Vm  
Vm Vm GnD GpD  
Vm Vm GnC GpC  
Vm Vm GnB GpB  
Vm Vm GnA GpA  
Vm Vm Gn9 Gp9  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm  
Rp8 Rn8 Vp  
Vm  
Vm  
Vp Gn8 Gp8  
Rp7 Rn7 Vm Vm  
Rp6 Rn6 Vm Vm  
Rp5 Rn5 Vm Vm  
Rp4 Rn4 Vm Vm  
Vm Vm Gn7 Gp7  
Vm Vm Gn6 Gp6  
Vm Vm Gn5 Gp5  
Vm Vm Gn4 Gp4  
8
7
6
Rp3 Rn3 RAZ  
GAZ  
NC  
Vdp Chip Gn2 Gp2  
Vm Vm Vm Vm Vm Vm Vm Vm Vm sDo sEn Reset Gn1 Gp1  
Vm Vm Vm Vm Vm Vm Vm Vm Vm Vm sDi sClk Vp Gn0 Gp0  
NC Gn3 Gp3  
5
Rp2 Rn2 Trans RefOL  
4
Rp1 Rn1 Cal  
Rp0 Rn0 Vp  
ROL  
Ovl  
GOL  
BOL  
BAZ  
3
2
VpS Hs  
Vs VmS VpD Hd  
Vd VmD VpC Hc  
Vc VmC VpB Hb  
Vb VmB VpA Ha  
Va VmA  
Ba RefA  
1
Rs  
A
Gs  
B
Bs RefS Rd  
Gd  
F
Bd RefD Rc  
Gc  
K
Bc RefC Rb  
Gb  
P
Bb RefB Ra  
Ga  
V
C
D
E
G
H
J
L
M
N
R
T
U
W
Y
= EMPTY LOCATION (UNPOPULATED)  
= BALLGRID  
FN7362.3  
April 3, 2007  
2
EL4544  
Pin Descriptions  
PIN NAME  
SOLDER BALL  
DESCRIPTION  
EQUIVALENT CIRCUIT  
Rp0  
A3  
Red plus input 0  
V
P
1.75kΩ  
+
V
1.5V  
REF  
V
V
M
M
CIRCUIT 1  
Rn0  
Rp1  
Rn1  
Rp2  
Rn2  
Rp3  
Rn3  
Rp4  
Rn4  
Rp5  
Rn5  
Rp6  
Rn6  
Rp7  
Rn7  
Vm  
B3  
A4  
Red minus input 0  
Red plus input 1  
Red minus input 1  
Red plus input 2  
Red minus input 2  
Red plus input 3  
Red minus input 3  
Red plus input 4  
Red minus input 4  
Red plus input 5  
Red minus input 5  
Red plus input 6  
Red minus input 6  
Red plus input 7  
Red minus input 7  
Analog minus supply  
Analog plus supply  
Red plus input 8  
Red minus input 8  
Red plus input 9  
Red minus input 9  
Red plus input 10  
Red minus input 10  
Red plus input 11  
Red minus input 11  
Red plus input 12  
Red minus input 12  
Red plus input 13  
Red minus input 13  
Red plus input 14  
Red minus input 14  
Red plus input 15  
Red minus input 15  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
MultipleBalls  
C11  
A11  
B11  
A12  
B12  
A13  
B13  
A14  
B14  
A15  
B15  
A16  
B16  
A17  
B17  
A18  
B18  
Vp  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Rp8  
Rn8  
Rp9  
Rn9  
RpA  
RnA  
RpB  
RnB  
RpC  
RnC  
RpD  
RnD  
RpE  
RnE  
RpF  
RnF  
FN7362.3  
April 3, 2007  
3
EL4544  
Pin Descriptions (Continued)  
PIN NAME  
SOLDER BALL  
DESCRIPTION  
EQUIVALENT CIRCUIT  
TMon1  
C18  
Thermal Monitor 1 has diodes to measure die temperature  
V
P
V
M
CIRCUIT 6  
Vp  
A20  
MultipleBalls  
C19  
Analog plus supply  
Analog minus supply  
Blue minus input 15  
Blue plus input 15  
Blue minus input 14  
Blue plus input 14  
Blue minus input 13  
Blue plus input 13  
Blue minus input 12  
Blue plus input 12  
Blue minus input 11  
Blue plus input 11  
Blue minus input 10  
Blue plus input 10  
Blue minus input 9  
Blue plus input 9  
Vm  
BnF  
BpF  
BnE  
BpE  
BnD  
BpD  
BnC  
BpC  
BnB  
BpB  
BnA  
BpA  
Bn9  
Bp9  
Bn8  
Bp8  
Vp  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
C20  
D19  
D20  
E19  
E20  
F19  
F20  
G19  
G20  
H19  
H20  
J19  
J20  
K19  
Blue minus input 8  
Blue plus input 8  
K20  
K18  
Analog plus supply  
Analog minus supply  
Blue minus input 7  
Blue plus input 7  
Vm  
MultipleBalls  
L19  
Bn7  
Bp7  
Bn6  
Bp6  
Bn5  
Bp5  
Bn4  
Bp4  
Bn3  
Bp3  
Bn2  
Bp2  
Bn1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
L20  
M19  
M20  
N19  
Blue minus input 6  
Blue plus input 6  
Blue minus input 5  
Blue plus input 5  
N20  
P19  
Blue minus input 4  
Blue plus input 4  
P20  
R19  
Blue minus input 3  
Blue plus input 3  
R20  
T19  
Blue minus input 2  
Blue plus input 2  
T20  
U19  
Blue minus input 1  
FN7362.3  
April 3, 2007  
4
EL4544  
Pin Descriptions (Continued)  
PIN NAME  
SOLDER BALL  
U20  
V19  
V20  
Vm  
DESCRIPTION  
EQUIVALENT CIRCUIT  
Reference Circuit 1  
Bp1  
Blue plus input 1  
Blue minus input 0  
Blue plus input 0  
Analog minus supply  
Analog plus supply  
Bn0  
Reference Circuit 1  
Bp0  
Reference Circuit 1  
Vm  
Vp  
Y20  
V18  
W18  
Y18  
W17  
Y17  
W16  
Y16  
W15  
Y15  
W14  
Y14  
W13  
Y13  
W12  
Y12  
W11  
Y11  
TMon2  
GnF  
GpF  
GnE  
GpE  
GnD  
GpD  
GnC  
GpC  
GnB  
GpB  
GnA  
GpA  
Gn9  
Gp9  
Gn8  
Gp8  
Vp  
Thermal Monitor 2 has diodes to measure die temperature  
Green minus input 15  
Green plus input 15  
Green minus input 14  
Green plus input 14  
Green minus input 13  
Green plus input 13  
Green minus input 12  
Green plus input 12  
Green minus input 11  
Green plus input 11  
Green minus input 10  
Green plus input 10  
Green minus input 9  
Green plus input 9  
Reference Circuit 6  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Green minus input 8  
Green plus input 8  
V11  
Analog plus supply  
Vm  
MultipleBalls  
W10  
Y10  
W9  
Analog minus supply  
Green minus input 7  
Green plus input 7  
Gn7  
Gp7  
Gn6  
Gp6  
Gn5  
Gp5  
Gn4  
Gp4  
Gn3  
Gp3  
Gn2  
Gp2  
Gn1  
Gp1  
Gn0  
Gp0  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 1  
Green minus input 6  
Green plus input 6  
Y9  
W8  
Green minus input 5  
Green plus input 5  
Y8  
W7  
Green minus input 4  
Green plus input 4  
Y7  
W6  
Green minus input 3  
Green plus input 3  
Y6  
W5  
Green minus input 2  
Green plus input 2  
Y5  
W4  
Green minus input 1  
Green plus input 1  
Y4  
W3  
Green minus input 0  
Green plus input 0  
Y3  
FN7362.3  
April 3, 2007  
5
EL4544  
Pin Descriptions (Continued)  
PIN NAME  
SOLDER BALL  
DESCRIPTION  
EQUIVALENT CIRCUIT  
Vm  
Vm  
V3  
V5  
Analog minus supply  
Analog plus supply  
Vp  
Chip  
Chip enable (active low): when "HI" disables all analog except  
references; all analog or digital video outputs are in a high  
impedance state; all registers hold their data but remain  
programmable since the serial interface is left active  
V
DP  
V
V
M
M
CIRCUIT 4  
Vdp  
U5  
V4  
Digital logic power supply: nominally at 3V  
Reset  
Reset (active low): clears all registers in interface and calibration Reference Circuit 4  
sections; this causes the chip to standby with all outputs in a high  
impedance state  
sEn  
U4  
Serial bus enable (active low): enables the serial bus when "LO"; Reference Circuit 4  
latches the current value when transitioning to "HI"  
Vp  
Vm  
V3  
Analog plus supply  
Analog minus supply  
MultipleBalls  
sClk  
sDo  
sDi  
U3  
T4  
T3  
Serial bus clock  
Reference Circuit 4  
Reference Circuit 4  
Serial bus data output  
Serial bus data input  
V
DP  
V
M
CIRCUIT 5  
RefA  
VmA  
Y1  
Y2  
Output stage reference level (input) A  
Reference Circuit 6  
RGB video output stages' minus supply A  
V
P
35kΩ  
V
V
M
M
CIRCUIT 7  
Ba  
W1  
Blue output A  
V
P
V
M
CIRCUIT 2  
FN7362.3  
April 3, 2007  
6
EL4544  
Pin Descriptions (Continued)  
PIN NAME  
SOLDER BALL  
DESCRIPTION  
EQUIVALENT CIRCUIT  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 7  
Reference Circuit 6  
Reference Circuit 7  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 7  
Reference Circuit 6  
Reference Circuit 7  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 7  
Reference Circuit 6  
Reference Circuit 7  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 7  
Reference Circuit 6  
Reference Circuit 7  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 5  
Reference Circuit 2  
Reference Circuit 7  
Reference Circuit 6  
Reference Circuit 6  
Reference Circuit 6  
Va  
W2  
V1  
V2  
U1  
U2  
T1  
T2  
R1  
R2  
P1  
P2  
N1  
N2  
M1  
M2  
L1  
Vertical sync output A  
Ga  
Green output A  
Ha  
Horizontal sync output A  
Red output A  
Ra  
VpA  
RefB  
VmB  
Bb  
RGB video output stages' plus supply A  
Output stage reference level (input) B  
RGB video output stages' minus supply B  
Blue output B  
Vb  
Vertical sync output B  
Gb  
Green output B  
Hb  
Horizontal sync output B  
Rb  
Red output B  
VpB  
RefC  
VmC  
Bc  
RGB video output stages' plus supply B  
Output stage reference level (input) C  
RGB video output stages' minus supply C  
Blue output C  
Vc  
L2  
Vertical sync output C  
Gc  
K1  
K2  
J1  
Green output C  
Hc  
Horizontal sync output C  
Rc  
Red output C  
VpC  
RefD  
VmD  
Bd  
J2  
RGB video output stages' plus supply C  
Output stage reference level (input) D  
RGB video output stages' minus supply D  
Blue output D  
H1  
H2  
G1  
G2  
F1  
F2  
E1  
E2  
D1  
D2  
C1  
C2  
B1  
B2  
A1  
A2  
E3  
E4  
D4  
Vd  
Vertical sync output D  
Gd  
Green output D  
Hd  
Horizontal sync output D  
Rd  
Red output D  
VpD  
RefS  
VmS  
Bs  
RGB video output stages' plus supply D  
Output stage reference level (input) S  
RGB video output stages' minus supply S  
Blue output S  
Vs  
Vertical sync output S  
Gs  
Green output S  
Hs  
Horizontal sync output S  
Rs  
Red output S  
VpS  
BOL  
GOL  
ROL  
RGB video output stages' plus supply S  
Blue overlay input for output group S  
Green overlay input for output group S  
Red overlay input for output group S  
FN7362.3  
April 3, 2007  
7
EL4544  
Pin Descriptions (Continued)  
PIN NAME  
RefOL  
Vm  
SOLDER BALL  
DESCRIPTION  
EQUIVALENT CIRCUIT  
D5  
MultipleBalls  
F4  
Overlay inputs' reference level for output group S  
Analog minus supply  
Reference Circuit 6  
BAZ  
Blue auto-zero internal calibration level monitor for output group S  
V
P
200Ω  
V
M
CIRCUIT 3  
GAZ  
D6  
Green auto-zero internal calibration level monitor for output group Reference Circuit 3  
S
Vp  
RAZ  
Vdp  
Ovl  
C3  
Analog plus supply  
C6  
Red auto zero internal calibration level monitor for output group S Reference Circuit 3  
Digital logic power supply: nominally at 3V  
U5  
D3  
Digital input to select whether overlay is active for output group S Reference Circuit 4  
Cal  
C4  
C5  
Digital input to calibrate S output group  
Digital input to select a transparent overlay for output group S  
Analog plus supply  
Reference Circuit 4  
Reference Circuit 4  
Trans  
Vp  
C3  
Vm  
MultipleBalls  
A19  
Analog minus supply  
Vm  
Analog minus supply  
Vm  
B19, B20, C7, C8, C9, C10,  
C12, C13, C14, C15, C16, C17,  
D7, D8, D9, D10, D11, D12,  
D13, D14, D15, D16, D17, D18,  
E17, E18, F3, F6, F7, F8, F9,  
F10, F11, F12, F13, F14, F15,  
F17, F18, G3, G4, G6, G7, G8,  
G9, G10, G11, G12, G13, G14,  
G15, G17, G18, H3, H4, H6, H7,  
H8, H9, H10, H11, H12, H13,  
H14, H15, H17, H18, J3, J4, J6,  
J7, J8, J9, J10, J11, J12, J13,  
J14, J15, J17, J18, K3, K4, K6,  
K7, K8, K9, K10, K11, K12, K13,  
K14, K15, K17, L3, L4, L6, L7,  
L8, L9, L10, L11, L12, L13, L14,  
L15, L17, L18, M3, M4, M6, M7,  
M8, M9, M10, M11, M12, M13,  
M14, M15, M17, M18, N3, N4,  
N6, N7, N8, N9, N10, N11, N12,  
N13, N14, N15, N17, N18, P3,  
P4, P6, P7, P8, P9, P10, P11,  
P12, P13, P14, P15, P17, P18,  
R3, R4, R6, R7, R8, R9, R10,  
R11, R12, R13, R1, R15, R17,  
R18, T17, T18, U7, U8, U9, U10,  
U11, U12, U13, U14, U15, U16,  
U17, U18, V7, V8, V9, V10, V12,  
V13, V14, V15, V16, V17, W19,  
W20, Y19  
N/C  
U6, V6  
Not connected; may be grounded  
FN7362.3  
April 3, 2007  
8
EL4544  
Absolute Maximum Ratings (T = +25°C)  
A
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Recommended Operating Temperature . . . . . . . . . .-40°C to +85°C  
SA  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
S
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3V  
SD  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
= 5V, V = 3.3V, Gain = 2, R = 150Ω, C = 2.7pF, T = +25°C.  
SA  
SD  
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CHARACTERISTICS  
V
V
Recommended Analog Supply Voltage  
Recommended Digital Supply Voltage  
Digital Supply Current  
4.75  
2.4  
5.0  
3.3  
3
5.25  
3.6  
10  
V
SA  
SD  
V
I
I
mA  
mA  
mA  
dB  
SD  
SA  
Analog Supply Current  
Enabled - no load, all amplifiers enabled  
Disabled  
685  
33  
790  
50  
PSRR  
Power Supply Rejection Ratio  
4.75V to 5.25V  
40  
CHARACTERISTICS OF DIFFERENTIAL INPUTS  
CMRR Input Common Mode Rejection Ratio  
0V to 1.5V  
45  
66  
dB  
A
Gain Accuracy for A, B, C, D, S Channels Range of Deviation from gain of 2 (excluding  
overlay)  
1.85  
2.0  
2.15  
V
V
V
Input Referred Voltage Noise  
Input Referred Offset Voltage  
A
= +2  
40  
0
nV/Hz  
N
V
Includes muxes and output amps; A, B, C, D  
channels  
-80  
-10  
80  
12  
mV  
OS  
S channel in auto-calibration mode  
5
mV  
V
V
Maximum Recommended Input Range  
Input Capacitance  
V
SA  
IN  
C
R
2
pF  
Ω
IN  
Input Resistance, Single-ended  
Input Biasing Voltage  
1100  
1.49  
1320  
1.53  
1550  
1.57  
IN  
V
V
INSET  
OVERLAY INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
OVERLAY SWITCHING CHARACTERISTICS  
V
S channel overlay inputs at A = 2  
V
-10  
5
12  
mV  
ns  
OS  
P
Pixel Mux Aperture of Uncertainty  
Gain Accuracy for S Channel  
5% setting for max signal charge  
S channel overlay input  
10  
APERTURE  
A
V
OUTPUT CHARACTERISTICS  
Output  
Impedance  
Enabled  
Disabled  
100  
10  
mΩ  
MΩ  
V
V
Maximum Recommended Output Range  
Output Current  
0
3.3  
OUT  
I
Short-circuit (5Ω)  
60  
mA  
OUT  
FN7362.3  
April 3, 2007  
9
EL4544  
Electrical Specifications  
V
= 5V, V = 3.3V, Gain = 2, R = 150Ω, C = 2.7pF, T = +25°C. (Continued)  
SA  
SD  
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SR  
Slew Rate  
2V  
P-P  
symmetrical, R = 150Ω, A = 2,  
800  
V/µs  
L
V
guaranteed by design  
BW  
-3dB Bandwidth  
-3dB, 200mV , load of 150Ω  
300  
60  
MHz  
MHz  
ns  
P-P  
0.1dB Bandwidth  
1% Settling Time  
0.1dB, 200mV , load of 150Ω  
P-P  
Settling Time  
Crosstalk  
2V step, load of 150Ω  
10  
O
Hostile Crosstalk Between any 2  
Channels  
100MHz  
-70  
dB  
Worst Case Hostile Crosstalk One  
Channel Affected by all Other Channels  
Running the Same Signal  
100MHz  
-50  
dB  
FN7362.3  
April 3, 2007  
10  
EL4544  
I/O Block Diagram of Video Signals  
R0  
OUTPUT GAIN  
SELECTION  
INPUT GAIN  
SELECTION  
16x2:1  
MUX  
4x5 XPOINT MUX  
Ai  
Bi  
Ci  
Di  
Ax  
Bx  
Cx  
R
G
B
R
G
B
Ai  
2
2
2
2
2
R15  
R0  
OutA =  
(Ra, Ga, Ba + Ha, Va)  
2
G15  
H
V
H
V
L
L
SYNC  
B15  
16x2:1  
MUX  
R
G
B
R
G
B
Bi  
2
2
2
2
2
2
R15  
R0  
OutB =  
(Rb, Gb, Bb + Hb, Vb)  
G15  
H
V
H
V
L
L
SYNC  
SYNC  
SYNC  
B15  
16x2:1  
MUX  
R
G
B
R
G
B
Ci  
2
2
2
2
2
2
R15  
R0  
OutC =  
(Rc, Gc, Bc + Hc, Vc)  
G15  
H
V
H
V
L
L
B15  
16x2:1  
MUX  
Dx  
R
G
B
R
G
B
TRANSPARENT  
Di  
2
2
2
2
2
2
OVERLAY  
CALIBRATE/HOLD  
2:1 PIXEL MUX  
R15  
OutD =  
(Rd, Gd, Bd + Hd, Vd)  
Ro  
Go  
G15  
H
V
H
L
L
2
2
2
Rso  
Gso  
Bso  
B15  
V
Bo  
Rs  
Sx  
Rs  
Gs  
Bs  
Hs  
Vs  
Gs  
Bs  
NOTES:  
1. Each output group is a 5 element vector  
(R, G, B + H, V)  
OutS = (Rs, Gs, Bs, Hs, Vs)  
2. Each input group is a 3 element vector  
(R, G, B)  
L
Hs  
Vs  
3. All outputs drive back terminated 75Ω cable  
L
OutSO = (Rso, Gso, Bs, Hs, Vs)  
SDI (SERIAL DATA INPUT)  
SCLK (SERIAL CLOCK)  
SDO (SERIAL DATA OUTPUT)  
CONTROL REGISTERS  
SEN (SERIAL CLOCK ENABLE/LATCH)  
RESET (CLEARS ALL REGISTERS)  
WHEN HI, DATA IS CLOCKED IN, WHEN LO, DATA IS LATCHED TO ENABLE SELECTION  
FN7362.3  
April 3, 2007  
11  
EL4544  
I/O Block Diagram of Video Signals with Power Supplies and References  
R0  
16x2:1  
MUX  
4x5 XPOINT MUX  
VpA  
Ai  
Bi  
Ci  
Di  
Ax  
Bx  
Cx  
R
G
B
R
G
B
Ai  
2
2
2
2
2
2
R15  
R0  
OutA =  
(Ra, Ga, Ba + Ha, Va)  
G15  
H
V
H
V
L
L
SYNC  
SYNC  
SYNC  
SYNC  
B15  
RefB  
VmA  
VpB  
16x2:1  
MUX  
R
G
B
R
G
B
Bi  
2
2
2
2
2
2
R15  
R0  
OutB =  
(Rb, Gb, Bb + Hb, Vb)  
G15  
H
V
H
V
L
L
B15  
RefB  
VmB  
VpC  
16x2:1  
MUX  
R
G
B
R
G
B
Ci  
2
2
2
2
2
2
R15  
R0  
OutC =  
(Rc, Gc, Bc + Hc, Vc)  
G15  
H
V
H
V
L
L
B15  
RefC  
VmC  
VpD  
16x2:1  
MUX  
Dx  
R
G
B
R
G
B
Di  
2
2
2
2
2
2
TRANSPARENT  
OVERLAY  
CALIBRATE/HOLD  
VpS  
R15  
OutD =  
(Rd, Gd, Bd + Hd, Vd)  
Ro  
Go  
G15  
H
V
H
V
L
L
B15  
2
2
2
Rso  
Gso  
Bso  
RefD  
VmD  
Bo  
Rs  
Sx  
Rs  
Gs  
Bs  
Hs  
Vs  
NOTES:  
Gs  
Bs  
1. Each output group is a 5 element vector  
(R, G, B + H, V)  
RefS  
VmS  
OutS = (Rs, Gs, Bs, Hs, Vs)  
2. Each input group is a 3 element vector  
(R, G, B)  
2:1 PIXEL MUX  
L
Hs  
Vs  
3. All outputs drive back terminated 75Ω cable  
L
OutSO = (Rso, Gso, Bs, Hs, Vs)  
SDI (SERIAL DATA INPUT)  
SCLK (SERIAL CLOCK)  
SDO (SERIAL DATA OUTPUT)  
CONTROL REGISTERS  
SEN (SERIAL CLOCK ENABLE/LATCH)  
RESET (CLEARS ALL REGISTERS)  
WHEN HI, DATA IS CLOCKED IN, WHEN LO, DATA IS LATCHED TO ENABLE SELECTION  
FN7362.3  
April 3, 2007  
12  
EL4544  
Serial Bus Interface Architecture  
1-SHOT PULSE  
GENERATOR  
LOAD  
SEN  
4 BIT  
SELECTOR  
L
L
L
L
L
L
L
L
F3  
F3  
F2  
F2  
F1  
F1  
F0  
F0  
0
L
C
L
R
S
O
A
D
0
d
d
d
d
0
3
2
1
L
L
L
L
m3 m2 m1 m0  
m
L
O
A
D
C
L
R
S
m
L
L
L
L
M3 M2 M1 M0  
d
d
d
d
0
3
2
1
L
L
3
L
L
2
L
L
1
L
L
0
03  
02  
01  
00  
F
L
O
A
D
C
L
R
S
F
03  
02  
01  
00  
b3 b2 b1 b0  
d
d
d
d
RESET  
ADDRESS  
DATA  
SDO  
Q
D
A
A
A
A
D
D
D
D
0
SDI  
3
2
1
0
3
2
1
8 BIT SHIFT REGISTER  
SCLK  
SEN  
RESET  
CLEAR  
NOTE: The selector has 16 outputs, connected to 16 AND gates, connected to 16 4-bit latches.  
Rising edge of SEN triggers the load one-shot.  
FN7362.3  
April 3, 2007  
13  
EL4544  
Serial Bus Interface Timing Diagram  
t(SEN)  
IDLE  
WRITE TO REGISTER OF EL4544 (ADDRESS = XXXX)  
SEN  
t(SCLK)HI  
t(SCLK)LO  
(1/F)*SCLK  
SCLK  
SDI  
8
td(SEN)  
MSB  
LSB  
MSB  
LSB  
A
A
A
A
D
D
D
D
0
3
2
1
0
3
2
1
td(SCLK)  
START  
t(SDI)  
SETUP  
t(SDI)  
HOLD  
CURRENT (m) REGISTER  
ADDRESS (4 BITS)  
CURRENT (m) INPUT  
DATA (4 BITS)  
MSB  
LSB  
MSB  
LSB  
D
A
A
A
A
D
D
D
D
0
0
3
2
1
0
3
2
1
PREVIOUS... (m-2) PREVIOUS (m-1) ADDRESS (4 BITS)  
ADDRESS  
PREVIOUS (m-1) DATA (4 BITS)  
NOTE: Readback of the serial bus register can be done as follows: After SEN is taken low, latching data, and before  
writing the next word, the data in the register can be read back by clocking out 8 bits before writing in the next word.  
FN7362.3  
April 3, 2007  
14  
EL4544  
Serial Bus Interface Control Table  
HEX  
ADDRESS  
DATA  
ADDRESS  
CODE  
FUNCTION  
A3  
0
A2  
0
A1  
0
A0  
0
D3  
S3  
D2  
S2  
D1  
S1  
D0  
S0  
0
1
2
3
4
5
Ai Input Mux: Select Input of Input Mux Ai  
Bi Input Mux: Select Input of Input Mux Bi  
Ci Input Mux: Select Input of Input Mux Ci  
Di Input Mux: Select Input of Input Mux Di  
Enable Any of the 4 Input Muxes: Di/Ci/Bi/Ai  
0
0
0
1
S3  
S2  
S1  
S0  
0
0
1
0
S3  
S2  
S1  
S0  
0
0
1
1
S3  
S2  
S1  
S0  
0
1
0
0
EnDi  
TiS3  
EnCi  
TiS2  
EnBi  
TiS1  
EnAi  
TiS0  
Ti Input Test Mux: Select Which Input Group is  
0
1
0
1
Connected to Input Test Mux  
6
7
8
Enable Test Muxes: Input and Output  
0
0
1
1
1
0
1
1
0
0
1
0
EnTi  
ToS2  
ToS1  
ToS0  
Enable Sync Detectors for Di/Ci/Bi/Ai  
EnDSync EnCSync EnBSync EnASync  
Ax Crosspoint Mux: Enable/Gain =  
2or1/Select Input (2Bits)  
En  
En  
En  
En  
En  
A =2/  
V
not1  
S1  
S1  
S1  
S1  
S1  
S0  
S0  
S0  
S0  
S0  
9
A
B
C
Bx Crosspoint Mux: Enable/Gain = 2or1/  
Select Input (2Bits)  
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
A =2/  
V
not1  
Cx Crosspoint Mux: Enable/Gain = 2or1/  
Select Input (2Bits)  
A =2/  
V
not1  
Dx Crosspoint Mux: Enable/Gain = 2or1/  
Select Input (2Bits)  
A =2/  
V
not1  
Sx Crosspoint Mux: Enable/Gain = 2or1/  
A =2/  
V
Select Input (2Bits)  
not1  
D
E
Sync, Overlay, and Calibration Modes  
1
1
1
1
0
1
1
0
X
Trans  
Toggle  
AvBi=2  
Autocal  
AvDi=2  
Gain for: Di/Ci/Bi/Ai  
Set to HI for gain of 2  
Set to LO for gain of 1  
AvDi=2  
AvCi=2  
F
No Operation  
1
1
1
2
1
3
1
4
X
5
X
6
X
7
X
8
Order bits are loaded  
FN7362.3  
April 3, 2007  
15  
EL4544  
Typical Performance Curves  
DIFFERENTIAL  
INPUTS  
DIFFERENTIAL  
INPUTS  
C =10pF  
L
R =1kΩ  
L
R =150Ω  
C =0pF  
L
L
C =6.8pF  
L
A =2  
A =2  
V
V
R =500Ω  
L
C =4.7pF  
L
C =2.7pF  
L
R =300Ω  
L
C =0pF  
L
R =150Ω  
L
FIGURE 1. FREQUENCY FOR VARIOUS R  
FIGURE 2. FREQUENCY FOR VARIOUS C  
LOAD  
LOAD  
5
5
DIFFERENTIAL  
DIFFERENTIAL INPUTS  
INPUTS  
A IN=1  
A OUT=1  
V
OUTPUT CHANNELS=R, B, G  
V
A IN=1  
V
3
1
3
1
BLUE  
RED  
A OUT=1  
V
-1  
-3  
-5  
-1  
-3  
-5  
GREEN  
INPUTS 0-15  
OUT Ax  
TYPICAL  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS INPUT  
CHANNELS  
FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS OUTPUT  
COLOR CHANNELS  
5
5
A IN=1  
V
A IN=1  
V
A OUT=1  
V
A OUT=1  
V
3
1
3
1
-1  
-3  
-5  
-1  
-3  
-5  
INPUTS 0-15  
OUT Ax  
TYPICAL  
INPUTS 0-15  
OUT Ax  
TYPICAL  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
FIGURE 5. GAIN vs FREQUENCY FOR VARIOUS NON  
INVERTING INPUTS  
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS INVERTING  
INPUTS  
FN7362.3  
April 3, 2007  
16  
EL4544  
Typical Performance Curves (Continued)  
5
3
5
INVERTING INPUTS  
NON-INVERTING INPUTS  
3
1
1
A IN=1, A OUT=2  
A IN=1, A OUT=2  
V V  
-1  
-3  
V
V
-1  
-3  
A IN=2, A OUT=2  
A IN=2, A OUT=2  
V V  
V
V
A IN=1, A OUT=1  
A IN=1, A OUT=1  
V V  
V
V
A IN=2, A OUT=1  
A IN=2, A OUT=1  
V V  
V
V
-5  
100k  
-5  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 7. GAIN vs FREQUENCY FOR VARIOUS GAINS  
FIGURE 8. GAIN vs FREQUENCY FOR VARIOUS GAINS  
5
5
3
ALL OUTPUT MUXes  
ENABLED OR DISABLED  
NO EFFECT  
3
A IN=2, A OUT=1  
V
V
1
-1  
-3  
-5  
1
-1  
-3  
A IN=1, A OUT=1  
V
V
A IN=1, A OUT=2  
V
V
(-0.1dB 180MHz)  
A IN=2, A OUT=2  
V
V
(-0.1dB 150MHz)  
-5  
100k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. GAIN vs FREQUENCY FOR VARIOUS GAIN  
COMBINATIONS  
FIGURE 10. GAIN vs FREQUENCY FOR VARIOUS INPUT MUX  
LOADING  
5
5
A IN=1  
V
Sx OUTPUT CHANNEL  
A OUT=1  
V
IN OVERLAY MODE  
3
1
3
GPO  
1
GAIN=1  
GNO  
-1  
-3  
-5  
-1  
-3  
GAIN=2  
-5  
100k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. GAIN vs FREQUENCY DIFFERENTIAL INPUT  
COMPARISON  
FIGURE 12. GAIN vs FREQUENCY FOR VARIOUS GAINS  
FN7362.3  
April 3, 2007  
17  
EL4544  
Typical Performance Curves (Continued)  
5
5
3
INPUT=OVERLAY  
OUTPUT=Sx  
Sx OUTPUT CHANNEL  
IN OVERLAY MODE  
A IN=2  
A IN=1  
V
V
3
1
AUTO CAL DISABLED  
-3dB 390MHz  
AUTO CAL DISABLED  
-3dB 322MHz  
1
-1  
-3  
-5  
-1  
-3  
-5  
AUTO CAL ENABLED  
AUTO CAL ENABLED  
-3dB 192MHz  
-3dB 192MHz  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. GAIN vs FREQUENCY FOR Sx CHANNEL  
FUNCTIONS  
FIGURE 14. GAIN vs FREQUENCY FOR Sx CHANNEL  
FUNCTIONS  
5
5
INPUT=OVERLAY  
INPUT=OVERLAY  
OUTPUT=Sx  
OUTPUT=Sx  
AUTO CAL=DISABLED  
AUTO CAL=ENABLED  
3
3
A IN=2  
V
A IN=2  
V
3dB=390MHz  
3dB 176MHz  
1
-1  
-3  
1
-1  
-3  
A IN=A OUT=1  
A IN=A OUT=1  
V V  
V
V
3dB 322MHz  
3dB 162MHz  
-5  
100k  
-5  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. GAIN vs FREQUENCY FOR VARIOUS GAINS  
FIGURE 16. GAIN vs FREQUENCY FOR VARIOUS GAINS  
7
-30  
A TOTAL=4  
V
V =VARIOUS  
A
4.43V  
V =3.0V  
D
EF  
5
3
-50  
-70  
4.45V  
4.47V  
4.5V  
4.55V  
4.6V  
R
OUT=1.5V  
A IN=2  
V
4.7V  
5V  
1
-90  
-1  
-3  
-110  
-130  
4.42V  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FIGURE 17. PEAKING FOR VARIOUS POWER SUPPLY  
SETTINGS  
FIGURE 18. INPUT TO OUTPUT ISOLATION (DISABLED)  
FN7362.3  
April 3, 2007  
18  
EL4544  
Typical Performance Curves (Continued)  
-30  
-30  
-50  
A IN=2  
INPUT SIGNAL  
-20dBm  
Ax IN  
Bx LISTEN  
BROADCAST  
V
A TOTAL=4  
V
-50  
-70  
A IN=2  
V
Ax IN  
Bx LISTEN  
Ax ON Bx ON  
-70  
A IN=1  
V
Ax IN  
Bx LISTEN  
Ax Cx Dx ON  
-90  
-90  
Ax IN  
Bx LISTEN  
ALL OTHERS OFF  
-110  
-130  
-110  
-130  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
FIGURE 19. CROSSTALK FOR VARIOUS GAINS  
FIGURE 20. CROSSTALK FOR VARIOUS BROADCAST MODES  
25  
15  
5
25  
15  
5
-5  
-5  
-15  
-15  
-25  
100k  
-25  
100k  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. GROUP DELAY FOR OUTPUT  
CHANNELS A, B, C, D, S  
FIGURE 22. GROUP DELAY FOR OVERLAY MODE  
10  
300  
A IN=2  
V
A IN=2  
V
-10  
-30  
-50  
-70  
-90  
200  
150  
100  
50  
0
10k  
100k  
1M  
10M  
100M  
500M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. CMRR  
FIGURE 24. OUTPUT IMPEDANCE  
FN7362.3  
April 3, 2007  
19  
EL4544  
Typical Performance Curves (Continued)  
700  
600  
500  
400  
300  
200  
100  
0
10k  
1K  
A IN=2  
V
100  
10  
100  
1K  
10k  
100k  
1M  
10M  
100M  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
FREQUENCY (Hz)  
SUPPLY VOLTAGE (VD) VOLTS  
FIGURE 26. SLEW RATE vs SUPPLY (VD)  
FIGURE 25. VOLTAGE NOISE vs FREQUENCY  
A IN=1  
V
V
GPO  
A OUT=1  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
A IN=1  
V
A OUT=1  
V
GNO  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
FIGURE 27. SMALL SIGNAL NEGATIVE PULSE RESPONSE  
FIGURE 28. SMALL SIGNAL POSITIVE PULSE RESPONSE  
OUTPUT  
OUTPUT  
INPUT  
A IN=1  
A IN=1  
V
V
GNO  
V
INPUT  
A OUT=1  
A OUT=1  
V
GPO  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
FIGURE 29. LARGE SIGNAL NEGATIVE PULSE RESPONSE  
FIGURE 30. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FN7362.3  
April 3, 2007  
20  
EL4544  
Typical Performance Curves (Continued)  
ENABLE PULSE  
(STEP)  
20ns  
940ns  
ENABLE PULSE  
(STEP)  
GATED OUTPUT  
SIGNAL  
GATED OUTPUT  
SIGNAL  
TIME (1.0µs/DIV)  
TIME (1ns/DIV)  
FIGURE 31. ENABLE TIME  
FIGURE 32. DISABLE TIME  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
OUTPUT MUXES 1 - 5  
ENABLED  
INPUT MUXES 1 - 4  
ENABLED  
50  
Va=5.0V Vd=3.0V RefOL=1.5V  
Va=5.0V Vd=3.0V RefOL=1.5V  
0
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
NUMBER OF MUXES ENABLED 1 -5 (OUTPUT MUXES)  
5 - 9 (INPUT MUXES)  
NUMBER OF OUTPUT MUXES ENABLED  
FIGURE 33. POWER SUPPLY CURRENT AS FUNCTION OF  
OUTPUT MUXES ENABLED - ALL INPUT MUXES  
DISABLED  
FIGURE 34. POWER SUPPLY CURRENT AS FUNCTION OF  
INPUT AND OUTPUT MUXES ENABLED  
600  
550  
500  
450  
400  
300  
250  
200  
150  
100  
50  
350  
Va=5.0V Vd=3.0V RefOL=1.5V  
Va=5.0V Vd=3.0V RefOL=1.5V  
0
300  
1
1.5  
2
2.5  
3
3.5  
4
0
1
2
3
4
NUMBER OF INPUT MUXES ENABLED  
NUMBER OF INPUT MUXES ENABLED  
FIGURE 35. POWER SUPPLY CURRENT AS FUNCTION OF  
INPUT MUXES ENABLED - ALL OUTPUT MUXES  
ENABLED  
FIGURE 36. POWER SUPPLY CURRENT AS FUNCTION OF  
INPUT MUXES ENABLED - ALL OUTPUT MUXES  
DISABLED  
FN7362.3  
April 3, 2007  
21  
EL4544  
Typical Performance Curves (Continued)  
120  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
MAIN VOLTAGE SUPPLY (Va)  
Vd=3.0V RefOL=1.5V  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
SUPPLY VOLTAGE (V)  
DIGITAL SUPPLY VOLTAGE (V)  
FIGURE 37. ANALOG CURRENT vs DIGITAL SUPPLY  
VOLTAGE  
FIGURE 38. SUPPLY CURRENT VERSUS SUPPLY VOLTAGE  
BASE LINE IDLE - ALL INPUTS AND OUTPUTS  
DISABLED  
40  
35  
40  
A TOTAL=4  
V
35  
30  
25  
20  
15  
10  
5
A TOTAL=4  
V
A IN=2  
V
30  
25  
20  
15  
10  
5
A IN=2  
V
A IN=1  
V
A IN=1  
V
0
0
1.0  
10.0  
100.0  
1.0  
10.0  
FREQUENCY (MHz)  
100.0  
FREQUENCY (MHz)  
FIGURE 39. THIRD-ORDER INTERCEPT POINT vs  
FREQUENCY GREEN CHANNEL  
FIGURE 40. THIRD-ORDER INTERCEPT POINT vs  
FREQUENCY BLUE CHANNEL  
0
40  
A TOTAL=4  
V
IP3= 36.2  
A TOTAL=4  
-10  
-20  
f1=10MHz  
V
35  
30  
25  
20  
15  
10  
5
f2=10.004MHz  
f1  
f2  
A IN=2  
V
-30  
-40  
A IN=1  
V
-50  
-60  
2f1-f2  
2f2-f1  
-70  
-80  
-90  
-100  
-110  
0
9.995 9.997 9.999 10.001 10.003 10.005 10.007 10.009  
1.0  
10.0  
FREQUENCY (MHz)  
100.0  
FREQUENCY (MHz)  
FIGURE 41. THIRD-ORDER INTERCEPT POINT vs  
FREQUENCY RED CHANNEL  
FIGURE 42. IP3 A TOTAL = 4 BLUE CHANNEL  
V
FN7362.3  
April 3, 2007  
22  
EL4544  
Typical Performance Curves (Continued)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
A IN=2  
f1=10MHz  
f2=10.004MHz  
A IN=1  
V
IP3=33.9  
V
IP3 = 24.5  
-10  
-20  
f1=10MHz  
f2=10.004MHz  
f1  
-30  
f1  
f2  
f2  
-40  
-50  
-60  
-70  
2f2-f1  
2f1-f2  
2f2-f1  
-80  
2f1-f2  
-90  
-100  
-110  
9.995 9.997 9.999 10.001 10.003 10.005 10.007 10.009  
9.995 9.997 9.999 10.001 10.003 10.005 10.007 10.009  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 44. IP3 A IN = 1 BLUE CHANNEL  
V
FIGURE 43. IP3 A IN = 2 BLUE CHANNEL  
V
groups has an independent reference pin (RefA, RefB,  
RefC, RefD, and RefS) that allows the user to program the  
reference level that corresponds to a zero voltage differential  
input.  
Functional Overview  
Overall Functionality  
The EL4544 is a video crosspoint switch that has 16 (RGB  
differential) input channels (with H and V sync embedded in  
their common-modes) which connect via an internal  
crosspoint mux to 5 (RGB + HV) single-ended output  
channels. The 5th output group has enhanced features that  
include: a pixel-by-pixel overlay mux and auto-calibrated  
offset cancellation. All analog and digital outputs have a  
high-impedance state, allowing several EL4544 to share the  
same output connections.  
Analog and Digital Video Outputs  
All analog outputs (A, B, C, D, and S) have a signal range  
from 0V to 3.5V and are capable of driving the 150Ω load  
presented by a terminated video cable. The H and V sync  
outputs and all other digital I/O are compatible with 3V  
operation; their signal swings are determined by connecting  
the digital supply pin Vdp to a 3V source.  
How to Configure the Analog Video Outputs to  
Swing to 0V  
16 RGB Differential Video Inputs with Encoded  
Sync  
The RGB analog outputs of the A, B, C, D, and S output  
groups are all capable of a range of swing that reaches the  
negative supply pin Vm = 0V. However, since the EL4544  
has no internal supply connections, its single-ended outputs  
run out of bandwidth, slew rate, and linearity below 0.5V. If  
accurate wide band performance below 0.5V is required,  
add external pulldown resistors between each analog output  
and an external -5V supply.  
For each of the 16 RGB groups of differential video inputs,  
horizontal and vertical sync are encoded as a combination of  
the common modes for each RGB group. Each of these  
differential input pins has a single-ended signal range that  
spans the entire 0V to 5V supply range. The embedded sync  
signals are provided by the EL4543 Triple Differential  
Twisted Pair Driver IC.  
Overall Analog Signal Flow  
This will keep the output stage biased. Values between 3kΩ  
to 1kΩ are suggested. The lower the selected resistance, the  
wider the bandwidth will be at 0V, but lower external  
resistance will increase overall IC power dissipation  
significantly since these resistors are loading their respective  
output stages.  
There are four independent internal input multiplexors  
represented as Ai, Bi, Ci, and Di in the block diagram and  
serial bus interface control table (hexa-decimal addresses  
0h, 1h, 2h, 3h). These muxes convert the selected RGB  
differential input signal to single-ended RGB and extract H  
and V sync. The five output crosspoint multiplexors  
represented as Ax, Bx, Cx, Dx, and Sx, can independently  
select from the four internal (RGBHV) signal groups Ai, Bi,  
Ci, and Di by programming the hexadecimal serial bus  
addresses 8h, 9h, Ah, Bh, and Ch. There are five RGBHV  
single-ended output signal groups labelled A, B, C, D, and S  
which buffer signals from the corresponding crosspoint  
outputs Ax, Bx, Cx, Dx, and Sx. Each of these output  
Operating the S Output Group Near Ground  
The S output group has one additional consideration to  
cover configurations where the output signals and the output  
reference pin RefS are operated below 0.5V. Under these  
circumstances, each of the three auto-zero monitoring pins  
RAZ, GAZ, and BAZ, require an external 10kΩ resistor  
FN7362.3  
April 3, 2007  
23  
EL4544  
connecting each to an external -5V supply. This keeps the  
auto-zero circuitry active all the way down to ground.  
calibration. If Toggle mode is inactive, the user must  
individually calibrate both the overlay and non-overlay  
("thru") output states by selecting the between them and  
running calibration separately for both of the input  
conditions. Changing the input selections by re-  
Switchable Video Output Group Has Overlay  
Capability and Offset Cancellation  
The S group of output signals have an overlay switch that  
allows single-ended inputs ROL, GOL, and BOL, to be  
inserted on a pixel-by-pixel basis. The pin RefOL allows the  
user to program the overlay input (reference) level that  
produces an output voltage equal to the output reference pin  
RefS. The S group of video outputs has an Auto-Calibration  
mode which can null out offsets through the entire selected  
signal path from its inputs to its outputs. (It is usually  
triggered during the front or back porch of video when the  
input signal is known to be at Black Level.)  
programming the crosspoint to another input path or by  
changing the overlay mode (transparent/opaque), requires  
refreshing of this calibration. Ideally, the calibration is  
refreshed once per line of video. The drift during a line of  
video is negligible. (On the lab bench, using manual control,  
a drift rate on the order of 0.2mV/sec will be observed.)  
Toggle Mode Automatically Supervises the  
Calibration Cycles  
The purpose of Toggle mode is to automatically alternate  
between calibrating the overlay and calibrating the "thru"  
paths to the S Output group. The Toggle mode assumes that  
overlays never exist outside of the video screen (that overlay  
only occurs during active video). When using the Toggle  
mode, the overlay function must be inactive during and  
around sync. When Toggle mode is active and the overlay  
switch is disabled, the EL4544 will automatically toggle  
between "thru" and overlay selections for alternate pulsing of  
the calibrate signal. Thus, every alternate calibrate pulse will  
override the selected "thru" state of the overlay switch,  
perform an auto-zero function, and then return the overlay  
switch back to its original "thru" position. This is true if the  
programming Bit D1 in Register D (labelled Toggle) of the  
Serial Interface is programmed to a logical "1". Whenever  
the IC is reset by momentarily pulling the Reset pin "LO", the  
Toggle mode is initialized such that the first path calibrated is  
the overlay path. The next calibration cycle will automatically  
calibrate the "thru" path.  
Transparent vs Opaque Overlays  
The overlay input for the S group is directly selected by the  
Overlay control pin Ovl. Two types of overlay are possible.  
The simplest overlay alternates between the dedicated  
overlay input and the "thru" input (that has been selected by  
the cross-point multiplexor). The "transparent" overlay mode  
is different from the standard overlay mode in that it presents  
the average of the overlay input and the "thru" input signal  
during overlay. The transparent mode is selected either by  
driving the Trans pin low or by programming bit D2 in  
Register D of the Serial Interface to a logical "1".  
Serial Interface Control of the Auto-Calibration  
Feature  
Programming bit D0 in Register D of the Serial Interface to a  
logical "1" activates the "Auto-Calibration" Mode which  
allows offsets from all inputs to the S group to be nulled-out  
via a calibration sequence. The programming Bit D1 in  
Register D of the Serial Interface is called Toggle. It allows  
for two modes of auto-calibration. If Toggle is programmed to  
a logical "0", Toggle mode is inactive. The auto-calibration  
cycle must be executed separately for both input groups (the  
overlay and the through signal groups).  
Incorrect Use of the Toggle Mode  
If the overlay is selected during auto-calibration with the  
Toggle mode active, the "thru" path will never be calibrated.  
Only the overlay gets calibrated in this configuration.  
Integrated Die Temperature Probes  
What Happens During an Auto-Calibration Cycle  
Thermal monitoring pins TMon1 and TMon2 allow the user  
to effectively monitor the die temperature by lightly forward  
biasing internal diodes and measuring their forward voltage  
drop. Since these diodes will have a -2mV/°C tempco, they  
can be an effective means of evaluating the thermal  
management of the user's application board and may even  
be configured to provide a thermally-triggered shutdown. To  
implement this feature, pull either of these pins below the  
negative supply with precision current source of 10µA to  
100µA. Measure the forward drop at room temperature with  
the chip disabled. During operation, every 1°C rise in  
temperature will produce a 2mV drop in the forward voltage.  
The auto-calibration (auto-zero) feature only applies to the S  
group of outputs. An auto-calibration cycle works as follows  
for either the overlay input or a selected "thru" input from the  
cross-point: During any time when the input signal is known  
to be at a "zero-level" ("zero-level" is a differential-zero input  
signal for any of the 16-RGB differential inputs or when the  
pin voltages to the overlay inputs ROL = GOL = BOL are all  
equal to RefOL), setting the calibration pin Cal to a logical  
"LO" activates the sample phase of auto-calibration and  
forces the analog outputs to be equal to the reference  
voltage of pin RefS. When pin Cal is brought back to a  
logical "HI", the calibration is held until the next calibration  
cycle, and the S group will accurately convey the video  
signal with low offsets. A small hold-step (1mV) can be  
observed whenever the calibration signal is released. Each  
subsequent activation of the sampling phase refreshes the  
Some Tips on the Most Effective Programming of  
the EL4544  
The video inputs present a 1.75kΩ single ended and a 3.5kΩ  
differential load to an incoming video signal. Since this load  
FN7362.3  
April 3, 2007  
24  
EL4544  
is in parallel with the external termination network, it has a  
consistent effect on the system gain. To maintain this  
consistency, it is inadvisable to program more than one input  
stage (Ai, Bi, Ci, or Di) to "look" at any given video input  
(RGB0, RGB1, …, RGBF) since each activated input stage  
puts an additional parallel load of 3.5kΩ onto the selected  
input. When programming the serial interface this is simply  
expressed as: Avoid programming the same value into the  
four data registers (for Ai, Bi, Ci, and Di) at hex addresses  
0H, 1H, 2H, and 3H. They should all have unique values.  
This is important since if any inputs are selected more than  
once, their gains will mismatch an input that has only been  
selected once.  
The EL4544 decodes the common-mode signals into H and  
V syncs as follows: Horizontal Sync is TRUE when the  
Blue_Common_Mode voltage is greater than the  
Average_of_Red_and_Green_Common_Mode voltage.  
Vertical Sync is TRUE when the  
Average_of_Red_and_Blue_Common_Mode voltage is  
greater than the Green_Common_Mode voltage. The sync  
comparators have an internal symmetrical hysteresis that is  
less than ±50mV. Timing skews between comparators under  
all conditions are less than one pixel. The comparators have  
an input common mode that allows for operation at least 1V  
from the negative supplies and at least 1.5V from the  
positive supplies.  
If one wishes to broadcast the same signal to multiple output  
channels, this can easily be accomplished without violating  
the advice of the previous paragraph. Select the input that  
needs to be broadcast using any one of the four input  
selectors (Ai, Bi, Ci, or Di), then have any of up to five of the  
output stages (Ax, Bx, Cx, Dx, Sx) point to the input stage  
that is pointing to the desired input signal. These are  
selected using hex 8H, 9H, AH, BH, and CH. Now the  
EL4544 is broadcasting a single video source to multiple  
outputs without excessively loading down the selected input.  
Logic Levels for Serial Interface and Control Logic  
TABLE 2. INPUT LOGIC THRESHOLD (+5V SUPPLY)  
V
, max  
0.8V  
2V  
LO  
V
, min  
HI  
Sync Decoding of EL4544  
The EL4544 is designed to receive and decode Horizontal  
and Vertical Sync signals that have been encoded as  
common-mode signals of the Red, Green, and Blue Video  
inputs. The EL4543 provides this encoding as shown in  
Table 1.  
TABLE 1. SYNC SIGNAL ENCODING  
COMMON COMMON COMMON  
MODE A  
(RED)  
MODE B  
(GREEN)  
MODE C  
(BLUE)  
H
V
Low  
Low  
High  
High  
High  
Low  
Low  
High  
3.0  
2.5  
2.0  
2.5  
2.0  
3.0  
3.0  
2.0  
2.5  
2.0  
2.5  
3.0  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7362.3  
April 3, 2007  
25  
Package Outline Drawing  

相关型号:

EL4544_0712

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
INTERSIL

EL4581

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581C

Sync Separator, 50% Slice, S-H, Filter
ELANTEC

EL4581CN

Sync Separator, 50% Slice, S-H, Filter
ELANTEC

EL4581CN

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581CS

Sync Separator, 50% Slice, S-H, Filter
ELANTEC

EL4581CS

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581CS-T13

Sync Separator IC, PDSO8, SO-8
ELANTEC

EL4581CSZ

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581_08

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581_10

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4583

Sync Separator, 50% Slice, S-H, Filter, HOUT
ELANTEC