EL5423CRZ-T7 [INTERSIL]

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers; 12MHz的4 , 8 , 10及12通道,轨到轨输入输出缓冲器
EL5423CRZ-T7
型号: EL5423CRZ-T7
厂家: Intersil    Intersil
描述:

12MHz 4, 8, 10 & 12 Channel Rail-to-Rail Input-Output Buffers
12MHz的4 , 8 , 10及12通道,轨到轨输入输出缓冲器

文件: 总12页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5123, EL5223, EL5323, EL5423  
®
Data Sheet  
November 19, 2004  
FN7176.1  
12MHz 4, 8, 10 & 12 Channel Rail-to-Rail  
Input-Output Buffers  
Features  
• 12MHz -3dB bandwidth  
The EL5123, EL5223, EL5323, and EL5423 are low power,  
high voltage rail-to-rail input/output buffers designed  
primarily for use in reference voltage buffering applications  
for TFT-LCDs. They are available in quad (EL5123), octal  
(EL5223), 10-channel (EL5323), and 12-channel (EL5423)  
topologies. All buffers feature a -3dB bandwidth of 12MHz  
and operate from just 600µA per buffer. This family also  
features fast slewing and settling times, as well as a  
continuous output drive capability of 30mA (sink and  
source).  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per buffer) = 600µA  
• High slew rate = 15V/µs  
• Rail-to-rail input/output swing  
• Ultra-small packages  
• Pb-free available (RoHS compliant)  
Applications  
The quad channel EL5123 is available in the 10-pin MSOP  
package. The 8-channel EL5223 is available in both the 20-  
pin TSSOP and 24-pin QFN packages, the 10-channel  
EL5323 in the 24-pin TSSOP and 24-pin QFN packages,  
and the 12-channel EL5423 in the 28-pin TSSOP and 32-pin  
QFN packages. All buffers are specified for operation over  
the full -40°C to +85°C temperature range.  
• TFT-LCD drive circuits  
• Electronics notebooks  
• Electronic games  
Touch-screen displays  
• Personal communication devices  
• Personal digital assistants (PDA)  
• Portable instrumentation  
• Sampling ADC amplifiers  
• Wireless LANs  
• Office automation  
• Active filters  
• ADC/DAC buffers  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5123, EL5223, EL5323, EL5423  
Pinouts  
EL5223 & EL5323  
(24-PIN QFN)  
TOP VIEW  
EL5123  
(10-PIN MSOP)  
TOP VIEW  
EL5223  
(20-PIN TSSOP)  
TOP VIEW  
VIN1  
VIN2  
VS+  
1
2
3
4
5
10  
9
VIN1  
VIN2  
VIN3  
VIN4  
VS+  
1
20 VOUT1  
19 VOUT2  
18 VOUT3  
17 VOUT4  
16 VS-  
VOUT1  
VOUT2  
VS-  
2
3
4
5
6
7
8
9
VIN3  
VIN4  
VIN5  
VS+  
1
19 VOUT3  
18 VOUT4  
17 VOUT5  
16 VS-  
8
2
3
4
5
6
7
7
VIN3  
VIN4  
VOUT3  
VOUT4  
6
THERMAL  
PAD  
VS+  
15 VS-  
VIN6  
VIN7  
VIN8  
15 VOUT6  
14 VOUT7  
13 VOUT8  
VIN5  
VIN6  
VIN7  
14 VOUT5  
13 VOUT6  
12 VOUT7  
11 VOUT8  
VIN8 10  
* NOT AVAILABLE IN EL5223  
EL5423  
(32-PIN QFN)  
TOP VIEW  
EL5423  
(28-PIN TSSOP)  
EL5323  
(24-PIN TSSOP)  
TOP VIEW  
TOP VIEW  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VS+  
1
2
3
4
5
6
7
8
9
28 VOUT1  
27 VOUT2  
26 VOUT3  
25 VOUT4  
24 VOUT5  
23 VOUT6  
22 VS-  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VS+  
1
24 VOUT1  
23 VOUT2  
22 VOUT3  
21 VOUT4  
20 VOUT5  
19 VS-  
2
3
4
5
6
7
8
9
VIN3  
VIN4  
VIN5  
VIN6  
VS+  
1
25 VOUT3  
2
3
4
5
6
7
8
9
24 VOUT4  
23 VOUT5  
22 VOUT6  
21 VS-  
THERMAL  
PAD  
VS+  
18 VS-  
VIN7  
VIN8  
VIN9  
VIN10  
20 VOUT7  
19 VOUT8  
18 VOUT9  
17 VOUT10  
VS+  
21 VS-  
VIN6  
VIN7  
17 VOUT6  
16 VOUT7  
15 VOUT8  
14 VOUT9  
13 VOUT10  
VIN7  
20 VOUT7  
19 VOUT8  
18 VOUT9  
17 VOUT10  
16 VOUT11  
15 VOUT12  
VIN8 10  
VIN9 11  
VIN8 10  
VIN9 11  
VIN10 12  
VIN10 12  
VIN11 13  
VIN12 14  
FN7176.1  
November 19, 2004  
2
EL5123, EL5223, EL5323, EL5423  
Ordering Information  
TAPE &  
REEL  
TAPE &  
REEL  
PART NO.  
EL5123CY  
PACKAGE  
PKG. DWG. #  
PART NO.  
PACKAGE  
PKG. DWG. #  
10-Pin MSOP  
-
MDP0043  
EL5323CLZ  
(See Note)  
24-Pin QFN  
(Pb-Free)  
-
7”  
13”  
-
MDP0046  
EL5123CY-T7  
EL5123CY-T13  
10-Pin MSOP  
10-Pin MSOP  
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0046  
MDP0046  
MDP0046  
EL5323CLZ-T7  
(See Note)  
24-Pin QFN  
(Pb-Free)  
MDP0046  
MDP0046  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0046  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
MDP0044  
EL5323CLZ-T13  
(See Note)  
24-Pin QFN  
(Pb-Free)  
EL5123CYZ  
(See Note)  
10-Pin MSOP  
(Pb-Free)  
EL5323CR  
24-Pin TSSOP  
24-Pin TSSOP  
24-Pin TSSOP  
EL5123CYZ-T7  
(See Note)  
10-Pin MSOP  
(Pb-Free)  
7”  
13”  
-
EL5323CR-T7  
EL5323CR-T13  
7”  
13”  
-
EL5123CYZ-T13  
(See Note)  
10-Pin MSOP  
(Pb-Free)  
EL5223CL  
24-Pin QFN  
24-Pin QFN  
24-Pin QFN  
EL5323CRZ  
(See Note)  
24-Pin TSSOP  
(Pb-Free)  
EL5223CL-T7  
EL5223CL-T13  
7”  
13”  
-
EL5323CRZ-T7  
(See Note)  
24-Pin TSSOP  
(Pb-Free)  
7”  
13”  
-
EL5323CRZ-T13  
(See Note)  
24-Pin TSSOP  
(Pb-Free)  
EL5223CLZ  
(See Note)  
24-Pin QFN  
(Pb-Free)  
EL5423CL  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
EL5223CLZ-T7  
(See Note)  
24-Pin QFN  
(Pb-Free)  
7”  
13”  
-
EL5423CL-T7  
EL5423CL-T13  
7”  
13”  
-
EL5223CLZ-T13  
(See Note)  
24-Pin QFN  
(Pb-Free)  
EL5223CR  
20-Pin TSSOP  
20-Pin TSSOP  
20-Pin TSSOP  
EL5423CLZ  
(See Note)  
32-Pin QFN  
(Pb-Free)  
EL5223CR-T7  
EL5223CR-T13  
7”  
13”  
-
EL5423CLZ-T7  
(See Note)  
32-Pin QFN  
(Pb-Free)  
7”  
13”  
-
EL5423CLZ-T13  
(See Note)  
32-Pin QFN  
(Pb-Free)  
EL5223CRZ  
(See Note)  
20-Pin TSSOP  
(Pb-Free)  
EL5423CR  
28-Pin TSSOP  
28-Pin TSSOP  
28-Pin TSSOP  
EL5223CRZ-T7  
(See Note)  
20-Pin TSSOP  
(Pb-Free)  
7”  
13”  
-
EL5423CR-T7  
EL5423CR-T13  
7”  
13”  
-
EL5223CRZ-T13 20-Pin TSSOP  
(See Note)  
(Pb-Free)  
EL5323CL  
24-Pin QFN  
EL5423CRZ  
(See Note)  
28-Pin TSSOP  
(Pb-Free)  
EL5323CL-T7  
EL5323CL-T13  
24-Pin QFN  
24-Pin QFN  
7”  
13”  
EL5423CRZ-T7  
(See Note)  
28-Pin TSSOP  
(Pb-Free)  
7”  
13”  
EL5423CRZ-T13  
(See Note)  
28-Pin TSSOP  
(Pb-Free)  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination  
finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-  
free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
FN7176.1  
November 19, 2004  
3
EL5123, EL5223, EL5323, EL5423  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
ESD Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 10kand C = 10pF to 0V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
0.5  
5
12  
mV  
µV/°C  
nA  
OS  
CM  
(Note 1)  
= 0V  
TCV  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
OS  
I
V
2
50  
B
CM  
R
C
1
GΩ  
IN  
IN  
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
-4.5V V  
4.5V  
OUT  
0.99  
4.85  
55  
1.01  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
I = -5mA  
-4.95  
4.95  
-4.85  
V
V
OL  
OH  
L
Output Swing High  
Output Current (Note 2)  
I = +5mA  
L
I
(max)  
R
= 10Ω  
±120  
mA  
OUT  
L
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from ±2.25V to ±7.75V  
80  
2.4  
5.5  
6
dB  
mA  
mA  
mA  
mA  
S
I
No load (EL5123)  
No load (EL5223)  
No load (EL5323)  
No load (EL5423)  
3.4  
6.8  
S
8.5  
7.45  
10.1  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 3)  
-4.0V V  
4.0V, 20% to 80%  
(A = +1), V = 2V step  
7
15  
250  
12  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over operating temperature range.  
2. Instantaneous peak current.  
3. Slew rate is measured on rising and falling edges.  
FN7176.1  
November 19, 2004  
4
EL5123, EL5223, EL5323, EL5423  
Electrical Specifications V + =+5V, V - = 0V, R = 10kand C = 10pF to 2.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 2.5V  
0.5  
5
12  
mV  
µV/°C  
nA  
OS  
CM  
(Note 1)  
= 2.5V  
TCV  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
OS  
I
V
2
50  
B
CM  
R
1
GΩ  
IN  
IN  
C
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
0.5V V  
4.5V  
OUT  
0.99  
4.85  
55  
1.01  
150  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
I = -2.5mA  
80  
mV  
V
OL  
OH  
L
Output Swing High  
Output Current (Note 2)  
I = +2.5mA  
4.92  
±120  
L
I
(max)  
R
= 10Ω  
mA  
OUT  
L
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
80  
2.4  
5.2  
5.8  
7.2  
dB  
mA  
mA  
mA  
mA  
S
I
No load (EL5123)  
No load (EL5223)  
No load (EL5323)  
No load (EL5423)  
3.2  
6.5  
8
S
9.7  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 3)  
1V V  
4V, 20% to 80%  
12  
250  
12  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over operating temperature range.  
2. Instantaneous peak current.  
3. Slew rate is measured on rising and falling edges  
FN7176.1  
November 19, 2004  
5
EL5123, EL5223, EL5323, EL5423  
Electrical Specifications  
V + = +15V, V - = 0V, R = 10kand C = 10pF to 7.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
CM  
0.5  
5
14  
mV  
µV/°C  
nA  
OS  
TCV  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
(Note 1)  
= 7.5V  
OS  
I
V
2
50  
B
CM  
R
1
GΩ  
IN  
IN  
C
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
0.5V V  
14.5V  
OUT  
0.99  
1.01  
150  
V/V  
V
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
I = -7.5mA  
80  
mV  
V
OL  
OH  
L
Output Swing High  
Output Current (Note 2)  
I = +7.5mA  
14.85  
120  
14.95  
200  
L
I
(max)  
R
= 10Ω  
mA  
OUT  
L
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
55  
80  
2.4  
5.7  
6.2  
7.8  
dB  
mA  
mA  
mA  
mA  
S
I
No load (EL5123)  
No load (EL5223)  
No load (EL5323)  
No load (EL5423)  
3.7  
7.1  
S
8.7  
10.4  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 3)  
1V V  
14V, 20% to 80%  
18  
250  
12  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over operating temperature range.  
2. Instantaneous peak current.  
3. Slew rate is measured on rising and falling edges.  
FN7176.1  
November 19, 2004  
6
EL5123, EL5223, EL5323, EL5423  
Typical Performance Curves  
12  
10  
8
0.018  
V =±5V  
S
R =10kΩ  
L
IN  
0.016  
0.014  
0.012  
0.01  
V
=2V  
P-P  
6
4
2
0.008  
V =±5V  
S
R =10kΩ  
L
0
10K  
0.006  
100K  
1M  
10M  
1K  
10K  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. OUTPUT SWING vs FREQUENCY  
FIGURE 2. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY  
80  
10  
V =±5V  
S
V =±5V  
S
R =10kΩ  
R =10kΩ  
70  
60  
50  
40  
30  
20  
10  
0
L
L
V
=100mV  
C =12pF  
IN  
L
6
2
-2  
-6  
-10  
10  
100  
1K  
200 250 300 350 400 450 500 550 600 650  
CAPACITANCE (pF)  
SETTLING TIME (ns)  
FIGURE 3. OVERSHOOT vs LOAD CAPACITANCE  
FIGURE 4. SETTLING TIME vs STEP SIZE  
20  
20  
V =±5V  
V =±5V  
S
S
1000pF  
R =10kΩ  
C =10pF  
L
L
100pF  
12pF  
10  
0
10  
0
1kΩ  
10kΩ  
47pF  
562Ω  
-10  
-20  
-30  
-10  
-20  
-30  
150Ω  
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 6. FREQUENCY RESPONSE FOR VARIOUS R  
L
L
FN7176.1  
November 19, 2004  
7
EL5123, EL5223, EL5323, EL5423  
Typical Performance Curves  
100  
600  
V =±5V  
S
PSRR+  
T =25°C  
A
80  
480  
360  
240  
120  
0
PSRR-  
60  
40  
20  
V =±5V  
S
0
1K  
10K  
100K  
1M  
10M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. PSRR vs FREQUENCY  
FIGURE 8. OUTPUT IMPEDANCE vs FREQUENCY  
25  
20  
15  
10  
5
100  
10  
1
0
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
INPUT OFFSET VOLTAGE (mV)  
FIGURE 9. INPUT NOISE SPECTRAL DENSITY vs FREQUENCY  
FIGURE 10. INPUT OFFSET VOLTAGE DISTRIBUTION  
2.5  
4.955  
4.95  
V =±5V  
S
1.5  
0.5  
4.945  
4.94  
-0.5  
-1.5  
-2.5  
4.935  
4.93  
V =±5V  
S
I
=5mA  
OUT  
4.925  
-35  
-15  
5
25  
45  
65  
85  
-35  
-15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 12. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FN7176.1  
November 19, 2004  
8
EL5123, EL5223, EL5323, EL5423  
Typical Performance Curves  
15.1  
-4.934  
V =±5V  
S
V =±5V  
S
I
=-5mA  
OUT  
14.9  
14.7  
14.5  
14.3  
14.1  
-4.938  
-4.942  
-4.946  
-4.95  
-4.954  
-35  
-15  
5
25  
45  
65  
85  
-35  
-15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 13. SLEW RATE vs TEMPERATURE  
FIGURE 14. OUTPUT LOW VOLTAGE vs TEMPERATURE  
0.66  
1.0014  
V =±5V  
S
V =±5V  
S
1.001  
1.0006  
1
0.65  
0.64  
0.63  
0.62  
0.9998  
-35  
-15  
5
25  
45  
65  
85  
-35  
-15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 15. VOLTAGE GAIN vs TEMPERATURE  
FIGURE 16. SUPPLY CURRENT PER CHANNEL vs  
TEMPERATURE  
0.71  
T =25°C  
A
V =±5V  
S
R =10kΩ  
L
C =12pF  
L
0.69  
0.67  
0.65  
0.63  
50mV/DIV  
4
6
8
10  
12  
14  
16  
18  
200ns/DIV  
SUPPLY VOLTAGE (V)  
FIGURE 17. SUPPLY CURRENT PER CHANNEL vs SUPPLY  
VOLTAGE  
FIGURE 18. SMALL SIGNAL TRANSIENT RESPONSE  
FN7176.1  
November 19, 2004  
9
EL5123, EL5223, EL5323, EL5423  
Typical Performance Curves  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD, QFN EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
3
2.5  
2
2.857W  
2.703W  
QFN32  
QFN24  
=37°C/W  
θ
=35°C/W  
JA  
θ
JA  
1V/DIV  
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
1µs/DIV  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 AND SEMI G42-88  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
(SINGLE LAYER) TEST BOARD  
CONDUCTIVITY TEST BOARD  
0.8  
1.4  
758mW  
1.333W  
0.7  
1.2  
714mW  
1.176W  
0.6  
TSSOP24  
=85°C/W  
1.111W  
1
QFN32  
=132°C/W  
JA  
θ
JA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
QFN24  
=140°C/W  
θ
0.8 870mW  
θ
TSSOP28  
=75°C/W  
JA  
θ
JA  
0.6  
TSSOP20  
θ
=95°C/W  
JA  
0.4  
0.2  
0
MSOP10  
θ
=115°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
0.9  
833mW  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
781mW  
TSSOP24  
=128°C/W  
714mW  
486mW  
θ
JA  
TSSOP28  
=120°C/W  
θ
JA  
MSOP10  
=206°C/W  
θ
JA  
TSSOP20  
=140°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7176.1  
November 19, 2004  
10  
EL5123, EL5223, EL5323, EL5423  
exceeds ±30mA. This limit is set by the design of the internal  
metal interconnects.  
Applications Information  
Product Description  
Output Phase Reversal  
The EL5123, EL5223, EL5323, and EL5423 unity gain  
buffers are fabricated using a high voltage CMOS process. It  
exhibits rail-to-rail input and output capability and has low  
power consumption (600µA per buffer). These features  
make the EL5123, EL5223, EL5323, and EL5423 ideal for a  
wide range of general-purpose applications. When driving a  
load of 10kand 12pF, the EL5123, EL5223, EL5323, and  
EL5423 have a -3dB bandwidth of 12MHz and exhibits  
15V/µs slew rate.  
The EL5123, EL5223, EL5323, and EL5423 are immune to  
phase reversal as long as the input voltage is limited from  
V - -0.5V to V + +0.5V. Figure 25 shows a photo of the  
S
S
output of the device with the input voltage driven beyond the  
supply rails. Although the device's output will not change  
phase, the input's over-voltage should be avoided. If an input  
voltage exceeds supply voltage by more than 0.6V,  
electrostatic protection diodes placed in the input stage of  
the device begin to conduct and over-voltage damage could  
occur.  
Operating Voltage, Input, and Output  
The EL5123, EL5223, EL5323, and EL5423 are specified  
with a single nominal supply voltage from 5V to 15V or a split  
supply with its total range from 5V to 15V. Correct operation  
is guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5123, EL5223, EL5323, and EL5423 specifications are  
stable over both the full supply range and operating  
temperatures of -40°C to +85°C. Parameter variations with  
operating voltage and/or temperature are shown in the  
typical performance curves.  
1V  
10µs  
V =±2.5V  
S
The output swings of the EL5123, EL5223, EL5323, and  
EL5423 typically extend to within 50mV of positive and  
negative supply rails with load currents of 5mA. Decreasing  
load currents will extend the output voltage range even  
closer to the supply rails. Figure 24shows the input and  
output waveforms for the device. Operation is from ±5V  
supply with a 10kload connected to GND. The input is a  
T =25°C  
A
IN  
V
=6V  
P-P  
1V  
FIGURE 25. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dissipation  
With the high-output drive capability of the EL5123, EL5223,  
EL5323, and EL5423 buffer, it is possible to exceed the  
125°C “absolute-maximum junction temperature” under  
certain load current conditions. Therefore, it is important to  
calculate the maximum junction temperature for the  
application to determine if load conditions need to be  
modified for the buffer to remain in the safe operating area.  
10V  
9.985V  
sinusoid. The output voltage is approximately  
P-P  
.
P-P  
5V  
10µs  
V =±5V  
S
T =25°C  
A
V
=10V  
IN  
P-P  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
JMAX  
--------------------------------------------  
P
=
DMAX  
dΘ  
JA  
5V  
where:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
FIGURE 24. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
T
AMAX  
θ
= Thermal resistance of the package  
JA  
Short Circuit Current Limit  
P
= Maximum power dissipation in the package  
The EL5123, EL5223, EL5323, and EL5423 will limit the  
short circuit current to ±120mA if the output is directly  
shorted to the positive or the negative supply. If an output is  
shorted indefinitely, the power dissipation could easily  
increase such that the device may be damaged. Maximum  
reliability is maintained if the output continuous current never  
DMAX  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
FN7176.1  
November 19, 2004  
11  
EL5123, EL5223, EL5323, EL5423  
when sourcing, and  
Power Supply Bypassing and Printed Circuit  
Board Layout  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended, lead lengths  
should be as short as possible, and the power supply pins  
must be well bypassed to reduce the risk of oscillation. For  
when sinking.  
where:  
i = 1 to Total number of buffers  
V = Total supply voltage  
normal single supply operation, where the V - pin is  
S
connected to ground, a 0.1µF ceramic capacitor should be  
S
placed from V + pin to ground. A 4.7µF tantalum capacitor  
S
I
= Maximum quiescent current per channel  
SMAX  
should then be connected from V + pin to ground. One  
S
4.7µF capacitor may be used for multiple devices. This same  
capacitor combination should be placed at each supply pin  
to ground if split supplies are to be used.  
V
i = Maximum output voltage of the application  
OUT  
I
i = Load current  
LOAD  
If we set the two P  
DMAX  
equations equal to each other, we  
can solve for R  
i to avoid device overheat. The package  
LOAD  
power dissipation curves provide a convenient way to see if  
the device will overheat. The maximum safe power  
dissipation can be found graphically, based on the package  
type and the ambient temperature. By using the previous  
equation, it is a simple matter to see if P  
device's power derating curves.  
exceeds the  
DMAX  
Unused Buffers  
It is recommended that any unused buffer have the input tied  
to the ground plane.  
Driving Capacitive Loads  
The EL5123, EL5223, EL5323, and EL5423 can drive a wide  
range of capacitive loads. As load capacitance increases,  
however, the -3dB bandwidth of the device will decrease and  
the peaking increase. The buffers drive 10pF loads in  
parallel with 10kwith just 1.5dB of peaking, and 100pF  
with 6.4dB of peaking. If less peaking is desired in these  
applications, a small series resistor (usually between 5and  
50) can be placed in series with the output. However, this  
will obviously reduce the gain slightly. Another method of  
reducing peaking is to add a “snubber” circuit at the output.  
A snubber is a shunt load consisting of a resistor in series  
with a capacitor. Values of 150and 10nF are typical. The  
advantage of a snubber is that it does not draw any DC load  
current or reduce the gain.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7176.1  
November 19, 2004  
12  

相关型号:

EL5424

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424CL-T13

13 BUFFER AMPLIFIER, PQCC32, 0.90 MM HEIGHT, EXPOSED PAD, PLASTIC, MO-220, LPP-32
RENESAS

EL5424IL

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424IL-T13

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424IL-T7

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ-T13

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5424ILZ-T7

12MHz Rail-to-Rail Buffers + 100mA VCOM Amplifier
INTERSIL

EL5427

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CL

Product Brief 2.5MHz 4-, 8-, 10- & 12-Channel Rail-to-Rail Buffers
ELANTEC

EL5427CL

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL

EL5427CL-T13

2.5MHz 4, 8, 10 & 12 Channel Rail-to-Rail Buffers
INTERSIL