EL5210 [INTERSIL]

30MHz Rail-to-Rail Input-Output Op Amps; 30MHz的轨至轨输入输出运算放大器
EL5210
型号: EL5210
厂家: Intersil    Intersil
描述:

30MHz Rail-to-Rail Input-Output Op Amps
30MHz的轨至轨输入输出运算放大器

运算放大器
文件: 总13页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5210, EL5410  
®
Data Sheet  
May 6, 2005  
FN7185.2  
30MHz Rail-to-Rail Input-Output Op Amps  
Features  
The EL5210 and EL5410 are low power, high voltage rail-to-  
rail input-output amplifiers. The EL5210 contains two  
amplifiers in one package and the EL5410 contains four  
amplifiers. Operating on supplies ranging from 5V to 15V,  
while consuming only 2.5mA per amplifier, the EL5410 and  
EL5210 have a bandwidth of 30MHz (-3dB). They also  
provide common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply  
voltage.  
• 30MHz -3dB bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier) = 2.5mA  
• High slew rate = 33V/µs  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• Available in both standard and space-saving fine pitch  
packages  
The EL5410 and EL5210 also feature fast slewing and  
settling times, as well as a high output drive capability of  
30mA (sink and source). These features make these  
amplifiers ideal for high speed filtering and signal  
conditioning application. Other applications include battery  
power, portable devices, and anywhere low power  
consumption is important.  
Pb-Free available (RoHS compliant)  
Applications  
• Driver for A-to-D Converters  
• Data Acquisition  
The EL5410 is available in a space-saving 14-Pin TSSOP  
package, as well as the industry-standard 14-Pin SOIC. The  
EL5210 is available in the 8-Pin MSOP and 8-Pin SOIC  
packages. Both feature a standard operational amplifier pin  
out. These amplifiers operate over a temperature range of  
-40°C to +85°C.  
• Video Processing  
• Audio Processing  
• Active Filters  
• Test Equipment  
• Battery Powered Applications  
• Portable Equipment  
Pinouts  
EL5210  
(8-PIN MSOP, SOIC)  
TOP VIEW  
EL5410  
(14-PIN TSSOP, SOIC)  
TOP VIEW  
VOUTA  
VINA-  
VOUTD  
VIND-  
1
2
3
4
5
6
7
14  
13  
12  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
-
-
VINA+  
VIND+  
+
+
-
VOUTB  
VINB-  
VINB+  
+
VS+  
11 VS-  
-
+
VINB+  
VINC+  
10  
9
+
-
+
-
VINB-  
VINC-  
VOUTB  
VOUTC  
8
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003-2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5210, EL5410  
Ordering Information  
PART NUMBER  
PACKAGE TAPE & REEL PKG. DWG. #  
EL5210CS  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
-
7”  
13”  
-
MDP0027  
EL5210CS-T7  
EL5210CS-T13  
MDP0027  
MDP0027  
MDP0027  
EL5210CSZ  
(See Note)  
8-Pin SOIC  
(Pb-free)  
EL5210CSZ-T7  
(See Note)  
8-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5210CSZ-T13  
(See Note)  
8-Pin SOIC  
(Pb-free)  
13”  
EL5210CY  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL5210CY-T7  
EL5210CY-T13  
EL5210CYZ  
(See Note)  
8-Pin MSOP  
(Pb-free)  
EL5210CYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-free)  
7”  
MDP0043  
MDP0043  
EL5210CYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-free)  
13”  
EL5410CS  
14-Pin SOIC  
14-Pin SOIC  
14-Pin SOIC  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5410CS-T7  
EL5410CS-T13  
EL5410CSZ  
(See Note)  
14-Pin SOIC  
(Pb-free)  
EL5410CSZ-T7  
(See Note)  
14-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5410CSZ-T13 14-Pin SOIC  
13”  
(See Note)  
(Pb-free)  
EL5410CR  
14-Pin TSSOP  
14-Pin TSSOP  
14-Pin TSSOP  
-
7”  
13”  
-
MDP0044  
MDP0044  
MDP0044  
MDP0044  
EL5410CR-T7  
EL5410CR-T13  
EL5410CRZ  
(See Note)  
14-Pin TSSOP  
(Pb-free)  
EL5410CRZ-T7  
(See Note)  
14-Pin TSSOP  
(Pb-free)  
7”  
MDP0044  
MDP0044  
EL5410CRZ-T13 14-Pin TSSOP  
(See Note) (Pb-free)  
13”  
Add “-T” suffix for tape and reel.  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7185.2  
2
May 6, 2005  
EL5210, EL5410  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 1kand C = 12pF to 0V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 0V  
= 0V  
3
7
2
1
2
15  
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
60  
B
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
-4.8  
V
CMRR  
for V from -5.5V to 5.5V  
IN  
70  
80  
dB  
A
-4.5V V  
4.5V  
OUT  
65  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
-4.9  
4.9  
V
V
OL  
L
I = 5mA  
4.8  
60  
OH  
L
I
I
±120  
±30  
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from ±2.25V to ±7.75V  
80  
dB  
S
I
No Load  
2.5  
3.75  
mA  
S
-4.0V V  
4.0V, 20% to 80%  
33  
140  
30  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V Step  
S
V
O
BW  
-3dB Bandwidth  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
20  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz  
110  
0.12  
0.17  
dB  
%
d
d
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
OUT  
R
= R = 1kand V  
°
G
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
FN7185.2  
3
May 6, 2005  
EL5210, EL5410  
Electrical Specifications V + = 5V, V - = 0V, R = 1kand C = 12pF to 2.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 2.5V  
= 2.5V  
3
7
2
1
2
15  
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
60  
B
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
200  
V
CMRR  
for V from -0.5V to 5.5V  
IN  
66  
80  
dB  
A
0.5V V  
4.5V  
OUT  
65  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
100  
4.9  
mV  
V
OL  
L
I = 5mA  
4.8  
60  
OH  
L
I
I
±120  
±30  
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
S
I
No Load  
2.5  
3.75  
mA  
S
1V V  
4V, 20% o 80%  
33  
140  
30  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V Step  
S
V
O
BW  
-3dB Bandwidth  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
20  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz  
110  
0.30  
0.66  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
= R = 1kand V  
°
G
OUT  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
FN7185.2  
4
May 6, 2005  
EL5210, EL5410  
Electrical Specifications V + = 15V, V - = 0V, R = 1kand C = 12pF to 7.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 7.5V  
= 7.5V  
3
7
2
1
2
15  
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
60  
B
R
C
Input Impedance  
GΩ  
pF  
IN  
IN  
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
350  
V
CMRR  
for V from -0.5V to 15.5V  
IN  
72  
80  
dB  
A
0.5V V  
14.5V  
OUT  
65  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -7.5mA  
170  
14.83  
±120  
±30  
mV  
V
OL  
L
I = 7.5mA  
14.65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
60  
80  
dB  
S
I
No Load  
2.5  
3.75  
mA  
S
1V V  
14V, 20% o 80%  
33  
140  
30  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V Step  
S
V
O
BW  
-3dB Bandwidth  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
20  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz  
110  
0.10  
0.11  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
G
OUT  
OUT  
= R = 1kand V  
°
F
G
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
3. NTSC signal generator used  
FN7185.2  
5
May 6, 2005  
EL5210, EL5410  
Typical Performance Curves  
EL5410 Input Offset Voltage Drift  
EL5410 Input Offset Voltage Distribution  
500  
25  
20  
15  
10  
5
V
=±5V  
S
Typical  
Production  
Distortion  
Typical  
Production  
Distortion  
V
T
=±5V  
=25°C  
S
A
400  
300  
200  
100  
0
0
Input Offset Voltage Drift, TCV  
OS  
(µV/°C)  
Input Offset Voltage (mV)  
Input Offset Voltage vs Temperature  
Input Bias Current vs Temperature  
0.008  
0.004  
0
5
4
3
2
1
0
V
=±5V  
S
-0.004  
-0.008  
-0.012  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
Output Low Voltage vs Temperature  
Output High Voltage vs Temperature  
-4.85  
-4.87  
-4.89  
-4.91  
-4.93  
-4.95  
4.96  
4.95  
4.94  
4.93  
4.92  
4.91  
V
=±5V  
=5mA  
V
I
=±5V  
S
S
I
=5mA  
OUT  
OUT  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
FN7185.2  
May 6, 2005  
6
EL5210, EL5410  
Typical Performance Curves (Continued)  
Open-Loop Gain vs Temperature  
90  
Slew Rate vs Temperature  
33.85  
33.80  
33.75  
33.70  
33.65  
33.60  
33.55  
V
=±5V  
S
V
=±5V  
S
L
85  
80  
75  
70  
R =1kΩ  
-40  
0
40  
80  
120  
160  
150  
10  
-50  
-10  
30  
70  
110  
150  
Temperature (°C)  
Temperature (°C)  
EL5410 Supply Current per Amplifier vs Supply Voltage  
EL5410 Supply Current per Amplifier vs Temperature  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.7  
2.65  
2.6  
T
=25°C  
A
V
=±5V  
S
2.55  
2.5  
2.45  
2.4  
-50  
-10  
30  
70  
110  
4
8
12  
16  
20  
Supply Voltage (V)  
Temperature (°C)  
Differential Gain and Phase  
Harmonic Distortion vs V  
OP-P  
0.25  
0.15  
0.05  
-0.05  
-30  
-40  
-50  
-60  
-70  
-80  
V
A
=±5V  
S
=2  
V
V
A
=±5V  
=1  
S
V
R =1kΩ  
L
HD3  
R =1k  
L
IN  
F
= 1MHz  
0
100  
200  
HD2  
0.20  
0.10  
0
-0.10  
0
100  
IRE  
200  
0
2
4
6
8
V
(V)  
OP-P  
FN7185.2  
7
May 6, 2005  
EL5210, EL5410  
Typical Performance Curves (Continued)  
Open Loop Gain and Phase vs Frequency  
140  
Frequency Response for Various R  
L
250  
150  
50  
5
3
Phase  
10kΩ  
1kΩ  
100  
60  
1
0
560Ω  
-50  
20  
-1  
Gain  
A
V
=1  
=±5V  
V
S
V
=±5V T =25°C  
A
L
L
S
-150  
-20  
-3  
-5  
150Ω  
C =12pF  
R =1kto GND  
C =12pF to GND  
L
-250  
-60  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1M  
100M  
100k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Frequency Response for Various C  
Closed Loop Output Impedance vs Frequency  
L
20  
10  
200  
160  
120  
80  
100pF  
A
=1  
=±5V  
=25°C  
V
1000pF  
V
S
A
T
47pF  
10pF  
0
-10  
-20  
-30  
R =1kΩ  
L
A
V
=1  
=±5V  
V
S
40  
0
10k  
100k  
1M  
10M  
30M  
1M  
100M  
100k  
10M  
Frequency (Hz)  
Frequency (Hz)  
Maximum Output Swing vs Frequency  
CMRR vs Frequency  
80  
70  
60  
50  
40  
30  
10  
8
6
V
T
A
=±5V  
=25°C  
S
A
4
=1  
V
R =1kΩ  
C =12pF  
Distortion <1%  
L
L
V
T
=±5V  
=25°C  
S
A
2
0
10  
100  
1k  
10k  
100k  
1M  
10M 30M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
FN7185.2  
May 6, 2005  
8
EL5210, EL5410  
Typical Performance Curves (Continued)  
Input Voltage Noise Spectral Density vs Frequency  
PSRR vs Frequency  
80  
1000  
100  
PSRR+  
PSRR-  
60  
40  
10  
1
V
T
=±5V  
=25°C  
S
A
20  
0
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
10M  
Frequency (Hz)  
Frequency (Hz)  
Total Harmonic Distortion + Noise vs Frequency  
Channel Separation vs Frequency Response  
-60  
-80  
0.010  
0.008  
0.006  
0.004  
0.002  
0
Dual measured Channel A to B  
Quad measured Channel A to D or B to C  
Other combinations yield improved rejection  
-100  
-120  
-140  
-160  
V
=±5V  
S
V
=±5V  
S
L
R =1kΩ  
A
V
L
V
R =1kΩ  
A
V
=1  
=1  
V
=0.5V  
IN  
RMS  
=110mV  
IN  
RMS  
1k  
10k  
100k  
1M  
10M 30M  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Small-Signal Overshoot vs Load Capacitance  
Settling Time vs Step Size  
5
100  
80  
60  
40  
20  
0
V =±5V  
S
V
A
=±5V  
S
4
3
A =1  
=1  
V
V
R =1k  
R =1kΩ  
L
L
0.1%  
C =12pF  
V
T
=±50mV  
=25°C  
L
A
IN  
T
=25°C  
2
A
1
0
-1  
-2  
-3  
-4  
-5  
0.1%  
210  
70  
90  
110  
130  
150  
170  
190  
230  
10  
100  
1000  
Load Capacitance (pF)  
Settling Time (ns)  
FN7185.2  
9
May 6, 2005  
EL5210, EL5410  
Typical Performance Curves (Continued)  
Large Signal Transient Response  
Small Signal Transient Response  
50mV  
1V  
200ns  
100ns  
V
T
A
=±5V  
=25°C  
S
A
=1  
V
R =1kΩ  
C =12pF  
L
L
V
T
A
=±5V  
=25°C  
S
A
=1  
V
R =1kΩ  
C =12pF  
L
L
Pin Des criptions  
EL5210  
EL5410  
NAME  
FUNCTION  
Amplifier A Output  
EQUIVALENT CIRCUIT  
1
1
V
OUTA  
V
+
S
V
-
S
GND  
Circuit 1  
2
2
V
-
Amplifier A Inverting Input  
INA  
V
+
S
V
-
S
Circuit 2  
3
8
5
6
7
3
4
V
+
Amplifier A Non-Inverting Input  
Positive Power Supply  
(Reference Circuit 2)  
INA  
V +  
S
5
V
+
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
INB  
6
V
-
INB  
7
V
V
OUTB  
OUTC  
8
Amplifier C Output  
9
V
-
Amplifier C Inverting Input  
Amplifier C Non-Inverting Input  
Negative Power Supply  
Amplifier D Non-Inverting Input  
Amplifier D Inverting Input  
Amplifier D Output  
INC  
10  
11  
12  
13  
14  
V
+
INC  
4
V -  
S
V
+
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
IND  
V
-
IND  
V
OUTD  
FN7185.2  
10  
May 6, 2005  
EL5210, EL5410  
output continuous current never exceeds ±30mA. This limit  
is set by the design of the internal metal interconnects.  
Applications Information  
Product Des cription  
Output Phas e Revers al  
The EL5210 and EL5410 voltage feedback amplifiers are  
fabricated using a high voltage CMOS process. They exhibit  
Rail-to-Rail input and output capability, are unity gain stable  
and have low power consumption (2.5mA per amplifier).  
These features make the EL5210 and EL5410 ideal for a  
wide range of general-purpose applications. Connected in  
voltage follower mode and driving a load of 1kand 12pF,  
the EL5210 and EL5410 have a -3dB bandwidth of 30MHz  
while maintaining a 33V/µS slew rate. The EL5210 is a dual  
amplifier while the EL5410 is a quad amplifier.  
The EL5210 and EL5410 are immune to phase reversal as  
long as the input voltage is limited from V - -0.5V to V +  
S
S
+0.5V. Figure 2 shows a photo of the output of the device  
with the input voltage driven beyond the supply rails.  
Although the device's output will not change phase, the  
input's overvoltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diodes placed in the input stage of the device  
begin to conduct and overvoltage damage could occur.  
Operating Voltage, Input, and Output  
1V  
10µs  
The EL5210 and EL5410 are specified with a single nominal  
supply voltage from 5V to 15V or a split supply with its total  
range from 5V to 15V. Correct operation is guaranteed for a  
supply range of 4.5V to 16.5V. Most EL5210 and EL5410  
specifications are stable over both the full supply range and  
operating temperatures of -40°C to +85°C. Parameter  
variations with operating voltage and/or temperature are  
shown in the typical performance curves.  
V
T
A
V
=±2.5V  
=25°C  
S
A
=1  
V
=6V  
IN  
P-P  
The input common-mode voltage range of the EL5210 and  
EL5410 extends 500mV beyond the supply rails. The output  
swings of the EL5210 and EL5410 typically extend to within  
100mV of positive and negative supply rails with load  
currents of 5mA. Decreasing load currents will extend the  
output voltage range even closer to the supply rails. Figure 1  
shows the input and output waveforms for the device in the  
unity-gain configuration. Operation is from ±5V supply with a  
1V  
FIGURE 2. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dis s ipation  
With the high-output drive capability of the EL5210 and  
EL5410 amplifiers, it is possible to exceed the 125°C  
'absolute-maximum junction temperature' under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
amplifier to remain in the safe operating area.  
1kload connected to GND. The input is a 10V  
sinusoid.  
P-P  
The output voltage is approximately  
9.8V  
.
P-P  
5V  
10µs  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
V
T
A
V
=±5V  
=25°C  
S
A
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
=1  
V
JA  
=10V  
IN  
P-P  
Where:  
T
T
= Maximum Junction Temperature  
= Maximum Ambient Temperature  
= Thermal Resistance of the Package  
JMAX  
5V  
AMAX  
Θ
JA  
FIGURE 1. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
P
= Maximum Power Dissipation in the Package.  
DMAX  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
Short Circuit Current Limit  
The EL5210 and EL5410 will limit the short circuit current to  
±120mA if the output is directly shorted to the positive or the  
negative supply. If an output is shorted indefinitely, the  
power dissipation could easily increase such that the device  
may be damaged. Maximum reliability is maintained if the  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
FN7185.2  
May 6, 2005  
11  
EL5210, EL5410  
when sourcing, and  
Packages Mounted on a JEDEC JESD51-3 Low Effective  
Thermal Conductivity Test Board  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
1200  
DMAX  
S
SMAX  
OUT  
S
MAX T =125°C  
J
1000  
800  
600  
400  
200  
0
when sinking.  
Where:  
SO14  
=120°C/W  
θ
JA  
833mW  
606mW  
i = 1 to 2 for Dual and 1 to 4 for Quad  
V = Total Supply Voltage  
TSSOP14  
=165°C/W  
625mW  
θ
JA  
485mW  
S
SO8  
θ
=160°C/W  
JA  
I
= Maximum Supply Current Per Amplifier  
SMAX  
MSOP8  
θ
=206°C/W  
JA  
V
i = Maximum Output Voltage of the Application  
OUT  
I
i = Load current  
0
25  
50  
75 85  
100  
125  
150  
LOAD  
Ambient Temperature (°C)  
If we set the two P  
can solve for R  
LOAD  
equations equal to each other, we  
i to avoid device overheat. Figure 3 and  
DMAX  
FIGURE 4. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
Figure 4 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
Unus ed Amplifiers  
It is recommended that any unused amplifiers in a dual and  
a quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
simple matter to see if P  
exceeds the device's power  
DMAX  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves shown in  
Figure 3 and Figure 4.  
Driving Capacitive Loads  
The EL5210 and EL5410 can drive a wide range of  
capacitive loads. As load capacitance increases, however,  
the -3dB bandwidth of the device will decrease and the  
peaking increase. The amplifiers drive 10pF loads in parallel  
with 1kwith just 1.2dB of peaking, and 100pF with 6.5dB of  
peaking. If less peaking is desired in these applications, a  
small series resistor (usually between 5and 50) can be  
placed in series with the output. However, this will obviously  
reduce the gain slightly. Another method of reducing peaking  
is to add a "snubber" circuit at the output. A snubber is a  
shunt load consisting of a resistor in series with a capacitor.  
Values of 150and 10nF are typical. The advantage of a  
snubber is that it does not draw any DC load current or  
reduce the gain.  
Packages Mounted on a JEDEC JESD51-7 High Effective  
Thermal Conductivity Test Board  
1200  
1.136W  
MAX T =125°C  
J
1.0W  
909mW  
1000  
800  
600  
400  
200  
0
833mW  
SO14  
=88°C/W  
θ
SO8  
JA  
θ
=110°C/W  
JA  
TSSOP14  
MSOP8  
θ
=100°C/W  
JA  
θ
=115°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Supply Bypas s ing and Printed Circuit  
Board Layout  
FIGURE 3. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
The EL5210 and EL5410 can provide gain at high  
frequency. As with any high-frequency device, good printed  
circuit board layout is necessary for optimum performance.  
Ground plane construction is highly recommended, lead  
lengths should be as short as possible and the power supply  
pins must be well bypassed to reduce the risk of oscillation.  
For normal single supply operation, where the V - pin is  
S
connected to ground, a 0.1µF ceramic capacitor should be  
placed from V + to pin to V - pin. A 4.7µF tantalum  
S
S
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
be used.  
FN7185.2  
12  
May 6, 2005  
EL5210, EL5410  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7185.2  
13  
May 6, 2005  

相关型号:

EL5210C

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CS

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CS

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CS-T13

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CS-T13

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CS-T7

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ-T13

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CSZ-T7

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CY

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5210CY

30MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5210CY-T13

30MHz Rail-to-Rail Input-Output Op Amps
ELANTEC