EL5176IYZ-T13 [INTERSIL]

250MHz Differential Twisted-Pair Driver; 为250MHz差分双绞线驱动器
EL5176IYZ-T13
型号: EL5176IYZ-T13
厂家: Intersil    Intersil
描述:

250MHz Differential Twisted-Pair Driver
为250MHz差分双绞线驱动器

驱动器
文件: 总11页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5176  
®
Data Sheet  
August 3, 2005  
FN7343.2  
250MHz Differential Twisted-Pair Driver  
Features  
The EL5176 is a high bandwidth amplifier with an output in  
differential form. It is primarily targeted for applications such  
as driving twisted-pair lines or any application where  
common mode injection is likely to occur. The input signal  
can be in either single-ended or differential form but the  
output is always in differential form.  
• Fully differential inputs, outputs, and feedback  
• Differential input range ±2.3V  
• 250MHz 3dB bandwidth  
• 800V/µs slew rate  
• Low distortion at 20MHz  
On the EL5176, two feedback inputs provide the user with  
the ability to set the device gain (stable at minimum gain of  
one).  
• Single 5V or dual ±5V supplies  
• 40mA maximum output current  
• Low power - 8mA typical supply current  
• Pb-Free plus anneal available (RoHS compliant)  
The output common mode level is set by the reference pin  
(REF), which has a -3dB bandwidth of over 50MHz.  
Generally, this pin is grounded but it can be tied to any  
voltage reference.  
Applications  
• Twisted-pair drivers  
Both outputs (OUT+, OUT-) are short circuit protected to  
withstand temporary overload condition.  
• Differential line drivers  
The EL5176 is available in the 10-pin MSOP package and is  
specified for operation over the full -40°C to +85°C  
temperature range.  
• VGA over twisted-pair  
• ADSL/HDSL drivers  
• Single ended to differential amplification  
• Transmission of analog signals in a noisy environment  
See also EL5171 (EL5176 in 8-pin MSOP.)  
Ordering Information  
Pinout  
PART  
NUMBER  
PACKAGE  
10-Pin MSOP  
10-Pin MSOP  
10-Pin MSOP  
TAPE & REEL PKG. DWG. #  
EL5176  
(10-PIN MSOP)  
TOP VIEW  
EL5176IY  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL5176IY-T7  
EL5176IY-T13  
FBP  
IN+  
1
2
3
4
5
10 OUT+  
EL5176IYZ  
(See Note)  
10-Pin MSOP  
(Pb-free)  
9
8
7
6
VS-  
+
-
REF  
IN-  
VS+  
EN  
EL5176IYZ-T7  
(See Note)  
10-Pin MSOP  
(Pb-free)  
7”  
MDP0043  
MDP0043  
EL5176IYZ-T13 10-Pin MSOP  
(See Note) (Pb-free)  
13”  
FBN  
OUT-  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003-2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5176  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, R = 1k, R = 0, R = OPEN, C = 2.7pF, Unless Otherwise  
S
S
A
IN  
LD  
F
G
LD  
Specified  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= 1, C = 2.7pF  
LD  
250  
60  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
A
A
A
V
V
V
= 2, R = 500, C = 2.7pF  
LD  
V
F
= 10, R = 500, C = 2.7pF  
10  
V
F
LD  
BW  
SR  
±0.1dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
= 1, C = 2.7pF  
50  
V
LD  
= 3V , 20% to 80%  
P-P  
600  
540  
800  
700  
10  
1000  
1000  
OUT  
OUT  
OUT  
= 3V , 20% to 80%  
P-P  
T
T
Settling Time to 0.1%  
= 2V  
P-P  
STL  
Output Overdrive Recovery Time  
Gain Bandwidth Product  
20  
ns  
OVR  
GBWP  
100  
50  
MHz  
MHz  
V/µs  
V/µs  
nV/Hz  
pA/Hz  
dBc  
dBc  
dBc  
dBc  
%
V
V
V
V
BW (-3dB) V  
-3dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
A
V
V
=1, C = 2.7pF  
LD  
REF  
REF  
REF  
N
REF  
REF  
REF  
V
SR+  
SR-  
V
V
= 2V , 20% to 80%  
P-P  
90  
OUT  
OUT  
= 2V , 20% to 80%  
P-P  
50  
Input Voltage Noise  
at 10kHz  
at 10kHz  
26  
I
Input Current Noise  
2
N
HD2  
Second Harmonic Distortion  
V
V
V
V
= 2V , 5MHz  
P-P  
-94  
-94  
-77  
-75  
0.1  
0.5  
OUT  
OUT  
OUT  
OUT  
= 2V , 20MHz  
P-P  
HD3  
Third Harmonic Distortion  
= 2V , 5MHz  
P-P  
= 2V , 20MHz  
P-P  
dG  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
R
= 300, A = 2  
L
L
V
dθ  
R
= 300, A = 2  
°
V
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
V
±1.5  
-6  
±25  
-3  
mV  
µA  
µA  
kΩ  
pF  
V
OS  
I
I
Input Bias Current (V +, V -)  
-14  
0.5  
IN  
REF  
IN  
IN  
Input Bias Current (V  
)
1.3  
300  
1
4
REF  
R
C
Differential Input Resistance  
Differential Input Capacitance  
Differential Mode Input Range  
IN  
IN  
DMIR  
±2.1  
3.1  
±2.3  
3.4  
-4.5  
3.8  
-3.3  
±60  
±2.5  
-4.2  
CMIR+  
CMIR-  
Common Mode Positive Input Range at V +, V  
IN  
-
V
IN  
Common Mode Negative Input Range at V +, V  
IN  
-
V
IN  
V
V
V
+
-
Positive Reference Input Voltage Range  
Negative Reference Input Voltage Range  
V
V
+ = V - = 0V  
IN  
3.5  
V
REFIN  
REFIN  
IN  
+ = V - = 0V  
IN  
-3  
V
IN  
Output Offset Relative to V  
±100  
mV  
REFOS  
REF  
FN7343.2  
2
August 3, 2005  
EL5176  
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, R = 1k, R = 0, R = OPEN, C = 2.7pF, Unless Otherwise  
S
S
A
IN  
LD  
F
G
LD  
Specified (Continued)  
PARAMETER  
CMRR  
DESCRIPTION  
CONDITIONS  
= ±2.5V  
MIN  
65  
TYP  
82  
MAX  
UNIT  
dB  
Input Common Mode Rejection Ratio  
Gain Accuracy  
V
V
IN  
IN  
Gain  
= 1  
0.981  
0.996  
1.011  
V
OUTPUT CHARACTERISTICS  
V
Positive Output Swing  
R
= 500to GND  
3.6  
35  
3.9  
-3.8  
50  
V
V
OUT  
L
Negative Output Swing  
-3.5  
-30  
I
(Max)  
Maximum Source Output Current  
Maximum Sink Output Current  
R
= 10Ω,  
mA  
mA  
OUT  
L
V
V
V
+ = 1.1V,  
- = -1.1V,  
IN  
IN  
REF  
-40  
= 0  
R
Output Impedance  
130  
mΩ  
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
6.8  
11  
8.2  
120  
V
SUPPLY  
S
S
I
I
I
Power Supply Current - Per Channel  
7.5  
80  
mA  
µA  
µA  
dB  
S(ON)  
+
-
Positive Power Supply Current - Disabled  
Negative Power Supply Current - Disabled  
Power Supply Rejection Ratio  
EN pin tied to 4.8V  
S(OFF)  
S(OFF)  
-200  
70  
-120  
84  
PSRR  
ENABLE  
V from ±4.5V to ±5.5V  
S
t
t
Enable Time  
215  
ns  
µs  
V
EN  
DS  
Disable Time  
0.95  
V
EN Pin Voltage for Power-Up  
V + -  
S
IH  
1.5  
V
EN Pin Voltage for Shut-Down  
V + -  
S
V
IL  
0.5  
I
I
EN Pin Input Current High  
EN Pin Input Current Low  
At V  
At V  
= 5V  
= 0V  
40  
60  
µA  
µA  
IH-EN  
IL-EN  
EN  
EN  
-6  
-2.5  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
1
2
FBP  
IN+  
Non-inverting feedback input; resistor R must be connected from this pin to V  
F1  
OUT  
Non-inverting input  
3
REF  
IN-  
Output common-mode control; the common-mode voltage of V  
will follow the voltage on this pin  
OUT  
4
Inverting input  
5
FBN  
OUT-  
EN  
Inverting feedback input; resistor R must be connected from this pin to V  
F2  
OUT  
6
Inverting output  
7
Enabled when this pin is floating or the applied voltage V + -1.5  
S
8
VS+  
VS-  
Positive supply  
9
Negative supply  
Non-inverting output  
10  
OUT+  
FN7343.2  
3
August 3, 2005  
EL5176  
Connection Diagram  
R
F1  
0Ω  
VREF  
R
S3  
50Ω  
1
2
3
4
5
FBP  
IN+  
OUT+ 10  
OUT+  
INP  
VS-  
VS+  
EN  
9
8
7
6
-5V  
R
S1  
50Ω  
R
LD  
1kΩ  
R
OPEN  
G
REF  
IN-  
+5V  
INN-  
EN  
R
S2  
50Ω  
FBN  
OUT-  
OUT-  
R
F2  
0Ω  
Typical Performance Curves  
A
= 1, R = 1k, C = 2.7pF  
LD LD  
R
= 1k, C = 2.7pF  
LD LD  
V
4
3
4
3
2
2
1
1
0
0
V
= 200mV  
OP-P  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
A
= 1  
V
A = 2  
V
A
= 5  
V
V
= 1V  
P-P  
OP-P  
A
= 10  
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS GAIN  
A
= 1, C = 2.7pF  
LD  
V
A
= 1, R = 1kΩ  
LD  
V
4
3
5
4
C
= 56pF  
LD  
2
C
= 34pF  
LD  
3
1
2
C
= 23pF  
LD  
R
= 1kΩ  
LD  
0
1
R
= 500Ω  
-1  
-2  
-3  
-4  
-5  
-6  
LD  
0
-1  
-2  
-3  
-4  
-5  
C
= 9pF  
LD  
C
R
= 200Ω  
LD  
= 2.7pF  
LD  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE vs R  
FIGURE 4. FREQUENCY RESPONSE vs C  
LD  
LD  
FN7343.2  
August 3, 2005  
4
EL5176  
Typical Performance Curves (Continued)  
A
= 2, R = 1k, C = 2.7pF  
LD  
A
= 2, R = 1k, C = 2.7pF  
LD LD  
V
F
V
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
= 1kΩ  
F
R
= 1kΩ  
LD  
R
= 500Ω  
F
R
= 500Ω  
LD  
R
= 200Ω  
F
R
= 200Ω  
LD  
1M  
10M  
100M  
400M  
1M  
10M  
FREQUENCY (Hz)  
100M  
400M  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE  
FIGURE 6. FREQUENCY RESPONSE vs R  
LD  
100  
5
4
3
2
10  
1
1
0
-1  
-2  
-3  
-4  
-5  
0.1  
10K  
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. OUTPUT IMPEDANCE vs FREQUENCY  
FIGURE 7. FREQUENCY RESPONSE - V  
REF  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR-  
PSRR+  
10M  
100K  
1M  
100M  
1G  
100K  
FREQUENCY (Hz)  
1K  
10K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 10. CMRR vs FREQUENCY  
FIGURE 9. PSRR vs FREQUENCY  
FN7343.2  
August 3, 2005  
5
EL5176  
Typical Performance Curves (Continued)  
V
= ±5V, A = 1, R = 1kΩ  
S
V
LD  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
1K  
100  
E
N
10  
I
N
1
10  
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
10K  
FREQUENCY (Hz)  
100  
1K  
100K  
1M  
10M  
V
OP-P, DM  
FIGURE 12. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE  
FIGURE 11. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
V
= ±5V, A = 1, R = 1kΩ  
S
V
LD  
V
= ±5V, A = 1, V  
= 1V  
OP-P, DM  
S
V
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD3 (f = 5MHz)  
1
2
3
4
5
6
7
8
9
10  
100 200 300 400 500 600 700 800 900 1000  
V
(V)  
OP-P, DM  
R
()  
LD  
FIGURE 13. HARMONIC DISTORTION vs DIFFERENTIAL  
OUTPUT VOLTAGE  
FIGURE 14. HARMONIC DISTORTION vs R  
LD  
V
V
= ±5V, R = 1k, V  
= 1V for A = 1,  
OP-P, DM V  
V
= ±5V, A = 2, V  
V
= 2V  
OP-P, DM  
S
LD  
S
= 2V for A = 2  
V
OP-P, DM  
-40  
-50  
-40  
-50  
HD3 (A = 1)  
HD3 (f = 20MHz)  
V
HD3 (f = 5MHz)  
-60  
-60  
-70  
-70  
-80  
-80  
HD2 (f = 5MHz)  
-90  
-90  
-100  
-100  
0
10  
20  
30  
40  
50  
60  
200 300  
400 500 600 700  
()  
800 900 1000  
FREQUENCY (MHz)  
R
LD  
FIGURE 16. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 15. HARMONIC DISTORTION vs R  
LD  
FN7343.2  
August 3, 2005  
6
EL5176  
Typical Performance Curves (Continued)  
0.5V/DIV  
50mV/DIV  
10ns/DIV  
10ns/DIV  
FIGURE 18. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 17. SMALL SIGNAL TRANSIENT RESPONSE  
M = 200ns, CH1 = 500mV/DIV, CH2 = 5V/DIV  
M = 100ns, CH1 = 500mV/DIV, CH2 = 5V/DIV  
CH1  
CH2  
CH1  
CH2  
200ns/DIV  
100ns/DIV  
FIGURE 20. DISABLED RESPONSE  
FIGURE 19. ENABLED RESPONSE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
CONDUCTIVITY TEST BOARD  
0.6  
0.9  
0.5  
870mW  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
486mW  
MSOP8/10  
MSOP8/10  
0.4  
θ
=115°C/W  
JA  
θ
=206°C/W  
JA  
0.3  
0.2  
0.1  
0
0
25  
50  
75 85 100  
125  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7343.2  
August 3, 2005  
7
EL5176  
Simplified Schematic  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
V
B1  
OUT+  
R
R
CD  
CD  
REF  
10  
R
R
9
OUT-  
B2  
C
C
C
C
R
R
6
5
V -  
S
The gain setting for EL5176 is:  
Description of Operation and Application  
Information  
Product Description  
The EL5176 is a wide bandwidth, low power and  
single/differential ended to differential output amplifier. It can  
be used as single/differential ended to differential converter.  
The EL5176 is internally compensated for closed loop gain  
of +1 of greater. Connected in gain of 1 and driving a 1kΩ  
differential load, the EL5176 has a -3dB bandwidth of  
250MHz. Driving a 200differential load at gain of 2, the  
bandwidth is about 30MHz. The EL5176 is available with a  
power down feature to reduce the power while the amplifier  
is disabled.  
R
+ R  
F2  
F1  
V
= V + × 1 + ---------------------------  
   
IN  
R
ODM  
G
2R  
F
V
V
= (V + V -) × 1 + ----------  
ODM  
OCM  
IN  
IN  
R
G
= V  
REF  
Where:  
• R = R = R  
F1 F2  
F
R
F1  
Input, Output, and Supply Voltage Range  
FBP  
IN+  
V
+
V
V
+
-
IN  
O
The EL5176 has been designed to operate with a single  
supply voltage of 5V to 10V or a split supplies with its total  
voltage from 5V to 10V. The amplifier has an input common  
mode voltage range from -4.5V to 3.4V for ±5V supply. The  
differential mode input range (DMIR) between the two inputs  
is from -2.3V to +2.3V. The input voltage range at the REF  
pin is from -3.3V to 3.8V. If the input common mode or  
differential mode signal is outside the above-specified  
ranges, it will cause the output signal distorted.  
R
G
V
-
IN  
IN-  
V
REF  
FBN  
REF  
O
R
F2  
FIGURE 23.  
Choice of Feedback Resistor and Gain Bandwidth  
Product  
The output of the EL5176 can swing from -3.8V to +3.9V at  
1kdifferential load at ±5V supply. As the load resistance  
becomes lower, the output swing is reduced.  
For applications that require a gain of +1, no feedback  
resistor is required. Just short the OUT+ pin to FBP pin and  
OUT- pin to FBN pin. For gains greater than +1, the  
feedback resistor forms a pole with the parasitic capacitance  
at the inverting input. As this pole becomes smaller, the  
amplifier's phase margin is reduced. This causes ringing in  
the time domain and peaking in the frequency domain.  
Differential and Common Mode Gain Settings  
The voltage applied at REF pin can set the output common  
mode voltage and the gain is one. The differential gain is set  
by the R and R network.  
F
G
Therefore, R has some maximum value that should not be  
F
exceeded for optimum performance. If a large value of R  
F
must be used, a small capacitor in the few Pico farad range  
FN7343.2  
8
August 3, 2005  
EL5176  
in parallel with R can help to reduce the ringing and  
F
peaking at the expense of reducing the bandwidth.  
±40mA. This limit is set by the design of the internal metal  
interconnect.  
The bandwidth of the EL5176 depends on the load and the  
Power Dissipation  
feedback network. R and R appear in parallel with the  
F
G
With the high output drive capability of the EL5176. It is  
possible to exceed the 135°C absolute maximum junction  
temperature under certain load current conditions.  
Therefore, it is important to calculate the maximum junction  
temperature for the application to determine if the load  
conditions or package types need to be modified for the  
amplifier to remain in the safe operating area.  
load for gains other than +1. As this combination gets  
smaller, the bandwidth falls off. Consequently, R also has a  
F
minimum value that should not be exceeded for optimum  
bandwidth performance. For gain of +1, R = 0 is optimum.  
F
For the gains other than +1, optimum response is obtained  
with R between 500to 1k.  
F
The EL5176 has a gain bandwidth product of 100MHz for  
The maximum power dissipation allowed in a package is  
determined according to:  
R
= 1k. For gains 5, its bandwidth can be predicted by  
LD  
the following equation:  
T
T  
AMAX  
JMAX  
PD  
= --------------------------------------------  
Gain × BW = 100MHz  
MAX  
Θ
JA  
Driving Capacitive Loads and Cables  
Where:  
The EL5176 can drive 50pF differential capacitor in parallel  
with 1kdifferential load with less than 5dB of peaking at  
gain of +1. If less peaking is desired in applications, a small  
series resistor (usually between 5to 50) can be placed in  
series with each output to eliminate most peaking. However,  
this will reduce the gain slightly. If the gain setting is greater  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
than 1, the gain resistor R can then be chosen to make up  
G
for any gain loss which may be created by the additional  
series resistor at the output.  
V  
O
PD = V × I  
+ V × -----------  
S
SMAX  
S
R
LD  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier's output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help  
to reduce peaking.  
Where:  
• V = Total supply voltage  
S
• I  
= Maximum quiescent supply current per channel  
SMAX  
V = Maximum differential output voltage of the  
application  
O
• R = Differential load resistance  
LD  
Disable/Power-Down  
The EL5176 can be disabled and placed its outputs in a high  
impedance state. The turn off time is about 0.95µs and the  
turn on time is about 215ns. When disabled, the amplifier's  
• I  
= Load current  
LOAD  
By setting the two PD  
equations equal to each other, we  
MAX  
can solve the output current and R to avoid the device  
LD  
supply current is reduced to 1.7µA for I + and 120µA for I -  
S
S
overheat.  
typically, thereby effectively eliminating the power  
consumption. The amplifier's power down can be controlled  
by standard CMOS signal levels at the ENABLE pin. The  
Power Supply Bypassing and Printed Circuit  
Board Layout  
applied logic signal is relative to V + pin. Letting the EN pin  
S
As with any high frequency device, a good printed circuit  
board layout is necessary for optimum performance. Lead  
lengths should be as sort as possible. The power supply pin  
must be well bypassed to reduce the risk of oscillation. For  
float or applying a signal that is less than 1.5V below V + will  
S
enable the amplifier. The amplifier will be disabled when the  
signal at EN pin is above V + - 0.5V.  
S
normal single supply operation, where the V - pin is  
S
Output Drive Capability  
connected to the ground plane, a single 4.7µF tantalum  
The EL5176 has internal short circuit protection. Its typical  
short circuit current is ±40mA for EL5176. If the output is  
shorted indefinitely, the power dissipation could easily  
increase such that the part will be destroyed. Maximum  
reliability is maintained if the output current never exceeds  
capacitor in parallel with a 0.1µF ceramic capacitor from V +  
S
to GND will suffice. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
be used. In this case, the V - pin becomes the negative  
S
supply rail.  
FN7343.2  
August 3, 2005  
9
EL5176  
For good AC performance, parasitic capacitance should be  
kept to minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier's inverting input pin is very important. The  
feedback resistor should be placed very close to the  
inverting input pin. Strip line design techniques are  
recommended for the signal traces.  
Typical Applications  
R
F
FBP  
IN+  
IN-  
50  
50  
TWISTED PAIR  
IN+  
R
R
G
T
EL5176  
EL5172  
V
O
REF  
IN-  
Z
= 100Ω  
O
FBN  
REF  
R
F
R
FR  
R
GR  
FIGURE 24. TWISTED PAIR CABLE RECEIVER  
As the signal is transmitted through a cable, the high  
frequency signal will be attenuated. One way to compensate  
this loss is to boost the high frequency gain at the receiver  
side.  
R
F
Gain  
(dB)  
FBP  
I +  
V
V
+
-
O
N
R
75  
T
R
R
G
GC  
I -  
N
C
REF  
FBN  
L
O
f
f
H
frequency  
R
L
F
2R  
1
F
f
------------------------  
2πR C  
DC Gain = 1 + ----------  
L
R
G
G
C
1
2R  
f
----------------------------  
2πR C  
F
H
(HF)Gain = 1 + --------------------------  
GC  
C
||  
R
R
GC  
G
FIGURE 25. TRANSMIT EQUALIZER  
FN7343.2  
August 3, 2005  
10  
EL5176  
MSOP Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7343.2  
11  
August 3, 2005  

相关型号:

EL5176IYZ-T7

250MHz Differential Twisted-Pair Driver
INTERSIL

EL5177

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IY

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IY-T13

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IY-T7

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IYZ

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IYZ-T13

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IYZ-T7

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177IYZT13

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177_05

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5177_07

550MHz Differential Twisted-Pair Driver
INTERSIL

EL5178

700MHz Differential Twisted-Pair Drivers
INTERSIL