EL7566DREZ-T7 [INTERSIL]

Monolithic 6 Amp DC-DC Step-Down Regulator; 单片6安培的DC-DC降压型稳压器
EL7566DREZ-T7
型号: EL7566DREZ-T7
厂家: Intersil    Intersil
描述:

Monolithic 6 Amp DC-DC Step-Down Regulator
单片6安培的DC-DC降压型稳压器

稳压器
文件: 总14页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL7566  
®
Data Sheet  
December 1, 2004  
FN7102.5  
Monolithic 6 Amp DC-DC Step-Down  
Regulator  
Features  
• Integrated MOSFETs  
The EL7566 is a full-feature synchronous step-down regulator  
capable of up to 6A and 96% efficiency. The device operates  
• 6A continuous output current  
• Up to 96% efficiency  
from 3V to 6V input supply (V ). With internal CMOS power  
IN  
FETs, the device can operate at up to 100% duty ratio,  
• Multiple supply start-up tracking  
• Built-in ±5% voltage margining  
allowing for an output voltage range of 0.8V to nearly V . An  
IN  
adjustable switching frequency up to 1MHz enables the use of  
small components, thereby reducing board area consumption  
to under 0.72sq-in on one side of a PCB. The EL7566  
operates in constant frequency PWM mode, making external  
synchronization possible. A soft-start feature is integrated in  
the EL7566 to limit in-rush currents and allow for a smooth  
voltage ramp from zero to regulation. Other start-up features  
are integrated to add flexibility for synchronizing many  
supplies in multiple configurations. The EL7566 also offers a  
voltage margining capability that shifts the output voltage ±5%  
for validation of system card performance and reliability during  
manufacturing tests. A junction temperature indicator  
conveniently monitors the silicon die temperature, saving time  
in thermal characterization.  
• 3V to 6V input voltage  
2
• 0.72 in footprint with components on one side of PCB  
• Adjustable switching frequency to 1MHz  
• Oscillator synchronization possible  
• 100% duty ratio  
• Junction temperature indicator  
• Over-temperature protection  
• Internal soft-start  
• Variable output voltage down to 0.8V  
• Power-good indicator  
An easy-to-use simulation tool is available for download and  
can be used to modify design parameters such as switching  
frequency, voltage ripple, ambient temperature, as well as  
view schematics waveforms, efficiency graphs, and  
complete BOM with Gerber layout.  
• 28-pin HTSSOP package  
• Pb-Free Available (RoHS Compliant)  
Applications  
• Point-of-regulation power supplies  
• FPGA Core and I/O supplies  
• DSP, CPU Core, and IO supplies  
• Logic/Bus supplies  
Ordering Information  
PART  
TAPE &  
PKG.  
NUMBER  
PACKAGE  
28-HTSSOP  
REEL DWG. #  
EL7566DRE  
-
7”  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
MDP0048  
EL7566DRE-T7  
28-HTSSOP  
• Portable equipment  
EL7566DRE-T13  
EL7566DREZ (Note)  
28-HTSSOP  
13”  
-
Related Documentation  
Technical Brief 415 - Using the EL7566 Demo Board  
28-HTSSOP (Pb-free)  
EL7566DREZ-T7 (Note) 28-HTSSOP (Pb-free)  
EL7566DREZ-T13 (Note) 28-HTSSOP (Pb-free)  
7”  
• Easy-to-use applications software simulation tool available  
at www.intersil.com/dc-dc  
13”  
EL7566AIREZ (Note)  
28-HTSSOP (Pb-free)  
-40°C to 85°C  
EL7566AIREZ-T7 (Note) 28-HTSSP (Pb-free)  
-40°C to 85°C  
7”  
MDP0048  
MDP0048  
EL7566AIREZ-T13  
(Note)  
28-HTSSOP (Pb-free)  
-40°C to 85°C  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL7566  
Typical Application Diagram  
C
C
R
C
1
2
3
4
5
6
7
8
9
COMP SGND 28  
270pF  
8200pF 10K  
0.047µF  
R
10K  
2
VREF  
FB  
COSC 27  
STN 26  
STP 25  
EN 24  
R
21.5K  
1
VO  
0.22µF  
VTJ  
TM  
PG 23  
SEL  
LX  
VDD 22  
VIN 21  
V
IN  
(3V TO  
6V)  
2.7µH  
LX  
VIN 20  
V
OUT  
(2.5V, 6A)  
100µF  
10 LX  
11 LX  
12 LX  
13 LX  
14 NC  
VIN 19  
150µF  
PGND 18  
PGND 17  
PGND 16  
NC 15  
FN7102.5  
2
December 1, 2004  
EL7566  
Absolute Maximum Ratings (T = 25°C)  
A
V
, V  
to SGND. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +135°C  
Operating Ambient Temperature DRE. . . . . . . . . . . . . 0°C to +85°C  
Operating Ambient Temperatute AIRE . . . . . . . . . . .-40°C to +85°C  
IN DD  
VX to PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3V  
IN  
SGND to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V  
COMP, V  
, FB, V , V , TM,  
REF TJ  
O
SEL, PG, EN, STP, STN, C  
OSC  
to SGND . . . . . -0.3V to V  
+0.3V  
DD  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
DC Electrical Specifications  
PARAMETER  
V
= V = 3.3V, T = T = 25°C, C  
= 390pF, Unless Otherwise Specified  
DD  
DESCRIPTION  
Input Voltage Range  
Reference Accuracy  
IN  
A
J
OSC  
CONDITIONS  
MIN  
3
TYP  
MAX  
6
UNIT  
V
V
IN  
V
1.24  
1.26  
50  
1.28  
V
REF  
V
Reference Temperature Coefficient  
Reference Load Regulation  
Oscillator Ramp Amplitude  
Oscillator Charge Current  
ppm/°C  
%
REFTC  
V
0 < I  
< 50µA  
-1  
REFLOAD  
REF  
V
1.15  
200  
8
V
RAMP  
I
0.1V < V  
0.1V < V  
< 1.25V  
µA  
mA  
mA  
mA  
V
OSC_CHG  
OSC  
OSC  
I
Oscillator Discharge Current  
< 1.25V  
OSC_DIS  
I
V
V
V
V
Supply Current  
Standby Current  
for Shutdown  
for Startup  
V
= 1 (L disconnected)  
2
2.7  
1
5
VDD  
VDD_OFF  
DD  
DD  
DD  
DD  
EN  
EN = 0  
I
1.5  
V
2.4  
2.6  
2.65  
2.95  
DD_OFF  
V
V
DD_ON  
T
Over-temperature Threshold  
Over-temperature Hysteresis  
Internal FET Leakage Current  
Peak Current Limit  
135  
20  
°C  
OT  
T
°C  
HYS  
I
EN = 0, L = 6V (low FET), L = 0V (high FET)  
10  
50  
µA  
A
LEAK  
X
X
I
7.8  
-4  
LMAX  
R
PMOS On Resistance  
29  
25  
m  
mΩ  
m/°C  
µA  
µA  
%
DSON1  
R
NMOS On Resistance  
DSONTC2  
R
R
Tempco  
0.2  
2.5  
2.5  
DSONTC  
DSON  
I
STP Pin Input Pull-down Current  
STN Pin Input Pull-up Current  
Positive Power Good Threshold  
Negative Power Good Threshold  
Power Good Drive High  
V
V
= V /2  
IN  
STP  
STN  
STP  
STN  
I
= V /2  
IN  
4
V
With respect to target output voltage  
With respect to target output voltage  
6
14  
-6  
PGP  
PGN  
V
-14  
2.6  
%
V
I
I
= 1mA  
V
PG_HI  
PG  
PG  
V
Power Good Drive Low  
= -1mA  
0.5  
V
PG_LO  
V
Output Overvoltage Protection  
Output Initial Accuracy  
10  
0.8  
0.2  
125  
±1  
%
OVP  
V
I
= 0A  
0.79  
85  
0.81  
0.5  
V
FB  
FB_LINE  
GM  
LOAD  
V
Output Line Regulation  
V
V
= 3.3V, V = 10%, I  
IN  
= 0A  
%
IN  
LOAD  
Error Amplifier Transconductance  
Output Temperature Stability  
Switching Frequency  
= 0.65V  
165  
µs  
EA  
FB_TC  
CC  
V
0°C < T < 85°C, I  
LOAD  
= 3A  
%
A
F
300  
370  
100  
440  
200  
kHz  
nA  
S
I
Feedback Input Pull-up Current  
V
= 0V  
FB  
FB  
FN7102.5  
3
December 1, 2004  
EL7566  
DC Electrical Specifications  
V
= V = 3.3V, T = T = 25°C, C  
= 390pF, Unless Otherwise Specified (Continued)  
DD  
IN  
A
J
OSC  
PARAMETER  
DESCRIPTION  
EN Input High Threshold  
EN Input Low Threshold  
Enable Pull-up Current  
Input High Level  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
2.6  
EN_HI  
V
1
V
EN_LO  
I
V
= 0  
EN  
-4  
-2.5  
µA  
V
EN  
TM, S  
2.6  
EL_HI  
TM, S  
Input Low Level  
1
V
EL_LO  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
COMP  
VREF  
PIN FUNCTION  
Error amplifier output; place loop compensation components here  
Bandgap reference bypass capacitor; typically 0.022µF to 0.047µF to SGND  
1
2
3
FB  
Voltage feedback input; connected to external resistor divider between V and SGND for adjustable  
OUT  
output; also used for speed-up capacitor connection  
4
VO  
VTJ  
TM  
Output sense for fixed output option. This pin can be open for EL7566  
Junction temperature monitor output  
5
6
Stress test enable; allows ±5% output movement; connect to SGND if function is not used  
Positive or negative stress select; see text  
7
8, 9, 10, 11, 12, 13  
14, 15  
SEL  
LX  
Inductor drive pin; high current output whose average voltage equals the regulator output voltage  
Not used  
NC  
16, 17, 18  
19, 20, 21  
22  
PGND  
VIN  
VDD  
PG  
Ground return of the regulator; connected to the source of the low-side synchronous NMOS Power FET  
Power supply input of the regulator; connected to the drain of the high-side PMOS Power FET  
Control circuit positive supply; connected to V through an internal 20resistor  
IN  
23  
Power-good window comparator output; logic 1 when regulator output is within ±10% of target output  
voltage  
24  
25  
26  
EN  
Chip enable, active high; a 2.5µA internal pull-up current enables the device if the pin is left open; a  
capacitor can be added at this pin to delay the start of a converter  
STP  
STN  
Auxilliary supply tracking positive input; tied to regulator output to synchronize start-up with a second  
supply; leave open for standalone operation; 2µA internal pull-up current  
Auxiliary supply tracking negative input; connect to output of a second supply to synchronize start-up;  
leave open for standalone operation; 2µA internal pull-up current  
27  
28  
COSC  
SGND  
Oscillator timing capacitor (see performance curves)  
Control circuit negative supply or signal ground  
FN7102.5  
4
December 1, 2004  
EL7566  
Block Diagram  
TM  
0.047µF  
390pF  
SEL  
V
C
OSC  
REF  
V
TJ  
JUNCTION  
VOLTAGE  
OSCILLATOR  
TEMPERATURE  
REFERENCE  
V
DD  
V
V
DD  
IN  
2.2nF  
EN  
20  
0.22µF  
100µF  
150µF  
STP  
STN  
V
V
IN  
POWER  
TRACKING  
POWER  
FET  
2.7µH  
PWM  
CONTROLLER  
DRIVERS  
OUT  
(2.5V, 6A)  
POWER  
FET  
PGND  
EA  
CURRENT  
SENSE  
COMP  
V
DD  
R
C
C
C
V
REF  
-
+
PG  
SGND  
FB  
V
O
R
1
R
2
FN7102.5  
December 1, 2004  
5
EL7566  
Typical Performance Curves  
V
= V = 5V, V = 2.5V, I = 6A, f = 500kHz, L = 2.7µH, C = 100µF, C = 150µF, T = 25°C unless otherwise noted.  
IN OUT A  
IN  
D
O
O
S
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
V
=3.3V  
O
V
=2.5V  
O
V
=2.5V  
=1.8V  
O
O
95  
90  
85  
80  
75  
70  
65  
60  
V
=1.8V  
O
V
=0.8V  
O
V
=0.8V  
O
V
=1V  
3
O
V
=1V  
O
V
=1.2V  
O
V
=1.2V  
V
O
0
1
2
3
4
5
6
0
1
2
4
5
6
I
(A)  
I (A)  
O
O
FIGURE 1. EFFICIENCY (V = 5V)  
IN  
FIGURE 2. EFFICIENCY (V = 3.3V)  
IN  
1.265  
1.26  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
V
=3.3V  
DD  
1.255  
1.25  
V
=5V  
DD  
V
=3.3V  
DD  
V
=5V  
DD  
1.24  
1.245  
0
0
50  
100  
150  
0
50  
100  
150  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
FIGURE 3. V  
REF  
vs TEMPERATURE  
FIGURE 4. V vs TEMPERATURE  
TJ  
4
3.5  
3
1200  
1000  
800  
600  
500  
200  
0
V
EN_HI  
V
=5V  
DD  
2.5  
2
V
=3.3V  
DD  
V
EN_LOW  
1.5  
1
3
3.5  
4
4.5  
(V)  
5
5.5  
6
100  
200  
300  
400  
(pF)  
500  
600  
700  
V
C
DD  
OSC  
FIGURE 5. V  
& V  
vs V  
FIGURE 6. F vs C  
S OSC  
EN_HI  
EN_LOW  
DD  
FN7102.5  
December 1, 2004  
6
EL7566  
Typical Performance Curves  
V
= V = 5V, V = 2.5V, I = 6A, f = 500kHz, L = 2.7µH, C = 100µF, C  
= 150µF, T = 25°C unless otherwise noted. (Continued)  
IN  
D
O
O
S
IN  
OUT  
A
526  
524  
522  
520  
518  
516  
514  
512  
510  
508  
506  
504  
0.1  
0.05  
0
V
=5V  
IN  
-0.05  
-0.1  
-0.15  
-0.2  
V
=3.3V  
IN  
-0.25  
-0.3  
-0.35  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
I
(A)  
I (A)  
O
O
FIGURE 7. F vs LOAD CURRENT  
S
FIGURE 8. LOAD REGULATIONS  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD HTSSOP  
EXPOSED DIEPAD NOT SOLDERED TO PCB  
50  
45  
40  
35  
30  
25  
1.2  
1
CONDITION:  
28-Pin HTSSOP THERMAL PAD  
SOLDERED TO 2-LAYER PCB  
WITH 0.039" THICKNESS AND  
1 OZ. COPPER ON BOTH SIDES  
1.136W  
0.8  
0.6  
0.4  
0.2  
0
1
2
3
4
5
6
2
7
8
9
0
25  
50  
75 85 100  
125  
150  
PCB AREA (in )  
AMBIENT TEMPERATURE (°C)  
FIGURE 9. HTSSOP THERMAL RESISTANCE vs PCB AREA  
(NO AIR FLOW)  
FIGURE 10. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD HTSSOP EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
4.5  
4
4.167W  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 11. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
FN7102.5  
7
December 1, 2004  
EL7566  
Waveforms  
V
= V = 5V, V = 2.5V, I = 6A, f = 500kHz, L = 2.7µH, C = 100µF, C  
= 150µF, T = 25°C unless otherwise noted.  
A
IN  
D
O
O
S
IN  
OUT  
V (200mV/DIV)  
IN  
V
(5V/DIV)  
IN  
I
(2A/DIV)  
L
I
(2A/DIV)  
(2V/DIV)  
IN  
V
O
V
(5V/DIV)  
LX  
PG  
V (50mV/DIV)  
O
0.5ms/DIV  
1µs/DIV  
FIGURE 12. START-UP  
FIGURE 13. STEADY-STATE OPERATION  
4.5A  
V
I
EN  
O
1.5A  
I
(2A/DIV)  
IN  
V (100mV/DIV)  
O
V
(2V/DIV)  
O
50µs/DIV  
100µs/DIV  
FIGURE 14. SHUT-DOWN  
FIGURE 15. TRANSIENT RESPONSE  
TM  
PG  
V
(2V/dIv)  
O
SEL  
V (200mV/DIV)  
O
V
(5V/DIV)  
LX  
1ms/DIV  
0.5ms/DIV  
FIGURE 16. VOLTAGE MARGINING  
FIGURE 17. OVERVOLTAGE SHUT-DOWN  
FN7102.5  
December 1, 2004  
8
EL7566  
Waveforms  
V
= V = 5V, V = 2.5V, I = 6A, f = 500kHz, L = 2.7µH, C = 100µF, C  
= 150µF, T = 25°C unless otherwise noted. (Continued)  
OUT A  
IN  
D
O
O
S
IN  
V
(5V/DIV)  
V
(5V/DIV)  
IN  
IN  
I
(2A/DIV)  
(2V/DIV)  
IN  
V
V
=2.5V  
=1.8V  
O1  
O2  
V
O
PG  
5ms/DIV  
5ms/DIV  
FIGURE 18. ADJUSTABLE START-UP  
FIGURE 19. TRACKING START-UP  
Detailed Description  
The EL7566 is a 6A capable buck regulator operating from  
an input voltage range of 3V to 6V. The duty cycle can be  
adjusted from 0% to 100% allowing for a wide range of  
programmable output voltages. Patented on-chip  
resistorless current-sensing enables current mode control  
for excellent step load response. Overcurrent, Overvoltage,  
input Undervoltage, and thermal protection is integrated  
along with soft-start and power-up sequencing features to  
produce an overall robust power solution for general  
purpose applications.  
placed from the EN pin to GND to program a delay between  
when the rising POR threshold for VIN is met and when soft-  
start begins. The programmable delay time, T , is governed  
D
by Equation 1.  
V
EN_HI  
-------------------  
T
= C  
×
EN  
D
I
EN  
where:  
• C  
• V  
is the capacitance at EN pin  
EN  
is the EN input high level (function of V  
voltage,  
DD  
EN_HI  
EL7566DRE vs. EL7566AIRE  
The EL7566AIRE includes the following feature changes  
from the EL7566DRE:  
see Figure 5)  
• I  
is the EN pin pull-up current, nominal 2.5µA  
EN  
Steady-State Operation  
• Up to 6A Current Sinking Capability  
Under all steady-state conditions the converter will operate  
in fixed frequency continuous-conduction mode. For fast  
transient response and ease of controllability, a peak  
current-mode control method is employed. The inductor  
current is sensed from the upper PMOS. This current signal  
serves as the ramp to the PWM comparator and is compared  
against the difference signal generated by the  
transconductance error amplifier. Slope compensation for  
the ramp is used to allow for 100% duty cycle operation (see  
Figure 20). The pulse-width modulated square wave output  
of the PWM comparator is amplified and serves as the gate  
drive signals for the switching power FETs.  
o
o
• Expanded Temperature Range: -40 C to 85 C  
• No Overvoltage Protection  
Start-Up  
The EL7566 employs a digital soft-start feature to suppress  
the in-rush current needed to charge the output capacitance  
and smoothly ramp the output voltage to regulation (See  
Figure 12). The normal start-up process begins when the  
input voltage reaches the rising POR threshold (~2.8V) and  
EN pin is transitioned HIGH by an internal 2.5µA current  
source. The output voltage is then digitally ramped to  
regulation over a 2ms period. The 2ms soft start-up time can  
be extended if needed by configuring the STP and STN pins.  
(refer to Full Start-Up Control section).  
100% DUTY RATIO  
EL7566 uses CMOS as internal synchronous power  
switches. The upper and lower switches are PMOS and  
NMOS respectively. The upper PMOS saves the need for a  
boot capacitor normally seen in NMOS/NMOS half-bridges.  
If the input voltage is ramped slowly, soft-start may be  
initiated before the input supply has reached regulation. The  
lower input voltage will have increased current demand  
during start-up and may risk an overcurrent event. To  
prevent such an event from occurring, a capacitor can be  
FN7102.5  
9
December 1, 2004  
EL7566  
It also allows 100% turn-on of the upper PMOS switch,  
OSC pin to GND (C ). The triangle waveform has 95%  
OSC  
achieving V close to V . The maximum achievable V is:  
duty ratio and runs from 0.2V to 1.2V. Refer to the curve in  
Figure 6 for the appropriate value of C for the desired  
O
IN  
O
OSC  
V
= V (R + R  
) × I  
O
IN  
L
DSON1  
O
frequency. If external synchronization is desired, the circuit  
in Figure 21 can be used.  
Where R is the DC resistance on the inductor and R  
L
DSON1  
is the PMOS on-resistance, nominally 30mat room  
100pF  
temperature with a temperature coefficient of 0.2m/°C.  
EL7566  
EXTERNAL SYNC  
SOURCE  
OUTPUT VOLTAGE SELECTION  
C
OSC  
The output voltage can be as high as the input voltage minus  
the PMOS and inductor voltage drops (as seen previously in  
Equation 2). Referring to the Typical Application Circuit on  
FIGURE 20. EXTERNAL SYNC CIRCUIT  
page 2, use R and R to set the output voltage according to  
1
2
Always choose the converter self-switching frequency 20%  
lower than the sync frequency to accommodate component  
variations.  
the following formula:  
R
1
V
= 0.8 × 1 + ------  
O
R
2
Protection Features  
The EL7566 features a wide range of protective measures to  
prevent the persistence of damaging system conditions.  
These features are overvoltage, overcurrent, Power-On-  
Reset (POR), and Thermal Shutdown protection.  
Some standard values of R and R are listed in Table 1.  
1
2
TABLE 1.  
V
(V)  
R
(k)  
R (k)  
2
O
1
OVERVOLTAGE PROTECTION (OVP)  
The EL7566 monitors the output voltage and will shut down  
if it exceeds 110% of the set regulation point. This is  
accomplished by comparing the reference to the FB pin  
voltage. If an overvoltage condition is met, the controller will  
turn the high-side switch off, the low-side switch on, and pull  
PGOOD low. The converter will not latch off and will proceed  
with a soft-start as soon as the fault condition is cleared.  
0.8  
1
2
Open  
10  
2.49  
4.99  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
10  
11.5  
10.2  
10  
12.7  
21.5  
36  
11.5  
OVERCURRENT PROTECTION (OCP)  
The current information for PWM ramp generation is also  
used for overcurrent protection. The measured current is  
compared against a preset Overcurrent threshold (~7-10A).  
If the output current exceeds the threshold, the output will  
shut down by turning off the high-side switch and turning the  
low-side switch on. This event, like OVP, will not latch the  
converter off. A soft-start will be initiated when the fault is  
cleared.  
It is important that the series combination of R1 and R2 is  
large enough as to not draw excessive current from the  
output.  
VOLTAGE MARGINING  
The EL7566 has built-in 5% load stress test (commonly  
called voltage margining) function. Combinations of TM and  
SEL set the margins shown in Table 2. When this function is  
not used, both pins should be connected to SGND, either  
directly or through a 10kresister. Figure 16 shows this  
feature.  
POWER-ON RESET (POR)  
To ensure proper regulator operation, a power-on reset  
feature monitors the input voltage. When adequate input  
TABLE 2.  
voltage is achieved (V  
> 2.8V), the converter is allowed to  
falls below 2.5V, the regulator will  
DD  
DD  
soft-start. However, if V  
CONDITION  
Normal  
TM  
0
SEL  
X
V
O
shut down in the same manner as OVP or OCP.  
Nominal  
THERMAL PROTECTION AND JUNCTION  
TEMPERATURE INDICATOR  
High Margin  
Low Margin  
1
1
Nominal + 5%  
Nominal - 5%  
1
0
An internal temperature sensor continuously monitors the  
junction temperature. If the junction temperature exceeds  
135°C, the regulator is in a fault condition and will shut  
down. When the temperature falls back below 110°C, the  
regulator goes through the soft-start procedure again.  
SWITCHING FREQUENCY  
The regulator has a programmable switching frequency of  
200kHz to 1MHz. The switching frequency is generated by a  
relaxation comparator and adjusted by a capacitor from the  
FN7102.5  
December 1, 2004  
10  
EL7566  
The V pin reports a voltage proportional to the junction  
TJ  
LINEAR START-UP  
In the linear start-up tracking configuration, the regulator with  
lower output voltage, V , tracks the one with higher output  
temperature. Equation 3 illustrates the relationship and can  
be used to accurately evaluate thermal design points.  
O2  
voltage, V  
.
O1  
1.2 V  
TJ  
T
= 75 + ------------------------  
J
0.00384  
C
STN  
STP  
Full Start-Up Control  
-
-
+
+
The EL7566 offers full start-up control. The core of this  
control is a start-up comparator in front of the main PWM  
controller. The STP and STN are the inputs to the  
comparator, whose HI output forces the PWM comparator to  
skip switching cycles. The user can choose any of the  
following control configurations:  
V
R
O2  
V
V
O1  
IN  
EL7566  
EL7566  
V
IN  
V
V
O1  
O2  
ADJUSTABLE SOFT-START  
In this configuration, the ramp-up time is adjustable to any  
time longer than the building soft-start time of 2ms. The  
FIGURE 23. LINEAR START-UP TRACKING  
approximate ramp-up time, T , is:  
ST  
OFFSET START-UP  
V
O
Compared with the cascade start-up, this configuration  
---------  
T
= RC  
ST  
V
allows Regulator 2 to begin the start-up process when V  
IN  
O1  
*(1+R /R ) before PG  
reaches a particular value of V  
REF  
B
A
goes HI, where V  
is the regulator reference voltage.  
REF  
V
=1.26.  
REF  
C
0.1µF  
STN  
STP  
-
+
V
O
R
200K  
V
O
V
R
B
REF  
-
EL7566  
V
IN  
V
+
R
A
O2  
T
ST  
V
O1  
EL7566  
V
IN  
FIGURE 21. ADJUSTABLE START-UP  
EL7566  
V
IN  
CASCADE START-UP  
V
(1+R /R  
)
REF  
B
A
In this configuration, EN pin of Regulator 2 is connected to  
the PG pin of Regulator 1 (Figure 22). V will only start  
O2  
V
V
O1  
O2  
after V is good.  
O1  
FIGURE 24. OFFSET START-UP TRACKING  
EN  
PG  
Component Selection  
V
V
V
IN  
O2  
O1  
INPUT CAPACITOR  
EL7566  
EL7566  
The main functions of the input capacitor(s) are to maintain  
the input voltage steady and to filter out the pulse current  
passing through the upper switch. The root-mean-square  
value of this current is:  
V
V
O1  
O2  
V
× (V V )  
IN O  
O
-----------------------------------------------  
I
=
× I 1/2(I )  
O
IN,RMS  
O
V
IN  
FIGURE 22. CASCADE START-UP  
for a wide range of V and V .  
IN  
O
For long-term reliability, the input capacitor or combination of  
capacitors must have the current rating higher than I  
.
IN,RMS  
Use X5R or X7R type ceramic capacitors, or SPCAP or  
POSCAP types of Polymer capacitors for their high current  
handling capability.  
FN7102.5  
11  
December 1, 2004  
EL7566  
INDUCTOR  
where:  
The NMOSNMOS reverse current limit is set at about 0.5A.  
For optimal operation, the peak-to-peak inductor current  
• GM  
GM  
is the transconductance of the PWM comparator,  
= 120S  
PWM  
PWM  
ripple I should be less than 1A. The following equation  
L
V
O
gives the inductance value:  
R
= -------  
OUT  
I
O
(V V ) × V  
O
IN  
O
L = -------------------------------------------  
V
× ∆I × F  
L S  
• ESR is the ESR of the output capacitor  
• C is output capacitance  
IN  
OUT  
The peak current the inductor sees is:  
• GM is the transconductance of the error amplifier,  
EA  
I  
GM = 120µS  
EA  
L
I
= I + --------  
LPK  
O
2
• F is the intended crossover frequency of the loop. For  
C
best performance, set this value to about one-tenth of the  
switching frequency.  
When inductor is chosen, it must be rated to handle the peak  
current and the average current of I .  
O
• Once R is chosen, C is decided by:  
C
C
OUTPUT CAPACITOR  
R
OUT  
Output voltage ripple and transient response are the  
predominant factors when choosing the output capacitor.  
Initially, output capacitance should be sized with an ESR to  
---------------  
×
OUT  
C
= 1.5 × C  
C
R
C
Design Example  
A 5V to 2.5V converter with a 6A load requirement.  
satisfy the output ripple V requirement:  
O
V = I × ESR  
O
L
1. Choose the input capacitor  
The input capacitor or combination of capacitors has to be  
able to take about 1/2 of the output current, e.g., 3A.  
Panasonic EEFUD0J101XR is rated at 3.3A, 6.3V, meeting  
the above criteria.  
When a step load change, I , is applied to the converter,  
O
the initial voltage drop can be approximated by ESR*I .  
O
The output voltage will continue to drop until the control loop  
begins to correct the output voltage error. Increasing the  
output capacitance will lessen the impact of load steps on  
output voltage. Increasing loop bandwidth will also reduce  
output voltage deviation under step load conditions. Some  
experimentation with converter bandwidth and output  
filtering will be necessary to generate a good transient  
response (Reference Figure 15).  
2. Choose the inductor. Set the converter switching  
frequency at 500kHz:  
(V V ) × V  
O
IN  
O
L = -------------------------------------------  
V
× ∆I × F  
L S  
IN  
I = 1A yields 2.3µH. Leave some margin and choose  
L
As with the input capacitor, it is recommended to use X5R or  
X7R type of ceramic capacitors. SPCAP or POSCAP type  
Polymer capacitors can also be used for the low ESR and  
high capacitance requirements of these converters.  
L = 2.7µH. Coilcraft's DO3316P-272HC has the required  
current rating.  
3. Choose the output capacitor  
L = 2.7µH yields about 1A inductor ripple current. If 25mV of  
Generally, the AC current rating of the output capacitor is not  
ripple is desired, C  
's ESR needs to be less than 25m.  
OUT  
a concern because the RMS current is only 1/8 of I .  
L
Panasonic's EEFUD0G151XR 150µF has an ESR of 12mΩ  
and is rated at 4V.  
LOOP COMPENSATION  
Current-mode control in system forces the inductor current  
to be proportional to the error signal. This has the advantage  
of eliminating the double pole response of the output filter,  
and reducing complexity in the overall loop compensation. A  
simple Type 1 compensator is adequate to generate a  
stable, high-bandwidth converter. The compensation resister  
is decided by:  
ESR is not the only factor deciding the output capacitance.  
As discussed earlier, output voltage droops less with more  
capacitance when converter is in load transient. Multiple  
iterations may be needed before final components are  
chosen.  
4. Loop compensation  
50kHz is the intended crossover frequency. With the  
conditions R and C are calculated as:  
I
F
× 2 × π × (ESR + R  
) × C  
OUT OUT  
O
C
C
C
----------- -------------------------------------------------------------------------------------------------  
R
=
×
C
VFB  
GM  
× GM  
PWM EA  
R
= 10.5kand C = 8900pF, round to standard value of  
C
C
8200pF.  
FN7102.5  
12  
December 1, 2004  
EL7566  
For convenience, Table 3 lists the compensation values for  
frequently used output voltages.  
Layout Considerations  
The layout is very important for the converter to function  
properly. Follow these tips for best performance:  
TABLE 3. COMPENSATION VALUES  
1. Separate the Power Ground ( ) and Signal Ground ( );  
connect them only at one point right at the SGND pin  
V
(V)  
R
(K)  
C (PF)  
C
O
C
3.3  
2.5  
1.8  
1.5  
1.2  
1
13.7  
8200  
8200  
8200  
8200  
8200  
8200  
8200  
2. Place the input capacitor(s) as close to V and PGND  
IN  
10.5  
7.68  
6.49  
5.23  
4.42  
3.57  
pins as possible  
3. Make as small as possible the loop from LX pins to L to  
C
to PGND pins  
O
4. Place R and R pins as close to the FB pin as possible  
1
2
5. Maximize the copper area around the PGND pins; do not  
place thermal relief around them  
6. Thermal pad should be soldered to PCB. Place several  
via holes under the chip to the ground plane to help heat  
dissipation  
The demo board is a good example of layout based on this  
outline. Please refer to the EL7566 Application Brief.  
0.8  
Thermal Management  
The EL7566 is packaged in a thermally-efficient HTSSOP-28  
package, which utilizes the exposed thermal pad at the  
bottom to spread heat through PCB metal.  
Therefore:  
1. The thermal pad must be soldered to the PCB.  
2. Maximize the PCB area.  
3. If a multiple layer PCB is used, thermal vias (13 to 25 mil)  
must be placed underneath the thermal pad to connect to  
ground plane(s). Do not place thermal reliefs on the vias.  
Figure 25 shows a typical connection.  
The thermal resistance for this package is as low as 26°C/W  
for 2 layer PCB of 0.39" thickness (See Figure 9). The actual  
junction temperature can be measured at V pin.  
TJ  
The thermal performance of the IC is heavily dependent on  
the layout of the PCB. The user should exercise care during  
the design phase to ensure the IC will operate within the  
recommended environmental conditions.  
COMPONENT SIDE  
CONNECTION  
GROUND PLANE  
CONNECTION  
FIGURE 25. PCB LAYOUT - 28-PIN HTSSOP PACKAGE  
FN7102.5  
13  
December 1, 2004  
EL7566  
Package Outline Drawing  
®
1. The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7102.5  
14  
December 1, 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY