EL5128CY-T7 [INTERSIL]

Dual VCOM Amplifier & Gamma Reference Buffer; 双VCOM放大器和伽玛参考缓冲器
EL5128CY-T7
型号: EL5128CY-T7
厂家: Intersil    Intersil
描述:

Dual VCOM Amplifier & Gamma Reference Buffer
双VCOM放大器和伽玛参考缓冲器

放大器
文件: 总11页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5128  
®
Data Sheet  
July 26, 2004  
FN7000.2  
Dual V  
Buffer  
Amplifier & Gamma Reference  
Features  
• Dual VCOM amplifier  
COM  
The EL5128 integrates two V  
amplifiers with a single gamma  
reference buffer. Operating on  
COM  
• Single gamma reference buffer  
• 12MHz -3dB bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current = 2.0mA  
• High slew rate = 10V/µs  
• Unity-gain stable  
supplies ranging from 5V to 15V, while consuming only  
2.0mA, the EL5128 has a bandwidth of 12MHz (-3dB) and  
provides common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables the  
amplifier to offer maximum dynamic range at any supply  
voltage. The EL5128 also features fast slewing and settling  
times, as well as a high output drive capability of 30mA (sink  
and source).  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• Ultra-small package  
The EL5128 is targeted at TFT-LCD applications, including  
notebook panels, monitors, and LCD-TVs. It is available in  
the 10-pin MSOP package and is specified for operation  
over the -40°C to +85°C temperature range.  
• Pb-free available  
Applications  
Pinout  
• TFT-LCD drive circuits  
• Notebook displays  
• LCD desktop monitors  
• LCD-TVs  
EL5128  
(10-PIN MSOP)  
TOP VIEW  
VOUTA  
VINA-  
VINA+  
VS+  
1
2
3
4
5
10 VOUTB  
Ordering Information  
9
8
7
6
VINB-  
VINB+  
VS-  
-
+
+ -  
PART  
NUMBER  
EL5128CY  
PACKAGE  
10-Pin MSOP  
10-Pin MSOP  
TAPE & REEL PKG. DWG. #  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
VINC  
VOUTC  
EL5128CY-T7  
EL5128CY-T13 10-Pin MSOP  
EL5128CYZ  
(See Note)  
10-Pin MSOP  
(Pb-free)  
EL5128CYZ-T7 10-Pin MSOP  
7”  
MDP0043  
MDP0043  
(See Note)  
(Pb-free)  
EL5128CYZ-  
10-Pin MSOP  
(Pb-free)  
13”  
T13 (See Note)  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J Std-020B.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
1
Copyright © Intersil Americas Inc. 2003, 2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5128  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V + 0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . 30mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at  
the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 10kand C = 10pF to 0V, T = 25°C unless otherwise specified  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
12  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
2
5
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 0V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
C
Input Impedance  
1
GΩ  
pF  
IN  
Input Capacitance  
1.35  
IN  
CMIR  
Common-Mode Input Range  
(V  
(V  
amps)  
-5.5  
50  
+5.5  
V
COM  
COM  
CMRR  
Common-Mode Rejection Ratio  
Open-Loop Gain  
amps) for V from -5.5V to +5.5V  
IN  
70  
95  
dB  
A
-4.5V V  
≤ +4.5V (V  
≤ +4.5V  
amps)  
COM  
75  
dB  
VOL  
AV  
OUT  
OUT  
Voltage Gain  
-4.5V V  
0.995  
1.005  
-4.85  
V/V  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
-4.92  
4.92  
±120  
±30  
V
V
OL  
L
I = 5mA  
4.85  
60  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (per amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from ±2.25V to ±7.75V  
80  
dB  
µA  
S
I
No load  
660  
1000  
S
-4.0V V  
≤ +4.0V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
V O  
S
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF (V  
amps)  
amps)  
L
COM  
COM  
= 10k, C = 10pF (V  
50  
75  
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
2
EL5128  
Electrical Specifications V + = +5V, V - = 0V, R = 10kand C = 10pF to 2.5V, T = 25°C unless otherwise specified  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 2.5V  
2
5
10  
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 2.5V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
CMIR  
Common-Mode Input Range  
-0.5  
45  
+5.5  
V
CMRR  
Common-Mode Rejection Ratio  
Open-Loop Gain  
for V from -0.5V to +5.5V  
IN  
66  
95  
dB  
A
A
0.5V V  
0.5V V  
≤+ 4.5V  
≤+ 4.5V  
75  
dB  
VOL  
V
OUT  
OUT  
Voltage Gain  
0.995  
1.005  
150  
V/V  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = +5mA  
4.85  
60  
4.92  
±120  
±30  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (per amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No load  
660  
1000  
S
1V V  
4V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
L
= 10k, C = 10pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
3
EL5128  
Electrical Specifications  
V + = +15V, V - = 0V, R = 10kand C = 10pF to 7.5V, T = 25°C unless otherwise specified  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
2
5
14  
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 7.5V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
V
CMRR  
for V from -0.5V to +15.5V  
IN  
72  
95  
dB  
A
A
0.5V V  
0.5V V  
14.5V  
14.5V  
75  
dB  
VOL  
V
OUT  
OUT  
Voltage Gain  
0.995  
1.005  
150  
V/V  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = +5mA  
14.85  
60  
14.92  
±120  
±30  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (per amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No load  
660  
1000  
S
1V V  
14V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
L
= 10k, C = 10pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
4
EL5128  
Typical Performance Curves  
1800  
70  
60  
50  
40  
30  
20  
10  
0
TYPICAL  
V =±5V  
V =±5V  
S
S
TYPICAL  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
PRODUCTION  
DISTRIBUTION  
T =25°C  
A
PRODUCTION  
DISTRIBUTION  
INPUT OFFSET VOLTAGE DRIFT, TCV  
(µV/°C)  
INPUT OFFSET VOLTAGE (mV)  
OS  
FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 2. INPUT OFFSET VOLTAGE DRIFT  
V =±5V  
S
V =±5V  
10  
5
S
2.0  
0.0  
0
-5  
-2.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
-4.91  
4.97  
V =±5V  
S
V =±5V  
S
I
=5mA  
I
=-5mA  
OUT  
OUT  
-4.92  
-4.93  
-4.94  
-4.95  
-4.96  
-4.97  
4.96  
4.95  
4.94  
4.93  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
5
EL5128  
Typical Performance Curves (Continued)  
V =±5V  
S
10.40  
10.35  
10.30  
10.25  
V =±5V  
S
100  
90  
R =10kΩ  
L
80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
FIGURE 7. OPEN-LOOP GAIN vs TEMPERATURE  
FIGURE 8. SLEW RATE vs TEMPERATURE  
700  
V =±5V  
S
T =25°C  
A
0.55  
0.5  
600  
500  
400  
300  
0.45  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
DIE TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY  
VOLTAGE  
5
200  
20  
10kΩ  
150  
-30  
0
PHASE  
1kΩ  
100  
50  
-80  
560Ω  
-5  
150Ω  
-130  
-180  
-230  
GAIN  
-10  
C =10pF  
L
0
A =1  
V
V =±5V, T =25°C R =10kto  
S
A
L
V =±5V  
S
GND C =12pF to GND  
L
-15  
100K  
-50  
10  
1M  
FREQUENCY (Hz)  
100M  
100  
1K  
10K 100K 1M  
FREQUENCY (Hz)  
10M 100M  
10M  
FIGURE 11. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS R  
L
6
EL5128  
Typical Performance Curves (Continued)  
20  
200  
160  
120  
80  
R =10kΩ  
L
A =1  
V
A =1  
V
V =±5V  
S
V =±5V  
S
10  
0
T =25°C  
A
12pF  
50pF  
-10  
-20  
-30  
100pF  
40  
1000pF  
0
10K  
100K  
1M  
10M  
1M  
FREQUENCY (Hz)  
100M  
100K  
10M  
FREQUENCY (Hz)  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 14. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
L
12  
10  
8
80  
60  
40  
20  
6
V =±5V  
S
T =25°C  
A
4
2
0
A =1  
V
R =10kΩ  
L
C =12pF  
L
V =±5V  
S
DISTORTION <1%  
T =25°C  
A
0
10K  
100K  
1M  
10M  
1K  
10K  
100K  
FREQUENCY (Hz)  
100  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 15. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 16. CMRR vs FREQUENCY  
80  
600  
PSRR+  
PSRR-  
60  
100  
10  
1
40  
20  
V =±5V  
S
T =25°C  
A
0
1K  
100  
1K  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
100  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. PSRR vs FREQUENCY  
FIGURE 18. INPUT VOLTAGE NOISE SPECTRAL DENSITY vs  
FREQUENCY  
7
EL5128  
Typical Performance Curves (Continued)  
-60  
-80  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
MEASURED CHANNEL A TO B  
V =±5V  
S
R =10kΩ  
L
A =1  
V
IN  
V
=220mV  
RMS  
-100  
-120  
-140  
V =±5V  
S
0.003  
0.002  
0.001  
R =10kΩ  
L
A =1  
V
V
=1V  
IN  
RMS  
1K  
10K  
100K  
FREQUENCY (Hz)  
1M  
6M  
1K  
10K  
100K  
FREQUENCY (Hz)  
FIGURE 19. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY  
FIGURE 20. CHANNEL SEPARATION vs FREQUENCY  
RESPONSE  
V =±5V  
S
V =±5V  
S
90  
70  
50  
30  
10  
4
3
2
1
0
-1  
-2  
-3  
-4  
A =1  
V
A =1  
V
R =10kΩ  
L
R =10kΩ  
L
V
=±50mV  
IN  
C =12pF  
L
0.1%  
T =25°C  
A
T =25°C  
A
0.1%  
600  
10  
100  
1K  
0
200  
400  
SETTLING TIME (ns)  
800  
LOAD CAPACITANCE (pF)  
FIGURE 21. SMALL-SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 22. SETTLING TIME vs STEP SIZE  
V =±5V  
1V  
1µs  
S
50mV  
200ns  
T =25°C  
A
A =1  
V
R =10kΩ  
L
C =12pF  
L
V =±5V  
S
T =25°C  
A
A =1  
V
R =10kΩ  
L
C =12pF  
L
FIGURE 23. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 24. SMALL SIGNAL TRANSIENT RESPONSE  
8
EL5128  
Pin Descriptions  
PIN  
NUMBER  
PIN NAME  
PIN FUNCTION  
Amplifier A Output  
EQUIVALENT CIRCUIT  
1
VOUTA  
V
S+  
V
S-  
GND  
CIRCUIT 1  
2
VINA-  
Amplifier A Inverting Input  
V
V
S+  
S-  
CIRCUIT 2  
3
4
VINA+  
VS+  
Amplifier A Non-Inverting Input  
Positive Power Supply  
Amplifier C  
(Reference Circuit 2)  
5
VINC  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
VOUTC  
VS-  
Amplifier C Output  
7
Negative Power Supply  
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
8
VINB+  
VINB-  
VOUTB  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
9
10  
9
EL5128  
diodes placed in the input stage of the device begin to  
conduct and over-voltage damage could occur.  
Applications Information  
Product Description  
The EL5128 voltage feedback amplifier/buffer combination is  
fabricated using a high voltage CMOS process. It exhibits  
rail-to-rail input and output capability, it is unity gain stable,  
and has low power consumption (500µA per amplifier).  
These features make the EL5128 ideal for a wide range of  
general-purpose applications. Connected in voltage follower  
mode and driving a load of 10kand 12pF, the EL5128 has  
a -3dB bandwidth of 12MHz while maintaining a 10V/µs slew  
rate.  
1V  
100µs  
V =±2.5V  
S
T =25°C  
A
A =1  
V
IN  
1V  
V
=6V  
P-P  
Operating Voltage, Input, and Output  
The EL5128 is specified with a single nominal supply voltage  
from 5V to 15V or a split supply with its total range from 5V  
to 15V. Correct operation is guaranteed for a supply range of  
4.5V to 16.5V. Most EL5128 specifications are stable over  
both the full supply range and operating temperatures of  
-40°C to +85°C. Parameter variations with operating voltage  
and/or temperature are shown in the typical performance  
curves.  
FIGURE 26. OPERATION WITH BEYOND-THE-RAILS INPUT  
Short Circuit Current Limit  
The EL5128 will limit the short circuit current to ±120mA if  
the output is directly shorted to the positive or the negative  
supply. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the device may  
be damaged. Maximum reliability is maintained if the output  
continuous current never exceeds ±30mA. This limit is set by  
the design of the internal metal interconnects.  
The input common-mode voltage range of the amplifiers  
extends 500mV beyond the supply rails. The output swings  
of the EL5128 typically extend to within 80mV of positive and  
negative supply rails with load currents of 5mA. Decreasing  
load currents will extend the output voltage range even  
closer to the supply rails. Figure 25 shows the input and  
output waveforms for the device in the unity-gain  
Driving Capacitive Loads  
The EL5128 can drive a wide range of capacitive loads. As  
load capacitance increases, however, the -3dB bandwidth of  
the device will decrease and the peaking increase. The  
amplifiers drive 10pF loads in parallel with 10kwith just  
1.5dB of peaking, and 100pF with 6.4dB of peaking. If less  
peaking is desired in these applications, a small series  
resistor (usually between 5and 50) can be placed in  
series with the output. However, this will obviously reduce  
the gain slightly. Another method of reducing peaking is to  
add a “snubber” circuit at the output. A snubber is a shunt  
load consisting of a resistor in series with a capacitor. Values  
of 150and 10nF are typical. The advantage of a snubber is  
that it does not draw any DC load current or reduce the gain.  
configuration. Operation is from ±5V supply with a 10kload  
connected to GND. The input is a 10V  
sinusoid. The  
.
P-P  
P-P  
output voltage is approximately 9.985V  
V =±5V A =1  
S
V
IN  
T =25°C  
V
=10V  
P-P  
A
Power Dissipation  
With the high-output drive capability of the EL5128 amplifier,  
it is possible to exceed the 125°C “absolute-maximum  
junction temperature” under certain load current conditions.  
Therefore, it is important to calculate the maximum junction  
temperature for the application to determine if load  
conditions need to be modified for the amplifier to remain in  
the safe operating area.  
FIGURE 25. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
Output Phase Reversal  
The EL5128 is immune to phase reversal as long as the  
input voltage is limited from (V -) -0.5V to (V +) +0.5V.  
The maximum power dissipation allowed in a package is  
determined according to:  
S
S
Figure 26 shows a photo of the output of the device with the  
input voltage driven beyond the supply rails. Although the  
device's output will not change phase, the input's over-  
voltage should be avoided. If an input voltage exceeds  
supply voltage by more than 0.6V, electrostatic protection  
T
- T  
AMAX  
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
JA  
10  
EL5128  
where:  
• T  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
= Maximum junction temperature  
= Maximum ambient temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
JMAX  
• T  
AMAX  
486mW  
θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
P
= Σi × [V × I  
+ (V + - V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
0
25  
50  
75 85 100  
125  
when sourcing, and:  
AMBIENT TEMPERATURE (°C)  
FIGURE 27. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
P
= Σi × [V × I  
+ (V  
i - V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
when sinking.  
where:  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.9  
• V = Total supply voltage  
S
870mW  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
• I  
= Maximum supply current per amplifier  
SMAX  
• V  
i = Maximum output voltage of the application  
OUT  
• I  
i = Load current  
LOAD  
If we set the two P  
can solve for R  
equations equal to each other, we  
DMAX  
i to avoid device overheat. Figures 27  
LOAD  
and 28 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
simple matter to see if P  
exceeds the device's power  
DMAX  
FIGURE 28. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves in Figures 27  
and 28.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The EL5128 can provide gain at high frequency. As with any  
high-frequency device, good printed circuit board layout is  
necessary for optimum performance. Ground plane  
construction is highly recommended, lead lengths should be  
as short as possible and the power supply pins must be well  
bypassed to reduce the risk of oscillation. For normal single  
supply operation, where the V - pin is connected to ground,  
S
a 0.1µF ceramic capacitor should be placed from V + to pin  
S
to V - pin. A 4.7µF tantalum capacitor should then be  
S
connected in parallel, placed in the region of the amplifier.  
One 4.7µF capacitor may be used for multiple devices. This  
same capacitor combination should be placed at each  
supply pin to ground if split supplies are to be used.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY