EL5811IREZ [INTERSIL]

60MHz Rail-to-Rail Input-Output VCOM Amplifiers; 60MHz的轨至轨输入输出VCOM放大器
EL5811IREZ
型号: EL5811IREZ
厂家: Intersil    Intersil
描述:

60MHz Rail-to-Rail Input-Output VCOM Amplifiers
60MHz的轨至轨输入输出VCOM放大器

商用集成电路 放大器 光电二极管
文件: 总12页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5611, EL5811  
®
Data Sheet  
August 3, 2005  
FN7355.1  
60MHz Rail-to-Rail Input-Output V  
Amplifiers  
Features  
• 60MHz -3dB bandwidth  
COM  
The EL5611 and EL5811 are low power, high voltage rail-to-  
rail input-output amplifiers targeted primarily at V  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier) = 2.5mA  
• High slew rate = 75V/µs  
COM  
applications in TFT-LCD displays. The EL5611 contains six  
amplifiers, and the EL5811 contains eight amplifiers.  
Operating on supplies ranging from 5V to 15V, while  
consuming only 2.5mA per amplifier, the EL5611 and  
EL5811 have a bandwidth of 60MHz (-3dB). They also  
provide common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply  
voltage.  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• ±180mA output short current  
• Pb-Free plus anneal available (RoHS compliant)  
The EL5611 and EL5811 also feature fast slewing and  
settling times, as well as a high output drive capability of  
Applications  
• TFT-LCD panels  
65mA (sink and source). In addition to V  
applications,  
COM  
these features make these amplifiers ideal for high speed  
filtering and signal conditioning application. Other  
applications include battery power, portable devices, and  
anywhere low power consumption is important.  
• V  
COM  
amplifiers  
• Drivers for A-to-D converters  
• Data acquisition  
The EL5611 is available in 8-pin MSOP and 8-pin HMSOP  
packages. The EL5811 is available in space-saving 28-pin  
HTSSOP packages.These amplifiers operate over a  
temperature range of -40°C to +85°C.  
• Video processing  
• Audio processing  
• Active filters  
Test equipment  
• Battery-powered applications  
• Portable equipment  
Ordering Information (Continued)  
Ordering Information  
TAPE &  
TAPE &  
PART NUMBER  
PACKAGE  
REEL  
PKG. DWG. #  
PART NUMBER  
EL5611IRE  
PACKAGE  
REEL  
PKG. DWG. #  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5811IREZ-T13 28-Pin HTSSOP  
(See Note) (Pb-Free)  
13”  
MDP0048  
24-Pin HTSSOP  
24-Pin HTSSOP  
24-Pin HTSSOP  
-
7”  
13”  
-
EL5611IRE-T7  
EL5611IRE-T13  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
EL5811IREZ  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
EL5811IREZ-T7  
(See Note)  
28-Pin HTSSOP  
(Pb-free)  
7”  
13”  
-
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL5811IREZ-T13 28-Pin HTSSOP  
(See Note)  
(Pb-free)  
EL5811IREZ  
(See Note)  
28-Pin HTSSOP  
(Pb-Free)  
EL5811IREZ-T7  
(See Note)  
28-Pin HTSSOP  
(Pb-Free)  
7”  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL5611, EL5811  
Pinouts  
EL5611  
(24-PIN HTSSOP)  
TOP VIEW  
EL5811  
(28-PIN HTSSOP)  
TOP VIEW  
VINH+  
VINH-  
VOUTH  
VOUTG  
VING-  
VING+  
VSS  
VOUTA  
VINA-  
VINA+  
VSS  
VDD  
VDD  
VINA+  
VINA-  
1
2
24  
1
2
28  
VOUTF  
VINF-  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3
3
VINF+  
VOUTE  
VINE-  
VINE+  
VSS  
VOUTA  
VOUTB  
VINB-  
4
4
VOUTB  
VINB-  
VINB+  
VDD  
5
5
6
6
VINB+  
VINC+  
VINC-  
7
7
VSS  
8
8
VINF+  
VINF-  
VINC+  
VINC-  
VOUTC  
NC  
VOUTD+  
VOUTD-  
VOUTD  
NC  
9
9
VOUTC  
VOUTD  
VIND-  
10  
11  
12  
10  
11  
12  
13  
14  
VOUTF  
VOUTE  
VINE-  
VINE+  
VIND+  
VDD  
FN7355.1  
2
August 3, 2005  
EL5611, EL5811  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 65mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 1kto 0V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
= 0V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
TCV  
CM  
CM  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
V
60  
B
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
V
CMRR  
for V from -5.5V to 5.5V  
IN  
70  
70  
dB  
A
-4.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-Circuit Current  
Output Current  
I = -5mA  
-4.92  
4.92  
±180  
±65  
-4.85  
V
V
OL  
L
I = 5mA  
4.85  
60  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from ±2.25V to ±7.75V  
80  
dB  
S
I
No load  
2.5  
3.75  
mA  
S
-4.0V V  
4.0V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
OUT  
= R = 1kand V  
°
G
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
3. NTSC signal generator used.  
FN7355.1  
3
August 3, 2005  
EL5611, EL5811  
Electrical Specifications V + = +5V, V - = 0V, R = 1kto 2.5V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 2.5V  
= 2.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
TCV  
CM  
Average Offset Voltage Drift (Note 4)  
Input Bias Current  
OS  
I
60  
B
CM  
R
Input Impedance  
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
150  
V
CMRR  
for V from -0.5V to 5.5V  
IN  
66  
70  
dB  
A
0.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
4.85  
60  
4.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 5)  
V
is moved from 4.5V to 15.5V  
80  
dB  
S
I
No load  
2.5  
3.75  
mA  
S
1V V  
4V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 6)  
Differential Phase (Note 6)  
f = 5MHz  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
OUT  
= R = 1kand V  
°
G
NOTES:  
4. Measured over operating temperature range.  
5. Slew rate is measured on rising and falling edges.  
6. NTSC signal generator used.  
FN7355.1  
4
August 3, 2005  
EL5611, EL5811  
Electrical Specifications V + = +15V, V - = 0V, R = 1kto 7.5V, T = 25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
= 7.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
TCV  
CM  
Average Offset Voltage Drift (Note 7)  
Input Bias Current  
OS  
I
V
60  
B
CM  
R
C
Input Impedance  
GΩ  
pF  
IN  
IN  
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
150  
V
CMRR  
for V from -0.5V to 15.5V  
IN  
72  
70  
dB  
A
0.5V V  
14.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
14.85  
60  
14.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 8)  
V
is moved from 4.5V to 15.5V  
80  
dB  
S
I
No load  
2.5  
3.75  
mA  
S
1V V  
14V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 9)  
Differential Phase (Note 9)  
f = 5MHz  
110  
0.16  
0.22  
dB  
%
d
d
R
R
= R = 1kand V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
OUT  
= R = 1kand V  
°
G
NOTES:  
7. Measured over operating temperature range  
8. Slew rate is measured on rising and falling edges  
9. NTSC signal generator used  
FN7355.1  
5
August 3, 2005  
EL5611, EL5811  
Typical Performance Curves  
500  
25  
20  
15  
10  
5
V =±5V  
TYPICAL  
V =±5V  
TYPICAL  
S
S
T =25°C  
PRODUCTION  
DISTRIBUTION  
PRODUCTION  
DISTRIBUTION  
A
400  
300  
200  
100  
0
0
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT, TCV  
(µV/°C)  
OS  
FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 2. INPUT OFFSET VOLTAGE DRIFT  
2
1.5  
1
0.008  
V =±5V  
S
0.004  
0
0.5  
0
-0.004  
-0.008  
-0.012  
-0.5  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4.96  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
-4.85  
V =±5V  
V =±5V  
S
S
I
=5mA  
OUT  
I
=5mA  
OUT  
-4.87  
-4.89  
-4.91  
-4.93  
-4.95  
4.94  
4.92  
4.90  
4.88  
4.86  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FN7355.1  
August 3, 2005  
6
EL5611, EL5811  
Typical Performance Curves (Continued)  
75  
78  
77  
76  
75  
74  
73  
72  
V =±5V  
V =±5V  
S
S
R =1kΩ  
L
70  
65  
60  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. OPEN-LOOP GAIN vs TEMPERATURE  
2.9  
FIGURE 8. SLEW RATE vs TEMPERATURE  
2.7  
T =25°C  
V =±5V  
S
A
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
4
8
12  
16  
20  
-50  
-10  
30  
70  
110  
150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY  
VOLTAGE  
FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0.3  
0.25  
0.2  
0.15  
0.1  
-0.12  
-0.14 V =±5V  
S
0.05  
0
A =2  
V
-0.16  
-0.18  
R =1kΩ  
L
0
100  
IRE  
200  
0
100  
IRE  
200  
FIGURE 11. DIFFERENTIAL GAIN  
FIGURE 12. DIFFERENTIAL PHASE  
FN7355.1  
August 3, 2005  
7
EL5611, EL5811  
Typical Performance Curves (Continued)  
-30  
80  
60  
40  
20  
0
250  
190  
130  
70  
V =±5V  
S
A =2  
-40  
-50  
-60  
-70  
-80  
-90  
V
R =1kΩ  
L
GAIN  
FREQ=1MHz  
2nd HD  
PHASE  
10  
3rd HD  
4
-20  
-50  
0
2
6
8
10  
1K  
10K  
100K  
1M  
10M  
100M  
V
(V)  
FREQUENCY (Hz)  
OP-P  
FIGURE 13. HARMONIC DISTORTION vs V  
FIGURE 14. OPEN LOOP GAIN AND PHASE  
25  
OP-P  
5
V =±5V  
S
100pF  
A =1  
V
1000pF  
15  
C
=0pF  
3
1
LOAD  
1kΩ  
47pF  
10pF  
5
-5  
-1  
-3  
-5  
560Ω  
150Ω  
V =±5V  
S
-15  
-25  
A =1  
V
R =1kΩ  
L
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS C  
L
L
400  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
6
4
V =±5V  
S
A =1  
V
2
R =1kΩ  
L
DISTORTION <1%  
0
0
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FIGURE 17. CLOSED LOOP OUTPUT IMPEDANCE  
FIGURE 18. MAXIMUM OUTPUT SWING vs FREQUENCY  
FN7355.1  
August 3, 2005  
8
EL5611, EL5811  
Typical Performance Curves (Continued)  
-15  
-25  
-35  
-45  
-55  
-65  
-80  
-60  
-40  
-20  
0
PSRR+  
PSRR-  
V =±5V  
S
T =25°C  
A
1K  
10K  
100K  
1M  
10M  
100M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. CMRR  
FIGURE 20. PSRR  
-60  
-80  
1K  
DUAL MEASURED CH A TO B  
QUAD MEASURED CH A TO D OR B TO C  
OTHER COMBINATIONS YIELD  
IMPROVED REJECTION  
100  
10  
1
-100  
-120  
-140  
-160  
V =±5V  
S
R =1kΩ  
L
A =1  
V
IN  
V
=110mV  
RMS  
100  
1K  
10K  
100K  
1M  
10M  
100M  
1K  
10K  
100K  
FREQUENCY (Hz)  
1M  
10M  
30M  
FREQUENCY (Hz)  
FIGURE 21. INPUT VOLTAGE NOISE SPECTRAL DENSITY  
100  
FIGURE 22. CHANNEL SEPARATION  
5
4
3
2
1
V =±5V  
S
V =±5V  
S
A =1  
V
A =1  
V
R =1kΩ  
R =1kΩ  
L
80  
60  
40  
20  
0
L
0.1%  
V
=±50mV  
IN  
T =25°C  
A
0
-1  
-2  
-3  
-4  
-5  
0.1%  
10  
100  
1K  
55  
65  
75  
85  
95  
105  
LOAD CAPACITANCE (pF)  
SETTLING TIME (ns)  
FIGURE 23. SMALL-SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 24. SETTLING TIME vs STEP SIZE  
FN7355.1  
August 3, 2005  
9
EL5611, EL5811  
Typical Performance Curves (Continued)  
V =±5V  
S
V =±5V  
S
T =25°C  
A
T =25°C  
A
A =1  
V
A =1  
V
R =1kΩ  
R =1kΩ  
L
L
100mV STEP  
1V STEP  
50ns/DIV  
50ns/DIV  
FIGURE 25. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 26. SMALL SIGNAL TRANSIENT RESPONSE  
Pin Descriptions  
EL5611  
EL5811  
NAME  
FUNCTION  
Amplifiers output  
EQUIVALENT CIRCUIT  
1, 5, 9, 14, 20, 23 4, 5, 10, 11, 17,  
18, 25, 26  
VOUTx  
V
S+  
V
S-  
GND  
CIRCUIT 1  
2, 3, 6, 7, 9, 10, 2, 3, 6, 7, 8, 9, 12.  
VINx  
Amplifiers input  
V
V
S+  
S-  
15, 16, 21, 22  
13, 15, 16, 19, 20,  
23, 24, 27, 28  
CIRCUIT 2  
8, 24  
24, 17  
12, 13  
1, 14  
VS+  
VS-  
NC  
Positive power supply  
Negative power supply  
Not connected  
21, 22  
FN7355.1  
10  
August 3, 2005  
EL5611, EL5811  
continuous current never exceeds ±65mA. This limit is set by  
Applications Information  
Product Description  
the design of the internal metal interconnects.  
Output Phase Reversal  
The EL5611 and EL5811 voltage feedback amplifiers are  
fabricated using a high voltage CMOS process. They exhibit  
rail-to-rail input and output capability, are unity gain stable  
and have low power consumption (2.5mA per amplifier).  
These features make the EL5611, and EL5811 ideal for a  
wide range of general-purpose applications. Connected in  
voltage follower mode and driving a load of 1k, the EL5611  
and EL5811 have a -3dB bandwidth of 60MHz while  
maintaining a 75V/µs slew rate. The EL5611 a six channel  
amplifier, and the EL5811 an 8 channel amplifier.  
The EL5611 and EL5811 are immune to phase reversal as  
long as the input voltage is limited from V - -0.5V to V +  
S
S
+0.5V. Figure 28 shows a photo of the output of the device  
with the input voltage driven beyond the supply rails.  
Although the device's output will not change phase, the  
input's overvoltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diodes placed in the input stage of the device  
begin to conduct and overvoltage damage could occur.  
Operating Voltage, Input, and Output  
V
= ±2.5V, T = 25°C, A = 1, V = 6V  
IN P-P  
S
A
V
The EL5611and EL5811 are specified with a single nominal  
supply voltage from 5V to 15V or a split supply with its total  
range from 5V to 15V. Correct operation is guaranteed for a  
supply range of 4.5V to 16.5V. Most EL5611 and EL5811  
specifications are stable over both the full supply range and  
operating temperatures of -40°C to +85°C. Parameter  
variations with operating voltage and/or temperature are  
shown in the typical performance curves.  
1V  
10µs  
The input common-mode voltage range of the EL5611 and  
EL5811 extends 500mV beyond the supply rails. The output  
swings of the EL5611 and EL5811 typically extend to within  
100mV of positive and negative supply rails with load  
currents of 5mA. Decreasing load currents will extend the  
output voltage range even closer to the supply rails. Figure  
27 shows the input and output waveforms for the device in  
the unity-gain configuration. Operation is from ±5V supply  
1V  
FIGURE 28. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dissipation  
With the high-output drive capability of the EL5611 and  
EL5811 amplifiers, it is possible to exceed the 125°C  
'absolute-maximum junction temperature' under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
amplifier to remain in the safe operating area.  
with a 1kload connected to GND. The input is a 10V  
P-P  
sinusoid. The output voltage is approximately 9.8V  
.
P-P  
V
= ±5V, T = 25°C, A = 1, V = 10V  
IN P-P  
S
A
V
5V  
10µs  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
JMAX  
--------------------------------------------  
P
=
DMAX  
Θ
JA  
where:  
5V  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
FIGURE 27. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
Θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
Short Circuit Current Limit  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
The EL5611 and EL5811 will limit the short circuit current to  
±180mA if the output is directly shorted to the positive or the  
negative supply. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the device may  
be damaged. Maximum reliability is maintained if the output  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
FN7355.1  
11  
August 3, 2005  
EL5611, EL5811  
when sourcing, and:  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
909mW  
when sinking,  
where:  
833mW  
HTSSOP28  
JA  
θ
=110°C/W  
• i = 1 to 6 for EL5611 and 1 to 8 for EL5811  
• V = Total supply voltage  
HTSSOP24  
=120°C/W  
θ
JA  
S
• I  
= Maximum supply current per amplifier  
i = Maximum output voltage of the application  
i = Load current  
SMAX  
• V  
• I  
OUT  
0
25  
50  
75 85 100  
125  
150  
LOAD  
AMBIENT TEMPERATURE (°C)  
If we set the two P  
equations equal to each other, we  
DMAX  
i to avoid device overheat. Figures 29  
can solve for R  
LOAD  
FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
and 30 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
Unused Amplifiers  
It is recommended that any unused amplifiers in a dual and  
a quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
simple matter to see if P  
exceeds the device's power  
DMAX  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves shown in  
Figures 29 & 30.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - HTSSOP  
EXPOSED DIEPAD SOLDERED TO PCB PER  
JESD51-5  
The EL5611 and EL5811 can provide gain at high frequency.  
As with any high-frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended, lead lengths  
should be as short as possible and the power supply pins  
must be well bypassed to reduce the risk of oscillation. For  
3.5  
3.333W  
3
3.030W  
2.5  
HTSSOP28  
θ
=30°C/W  
2
1.5  
1
JA  
normal single supply operation, where the V - pin is  
S
HTSSOP24  
=33°C/W  
connected to ground, a 0.1µF ceramic capacitor should be  
θ
JA  
placed from V + to pin to V - pin. A 4.7µF tantalum  
S
S
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used.  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 29. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7355.1  
12  
August 3, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY