EL9212IYEZ-T13 [INTERSIL]

100MHz 100mA VCOM Amplifiers; 100MHz的100毫安VCOM放大器
EL9212IYEZ-T13
型号: EL9212IYEZ-T13
厂家: Intersil    Intersil
描述:

100MHz 100mA VCOM Amplifiers
100MHz的100毫安VCOM放大器

放大器 光电二极管
文件: 总9页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL9211, EL9212, EL9214  
®
Data Sheet  
December 22, 2004  
FN7007.0  
100MHz 100mA V  
Amplifiers  
Features  
COM  
The EL9211, EL9212, and EL9214 feature 1, 2, and 4  
channel high power output amplifiers. They are designed  
• 1, 2, and 4 channel versions  
• 130MHz -3dB bandwidth  
• 115V/µs slew rate  
primarily for generation of V  
voltages in TFT-LCD  
COM  
applications. Each amplifier features a -3dB bandwidth of  
130MHz with slew rates of 115V/µs. Each device comes in a  
thermal package and can drive 300mA peak per output.  
• 300mA peak output current  
• Supply voltage from 5V to 13.5V  
• Low supply current - <2.4mA per channel  
• Pb-free available (RoHS compliant)  
All units are available in Pb-free packaging only and are  
specified for operation over the -40°C to +85°C temperature  
range.  
Ordering Information  
Applications  
PART NUMBER  
PACKAGE  
TAPE &  
REEL  
PKG.  
• TFT-LCD V  
supply  
COM  
(See Note)  
(Pb-Free)  
DWG. #  
• Electronics notebooks  
• Computer monitors  
• Electronics games  
EL9211IWZ-T7  
EL9211IWZ-T7A  
EL9211IYEZ  
5-Pin SOT-23  
5-Pin SOT-23  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
14-Pin HTSSOP  
14-Pin HTSSOP  
7” (3K pcs)  
MDP0038  
7” (250 pcs) MDP0038  
-
7”  
13”  
-
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0048  
MDP0048  
MDP0048  
Touch-screen displays  
• Portable instrumentation  
EL9211IYEZ-T7  
EL9211IYEZ-T13  
EL9212IYEZ  
EL9212IYEZ-T7  
EL9212IYEZ-T13  
EL9214IREZ  
7”  
13”  
-
EL9214IREZ-T7  
7”  
13”  
EL9214IREZ-T13 14-Pin HTSSOP  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL9211, EL9212, EL9214  
Pinouts  
EL9211  
(5-PIN SOT-23)  
TOP VIEW  
EL9211  
(8-PIN HMSOP)  
TOP VIEW  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
NC  
IN-  
1
2
3
4
8
7
6
5
NC  
VS+  
OUT  
NC  
-
+
+
-
IN+  
VS-  
EL9212  
(8-PIN HMSOP)  
TOP VIEW  
EL9214  
(14-PIN HTSSOP)  
TOP VIEW  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
VOUTA  
VINA-  
VINA+  
VS+  
1
2
3
4
5
6
7
14 VOUTD  
13 VIND-  
12 VIND+  
11 VS-  
-
+
VOUTB  
VINB-  
VINB+  
-
-
+
+
+
+
-
-
-
+
VINB+  
VINB-  
VOUTB  
10 VINC+  
9
8
VINC-  
VOUTC  
FN7007.0  
2
December 22, 2004  
EL9211, EL9212, EL9214  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+15V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . 100mA  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +6V, V - = -6V, R = 10k, R = 0, C = 10pF to 0V, Gain = -1, T = 25°C, unless otherwise specified.  
S
S
L
F
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 6V  
-6  
-1  
+2  
mV  
µV/°C  
µA  
OS  
TCV  
CM  
(Note)  
Average Offset Voltage Drift  
Input Bias Current  
10  
OS  
I
V
= 6V  
-1.4  
-0.4  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
V
Load Regulation  
V
= 6V, -100mA < I < 100mA  
-20  
-0.5  
75  
+20  
mV  
V
REG  
COM  
L
CMIR  
Common Mode Input Range  
+12.5  
CMRR  
Common Mode Rejection Ratio  
Open Loop Gain  
For V from -0.5 to +12.5V  
IN  
100  
70  
dB  
A
55  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I
I
= -5mA  
= +5mA  
0.9  
10.94  
300  
1.1  
V
V
OL  
L
L
10.7  
50  
OH  
I
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Total Supply Current  
V
from 4.5V to 10.5V  
75  
2.3  
4.5  
8.8  
dB  
mA  
mA  
mA  
S
I
EL9211 (no load)  
EL9212 (no load)  
EL9214 (no load)  
2.9  
5
S
9.6  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note)  
2V step, 20% to 80%  
90  
115  
30  
V/µs  
ns  
t
Settling to +0.1% (A = -1)  
V
(A = -1), V = 2V step  
V O  
S
BW  
-3dB Bandwidth  
R
R
R
R
= 10k, C = 10pF, A = +1  
130  
52  
MHz  
MHz  
MHz  
°
L
L
L
L
L
V
= 10k, C = 10pF, A = -1  
L
V
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
63  
L
= 10k, C = 10pF  
43  
L
NOTE: Slew rate is measured on rising and falling edges.  
FN7007.0  
3
December 22, 2004  
EL9211, EL9212, EL9214  
Typical Performance Curves  
8
6
4
2
0
-2  
8
V =±6V  
S
V =±6V  
C =18pF  
S
L
A =+1  
V
6
4
2
R =1k  
A =+1  
V
L
R =0Ω  
F
C =10pF  
L
R =10kΩ  
L
0
-2  
C =10pF  
R =10kΩ  
L
L
-4  
-6  
-8  
R =100Ω  
C =0pF  
L
-4  
-6  
-8  
L
-10  
-12  
-10  
-12  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
500M  
100M  
100K  
1M  
10M  
500M  
FREQUENCY (Hz)  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS C  
L
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R  
L
80  
250  
200  
150  
100  
50  
0
80  
70  
60  
50  
40  
30  
V =±6V  
S
70  
60  
50  
40  
30  
A =+1  
V
PHASE  
-50  
-100  
20  
10  
20  
10  
0
GAIN  
V =±6V  
S
-150  
0
-10  
-20  
R =10kΩ  
L
C =10pF  
L
-200  
-250  
-10  
-20  
1M  
FREQUENCY (Hz)  
1K  
10K  
100K  
10M  
100M  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 3. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 4. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
10  
V =±6V  
S
V =±6V  
S
0
-10  
-10  
-20  
-30  
-40  
-50  
PSRR-  
-20  
-30  
-40  
-50  
-60  
-60  
-70  
-80  
-90  
-100  
PSRR+  
10M  
-70  
-80  
-90  
10K  
100K  
1M  
100M 500M  
1K  
500M  
100M  
1M  
1K  
10K  
100K  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. PSRR  
FIGURE 6. CMRR  
FN7007.0  
December 22, 2004  
4
EL9211, EL9212, EL9214  
Typical Performance Curves (Continued)  
-20  
V =±6V  
S
-30  
-40  
-50  
-60  
-70  
A =+1  
V
1000  
100  
R =10kΩ  
L
-80  
-90  
10  
1
-100  
-110  
-120  
1M  
FREQUENCY (Hz)  
100  
1K  
10K  
100K  
10M 100M 500M  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 8. VOLTAGE NOISE vs FREQUENCY  
FIGURE 7. CHANNEL SEPARATION FOR EL9212/EL9214  
12  
10  
8
0.026  
V =±6V  
S
A =+1  
V
0.0255  
0.025  
R =0Ω  
F
V
=1V  
OPP  
R =50Ω  
L
0.0245  
0.024  
6
0.0235  
0.023  
4
V =±6V  
2
S
A =+1  
0.0225  
0.022  
V
R =10kΩ  
L
0
10K  
100K  
1M  
10M  
100M  
1K  
10K  
100K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 10. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 9. THD + NOISE vs FREQUENCY  
4.5  
80  
V =±6V  
S
V =±6V  
S
4
A =+1  
V
R =6kΩ  
F
70  
60  
50  
40  
30  
20  
R =10kΩ  
L
V
+=6V  
IN  
3.5  
3
V
=±50mV  
IN  
2.5  
2
1.5  
1
0.5  
0
0
20  
40  
60  
80  
100  
120  
140  
0
0.05  
0.1  
0.15  
0.2  
I
(A)  
LOAD CAPACITANCE (pF)  
SINK  
FIGURE 11. SMALL SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 12. V  
- V - vs I  
S SINK  
OUT  
FN7007.0  
December 22, 2004  
5
EL9211, EL9212, EL9214  
Typical Performance Curves (Continued)  
4.5  
4
V =±6V  
S
V =±6V  
S
R =6kΩ  
F
A =+1  
V
V
+=6V  
3.5  
3
IN  
R =10kΩ  
L
CH 2  
CH 1  
V
IN  
2.5  
2
V
OUT  
1.5  
1
0.5  
0
0
0.05  
0.1  
SOURCE  
0.15  
0.2  
I
(A)  
FIGURE 13. V + - V  
vs I  
SOURCE  
S
OUT  
FIGURE 14. LARGE SIGNAL TRANSIENT RESPONSE  
V =±6V  
S
A =+1  
V
R =10kΩ  
L
CH 2  
V
IN  
CH 2  
V
OUT  
CH 1  
FIGURE 16. GOING INTO SATURATION POSITIVE EDGE  
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE  
CH 2  
FIGURE 18. DELAY TIME  
FIGURE 17. GOING INTO SATURATION NEGATIVE EDGE  
FN7007.0  
December 22, 2004  
6
EL9211, EL9212, EL9214  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE  
3
2.5  
2
THERMAL CONDUCTIVITY TEST BOARD  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
±I  
S
435mW  
SOT23-5/6  
θ
=230°C/W  
JA  
1.5  
1
0.5  
0
0.05  
0
0
25  
50  
75 85 100  
125  
150  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
(±V)  
AMBIENT TEMPERATURE (°C)  
S
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
FIGURE 19. SUPPLY CURRENT(PER AMPLIFIER) vs SUPPLY  
VOLTAGE  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD -  
HTSSOP EXPOSED DIEPAD SOLDERED  
JEDEC JESD51-3 LOW EFFECTIVE  
TO PCB PER JESD51-5  
THERMAL CONDUCTIVITY TEST BOARD  
0.45  
0.4  
3.5  
391mW  
3
2.5  
2
2.632W  
0.35  
HTSSOP14  
=38°C/W  
SO  
T23  
-5/  
6
0.3  
0.25  
0.2  
0.15  
0.1  
θ
JA  
θ
=2  
56°  
C/W  
JA  
1.5  
1
0.5  
0
0.05  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
694mW  
HTSSOP14  
=144°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7007.0  
December 22, 2004  
7
EL9211, EL9212, EL9214  
Pin Descriptions  
EL9211  
EL9211  
EL9212  
(8-PIN  
EL9214  
(14-PIN  
(5-PIN  
(8-PIN  
SOT-23)  
HMSOP)  
HMSOP)  
HTSSOP) PIN NAME  
FUNCTION  
Amplifier A output  
EQUIVALENT CIRCUIT  
1
6
1
1
VOUTA  
V
S+  
V
S-  
GND  
CIRCUIT 1  
4
2
2
2
VINA-  
Amplifier A inverting input  
V
V
S+  
S-  
CIRCUIT 2  
(Reference Circuit 2)  
3
5
3
7
3
8
5
6
7
3
4
VINA+  
VS+  
Amplifier A non-inverting input  
Positive power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
5
VINB+  
VINB-  
VOUTB  
VOUTC  
VINC-  
VINC+  
VS-  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
8
Amplifier C output  
9
Amplifier C inverting input  
Amplifier C non-inverting input  
Negative power supply  
Amplifier D non-inverting input  
Amplifier D inverting input  
Amplifier D output  
10  
11  
12  
13  
14  
2
4
4
VIND+  
VIND-  
VOUTD  
NC  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
1, 5, 8  
Not connected  
FN7007.0  
December 22, 2004  
8
EL9211, EL9212, EL9214  
Unused Amplifiers  
Application Information  
It is recommended that any unused amplifiers in a dual and  
quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
Product Description  
The EL9211, EL9212, and EL9214 voltage feedback  
amplifiers are fabricated using a high voltage CMOS  
process. They exhibit rail-to-rail input and output capability,  
are unity gain stable and have low power consumption  
(2.4mA per amplifier). These features make the EL9211,  
EL9212, and EL9214 ideal for a wide range of general-  
purpose applications. Connected in voltage follower mode  
and driving a load of 10K, the EL9211, EL9212, and EL9214  
have a -3dB bandwidth of 130MHz while maintaining a  
115V/µs slew rate. The EL9211 is a single amplifier, EL9212  
is a dual amplifier, and EL9214 is a quad amplifier.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
The EL9211, EL9212, and EL9214 can provide gain at high  
frequency. As with any high-frequency device, good printed  
circuit board layout is necessary for optimum performance.  
Ground plane construction is highly recommended, lead  
lengths should be as short as possible and the power supply  
pins must be well bypassed to reduce the risk of oscillation.  
For normal single supply operation, where the -VS pin is  
connected to ground, a 0.1µF ceramic capacitor should be  
placed from +VS to pin and -VS to pin. A 4.7µF tantalum  
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used.  
Operating Voltage, Input, and Output  
The EL9211, EL9212, and EL9214 are specified with a  
single nominal supply voltage from 5V to 13.5V or a split  
supply with its total range from 5V to 13.5V. Most EL9211,  
EL9212, and EL9214 specifications are stable over both the  
full supply range and operating temperatures of -40°C to  
+85°C. Parameter variations with operating voltage and/or  
temperature are shown in the typical performance curves.  
Short Circuit Current Limit  
The EL9211, EL9212, and EL9214 will limit the short circuit  
current to 300mA if the output is directly shorted to the  
positive or negative supply. If an output is shorted  
indefinitely, the power dissipation could easily increase such  
that the device may be damaged. Maximum reliability is  
maintained if the output continuous current never exceeds  
±65mA. This limit is set by the design of the internal metal  
interconnects.  
Output Phase Reversal  
The EL9211, EL9212, and EL9214 are immune to phase  
reversal as long as the input voltage is limited from  
-VS -0.5V to +VS +0.5V. Although the device's output will not  
change phase, the input's over-voltage should be avoided. If  
an input voltage exceeds supply voltage by more than 0.6V,  
electrostatic protection diodes placed in the input stage of  
the device begin to conduct and over-voltage damage could  
occur.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7007.0  
9
December 22, 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY