EL5211T [INTERSIL]

60MHz Rail-to-Rail Input-Output Operational Amplifier; 60MHz的轨至轨输入输出运算放大器
EL5211T
型号: EL5211T
厂家: Intersil    Intersil
描述:

60MHz Rail-to-Rail Input-Output Operational Amplifier
60MHz的轨至轨输入输出运算放大器

运算放大器
文件: 总15页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
60MHz Rail-to-Rail Input-Output Operational Amplifier  
EL5211T  
Features  
• 60MHz (-3dB) Bandwidth  
The EL5211T is a high voltage rail-to-rail input-output  
amplifier with low power consumption. The EL5211T  
contains two amplifiers. Each amplifier exhibits beyond  
the rail input capability, rail-to-rail output capability and  
is unity gain stable.  
• 4.5V to 19V Maximum Supply Voltage Range  
• 100V/μs Slew Rate  
• 3mA Supply Current (per Amplifier)  
• ±65mA Continuous Output Current  
• ±300mA Output Short Circuit Current  
• Unity-gain Stable  
The maximum operating voltage range is from 4.5V to  
19V. It can be configured for single or dual supply  
operation, and typically consumes only 3mA per  
amplifier. The EL5211T has an output short circuit  
capability of ±300mA and a continuous output current  
capability of ±65mA.  
• Beyond the Rails Input Capability  
• Rail-to-rail Output Swing  
• Built-in Thermal Protection  
The EL5211T features a high slew rate of 100V/μs, and  
fast settling time. Also, the device provides common  
mode input capability beyond the supply rails, rail-to-rail  
output capability, and a bandwidth of 60MHz (-3dB). This  
enables the amplifiers to offer maximum dynamic range  
at any supply voltage. These features make the EL5211T  
an ideal amplifier solution for use in TFT-LCD panels as a  
• -40°C to +85°C Ambient Temperature Range  
• Pb-Free (RoHS Compliant)  
Applications*(see page 13)  
• TFT-LCD Panels  
• V  
Amplifiers  
COM  
V
driver or static gamma buffer, and in high speed  
COM  
• Static Gamma Buffers  
• Drivers for A/D Converters  
• Data Acquisition  
filtering and signal conditioning applications. Other  
applications include battery power and portable devices,  
especially where low power consumption is important.  
The EL5211T is available in a thermally enhanced 8 Ld  
HMSOP package, and a thermally enhanced 8 Ld DFN  
package. Both feature a standard operational amplifier  
pinout. The device operates over an ambient  
temperature range of -40°C to +85°C.  
• Video Processing  
• Audio Processing  
• Active Filters  
• Test Equipment  
• Battery-powered Applications  
• Portable Equipment  
10  
V
A
C
= ±5V  
S
V
8
6
= 1  
= 1.5pF  
|| 1kΩ (PROBE)  
L
R
L
4
1kΩ  
2
0
-2  
-4  
-6  
-8  
-10  
560Ω  
150Ω  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 1. TYPICAL TFT-LCD V  
APPLICATION  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R  
L
COM  
May 12, 2010  
FN6893.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2010. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5211T  
Pin Configuration  
EL5211T  
EL5211T  
(8 LD DFN)  
TOP VIEW  
(8 LD HMSOP)  
TOP VIEW  
VOUTA 1  
8 VS+  
VOUTA  
VS+  
1
2
3
4
8
7
6
5
VINA- 2  
VINA+ 3  
VS- 4  
-
+
7 VOUTB  
6 VINB-  
5 VINB+  
VINA-  
VINA+  
VS-  
VOUTB  
VINB-  
VINB+  
PD  
-
+
THERMAL PAD IS ELECTRICALLY  
CONNECTED TO VS-  
THERMAL PAD IS ELECTRICALLY  
CONNECTED TO VS-  
Pin Descriptions  
PIN NUMBER  
PIN  
(HMSOP, DFN)  
NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1
2
VOUTA  
VINA-  
VINA+  
VS-  
Amplifier A output  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
Amplifier A inverting input  
Amplifier A non-inverting input  
Negative power supply  
3
4
5
VINB+  
VINB-  
VOUTB  
VS+  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
6
7
8
Positive power supply  
Pad  
PD  
Functions as a heat sink. Electrically connected to  
VS-. Connect the thermal pad to VS- plane on the  
PCB for optimum thermal performance.  
V
V
S+  
V
V
S+  
V
OUTx  
V
INx  
S-  
GND  
S-  
CIRCUIT 1  
CIRCUIT 2  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
EL5211TILZ-T13 (Note 1)  
EL5211TIYEZ  
11T  
8 Ld DFN  
L8.2x3  
BBBNA  
BBBNA  
BBBNA  
8 Ld HMSOP  
8 Ld HMSOP  
8 Ld HMSOP  
MDP0050  
MDP0050  
MDP0050  
EL5211TIYEZ-T7 (Note 1)  
EL5211TIYEZ-T13 (Note 1)  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5211T. For more information on MSL please see  
techbrief TB363.  
FN6893.0  
May 12, 2010  
2
EL5211T  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . .+19.8V  
Thermal Resistance (Typical)  
θ (°C/W) θ (°C/W)  
JA JC  
S
S
Input Voltage Range (V ) . . . V - - 0.5V, V + + 0.5V  
, V  
INx+ INx- S S  
8 Ld HMSOP (Notes 4, 5) . . . . . . .  
8 Ld DFN (Notes 4, 5). . . . . . . . . .  
62  
58  
13  
8
Input Differential Voltage (V  
- V  
) . . . . . . . . . . . . . .  
INx-  
INx+  
. . . . . . . . . . . . . . . . . . . . . . . (V + + 0.5V)-(V - - 0.5V)  
S
S
Storage Temperature . . . . . . . . . . . . . . . -65°C to +150°C  
Ambient Operating Temperature. . . . . . . . . -40°C to +85°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +150°C  
Power Dissipation . . . . . . . . . . . . . . .See Figures 34 and 35  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Maximum Continuous Output Current . . . . . . . . . . .±65mA  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . 3000V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”  
JA  
features. See Tech Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 1kΩ to 0V, T = +25°C, Unless Otherwise Specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
V
= 0V  
5
13  
9
18  
60  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 6)  
8 Ld HMSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 0V  
2
B
CM  
R
Input Impedance  
1
GΩ  
IN  
IN  
C
Input Capacitance  
2
pF  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
V
CMRR  
For V from -5.5V to 5.5V  
IN  
73  
78  
dB  
A
-4.5V V  
4.5V  
OUTx  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-Circuit Current  
I = -5mA  
-4.95 -4.85  
V
V
OL  
OH  
SC  
L
I = +5mA  
4.85 4.95  
±300  
L
I
V
= 0V, Source: V  
OUTx  
short to V -,  
mA  
CM  
Sink: V  
S
short to V +  
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
5.5  
19  
V
S
S
I
Supply Current  
V
= 0V, No load  
7.5  
mA  
dB  
S
CM  
PSRR  
Power Supply Rejection Ratio  
Supply is moved from ±2.25V to ±9.5V  
60  
75  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 7)  
-4.0V V  
4.0V, 20% to 80%  
100  
85  
V/μs  
OUTx  
t
Settling to +0.1% (Note 8)  
A = +1, V  
= 2V step,  
ns  
S
V
OUTx  
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
BW  
-3dB Bandwidth  
R = 1kΩ, C = 1.5pF  
60  
MHz  
L
L
FN6893.0  
May 12, 2010  
3
EL5211T  
Electrical Specifications V + = +5V, V - = -5V, R = 1kΩ to 0V, T = +25°C, Unless Otherwise Specified. (Continued)  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
GBWP  
Gain-Bandwidth Product  
A = -10, R = 1kΩ, R = 100Ω  
32  
50  
90  
MHz  
V
F
G
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
PM  
CS  
Phase Margin  
A = -10, R = 1kΩ, R = 100Ω  
V F G  
°
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
Channel Separation  
f = 5MHz  
dB  
Electrical Specifications V + = +5V, V - = 0V, R = 1kΩ to 2.5V, T = +25°C, Unless Otherwise Specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN TYP MAX UNIT  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
V
= 2.5V  
5
11  
8
18  
60  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 6)  
8 Ld HMSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 2.5V  
2
B
CM  
R
Input Impedance  
1
GΩ  
IN  
IN  
C
Input Capacitance  
2
pF  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
V
CMRR  
For V from -0.5V to 5.5V  
IN  
68  
82  
dB  
A
0.5V V  
4.5V  
OUTx  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
I = -4.2mA  
60  
150  
mV  
V
OL  
OH  
SC  
L
I = +4.2mA  
4.85 4.94  
±110  
L
I
V
= 2.5V, Source: V  
short to V -,  
mA  
CM  
Sink: V  
OUTx  
short to V +  
S
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
6.0  
19  
V
S
S
I
Supply Current  
V
= 2.5V, No load  
7.5  
mA  
dB  
S
CM  
PSRR  
Power Supply Rejection Ratio  
Supply is moved from 4.5V to 19V  
60  
75  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 7)  
1V V  
4V, 20% to 80%  
75  
90  
V/μs  
OUTx  
t
Settling to +0.1% (Note 8)  
A = +1, V  
= 2V step,  
ns  
S
V
OUTx  
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
BW  
-3dB Bandwidth  
R = 1kΩ, C = 1.5pF  
60  
32  
MHz  
MHz  
L
L
GBWP  
Gain-Bandwidth Product  
A = -10, R = 1kΩ, R = 100Ω  
V F G  
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
PM  
CS  
Phase Margin  
A = -10, R = 1kΩ, R = 100Ω  
50  
90  
°
V
F
G
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
Channel Separation  
f = 5MHz  
dB  
FN6893.0  
May 12, 2010  
4
EL5211T  
Electrical Specifications V + = +18V, V - = 0V, R = 1kΩ to 9V, T = +25°C, Unless Otherwise Specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP MAX UNIT  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
V
= 9V  
7
14  
11  
2
18  
60  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 6) 8 Ld HMSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 9V  
B
CM  
R
Input Impedance  
1
GΩ  
IN  
IN  
C
Input Capacitance  
2
pF  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+18.5  
V
CMRR  
For V from -0.5V to 18.5V  
IN  
75  
dB  
A
0.5V V  
17.5V  
OUTx  
62  
104  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
I = -6mA  
80  
150  
mV  
V
OL  
OH  
SC  
L
I = +6mA  
17.85 17.92  
±300  
L
I
V
= 9V, Source: V  
OUTx  
short to V -,  
mA  
CM  
Sink: V  
S
short to V +  
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
6.0  
19  
V
S
S
I
Supply Current  
V
= 9V, No load  
7.5  
mA  
dB  
S
CM  
PSRR  
Power Supply Rejection Ratio  
Supply is moved from 4.5V to 19V  
60  
75  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 7)  
1V V  
17V, 20% to 80%  
100  
100  
V/μs  
OUTx  
t
Settling to +0.1% (Note 8)  
A = +1, V  
= 2V step,  
ns  
S
V
OUTx  
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
BW  
-3dB Bandwidth  
R = 1kΩ, C = 1.5pF  
60  
32  
MHz  
MHz  
L
L
GBWP  
Gain-Bandwidth Product  
A = -10, R = 1kΩ, R = 100Ω  
V F G  
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
PM  
Phase Margin  
A = -10, R = 1kΩ, R = 100Ω  
50  
90  
°
V
F
G
R = 1kΩ || 1kΩ (probe), C = 1.5pF  
L
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
6. Measured over -40°C to +85°C ambient operating temperature range. See the typical TCV  
the “Typical Performance Curves” on page 6.  
production distribution shown in  
OS  
7. Typical slew rate is an average of the slew rates measured on the rising (20% to 80%) and the falling (80% to 20%) edges  
of the output signal.  
8. Settling time measured as the time from when the output level crosses the final value on rising/falling edge to when the output  
level settles within a ±0.1% error band. The range of the error band is determined by: Final Value(V)±[Full Scale(V)*0.1%].  
FN6893.0  
May 12, 2010  
5
EL5211T  
Typical Performance Curves  
450  
10  
9
8
7
6
5
4
3
2
1
0
TYPICAL  
V
= ±5V  
V
= ±5V  
S
S
A
400  
350  
300  
250  
200  
150  
100  
50  
PRODUCTION  
-40°C to +85°C  
T
= +25°C  
DISTRIBUTION  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
0
2
6
10 14 18 22 26 30 34 38  
INPUT OFFSET VOLTAGE DRIFT (|μV|/°C)  
-12-10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
INPUT OFFSET VOLTAGE (mV)  
FIGURE 3. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 4. INPUT OFFSET VOLTAGE DRIFT (HMSOP)  
12  
10  
V
= ±5V  
S
V
= ±5V  
S
-40°C to +85°C  
10  
8
TYPICAL  
PRODUCTION  
DISTRIBUTION  
5
0
6
4
-5  
2
0
-10  
2
6
10 14 18 22 26 30 34 38  
-50  
0
50  
100  
150  
INPUT OFFSET VOLTAGE DRIFT (|μV|/°C)  
TEMPERATURE (°C)  
FIGURE 5. INPUT OFFSET VOLTAGE DRIFT (DFN)  
FIGURE 6. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4
4.95  
V
OUT  
= ±5V  
V
= ±5V  
S
S
I
= +5mA  
3
2
1
0
4.94  
4.93  
4.92  
-50  
0
50  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
FIGURE 7. INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 8. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FN6893.0  
May 12, 2010  
6
EL5211T  
Typical Performance Curves(Continued)  
-4.92  
V
OUT  
= ±5V  
S
V
R
= ±5V  
= 1kΩ  
S
L
I
= -5mA  
100  
80  
-4.93  
-4.94  
-4.95  
-4.96  
-4.97  
60  
40  
-50  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
0
50  
100  
150  
TEMPERATURE (°C)  
FIGURE 9. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FIGURE 10. OPEN-LOOP GAIN vs TEMPERATURE  
160  
2.95  
V
R
= ±5V  
= 1kΩ  
S
L
V
= ±5V  
S
NO LOAD  
2.90  
2.85  
2.80  
2.75  
2.70  
140  
120  
100  
80  
INPUT AT GND  
60  
-50  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
0
50  
100  
150  
TEMPERATURE (°C)  
FIGURE 12. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
FIGURE 11. SLEW RATE vs TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
140  
120  
100  
80  
T
= +25°C  
A
NO LOAD  
INPUT AT GND  
T
= +25°C  
A
A
R
= 1  
V
L
L
60  
40  
= 1kΩ  
= 8pF  
C
2
4
6
8
10  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 14. SLEW RATE vs SUPPLY VOLTAGE  
FIGURE 13. SUPPLY CURRENT PER AMPLIFIER vs  
SUPPLY VOLTAGE  
FN6893.0  
May 12, 2010  
7
EL5211T  
Typical Performance Curves(Continued)  
140  
120  
100  
80  
100  
200  
160  
120  
80  
T
= +25°C  
= 1kΩ  
A
L
R
80  
60  
40  
20  
0
GAIN  
PHASE  
V
R
R
= ±5V  
40  
S
F
L
L
= 5kΩ, R = 100Ω  
G
= 1kΩ  
60  
0
C
= 8pF  
40  
-20  
-40  
2
4
6
8
10  
10  
100  
1k  
10k 100k 1M  
FREQUENCY (Hz)  
10M 100M  
SUPPLY VOLTAGE (±V)  
FIGURE 15. OPEN LOOP GAIN vs SUPPLY VOLTAGE  
FIGURE 16. OPEN LOOP GAIN AND PHASE  
100  
80  
60  
40  
20  
0
200  
160  
120  
80  
10  
8
V
A
C
= ±5V  
S
V
PHASE  
= 1  
= 1.5pF  
|| 1kΩ (PROBE)  
6
L
R
L
4
GAIN  
1kΩ  
2
0
-2  
-4  
-6  
-8  
-10  
V
R
R
= ±5V  
40  
S
F
L
560Ω  
= 1kΩ, R = 100Ω  
G
= 1kΩ || 1kΩ  
0
150Ω  
(PROBE)  
C
= 1.5pF  
L
-20  
-40  
10  
100  
1k  
10k 100k 1M  
FREQUENCY (Hz)  
10M 100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 17. OPEN LOOP GAIN AND PHASE  
FIGURE 18. FREQUENCY RESPONSE FOR VARIOUS R  
L
20  
1000  
V
R
R
= ±5V  
= 2kΩ  
= 50Ω  
S
F
L
15  
10  
5
1000pF  
100pF  
SOURCE = 0dBm  
100  
10  
1
47pF  
10pF  
0
-5  
-10  
-15  
-20  
V
A
R
= ±5V  
= 1  
= 1kΩ  
S
V
L
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 20. CLOSED LOOP OUTPUT IMPEDANCE  
L
FN6893.0  
May 12, 2010  
8
EL5211T  
Typical Performance Curves(Continued)  
12  
10  
8
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2nd HD  
3rd HD  
6
4
V
A
R
= ±5V  
= 2  
= 1kΩ  
= 1MHz  
S
V
L
V
A
R
= ±5V  
= 1  
S
V
L
2
= 1kΩ  
f
IN  
DISTORTION <1%  
0
0
2
4
6
8
10  
10k  
100k  
1M  
10M  
100M  
OUTPUT VOLTAGE (V  
)
FREQUENCY (Hz)  
OP-P  
FIGURE 21. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 22. HARMONIC DISTORTION vs V  
OP-P  
0
0
V
T
= ±5V  
V
T
= ±5V  
S
A
S
A
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= +25°C  
= +25°C  
V
= -10dBm  
INx  
PSRR+  
PSRR-  
100k  
1k  
10k  
100k  
1E+06 1E+07 1E+08  
1k  
10k  
1E+06 1E+07 1E+08  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. CMRR  
FIGURE 24. PSRR  
1000  
100  
10  
-20  
-40  
V
= ±5V  
T
= +25°C  
S
V
A
A
V
= 1  
= 0dBm  
INx  
-60  
-80  
-100  
-120  
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 25. INPUT VOLTAGE NOISE SPECTRAL  
DENSITY  
FIGURE 26. CHANNEL SEPARATION  
FN6893.0  
May 12, 2010  
9
EL5211T  
Typical Performance Curves(Continued)  
100  
5
4
V
T
= ±5V  
= +25°C  
= 1  
V
T
= ±5V  
= +25°C  
= 1  
S
S
A
A
A
A
V
V
L
80  
60  
40  
20  
0
3
R = 1kΩ || 1kΩ  
R
V
= 1kΩ  
L
(PROBE)  
= ±50mV  
2
INx  
C
=1.5pF  
L
1
0
-1  
-2  
-3  
-4  
-5  
10  
100  
LOAD CAPACITANCE (pF)  
1k  
70  
80  
90  
SETTLING TIME (ns)  
FIGURE 28. STEP SIZE vs SETTLING TIME  
FIGURE 27. SMALL-SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
V
T
= ±5V  
= +25°C  
= 1  
V
T
= ±5V  
= +25°C  
= 1  
S
S
A
A
A
A
V
100mV STEP  
V
R = 1kΩ|| 1kΩ  
R = 1kΩ || 1kΩ  
L
L
(PROBE)  
(PROBE)  
6V STEP  
C
= 1.5pF  
C
= 1.5pF  
L
L
50ns/DIV  
50ns/DIV  
FIGURE 29. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 30. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 31. BASIC TEST CIRCUIT  
FN6893.0  
May 12, 2010  
10  
EL5211T  
Applications Information  
V
= ±2.5V, T = +25°C, A = 1, V  
INx  
= 6V R = 1kΩ to GND  
P-P, L  
S
A
V
Product Description  
The EL5211T is a high voltage rail-to-rail input-output  
amplifier with low power consumption. The EL5211T  
contains four amplifiers. Each amplifier exhibits beyond  
the rail input capability, rail-to-rail output capability and  
is unity gain stable.  
OUTPUT  
The EL5211T features a high slew rate of 100V/μs, and  
fast settling time. Also, the device provides common  
mode input capability beyond the supply rails, rail-to-rail  
output capability, and a bandwidth of 60MHz (-3dB). This  
enables the amplifiers to offer maximum dynamic range  
at any supply voltage.  
INPUT  
10μs/DIV  
FIGURE 32. OPERATION WITH BEYOND-THE-RAILS  
INPUT  
Operating Voltage, Input and Output  
Capability  
V
= ±5V, T = +25°C, A = 1, V  
= 10V R = 1kΩ to GND  
P-P, L  
S
A
V
INx  
The EL5211T can operate on a single supply or dual  
supply configuration. The EL5211T operating voltage  
ranges from a minimum of 4.5V to a maximum of 19V.  
This range allows for a standard 5V (or ±2.5V) supply  
voltage to dip to -10%, or a standard 18V (or ±9V) to  
rise by +5.5% without affecting performance or  
reliability.  
The input common-mode voltage range of the EL5211T  
extends 500mV beyond the supply rails. Also, the  
EL5211T is immune to phase reversal. However, if the  
common mode input voltage exceeds the supply voltage  
by more than 0.5V, electrostatic protection diodes in the  
input stage of the device begin to conduct. Even though  
phase reversal will not occur, to maintain optimal  
reliability it is suggested to avoid input overvoltage  
conditions. Figure 32 shows the input voltage driven  
500mV beyond the supply rails and the device output  
swinging between the supply rails.  
10μs/DIV  
FIGURE 33. OPERATION WITH RAIL-TO-RAIL INPUT  
AND OUTPUT  
To maintain maximum reliability, the continuous output  
current should never exceed ±65mA. This ±65mA limit is  
determined by the characteristics of the internal metal  
interconnects. Also, see “Power Dissipation” on page 12  
for detailed information on ensuring proper device  
operation and reliability for temperature and load  
conditions.  
The EL5211T output typically swings to within 50mV of  
positive and negative supply rails with load currents of  
±5mA. Decreasing load currents will extend the output  
voltage range even closer to the supply rails. Figure 33  
shows the input and output waveforms for the device in a  
unity-gain configuration. Operation is from ±5V supply  
Unused Amplifiers  
It is recommended that any unused amplifiers be  
configured as a unity gain follower. The inverting input  
should be directly connected to the output and the  
non-inverting input tied to the ground.  
with a 1kΩ load connected to GND. The input is a 10V  
P-P  
sinusoid and the output voltage is approximately 9.9V  
.
P-P  
Refer to the “Electrical Specifications” Table beginning on  
page 3 for specific device parameters. Parameter  
variations with operating voltage, loading and/or  
temperature are shown in the “Typical Performance  
Curves” on page 6.  
Thermal Shutdown  
The EL5211T has a built-in thermal protection which  
ensures safe operation and prevents internal damage to  
the device due to overheating. When the die temperature  
reaches +165°C (typical), the device automatically shuts  
OFF the outputs by putting them in a high impedance  
state. When the die cools by +15°C (typical), the device  
automatically turns ON the outputs by putting them in a  
low impedance (normal) operating state.  
Output Current  
The EL5211T is capable of output short circuit currents of  
300mA (source and sink), and the device has built-in  
protection circuitry which limits the output current to  
±300mA (typical).  
FN6893.0  
May 12, 2010  
11  
EL5211T  
• V - = Negative supply voltage  
Driving Capacitive Loads  
S
As load capacitance increases, the -3dB bandwidth will  
decrease and peaking can occur. Depending on the  
application, it may be necessary to reduce peaking and  
to improve device stability. To improve device stability a  
snubber circuit or a series resistor may be added to the  
output of the EL5211T.  
• I  
= Maximum supply current per amplifier  
SMAX  
(I  
= EL5211T quiescent current ÷ 2)  
SMAX  
• V  
• I  
= Output voltage  
= Load current  
OUT  
LOAD  
Device overheating can be avoided by calculating the  
A snubber is a shunt load consisting of a resistor in series  
with a capacitor. An optimized snubber can improve the  
phase margin and the stability of the EL5211T. The  
advantage of a snubber circuit is that it does not draw  
any DC load current or reduce the gain.  
minimum resistive load condition, R  
the highest power dissipation. To find R  
, resulting in  
set the two  
LOAD  
LOAD  
P
V
equations equal to each other and solve for  
DMAX  
/I  
. Reference the package power dissipation  
OUT LOAD  
curves, Figures 34 and 35, for further information.  
Another method to reduce peaking is to add a series  
output resistor (typically between 1Ω to 10Ω). Depending  
on the capacitive loading, a small value resistor may be  
the most appropriate choice to minimize any reduction in  
gain.  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.0  
781mW  
0.8  
DFN8  
Power Dissipation  
θ
= +160°C/W  
694mW  
JA  
0.6  
0.4  
0.2  
0.0  
With the high-output drive capability of the EL5211T  
amplifiers, it is possible to exceed the +150°C absolute  
maximum junction temperature under certain load  
current conditions. It is important to calculate the  
maximum power dissipation of the EL5211T in the  
application. Proper load conditions will ensure that the  
EL5211T junction temperature stays within a safe  
operating region.  
HMSOP8  
θ
= +180°C/W  
JA  
85  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE (°C)  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
FIGURE 34. PACKAGE POWER DISSIPATION vs  
AMBIENT TEMPERATURE  
T
T  
AMAX  
θ
JMAX  
(EQ. 1)  
P
= --------------------------------------------  
DMAX  
JA  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD - EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
where:  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
• T  
2.16W  
Θ = Thermal resistance of the package  
JA  
DFN8  
= +58°C/W  
θ
JA  
2.02W  
• P  
= Maximum power dissipation allowed  
DMAX  
The total power dissipation produced by an IC is the total  
quiescent supply current times the total power supply  
voltage, plus the power dissipation in the IC due to the  
loads, or:  
HMSOP8  
θ
= +62°C/W  
JA  
(EQ. 2)  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
85  
0
25  
50  
75  
100  
125  
150  
when sourcing, and:  
AMBIENT TEMPERATURE (°C)  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
(EQ. 3)  
DMAX  
S
SMAX  
OUT  
S
FIGURE 35. PACKAGE POWER DISSIPATION vs  
AMBIENT TEMPERATURE  
when sinking,  
where:  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The EL5211T can provide gain at high frequency, so good  
printed circuit board layout is necessary for optimum  
performance. Ground plane construction is highly  
recommended, trace lengths should be as short as  
• i = 1 to 2  
(1, 2 corresponds to Channel A, B respectively)  
• V = Total supply voltage (V + - V -)  
S
S
S
• V + = Positive supply voltage  
S
FN6893.0  
May 12, 2010  
12  
EL5211T  
possible and the power supply pins must be well  
bypassed to reduce any risk of oscillation.  
It is highly recommended that EL5211T exposed thermal  
pad packages should always have the pad connected to  
the lowest potential, V -, to optimize thermal and  
operating performance. PCB vias should be placed below  
the device’s exposed thermal pad to transfer heat to the  
S
For normal single supply operation (the V - pin is  
S
connected to ground) a 4.7μF capacitor should be placed  
from V + to ground, then a parallel 0.1μF capacitor  
S
V - plane and away from the device.  
S
should be connected as close to the amplifier as possible.  
One 4.7μF capacitor may be used for multiple devices.  
For dual supply operation, the same capacitor  
combination should be placed at each supply pin to  
ground.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
FN6893.0  
FN6893.0  
CHANGE  
5/12/10  
2/24/10  
Initial Release.  
Pre-release data sheet submitted for formatting.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: EL5211T  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
FN6893.0  
May 12, 2010  
13  
EL5211T  
Package Outline Drawing  
L8.2x3  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 3/10  
2.00  
A
2X 1.50  
PIN 1  
INDEX AREA  
6X 0.50  
B
1
6
PIN #1  
1.80 +0.10/-0.15  
INDEX AREA  
(4X)  
0.15  
8
4
8X 0.25 +0.07/-0.05  
8X 0.40 ±0.10  
0.10 M C A B  
TOP VIEW  
1.65 +0.10/-0.15  
BOTTOM VIEW  
SEE DETAIL "X"  
0.10 C  
0.90 ±0.10  
(1.65)  
(1.50)  
C
BASE PLANE  
SEATING PLANE  
(8X 0.60)  
0.08 C  
0.05 MAX  
SIDE VIEW  
0.20 REF  
(1.80)  
(2.80)  
C
(6X 0.50)  
0.05 MAX  
DETAIL "X"  
(8X 0.25)  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.25mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compies to JEDEC MO-229 VCED-2.  
7.  
FN6893.0  
May 12, 2010  
14  
EL5211T  
HMSOP (Heat-Sink MSOP) Package Family  
MDP0050  
HMSOP (HEAT-SINK MSOP) PACKAGE FAMILY  
E
0.25 M C A B  
B
E1  
MILLIMETERS  
1
N
SYMBOL HMSOP8 HMSOP10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
1.00  
0.075  
0.86  
0.30  
0.15  
3.00  
1.85  
4.90  
3.00  
1.73  
0.65  
0.55  
0.95  
8
1.00  
0.075  
0.86  
0.20  
0.15  
3.00  
1.85  
4.90  
3.00  
1.73  
0.50  
0.55  
0.95  
10  
-
D
(N/2)+1  
+0.025/-0.050  
±0.09  
-
-
(N/2)  
PIN #1  
I.D.  
A
+0.07/-0.08  
±0.05  
-
c
-
TOP VIEW  
D
±0.10  
1, 3  
D1  
E
Reference  
±0.15  
-
E2  
EXPOSED  
THERMAL PAD  
-
E1  
E2  
e
±0.10  
2, 3  
Reference  
Basic  
-
D1  
-
L
±0.15  
-
L1  
N
Basic  
-
BOTTOM VIEW  
Reference  
-
Rev. 1 2/07  
NOTES:  
e
H
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
C
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
0.08  
M
C A B  
b
0.10 C  
N LEADS  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
SIDE VIEW  
L1  
A
c
END VIEW  
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
A1  
3° ±3°  
DETAIL X  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6893.0  
May 12, 2010  
15  

相关型号:

EL5211TILZ-T13

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TIYEZ

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TIYEZ-T13

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5211TIYEZ-T7

60MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5220

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220C

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CY-13

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CY-13

DUAL OP-AMP, 12000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO10, MSOP-10
RENESAS

EL5220CY-T13

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY-T7

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC