EL5211IYE-T13 [INTERSIL]

60MHz Rail-to-Rail Input-Output Op Amps; 60MHz的轨至轨输入输出运算放大器
EL5211IYE-T13
型号: EL5211IYE-T13
厂家: Intersil    Intersil
描述:

60MHz Rail-to-Rail Input-Output Op Amps
60MHz的轨至轨输入输出运算放大器

运算放大器
文件: 总12页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5111, EL5211, EL5411  
®
Data Sheet  
October 29, 2004  
FN7119.4  
60MHz Rail-to-Rail Input-Output Op Amps  
Features  
• Pb-Free Available (RoHS Compliant)  
The EL5111, EL5211, and EL5411 are low power, high  
voltage rail-to-rail input-output amplifiers. The EL5111  
represents a single amplifier, the EL5211 contains two  
amplifiers, and the EL5411 contains four amplifiers.  
Operating on supplies ranging from 5V to 15V, while  
consuming only 2.5mA per amplifier, the EL5111, EL5211,  
and EL5411 have a bandwidth of 60MHz (-3dB). They also  
provide common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply  
voltage.  
• 60MHz -3dB bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier) = 2.5mA  
• High slew rate = 75V/µs  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• ±180mA output short current  
The EL5111, EL5211, and EL5411 also feature fast slewing  
and settling times, as well as a high output drive capability of  
65mA (sink and source). These features make these  
amplifiers ideal for high speed filtering and signal  
conditioning application. Other applications include battery  
power, portable devices, and anywhere low power  
consumption is important.  
Applications  
• TFT-LCD panels  
• V  
COM  
amplifiers  
• Drivers for A-to-D converters  
• Data acquisition  
The EL5111 is available in 5-pin TSOT and 8-pin HMSOP  
packages. The EL5211 is available in the 8-pin HMSOP  
package. The EL5411 is available in space-saving 14-pin  
HTSSOP packages. All feature a standard operational  
amplifier pinout. These amplifiers operate over a temperature  
range of -40°C to +85°C.  
• Video processing  
• Audio processing  
• Active filters  
Test equipment  
• Battery-powered applications  
• Portable equipment  
Pinouts  
EL5111  
(8-PIN HMSOP)  
TOP VIEW  
EL5111  
EL5211  
(8-PIN HMSOP)  
TOP VIEW  
EL5411  
(5-PIN TSOT)  
TOP VIEW  
(14-PIN HTSSOP)  
TOP VIEW  
NC  
VIN-  
VIN+  
VS-  
1
2
3
4
8
7
6
5
NC  
VOUT 1  
5
4
VS+  
VIN-  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
VOUTA 1  
14 VOUTD  
VS+  
VOUT  
NC  
VS-  
2
3
-
+
VOUTB  
VINB-  
VINB+  
VINA-  
VINA+  
VS+  
2
3
4
5
6
7
13 VIND-  
12 VIND+  
11 VS-  
-
+
+
-
-
-
VIN+  
-
+
+
+
VINB+  
VINB-  
VOUTB  
10 VINC+  
+
-
+
-
9
8
VINC-  
VOUTC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
1
Copyright © Intersil Americas Inc. 2004. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.  
EL5111, EL5211, EL5411  
Ordering Information  
TAPE &  
REEL  
PART NUMBER  
EL5111IWT-T7  
EL5111IWT-T7A  
PACKAGE  
5-Pin TSOT  
5-Pin TSOT  
PKG. DWG. #  
MDP0049  
MDP0049  
MDP0049  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
EL5111IWTZ-T7  
(Note)  
5-Pin TSOT  
(Pb-Free)  
EL5111IWTZ-T7A  
(Note)  
5-Pin TSOT  
(Pb-Free)  
7” (250 pcs)  
MDP0049  
EL5111IYE  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
-
7”  
13”  
-
MDP0050  
MDP0050  
MDP0050  
MDP0050  
EL5111IYE-T7  
EL5111IYE-T13  
EL5111IYEZ  
(See Note)  
8-Pin HMSOP  
(Pb-free)  
EL5111IYEZ-T7  
(See Note)  
8-Pin HMSOP  
(Pb-free)  
7”  
MDP0050  
MDP0050  
EL5111IYEZ-T13  
(See Note)  
8-Pin HMSOP  
(Pb-free)  
13”  
EL5211IYE  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
-
7”  
13”  
-
MDP0050  
MDP0050  
MDP0050  
MDP0050  
EL5211IYE-T7  
EL5211IYE-T13  
EL5211IYEZ  
(Note)  
8-Pin HMSOP  
(Pb-Free)  
EL5211IYEZ-T7  
(Note)  
8-Pin HMSOP  
(Pb-Free)  
7”  
13”  
-
MDP0050  
MDP0050  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5211IYEZ-T13  
(Note)  
8-Pin HMSOP  
(Pb-Free)  
EL5411IRE  
14-Pin  
HTSSOP  
EL5411IRE-T7  
EL5411IRE-T13  
14-Pin  
HTSSOP  
7”  
13”  
-
14-Pin  
HTSSOP  
EL5411IREZ  
(Note)  
14-Pin  
HTSSOP  
(Pb-Free)  
EL5411IREZ-T7  
(Note)  
14-Pin  
7”  
MDP0048  
MDP0048  
HTSSOP  
(Pb-Free)  
EL5411IREZ-T13  
(Note)  
14-Pin  
HTSSOP  
(Pb-Free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
FN7119.4  
2
EL5111, EL5211, EL5411  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 65mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 1kto 0V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 0V  
= 0V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
TCV  
CM  
CM  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
60  
B
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
V
CMRR  
for V from -5.5V to 5.5V  
IN  
70  
70  
dB  
A
-4.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-Circuit Current  
Output Current  
I = -5mA  
-4.92  
4.92  
±180  
±65  
-4.85  
V
V
OL  
L
I = 5mA  
4.85  
60  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from ±2.25V to ±7.75V  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
-4.0V V  
4.0V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz (EL5211 & EL5411 only)  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
G
OUT  
= R = 1kand V  
°
F
G
OUT  
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
3. NTSC signal generator used.  
FN7119.4  
3
Electrical Specifications V + = +5V, V - = 0V, R = 1kto 2.5V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 2.5V  
= 2.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
TCV  
CM  
CM  
Average Offset Voltage Drift (Note 4)  
Input Bias Current  
OS  
I
60  
B
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
150  
V
CMRR  
for V from -0.5V to 5.5V  
IN  
66  
70  
dB  
A
0.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
4.85  
60  
4.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 5)  
1V V  
4V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 6)  
Differential Phase (Note 6)  
f = 5MHz (EL5211 & EL5411 only)  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
= R = 1kand V  
°
G
OUT  
NOTES:  
4. Measured over operating temperature range.  
5. Slew rate is measured on rising and falling edges.  
6. NTSC signal generator used.  
Electrical Specifications V + = +15V, V - = 0V, R = 1kto 7.5V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
= 7.5V  
3
7
2
1
mV  
µV/°C  
nA  
OS  
TCV  
CM  
CM  
Average Offset Voltage Drift (Note 7)  
Input Bias Current  
OS  
I
V
60  
B
R
Input Impedance  
GΩ  
IN  
FN7119.4  
4
Electrical Specifications V + = +15V, V - = 0V, R = 1kto 7.5V, T = 25°C, Unless Otherwise Specified (Continued)  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
pF  
C
Input Capacitance  
2
IN  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
V
CMRR  
for V from -0.5V to 15.5V  
IN  
72  
70  
dB  
dB  
A
0.5V V  
14.5V  
OUT  
62  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
150  
mV  
V
OL  
L
I = 5mA  
14.85  
60  
14.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 8)  
1V V  
14V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 9)  
Differential Phase (Note 9)  
f = 5MHz (EL5211 & EL5411 only)  
110  
0.16  
0.22  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
= R = 1kand V  
°
G
OUT  
NOTES:  
7. Measured over operating temperature range  
8. Slew rate is measured on rising and falling edges  
9. NTSC signal generator used  
FN7119.4  
5
Typical Performance Curves  
500  
25  
20  
15  
10  
5
V =±5V  
TYPICAL  
V =±5V  
TYPICAL  
S
S
T =25°C  
PRODUCTION  
DISTRIBUTION  
PRODUCTION  
DISTRIBUTION  
A
400  
300  
200  
100  
0
0
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT, TCV  
(µV/°C)  
OS  
FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 2. INPUT OFFSET VOLTAGE DRIFT  
2
1.5  
1
0.008  
V =±5V  
S
0.004  
0
0.5  
0
-0.004  
-0.008  
-0.012  
-0.5  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4.96  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
-4.85  
V =±5V  
V =±5V  
S
S
I
=5mA  
OUT  
I
=5mA  
OUT  
-4.87  
-4.89  
-4.91  
-4.93  
-4.95  
4.94  
4.92  
4.90  
4.88  
4.86  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FN7119.4  
6
Typical Performance Curves (Continued)  
75  
78  
77  
76  
75  
74  
73  
72  
V =±5V  
V =±5V  
S
S
R =1kΩ  
L
70  
65  
60  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. OPEN-LOOP GAIN vs TEMPERATURE  
2.9  
FIGURE 8. SLEW RATE vs TEMPERATURE  
2.7  
T =25°C  
V =±5V  
S
A
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
4
8
12  
16  
20  
-50  
-10  
30  
70  
110  
150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY  
VOLTAGE  
FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0.3  
0.25  
0.2  
0.15  
0.1  
-0.12  
-0.14 V =±5V  
S
0.05  
0
A =2  
V
-0.16  
-0.18  
R =1kΩ  
L
0
100  
IRE  
200  
0
100  
IRE  
200  
FIGURE 11. DIFFERENTIAL GAIN  
FIGURE 12. DIFFERENTIAL PHASE  
FN7119.4  
7
Typical Performance Curves (Continued)  
-30  
80  
60  
40  
20  
0
250  
190  
130  
70  
V =±5V  
S
A =2  
-40  
-50  
-60  
-70  
-80  
-90  
V
R =1kΩ  
L
GAIN  
FREQ=1MHz  
2nd HD  
PHASE  
10  
3rd HD  
4
-20  
-50  
0
2
6
8
10  
1K  
10K  
100K  
1M  
10M  
100M  
V
(V)  
FREQUENCY (Hz)  
OP-P  
FIGURE 13. HARMONIC DISTORTION vs V  
FIGURE 14. OPEN LOOP GAIN AND PHASE  
25  
OP-P  
5
V =±5V  
S
100pF  
A =1  
V
1000pF  
15  
C
=0pF  
3
1
LOAD  
1kΩ  
47pF  
10pF  
5
-5  
-1  
-3  
-5  
560Ω  
150Ω  
V =±5V  
S
-15  
-25  
A =1  
V
R =1kΩ  
L
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS C  
L
L
400  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
6
4
V =±5V  
S
A =1  
V
2
R =1kΩ  
L
DISTORTION <1%  
0
0
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FIGURE 17. CLOSED LOOP OUTPUT IMPEDANCE  
FIGURE 18. MAXIMUM OUTPUT SWING vs FREQUENCY  
FN7119.4  
8
Typical Performance Curves (Continued)  
-15  
-25  
-35  
-45  
-55  
-65  
-80  
-60  
-40  
-20  
0
PSRR+  
PSRR-  
V =±5V  
S
T =25°C  
A
1K  
10K  
100K  
1M  
10M  
100M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. CMRR  
FIGURE 20. PSRR  
-60  
-80  
1K  
DUAL MEASURED CH A TO B  
QUAD MEASURED CH A TO D OR B TO C  
OTHER COMBINATIONS YIELD  
IMPROVED REJECTION  
100  
10  
1
-100  
-120  
-140  
-160  
V =±5V  
S
R =1kΩ  
L
A =1  
V
IN  
V
=110mV  
RMS  
100  
1K  
10K  
100K  
1M  
10M  
100M  
1K  
10K  
100K  
FREQUENCY (Hz)  
1M  
10M  
30M  
FREQUENCY (Hz)  
FIGURE 21. INPUT VOLTAGE NOISE SPECTRAL DENSITY  
100  
FIGURE 22. CHANNEL SEPARATION  
5
4
3
2
1
V =±5V  
S
V =±5V  
S
A =1  
V
A =1  
V
R =1kΩ  
R =1kΩ  
L
80  
60  
40  
20  
0
L
0.1%  
V
=±50mV  
IN  
T =25°C  
A
0
-1  
-2  
-3  
-4  
-5  
0.1%  
10  
100  
1K  
55  
65  
75  
85  
95  
105  
LOAD CAPACITANCE (pF)  
SETTLING TIME (ns)  
FIGURE 23. SMALL-SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 24. SETTLING TIME vs STEP SIZE  
FN7119.4  
9
Typical Performance Curves (Continued)  
V =±5V  
S
V =±5V  
S
T =25°C  
A
T =25°C  
A
A =1  
V
A =1  
V
R =1kΩ  
R =1kΩ  
L
L
100mV STEP  
1V STEP  
50ns/DIV  
50ns/DIV  
FIGURE 25. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 26. SMALL SIGNAL TRANSIENT RESPONSE  
Pin Descriptions  
EL5111  
EL5111  
EL5211  
EL5411  
(TSOT-5)  
(HMSOP8) (HMSOP8) ( HTSSOP14)  
NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1
6
1
1
VOUTA Amplifier A output  
V
S+  
V
S-  
GND  
CIRCUIT 1  
4
2
2
2
VINA-  
Amplifier A inverting input  
V
V
S+  
S-  
CIRCUIT 2  
(Reference Circuit 2)  
3
5
3
7
3
8
5
6
7
3
4
VINA+  
VS+  
Amplifier A non-inverting input  
Positive power supply  
5
VINB+  
VINB-  
Amplifier B non-inverting input  
Amplifier B inverting input  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
VOUTB Amplifier B output  
VOUTC Amplifier C output  
8
9
VINC-  
VINC+  
VS-  
Amplifier C inverting input  
10  
11  
12  
13  
14  
Amplifier C non-inverting input  
Negative power supply  
2
4
4
VIND+  
VIND-  
Amplifier D non-inverting input  
Amplifier D inverting input  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
VOUTD Amplifier D output  
NC Not connected  
1, 5, 8  
FN7119.4  
10  
indefinitely, the power dissipation could easily increase such  
that the device may be damaged. Maximum reliability is  
maintained if the output continuous current never exceeds  
±65mA. This limit is set by the design of the internal metal  
interconnects.  
Applications Information  
Product Description  
The EL5111, EL5211, and EL5411 voltage feedback  
amplifiers are fabricated using a high voltage CMOS  
process. They exhibit rail-to-rail input and output capability,  
are unity gain stable and have low power consumption  
(2.5mA per amplifier). These features make the EL5111,  
EL5211, and EL5411 ideal for a wide range of general-  
purpose applications. Connected in voltage follower mode  
and driving a load of 1k, the EL5111, EL5211, and EL5411  
have a -3dB bandwidth of 60MHz while maintaining a 75V/µs  
slew rate. The EL5111 is a single amplifier, the EL5211 a  
dual amplifier, and the EL5411 a quad amplifier.  
Output Phase Reversal  
The EL5111, EL5211, and EL5411 are immune to phase  
reversal as long as the input voltage is limited from V - -0.5V  
S
to V + +0.5V. Figure 28 shows a photo of the output of the  
S
device with the input voltage driven beyond the supply rails.  
Although the device's output will not change phase, the  
input's overvoltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diodes placed in the input stage of the device  
begin to conduct and overvoltage damage could occur.  
Operating Voltage, Input, and Output  
The EL5111, EL5211, and EL5411 are specified with a single  
nominal supply voltage from 5V to 15V or a split supply with  
its total range from 5V to 15V. Correct operation is  
guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5111, EL5211, and EL5411 specifications are stable over  
both the full supply range and operating temperatures of  
-40°C to +85°C. Parameter variations with operating voltage  
and/or temperature are shown in the typical performance  
curves.  
V
= ±2.5V, T = 25°C, A = 1, V = 6V  
IN P-P  
S
A
V
1V  
10µs  
The input common-mode voltage range of the EL5111,  
EL5211, and EL5411 extends 500mV beyond the supply  
rails. The output swings of the EL5111, EL5211, and EL5411  
typically extend to within 100mV of positive and negative  
supply rails with load currents of 5mA. Decreasing load  
currents will extend the output voltage range even closer to  
the supply rails. Figure 27 shows the input and output  
waveforms for the device in the unity-gain configuration.  
Operation is from ±5V supply with a 1kload connected to  
1V  
FIGURE 28. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dissipation  
With the high-output drive capability of the EL5111, EL5211,  
and EL5411 amplifiers, it is possible to exceed the 125°C  
'absolute-maximum junction temperature' under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
amplifier to remain in the safe operating area.  
GND. The input is a 10V  
sinusoid. The output voltage is  
P-P  
approximately 9.8V  
.
P-P  
V
= ±5V, T = 25°C, A = 1, V = 10V  
IN P-P  
S
A
V
5V  
10µs  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
JA  
where:  
5V  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
FIGURE 27. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
Θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
Short Circuit Current Limit  
The EL5111, EL5211, and EL5411 will limit the short circuit  
current to ±180mA if the output is directly shorted to the  
positive or the negative supply. If an output is shorted  
FN7119.4  
11  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD -  
HTSSOP EXPOSED DIEPAD SOLDERED TO  
PCB PER JESD51-5  
3.5  
3
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
2.632W  
when sourcing, and:  
2.5  
2
HTSSOP14  
JA  
θ
=38°C/W  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
1.5  
1
when sinking,  
where:  
0.5  
0
• i = 1 to 2 for dual and 1 to 4 for quad  
• V = Total supply voltage  
0
25  
50  
75 85 100  
125  
S
AMBIENT TEMPERATURE (°C)  
• I  
SMAX  
= Maximum supply current per amplifier  
FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
• V  
i = Maximum output voltage of the application  
OUT  
Unused Amplifiers  
• I  
i = Load current  
LOAD  
It is recommended that any unused amplifiers in a dual and  
a quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
If we set the two P  
equations equal to each other, we  
i to avoid device overheat. Figures 29,  
DMAX  
can solve for R  
LOAD  
30, and 31 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
Power Supply Bypassing and Printed Circuit  
Board Layout  
simple matter to see if P  
exceeds the device's power  
DMAX  
The EL5111, EL5211, and EL5411 can provide gain at high  
frequency. As with any high-frequency device, good printed  
circuit board layout is necessary for optimum performance.  
Ground plane construction is highly recommended, lead  
lengths should be as short as possible and the power supply  
pins must be well bypassed to reduce the risk of oscillation.  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves shown in  
Figures 29, 30 & 31.  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
For normal single supply operation, where the V - pin is  
CONDUCTIVITY TEST BOARD  
0.9  
S
connected to ground, a 0.1µF ceramic capacitor should be  
0.8  
placed from V + to pin to V - pin. A 4.7µF tantalum  
S
S
694mW  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
HTSSOP14  
=144°C/W  
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used.  
θ
JA  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
FIGURE 29. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7119.4  
12  

相关型号:

EL5211IYE-T7

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYEZ

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYEZ-T13

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYEZ-T7

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYEZ-T7

60MHz Rail-to-Rail Input-Output Op Amps; MSOP8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5211IYZ

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYZ-T13

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211IYZ-T7

60MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5211T

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TILZ-T13

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TIYEZ

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TIYEZ-T13

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL