EL5134_06 [INTERSIL]

650MHz, Gain of 5, Low Noise Amplifiers; 为650MHz , 5增益,低噪声放大器
EL5134_06
型号: EL5134_06
厂家: Intersil    Intersil
描述:

650MHz, Gain of 5, Low Noise Amplifiers
为650MHz , 5增益,低噪声放大器

放大器
文件: 总12页 (文件大小:1418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5134, EL5135, EL5234, EL5235  
®
Data Sheet  
March 9, 2006  
FN7383.3  
650MHz, Gain of 5, Low Noise Amplifiers  
Features  
• 650MHz -3dB bandwidth  
The EL5134, EL5135, EL5234, and EL5235 are ultra-low  
voltage noise, high speed voltage feedback amplifiers that  
are ideal for applications requiring low voltage noise,  
including communications and imaging. These devices offer  
extremely low power consumption for exceptional noise  
performance. Stable at gains as low as 5, these devices offer  
100mA of drive performance. Not only do these devices find  
perfect application in high gain applications, they maintain  
their performance down to lower gain settings.  
• Av=+5 stable  
• Ultra low noise 1.5nV/Hz and 0.9pA/Hz  
• 450V/µs slew rate  
• Low supply current = 6.7mA per amplifier  
• Single supplies from 5V to 12V  
• Dual supplies from ±2.5V to ±5V  
• Fast disable on the EL5134 and EL5234  
• Duals EL5234 and EL5235  
• Low cost  
These amplifiers are available in small package options  
(SOT-23) as well as the MSOP and the industry-standard  
SO packages. All parts are specified for operation over the  
-40°C to +85°C temperature range.  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• Imaging  
• Instrumentation  
• Communications devices  
Ordering Information  
PART NUMBER  
PART MARKING  
5134IS  
TAPE & REEL  
PACKAGE  
PKG. DWG. #  
EL5134IS  
-
8 Ld SO  
8 Ld SO  
8 Ld SO  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0038  
MDP0038  
MDP0038  
MDP0038  
MDP0043  
MDP0043  
MDP0043  
MDP0027  
MDP0027  
MDP0027  
EL5134IS-T7  
5134IS  
5134IS  
5134ISZ  
5134ISZ  
5134ISZ  
BDAA  
7”  
EL5134IS-T13  
13”  
EL5134ISZ (See Note)  
EL5134ISZ-T7 (See Note)  
EL5134ISZ-T13 (See Note)  
EL5135IW-T7  
-
8 Ld SO (Pb-Free)  
8 Ld SO (Pb-Free)  
8 Ld SO (Pb-Free)  
5 Ld SOT-23  
7”  
13”  
7” (3K pcs)  
EL5135IW-T7A  
BDAA  
7” (250 pcs)  
5 Ld SOT-23  
EL5135IWZ-T7 (See Note)  
EL5135IWZ-T7A (See Note)  
EL5234IY  
BTAA  
7” (3K pcs)  
5 Ld SOT-23 (Pb-Free)  
5 Ld SOT-23 (Pb-Free)  
10 Ld MSOP  
BTAA  
7” (250 pcs)  
BWAAA  
BWAAA  
BWAAA  
5235IS  
5235IS  
5235IS  
-
EL5234IY-T7  
7”  
10 Ld MSOP  
EL5234IY-T13  
13”  
-
10 Ld MSOP  
EL5235IS  
8 Ld SO  
EL5235IS-T7  
7”  
8 Ld SO  
EL5235IS-T13  
13”  
8 Ld SO  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified  
at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003-2006. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
EL5134, EL5135, EL5234, EL5235  
Pinouts  
EL5134  
(8 LD SO)  
TOP VIEW  
EL5135  
(5 LD SOT-23)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
VS+  
OUT  
NC  
-
+
+
-
IN+  
VS-  
EL5234  
(10 LD MSOP)  
TOP VIEW  
EL5235  
(8 LD SO)  
TOP VIEW  
INA+  
CEA  
VS-  
INA-  
1
2
3
4
5
10  
9
OUTA  
INA-  
INA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
-
OUTA  
VS+  
-
+
OUTB  
INB-  
+
8
-
+
+
-
OUTB  
INB-  
CEB  
INB+  
7
INB+  
6
FN7383.3  
2
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage from V + to V - . . . . . . . . . . . . . . . . . . . . . . . 13.2V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +125°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +125°C  
S
S
SR, Supply Rate of Supply Voltage Slew Rate . . . . . . . . . . . . 1V/µs  
I
-, I +, CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5mA  
IN IN  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, Av=+5, R = 100, R = 25, R = 500,T = 25°C, unless otherwise specified.  
S
S
F
G
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
0.2  
0.3  
-0.8  
3.7  
0.3  
-3  
MAX  
UNIT  
V
Offset Voltage  
-1  
1
mV  
OS  
EL5234  
±1.5  
mV  
T V  
C
Offset Voltage Temperature Coefficient  
Input Bias Current  
Measured from T  
to T  
µV/°C  
µA  
OS  
MIN  
MAX  
MAX  
IB  
V
V
= 0V  
= 0V  
2.5  
5.5  
0.7  
IN  
IN  
I
Input Offset Current  
-0.7  
nA  
OS  
TC  
Input Bias Current Temperature  
Coefficient  
Measured from T  
to T  
nA/°C  
IOS  
MIN  
PSRR  
CMRR  
CMIR  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Input Range  
Input Resistance  
V + = 4.75V to 5.25V  
75  
80  
±3  
5
85  
108  
±3.3  
16  
dB  
dB  
S
V
= ±3V  
CM  
Guaranteed by CMRR test  
Common mode  
V
R
C
MΩ  
pF  
IN  
Input Capacitance  
1
IN  
I
Supply Current, per amplifier  
Open Loop Gain  
5.6  
4.0  
6.7  
7.8  
mA  
kV/V  
V
S
AVOL  
R = 1kto GND  
8.0  
L
V
Voltage Swing  
R = 1k, R = 900, R = 100Ω  
±3.5  
±3.3  
70  
3.9  
O
L
F
G
R = 150, R = 900, R = 100Ω  
3.65  
140  
650  
40  
V
L
L
F
G
I
Short Circuit Current  
-3dB Bandwidth  
±0.1dB Bandwidth  
Gain Bandwidth Product  
Phase Margin  
R
= 10Ω  
= 5, R = 1kΩ  
mA  
MHz  
MHz  
MHz  
°
SC  
BW-3dB  
BW-0.1dB  
GBWP  
PM  
A
V
L
A
= 5, R = 1kΩ  
L
V
1500  
55  
R
= 1k, C = 6pF  
L
L
SR  
Slew Rate  
V
= +5V, R = 150, V  
= 0V to 3V  
350  
475  
1.75  
1.75  
25  
V/µs  
ns  
S
L
OUT  
t
t
Rise Time  
±0.1V  
±0.1V  
±0.1V  
R
F
STEP  
STEP  
STEP  
Fall Time  
ns  
OS  
Overshoot  
%
t
0.01% Settling Time  
Differential Gain  
Differential Phase  
Input Noise Voltage  
Input Noise Current  
14  
ns  
S
dG  
dP  
A
= 5, R = 1kΩ  
0.12  
0.08  
1.5  
%
V
F
A
= 5, R = 1kΩ  
°
V
F
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
N
i
0.9  
N
FN7383.3  
3
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
Electrical Specifications V + = +5V, V - = -5V, Av=+5, R = 100, R = 25, R = 500,T = 25°C, unless otherwise specified.  
S
S
F
G
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY (EL5134, EL5234)  
I
I
Supply Current - Disabled, per Amplifier  
Supply Current - Disabled, per Amplifier No load, V = 0V  
0
+12  
-12  
+25  
0
µA  
µA  
SOFF+  
SOFF-  
-25  
IN  
ENABLE (EL5134, EL5234)  
I
I
CE Pin Input High Current  
CE = +5V  
CE = 0V  
1
10  
0
+25  
+1  
µA  
µA  
V
IHCE  
ILCE  
CE Pin Input Low Current  
-1  
V
V
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-up  
V + - 1  
S
IHCE  
ILCE  
V + - 3  
V
S
Applications Information  
Typical Performance Curves  
5
240  
180  
120  
60  
V
= ±5V  
= +5  
= 25  
= 500Ω  
= 5pF  
V = ±5V  
S
S
4
3
A
R
R
A
R
R
= +5  
V
G
L
V
G
L
= 25Ω  
= 500Ω  
= 5pF  
2
C
C
L
L
1
0
0
-1  
-2  
-3  
-4  
-5  
-60  
-120  
-180  
-240  
-3dB BW @ 667MHz  
0.1  
1
10  
100  
1K  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
FREQUENCY (MHz)  
FIGURE 1. GAIN vs FREQUENCY  
FIGURE 2. PHASE vs FREQUENCY  
0.5  
0.4  
0.3  
0.2  
0.1  
0
70  
V
R
= ±5V  
= 500Ω  
S
L
V
= ±5V  
= +5  
= 25Ω  
= 500Ω  
= 5pF  
S
A
R
R
V
G
L
GAIN = 40dB or 100  
60  
50  
40  
30  
20  
FREQUENCY = 15.9MHz  
GAIN BW PRODUCT = 15.9 x 100  
= 1590MHz  
0.1dB BW @ 40MHz  
C
L
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
FIGURE 4. GAIN BANDWIDTH PRODUCT  
FIGURE 3. 0.1dB BANDWIDTH  
FN7383.3  
March 9, 2006  
4
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
1800  
1600  
1400  
1200  
1000  
800  
5
4
V
= ±5V  
= 25Ω  
= 500Ω  
= 5pF  
V
R
= ±5V  
= 500Ω  
S
S
L
R
R
C
G
L
L
3
2
A
= +5  
V
1
0
-1  
-2  
-3  
-4  
-5  
A
= +20  
V
A
= +10  
V
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGES (±V)  
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS +A  
FIGURE 5. GAIN BANDWIDTH PRODUCT vs SUPPLY  
VOLTAGES  
V
5
5
4
A
R
R
C
= +5V  
= 25Ω  
= 500Ω  
= 5pF  
V
G
L
L
4
3
V
= ±5V  
= +5  
= 500Ω  
= 5pF  
S
A
R
C
V
L
L
3
R
= 1kΩ  
L
2
R
= 500Ω  
2
L
V
= ±6V  
S
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
V
= ±5V  
S
R
R
= 150Ω  
= 100Ω  
L
V
= ±4V  
= ±3V  
S
V
L
S
V
= ±2.5V  
100  
S
R
= 50Ω  
L
0.1  
1
10  
FREQUENCY (MHz)  
1K  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
FIGURE 7. GAIN vs FREQUENCY FOR VARIOUS ±V  
S
FIGURE 8. GAIN vs FREQUENCY FOR VARIOUS R  
LOAD  
5
5
V
= ±5V  
= +10  
= 25Ω  
= 10pF  
V
= ±5V  
= +5  
= 25Ω  
= 100Ω  
= 500Ω  
S
S
4
3
4
3
C
= 18pF  
L
A
R
C
A
R
R
V
G
L
V
G
F
C
= 12pF  
L
R
= 500Ω  
L
2
2
R
L
C
= 8.2pF  
L
1
1
0
0
R
= 1kΩ  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
C
= 4.7pF  
L
R
= 150Ω  
L
C
= 0pF  
L
R
= 100Ω  
L
R
= 50Ω  
L
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
FIGURE 9. GAIN vs FREQUENCY FOR VARIOUS R  
FIGURE 10. GAIN vs FREQUENCY FOR VARIOUS C  
LOAD  
LOAD  
(A = +10)  
(A = +5)  
V
V
FN7383.3  
March 9, 2006  
5
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
5
5
4
R
= 200Ω  
C
= 47pF  
F
L
V
= ±5V  
= +10  
= 25Ω  
= 225Ω  
= 500Ω  
V
= ±5V  
= +5  
= 500Ω  
= 5pF  
S
S
4
C
L
= 27pF  
L
A
R
R
A
R
C
V
G
F
V
L
L
3
3
R
= 160Ω  
F
C
= 12pF  
2
2
R
L
R
= 400Ω  
F
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
R
= 100Ω  
F
C
= 4.7pF  
10  
L
R
= 50Ω  
F
0.1  
1
100  
1K  
0.1  
1
10  
100  
1K  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 11. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 12. GAIN vs FREQUENCY FOR VARIOUS R  
F
LOAD  
(A = +10)  
(A = +5)  
V
V
5
4
5
4
R
F
= 4.53kΩ  
V
= ±5V  
= +10  
= 500Ω  
= 10pF  
V
= ±5V  
= +5  
= 25Ω  
= 500Ω  
= 5pF  
F
S
C
= 8.2pF  
= 4.7pF  
S
IN  
A
R
C
A
R
R
V
L
L
V
G
L
R
= 2.74kΩ  
3
3
C
IN  
2
2
C
R
= 909Ω  
L
F
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
C
= 2.7pF  
IN  
R
= 225Ω  
F
C
= 0pF  
100  
IN  
R
= 100Ω  
F
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
0.1  
1
10  
FREQUENCY (MHz)  
1K  
FIGURE 13. GAIN vs FREQUENCY FOR VARIOUS R  
FIGURE 14. GAIN vs FREQUENCY FOR VARIOUS C (-)  
IN  
F
(A = +10)  
(A = +5)  
V
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
5
4
C
= 20pF  
V = ±5V  
S
V
= ±5V  
= +20  
= 25Ω  
= 500Ω  
= 10pF  
IN  
S
A
R
R
V
G
L
OPEN LOOP GAIN  
3
C
= 15pF  
IN  
2
C
L
1
0
-1  
-2  
-3  
-4  
-5  
C
= 10pF  
IN  
60  
OPEN LOOP PHASE  
40  
20  
C
= 0pF  
IN  
-10  
0.001  
0
1K  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1K  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FIGURE 15. GAIN vs FREQUENCY FOR VARIOUS C (-)  
IN  
FIGURE 16. OPEN LOOP GAIN and PHASE vs FREQUENCY  
(A = +10)  
V
FN7383.3  
6
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
-10  
-30  
100  
10  
1
V
= ±5V  
S
-50  
-70  
0.1  
0.0  
-90  
-110  
1K  
10K  
100K  
1M  
10M  
100M 500M  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
FIGURE 18. CMRR vs FREQUENCY  
FIGURE 17. OUTPUT IMPEDANCE vs FREQUENCY  
10  
10  
9
8
7
6
5
4
3
2
1
0
A =+10  
V
V
A
R
= ±5V  
= +5  
= 25Ω  
S
V
G
V =±5V  
S
R
= 1kΩ  
LOAD  
V +  
S
-10  
-30  
-50  
-70  
-90  
C
= 5pF  
L
V -  
S
R
= 150Ω  
LOAD  
V -  
S
V +  
S
1K  
10K  
100K  
1M  
10M  
100M 500M  
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1K  
FREQUENCY (Hz)  
FIGURE 20. MAX OUTPUT VOLTAGE SWING vs FREQUENCY  
FIGURE 19. PSRR vs FREQUENCY  
-40  
20  
15  
10  
5
V
A
R
= ±5V  
= +5  
= 25Ω  
S
V
G
V
= ±5V  
= +5  
= 25Ω  
= 500Ω  
S
-50  
-60  
A
R
R
V
G
L
CHIP DISABLED  
-70  
0
INPUT TO OUTPUT  
-80  
-5  
-90  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
OUTPUT TO INPUT  
-100  
-110  
-120  
-130  
-140  
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1K  
0.1  
1
10  
100  
1K  
FREQUENCY (MHz)  
FIGURE 21. GROUP DELAY vs FREQUENCY  
FIGURE 22. INPUT AND OUTPUT ISOLATION (EL5134, EL5234)  
FN7383.3  
7
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
R
R
C
V
= ±5V  
= =5  
S
V
G
V
= ±5V  
= +5  
= 25Ω  
= 500Ω  
= 5pF  
S
A
R
R
V
G
L
= 25Ω  
= 500Ω  
= 5pF  
= 2V  
Fin = 10MHz  
L
L
T.H.D  
C
L
OUT  
P-P  
H.D  
nd  
2
rd  
3
H.D  
Fin = 1MHz  
0
1
2
3
4
5
6
7
8
0.1  
1.0  
10  
100  
FUNDAMENTAL FREQUENCY (MHz)  
OUTPUT VOLTAGES (V  
)
P-P  
FIGURE 23. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 24. TOTAL HARMONIC DISTORTION vs OUTPUT  
VOLTAGES  
6
6
V
A
R
R
V
= ±5V  
= +5  
V
A
R
R
V
= ±5V  
= +5  
S
V
G
S
V
G
ENABLE SIGNAL  
OUTPUT SIGNAL  
5
4
5
4
= 25Ω  
= 500Ω  
= 4V  
= 25Ω  
= 500Ω  
= 4V  
L
L
OUT  
P-P  
OUT  
P-P  
3
3
DISABLE SIGNAL  
2
2
1
1
0
0
-1  
-2  
-1  
-2  
-3  
OUTPUT SIGNAL  
-3  
-500 -400 -300 -200 -100  
0
100 200 300 400  
-200 -100  
0
100 200 300 400 500 600 700 800  
TIME (ns)  
TIME (ns)  
FIGURE 25. TURN-ON TIME (EL5134, EL5234)  
FIGURE 26. TURN-OFF TIME (EL5134, EL5234)  
100  
100  
V
= ±5V  
V = ±5V  
S
S
10  
1
10  
1
0.1  
0.01  
0.1  
0.01  
0.10  
1.0  
10  
100  
1K  
0.10  
1.0  
10  
100  
1K  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FIGURE 27. EQUIVALENT INPUT VOLTAGE NOISE vs  
FREQUENCY  
FIGURE 28. EQUIVALENT INPUT CURRENT NOISE vs  
FREQUENCY  
FN7383.3  
March 9, 2006  
8
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
0.6  
0.4  
2
1
0.2  
T
= 1.75 ns  
T
= 2.4ns  
FALL  
FALL  
0
0.0  
V
A
R
R
C
= ±5V  
= +5  
= 25Ω  
= 500Ω  
= 5pF  
V
A
R
R
C
= ±5V  
= +5  
= 25Ω  
= 500Ω  
= 5pF  
S
V
G
S
V
G
T
= 1.75ns  
T
= 2.4ns  
RISE  
RISE  
-0.2  
-0.4  
-0.6  
1
L
L
L
L
V
= 500mV  
V
= 2.0V  
OUT  
OUT  
-2  
-20  
0
20  
40 60  
80 100 120 140 160  
-20  
0
20  
40 60  
80 100 120 140 160  
TIME (ns)  
TIME (ns)  
FIGURE 29. SMALL SIGNAL STEP RESPONSE_RISE AND  
FALL TIME  
FIGURE 30. LARGE SIGNAL STEP RESPONSE_RISE AND  
FALL TIME  
7.0  
700  
A
R
R
= +5  
A
R
R
C
V
= +5  
V
G
V
G
= 25Ω  
= 500Ω  
= 5pF  
= 25Ω  
= 500Ω  
= 5pF  
6.8  
6.6  
6.4  
6.2  
6.0  
600  
500  
400  
300  
200  
L
L
L
L
C
= 4V  
OUT  
P-P  
POSITIVE SLEW RATE  
NEGATIVE SLEW RATE  
Please note that the curve showed positive current.  
The negative current was almost the same.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGES (V)  
SUPPLY VOLTAGES (±V)  
FIGURE 31. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 32. SLEW RATE vs SUPPLY VOLTAGES  
50  
10  
V
A
R
R
C
= ±5V  
= +10  
= 226Ω  
= 100Ω  
= 10pF  
S
V
F
V
A
R
R
C
= ±5V  
= +10  
= 226Ω  
= 100Ω  
= 10pF  
Delta IM = (4.3) - (-69.4) = 73.7dB  
IP3 = 4.3 + (73.7/2) = 41dBm  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
S
V
F
45  
40  
35  
30  
25  
20  
15  
10  
5
L
L
f2 = 4.3dBm  
@ 1.05MHz  
L
L
@ 0.95MHz  
f1 = 4.3dBm  
2f2-f1 = -66.3dBm  
@ 1.15MHz  
2f1-f2 = -69.4dBm  
@ 0.85MHz  
0
0.8  
0.9  
1.0  
1.1  
1.2  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 33. THIRD ORDER IMD INTERCEPT (IP3)  
FIGURE 34. THIRD ORDER IMD INTERCEPT vs FREQUENCY  
FN7383.3  
9
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
909mW  
625mW  
0.8  
0.6  
0.4  
0.2  
0
870mW  
435mW  
SO8  
=160°C/W  
486mW  
SO8  
=110°C/W  
θ
JA  
θ
θ
JA  
391mW  
MSOP8/10  
JA  
MSOP8/10  
θ
=206°C/W  
=115°C/W  
SOT23-5/6  
JA  
SOT23-5/6  
θ
=265°C/W  
JA  
θ
=230°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
IRE  
FIGURE 37. DIFFERENTIAL GAIN (%)  
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
IRE  
FIGURE 38. DIFFERENTIAL PHASE (°)  
not appropriate because of restrictions placed upon the  
feedback element used with the amplifier.  
Product Des cription  
The EL5134, EL5135, EL5234 and EL5235 are voltage  
feedback operational amplifiers designed for communication  
and imaging applications requiring very low voltage and  
current noise. They also feature low distortion while drawing  
moderately low supply current and is built on Intersil's  
proprietary high-speed complementary bipolar process. The  
EL5134, EL5135, EL5234 and EL5235 use a classical  
voltage-feedback topology which allows them to be used in a  
variety of applications where current-feedback amplifiers are  
Gain-Bandwidth Product and the -3dB Bandwidth  
The EL5134, EL5135, EL5234 and EL5235 have a gain-  
bandwidth product of 1500MHz while using only 6.7mA of  
supply current per amplifier. For gains greater than 5 their  
closed-loop -3dB bandwidth is approximately equal to the  
gain-bandwidth product divided by the noise gain of the  
circuit. For gains of 5, higher-order poles in the amplifiers'  
FN7383.3  
10  
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
transfer function contribute to even higher closed loop  
±2.5V to ±6V. With single-supply, the EL5134, EL5135,  
EL5234 and EL5235 will operate from 5V to 12V. To prevent  
internal circuit latch-up, the slew rate between the negative  
and positve supplies must be less than 1V/nS.  
bandwidths. For example, the EL5134, EL5135, EL5234 and  
EL5235 have a -3dB bandwidth of 650MHz at a gain of 5,  
dropping to 150MHz at a gain of 10. It is important to note  
that the EL5134, EL5135, EL5234 and EL5235 is designed  
so that this “extra” bandwidth in low-gain application does  
not come at the expense of stability. As seen in the typical  
performance curves, the EL5134, EL5135, EL5234 and  
EL5235 in a gain of only 5 exhibited 0.2dB of peaking with a  
500load.  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5134, EL5135, EL5234 and EL5235 have an input range  
which extends to within 2V of either supply. So, for example,  
on ±5V supplies, the EL5134, EL5135, EL5234 and EL5235  
have an input range which spans ±3V. The output range of  
the EL5134, EL5135, EL5234 and EL5235 is also quite  
large, extending to within 2V of the supply rail. On a ±5V  
supply, the output is therefore capable of swinging from  
-3.1V to +3.1V. Single-supply output range is larger because  
of the increased negative swing due to the external pull-  
down resistor to ground.  
Output Drive Capability  
The EL5134, EL5135, EL5234 and EL5235 are designed to  
drive a low impedance load. They can easily drive 6V  
P-P  
signal into a 500load. This high output drive capability  
makes the EL5134, EL5135, EL5234 and EL5235 and ideal  
choice for RF, IF, and video applications. Furthermore, the  
EL5134, EL5135, EL5234 and EL5235 are current-limited at  
their outputs, allowing them to withstand momentary short to  
ground. However, the power dissipation with output-shorted  
cannot exceed the power dissipation capability of the  
package.  
Power Dis s ipation  
With the wide power supply range and large output drive  
capability of the EL5134, EL5135, EL5234 and EL5235, it is  
possible to exceed the 150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
Driving Cables and Capacitive Loads  
Although the EL5134, EL5135, EL5234 and EL5235 are  
designed to drive low impedance load, capacitive loads will  
decreases the amplifiers’ phase margin. As shown in the  
performance curves, capacitive load can result in peaking,  
overshoot and possible oscillation. For optimum AC  
performance, capacitive loads should be reduced as much  
as possible or isolated with a series resistor between 5to  
20. When driving coaxial cables, double termination is  
always recommended for reflection-free performance. When  
properly terminated, the capacitance of the coaxial cable will  
not add to the capacitive load seen by the amplifier.  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified for the EL5134, EL5135,  
EL5234 and EL5235 to remain in the safe operating area.  
These parameters are related as follows:  
T
= T  
+ xPD  
MAXTOTAL  
)
JMAX  
MAX  
JA  
where:  
• P  
is the sum of the maximum power  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
MAX  
Disable/Power-Down  
• PD  
MAX  
for each amplifier can be calculated as follows:  
The EL5134 and EL5234 amplifiers can be disabled placing  
their outputs in a high impedance state. When disable, each  
amplifier current is reduced to 12uA. The EL5134 and  
EL5234 are disabled when their CE pins are pulled up to  
within 1V of the power suply. Similarly, the amplifiers are  
enabled by floating or pulling its CE pin to at least 3V below  
the positive supply. For +/-5V supply, this means that  
EL5134 and EL5234 amplifiers will be enabled when CE is  
2V or less, and disabled when CE is above 4V. Although the  
logic levels are not stardard TTL, this choice of logic  
voltages allows the EL5134 and EL5234 to be enabled by  
typing CE to ground, even in 5V single supply applications.  
The CE pin can be driveing from CMOS outputs.  
V
OUTMAX  
----------------------------  
PD  
= 2*V × I  
+ (V - V  
OUTMAX  
) ×  
MAX  
S
SMAX  
S
R
L
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
• V = Supply voltage  
S
• I  
= Maximum supply current of 1 amplifier  
= Maximum output voltage swing of the  
MAX  
• V  
OUTMAX  
application  
Supply Voltage Range and Single-Supply  
Operation  
The EL5134, EL5135, EL5234 and EL5235 have been  
designed to operate with supply voltages having a span of  
greater than 5V and less than 12V. In practical terms, this  
means that they will operate on dual supplies ranging from  
• R = Load resistance  
L
Power Supply Bypas s ing And Printed Circuit  
Board Layout  
As with any high frequency devices, good printed circuit  
board layout is essential for optimum performance. Ground  
FN7383.3  
11  
March 9, 2006  
EL5134, EL5135, EL5234, EL5235  
plane construction is highly recommended. Pin lengths  
should be kept as short as possible. The power supply pins  
must be closely bypassed to reduce the risk of oscillation.  
The combination of a 4.7µF tantalum capacitor in parallel  
with 0.1µF ceramic capacitor has been proven to work well  
when placed at each supply pin. For single supply operation,  
where pin 4 (V -) is connected to the ground plane, a single  
S
4.7µF tantalum capacitor in parallel with a 0.1µF ceramic  
capacitor across pin 8 (V +).  
S
For good AC performance, parasitic capacitance should be  
kept to a minimum. Ground plane construction again should  
be used. Small chip resistors are recommended to minimize  
series inductance. Use of sockets should be avoided since  
they add parasitic inductance and capacitance which will  
result in additional peaking and overshoot.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7383.3  
12  
March 9, 2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY