EL5191ACS-T7 [INTERSIL]

1GHz Current Feedback Amplifier with Enable; 1GHz的电流反馈放大器启用
EL5191ACS-T7
型号: EL5191ACS-T7
厂家: Intersil    Intersil
描述:

1GHz Current Feedback Amplifier with Enable
1GHz的电流反馈放大器启用

商用集成电路 放大器 光电二极管
文件: 总17页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5191, EL5191A  
®
ata Sheet  
Augus t 3, 2005  
FN7180.2  
1GHz Current Feedback Amplifier with  
Enable  
Features  
• 1GHz -3dB bandwidth  
• 9mA supply current  
The EL5191 and EL5191A amplifiers are of the current  
feedback variety and exhibit a very high bandwidth of 1GHz.  
This makes these amplifiers ideal for today’s high speed  
video and monitor applications, as well as a number of RF  
and IF frequency designs.  
• Single and dual supply operation, from 5V to 10V supply  
span  
• Fast enable/disable (EL5191A only)  
• Available in SOT-23 packages  
With a supply current of just 9mA and the ability to run from  
a single supply voltage from 5V to 10V, these amplifiers offer  
very high performance for little power consumption.  
• High speed, 600MHz product available (EL5192, EL5292,  
and EL5392)  
The EL5191A also incorporates an enable and disable  
function to reduce the supply current to 100µA typical per  
amplifier. Allowing the CE pin to float or applying a low logic  
level will enable the amplifier.  
• Lower power, 300MHz product available (EL5193,  
EL5293, EL5393)  
Pb-Free plus anneal available (RoHS compliant)  
The EL5191 is offered in the 5-pin SOT-23 package and the  
EL5191A is available in the 6-pin SOT-23 as well as the  
industry-standard 8-pin SO packages. Both operate over the  
industrial temperature range of -40°C to +85°C.  
Applications  
• Video amplifiers  
• Cable drivers  
• RGB amplifiers  
Ordering Information  
TAPE &  
REEL  
• Test equipment  
• Instrumentation  
• Current to voltage converters  
PART NUMBER  
PACKAGE  
PKG. DWG. #  
MDP0027  
EL5191CS  
8-Pin SO  
-
-
EL5191CSZ  
(See Note)  
8-Pin SO  
(Pb-free)  
MDP0027  
Pinouts  
EL5191CSZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5191CSZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
EL5191A  
(8-PIN SO)  
TOP VIEW  
EL5191CW-T7  
5-Pin SOT-23  
7”  
7”  
MDP0038  
MDP0038  
EL5191CWZ-T7  
(See Note)  
5-Pin SOT-23  
(Pb-free)  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
EL5191ACW-T7  
EL5191ACW-T7A  
6-Pin SOT-23 7” (3K pcs)  
6-Pin SOT-23 7” (250 pcs)  
MDP0038  
MDP0038  
MDP0038  
V
+
S
-
+
EL5191ACWZ-T7  
(See Note)  
6-Pin SOT-23 7” (3K pcs)  
(Pb-free)  
IN+  
OUT  
NC  
V
-
S
EL5191ACWZ-T7A 6-Pin SOT-23 7” (250 pcs)  
MDP0038  
(See Note)  
(Pb-free)  
8-Pin SO  
8-Pin SO  
8-Pin SO  
EL5191ACS  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5191  
(5-PIN SOT-23)  
TOP VIEW  
EL5191A  
(6-PIN SOT-23)  
TOP VIEW  
EL5191ACS-T7  
EL5191ACS-T13  
EL5191ACSZ  
(See Note)  
8-Pin SO  
(Pb-free)  
OUT  
1
6
5
4
VS+  
CE  
OUT  
1
5
4
V +  
S
V
-
2
3
V
-
2
3
S
EL5191ACSZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
S
+
-
+
-
IN+  
IN-  
IN+  
IN-  
EL5191ACSZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate termination finish,  
which are RoHS compliant and compatible with both SnPb and Pb-free soldering  
operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL5191, EL5191A  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . . .11V  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S S  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .125°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 392for A = 1, R = 250for A = 2, R = 150, T = 25°C unless otherwise  
S
S
F
V
F
V
L
A
specified.  
PARAMETER  
AC PERFORMANCE  
BW  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
-3dB Bandwidth  
A
A
= +1  
= +2  
1000  
600  
30  
MHz  
MHz  
MHz  
V/µs  
ns  
V
V
BW1  
SR  
0.1dB Bandwidth  
Slew Rate  
V
V
= -2.5V to +2.5V, A = +2  
2400  
2800  
7
O
V
t
0.1% Settling Time  
= -2.5V to +2.5V, A = -1  
OUT V  
S
e
Input Voltage Noise  
3.8  
nV/Hz  
pA/Hz  
pA/Hz  
%
N
i -  
IN- Input Current Noise  
IN+ Input Current Noise  
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
25  
N
i +  
N
55  
dG  
A
A
= +2  
0.035  
0.04  
V
V
dP  
= +2  
°
DC PERFORMANCE  
V
Offset Voltage  
-15  
1
5
15  
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
to T  
MAX  
µV/°C  
C
OS  
MIN  
R
Transimpedance  
150  
300  
kΩ  
OL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
±3  
42  
±3.3  
50  
V
dB  
CMRR  
-ICMR  
- Input Current Common Mode Rejection  
+ Input Current  
-6  
6
µA/V  
µA  
+I  
-120  
-60  
40  
5
120  
60  
IN  
-I  
- Input Current  
µA  
IN  
R
Input Resistance  
27  
0.5  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R = 150to GND  
±3.4  
±3.8  
95  
±3.7  
±4.0  
120  
V
V
O
L
R = 1kto GND  
L
I
Output Current  
R = 10to GND  
mA  
OUT  
L
SUPPLY  
I
I
Supply Current - Enabled  
Supply Current - Disabled  
No load, V = 0V  
IN  
8
9
11  
mA  
µA  
SON  
No load, V = 0V  
IN  
100  
150  
SOFF  
2
EL5191, EL5191A  
Electrical Specifications V + = +5V, V - = -5V, R = 392for A = 1, R = 250for A = 2, R = 150, T = 25°C unless otherwise  
S
S
F
V
F
V
L
A
specified. (Continued)  
PARAMETER  
PSRR  
-IPSR  
ENABLE (EL5191A ONLY)  
DESCRIPTION  
CONDITIONS  
MIN  
55  
TYP  
MAX  
UNIT  
dB  
Power Supply Rejection Ratio  
DC, V = ±4.75V to ±5.25V  
75  
S
- Input Current Power Supply Rejection DC, V = ±4.75V to ±5.25V  
-2  
2
µA/V  
S
t
t
I
I
Enable Time  
40  
600  
0.8  
0
ns  
ns  
µA  
µA  
V
EN  
Disable Time  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-down  
CE = V +  
6
IHCE  
ILCE  
S
CE = V -  
S
-0.1  
V
V
V + - 1  
S
IHCE  
ILCE  
V + - 3  
V
S
NOTE:  
1. Standard NTSC test, AC signal amplitude = 286mV  
, f = 3.58MHz  
P-P  
3
EL5191, EL5191A  
Typical Performance Curves  
Non-Inverting Frequency Response (Gain)  
SOT-23 Package  
Non-Inverting Frequency Response (Phase)  
6
2
90  
0
A
= 1  
A = 2  
V
V
A
= 1  
V
A
= 2  
V
-2  
-90  
A
= 5  
V
A
= 5  
V
-6  
-180  
-270  
-360  
A
=10  
V
A
= 10  
V
-10  
-14  
R
R
= 390  
= 150Ω  
F
L
R
R
= 390Ω  
= 150Ω  
F
L
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Inverting Frequency Response (Gain)  
SOT-23 Package  
Inverting Frequency Response (Phase)  
6
2
90  
0
A
=-1  
V
A
= -1  
V
-2  
-90  
A
A
=-2  
=-5  
A = -2  
V
V
A
= -5  
V
-6  
-180  
-270  
-360  
V
-10  
R
R
= 250Ω  
= 150Ω  
F
L
R
R
= 250Ω  
= 150Ω  
F
L
-14  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency Response for Various C  
-
Frequency Response for Various R  
L
IN  
10  
6
6
2
2pF added  
1pF added  
R
= 100Ω  
= 500Ω  
L
R
= 150Ω  
L
R
2
-2  
L
-2  
-6  
-10  
-6  
0pF added  
-10  
-14  
A
R
R
= 2  
= 250Ω  
= 150Ω  
V
F
L
A
R
= 2  
= 250Ω  
V
F
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
4
EL5191, EL5191A  
Typical Performance Curves (Continued)  
Frequency Response for Various C  
Frequency Response for Various R  
L
F
14  
10  
6
6
2
150Ω  
250Ω  
6pF added  
4pF added  
-2  
375Ω  
2
-6  
500Ω  
-2  
-6  
-10  
-14  
A
R
= 2  
= 250Ω  
0pF added  
A
R
R
= 2  
= R  
= 150Ω  
V
F
V
G
L
F
R =150Ω  
L
1M  
10M  
100M  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Frequency (Hz)  
Group Delay vs Frequency  
Frequency Response for Various Common-Mode  
Input Voltages  
3.5  
3
6
2
V
= 3V  
V
= 0V  
CM  
CM  
2.5  
2
-2  
A
= 2  
A = 1  
V
F
V
V
= -3V  
CM  
R
= 250Ω  
R
= 390Ω  
F
1.5  
1
-6  
-10  
A
R
R
= 2  
= 250Ω  
= 150Ω  
V
F
L
0.5  
0
-14  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Frequency (Hz)  
Transimpedance (ROL) vs Frequency  
PSRR and CMRR vs Frequency  
10M  
1M  
20  
0
0
Phase  
PSRR+  
-90  
100k  
10k  
1k  
-20  
-40  
-60  
-80  
PSRR-  
-180  
-270  
-360  
Gain  
CMRR  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
5
EL5191, EL5191A  
Typical Performance Curves (Continued)  
-3dB Bandwidth vs Supply Voltage for Non-  
Inverting Gains  
-3dB Bandwidth vs Supply Voltage for Inverting  
Gains  
1200  
1000  
800  
600  
400  
200  
0
600  
500  
400  
300  
200  
100  
0
R
R
= 390Ω  
= 150Ω  
F
L
A
= -2  
V
A
= 1  
A
A
= -1  
= -5  
V
V
V
A
A
= 2  
= 5  
V
V
A
9
= 10  
V
R
R
= 250Ω  
= 150Ω  
F
L
5
6
7
8
10  
5
6
7
8
9
10  
Total Supply Voltage (V)  
Total Supply Voltage (V)  
Peaking vs Supply Voltage for Non-Inverting Gains  
Peaking vs Supply Voltage for Inverting Gains  
4
3.5  
3
4
R
= 390Ω  
F
R =150Ω  
L
A
= 1  
3
2
1
0
V
A
A
= -1  
= -2  
V
2.5  
2
V
1.5  
1
A
A
= 2  
V
R
R
= 250Ω  
= 150Ω  
A
= -5  
F
L
V
0.5  
0
= 10  
8
V
5
6
7
9
10  
5
6
7
8
9
10  
Total Supply Voltage (V)  
Total Supply Voltage (V)  
Non-Inverting Frequency Response (Gain)  
SO8 Package  
Non-Inverting Frequency Response (Phase)  
SO8 Package  
6
2
90  
0
A
= 1  
A = 2  
V
V
A
= 1  
A = 2  
V
V
-2  
-90  
A
= 5  
V
-6  
-180  
-270  
-360  
A
= 5  
V
A
= 10  
V
A
= 10  
-10  
V
R
R
= 392Ω  
= 150Ω  
R = 392Ω  
F  
F
L
R= 150Ω  
L
-14  
1M  
10M  
100M  
1G 1.6G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Frequency (Hz)  
6
EL5191, EL5191A  
Typical Performance Curves (Continued)  
Inverting Frequency Response (Gain)  
SO8 Package  
Inverting Frequency Response (Phase)  
SO8 Package  
6
2
90  
0
A
= -1  
A = -2  
V
V
A
= -1  
A = -2  
V
V
-2  
-90  
A
= -5  
V
A
= -5  
V
-6  
-180  
-270  
-360  
-10  
-14  
R
R
= 250Ω  
= 150Ω  
R
R
= 250Ω  
= 150Ω  
F
L
F
L
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
-3dB Bandwidth vs Temperature for Non-Inverting  
Gains  
-3dB Bandwidth vs Temperature for Inverting  
Gains  
2000  
1500  
1000  
500  
0
700  
600  
500  
400  
300  
200  
100  
0
R
R
= 250Ω  
= 150Ω  
F
L
A
= -1  
V
A
A
=1  
=5  
V
A
A
= -2  
= -5  
V
A
=2  
V
V
A
=10  
V
V
R =250Ω  
F
R =150Ω  
L
-40  
10  
60  
110  
160  
-40  
10  
60  
110  
160  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Peaking vs Temperature  
Voltage and Current Noise vs Frequency  
3
2.5  
2
1k  
100  
10  
R
= 150Ω  
L
A
= 1  
V
i
+
N
i
-
N
1.5  
1
A
= -1  
V
e
N
0.5  
0
A
= -2  
110  
V
1
100  
-40  
10  
60  
160  
1k  
10k  
100k  
1M  
10M  
Ambient Temperature (°C)  
Frequency (Hz)  
7
EL5191, EL5191A  
Typical Performance Curves (Continued)  
Closed Loop Output Impedance vs Frequency  
Supply Current vs Supply Voltage  
100  
10  
10  
8
1
6
0.1  
4
0.01  
2
0.001  
0
100  
1k  
10k 100k  
1M  
10M 100M  
1G  
200  
1
0
2
4
6
8
10  
12  
200  
1
Frequency (Hz)  
Supply Voltage (V)  
2nd and 3rd Harmonic Distortion vs Frequency  
Two-Tone 3rd Order  
Input Referred Intermodulation Intercept (IIP3)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
30  
25  
20  
15  
10  
5
A
V
= +2  
V
= 2V  
= 100Ω  
OUT  
P-P  
R
L
2nd Order  
Distortion  
0
3rd Order  
Distortion  
-5  
A
R
= +2  
= 100Ω  
-10  
-15  
V
L
1
10  
Frequency (MHz)  
100  
10  
100  
Frequency (MHz)  
Differential Gain/Phase vs DC Input  
Voltage at 3.58MHz  
Differential Gain/Phase vs DC Input  
Voltage at 3.58MHz  
0.03  
0.01  
0.03  
0.02  
0.01  
0
A
R
R
= 2  
A
R
R
= 1  
= 375Ω  
= 500Ω  
V
F
L
V
F
L
dP  
dG  
= R = 250Ω  
= 150Ω  
G
dP  
dG  
-0.01  
-0.03  
-0.05  
-0.01  
-0.02  
-0.03  
-0.04  
-1  
-0.5  
0
0.5  
-1  
-0.5  
0
0.5  
DC Input Voltage  
DC Input Voltage  
8
EL5191, EL5191A  
Typical Performance Curves (Continued)  
Output Voltage Swing vs Frequency  
THD < 1%  
Output Voltage Swing vs Frequency  
THD < 0.1%  
10  
8
10  
8
R
= 500Ω  
= 150Ω  
R
= 500Ω  
= 150Ω  
L
L
R
R
L
L
6
6
4
4
2
2
A
= 2  
A = 2  
V
V
0
0
1
10  
Frequency (MHz)  
100 200  
1
10  
100  
Frequency (MHz)  
Small Signal Step Response  
Large Signal Step Response  
V
= ±5V  
= 150Ω  
= 2  
S
V
= ±5V  
= 150Ω  
= 2  
S
R
A
R
L
V
F
R
A
R
L
V
F
= R = 250Ω  
G
= R = 250Ω  
G
200mV/div  
1V/div  
10ns/div  
10ns/div  
Transimpedance (ROI) Vs Temperature  
Settling Time vs Settling Accuracy  
375  
350  
325  
300  
275  
250  
225  
200  
25  
20  
15  
10  
5
A
R
= 2  
V
F
= R = 250Ω  
G
R = 150Ω  
L
V
= 5V  
output  
P-P  
STEP  
0
-40  
10  
60  
110  
160  
0.01  
0.1  
Settling Accuracy (%)  
1
Die Temperature (°C)  
9
EL5191, EL5191A  
Typical Performance Curves (Continued)  
PSRR and CMRR vs Temperature  
ICMR and IPSR vs Temperature  
ICMR+  
90  
70  
50  
30  
10  
2.5  
2
PSRR  
CMRR  
1.5  
1
IPSR  
0.5  
0
ICMR-  
-0.5  
-1  
-40  
10  
60  
Die Temperature (°C)  
110  
160  
160  
160  
-40  
10  
60  
110  
110  
110  
160  
160  
160  
Die Temperature (°C)  
Offset Voltage vs Temperature  
Input Current vs Temperature  
2
1
140  
120  
100  
80  
60  
IB+  
IB-  
40  
0
20  
0
-1  
-40  
-20  
-40  
10  
60  
110  
10  
60  
Die Temperature (°C)  
Temperature (°C)  
Positive Input Resistance vs Temperature  
Supply Current vs Temperature  
35  
30  
25  
20  
15  
10  
5
10  
9
0
-40  
8
-40  
10  
60  
110  
10  
60  
Temperature (°C)  
Temperature (°C)  
10  
EL5191, EL5191A  
Typical Performance Curves (Continued)  
Positive Output Swing vs Temperature for Various  
Loads  
Negative Output Swing vs Temperature for Various  
Loads  
4.2  
4.1  
4
-3.5  
-3.6  
-3.7  
-3.8  
-3.9  
-4  
150Ω  
1kΩ  
3.9  
3.8  
3.7  
3.6  
3.5  
1kΩ  
150Ω  
-4.1  
-4.2  
-40  
10  
60  
110  
160  
-40  
10  
60  
110  
160  
Temperature (°C)  
Temperature (°C)  
Output Current vs Temperature  
Slew Rate vs Temperature  
140  
135  
130  
125  
120  
115  
5000  
4500  
4000  
3500  
3000  
A
R
R
= 2  
V
F
L
= R = 250Ω  
= 150Ω  
G
Sink  
Source  
-40  
10  
60  
110  
160  
-40  
10  
60  
Die Temperature (°C)  
110  
160  
Die Temperature (°C)  
Enable Response  
Disable Response  
500mV/div  
5V/div  
500mV/div  
5V/div  
20ns/div  
400ns/div  
Typical Performance Curves (Continued)  
11  
EL5191, EL5191A  
JEDEC JESD51-7 HIGH EFFECTIVE  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
THERMAL CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
435mW  
909mW  
SO8  
SOT23-5/6  
0.8  
0.6  
0.4  
0.2  
0
θ
=230°C/W  
JA  
θ
=110°C/W  
JA  
0.05  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
JEDEC JESD51-3 LOW EFFECTIVE  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
391mW  
THERMAL CONDUCTIVITY TEST BOARD  
0.45  
0.4  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
625mW  
SO8  
θ
=160°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
12  
EL5191, EL5191A  
Pin Des criptions  
8-PIN SO  
5-PIN SOT-23 6-PIN SOT-23 PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
IN-  
4
4
Inverting input  
V
+
S
IN+  
IN-  
V
-
S
Circuit 1  
(See circuit 1)  
3
4
6
3
2
1
3
2
1
IN+  
Non-inverting input  
Negative supply  
Output  
V -  
S
OUT  
V
+
S
OUT  
V
-
S
+
-
Circuit 2  
7
8
5
6
5
V +  
S
Positive supply  
Chip enable  
CE  
V
S
CE  
V
S
Circuit 3  
13  
EL5191, EL5191A  
enabled when CE is 2V or less, and disabled when CE is  
Applications Information  
above 4V. Although the logic levels are not standard TTL,  
this choice of logic voltages allows the EL5191A to be  
enabled by tying CE to ground, even in 5V single supply  
applications. The CE pin can be driven from CMOS outputs.  
Product Des cription  
The EL5191 is a current-feedback operational amplifier that  
offers a wide -3dB bandwidth of 1GHz and a low supply  
current of 9mA per amplifier. The EL5191 works with supply  
voltages ranging from a single 5V to 10V and they are also  
capable of swinging to within 1V of either supply on the  
output. Because of their current-feedback topology, the  
EL5191 does not have the normal gain-bandwidth product  
associated with voltage-feedback operational amplifiers.  
Instead, its -3dB bandwidth to remain relatively constant as  
closed-loop gain is increased. This combination of high  
bandwidth and low power, together with aggressive pricing  
make the EL5191 the ideal choice for many low-power/high-  
bandwidth applications such as portable, handheld, or  
battery-powered equipment.  
Capacitance at the Inverting Input  
Any manufacturer’s high-speed voltage- or current-feedback  
amplifier can be affected by stray capacitance at the  
inverting input. For inverting gains, this parasitic capacitance  
has little effect because the inverting input is a virtual  
ground. But for non-inverting gains, this capacitance (in  
conjunction with the feedback and gain resistors) creates a  
pole in the feedback path of the amplifier. This pole, if low  
enough in frequency, has the same destabilizing effect as a  
zero in the forward open-loop response. The use of large  
value feedback and gain resistors exacerbates the problem  
by further lowering the pole frequency (increasing the  
possibility of oscillation.)  
For varying bandwidth needs, consider the EL5192 with  
600MHz on a 6mA supply current or the EL5193 with  
300MHz on a 4mA supply current. Versions include single,  
dual, and triple amp packages with 5-pin SOT-23, 16-pin  
QSOP, and 8-pin or 16-pin SO outlines.  
The EL5191 has been optimized with a 250feedback  
resistor. With the high bandwidth of these amplifiers, these  
resistor values might cause stability problems when  
combined with parasitic capacitance, thus ground plane is  
not recommended around the inverting input pin of the  
amplifier.  
Power Supply Bypas s ing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
Feedback Res is tor Values  
The EL5191 has been designed and specified at a gain of +2  
with R approximately 250. This value of feedback resistor  
F
gives 600MHz of -3dB bandwidth at A = 2 with about 2dB of  
V
peaking. With A = -2, that same R gives 450MHz of  
V
F
bandwidth with 0.6dB of peaking. Since the EL5191 is a  
current-feedback amplifier, it is also possible to change the  
value of R to get more bandwidth. As seen in the curve of  
F
Frequency Response for Various R and R , bandwidth and  
F
G
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. (See the  
Capacitance at the Inverting Input section) Even when  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
inductance. Use of sockets, particularly for the SO package,  
should be avoided if possible. Sockets add parasitic  
inductance and capacitance which will result in additional  
peaking and overshoot.  
peaking can be easily modified by varying the value of the  
feedback resistor.  
Because the EL5191 is a current-feedback amplifier, its  
gain-bandwidth product is not a constant for different closed-  
loop gains. This feature actually allows the EL5191 to  
maintain about the same -3dB bandwidth. As gain is  
increased, bandwidth decreases slightly while stability  
increases. Since the loop stability is improving with higher  
closed-loop gains, it becomes possible to reduce the value  
of R below the specified 250and still retain stability,  
F
resulting in only a slight loss of bandwidth with increased  
closed-loop gain.  
Dis able/Power-Down  
Supply Voltage Range and Single-Supply  
Operation  
The EL5191A amplifier can be disabled placing its output in  
a high impedance state. When disabled, the amplifier supply  
current is reduced to < 150µA. The EL5191A is disabled  
when its CE pin is pulled up to within 1V of the positive  
supply. Similarly, the amplifier is enabled by floating or  
pulling its CE pin to at least 3V below the positive supply. For  
±5V supply, this means that an EL5191A amplifier will be  
The EL5191 has been designed to operate with supply  
voltages having a span of greater than 5V and less than  
10V. In practical terms, this means that the EL5191 will  
operate on dual supplies ranging from ±2.5V to ±5V. With  
single-supply, the EL5191 will operate from 5V to 10V.  
14  
EL5191, EL5191A  
As supply voltages continue to decrease, it becomes  
Current Limiting  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5191 has an input range which extends to within 2V of  
either supply. So, for example, on ±5V supplies, the EL5191  
has an input range which spans ±3V. The output range of  
the EL5191 is also quite large, extending to within 1V of the  
supply rail. On a ±5V supply, the output is therefore capable  
of swinging from -4V to +4V. Single-supply output range is  
larger because of the increased negative swing due to the  
external pull-down resistor to ground.  
The EL5191 has no internal current-limiting circuitry. If the  
output is shorted, it is possible to exceed the Absolute  
Maximum Rating for output current or power dissipation,  
potentially resulting in the destruction of the device.  
Power Dis s ipation  
With the high output drive capability of the EL5191, it is  
possible to exceed the 125°C Absolute Maximum junction  
temperature under certain very high load current conditions.  
Generally speaking when R falls below about 25, it is  
L
important to calculate the maximum junction temperature  
Video Performance  
(T  
) for the application to determine if power supply  
JMAX  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150, because of the change in output current with DC  
level. Previously, good differential gain could only be  
achieved by running high idle currents through the output  
transistors (to reduce variations in output impedance.)  
These currents were typically comparable to the entire 9mA  
supply current of each EL5191 amplifier. Special circuitry  
has been incorporated in the EL5191 to reduce the variation  
of output impedance with current output. This results in dG  
and dP specifications of 0.035% and 0.04°, while driving  
150at a gain of 2.  
voltages, load conditions, or package type need to be  
modified for the EL5191 to remain in the safe operating area.  
These parameters are calculated as follows:  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
where:  
T
= Maximum ambient temperature  
MAX  
θ
= Thermal resistance of the package  
JA  
n = Number of amplifiers in the package  
PD = Maximum power dissipation of each amplifier in  
MAX  
the package  
Video performance has also been measured with a 500Ω  
load at a gain of +1. Under these conditions, the EL5191 has  
dG and dP specifications of 0.02% and 0.02°, respectively.  
PD for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
----------------------------  
PD  
= (2 × V × I  
) + (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
R
L
Output Drive Capability  
In spite of its low 9mA of supply current, the EL5191 is  
capable of providing a minimum of ±95mA of output current.  
With a minimum of ±95mA of output drive, the EL5191 is  
capable of driving 50loads to both rails, making it an  
excellent choice for driving isolation transformers in  
telecommunications applications.  
where:  
V = Supply voltage  
S
I
= Maximum supply current of 1A  
SMAX  
V
= Maximum output voltage (required)  
OUTMAX  
Driving Cables and Capacitive Loads  
R = Load resistance  
L
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5191 from the cable and allow extensive  
capacitive drive. However, other applications may have high  
capacitive loads without a back-termination resistor. In these  
applications, a small series resistor (usually between 5and  
50) can be placed in series with the output to eliminate  
most peaking. The gain resistor (R ) can then be chosen to  
G
make up for any gain loss which may be created by this  
additional resistor at the output. In many cases it is also  
possible to simply increase the value of the feedback  
resistor (R ) to reduce the peaking.  
F
15  
EL5191, EL5191A  
Typical Application Circuits  
0.1µF  
+5V  
IN+  
V
V
+
S
S
OUT  
IN-  
-
0.1µF  
-5V  
250Ω  
5Ω  
0.1µF  
+
V
OUT  
+5V  
IN+  
IN-  
V
V
S
5Ω  
OUT  
-
S
0.1µF  
-5V  
250Ω  
250Ω  
V
IN  
INVERTING 200mA OUTPUT CURRENT DISTRIBUTION AMPLIFIER  
250Ω  
250Ω  
0.1µF  
+
+5V  
IN+  
IN-  
V
V
S
OUT  
-
S
0.1µF  
250Ω  
250Ω  
-5V  
0.1µF  
+
+5V  
IN+  
IN-  
V
V
S
V
IN  
OUT  
V
OUT  
-
S
0.1µF  
-5V  
FAST-SETTLING PRECISION AMPLIFIER  
16  
EL5191, EL5191A  
Typical Application Circuits (Continued)  
0.1µF  
0.1µF  
+5V  
+5V  
IN+  
IN+  
V
V
+
-
V
V
+
S
S
OUT  
OUT  
IN-  
IN-  
-
S
S
0.1µF  
0.1µF  
-5V  
-5V  
0.1µF  
250Ω  
120Ω  
250Ω  
250Ω  
V
OUT  
+
0.1µF  
1kΩ  
1kΩ  
+5V  
IN+  
240Ω  
0.1µF  
+5V  
IN+  
V
V
+
S
0.1µF  
120Ω  
OUT  
V
V
+
-
S
V
OUT  
-
IN-  
OUT  
V
OUT  
-
S
IN-  
0.1µF  
S
-5V  
0.1µF  
-5V  
250Ω  
250Ω  
V
IN  
250Ω  
250Ω  
Transmitter  
Receiver  
DIFFERENTIAL LINE DRIVER/RECEIVER  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY