EL5224ILZ [INTERSIL]

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier; 12MHz的轨至轨缓冲器+百毫安VCOM放大器
EL5224ILZ
型号: EL5224ILZ
厂家: Intersil    Intersil
描述:

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
12MHz的轨至轨缓冲器+百毫安VCOM放大器

放大器
文件: 总12页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5224, EL5324, EL5424  
®
Data Sheet  
May 11, 2005  
FN7004.3  
12MHz Rail-to-Rail Buffers + 100mA V  
Amplifier  
Features  
• 8, 10, and 12 channel versions  
COM  
The EL5224, EL5324, and EL5424 feature 8, 10, and 12 low  
power buffers, respectively, and one high power output  
amplifier. They are designed primarily for buffering column  
driver reference voltages in TFT-LCD applications as well as  
• 12MHz -3dB buffer bandwidth  
• 150mA V  
buffer  
• Operating supply voltage from 4.5V to 16.5V  
COM  
generation of the V  
supply. Each low power buffer  
COM  
• Low supply current - 6mA total (8-channel version)  
• Rail-to-rail input/output swing (buffers only)  
• QFN package - just 0.9mm high  
features a -3dB bandwidth of 12MHz and features rail-to-rail  
input/output capability. The high power buffer can drive  
100mA and swings to within 2V of each rail.  
The 8-channel EL5224 is available in 24-pin QFN and 24-pin  
HTSSOP packages, the 10-channel EL5324 is available in  
32-pin QFN and 28-pin HTSSOP packages, and the  
12-channel EL5434 is available in the 32-pin QFNQFN  
package. They are specified for operation over the full -40°C  
to +85°C temperature range.  
• Pb-Free available (RoHS compliant)  
Applications  
• TFT-LCD column driver buffering and V  
• Electronics notebooks  
• Computer monitors  
supply  
COM  
• Electronics games  
Touch-screen displays  
• Portable instrumentation  
Ordering Information (Continued)  
Ordering Information  
TAPE &  
TAPE &  
PART NUMBER  
PACKAGE  
REEL  
PKG. DWG. #  
MDP0046  
PART NUMBER  
EL5224IL  
EL5224IL-T7  
EL5224IL-T13  
PACKAGE  
24-Pin QFN  
24-Pin QFN  
24-Pin QFN  
REEL  
PKG. DWG. #  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
EL5324ILZ-T13  
(See Note)  
32-Pin QFN  
(Pb-free)  
13”  
7”  
13”  
EL5324IRE  
EL5324IRE-T7  
EL5324IRE-T13  
EL5324IREZ  
(See Note)  
28-Pin HTSSOP  
28-Pin HTSSOP  
28-Pin HTSSOP  
28-Pin HTSSOP  
(Pb-free)  
-
7”  
13”  
-
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5224ILZ  
(See Note)  
24-Pin QFN  
(Pb-free)  
EL5224ILZ-T7  
(See Note)  
24-Pin QFN  
(Pb-free)  
7”  
MDP0046  
MDP0046  
EL5324IREZ-T7  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
7”  
MDP0048  
MDP0048  
EL5224ILZ-T13  
(See Note)  
24-Pin QFN  
(Pb-free)  
13”  
EL5324IREZ-T13  
(See Note)  
EL5424IL  
EL5424IL-T7  
EL5424IL-T13  
EL5424ILZ  
(See Note)  
EL5424ILZ-T7  
(See Note)  
EL5424ILZ-T13  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
(Pb-free)  
32-Pin QFN  
(Pb-free)  
13”  
EL5224IRE  
EL5224IRE-T7  
EL5224IRE-T13  
EL5224IREZ  
(See Note)  
EL5224IREZ-T7  
(See Note)  
EL5224IREZ-T13  
(See Note)  
EL5324IL  
EL5324IL-T7  
EL5324IL-T13  
EL5324ILZ  
(See Note)  
24-Pin HTSSOP  
24-Pin HTSSOP  
24-Pin HTSSOP  
24-Pin HTSSOP  
(Pb-free)  
24-Pin HTSSOP  
(Pb-free)  
24-Pin HTSSOP  
(Pb-free)  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
(Pb-free)  
-
7”  
13”  
-
MDP0048  
MDP0048  
MDP0048  
MDP0048  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
7”  
13”  
7”  
MDP0048  
MDP0048  
7”  
MDP0046  
MDP0046  
13”  
32-Pin QFN  
(Pb-free)  
13”  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
7”  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish,  
which are RoHS compliant and compatible with both SnPb and Pb-free soldering  
operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
EL5324ILZ-T7  
(See Note)  
32-Pin QFN  
(Pb-free)  
7”  
MDP0046  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL5224, EL5324, EL5424  
Pinouts  
EL5224  
(24-PIN HTSSOP)  
TOP VIEW  
EL5324  
(28-PIN HTSSOP)  
TOP VIEW  
VIN1  
VIN2  
VIN3  
VIN4  
VS+  
1
2
3
4
5
6
7
8
9
24 VOUT1  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VS+  
1
2
3
4
5
6
7
8
9
28 VOUT1  
23 VOUT2  
22 VOUT3  
21 VOUT4  
20 VS-  
27 VOUT2  
26 VOUT3  
25 VOUT4  
24 VOUT5  
23 VS-  
THERMAL  
PAD  
THERMAL  
PAD  
VIN5  
VIN6  
VIN7  
VIN8  
19 VOUT5  
18 VOUT6  
17 VOUT7  
16 VOUT8  
15 VSA-  
VIN6  
VIN7  
VIN8  
22 VOUT6  
21 VOUT7  
20 VOUT8  
19 VOUT9  
18 VOUT10  
17 VSA-  
VSA+ 10  
VINA+ 11  
NC 12  
VIN9 10  
VIN10 11  
VSA+ 12  
VINA+ 13  
NC 14  
14 VINA-  
13 VOUTA  
16 VINA-  
15 VOUTA  
EL5324 & EL5424  
(32-PIN QFN)  
TOP VIEW  
EL5224  
(24-PIN QFN)  
TOP VIEW  
VIN3  
VIN4  
VIN5  
VS+  
1
2
3
4
5
6
7
8
9
25 VOUT3  
24 VOUT4  
23 VOUT5  
22 VS-  
VIN3  
VIN4  
1
19 VOUT3  
2
3
4
5
6
7
18 VOUT4  
17 VS-  
VS+  
VIN5  
VIN6  
VIN7  
VIN8  
THERMAL  
PAD  
16 VOUT5  
15 VOUT6  
14 VOUT7  
13 VOUT8  
THERMAL  
PAD  
VIN6  
VIN7  
VIN8  
VIN9  
VIN10  
21 VOUT6  
20 VOUT7  
19 VOUT8  
18 VOUT9  
17 VOUT10  
*Not available in EL5324  
2
EL5224, EL5324, EL5424  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.5V, V + +0.5V  
S
S
Maximum Continuous Output Current (V  
Maximum Continuous Output Current (V  
) . . . . . . . . . . 30mA  
OUT0-9  
). . . . . . . . . . . 150mA  
OUTA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +15V, V - = 0, R = 10k, R = R = 20k, C = 10pF to 0V, Gain of V  
= -1, and T = 25°C Unless  
A
S
S
L
F
G
L
COM  
Otherwise Specified  
DESCRIPTION  
INPUT CHARACTERISTICS (REFERENCE BUFFERS)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
14  
UNIT  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 0V  
2
5
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 0V  
OS  
I
V
2
50  
B
CM  
R
C
1
GΩ  
IN  
IN  
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
1V V  
14V  
0.992  
1.008  
4
V/V  
V
OUT  
INPUT CHARACTERISTICS (V  
BUFFER)  
COM  
Input Offset Voltage  
V
V
= 7.5V  
1
3
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
OS  
I
V
= 7.5V  
2
100  
B
CM  
R
C
1
GΩ  
pF  
IN  
IN  
Input Capacitance  
Load Regulation  
1.35  
V
V
= 6V, -100mA < I < 100mA  
-20  
+20  
150  
mV  
REG  
COM  
L
OUTPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = 7.5mA  
50  
mV  
V
OL  
L
I = 7.5mA  
L
14.85  
120  
14.95  
140  
OH  
I
mA  
SC  
OUTPUT CHARACTERISTICS (V  
BUFFER)  
COM  
Output Swing Low  
V
V
50to 7.5V  
50to 7.5V  
1
1.5  
V
V
OL  
Output Swing High  
Short Circuit Current  
13.5  
14  
OH  
I
160  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR  
Power Supply Rejection Ratio  
Total Supply Current  
Reference buffer V from 5V to 15V  
55  
60  
5
80  
100  
6.8  
7.8  
8.8  
dB  
dB  
S
V
buffer, V from 5V to 15V  
S
COM  
I
EL5224 (no load)  
EL5324 (no load)  
EL5424 (no load)  
8
mA  
mA  
mA  
S
6
9.5  
11  
7
DYNAMIC PERFORMANCE (BUFFER AMPLIFIERS)  
SR Slew Rate (Note 2)  
-4V V  
4V, 20% to 80%  
7
15  
250  
12  
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
L
L
3
EL5224, EL5324, EL5424  
Electrical Specifications V + = +15V, V - = 0, R = 10k, R = R = 20k, C = 10pF to 0V, Gain of V  
= -1, and T = 25°C Unless  
A
S
S
L
F
G
L
COM  
Otherwise Specified (Continued)  
PARAMETER  
GBWP  
PM  
DESCRIPTION  
Gain-Bandwidth Product  
Phase Margin  
CONDITIONS  
= 10k, C = 10pF  
MIN  
TYP  
8
MAX  
UNIT  
MHz  
°
R
R
L
L
L
= 10k, C = 10pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
Pin Descriptions  
24-PIN HTSSOP  
24-PIN QFN  
32-PIN QFN  
28-PIN HTSSOP  
PIN NAME  
VIN1  
PIN FUNCTION  
1
2
23  
24  
1
31  
1
Input  
Input  
Input  
Input  
Power  
Input  
Input  
Input  
Input  
Power  
32 (Note 1)  
2
VIN2  
3
1
3
VIN3  
4
2
2
4
VIN4  
5
3
4
6
VS+  
6
4
3
5
VIN5  
7
5
5
7
VIN6  
8
6
6
8
VIN7  
9
7
7
9
VIN8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
8
11  
12  
13  
14  
15  
16  
17  
20  
21  
22  
24  
23  
25  
26  
27  
28  
10  
11  
VSA+  
VINA+  
NC  
9
12  
Positive input of V  
Not connected  
COM  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
29  
13  
VOUTA  
VINA-  
VSA-  
Output of V  
COM  
14  
Negative input of V  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Input  
COM  
15  
19  
VOUT8  
VOUT7  
VOUT6  
VOUT5  
VS-  
20  
21  
23  
22  
24  
VOUT4  
VOUT3  
VOUT2  
VOUT1  
VIN9  
25  
26 (Note 1)  
27  
8
9
VIN10  
VIN11  
VOUT11  
VOUT10  
VOUT9  
VOUT0  
VIN0  
Input  
10 (Note 1)  
Input  
16 (Note 1)  
Output  
Output  
Output  
Output  
Input  
17  
18  
28  
30  
18  
19  
NOTE:  
1. Not available in EL5324IL  
4
EL5224, EL5324, EL5424  
Typical Performance Curves  
20  
20  
10  
V =±7.5V  
V =±7.5V  
S
S
1000pF  
C =10pF  
R =10kΩ  
L
L
10  
0
10kΩ  
100pF  
1kΩ  
0
12pF  
47pF  
1M  
-10  
-20  
-30  
-10  
-20  
-30  
150Ω  
562Ω  
100K  
1M  
10M  
100M  
100K  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R  
(BUFFER)  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS C  
(BUFFER)  
L
L
100  
600  
V =±7.5V  
V =±7.5V  
S
S
PSRR+  
T =25°C  
A
80  
60  
40  
20  
0
480  
360  
240  
120  
0
PSRR-  
1K  
10K  
100K  
1M  
10M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. PSRR vs FREQUENCY (BUFFER)  
FIGURE 4. OUTPUT IMPEDANCE vs FREQUENCY (BUFFER)  
80  
V =±7.5V  
S
100  
10  
1
70  
60  
50  
40  
30  
20  
10  
0
R =10kΩ  
L
V
=100mV  
IN  
10K  
100K  
1M  
10M  
100M  
10  
100  
1K  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
FIGURE 5. INPUT NOISE SPECIAL DENSITY vs FREQUENCY  
(BUFFER)  
FIGURE 6. OVERSHOOT vs LOAD CAPACITANCE (BUFFER)  
5
EL5224, EL5324, EL5424  
Typical Performance Curves (Continued)  
10  
8
6
4
2
0.018  
0.016  
0.014  
0.012  
0.01  
V =±7.5V  
V =±5V  
S
S
R =10kΩ  
R =10kΩ  
L
L
C =12pF  
L
V =2V  
IN P-P  
0
-2  
-4  
-6  
-8  
-10  
0.008  
0.006  
200 250 300 350 400 450 500 550 600 650  
SETTLING TIME (ns)  
1K  
10K  
100K  
FREQUENCY (Hz)  
FIGURE 7. SETTLING TIME vs STEP SIZE (BUFFER)  
FIGURE 8. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY (BUFFER)  
12  
10  
8
4
A =5  
V
2
0
A =1  
V
6
-2  
-4  
-6  
4
2
V =±7.5V  
S
V =±5V  
S
C =1µF  
L
R =10kΩ  
L
0
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. OUTPUT SWING vs FREQUENCY (BUFFER)  
FIGURE 10. FREQUENCY RESPONSE (V )  
COM  
0mA  
5mA  
5mA/DIV  
5mA  
0mA  
5mA/DIV  
R =0Ω  
S
R =10Ω  
S
C =200pF  
L
C =1nF  
L
0V  
500mV/DIV  
0V  
500mV/DIV  
R =10Ω  
S
C =4.7nF  
L
R =0Ω  
R =10Ω  
S
S
R =10Ω  
S
C =200pF  
C =4.7nF  
L
L
C =1nF  
M=1µs/DIV  
L
M=1µs/DIV  
V =±7.5V  
S
V =±7.5V  
S
V
=0V  
V
=0V  
IN  
IN  
FIGURE 11. TRANSIENT LOAD REGULATION - SOURCING  
(BUFFER)  
FIGURE 12. TRANSIENT LOAD REGULATION - SINKING  
(BUFFER)  
6
EL5224, EL5324, EL5424  
Typical Performance Curves (Continued)  
M=4µs/DIV, V =±7.5V, V =0V  
IN  
M=4µs/DIV, V =±7.5V, V =0V  
IN  
S
S
0mA  
100mA/DIV  
20mV/DIV  
100mA  
0mA  
-100mA  
100mA/DIV  
20mV/DIV  
0V  
0V  
C =1µF  
L
C =1µF  
L
FIGURE 13. TRANSIENT LOAD REGULATION - SOURCING  
(V  
FIGURE 14. TRANSIENT LOAD REGULATION - SINKING  
(V  
)
)
COM  
COM  
V =±7.5V, R =10kΩ, C =12pF  
S
L
L
V =±7.5V  
S
1V/DIV  
50mV/DIV  
1µs/DIV  
200ns/DIV  
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE  
(BUFFER)  
FIGURE 16. LARGE SIGNAL TRANSIENT RESPONSE  
(BUFFER)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD, QFN EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
JEDEC JESD51-3 AND SEMI G42-88 (SINGLE  
LAYER) TEST BOARD  
3
0.8  
2.857W  
758mW  
0.7  
2.5 2.703W  
714mW  
0.6  
QFN32  
=35°C/W  
QFN32  
2
θ
JA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
θ
=132°C/W  
JA  
QFN24  
=140°C/W  
1.5  
1
QFN24  
=37°C/W  
θ
JA  
θ
JA  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 17. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 18. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
7
EL5224, EL5324, EL5424  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD. HTSSOP EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
3.5  
3
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.333W  
909mW  
3.030W  
833mW  
2.5  
2
HTSSOP28  
HTSSOP28  
θ
=110°C/W  
θ
=30°C/W  
JA  
JA  
HTSSOP24  
1.5  
1
HTSSOP24  
θ
=33°C/W  
JA  
θ
=120°C/W  
JA  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Applications Information  
Product Description  
V =±5V  
S
5V  
10µs  
T =25°C  
A
V
=10V  
P-P  
IN  
The EL5224, EL5324, and EL5424 unity gain buffers and  
100mA V  
amplifier are fabricated using a high voltage  
COM  
CMOS process. The buffers exhibit rail-to-rail input and  
output capability and has low power consumption (600µA  
per buffer). When driving a load of 10kand 12pF, the  
buffers have a -3dB bandwidth of 12MHz and exhibits  
18V/µs slew rate. The V  
input. The output can be driving to within 2V of each supply  
rail. With a 1µF capacitance load, the GBWP is about 1MHz.  
amplifier exhibits rail-to-rail  
COM  
5V  
FIGURE 21. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
Correct operation is guaranteed for a supply range of 4.5V to  
16.5V.  
The Use of the Buffers  
SHORT-CIRCUIT CURRENT LIMIT  
The output swings of the buffers typically extend to within  
100mV of positive and negative supply rails with load  
currents of 5mA. Decreasing load currents will extend the  
output voltage range even closer to the supply rails.  
Figure 21 shows the input and output waveforms for the  
device. Operation is from ±5V supply with a 10kload  
The buffers will limit the short circuit current to ±120mA if the  
output is directly shorted to the positive or the negative  
supply. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the device may  
be damaged. Maximum reliability is maintained if the output  
continuous current never exceeds ±30mA. This limit is set by  
the design of the internal metal interconnects.  
connected to GND. The input is a 10V  
sinusoid. The  
P-P  
output voltage is approximately 9.985V  
.
P-P  
OUTPUT PHASE REVERSAL  
The buffers are immune to phase reversal as long as the  
input voltage is limited from V - -0.5V to V + +0.5V.  
S
S
Figure 22 shows a photo of the output of the device with the  
input voltage driven beyond the supply rails. Although the  
device's output will not change phase, the input's  
overvoltage should be avoided. If an input voltage exceeds  
supply voltage by more than 0.6V, electrostatic protection  
diodes placed in the input stage of the device begin to  
conduct and overvoltage damage could occur.  
8
EL5224, EL5324, EL5424  
V
BOOST  
1V  
10µs  
R
R
1
2
V
DDCOM  
V
IPCOM  
INCOM  
COM  
+
-
V
COM  
V
SSCOM  
1µF CERAMIC  
LOW ESR  
V =±2.5V  
S
FIGURE 23. V  
USED AS A VOLTAGE BUFFER  
COM  
T =25°C  
A
V
=6V  
IN P-P  
1V  
Alternatively, the back plate potential can be generated by a  
DAC and the V amplifier used to buffer the DAC  
COM  
FIGURE 22. OPERATION WITH BEYOND-THE-RAILS INPUT  
voltage, with gain if necessary. This is shown in Figure 24. In  
this case, the effective transconductance of the feedback is  
reduced, thus the amplifier will be more stable, but regulation  
will be degraded by the feedback factor.  
UNUSED BUFFERS  
It is recommended that any unused buffers have their inputs  
tied to the ground plane.  
V
BOOST  
DRIVING CAPACITIVE LOADS  
FROM DAC  
+
V
COM  
-
The buffers can drive a wide range of capacitive loads. As  
load capacitance increases, however, the -3dB bandwidth of  
the device will decrease and the peaking increase. The  
buffers drive 10pF loads in parallel with 10kwith just 1.5dB  
of peaking, and 100pF with 6.4dB of peaking. If less peaking  
is desired in these applications, a small series resistor  
(usually between 5and 50) can be placed in series with  
the output. However, this will obviously reduce the gain  
slightly. Another method of reducing peaking is to add a  
snubber circuit at the output. A snubber is a shunt load  
consisting of a resistor in series with a capacitor. Values of  
150and 10nF are typical. The advantage of a snubber is  
that it does not draw any DC load current or reduce the gain.  
R
R
1µF CERAMIC  
LOW ESR  
1
2
FIGURE 24. V  
USED AS A BUFFER WITH GAIN  
COM  
CHOICE OF OUTPUT CAPACITOR  
A 1µF ceramic capacitor with low ESR is recommended for  
this amplifier. (For example, GRM42_ 6X7R105K16). This  
capacitor determines the stability of the amplifier. Reducing it  
will make the amplifier less stable, and should be avoided.  
With a 1µF capacitor, the unity gain bandwidth of the  
amplifier is close to 1MHz when reasonable currents are  
being drawn. (For lower load currents, the gain and hence  
bandwidth progressively decreases.) This means the active  
trans-conductance is:  
The Use of V  
Amplifier  
amplifier is designed to control the voltage on the  
COM  
The V  
COM  
back plate of an LCD display. This plate is capacitively  
coupled to the pixel drive voltage which alternately cycles  
positive and negative at the line rate for the display. Thus the  
amplifier must be capable of sourcing and sinking capacitive  
pulses of current, which can occasionally be quite large (a  
few 100mA for typical applications).  
2π × 1µF × 1MHz = 6.28S  
This high transconductance indicates why it is important to  
have a low ESR capacitor.  
If:  
A simple use of the V  
amplifier is as a voltage follower,  
COM  
as illustrated in Figure 23. Here, a voltage, corresponding to  
the mid-DAC potential, is generated by a resistive divider  
and buffered by the amplifier. The amplifier's stability is  
designed to be dominated by the load capacitance, thus for  
very short duration pulses (< 1µs) the output capacitor  
ESR × 6.28 > 1  
then the capacitor will not force the gain to roll off below  
unity, and subsequent poles can affect stability. The  
recommended capacitor has an ESR of 10m, but to this  
must be added the resistance of the board trace between the  
capacitor and the sense connection - therefore this should  
be kept short, as illustrated in Figure 21, by the diagonal line  
to the capacitor. Also ground resistance between the  
capacitor and the base of R must be kept to a minimum.  
These constraints should be considered when laying out the  
PCB.  
supplies the current. For longer pulses the V  
amplifier  
COM  
supplies the current. By virtue of its high transconductance  
which progressively increases as more current is drawn, it  
can maintain regulation within 5mV as currents up to 100mA  
are drawn, while consuming only 2mA of quiescent current.  
2
9
EL5224, EL5324, EL5424  
If the capacitor is increased above 1µF, stability is generally  
improved and short pulses of current will cause a smaller  
“perturbation” on the V voltage. The speed of response  
of the amplifier is however degraded as its bandwidth is  
decreased. At capacitor values around 10µF, a subtle  
interaction with internal DC gain boost circuitry will decrease  
the phase margin and may give rise to some overshoot in  
the response. The amplifier will remain stable though.  
when sourcing, and:  
P
= Σi × [V × I  
+ (V  
i - V -) × I  
i] +  
LOAD  
DMAX  
S
SMAX  
OUT  
S
COM  
[V  
× I  
+ (V + - V  
) × I  
]
SA  
SAA  
SA  
OUTA  
LA  
when sinking.  
where:  
• i = 1 to total number of buffers  
• V = Total supply voltage of buffer  
RESPONSE TO HIGH CURRENT SPIKES  
S
The V  
COM  
amplifier's output current is limited to 150mA.  
This limit level, which is roughly the same for sourcing and  
sinking, is included to maintain reliable operation of the part.  
It does not necessarily prevent a large temperature rise if the  
current is maintained. (In this case the whole chip may be  
shut down by the thermal trip to protect functionality.) If the  
display occasionally demands current pulses higher than  
this limit, the reservoir capacitor will provide the excess and  
the amplifier will top the reservoir capacitor back up once the  
pulse has stopped. This will happen on the µs time scale in  
practical systems and for pulses 2 or 3 times the current  
• V = Total supply voltage of V  
SA  
COM  
= Maximum quiescent current per channel  
• I  
SMAX  
• I = Maximum quiescent current of V  
SA COM  
• V  
• V  
i = Maximum output voltage of the application  
OUT  
= Maximum output voltage of V  
OUTA  
COM  
• I  
i = Load current of buffer  
LOAD  
• I = Load current of V  
LA  
COM  
limit, the V  
voltage will have settled again before the  
If we set the two P  
DMAX  
equations equal to each other, we  
's to avoid device overheat. The  
COM  
next line is processed.  
can solve for the R  
LOAD  
package power dissipation curves provide a convenient way  
to see if the device will overheat. The maximum safe power  
dissipation can be found graphically, based on the package  
type and the ambient temperature. By using the previous  
Power Dissipation  
With the high-output drive capability of the EL5224, EL5324,  
and EL5424 buffer, it is possible to exceed the 125°C  
“absolute-maximum junction temperature” under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
buffer to remain in the safe operating area.  
equation, it is a simple matter to see if P  
device's power derating curves.  
exceeds the  
DMAX  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended, lead lengths  
should be as short as possible, and the power supply pins  
must be well bypassed to reduce the risk of oscillation. For  
The maximum power dissipation allowed in a package is  
determined according to:  
T
- T  
AMAX  
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
JA  
normal single supply operation, where the V - and V - pins  
S
SA  
where:  
are connected to ground, two 0.1µF ceramic capacitors  
should be placed from V + and V + pins to ground. A  
S
SA  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
4.7µF tantalum capacitor should then be connected from  
V + and V + pins to ground. One 4.7µF capacitor may be  
AMAX  
S
SA  
used for multiple devices. This same capacitor combination  
should be placed at each supply pin to ground if split  
θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
supplies are to be used. Internally, V + and V + are  
S
SA  
shorted together and V - and V - are shorted together. To  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
S
SA  
avoid high current density, the V + pin and V + pin must  
S
SA  
be shorted in the PCB layout. Also, the V - pin and V - pin  
SA  
S
must be shorted in the PCB layout.  
P
= Σi × [V × I  
+ (V + - V  
i) × I  
i] +  
LOAD  
DMAX  
S
SMAX  
S
OUT  
Important Note: The metal plane used for heat sinking of  
the device is electrically connected to the negative  
[V  
× I  
+ (V + - V  
) × I  
]
LA  
SA  
SAA  
SA  
OUTA  
supply potential (V - and V -). If V - and V - are tied  
S
SA  
S
SA  
to ground, the thermal pad can be connected to ground.  
Otherwise, the thermal pad must be isolated from any  
other power planes.  
10  
EL5224, EL5324, EL5424  
Package Outline Drawing (HTSSOP)  
11  
EL5224, EL5324, EL5424  
Package Outline Drawing (QFN)  
NOTE: The package drawings shown here may not be the latest versions. For the latest revisions, please refer to the Intersil website at  
www.intersil.com/design/packages/elantec  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY