EL5524 [INTERSIL]

Integrated Buffers with VCOM; 集成缓冲器,具有VCOM
EL5524
型号: EL5524
厂家: Intersil    Intersil
描述:

Integrated Buffers with VCOM
集成缓冲器,具有VCOM

文件: 总11页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5524, EL5624, EL5724, EL5824  
®
Data Sheet  
COM  
May 23, 2005  
FN7346.1  
Integrated Buffers with V  
Features  
The EL5524, EL5624, EL5724, and EL5824 integrate a  
• 4 x gamma buffers (EL5524)  
• 6 x gamma buffers (EL5624)  
• 8 x gamma buffers (EL5724)  
• 10 x gamma buffers (EL5824)  
number of gamma reference buffers with a single V  
COM  
amplifier. The EL5524 contains 4 gamma buffers, the  
EL5624 contains 6, the EL5724 contains 8, and the EL5824  
contains 10. Each gamma buffer has a bandwidth of 12MHz  
and features a slew rate of 15V/µs. The output current is  
rated at 30mA continuous, 140mA peak.  
• Single V  
COM  
amplifier  
output current  
• 140mA max V  
COM  
The V  
COM  
amplifiers are rated for 60mA continuous output  
current and 200mA peak. They also feature higher slew rate  
and bandwidth for use in error cancellation circuits.  
• Low power  
- 5.4mA (EL5524)  
- 6.8mA (EL5624)  
- 8.3mA (EL5724)  
- 9.5mA (EL5824)  
The EL5524 is available in the 14-pin HTSSOP package, the  
EL5624 in the 20-pin HTSSOP package, the EL5724 in the  
24-pin HTSSOP package, and the EL5824 in the 28-pin  
HTSSOP package. All are specified for operation over the  
-40°C to +85°C temperature range.  
• Pb-Free plus Anneal available (RoHS compliant)  
Applications  
• TFT-LCD displays  
• Flat panel monitors  
• Notebook displays  
• LCD-TVs  
Ordering Information (Continued)  
Ordering Information  
TAPE &  
TAPE &  
PART NUMBER  
EL5724IRE-T13  
PACKAGE  
24-Pin HTSSOP  
REEL  
13"  
-
PKG. DWG. #  
MDP0048  
PART NUMBER  
EL5524IRE  
PACKAGE  
REEL  
PKG. DWG. #  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
14-Pin HTSSOP  
14-Pin HTSSOP  
14-Pin HTSSOP  
-
7"  
13"  
-
EL5724IREZ  
(See Note)  
24-Pin HTSSOP  
(Pb-free)  
MDP0048  
EL5524IRE-T7  
EL5524IRE-T13  
EL5724IREZ-T7  
(See Note)  
24-Pin HTSSOP  
(Pb-free)  
7"  
MDP0048  
MDP0048  
EL5524IREZ  
(See Note)  
14-Pin HTSSOP  
(Pb-free)  
EL5724IREZ-T13 24-Pin HTSSOP  
13"  
EL5524IREZ-T7  
(See Note)  
14-Pin HTSSOP  
(Pb-free)  
7"  
MDP0048  
MDP0048  
(See Note)  
(Pb-free)  
EL5824IRE  
28-Pin HTSSOP  
28-Pin HTSSOP  
28-Pin HTSSOP  
-
7"  
13"  
-
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5524IREZ-T13 14-Pin HTSSOP  
13"  
EL5824IRE-T7  
EL5824IRE-T13  
(See Note)  
(Pb-free)  
EL5624IRE  
20-Pin HTSSOP  
20-Pin HTSSOP  
20-Pin HTSSOP  
-
7"  
13"  
-
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5824IREZ  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
EL5624IRE-T7  
EL5624IRE-T13  
EL5824IREZ-T7  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
7"  
MDP0048  
MDP0048  
EL5624IREZ  
(See Note)  
20-Pin HTSSOP  
(Pb-free)  
EL5824IREZ-T13 28-Pin HTSSOP  
(See Note) (Pb-free)  
13"  
EL5624IREZ-T7  
(See Note)  
20-Pin HTSSOP  
(Pb-free)  
7"  
MDP0048  
MDP0048  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
EL5624IREZ-T13 20-Pin HTSSOP  
13"  
(See Note)  
(Pb-free)  
EL5724IRE  
EL5724IRE-T7  
24-Pin HTSSOP  
24-Pin HTSSOP  
-
MDP0048  
MDP0048  
7"  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL5524, EL5624, EL5724, EL5824  
Pinouts  
EL5524  
(14-PIN HTSSOP)  
TOP VIEW  
EL5624  
(20-PIN HTSSOP)  
TOP VIEW  
VIN1  
VIN2  
VIN3  
VIN4  
VS+  
1
2
3
4
5
6
7
14 VOUT1  
VIN1  
1
2
3
4
5
6
7
8
9
20 VOUT1  
13 VOUT2  
12 VOUT3  
11 VOUT4  
10 VS-  
VIN2  
VIN3  
VIN4  
VS+  
19 VOUT2  
18 VOUT3  
17 VOUT4  
16 VS-  
THERMAL  
PAD  
THERMAL  
PAD  
VINP  
VINN  
9
8
VOUT  
NC  
VS+  
15 VS-  
VIN5  
VIN6  
VINP  
14 VOUT5  
13 VOUT6  
12 VOUT  
11 NC  
VINN 10  
EL5724  
EL5824  
(24-PIN HTSSOP)  
(28-PIN HTSSOP)  
TOP VIEW  
TOP VIEW  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VS+  
1
2
3
4
5
6
7
8
9
24 VOUT1  
23 VOUT2  
22 VOUT3  
21 VOUT4  
20 VOUT5  
19 VS-  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VS+  
1
2
3
4
5
6
7
8
9
28 VOUT1  
27 VOUT2  
26 VOUT3  
25 VOUT4  
24 VOUT5  
23 VOUT6  
22 VS-  
THERMAL  
PAD  
VS+  
18 VS-  
THERMAL  
PAD  
VIN6  
VIN7  
17 VOUT6  
16 VOUT7  
15 VOUT8  
14 VOUT  
13 NC  
VS+  
21 VS-  
VIN7  
20 VOUT7  
19 VOUT8  
18 VOUT9  
17 VOUT10  
16 VOUT  
15 NC  
VIN8 10  
VINP 11  
VINN 12  
VIN8 10  
VIN9 11  
VIN10 12  
VINP 13  
VINN 14  
2
EL5524, EL5624, EL5724, EL5824  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . .V - -0.5V, V + +0.5V  
S
S
Maximum Continuous Output Current (Buffer) . . . . . . . . . . . . 30mA  
Maximum Continuous Output Current (V ) . . . . . . . . . . . . 60mA  
COM  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +15V, V - = 0, R = 10k, C = 10pF to 0V, Gain of V  
= 1, RLV  
= 1kand  
S
S
L
L
COM  
CM  
T
= 25°C Unless Otherwise Specified  
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
14  
UNIT  
INPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 0V  
2
5
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 0V  
OS  
I
V
2
50  
B
CM  
R
C
1
GΩ  
IN  
IN  
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
1V V  
14V  
OUT  
0.992  
1.008  
15  
V/V  
V
INPUT CHARACTERISTICS (V  
AMPLIFIER)  
COM  
Input Offset Voltage  
V
V
= 7.5V  
1
5
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
OS  
I
V
= 7.5V  
2
50  
B
CM  
R
C
1
GΩ  
pF  
IN  
IN  
Input Capacitance  
Load Regulation  
1.35  
V
V
= 1.5V, -60mA < I < 60mA  
-20  
55  
+20  
150  
150  
mV  
dB  
REG  
COM  
L
A
Open Loop Gain  
R
= 1kΩ  
L
75  
70  
VOL  
CMRR  
Common Rejection Ratio  
45  
dB  
OUTPUT CHARACTERISTICS (REFERENCE BUFFERS)  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = 7.5mA  
50  
mV  
V
OL  
L
I = 7.5mA  
14.85  
±120  
14.95  
±140  
OH  
L
I
R
= 10Ω  
L
mA  
SC  
OUTPUT CHARACTERISTICS (V  
AMPLIFIER)  
COM  
Output Swing Low  
V
V
I = -7.5mA  
50  
mV  
V
OL  
L
Output Swing High  
Short Circuit Current  
I = +7.5mA  
14.85  
±180  
14.95  
±200  
OH  
L
I
R
= 10Ω  
L
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Reference buffer V from 4.5V to 15.5V  
55  
55  
80  
80  
dB  
dB  
S
V
buffer, V from 4.5V to 15.5V  
S
COM  
I
Total Supply Current  
EL5524 (no load)  
EL5624 (no load)  
EL5724 (no load)  
EL5824 (no load)  
5.4  
6.8  
8.3  
9.5  
7
mA  
mA  
mA  
mA  
S
8.5  
11  
12.5  
3
EL5524, EL5624, EL5724, EL5824  
Electrical Specifications V + = +15V, V - = 0, R = 10k, C = 10pF to 0V, Gain of V  
= 1, RLV  
= 1kand  
S
S
L
L
COM  
CM  
T
= 25°C Unless Otherwise Specified (Continued)  
A
PARAMETER  
DYNAMIC PERFORMANCE (BUFFER AMPLIFIERS)  
SR Slew Rate (Note 2)  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
-4V V  
4V, 20% to 80%  
7
15  
250  
12  
8
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
V O  
S
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
L
= 10k, C = 10pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz  
dB  
DYNAMIC PERFORMANCE (V  
AMPLIFIERS)  
COM  
Slew Rate (Note 2)  
SR  
-4V V  
4V, 20% to 80%  
65  
90  
150  
35  
V/µs  
ns  
OUT  
(A = +1), V = 6V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 1k, C = 2pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 1k, C = 2pF  
20  
L
= 1k, C = 2pF  
50  
L
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
4
EL5524, EL5624, EL5724, EL5824  
Pin Descriptions  
EL5524  
EL5624  
EL5724  
1
EL5824  
1
PIN NAME  
VIN1  
PIN FUNCTION  
1
2
1
2
Input  
2
2
VIN2  
Input  
3
3
3
3
VIN3  
Input  
4
4
4
4
VIN4  
Input  
5
5, 6  
9
6, 7  
11  
12  
13  
14  
18, 19  
21  
22  
23  
24  
5
7, 8  
13  
14  
15  
16  
21, 22  
25  
26  
27  
28  
5
VS+  
Positive supply  
Positive input - V  
6
VINP  
COM  
7
10  
11  
12  
15, 16  
17  
18  
19  
20  
7
VINN  
Negative input - V  
Not connected  
COM  
8
NC  
9
VOUT  
VS-  
Output for V  
COM  
10  
11  
12  
13  
14  
Negative supply  
Output  
Output  
Output  
Output  
Input  
VOUT4  
VOUT3  
VOUT2  
VOUT1  
VIN5  
8
8
6
VIN6  
Input  
14  
13  
20  
17  
9
24  
23  
9
VOUT5  
VOUT6  
VIN7  
Output  
Output  
Input  
10  
16  
15  
10  
20  
19  
11  
12  
18  
17  
VIN8  
Input  
VOUT7  
VOUT8  
VIN9  
Output  
Output  
Input  
VIN10  
VOUT9  
VONT10  
Input  
Output  
Output  
Test Circuits  
V
V
V
V
IN  
OUT  
IN  
OUT  
+
-
10kΩ  
1kΩ  
50Ω  
50Ω  
10pF  
2pF  
FOR V  
COM  
FOR BUFFERS  
5
EL5524, EL5624, EL5724, EL5824  
Typical Performance Curves  
20  
20  
V =±7.5V  
V =±7.5V  
S
S
1000pF  
C =10pF  
R =10kΩ  
L
L
10  
0
10  
0
10kΩ  
100pF  
1kΩ  
12pF  
47pF  
1M  
-10  
-20  
-30  
-10  
-20  
-30  
150Ω  
562Ω  
100K  
1M  
10M  
100M  
100K  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R  
(BUFFER)  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS C  
(BUFFER)  
L
L
600  
100  
V =±7.5V  
V =±7.5V  
S
S
PSRR+  
T =25°C  
A
480  
360  
240  
120  
0
80  
60  
40  
20  
0
PSRR-  
100K  
1M  
10M  
100M  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. OUTPUT IMPEDANCE vs FREQUENCY (BUFFER)  
FIGURE 3. PSRR vs FREQUENCY (BUFFER)  
80  
V =±7.5V  
S
70  
60  
50  
40  
30  
20  
10  
0
R =10kΩ  
100  
10  
1
L
V
=100mV  
IN  
10  
100  
1K  
10K  
100K  
1M  
10M  
100M  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
FIGURE 6. OVERSHOOT vs LOAD CAPACITANCE (BUFFER)  
FIGURE 5. INPUT NOISE SPECIAL DENSITY vs FREQUENCY  
(BUFFER)  
6
EL5524, EL5624, EL5724, EL5824  
Typical Performance Curves (Continued)  
10  
8
6
4
2
0.018  
0.016  
0.014  
0.012  
0.01  
V =±7.5V  
V =±5V  
S
S
R =10kΩ  
R =10kΩ  
L
L
C =12pF  
L
V =2V  
IN P-P  
0
-2  
-4  
-6  
-8  
-10  
0.008  
0.006  
200 250 300 350 400 450 500 550 600 650  
SETTLING TIME (ns)  
1K  
10K  
100K  
FREQUENCY (Hz)  
FIGURE 7. SETTLING TIME vs STEP SIZE (BUFFER)  
FIGURE 8. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY (BUFFER)  
4
12  
10  
8
A =1  
V
2
0
A =2  
V
6
-2  
-4  
-6  
A =10  
V
4
A =5  
V
V =±7.5V  
S
2
R =1kΩ  
L
V =±5V  
S
C =2pF  
L
R =10kΩ  
L
0
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 10. FREQUENCY RESPONSE (V  
COM  
)
FIGURE 9. OUTPUT SWING vs FREQUENCY (BUFFER)  
M=1µs/DIV, V =±7.5V, V =0V  
IN  
S
70  
50  
0
0mA  
5mA  
5mA/DIV  
-72  
PHASE  
R =0Ω  
S
30  
-144  
-216  
-288  
-360  
C =200pF  
L
GAIN  
0V  
500mV/DIV  
10  
R =10Ω  
S
C =4.7nF  
L
V =±5V  
S
R =10Ω  
S
R =1kΩ  
F
-10  
C =1nF  
L
R =1kΩ  
L
C =1.5pF  
L
-30  
1K  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 12. TRANSIENT LOAD REGULATION - SOURCING  
(BUFFER)  
FIGURE 11. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
7
EL5524, EL5624, EL5724, EL5824  
Typical Performance Curves (Continued)  
V =±7.5V, R =200Ω, C =150pF  
M=1µs/DIV, V =±7.5V, V =0V  
IN  
S
L
L
S
50mA  
0mA  
5mA  
0mA  
5mA/DIV  
R =10Ω  
S
-50mA  
C =1nF  
L
0V  
500mV/DIV  
R =0Ω  
R =10Ω  
S
S
C =200pF  
C =4.7nF  
L
L
FIGURE 14. TRANSIENT LOAD REGULATION (V  
)
FIGURE 13. TRANSIENT LOAD REGULATION - SINKING  
(BUFFER)  
COM  
V =±7.5V  
S
V =±7.5V, R =10kΩ, C =12pF  
S
L
L
1V/DIV  
50mV/DIV  
1µs/DIV  
200ns/DIV  
FIGURE 16. LARGE SIGNAL TRANSIENT RESPONSE  
(BUFFER)  
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE  
(BUFFER)  
1
V =±7.5V, R =1kΩ, C =2pF  
S
L
L
V =±7.5V, R =1kΩ, C =2pF  
S
L
L
100mV/DIV  
1V/DIV  
100ns/DIV  
100ns/DIV  
FIGURE 17. SMALL SIGNAL TRANSIENT RESPONSE (V  
)
COM  
FIGURE 18. LARGE SIGNAL TRANSIENT REPONSE (V  
)
COM  
8
EL5524, EL5624, EL5724, EL5824  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD -  
HTSSOP EXPOSED DIEPAD SOLDERED TO  
PCB PER JESD51-5  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.9  
3.5  
3
909mW  
3.333W  
3.030W  
2.857W  
833mW  
0.8  
800mW  
694mW  
HTSSOP28  
JA  
2.5  
2
HTSSOP24  
2.632W  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
θ
=110°C/W  
θ
=33°C/W  
JA  
HTSSOP24  
JA  
HTSSOP28  
JA  
θ
=120°C/W  
HTSSOP20  
=125°C/W  
HTSSOP20  
=35°C/W  
1.5  
1
θ
=30°C/W  
θ
θ
JA  
JA  
HTSSOP14  
=38°C/W  
HTSSOP14  
JA  
0.5  
0
θ
θ
=144°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Choice of Feedback Resistor and Gain Bandwidth  
Description of Operation and Application  
Information  
Product Description  
The EL5524, EL5624, EL5724, and EL5824 are fabricated  
using a high voltage CMOS process. They exhibit rail to rail  
input and output capability and have very low power  
consumption. When driving a load of 10K and 12pF, the  
buffers have a -3dB bandwidth of 12MHz and exhibit 18V/µs  
Product for V  
Amplifier  
COM  
For applications that require a gain of +1, no feedback  
resistor is required. Just short the output pin to the inverting  
input pin. For gains greater than +1, the feedback resistor  
forms a pole with the parasitic capacitance at the inverting  
input. As this pole becomes smaller, the amplifier's phase  
margin is reduced. This causes ringing in the time domain  
and peaking in the frequency domain. Therefore, R has  
F
slew rate. The V  
amplifier has a -3dB bandwidth of  
some maximum value that should not be exceeded for  
COM  
35MHz and exhibit 80V/µs slew rate.  
optimum performance. If a large value of R must be used, a  
F
small capacitor in the few Pico farad range in parallel with R  
can help to reduce the ringing and peaking at the expense of  
reducing the bandwidth.  
F
Input, Output, and Supply Voltage Range  
The EL5524, EL5624, EL5724, and EL5824 are specified  
with a single nominal supply voltage from 5V to 15V or a split  
supply with its total range from 5V to 15V. Correct operation  
is guaranteed for a supply range from 4.5V to 16.5V.  
As far as the output stage of the amplifier is concerned, the  
output stage is also a gain stage with the load. R and R  
F
G
appear in parallel with R for gains other than +1. As this  
L
The input common-mode voltage range of the EL5524,  
EL5624, EL5724, and EL5824 extends 500mV beyond the  
combination gets smaller, the bandwidth falls off.  
Consequently, R also has a minimum value that should not  
F
supply rails. The output swings of the buffers and V  
COM  
be exceeded for optimum performance. For gain of +1, R =  
F
amplifier typically extend to within 100mV of the positive and  
negative supply rails with load currents of 5mA. Decreasing  
load currents will extend the output voltage even closer to  
each supply rails.  
0 is optimum. For the gains other than +1, optimum  
response is obtained with R between 1kto 5k.  
F
The V  
COM  
amplifier has a gain bandwidth product of  
20MHz. For gains 5, its bandwidth can be predicted by the  
Output Phase Reversal  
following equation:  
The EL5524, EL5624, EL5724, and EL5824 are immune to  
phase reversal as long as the input voltage is limited from  
Gain × BW = 20MHz  
V - -0.5V to V + +0.5V. Although the device's output will not  
S
S
change phase, the input's overvoltage should be avoided. If  
an input voltage exceeds supply voltage by more than 0.6V,  
electrostatic protection diode placed in the input stage of the  
device begin to conduct and overvoltage damage could  
occur.  
Output Drive Capability  
The EL5524, EL5624, EL5724, and EL5824 do not have  
internal short-circuit protection circuitry. The buffers will limit  
the short circuit current to ±120mA and the V  
amplifier  
COM  
9
EL5524, EL5624, EL5724, EL5824  
will limit the short circuit current to ±200mA if the outputs are  
where:  
directly shorted to the positive or the negative supply. If the  
output is shorted indefinitely, the power dissipation could  
easily increase such that the part will be destroyed.  
• i = 1 to total number of buffers  
• V = Total supply voltage of buffer and V  
S
COM  
Maximum reliability is maintained if the output continuous  
current never exceeds ±30mA for the buffers and ±60mA for  
• I  
= Total quiescent current  
SMAX  
• V  
• V  
i = Maximum output voltage of the application  
OUT  
OUT  
the V  
amplifier. These limits are set by the design of the  
COM  
internal metal interconnections.  
= Maximum output voltage of V  
i = Load current of buffer  
COM  
The Unused Buffers  
• I  
LOAD  
It is recommended that any unused buffers should have their  
inputs tied to ground plane.  
• I = Load current of V  
LA COM  
If we set the two P  
DMAX  
equations equal to each other, we  
's to avoid device overheat. The  
Power Dissipation  
can solve for the R  
LOAD  
package power dissipation curves provide a convenient way  
to see if the device will overheat. The maximum safe power  
dissipation can be found graphically, based on the package  
type and the ambient temperature. By using the previous  
With the high-output drive capability of the EL5524, EL5624,  
EL5724, and EL5824, it is possible to exceed the 125°C  
“absolute-maximum junction temperature” under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
buffer to remain in the safe operating area.  
equation, it is a simple matter to see if P  
device's power derating curves.  
exceeds the  
DMAX  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The maximum power dissipation allowed in a package is  
determined according to:  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended, lead lengths  
should be as short as possible, and the power supply pins  
must be well bypassed to reduce the risk of oscillation. For  
T
- T  
AMAX  
JMAX  
P
= --------------------------------------------  
DMAX  
Θ
JA  
where:  
• T  
normal single supply operation, where the V - pin is  
S
= Maximum junction temperature  
connected to ground, one 0.1µF ceramic capacitor should be  
JMAX  
placed from the V + pin to ground. A 4.7µF tantalum  
S
• T  
AMAX  
= Maximum ambient temperature  
capacitor should then be connected from the V + pin to  
S
θ = Thermal resistance of the package  
JA  
ground. One 4.7µF capacitor may be used for multiple  
devices. This same capacitor combination should be placed  
at each supply pin to ground if split supplies are to be used.  
• P  
DMAX  
= Maximum power dissipation in the package  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
Important Note: The metal plane used for heat sinking of  
the device is electrically connected to the negative  
supply potential (V -). If V - is tied to ground, the  
S
S
P
= V × I + Σi × [(V + V  
i) × I  
i] +  
LOAD  
thermal pad can be connected to ground. Otherwise, the  
thermal pad must be isolated from any other power  
planes.  
DMAX  
S
S
S
OUT  
(V + V  
) × I  
S
OUT  
LA  
when sourcing, and:  
P
= V × I + Σi × [(V  
i V -) × I  
i] +  
LOAD  
DMAX  
S
S
OUT  
S
(V  
V -) × I  
OUT  
S
LA  
when sinking.  
10  
EL5524, EL5624, EL5724, EL5824  
HTSSOP Package Outline Drawing  
NOTE: The package drawings shown here may not be the latest versions. For the latest revisions, please refer to the Intersil website at  
www.intersil.com/design/packages/elantec  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
11  

相关型号:

EL5524IRE

Integrated Buffers with VCOM
INTERSIL

EL5524IRE-T13

Integrated Buffers with VCOM
INTERSIL

EL5524IRE-T7

Integrated Buffers with VCOM
INTERSIL

EL5524IREZ

Integrated Buffers with VCOM
INTERSIL

EL5524IREZ-T13

Integrated Buffers with VCOM
INTERSIL

EL5524IREZ-T7

Integrated Buffers with VCOM
INTERSIL

EL5525

18-Channel TFT-LCD Reference Voltage Generator
INTERSIL

EL5525IRE

18-Channel TFT-LCD Reference Voltage Generator
INTERSIL

EL5525IRE

SPECIALTY ANALOG CIRCUIT, PDSO38, MO-153, TSSOP-38
RENESAS

EL5525IRE-T13

18-Channel TFT-LCD Reference Voltage Generator
INTERSIL

EL5525IRE-T7

18-Channel TFT-LCD Reference Voltage Generator
INTERSIL

EL5525IRE-T7

SPECIALTY ANALOG CIRCUIT, PDSO38, MO-153, TSSOP-38
RENESAS