EL7584IR-T13 [INTERSIL]

4-Channel DC:DC Converter; 4通道DC : DC转换器
EL7584IR-T13
型号: EL7584IR-T13
厂家: Intersil    Intersil
描述:

4-Channel DC:DC Converter
4通道DC : DC转换器

转换器
文件: 总16页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL7584  
®
Data Sheet  
February 4, 2005  
FN7317.2  
4-Channel DC/DC Converter  
Features  
• TFT-LCD display supply  
- Boost regulator  
The EL7584 is a 4-channel DC/DC converter IC which is  
designed primarily for use in TFT-LCD applications. The  
boost converter has 2V to 14V input capability and provides  
5V to 17V output, which powers the column drivers and  
provides up to 370mA @ 15V. A pair of charge pump control  
circuits provide outputs to allow the external generation of  
- V  
- V  
- V  
buffer  
charge pump  
charge pump  
COM  
ON  
OFF  
• 2V to 14V V supply  
IN  
V
and V  
supplies at 5V to 40V and 0V to -40V,  
= 15V. The  
buffer provides up to 50mA continuous output current  
ON  
OFF  
respectively, each at up to 60mA for V  
BOOST  
• 5V < V  
• 2V < V  
• 5V < V  
< 17V  
BOOST  
V
COM  
from 2V to 13V.  
< 13V  
COM  
< 40V  
ON  
The EL7584 features adjustable switching frequency and on-  
chip power sequence to simplify start-up operation. A  
separate input is available to externally increase the default  
delay of the positive charge pump. An over-temperature  
feature is provided to allow the IC to be automatically  
protected from excessive power dissipation.  
• -40V < V  
OFF  
< 0V  
• V  
BOOST  
= 15V @ 370mA  
• High frequency, small inductor DC/DC boost circuit  
• Over 90% efficient DC/DC boost converter capability  
The EL7584 is available in a 24-pin TSSOP package and is  
specified for operation over the full -40°C to +85°C  
temperature range.  
• Built-in power-up sequence with adjustable V  
• Adjustable frequency  
delay  
ON  
• Adjustable soft-start  
Pinout  
• Adjustable outputs  
EL7584  
(24-PIN TSSOP)  
TOP VIEW  
• Over-temperature protection  
• Small parts count  
• Pb-free available (RoHS compliant)  
SS  
FBB  
1
2
3
4
5
6
7
8
9
24 VSSB  
23 ROSC  
22 VREF  
21 PGND  
20 PGND  
19 VSSP  
18 DRVP  
17 VDDP  
16 FBP  
Applications  
• TFT-LCD panels  
• PDAs  
EN  
VDDB  
LX1  
Ordering Information  
PART  
LX2  
NUMBER  
PACKAGE  
24-Pin TSSOP  
24-Pin TSSOP  
TAPE & REEL PKG. DWG. #  
VSSN  
DRVN  
VDDN  
EL7584IR  
EL7584IR-T7  
-
7”  
13”  
-
MDP0044  
MDP0044  
MDP0044  
MDP0044  
EL7584IR-T13 24-Pin TSSOP  
EL7584IRZ  
(See Note)  
24-Pin TSSOP  
(Pb-free)  
FBN 10  
DP 11  
15 VSSC  
14 VCOM  
13 VDDC  
EL7584IRZ-T7 24-Pin TSSOP  
7”  
MDP0044  
MDP0044  
(See Note)  
(Pb-free)  
INC 12  
EL7584IRZ-  
T13 (See Note)  
24-Pin TSSOP  
(Pb-free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish, which are  
RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
1
Copyright © Intersil Americas Inc. 2003. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL7584  
Absolute Maximum Ratings (T = 25°C)  
A
LX Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
V
V
, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V  
, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5V  
DDB DDP DDN  
DDC  
Maximum Continuous V  
Output Current. . . . . . . . . . . 800mA  
BOOST  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 3.3V, V  
= 12V, R = 62k, T = 25°C, Unless Otherwise Specified.  
OSC A  
IN  
BOOST  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC/DC BOOST CONVERTER  
IQ1_B  
IQ2_B  
V(FBB)  
Quiescent Current - Shut-down  
Quiescent Current - Switching  
Feedback Voltage  
EN = 0V  
0.8  
4.8  
10  
8
µA  
mA  
V
EN = V  
DDB  
1.275  
1.260  
1.260  
1.300  
1.310  
1.325  
0.1  
1.325  
1.360  
1.390  
V
V
Reference Voltage  
V
REF  
Oscillator Set Voltage  
Feedback Input Bias Current  
Boost Converter Supply Range  
Maximum Duty Cycle  
Peak Internal FET Current  
Switch On Resistance  
Switch Leakage Current  
Output Range  
V
ROSC  
I(FBB)  
µA  
V
V
2
17  
DDB  
D
85  
92  
%
MAX  
I(LX)  
1.75  
0.22  
A
MAX  
R
at V  
= 10V, I(LX) total = 350mA  
DS-ON  
BOOST  
I
I(LX) total  
1
µA  
V
LEAK-SWITCH  
V
V
> V + V  
5
17  
BOOST  
BOOST  
IN DIODE  
V  
V  
/V  
BOOST  
Line Regulation  
2.7V < V < 13.2V, V  
IN  
= 15V  
BOOST  
0.1  
0.5  
%
IN  
/I  
Load Regulation  
50mA < I < 250mA  
O1  
%
BOOST O1  
OSC-RANGE  
OSC1  
F
F
Frequency Range  
R
range = 240kto 60kΩ  
= 62kΩ  
200  
900  
1200  
1100  
kHz  
kHz  
OSC  
OSC  
Switching Frequency  
R
1000  
V
BUFFER  
COM  
V
Supply Voltage Range  
6
15  
20  
V
DDC  
IQ1, V  
IQ2, V  
V
V
Disable Current  
Enable Current  
V
V
= 12V, EN = 0V  
5.5  
1.7  
µA  
mA  
mV  
µA  
DDC  
DDC  
DDC  
DDC  
DDC  
= 12V, V  
= V  
, no load  
DDB  
5
DDC  
EN  
V
-offset  
Accuracy of V  
Output Voltage  
2V < V  
< (V  
- 2V)  
-10  
+10  
0.1  
COM  
I(INC)  
R (V  
COM  
COM  
DDC  
V
V
Input Bias Currents  
Output Impedance  
Current magnitude  
-0.1  
0.01  
0.25  
COM  
COM  
)
V
= V  
= 12V, V  
< 100mA  
= 6V with  
COM  
O
COM  
DDC  
BOOST  
LOAD  
-100mA < I  
C
for V  
> 0.47µF, MLCC  
COM  
LOAD  
I
(max)  
Output Current Limit  
150  
102  
93  
mA  
dB  
dB  
COM  
PSRR  
CMRR  
Supply Voltage Rejection  
Common Mode Voltage Rejection  
V
V
= V  
, 9V < V  
< 15V  
60  
60  
INC  
DDC/2  
DDC  
= 12V, 2V < V  
< 10V  
DDC  
INC  
FN7317.2  
2
February 4, 2005  
EL7584  
Electrical Specifications  
V
= 3.3V, V  
BOOST  
= 12V, R  
OSC  
= 62k, T = 25°C, Unless Otherwise Specified. (Continued)  
IN  
DESCRIPTION  
POSITIVE REGULATED CHARGE PUMP (V  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
)
ON  
output depends on the magnitude of the V  
Most positive V  
input voltage (normally connected to V  
) and the external component  
ON  
DDP  
BOOST  
configuration (doubler or tripler)  
V
Supply Input for Positive Charge Pump  
Quiescent Current - Shut-down  
Quiescent Current - Switching  
Disable Charge Current  
Usually connected to V  
output  
BOOST  
5
17  
20  
V
µA  
DDP  
IQ1(V  
)
)
EN = 0V  
EN = V  
11.5  
2.3  
DDP  
IQ2(V  
5
mA  
mA  
nA  
DDP  
DDB  
EN = 0V, DP = 0V  
EN = V , DP = 5V  
I
I
1.5  
1.9  
2.5  
300  
1.375  
DP1  
DP2  
Enable Discharge Current  
100  
200  
1.310  
0.1  
DDB  
V(FBP)  
I(FBP)  
Feedback Reference Voltage  
Feedback Input Bias Current  
RMS DRVP Output Current  
1.245  
V
µA  
I(DRVP)  
V
V
= 12V  
= 6V  
60  
mA  
mA  
%/mA  
DDP  
DDP  
15  
ILR_V  
Load Regulation  
5mA < I < 15mA  
L
-0.5  
0.03  
0.5  
ON  
F
Charge Pump Frequency  
Frequency set by R  
- see boost section  
0.5*F  
OSC  
PUMP  
OSC  
NEGATIVE REGULATED CHARGE PUMP (V  
)
OFF  
output depends on the magnitude of the V  
Most negative V  
input voltage (normally connected to V  
) and the external component  
OFF  
DDN  
BOOST  
configuration (doubler or tripler)  
V
Supply Input for Negative Charge Pump Usually connected to V  
output  
BOOST  
5
17  
20  
5
V
µA  
DDN  
IQ1(V  
IQ2(V  
)
)
Quiescent Current - Shut-down  
Quiescent Current - Switching  
Feedback Reference Voltage  
Feedback Input Bias Current  
RMS DRVN Output Current  
ENBN = 0V  
ENBN = V  
4.5  
2.3  
0
DDN  
DDN  
mA  
mV  
µA  
DDB  
V(FBN)  
I(FBN)  
-80  
+80  
Magnitude of input bias  
0.1  
60  
I(DRVN)  
V
V
= 12V  
= 6V  
mA  
mA  
%/mA  
DDN  
DDN  
15  
ILR_V  
Load Regulation  
-15mA < I < -5mA  
L
-0.5  
0.03  
0.5  
OFF  
F
Charge Pump Frequency  
Frequency set by R  
- see boost section  
0.5*F  
OSC  
PUMP  
OSC  
ENABLE CONTROL LOGIC  
V
V
-EN  
Enable Input High Threshold  
Enable Input Low Threshold  
Enable Input Bias Current  
1.6  
V
V
HI  
-EN  
0.5  
7.5  
LO  
I(EN)  
V
= 5V  
3.7  
µA  
EN  
OVER-TEMPERATURE PROTECTION  
T
T
Over-temperature Threshold  
Over-temperature Hysteresis  
130  
40  
°C  
°C  
OT  
HYS  
FN7317.2  
3
February 4, 2005  
EL7584  
Pin Descriptions I = Input, O = Output, S = Supply  
PIN NUMBER  
PIN NAME  
PIN TYPE  
PIN FUNCTION  
Soft-Start input: a capacitor determines the current limit ramp time.  
Voltage feedback input determines the value of V  
1
2
3
SS  
I
I
I
FBB  
.
BOOST  
EN  
Starts internal power sequencing of V  
, V  
, V  
and V  
outputs  
ON  
BOOST OFF COM  
(See Applications Information) ; active HIGH input.  
4
VDDB  
LX1  
P
O
O
P
O
P
I
Positive supply for V DC/DC controller.  
BOOST  
5
Boost inductor saturating MOSFET #1.  
Boost inductor saturating MOSFET #2.  
6
LX2  
7
VSSN*  
DRVN  
VDDN  
FBN  
Ground return for V  
regulator.  
OFF  
Pump capacitor driver for V  
8
regulator.  
OFF  
regulator.  
9
Positive supply for V  
OFF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Voltage feedback input determines the value of V  
.
OFF  
power up delay time.  
DP  
I
An external capacitor increases V  
ON  
INC  
I
V
Buffer input.  
COM  
Positive supply for V  
VDDC  
VCOM  
VSSC*  
FBP  
P
O
P
I
Buffer.  
COM  
V
Buffer output.  
COM  
Ground return for V  
Buffer.  
COM  
Voltage feedback input determines the value of V  
.
ON  
VDDP  
DRVP  
VSSP*  
PGND*  
PGND*  
VREF  
ROSC  
VSSB*  
P
O
P
P
P
O
I
Positive supply for V  
regulator.  
Pump capacitor driver for V regulator.  
ON  
ON  
regulator.  
Ground return for V  
ON  
Ground return for MOSFET #1.  
Ground return for MOSFET #2.  
Voltage reference for V  
feedback .  
OFF  
An external resistor sets the DC/DC switching frequency.  
Ground return for V DC/DC controller.  
P
BOOST  
NOTE: *VSSB, VSSC, VSSN, VSSP, and PGND (2) are shorted internally to the device substrate.  
FN7317.2  
February 4, 2005  
4
EL7584  
Typical Performance Curves  
95  
90  
95  
90  
85  
80  
75  
70  
65  
60  
9V  
5V  
85  
12V  
9V  
15V  
12V  
80  
75  
70  
65  
60  
55  
50  
15V  
V
=3.3V  
V =5V  
IN  
FREQ=1MHz  
IN  
FREQ=1MHz  
0
100 200 300 400 500 600 700 800  
(mA)  
0
100 200 300 400 500 600 700 800  
(mA)  
I
I
OUT  
OUT  
FIGURE 1. EFFICIENCY vs I  
FIGURE 2. EFFICIENCY vs I  
OUT  
OUT  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
12V  
15V  
9V  
5V  
9V  
12V  
15V  
V
=3.3V  
V
=5V  
IN  
IN  
FREQ=700kHz  
FREQ=700kHz  
0
100 200 300 400 500 600 700 800  
(mA)  
0
100 200 300 400 500 600 700 800  
(mA)  
I
I
OUT  
OUT  
FIGURE 3. EFFICIENCY vs I  
FIGURE 4. EFFICIENCY vs I  
OUT  
OUT  
1.27  
970  
R
= 61.9kΩ  
969  
968  
967  
966  
965  
964  
963  
962  
OSC  
1.265  
1.26  
1.255  
1.25  
-50  
0
50  
100  
150  
3
3.5  
4
4.5  
(V)  
5
5.5  
6
TEMPERATURE (°C)  
V
DDB  
FIGURE 6. V  
vs TEMPERATURE  
REF  
FIGURE 5. F vs V  
S
DDB  
FN7317.2  
February 4, 2005  
5
EL7584  
Typical Performance Curves (Continued)  
f=675kHz, V =5.0V  
IN  
f=675kHz, V =3.3V  
IN  
1.5  
1.0  
1.5  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-0.5  
-1.0  
-1.5  
15V  
12V  
18V  
9V  
5V  
12V  
500  
9V  
600  
18V  
300  
15V  
400  
(mA)  
-1.5  
0
100  
200  
700  
0
100 200 300 400 500 600 700 800  
(mA)  
I
I
OUT  
OUT  
FIGURE 8. LOAD REGULATION vs I  
FIGURE 7. LOAD REGULATION vs I  
OUT  
OUT  
f=1MHz, V =3.3V  
IN  
f=1MHz, V =5.0V  
IN  
1.5  
1.0  
1.5  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
15V  
18V  
12V  
9V  
18V  
300  
12V  
500  
9V  
5V  
15V  
400  
(mA)  
0
100  
200  
600  
700  
0
100 200 300 400 500 600 700 800  
(mA)  
I
I
OUT  
OUT  
FIGURE 9. LOAD REGULATION vs I  
FIGURE 10. LOAD REGULATION vs I  
OUT  
OUT  
6.5  
20  
19  
V
= 15V  
6
DDN  
V
= 15V  
DDP  
V
= 12V  
DDN  
5.5  
18  
V
= 12V  
DDP  
5
4.5  
4
17  
16  
15  
3.5  
14  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
I
(mA)  
I
LOAD  
(mA)  
LOAD  
FIGURE 11. V  
vs I  
FIGURE 12. V  
vs I  
ON  
ON  
OFF OFF  
FN7317.2  
6
February 4, 2005  
EL7584  
Typical Performance Curves (Continued)  
SWITCHING PERIOD(µs)=0.0118 R  
OSC  
+0.378)  
f(MHz)=1/(0.0118 R  
OSC  
+0.378)  
6
5
4
3
2
1
0
1400  
1200  
1000  
800  
600  
400  
200  
0
0
50 100 150 200 250 300 350 400 450  
(k)  
0
50 100 150 200 250 300 350 400 450  
(k)  
R
R
OSC  
OSC  
FIGURE 14. F vs R  
OSC  
FIGURE 13. F vs R  
OSC  
S
S
100K & 0.1µF DELAY NETWORK ON ENP, C =0.1µF  
SS  
100K & 0.1µF DELAY NETWORK ON ENP, C =0.1µF  
SS  
V
V
BOOST  
BOOST  
5V/DIV  
5V/DIV  
10V/DIV  
V
V
V
V
ON  
ON  
10V/DIV  
OFF  
OFF  
2V/DIV  
2V/DIV  
200ms/DIV  
1ms/DIV  
FIGURE 15. POWER-DOWN  
FIGURE 16. POWER-UP  
V
=3.3V, V  
=11.3V, I =250mA  
OUT  
V
=3.3V, V  
=11.3V, I =50mA  
OUT  
IN  
OUT  
IN  
OUT  
FIGURE 18. LX WAVEFORM - CONTINUOUS MODE  
FIGURE 17. LX WAVEFORM - DISCONTINUOUS MODE  
FN7317.2  
February 4, 2005  
7
EL7584  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
CONDUCTIVITY TEST BOARD  
1.4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
781mW  
1.176W  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85  
100  
125  
0
25  
50  
75 85  
100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Functional Block Diagram  
V
OUT  
10µH  
R
2
V
IN  
R
13kΩ  
110kΩ  
1
49Ω  
10µF  
10µF  
0.1µF  
FBB  
V
DDB  
LX  
MAX_DUTY  
R
OSC  
R
3
REFERENCE  
GENERATOR  
62kΩ  
V
REF  
PWM  
PWM  
COMPARATOR  
V
0.22Ω  
LOGIC  
RAMP  
EN  
12µA  
-
+
START-UP  
OSCILLATOR  
I
LOUT  
7.2K  
160mΩ  
V
SSB  
SS  
PGND  
0.1µF  
FN7317.2  
8
February 4, 2005  
EL7584  
Steady-State Operation  
Applications Information  
When the output reaches the preset voltage, the regulator  
operates at steady state. Depending on the input/output  
condition and component, the inductor operates at either  
continuous-conduction mode or discontinuous-conduction  
mode.  
The EL7584 is high efficiency multiple output power solution  
designed specifically for thin-film transistor (TFT) liquid  
crystal display (LCD) applications. The device contains one  
high current boost converter and two low power charge  
pumps (V  
and V  
).  
ON  
OFF  
In the continuous-conduction mode, the inductor current is a  
triangular waveform and LX voltage a pulse waveform. In the  
discontinuous-conduction mode, the inductor current is  
completely ‘dried-out’ before the MOSFET is turned on  
again. The input voltage source, the inductor, and the  
MOSFET and output diode parasitic capacitors forms a  
resonant circuit. Oscillation will occur in this period. This  
oscillation is normal and will not affect the regulation.  
The boost converter contains an integrated N-channel  
MOSFET to minimize the number of external components.  
The converter output voltage can be set from 5V to 18V with  
external resistors. The V  
and V charge pumps are  
ON  
OFF  
independently regulated to positive and negative voltages  
using external resistors. Output voltages as high as 40V can  
be achieved with additional capacitors and diodes.  
Boost Converter  
At very low load, the MOSFET will skip pulse sometimes.  
This is normal.  
The boost converter operates in constant frequency pulse-  
width-modulation (PWM) mode. Quiescent current for the  
EL7584 is only 5mA when enabled, and since only the low  
side MOSFET is used, switch drive current is minimized.  
90% efficiency is achieved in most common application  
operating conditions.  
Current Limit  
The MOSFET is current limited to <1.75Amps (nominal).  
This restricts the maximum output current I  
the following formula:  
based on  
OMAX  
A functional block diagram with typical circuit configuration is  
shown on previous page. Regulation is performed by the  
PWM comparator which regulates the output voltage by  
comparing a divided output voltage with an internal  
reference voltage. The PWM comparator outputs its result to  
the PWM logic. The PWM logic switches the MOSFET on  
and off through the gate drive circuit. Its switching frequency  
is external adjustable with a resistor from timing control pin  
V
V
IN  
L  
---------  
I
=
I
------  
×
OMAX  
LMT  
2
O
where:  
I is the inductor peak-to-peak current ripple and is  
L
decided by:  
V
L
D
IN  
×
--------- ------  
I  
=
L
(R  
) to ground. The boost converter has 200kHz to  
F
S
OSC  
1.2MHz operating frequency range.  
• D is the MOSFET turn-on radio and is decided by:  
Start-Up  
After V  
reaches a threshold of about 2V, the power  
V
- V  
IN  
DDB  
O
D = -----------------------  
MOSFET is controlled by the start-up oscillator, which  
generates fixed duty-ratio of 0.5 - 0.7 at a frequency of  
several hundred kilohertz. This will boost the output voltage,  
providing the initial output current load is not too great  
(<250mA).  
V
O
• F is the switching frequency.  
S
When V  
reaches about 3.7V, the PWM comparator  
DDB  
takes over the control. The duty ratio will be decided by the  
multiple-input direct summing comparator, Max_Duty signal  
(about 90% duty-ratio), and the Current Limit Comparator,  
whichever is the smallest.  
The soft-start is provided by the current limit comparator. As  
the internal 12µA current source charges the external soft-  
start capacitor, the peak MOSFET current is limited by the  
voltage on the capacitor. This in turn controls the rising rate  
of output voltage.  
The regulator goes through the start-up sequence as well  
after the EN signal is pulled to HI.  
FN7317.2  
9
February 4, 2005  
EL7584  
The following table gives typical values:  
Schottky Diode  
(Margins are considered 10%, 3%, 20%, 10%, and 15% on  
Speed, forward voltage drop, and reverse current are the  
three most critical specifications for selecting the Schottky  
diode. The entire output current flows through the diode, so  
the diode average current is the same as the average load  
current and the peak current is the same as the inductor  
peak current. When selecting the diode, one must consider  
the forward voltage drop at the peak diode current. On the  
Elantec demo board, MBRM120 is selected. Its forward  
voltage drop is 450mV at 1A forward current.  
V
, V , L, F , and I , respectively)  
IN  
O
S
LMT  
TABLE 1. MAXIMUM CONTINUOUS OUTPUT CURRENT  
V
(V)  
V
(V)  
L (µH)  
10  
F
(kHz)  
I
(mA)  
IN  
3.3  
O
S
OMAX  
430  
9
1000  
3.3  
3.3  
5
12  
15  
9
10  
1000  
1000  
1000  
1000  
1000  
1000  
320  
250  
650  
470  
370  
830  
10  
10  
Output Capacitor  
5
12  
15  
18  
10  
The EL7584 is specially compensated to be stable with  
capacitors which have a worst-case minimum value of 10µF  
5
10  
at the particular V  
being set. Output ripple voltage  
12  
10  
OUT  
requirements also determine the minimum value and the  
type of capacitors. Output ripple voltage consists of two  
components - the voltage drop caused by the switching  
current though the ESR of the output capacitor and the  
charging and discharging of the output capacitor:  
Component Considerations  
Input Capacitor  
It is recommended that C is larger than 10µF.  
IN  
Theoretically, the input capacitor has ripple current of I .  
L
I
V
- V  
IN  
OUT  
OUT  
Due to high-frequency noise in the circuit, the input current  
ripple may exceed the theoretical value. Larger capacitor will  
reduce the ripple further.  
------------------------------  
V
= I  
× ESR + ------------------------------- ×  
RIPPLE  
LPK  
C
× FS  
V
OUT  
OUT  
For low ESR ceramic capacitors, the output ripple is  
dominated by the charging/discharging of the output  
capacitor.  
Boost Inductor  
The inductor has peak and average current decided by:  
I  
2
L
I
= I  
+ --------  
In addition to the voltage rating, the output capacitor should  
also be able to handle the RMS current is given by:  
LPK  
LAVG  
I
O
I
= -------------  
LAVG  
2
1 - D  
I  
1
L
------  
I
=
(1 - D) × D + ------------------- ×  
× I  
LAVG  
CORMS  
2
12  
The inductor should be chosen to be able to handle this  
current. Furthermore, due to the fixed internal  
compensation, it is recommended that maximum inductance  
of 10µH and 15µH to be used in the 5V and 12V or higher  
output voltage, respectively.  
I
LAVG  
Positive and Negative Charge Pump (V  
and  
ON  
V
)
OFF  
The EL7584 contains two independent charge pumps (see  
charge pump block and connection diagram.) The negative  
The output diode has average current of I , and peak current  
O
the same as the inductor's peak current. Schottky diode is  
recommended and it should be able to handle those currents.  
charge pump inverts the V  
supply voltage and provides  
DDN  
a regulated negative output voltage. The positive charge  
pump doubles the V supply voltage and provides a  
DDP  
Feedback Resistor Network  
regulated positive output voltage. The regulation of both the  
negative and positive charge pumps is generated by the  
internal comparator that senses the output voltage and  
compares it with and internal reference. The switching  
frequency of the charge pump is set to ½ the boost converter  
switching frequency.  
An external resistor divider is required to divide the output  
voltage down to the nominal reference voltage. Current  
drawn by the resistor network should be limited to maintain  
the overall converter efficiency. The maximum value of the  
resistor network is limited by the feedback input bias current  
and the potential for noise being coupled into the feedback  
pin. A resistor network in the order of 200kis  
The pumps use pulse width modulation to adjust the pump  
period, depending on the load present. The pumps are short-  
circuit protected to 180mA at 12V supply and can provide  
15mA to 60mA for 6V to 12V supply.  
recommended. The boost converter output voltage is  
determined by the following relationship:  
R
+ R  
2
1
--------------------  
V
=
× V  
BOOST  
FBB  
R
1
where V  
is 1.300V.  
FBB  
FN7317.2  
10  
February 4, 2005  
EL7584  
Single Stage Charge Pump  
V
DDN  
5V TO  
17V  
V
DDP  
5V TO  
17V  
0.1µF  
0.1µF  
R
R
R
ONP  
DRVN  
ONP  
DRVP  
C
CPP  
OSC  
C
CPN  
V
R
V
OFF  
ONN  
ONN  
V
ON  
C
C
OUT2  
3.3µF  
OUT1  
V
SSP  
SSN  
R
2.2µF  
12  
R
21  
FBP  
FBN  
+
-
-
+
+
-
V
R
FBP  
11  
R
IS 30 - 40FOR V  
6V TO 12V  
ON  
DD  
R
22  
V
REF  
Positive Charge Pump Design Considerations  
A single stage charge pump is shown above. The maximum  
V
output voltage is determined by the following equation:  
ON  
1
S
1
-------------------------------------------  
-----------------------------------------------  
×
V
(max) ≤ 2 × V  
- I  
× 2 × (R  
+ R  
) - 2 × V  
- I  
×
- I  
OUT  
ON  
DDCPP  
OUT  
ONN  
ONP  
DIODE  
OUT  
0.5 × F × C  
0.5 × F × C  
OUT1  
CPP  
S
where:  
• R  
and R resistance values depend on the V  
ONP  
ONN  
voltage levels. For 12V supply, R  
DDP  
is typically 33. For  
ON  
6V supply, R  
ON  
is typically 45.  
If additional stage is required, the LX switching signal is  
recommended to drive the additional charge pump diodes.  
The drive impedance at the LX switching is typically 150m.  
The figure below illustrates an implementation for two-stage  
positive charge pump circuit.  
FN7317.2  
11  
February 4, 2005  
EL7584  
Two-Stage Positive Charge Pump Circuit  
V
DDP  
V
BOOST  
(5V-17V)  
V
LX  
R
ONP  
C
CPP  
C
DRNP  
V
ON  
C
CPP  
C
R
V
OUT1  
OUT1  
ONN  
SSP  
R
R
12  
11  
FBP  
-
+
+
-
1.265V  
The maximum V  
output voltage for N+1 stage charge pump is:  
ON  
1
S
-------------------------------------------  
V
(max) ≤ 2 × V  
- I  
× 2 × (R  
+ R  
) - 2 × V  
+ I  
- I  
×
- I  
×
ON  
DDP  
OUT  
ONN  
ONP  
DIODE  
OUT  
1
S
OUT  
1
S
0.5 × F × C  
CPP  
1
-----------------------------------------------  
-------------------------------------------  
-----------------------------------------------  
+ N × V (max) - N × 2 × V  
×
+ I  
×
LX  
DIODE  
OUT  
OUT  
0.5 × F × C  
0.5 × F × C  
0.5 × F × C  
S
OUT1  
CPP  
OUT1  
R
V
and R set the V  
12  
output voltage:  
11  
ON  
R
+ R  
11  
12  
--------------------------  
= V  
×
ON  
FBP  
R
11  
where V  
is 1.310V.  
FBP  
Negative Charge Pump Design Considerations  
The criteria for the negative charge pump is similar to the  
positive charge pump. For a single stage charge pump, the  
maximum V  
output voltage is:  
OFF  
1
S
1
--------------------------------------------  
-----------------------------------------------  
V
(max) ≥ I  
× 2 × (R  
+ R  
) + 2 × V  
- I  
×
- I  
×
- V  
OFF  
OUT  
ONN  
ONP  
DIODE  
OUT  
OUT  
DDN  
0.5 × F × C  
0.5 × F × C  
OUT2  
CPN  
S
Similar to positive charge pump, if additional stage is  
required, the LX switching signal is recommended to drive  
the additional charge pump diodes. The figure on the next  
page shows a two stage negative charge pump circuit.  
FN7317.2  
12  
February 4, 2005  
EL7584  
Two-Stage Negative Charge Pump Circuit  
V
DDN  
5V-17V  
V
LX  
R
ONP  
C
CPN  
C
DRVN  
V
OFF  
C
CPN  
C
R
OUT2  
OUT2  
ONN  
V
SSN  
R
21  
22  
FBN  
+
-
R
V
REF  
The maximum V  
output voltage for N+1 stage charge pump is:  
OFF  
1
S
1
--------------------------------------------  
-----------------------------------------------  
V
(max) ≥ I  
× 2 × (R  
+ R  
) + 2 × V  
+ I  
- I  
×
- I  
×
-
OFF  
OUT  
ONN  
ONP  
DIODE  
OUT  
1
OUT  
1
0.5 × F × C  
0.5 × F × C  
CPN  
S
OUT2  
--------------------------------------------  
-----------------------------------------------  
V
- N × V (max) + N × 2 × V  
×
+ I  
×
DDN  
LX  
DIODE  
OUT  
OUT  
0.5 × F × C  
0.5 × F × C  
S
CPN  
S
OUT2  
R
V
and R determine V  
22  
output voltage:  
OFF  
21  
R
21  
---------  
= -V  
×
OFF  
REF  
R
22  
where V  
is 1.310V.  
REF  
If V  
exceeds 15V, V  
must be protected from over-  
DDC  
The V  
Buffer  
BOOST  
COM  
voltage by including a zener diode between V  
and  
BOOST  
The V  
buffer is designed to control the voltage on the  
COM  
V
.
DDC  
back plane of an LCD display. This plane is capacitively  
coupled to the pixel drive voltage which alternately cycles  
V
BOOST  
positive and negative at the line rate for the display. Thus the  
amplifier must be capable of sourcing and sinking capacitive  
pulses of current, which can occasionally be quite large (a  
few 100mA for typical applications).  
0.1µF  
R
R
32  
31  
INC  
V
V
COM  
DDC  
+
-
V
COM  
V
SSC  
The use of the V  
Buffer is illustrated in Figure 21. Here,  
1µF  
COM  
CERAMIC  
LOW ESR  
a voltage, corresponding to the mid-DAC potential, is  
generated by a resistive divider and buffered by the  
amplifier. The amplifier's stability is designed to be  
dominated by the load capacitance, thus for very short  
duration pulses (< 1µs) the output capacitor supplies the  
FIGURE 21. V  
USED AS A VOLTAGE BUFFER  
COM  
As with any high performance buffer, there are several  
design issues that must be considered when using the part.  
These are summarized below.  
current. For longer pulses the V  
buffer supplies the  
COM  
current. By virtue of its high transconductance which  
progressively increases as more current is drawn, it can  
maintain regulation within 5mV as currents up to 50mA are  
drawn, while consuming only 1.5mA of quiescent current.  
Good Decoupling of Power Supplies  
This is essential for this component and 1µF ceramic low  
ESR decoupling capacitors are recommended. These  
should be placed close to the pins.  
Choice of Output Capacitor  
A 1µF ceramic capacitor with low ESR (X5R or X7R type) is  
recommended for this amplifier. This capacitor determines  
the stability of the amplifier. Reducing it will make the  
amplifier less stable, and should be avoided. With a 1µF  
capacitor, the unity gain bandwidth of the amplifier is close to  
FN7317.2  
13  
February 4, 2005  
EL7584  
500kHz when reasonable currents are being drawn. (For  
lower load currents, the gain and hence bandwidth  
progressively decreases.) This means the active  
transconductance is:  
and the current capability of these negative charge  
pumps (which is rising as V  
and hence V  
DDN  
BOOST  
rises.)  
2. When V  
BOOST  
reaches a voltage such that V(FBB)>  
first reaches its required regulation  
regulator is enabled and V rises  
1.13V and V  
OFF  
2π × 1µF × 500kHz = 3.14S  
voltage, the V  
COM  
COM  
load capacitor, the load  
at a rate determined by the V  
COM  
This high transconductance indicates why it is important to  
have a low ESR capacitor.  
on V  
, and the current limit of the V  
amplifier.  
COM  
COM  
rises to within 100mV of V(INC), an internal  
3. When V  
COM  
delay circuit triggers and, for V  
= 12V, a default delay  
DDP  
If:  
of approximately 3.5ms is introduced before the positive  
charge pump is then enabled. This delay can be  
• ESR * 3.14 > 1  
increased externally by connecting a capacitor between  
then the capacitor will not force the gain to roll off below  
unity, and subsequent poles can affect stability. The  
recommended capacitor has an ESR of 10m, but to this  
must be added the resistance of the board trace between the  
DP and V  
. A 1nF capacitor will typically increase the  
SSP  
delay before V  
becomes enabled to 80ms.  
ON  
The enabled states of the on-chip functions become  
independent of V , V , V , and V once each  
BOOST OFF COM  
ON  
capacitor and the V  
pin, where the sense connection is  
COM  
is triggered. The chip may be reset by forcing EN to logic 0  
and allowing sufficient time for the various supplies to  
discharge sufficiently before taking EN to 1 again.  
made internally - therefore this should be kept short. Also  
ground resistance between the capacitor and the base of R  
must be kept to a minimum. These constraints should be  
considered when laying out the PCB.  
2
Over-Temperature Protection  
An internal temperature sensor continuously monitors the  
die temperature. In the event that die temperature exceeds  
the thermal trip point, the device will shut down and disable  
itself. The upper and lower trip points are typically set to  
130°C and 90°C respectively.  
If the capacitor is increased above 1µF, stability is generally  
improved and short pulses of current will cause a smaller  
“perturbation” on the V  
voltage. The speed of response  
COM  
of the amplifier is however degraded as its bandwidth is  
decreased. At capacitor values around 10µF, a subtle  
interaction with internal DC gain boost circuitry will decrease  
the phase margin and may give rise to some overshoot in  
the response. The amplifier will remain stable, though.  
PCB Layout Guidelines  
Careful layout is critical in the successful operation of the  
application. The following layout guidelines are  
recommended to achieve optimum performance.  
Response to High Current Spikes  
The V  
amplifier's output current is limited to 180mA.  
COM  
1. V  
REF  
and V bypass capacitors should be placed next  
DDB  
This limit level, which is roughly the same for sourcing and  
sinking, is included to maintain reliable operation of the part.  
It does not necessarily prevent a large temperature rise if the  
current is maintained. (In this case the whole chip may be  
shut down by the thermal trip to protect functionality.) If the  
display occasionally demands current pulses higher than  
this limit, the reservoir capacitor will provide the excess and  
the amplifier will top the reservoir capacitor back up once the  
pulse has stopped. This will happen on the µs time scale in  
practical systems and for pulses 2 or 3 times the current  
to the pins.  
2. Place the boost converter diode and inductor close to the  
LX pins.  
3. Place the boost converter output capacitor close to the  
PGND pins.  
4. Locate feedback dividers close to their respected  
feedback pins to avoid switching noise coupling into the  
high impedance node.  
5. Place the charge pump feedback resistor network after  
the diode and output capacitor node to avoid switching  
noise.  
limit, the V  
voltage will have settled again before the  
COM  
next line is processed.  
6. All low-side feedback resistors should be connected  
directly to V  
. V  
should be connected to the power  
Power-Up Sequencing  
With the components shown in the application diagram the  
on-chip power-up sequencing operates as follows.  
SSB SSB  
ground at one point only.  
A demo board is available to illustrate the proper layout  
implementation.  
When the EN pin is taken to logic 1, the following sequence  
is followed by on-chip functions:  
1. The boost circuit and negative charge pumps are  
enabled. V  
rises at a rate set by the boost load  
BOOST  
capacitor, the external load, and the boost’s current limit  
(controlled by the SS pin input.) Similarly, V  
voltage determined by the load capacitor, the V  
falls in  
OFF  
load,  
OFF  
FN7317.2  
February 4, 2005  
14  
EL7584  
Typical Application Circuit  
C
7
1
SS  
VSSB 24  
R
2
0.1µF  
R
3
110kΩ  
2
3
4
5
6
7
8
9
FBB  
EN  
ROSC 23  
VREF 22  
PGND 21  
PGND 20  
VSSP 19  
DRVP 18  
VDDP 17  
FBP 16  
R
13kΩ  
61.9kΩ  
1
C
8
R
4
1nF  
VDDB  
LX  
C
49.9Ω  
6
0.1µF  
+
+
C
5
22µF  
V
BOOST  
*D  
1
(12V@  
LX  
350mA)  
L1  
C
0.1µF  
12  
VIN  
VSSN  
DRVN  
VDDN  
C
1
10µF  
**D  
V
10µH  
11  
ON  
18V  
C
22  
GND  
C
C
R
11  
0.1µF  
13  
12  
51kΩ  
0.1µF  
2.2µF  
C
21  
0.1µF  
V
R
OFF  
-6V  
11  
3.9kΩ  
R
C
26  
154k3.3µF  
21  
10 FBN  
11 DP  
VSSC 15  
VCOM 14  
VDDC 13  
C
31  
1µF  
V
COM  
**D  
21  
***C  
1nF  
20  
12 INC  
C
32  
0.1µF  
V
COM  
REFERENCE  
C
33  
R
22  
33.2kΩ  
* MBRM120LT3  
** BAT54S  
*** C is optional if extended V  
delay is required  
20  
ON  
FN7317.2  
February 4, 2005  
15  
EL7584  
Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
<http://www.intersil.com/design/packages/index.asp>  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7317.2  
16  
February 4, 2005  

相关型号:

EL7584IR-T7

4-Channel DC:DC Converter
INTERSIL

EL7584IRZ

4-Channel DC:DC Converter
INTERSIL

EL7584IRZ-T13

4-Channel DC:DC Converter
INTERSIL

EL7584IRZ-T7

4-Channel DC:DC Converter
INTERSIL

EL7585

TFT-LCD Power Supply
INTERSIL

EL7585A

TFT-LCD Power Supply
INTERSIL

EL7585AILZ

TFT-LCD Power Supply
INTERSIL

EL7585AILZ-T13

TFT-LCD Power Supply
INTERSIL

EL7585AILZ-T7

TFT-LCD Power Supply
INTERSIL

EL7585AP_06

TFT-LCD Power Supply
INTERSIL

EL7585IL

TFT-LCD Power Supply
INTERSIL

EL7585IL-T13

TFT-LCD Power Supply
INTERSIL