EL5174IS-T7 [INTERSIL]

550MHz Differential Twisted-Pair Drivers; 550MHz的差分双绞线驱动器
EL5174IS-T7
型号: EL5174IS-T7
厂家: Intersil    Intersil
描述:

550MHz Differential Twisted-Pair Drivers
550MHz的差分双绞线驱动器

驱动器 接口集成电路 光电二极管
文件: 总15页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5174, EL5374  
®
Data Sheet  
August 8, 2005  
FN7313.5  
550MHz Differential Twisted-Pair Drivers  
Features  
The EL5174 and EL5374 are single and triple high  
bandwidth amplifiers with an output in differential form. They  
are primarily targeted for applications such as driving  
twisted-pair lines in component video applications. The  
inputs can be in either single-ended or differential form but  
the outputs are always in differential form.  
• Fully differential inputs, outputs, and feedback  
• Differential input range ±2.3V  
• 550MHz 3dB bandwidth  
• 1100V/µs slew rate  
• Low distortion at 5MHz  
On the EL5174 and EL5374, two feedback inputs provide  
the user with the ability to set the gain of each device (stable  
at minimum gain of one). For a fixed gain of two, please see  
EL5173 and EL5373.  
• Single 5V or dual ±5V supplies  
• 60mA maximum output current  
• Low power - 12.5mA per channel  
• Pb-free plus anneal available (RoHS compliant)  
The output common mode level for each channel is set by  
the associated REF pin, which have a -3dB bandwidth of  
over 110MHz. Generally, these pins are grounded but can be  
tied to any voltage reference.  
Applications  
• Twisted-pair driver  
All outputs are short circuit protected to withstand temporary  
overload condition.  
• Differential line driver  
• VGA over twisted-pair  
The EL5174 is available in an 8-pin SO package and  
EL5374 is available in a 28-pin QSOP package. All specified  
for operation over the full -40°C to +85°C temperature range.  
• ADSL/HDSL driver  
• Single ended to differential amplification  
• Transmission of analog signals in a noisy environment  
Pinouts  
EL5174  
EL5374  
(28-PIN QSOP)  
TOP VIEW  
(8-PIN SO)  
TOP VIEW  
FBP  
IN+  
1
2
3
4
8
7
6
5
OUT+  
VS-  
NC  
INP1  
INN1  
1
2
3
28 OUT1  
27 FBP1  
26 FBN1  
25 OUT1B  
24 VSP  
+
-
+
-
REF  
FBN  
VS+  
OUT-  
REF1 4  
NC  
INP2  
INN2  
REF2  
NC  
5
6
7
8
9
23 VSN  
22 OUT2  
21 FBP2  
20 FBN2  
19 OUT2B  
18 OUT3  
17 FBP3  
16 FBN3  
15 OUT3B  
+
-
INP3 10  
INN3 11  
REF3 12  
NC 13  
+
-
EN 14  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003 - 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL5174, EL5374  
Ordering Information  
TAPE &  
REEL  
TAPE &  
REEL  
PART NUMBER  
EL5174IS  
PACKAGE  
8-Pin SO  
8-Pin SO  
8-Pin SO  
PKG. DWG. #  
PART NUMBER  
EL5374IU  
PACKAGE  
28-Pin QSOP  
28-Pin QSOP  
28-Pin QSOP  
PKG. DWG. #  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
-
7”  
13”  
-
EL5174IS-T7  
EL5174IS-T13  
EL5374IU-T7  
EL5374IU-T13  
EL5174ISZ  
(See Note)  
8-Pin SO  
(Pb-Free)  
EL5374IUZ  
(See Note)  
28-Pin QSOP  
(Pb-Free)  
EL5174ISZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5374IUZ-T7  
(See Note)  
28-Pin QSOP  
(Pb-Free)  
7”  
MDP0040  
MDP0040  
EL5174ISZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
EL5374IUZ-T13  
(See Note)  
28-Pin QSOP  
(Pb-Free)  
13”  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7313.5  
2
August 8, 2005  
EL5174, EL5374  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, R = 1k, R = 0, R = OPEN, C = 2.7pF, unless otherwise  
S
S
A
IN  
LD  
F
G
LD  
specified .  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= 1, C = 2.7pF  
LD  
550  
130  
20  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
A
= 2, R = 500, C = 2.7pF  
LD  
V
F
A
= 10, R = 500, C = 2.7pF  
LD  
V
F
BW  
SR  
±0.1dB Bandwidth  
A
= 1, C = 2.7pF  
LD  
120  
1100  
850  
10  
V
Slew Rate (EL5174)  
Slew Rate (EL5374)  
Settling Time to 0.1%  
V
V
V
= 3V , 20% to 80%  
P-P  
800  
600  
OUT  
OUT  
OUT  
= 3V , 20% to 80%  
P-P  
T
T
= 2V  
P-P  
STL  
Output Overdrive Recovery Time  
Gain Bandwidth Product  
20  
ns  
OVR  
GBWP  
200  
110  
134  
70  
MHz  
MHz  
V/µs  
V/µs  
nV/Hz  
pA/Hz  
dBc  
dBc  
dBc  
dBc  
%
V
V
V
V
BW (-3dB)  
SR+  
V
V
V
-3dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
A =1, C = 2.7pF  
V LD  
REF  
REF  
REF  
N
REF  
REF  
REF  
V
V
= 2V , 20% to 80%  
P-P  
OUT  
OUT  
SR-  
= 2V , 20% to 80%  
P-P  
Input Voltage Noise  
at 10kHz  
at 10kHz  
21  
I
Input Current Noise  
2.7  
-95  
-94  
-88  
-87  
0.06  
0.13  
90  
N
HD2  
Second Harmonic Distortion  
V
V
V
V
= 2V , 5MHz  
P-P  
OUT  
OUT  
OUT  
OUT  
= 2V , 20MHz  
P-P  
HD3  
Third Harmonic Distortion  
= 2V , 5MHz  
P-P  
= 2V , 20MHz  
P-P  
dG  
Differential Gain at 3.58MHz  
R
R
= 300, A =2  
V
LD  
LD  
dθ  
Differential Phase at 3.58MHz  
Channel Separation - for EL5374 only  
= 300, A =2  
°
V
e
at f = 1MHz  
dB  
S
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
V
(EL5174)  
(EL5374)  
±1.4  
±2.2  
-14  
2.3  
±25  
±25  
-7  
mV  
mV  
µA  
µA  
kΩ  
pF  
V
OS  
I
I
Input Bias Current (V +, V -)  
-30  
0.5  
IN  
REF  
IN  
IN  
Input Bias Current (V  
)
4
REF  
R
C
Differential Input Resistance  
150  
1
IN  
IN  
Differential Input Capacitance  
Differential Mode Input Range  
Common Mode Positive Input Range at  
DMIR  
±2.1  
±2.3  
3.4  
±2.5  
CMIR+  
V
V
+, V -  
IN IN  
CMIR-  
Common Mode Negative Input Range at  
+, V  
-4.3  
V
V
-
IN  
IN  
FN7313.5  
3
August 8, 2005  
EL5174, EL5374  
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, R = 1k, R = 0, R = OPEN, C = 2.7pF, unless otherwise  
S
S
A
IN  
LD  
F
G
LD  
specified (Continued).  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
+
Positive Reference Input Voltage Range  
(EL5374)  
V
V
+ = V - = 0V  
IN  
3.4  
3.7  
V
REFIN  
IN  
-
Negative Reference Input Voltage Range  
(EL5374)  
+ = V - = 0V  
IN  
-3.3  
-3  
V
REFIN  
IN  
Output Offset Relative to V  
(EL5374)  
REF  
±50  
78  
±100  
mV  
dB  
REFOS  
CMRR  
Input Common Mode Rejection Ratio  
(EL5374)  
V
= ±2.5V  
65  
IN  
Gain  
Gain Accuracy  
V
V
= 1V (EL5174)  
= 1V (EL5374)  
0.980  
0.978  
0.995  
0.993  
1.010  
1.008  
V
V
IN  
IN  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R
R
R
= 500to GND (EL5174)  
= 500to GND (EL5374)  
±3.4  
±3.8  
±60  
130  
V
V
OUT  
L
L
L
±3.6  
±50  
I
(Max)  
OUT  
Maximum Output Current  
Output Impedance  
= 10, V + = ±3.2V  
IN  
±100  
mA  
mΩ  
R
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
10  
11  
14  
10  
V
SUPPLY  
S
S
I
I
Power Supply Current - Per Channel  
12.5  
1.7  
mA  
µA  
S(ON)  
+
-
Positive Power Supply Current - Disabled EN pin tied to 4.8V  
(EL5374)  
S(OFF)  
S(OFF)  
I
Negative Power Supply Current -  
Disabled (EL5374)  
-200  
60  
-120  
75  
µA  
dB  
PSRR  
Power Supply Rejection Ratio  
V from ±4.5V to ±5.5V  
S
ENABLE (EL5374 ONLY)  
t
t
Enable Time  
130  
1.2  
ns  
µs  
V
EN  
DS  
Disable Time  
V
V
EN Pin Voltage for Power-Up  
EN Pin Voltage for Shut-Down  
EN Pin Input Current High  
EN Pin Input Current Low  
V + -1.5  
S
IH  
V + -0.5  
S
V
IL  
I
I
At V  
At V  
= 5V  
= 0V  
123  
-8  
130  
µA  
µA  
IH-EN  
IL-EN  
EN  
EN  
-10  
Pin Descriptions  
EL5174  
EL5374  
17, 21, 27  
2, 6, 10  
3, 7, 11  
16, 20, 26  
15, 19, 25  
24  
PIN NAME  
PIN FUNCTION  
1
2
3
4
5
6
7
8
FBP1, 2, 3  
INP1, 2, 3  
INN1, 2, 3  
FBN1, 2, 3  
Feedback from non-inverting outputs  
Non-inverting inputs  
Inverting inputs, note that on EL5174, this pin is also the REF pin  
Feedback from inverting outputs  
Inverting outputs  
OUT1B, 2B, 3B  
VSP  
Positive supply  
23  
VSN  
Negative supply  
18, 22, 28  
1, 5, 9, 13  
4, 8, 12  
14  
OUT1, 2, 3  
NC  
Non-inverting outputs  
No connect; grounded for best crosstalk performance  
Reference inputs, sets common-mode output voltage  
ENABLE  
REF1, 2, 3  
EN  
FN7313.5  
4
August 8, 2005  
Connection Diagrams  
EL5174  
R
F1  
C
L1  
5pF  
-5V  
0  
OUT  
FBP  
INP  
1
2
3
4
OUT 8  
VSN 7  
IN+  
R
LD  
1kΩ  
R
G
REF  
FBN  
REF  
VSP 6  
R
R
S1  
S1  
OUTB  
OUTB 5  
50Ω  
50Ω  
C
R
L2  
5pF  
F2  
+5V  
0Ω  
EL5374  
+5V  
1
2
3
4
5
6
7
8
9
NC  
OUT1 28  
R
F
INP1  
INN1  
REF1  
INP1  
INN1  
REF1  
NC  
FBP1 27  
FBN1 26  
OUT1B 25  
VSP 24  
0Ω  
R
LD1  
1kΩ  
R
G
R
F
0Ω  
INP2  
INN2  
REF2  
INP2  
INN2  
REF2  
NC  
VSN 23  
OUT2 22  
R
F
R
LD2  
1kΩ  
FBP2  
FBN2  
21  
20  
19  
18  
17  
16  
0Ω  
R
G
R
F
INP3  
INN3  
REF3  
0Ω  
INP3  
INN3  
REF3  
NC  
OUT2B  
OUT3  
FBP3  
10  
11  
12  
13  
R
F
0Ω  
R
G
R
LD3  
1kΩ  
R
R
R
R
R
R
R
R
R
R
F
SP1  
50Ω  
SN1  
50Ω  
SR1  
50Ω  
SP2  
50Ω  
SN2  
50Ω  
SR2  
50Ω  
SP3  
SN3  
SR3  
FBN3  
50Ω  
50Ω  
50Ω  
0Ω  
14 EN  
OUT3B 15  
C
C
C
C
C
C
L1  
5pF  
L1B  
5pF  
L2  
5pF  
L2B  
5pF  
L3  
5pF  
L3B  
5pF  
-5V  
ENABLE  
EL5174, EL5374  
Typical Performance Curves  
A
= 1, R = 1k, C = 2.7pF  
LD LD  
R
= 1k, C = 2.7pF  
LD  
V
LD  
4
3
4
3
2
2
V
= 200mV  
OP-P  
1
1
A
= 1  
V
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
= 2  
V
V
= 1V  
OP-P  
A
= 5  
V
A
= 10  
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS GAIN  
A
= 1, C = 2.7pF  
LD  
A
= 1, R = 1kΩ  
V
V
LD  
10  
4
3
C
= 50pF  
LD  
8
6
C
= 23pF  
LD  
C
= 34pF  
2
LD  
R
= 1kΩ  
LD  
4
1
2
0
0
-1  
-2  
-3  
-4  
-5  
-6  
R
= 500Ω  
C
= 9pF  
LD  
LD  
-2  
-4  
-6  
-8  
-10  
C
= 2.7pF  
LD  
R
= 200Ω  
LD  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE vs C  
FIGURE 4. FREQUENCY RESPONSE vs R  
LD  
LD  
A
= 2, R = 1k, C = 2.7pF  
A
= 2, C = 2.7pF, R = 750Ω  
LD  
V
LD  
LD  
V
F
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
= 1kΩ  
F
R
= 1kΩ  
LD  
R
= 500Ω  
R
= 500Ω  
F
LD  
R
= 200Ω  
F
R
= 200Ω  
LD  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
FIGURE 5. FREQUENCY RESPONSE  
FIGURE 6. FREQUENCY RESPONSE vs R  
LD  
FN7313.5  
August 8, 2005  
6
EL5174, EL5374  
Typical Performance Curves (Continued)  
5
4
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
3
2
1
PSRR-  
0
-1  
-2  
-3  
-4  
-5  
PSRR+  
10M  
100K  
1M  
10M  
100M  
1M  
FREQUENCY (Hz)  
10K  
100K  
100M  
FREQUENCY (Hz)  
FIGURE 7. FREQUENCY RESPONSE - V  
FIGURE 8. PSRR vs FREQUENCY  
REF  
100  
1K  
100  
10  
80  
60  
40  
20  
0
E
N
I
N
-20  
1K  
1
10  
1M  
10M  
100  
1K  
10K  
100K  
10M  
10K  
100K  
100M  
1G  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY  
FIGURE 10. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
10  
1
CH1 <=> CH2, CH2 <=> CH3  
CH1 <=> CH3  
100M  
0.1  
10K  
100K  
1M  
10M  
100M  
10M  
100K  
1M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. CHANNEL ISOLATION (EL5374 ONLY)  
FIGURE 12. OUTPUT IMPEDANCE vs FREQUENCY  
FN7313.5  
August 8, 2005  
7
EL5174, EL5374  
Typical Performance Curves (Continued)  
V
= ±5V, A = 1, R = 1kΩ  
LD  
S
V
V
= ±5V, A = 2, R = 1kΩ  
LD  
S
V
-40  
-50  
-40  
-50  
-60  
-70  
-80  
-90  
HD3 (f = 5MHz)  
-60  
HD3 (f = 20MHz)  
HD3 (f = 20MHz)  
-70  
-80  
-90  
HD2 (f = 20MHz)  
4.5 5  
HD2 (f = 5MHz)  
HD2 (f = 5MHz)  
-100  
-100  
1
1.5  
2
2.5  
V
3
3.5  
(V)  
4
1
2
3
4
5
6
7
8
9
10  
V
(V)  
OP-P, DM  
OP-P, DM  
FIGURE 13. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE  
FIGURE 14. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE  
V
= ±5V, A = 1, V  
= 1V  
OP-P, DM  
V
= ±5V, A = 2, V  
= 2V  
S
V
S
V
OP-P, DM  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD3 (f = 20MHz)  
HD3 (f = 5MHz)  
HD2 (f = 2  
0MHz)  
HD2 (f = 5MHz)  
200 300 400 500 600 700 800 900 1000  
()  
100 200 300 400 500 600 700 800 900 1000  
()  
R
R
LD  
LD  
FIGURE 15. HARMONIC DISTORTION vs R  
LD  
FIGURE 16. HARMONIC DISTORTION vs R  
LD  
V
= ±5V, R = 1k, V  
= 1V for A = 1,  
OP-P, DM V  
S
LD  
V
= 2V for A = 2  
OP-P, DM  
V
-40  
-50  
HD3 (A = 2)  
V
-60  
-70  
50mV/DIV  
-80  
-90  
-100  
0
10  
20  
30  
40  
50  
60  
10ns/DIV  
FREQUENCY (MHz)  
FIGURE 17. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 18. SMALL SIGNAL TRANSIENT RESPONSE  
FN7313.5  
August 8, 2005  
8
EL5174, EL5374  
Typical Performance Curves (Continued)  
M = 400ns, CH1 = 500mV/DIV, CH2 = 5V/DIV  
CH1  
0.5V/DIV  
CH2  
10ns/DIV  
400ns/DIV  
FIGURE 19. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 20. ENABLED RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
M = 400ns, CH1 = 200mV/DIV, CH2 = 5V/DIV  
1.2  
1.010W  
1
0.8  
0.6  
0.4  
0.2  
0
QSOP28  
=99°C/W  
θ
JA  
CH1  
CH2  
625mW  
SO8  
=160°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
400ns/DIV  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. DISABLED RESPONSE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
1.266W  
QSOP28  
θ
=79°C/W  
909mW  
JA  
0.8  
0.6  
0.4  
0.2  
0
SO8  
=110°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7313.5  
9
August 8, 2005  
EL5174, EL5374  
Simplified Schematic  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
V
B1  
OUT+  
R
R
CD  
CD  
REF  
10  
R
R
9
OUT-  
B2  
C
C
C
C
R
R
6
5
V -  
S
Differential and Common Mode Gain Settings  
Description of Operation and Application  
Information  
Product Description  
For EL5174, since the I - pin and REF pin are bounded  
N
together as the REF pin in an 8-pin package, the signal at  
the REF pin is part of the common mode signal and also part  
of the differential mode signal. For the true balance  
The EL5174 and EL5374 are wide bandwidth, low power  
and single/differential ended to differential output amplifiers.  
The EL5174 is a single channel differential amplifier. Since  
differential outputs, the REF pin must be tired to the same  
bias level as the I + pin. For a ±5V supply, just tire the REF  
N
the I - pin and REF pin are tired together internally, the  
pin to GND if the I + pin is biased at 0V with a 50or 75Ω  
N
N
EL5174 can be used as a single ended to differential  
converter. The EL5374 is a triple channel differential  
termination resistor. For a single supply application, if the  
I + is biased to half of the rail, the REF pin should be biased  
N
amplifier. The EL5374 have a separate I - pin and REF pin  
to half of the rail also.  
N
for each channel. It can be used as single/differential ended  
to differential converter. The EL5174 and EL5374 are  
internally compensated for closed loop gain of +1 of greater.  
Connected in gain of 1 and driving a 1kdifferential load,  
the EL5174 and EL5374 have a -3dB bandwidth of 550MHz.  
Driving a 200differential load at gain of 2, the bandwidth is  
about 130MHz. The EL5374 is available with a power down  
feature to reduce the power while the amplifier is disabled.  
The gain setting for EL5174 is:  
R
+ R  
F2  
F1  
---------------------------  
V
= V + × 1 +  
ODM  
IN  
R
G
2R  
F
----------  
V
V
= V + = 1 +  
ODM  
OCM  
IN  
R
G
= V  
= 0V  
REF  
Input, Output, and Supply Voltage Range  
The EL5174 and EL5374 have been designed to operate  
with a single supply voltage of 5V to 10V or a split supplies  
with its total voltage from 5V to 10V. The amplifiers have an  
input common mode voltage range from -4.3V to 3.4V for  
±5V supply. The differential mode input range (DMIR)  
between the two inputs is from -2.3V to +2.3V. The input  
voltage range at the REF pin is from -3.3V to 3.7V. If the  
input common mode or differential mode signal is outside the  
above-specified ranges, it will cause the output signal  
distorted.  
Where:  
V
= 0V  
REF  
R
= R = R  
F2  
F1  
F
EL5374 have a separate I - pin and REF pin. It can be used  
N
as a single/differential ended to differential converter. The  
voltage applied at REF pin can set the output common mode  
voltage and the gain is one.  
The output of the EL5174 and EL5374 can swing from -3.8V  
to +3.8V at 1kdifferential load at ±5V supply. As the load  
resistance becomes lower, the output swing is reduced.  
FN7313.5  
10  
August 8, 2005  
EL5174, EL5374  
The gain setting for EL5374 is:  
Driving Capacitive Loads and Cables  
The EL5174 and EL5374 can drive 23pF differential  
R
+ R  
F2  
F1  
capacitor in parallel with 1kdifferential load with less than  
5dB of peaking at gain of +1. If less peaking is desired in  
applications, a small series resistor (usually between 5to  
50) can be placed in series with each output to eliminate  
most peaking. However, this will reduce the gain slightly. If  
the gain setting is greater than 1, the gain resistor R can  
then be chosen to make up for any gain loss which may be  
created by the additional series resistor at the output.  
---------------------------  
V
= (V + V -) × 1 +  
ODM  
IN  
IN  
R
G
2R  
F
----------  
V
V
= (V + V -) × 1 +  
ODM  
OCM  
IN  
IN  
R
G
= V  
REF  
G
Where:  
= R = R  
R
F1  
F2  
F
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier's output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help  
to reduce peaking.  
R
F1  
FBP  
V
+
V
V
+
-
IN  
O
O
I +  
N
R
G
V
-
IN  
I -  
N
V
REF  
FBN  
REF  
Disable/Power-Down (for EL5374 only)  
The EL5374 can be disabled and placed its outputs in a high  
impedance state. The turn off time is about 1.2µs and the  
turn on time is about 130ns. When disabled, the amplifier's  
R
F2  
FIGURE 24.  
supply current is reduced to 1.7µA for I + and 120µA for I -  
S
S
typically, thereby effectively eliminating the power  
Choice of Feedback Resistor and Gain Bandwidth  
Product  
consumption. The amplifier's power down can be controlled  
by standard CMOS signal levels at the EN pin. The applied  
For applications that require a gain of +1, no feedback  
resistor is required. Just short the OUT+ pin to FBP pin and  
OUT- pin to FBN pin. For gains greater than +1, the  
feedback resistor forms a pole with the parasitic capacitance  
at the inverting input. As this pole becomes smaller, the  
amplifier's phase margin is reduced. This causes ringing in  
the time domain and peaking in the frequency domain.  
logic signal is relative to V + pin. Letting the EN pin float or  
S
applying a signal that is less than 1.5V below V + will enable  
S
the amplifier. The amplifier will be disabled when the signal  
at EN pin is above V + - 0.5V.  
S
Output Drive Capability  
The EL5174 and EL5374 have internal short circuit  
protection. Its typical short circuit current is ±60mA. If the  
output is shorted indefinitely, the power dissipation could  
easily increase such that the part will be destroyed.  
Maximum reliability is maintained if the output current never  
exceeds ±60mA. This limit is set by the design of the internal  
metal interconnections.  
Therefore, R has some maximum value that should not be  
F
exceeded for optimum performance. If a large value of R  
F
must be used, a small capacitor in the few Pico farad range  
in parallel with R can help to reduce the ringing and  
F
peaking at the expense of reducing the bandwidth.  
The bandwidth of the EL5174 and EL5374 depends on the  
load and the feedback network. R and R appear in  
F
G
Power Dissipation  
parallel with the load for gains other than +1. As this  
combination gets smaller, the bandwidth falls off.  
With the high output drive capability of the EL5174 and  
EL5374. It is possible to exceed the 135°C absolute  
maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if the load conditions or package types need to be  
modified for the amplifier to remain in the safe operating  
area.  
Consequently, R also has a minimum value that should not  
F
be exceeded for optimum bandwidth performance. For gain  
of +1, R = 0 is optimum. For the gains other than +1,  
F
optimum response is obtained with R between 500to  
F
1k.  
The EL5174 and EL5374 have a gain bandwidth product of  
200MHz for R = 1k. For gains 5, its bandwidth can be  
LD  
The maximum power dissipation allowed in a package is  
determined according to:  
predicted by the following equation:  
Gain × BW = 200MHz  
T
T  
AMAX  
JMAX  
--------------------------------------------  
PD  
=
MAX  
Θ
JA  
FN7313.5  
11  
August 8, 2005  
EL5174, EL5374  
Where:  
Power Supply Bypassing and Printed Circuit  
Board Layout  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
As with any high frequency device, a good printed circuit  
board layout is necessary for optimum performance. Lead  
lengths should be as sort as possible. The power supply pin  
must be well bypassed to reduce the risk of oscillation. For  
T
AMAX  
θ
= Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
normal single supply operation, where the V - pin is  
S
connected to the ground plane, a single 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor from V +  
S
to GND will suffice. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
V  
O
-----------  
PD = i × V × I  
+ V  
S
×
S
SMAX  
R
LD  
be used. In this case, the V - pin becomes the negative  
S
supply rail.  
Where:  
For good AC performance, parasitic capacitance should be  
kept to minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier's inverting input pin is very important. The  
feedback resistor should be placed very close to the  
inverting input pin. Strip line design techniques are  
recommended for the signal traces.  
V = Total supply voltage  
S
I
= Maximum quiescent supply current per channel  
SMAX  
V = Maximum differential output voltage of the  
O
application  
R
= Differential load resistance  
LD  
I
= Load current  
LOAD  
i = Number of channels  
By setting the two PD  
equations equal to each other, we  
MAX  
can solve the output current and R to avoid the device  
LD  
overheat.  
Typical Applications  
R
F
FBP  
IN+  
IN-  
50  
50  
TWISTED PAIR  
IN+  
R
R
G
T
EL5174/  
EL5374  
EL5175/  
EL5375  
V
O
REF  
IN-  
Z
= 100Ω  
O
FBN  
REF  
R
F
R
FR  
R
GR  
FIGURE 25. TWISTED PAIR CABLE RECEIVER  
As the signal is transmitted through a cable, the high  
frequency signal will be attenuated. One way to compensate  
this loss is to boost the high frequency gain at the receiver  
side.  
FN7313.5  
12  
August 8, 2005  
EL5174, EL5374  
R
F
GAIN  
(dB)  
FBP  
I +  
V
V
+
-
O
N
R
75  
T
R
R
G
GC  
I -  
N
C
REF  
FBN  
L
O
f
f
H
FREQUENCY  
R
L
F
2R  
1
G
F
------------------------  
f
f
----------  
DC Gain = 1 +  
L
2πR  
C
C
R
G
1
GC  
2R  
----------------------------  
F
H
2πR  
C
C
--------------------------  
||  
(HF)Gain = 1 +  
R
R
G
GC  
FIGURE 26. TRANSMIT EQUALIZER  
FN7313.5  
13  
August 8, 2005  
EL5174, EL5374  
SO Package Outline Drawing  
FN7313.5  
14  
August 8, 2005  
EL5174, EL5374  
QSOP Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7313.5  
15  
August 8, 2005  

相关型号:

EL5174ISZ

550MHz Differential Twisted-Pair Drivers
INTERSIL

EL5174ISZ-T

LINE DRIVER
RENESAS

EL5174ISZ-T13

550MHz Differential Twisted-Pair Drivers
INTERSIL

EL5174ISZ-T7

550MHz Differential Twisted-Pair Drivers
INTERSIL

EL5174IY-T13

LINE DRIVER, PDSO8, MO-187, MSOP-8
RENESAS

EL5175

550MHz Differential Line Receivers
INTERSIL

EL5175IS

550MHz Differential Line Receivers
INTERSIL

EL5175IS-T13

550MHz Differential Line Receivers
INTERSIL

EL5175IS-T7

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ-T13

550MHz Differential Line Receivers
INTERSIL

EL5175ISZ-T7

550MHz Differential Line Receivers
INTERSIL