HA2556 [INTERSIL]

Wideband Four Quadrant Analog Multiplier (Voltage Output); 宽带四象限模拟乘法器(电压输出)
HA2556
型号: HA2556
厂家: Intersil    Intersil
描述:

Wideband Four Quadrant Analog Multiplier (Voltage Output)
宽带四象限模拟乘法器(电压输出)

文件: 总20页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA2556/883  
Wideband Four Quadrant Analog  
Multiplier (Voltage Output)  
July 1994  
Features  
Description  
• This Circuit is Processed in Accordance to MIL-STD- The HA-2556/883 is a monolithic, high speed, four quadrant,  
883 and is Fully Conformant Under the Provisions of analog multiplier constructed in Intersil’ Dielectrically  
Paragraph 1.2.1.  
Isolated High Frequency Process. The voltage output  
simplifies many designs by eliminating the current-to-voltage  
conversion stage required for current output multipliers. The  
HA-2556/883 provides a 450V/µs output slew rate and  
maintains 52MHz and 57MHz bandwidths for the X and Y  
channels respectively, making it an ideal part for use in video  
systems.  
• High Speed Voltage Output. . . . . . . . . . . 450V/µs (Typ)  
• Low Multiplication error . . . . . . . . . . . . . . . . 1.5% (Typ)  
• Input Bias Currents . . . . . . . . . . . . . . . . . . . . . 8µA (Typ)  
• Signal Input Feedthrough . . . . . . . . . . . . . . -50dB (Typ)  
• Wide Y Channel Bandwidth . . . . . . . . . . . 57MHz (Typ)  
• Wide X Channel Bandwidth . . . . . . . . . . . 52MHz (Typ)  
• 0.1dB Gain Flatness (VY). . . . . . . . . . . . . . 5.0MHz (Typ)  
The suitability for precision video applications is  
demonstrated further by the Y Channel 0.1dB gain flatness  
to 5.0MHz, 1.5% multiplication error, -50dB feedthrough and  
differential inputs with 8µA bias current. The HA-2556 also  
has low differential gain (0.1%) and phase (0.1o) errors.  
Applications  
The HA-2556/883 is well suited for AGC circuits as well as  
mixer applications for sonar, radar, and medical imaging  
equipment. The HA-2556/883 is not limited to multiplication  
applications only; frequency doubling, power detection, as  
well as many other configurations are possible.  
• Military Avionics  
• Missile Guidance Systems  
• Medical Imaging Displays  
• Video Mixers  
Ordering Information  
• Sonar AGC Processors  
• Radar Signal Conditioning  
• Voltage Controlled Amplifier  
• Vector Generator  
TEMPERATURE  
PART NUMBER  
RANGE  
PACKAGE  
o
o
HA1-2556/883  
-55 C to +125 C  
16 Lead CerDIP  
Pinout  
Simplified Schematic  
V+  
HA-2556/883  
(CERDIP)  
TOP VIEW  
V
BIAS  
GND  
VREF  
1
2
3
4
5
6
7
8
16 VXIO  
15 VXIO  
14 NC  
13 VX+  
12 VX-  
11 V+  
A
B
REF  
VBIAS  
V+  
VYIO  
B
VYIO  
A
X
VX+  
VX-  
VY+  
VY-  
VY+  
VY-  
Y
OUT  
VZ+  
REF  
VZ-  
+
Σ
10 VZ-  
V-  
-
Z
9
VZ+  
VOUT  
+
-
GND  
VXIO  
A
VXIO  
B
VYIO  
A
VYIO  
B
V-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Spec Number 511063-883  
File Number 3619  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 19998-7  
Specifications HA2556/883  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±40mA  
ESD Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .< 2000V  
Thermal Resistance  
CerDIP Package . . . . . . . . . . . . . . . . . . .  
Maximum Package Power Dissipation at +75 C  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.22W  
Package Power Dissipation Derating Factor above +75 C  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mW/ C  
θ
θ
JC  
27 C/W  
JA  
o
o
82 C/W  
o
o
o
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +300 C  
o
o
o
Storage Temperature Range . . . . . . . . . . . . . .-65 C T +150 C  
A
o
Max Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +175 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
o
o
Operating Supply Voltage (±V ) . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V  
Operating Temperature Range . . . . . . . . . . . . -55 C T +125 C  
S
A
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Device Tested at: V  
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
SUPPLY  
F
L
L
LIMITS  
GROUP A  
PARAMETERS  
SYMBOL  
CONDITIONS  
V , V = ±5V  
SUBGROUPS  
TEMPERATURE  
MIN  
-3  
MAX  
3
UNITS  
%FS  
%FS  
%FS  
%FS  
mV  
mV  
µA  
o
Multiplication Error  
ME  
1
2, 3  
1
+25 C  
Y
X
o
o
+125 C, -55 C  
-6  
6
o
Linearity Error  
LE4V  
LE5V  
V , V = ±4V  
+25 C  
-0.5  
-1  
0.5  
1
Y
X
o
V , V = ±5V  
1
+25 C  
Y
Y
X
o
Input Offset Voltage (V )  
V
V
V
V
= ±5V  
1
+25 C  
-15  
-25  
-15  
-25  
-2  
15  
25  
15  
25  
2
X
XIO  
o
o
2, 3  
1
+125 C, -55 C  
o
Input Bias Current (V )  
I
(V )  
= 0V, V = 5V  
+25 C  
X
B
X
X
X
Y
o
o
2, 3  
1
+125 C, -55 C  
µA  
o
Input Offset Current (V )  
I
(V )  
= 0V, V = 5V  
+25 C  
µA  
X
IO  
X
Y
o
o
2, 3  
1
+125 C, -55 C  
-3  
3
µA  
o
Common Mode (V )  
Rejection Ratio  
CMRR (V ) V CM = ±10V  
+25 C  
65  
65  
65  
65  
45  
45  
-15  
-25  
-15  
-25  
-2  
-
dB  
X
X
X
Y
V
= 5V  
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
Power Supply (V )  
Rejection Ratio  
+PSRR (V )  
V
V
= +12V to +17V  
= 5V  
+25 C  
-
dB  
X
X
CC  
Y
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
-PSRR (V )  
V
= -12V to -17V  
+25 C  
-
dB  
X
EE  
V = 5V  
Y
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
Input Offset Voltage (V )  
V
V
V
V
= ±5V  
+25 C  
15  
25  
15  
25  
2
mV  
mV  
µA  
Y
YIO  
X
Y
Y
o
o
2, 3  
1
+125 C, -55 C  
o
Input Bias Current (V )  
I
(V )  
= 0V, V = 5V  
+25 C  
Y
B
Y
X
o
o
2, 3  
1
+125 C, -55 C  
µA  
o
Input Offset Current (V )  
I
(V )  
= 0V, V = 5V  
+25 C  
µA  
Y
IO  
Y
X
o
o
2, 3  
1
+125 C, -55 C  
-3  
3
µA  
o
Common Mode (V )  
Rejection Ratio  
CMRR (V ) V CM = +9V, -10V  
+25 C  
65  
65  
65  
65  
45  
45  
-
dB  
Y
Y
Y
X
V
= 5V  
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
Power Supply (V )  
Rejection Ratio  
+PSRR (V )  
V
V
= +12V to +17V  
= 5V  
+25 C  
-
dB  
Y
Y
CC  
X
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
-PSRR (V )  
V
= -12V to -17V  
+25 C  
-
dB  
Y
EE  
V = 5V  
X
o
o
2, 3  
+125 C, -55 C  
-
dB  
Spec Number 511063-883  
8-8  
Specifications HA2556/883  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Tested at: V  
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
SUPPLY  
F
L
L
LIMITS  
MIN  
GROUP A  
SUBGROUPS  
PARAMETERS  
Input Offset Voltage (V )  
SYMBOL  
CONDITIONS  
= 0V, V = 0V  
TEMPERATURE  
MAX  
15  
25  
15  
25  
2
UNITS  
mV  
mV  
µA  
µA  
µA  
µA  
dB  
dB  
dB  
dB  
dB  
dB  
mA  
mA  
mA  
mA  
V
o
V
V
V
1
2, 3  
1
+25 C  
-15  
-25  
-15  
-25  
-2  
-3  
65  
65  
65  
65  
45  
45  
20  
20  
-
Z
ZIO  
X
X
Y
o
o
+125 C, -55 C  
o
Input Bias Current (V )  
I
(V )  
= 0V, V = 0V  
+25 C  
Z
B
Z
Y
o
o
2, 3  
1
+125 C, -55 C  
o
Input Offset Current (V )  
I
(V )  
V = 0V, V = 0V  
+25 C  
Z
IO  
Z
X
Y
o
o
2, 3  
1
+125 C, -55 C  
3
o
Common Mode (V )  
CMRR (V ) V CM = ±10V  
+25 C  
-
Z
Z
Z
X
Rejection Ratio  
V
= 0V, V = 0V  
Y
o
o
2, 3  
1
+125 C, -55 C  
-
o
Power Supply (V )  
+PSRR (V )  
V
V
= +12V to +17V  
+25 C  
-
Z
Z
CC  
Rejection Ratio  
= 0V, V = 0V  
X
Y
o
o
2, 3  
1
+125 C, -55 C  
-
o
-PSRR (V )  
V
= -12V to -17V  
+25 C  
-
Z
EE  
V = 0V, V = 0V  
X
Y
o
o
2, 3  
1
+125 C, -55 C  
-
o
Output Current  
+I  
V
V
= 5V, R = 250Ω  
+25 C  
-
OUT  
OUT  
L
o
o
2, 3  
1
+125 C, -55 C  
-
o
-I  
= 5V, R = 250Ω  
+25 C  
-20  
-20  
-
OUT  
OUT  
L
o
o
2, 3  
1
+125 C, -55 C  
-
o
Output Voltage Swing  
+V  
R = 250Ω  
+25 C  
5
OUT  
L
o
o
2, 3  
1
+125 C, -55 C  
5
-
V
o
-V  
R = 250Ω  
+25 C  
-
-5  
-5  
22  
22  
V
OUT  
L
o
o
2, 3  
1
+125 C, -55 C  
-
V
o
Supply Current  
±I  
V , V = 0V  
+25 C  
-
mA  
mA  
CC  
X
Y
o
o
2, 3  
+125 C, -55 C  
-
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Table 2 Intentionally Left Blank. See AC Specifications in Table 3.  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS  
Device Tested: at V  
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
SUPPLY  
F
L
L
LIMITS  
PARAMETERS  
SYMBOL  
CONDITIONS  
NOTES  
TEMPERATURE  
MIN  
MAX  
UNITS  
V , V CHARACTERISTICS (NOTE 2)  
Y
Z
o
Bandwidth  
BW(V )  
-3dB, V = 5V,  
1
1
+25 C  
30  
4.0  
-
-
-
MHz  
MHz  
dB  
Y
X
V
200mV  
Y
P-P  
o
Gain Flatness  
AC Feedthrough  
GF(V )  
0.1dB, V = 5V,  
+25 C  
Y
X
V
200mV  
Y
P-P  
o
V
f
V
V
= 5MHz,  
= 200mV  
= Nulled  
1, 3  
+25 C  
-45  
ISO  
O
Y
X
P-P  
o
Rise and Fall Time  
T , T  
V
V
= 200mV Step,  
= 5V,  
1
1
+25 C  
-
-
9.5  
10  
ns  
ns  
R
F
Y
X
o
o
+125 C, -55 C  
10% to 90% pts  
Spec Number 511063-883  
8-9  
Specifications HA2556/883  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Tested: at V  
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
SUPPLY  
F
L
L
LIMITS  
PARAMETERS  
Overshoot  
SYMBOL  
CONDITIONS  
NOTES  
TEMPERATURE  
MIN  
MAX  
UNITS  
%
o
+OS, -OS  
V
V
= 200mV step,  
= 5V  
1
1
1
1
1
+25 C  
-
35  
50  
-
Y
X
o
o
+125 C, -55 C  
-
%
o
Slew Rate  
+SR, -SR  
V
V
= 10V step,  
= 5V  
+25 C  
410  
360  
650  
V/µs  
V/µs  
kΩ  
Y
X
o
o
+125 C, -55 C  
-
o
Differential Input  
Resistance  
R
(V )  
V
= ±5V, V = 0V  
+25 C  
-
IN  
Y
Y
X
V
CHARACTERISTICS  
X
o
Bandwidth  
BW (V )  
-3dB, V = 5V,  
1
1
+25 C  
30  
2.0  
-
-
-
MHz  
MHz  
dB  
X
Y
V
200mV  
X
P-P  
o
Gain Flatness  
AC Feedthrough  
GF (V )  
0.1dB, V = 5V,  
+25 C  
X
Y
V
200mV  
X
P-P  
o
V
f
V
V
= 5MHz,  
= 200mV  
= Nulled  
1, 3  
+25 C  
-45  
ISO  
O
X
Y
P-P  
o
Rise & Fall Time  
T , T  
V
V
= 200mV step,  
= 5V,  
1
1
+25 C  
-
-
9.5  
10  
ns  
ns  
R
F
X
Y
o
o
+125 C, -55 C  
10% to 90% pts  
o
Overshoot  
Slew Rate  
+OS, -OS  
+SR, -SR  
V
V
= 200mV step,  
= 5V  
1
1
1
1
1
+25 C  
-
35  
50  
-
%
%
X
Y
o
o
+125 C, -55 C  
-
o
V
V
= 10V step,  
= 5V  
+25 C  
410  
360  
650  
V/µs  
V/µs  
kΩ  
X
Y
o
o
+125 C, -55 C  
-
o
Differential Input  
Resistance  
R
(V )  
V
= ±5V, V = 0V  
+25 C  
-
IN  
X
X
Y
OUTPUT CHARACTERISTICS  
Output Resistance  
o
R
V
= ±5V, V = 5V  
1
+25 C  
-
1
OUT  
Y
X
R = 1kto 250Ω  
L
NOTES:  
1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These param-  
eters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization  
based upon data from multiple production runs which reflect lot to lot and within lot variation.  
2. V AC characteristics may be implied from V due to the use of V as feedback in the test circuit.  
Z
Y
Z
3. Offset voltage applied to minimize feedthrough signal.  
TABLE 4. ELECTRICAL TEST REQUIREMENTS  
MIL-STD-883 TEST REQUIREMENTS  
SUBGROUPS (SEE TABLE 1)  
Interim Electrical Parameters (Pre Burn-In)  
Final Electrical Test Parameters  
Group A Test Requirements  
Groups C and D Endpoints  
NOTE:  
-
1 (Note 1), 2, 3  
1, 2, 3  
1
1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.  
Spec Number 511063-883  
8-10  
HA2556/883  
Die Characteristics  
DIE DIMENSIONS:  
71mils x 100mils x 19mils ± 1mils  
METALLIZATION:  
Type: Al, 1% Cu  
Thickness: 16kÅ ± 2kÅ  
GLASSIVATION:  
Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos)  
Silox Thickness: 12kÅ ± 2kÅ  
Nitride Thickness: 3.5kÅ ± 1.5kÅ  
TRANSISTOR COUNT: 84  
SUBSTRATE POTENTIAL: V-  
WORST CASE CURRENT DENSITY:  
0.47 x 105A/cm2  
Metallization Mask Layout  
HA-2556/883  
VREF  
(2)  
VXIO  
(16)  
A
V
(15)  
XIOB  
GND  
(1)  
V
YIOB (3)  
V
YIOA (4)  
(13) VX+  
(12) VX-  
VY+ (5)  
VY- (6)  
(11) V+  
(7)  
V-  
(8)  
VOUT  
(9) (10)  
VZ+ VZ-  
Spec Number 511063-883  
8-11  
HA2556/883  
Test Waveforms  
LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
VX+  
REF  
NC  
NC  
NC  
+
-
VY+  
+
-
+15 V  
VZ-  
+
Σ
-
-15V  
-
+
VZ+  
VOUT  
20pF  
50Ω  
1K  
LARGE SIGNAL RESPONSE  
SMALL SIGNAL RESPONSE  
250ns  
0ns  
500ns  
1µs  
0ns  
500ns  
8
200  
4
0
100  
0
-4  
-8  
-100  
-200  
VX = ±4V PULSE  
VY = 5VDC  
VY = ±100mV PULSE  
VX = 5VDC  
2V/DIV; 100ns/DIV  
50mV/DIV; 50ns/DIV  
Burn-In Circuit  
HA-2556/883 CERAMIC DIP  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
VX+  
REF  
NC  
NC  
NC  
+
VY+  
-
+
-
+15.5V  
±0.5V  
VZ -  
-15.5V  
+
D2  
-
Σ
±0.5V  
-
0.01µF  
0.01µF  
+
D1  
VZ+  
VOUT  
D1 = D2 = 1N4002 OR EQUIVALENT (PER BOARD)  
Spec Number 511063-883  
8-12  
HA2556/883  
Packaging  
c1 LEAD FINISH  
F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A)  
16 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE  
INCHES MILLIMETERS  
MIN  
-D-  
E
-A-  
-B-  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.840  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
21.34  
7.87  
NOTES  
b1  
A
b
-
-
2
3
-
M
M
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
(b)  
b1  
b2  
b3  
c
SECTION A-A  
S
S
S
D
bbb  
C A - B  
D
4
2
3
5
5
-
BASE  
PLANE  
Q
A
-C-  
c1  
D
SEATING  
PLANE  
L
α
E
0.220  
5.59  
S1  
eA  
A A  
e
e
0.100 BSC  
2.54 BSC  
b2  
eA/2  
b
c
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
-
M
S
S
M
S
S
D
ccc  
C A - B  
D
aaa  
C A - B  
0.125  
0.200  
3.18  
5.08  
-
Q
0.015  
0.005  
0.005  
0.060  
0.38  
0.13  
0.13  
1.52  
6
7
-
NOTES:  
S1  
S2  
-
-
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
o
o
o
o
90  
105  
90  
105  
-
α
aaa  
bbb  
ccc  
M
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
-
2
8
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
N
16  
16  
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b1.  
5. This dimension allows for off-center lid, meniscus, and glass overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling Dimension: Inch.  
11. Lead Finish: Type A.  
12. Materials: Compliant to MIL-I-38535.  
Spec Number 511063-883  
8-13  
Semiconductor  
HA2556  
Wideband Four Quadrant  
Analog Multiplier  
DESIGN INFORMATION  
August 1999  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves  
X CHANNEL MULTIPLIER ERROR  
X CHANNEL MULTIPLIER ERROR  
1
0.5  
0
1.5  
1
Y = -4  
Y = -5  
Y = -3  
Y = -2  
Y = -1  
Y = 0  
Y = 1  
0.5  
0
Y = 0  
-0.5  
-1  
Y = 3  
Y = 2  
-0.5  
-1  
Y = 4  
Y = 5  
-1.5  
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
0
2
4
6
X INPUT (V)  
X INPUT (V)  
Y CHANNEL MULTIPLIER ERROR  
Y CHANNEL MULTIPLIER ERROR  
1.5  
1
1
0.5  
0
X = -3  
X = -2  
X = -4  
X = -1  
X = 0  
X = 5  
X = 1  
0.5  
0
X = 0  
-0.5  
-1  
X = -5  
X = 2  
-0.5  
X = 4  
X = 3  
-1  
-6  
-4  
-2  
0
2
4
6
-1.5  
-6  
-4  
-2  
0
2
4
6
Y INPUT (V)  
Y INPUT (V)  
Y CHANNEL FULL POWER BANDWIDTH  
Y CHANNEL FULL POWER BANDWIDTH  
4
Y CHANNEL = 4VP-P  
X CHANNEL = 5VDC  
Y CHANNEL = 10VP-P  
X CHANNEL = 5VDC  
4
3
3
2
2
1
1
0
-1  
-2  
-3  
-4  
0
-1  
-2  
-3  
-4  
-3dB  
AT 32.5MHz  
10K  
100K  
1M  
10M  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Spec Number 511063-883  
8-14  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves (Continued)  
X CHANNEL FULL POWER BANDWIDTH  
X CHANNEL FULL POWER BANDWIDTH  
X CHANNEL = 4VP-P  
Y CHANNEL = 5VDC  
X CHANNEL = 10VP-P  
Y CHANNEL = 5VDC  
4
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
10K  
100K  
1M  
10M  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Y CHANNEL BANDWIDTH vs X CHANNEL  
VX = 5VDC  
X CHANNEL BANDWIDTH vs Y CHANNEL  
VY = 5VDC  
0
0
-6  
-12  
-18  
-24  
-6  
-12  
-18  
-24  
VY = 2VDC  
VX = 2VDC  
VY = 0.5VDC  
VY = 200mVP-P  
VX = 0.5VDC  
VX = 200mVP-P  
10M 100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
Y CHANNEL CMRR vs FREQUENCY  
X CHANNEL CMRR vs FREQUENCY  
0
-10  
-20  
0
-10  
VX+, VX- = 200mVRMS  
VY = 5VDC  
VY+, VY- = 200mVRMS  
VX = 5VDC  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
-60  
-70  
-80  
5MHz  
-26.2dB  
5MHz  
-38.8dB  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Spec Number 511063-883  
8-15  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves (Continued)  
FEEDTHROUGH vs FREQUENCY  
FEEDTRHOUGH vs FREQUENCY  
0
0
VY = 200mVP-P  
VX = NULLED  
VX = 200mVP-P  
VY = NULLED  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-49dB  
-52.6dB  
at 5MHz  
at 5MHz  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OFFSET VOLTAGE vs TEMPERATURE  
INPUT BIAS CURRENT (V , V , V ) vs TEMPERATURE  
X Y Z  
8
7
6
5
4
3
2
1
0
14  
13  
12  
11  
10  
9
|VIOZ|  
8
7
|VIOX|  
6
5
|VIOY|  
-50  
4
-100  
-50  
0
50  
100  
150  
-100  
0
50  
100  
150  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
SCALE FACTOR ERROR vs TEMPERATURE  
INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE  
2
1.5  
1
6
5
4
3
2
1
X INPUT  
Y INPUT  
0.5  
0
-0.5  
-1  
-100  
4
6
8
10  
12  
14  
16  
-50  
0
50  
100  
150  
± SUPPLY VOLTAGE (V)  
TEMPERATURE (oC)  
Spec Number 511063-883  
8-16  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves (Continued)  
INPUT COMMON MODE RANGE vs SUPPLY VOLTAGE  
SUPPLY CURRENT vs SUPPLY VOLTAGE  
15  
25  
20  
15  
10  
5
X INPUT  
10  
Y INPUT  
ICC  
IEE  
5
0
-5  
X & Y INPUT  
-10  
-15  
0
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
±SUPPLY VOLTAGE (V)  
±SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE vs R  
LOAD  
5.0  
4.8  
4.6  
4.4  
4.2  
100  
300  
500  
700  
900  
1100  
RLOAD ()  
Functional Block Diagram  
HA-2556  
VX+  
VOUT  
+
-
A
X
VX-  
+
1/SF  
-
VY+  
VY-  
VZ+  
VZ-  
Y
Z
+
-
+
-
NOTE:  
The transfer equation for the HA-2556 is:  
(V + - V -) (V + - V -) = SF (V + - V -),  
X
X
Y
Y
Z
Z
where SF = Scale Factor = 5V V , V , V = Differential Inputs  
X
Y
Z
Spec Number 511063-883  
8-17  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
To accomplish this the differential input voltages are first con-  
Applications Information  
verted into differential currents by the X and Y input transcon-  
Operation at Reduced Supply Voltages  
ductance stages. The currents are then scaled by a constant  
The HA-2556 will operate over a range of supply voltages,  
±5V to ±15V. Use of supply voltages below ±12V will reduce  
input and output voltage ranges. See “Typical Performance  
Curves” for more information.  
reference and combined in the multiplier core. The multiplier  
core is a basic Gilbert Cell that produces a differential output  
current proportional to the product of X and Y input signal cur-  
rents. This current becomes the output for the HA-2557.  
Offset Adjustment  
The HA-2556 takes the output current of the core and feeds  
it to a transimpedance amplifier, that converts the current to  
a voltage. In the multiplier configuration, negative feedback  
is provided with the Z transconductance amplifier by con-  
necting VOUT to the Z input. The Z stage converts VOUT to a  
current which is subtracted from the multiplier core before  
being applied to the high gain transimpedance amp. The Z  
stage, by virtue of it’s similarity to the X and Y stages, also  
cancels second order errors introduced by the dependence  
of VBE on collector current in the X and Y stages.  
X and Y channel offset voltages may be nulled by using a  
20K potentiometer between the VYIO or VXIO adjust pin A  
and B and connecting the wiper to V-. Reducing the channel  
offset voltage will reduce AC feedthrough and improve the  
multiplication error. Output offset voltage can also be nulled  
by connecting VZ- to the wiper of a potentiometer which is  
tied between V+ and V-.  
Capacitive Drive Capability  
When driving capacitive loads >20pF a 50resistor should  
be connected between VOUT and VZ+, using VZ+ as the out-  
put (see Figure 1). This will prevent the multiplier from going  
unstable and reduce gain peaking at high frequencies. The  
50resistor will dampen the resonance formed with the  
capacitive load and the inductance of the output at pin 8.  
Gain accuracy will be maintained because the resistor is  
inside the feedback loop.  
The purpose of the reference circuit is to provide a stable  
current, used in setting the scale factor to 5V. This is  
achieved with a bandgap reference circuit to produce a tem-  
perature stable voltage of 1.2V which is forced across a NiCr  
resistor. Slight adjustments to scale factor may be possible  
by overriding the internal reference with the VREF pin. The  
scale factor is used to maintain the output of the multiplier  
within the normal operating range of ±5V when full scale  
inputs are applied.  
Theory of Operation  
The HA-2556 creates an output voltage that is the product of  
the X and Y input voltages divided by a constant scale factor  
of 5V. The resulting output has the correct polarity in each of  
the four quadrants defined by the combinations of positive  
and negative X and Y inputs. The Z stage provides the  
means for negative feedback (in the multiplier configuration)  
and an input for summation into the output. This results in  
the following equation, where X, Y and Z are high imped-  
ance differential inputs.  
The Balance Concept  
The open loop transfer equation for the HA-2556 is:  
V
V  
× V  
V  
X+  
X-  
Y+  
Y-  
V
= A --------------------------------------------------------------------------- – V V  
OUT  
Z+  
Z-  
5
where;  
A = Output Amplifier Open Loop Gain  
VX, VY, VZ = Differential Input Voltages  
5V = Fixed Scale Factor  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
VX+  
REF  
NC  
NC  
An understanding of the transfer function can be gained by  
assuming that the open loop gain, A, of the output amplifier  
is infinite. With this assumption, any value of VOUT can be  
generated with an infinitesimally small value for the terms  
within the brackets. Therefore we can write the equation:  
NC  
+
-
VY+  
+
-
+15 V  
VZ-  
+
Σ
-
-15V  
-
+
(VX+ V ) × (VY+ V )  
X-  
Y-  
0 = ---------------------------------------------------------------- (VZ+ V )  
VZ+  
Z-  
5
VOUT  
20pF  
which simplifies to:  
50Ω  
1K  
(VX+ V ) × (VY+ V ) = 5 (VZ+ V )  
X-  
Y-  
Z-  
This form of the transfer equation provides a useful tool to  
analyze multiplier application circuits and will be called the  
Balance Concept.  
FIGURE 1. DRIVING CAPACITIVE LOAD  
X x Y  
V
= ---------- Z  
5
OUT  
Spec Number 511063-883  
8-18  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Let’s first examine the Balance Concept as it applies to the Signals may be applied to more than one input at a time as  
standard multiplier configuration (Figure 2).  
in the Squaring configuration in Figure 4:  
Signals A and B are input to the multiplier and the signal W Here the Balance equation will appear as:  
is the result. By substituting the signal values into the Bal-  
(A) × (A) = 5 (W)  
ance equation you get:  
(A) × (B) = 5 (W)  
HA-2556  
VX+  
VX-  
VOUT  
A
And solving for W:  
+
A
W
-
X
Y
A × B  
W = -----------  
5
+
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
HA-2556  
Z
VX+  
+
-
+
-
VOUT  
A
+
-
A
W
X
VX-  
+
FIGURE 4. SQUARE  
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
Which simplifies to:  
Y
Z
B
+
-
+
-
2
A
W = -----  
5
FIGURE 2. MULTIPLIER  
The last basic configuration is the Square Root as shown in  
Figure 5. Here feedback is provided to both X and Y inputs.  
Notice that the output (W) enters the equation in the feed-  
back to the Z stage. The Balance Equation does not test for  
stability, so remember that you must provide negative feed-  
back. In the multiplier configuration, the feedback path is  
connected to VZ+ input, not VZ-. This is due to the inversion  
that takes place at the summing node just prior to the output  
amplifier. Feedback is not restricted to the Z stage, other  
feedback paths are possible as in the Divider Configuration  
shown in Figure 3.  
HA-2556  
VX+  
VOUT  
+
W
A
-
X
Y
VX-  
+
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
Z
+
-
+
-
A
HA-2556  
VX+  
VOUT  
+
FIGURE 5. SQUARE ROOT (FOR A > 0)  
A
W
-
X
Y
VX-  
The Balance equation takes the form:  
+
1/5V  
(W) × (W) = 5 (A)  
-
VY+  
VY-  
VZ+  
VZ-  
Z
Which equates to:  
B
+
-
+
-
A
W = 5A  
Application Circuits  
FIGURE 3. DIVIDER  
The four basic configurations (Multiply, Divide, Square and  
Square Root) as well as variations of these basic circuits  
have many uses.  
Inserting the signal values A, B and W into the Balance  
Equation for the divider configuration yields:  
(W) × (B) = 5V × (A)  
Solving for W yields:  
Frequency Doubler  
For example, if ACos(ωτ) is substituted for signal A in the  
Square function, then it becomes a Frequency Doubler and  
the equation takes the form:  
5A  
W = -----  
B
Notice that, in the divider configuration, signal B must remain  
0 (positive) for the feedback to be negative. If signal B is  
negative, then it will be multiplied by the VX- input to produce  
positive feedback and the output will swing into the rail.  
(ACos (ωτ) ) × (ACos (ωτ) ) = 5 (W)  
And using some trigonometric identities gives the result:  
2
A
-----  
W =  
(1 + Cos (2ωτ) )  
10  
Spec Number 511063-883  
8-19  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Square Root  
Communications  
The Square Root function can serve as a precision/wide The Multiplier configuration has applications in AM Signal Gener-  
bandwidth compander for audio or video applications. A ation, Synchronous AM Detection and Phase Detection to men-  
compander improves the Signal to Noise Ratio for your sys- tion a few. These circuit configurations are shown in Figure 6,  
tem by amplifying low level signals while attenuating or com- Figure 7 and Figure 8. The HA-2556 is particularly useful in  
pressing large signals (refer to Figure 17; X0.5 curve). This applications that require high speed signals on all inputs.  
provides for better low level signal immunity to noise during  
Each input X, Y and Z has similar wide bandwidth and input  
transmission. On the receiving end the original signal may  
characteristics. This is unlike earlier products where one  
be reconstructed with the standard Square function.  
input was dedicated to a slow moving control function as is  
required for Automatic Gain Control. The HA-2556 is versa-  
tile enough for both.  
HA-2556  
Although the X and Y inputs have similar AC characteristics, they  
are not the same. The designer should consider input parame-  
ters such as small signal bandwidth, ac feedthrough and 0.1dB  
gain flatness to get the most performance from the HA-2556.  
The Y channel is the faster of the two inputs with a small signal  
bandwidth of typically 57MHz verses 52MHz for the X channel.  
Therefore in AM Signal Generation, the best performance will be  
obtained with the Carrier applied to the Y channel and the modu-  
lation signal (lower frequency) applied to the X channel.  
VX+  
VX-  
ACos(ωΑτ)  
VOUT  
+
A
W
AUDIO  
-
X
Y
+
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
CCos(ωCτ)  
Z
+
-
+
-
CARRIER  
AC  
10  
------  
W =  
(Cos (ω ω ) τ + Cos (ω + ω ) τ)  
C A C A  
Scale Factor Control  
The HA-2556 is able to operate over a wide supply voltage range  
±5V to ±17.5V. The ±5V range is particularly useful in video appli-  
cations. At ±5V the input voltage range is reduced to ±1.4V. The  
output cannot reach its full scale value with this restricted input,  
so it may become necessary to modify the scale factor. Adjusting  
the scale factor may also be useful when the input signal itself is  
restricted to a small portion of the full scale level. Here we can  
make use of the high gain output amplifier by adding external  
gain resistors. Generating the maximum output possible for a  
given input signal will improve the Signal to Noise Ratio and  
Dynamic Range of the system. For example, let’s assume that  
the input signals are 1VPEAK each. Then the maximum output for  
the HA-2556 will be 200mV. (1V x 1V / (5V) = 200mV. It would be  
nice to have the output at the same full scale as our input, so let’s  
add a gain of 5 as shown in Figure 9.  
FIGURE 6. AM SIGNAL GENERATION  
HA-2556  
VX+  
AM SIGNAL  
CARRIER  
VOUT  
+
-
W
A
X
VX-  
+
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
Y
Z
+
-
+
-
LIKE THE FREQUENCY DOUBLER YOU GET AUDIO CENTERED AT DC  
AND 2FC.  
FIGURE 7. SYNCHRONOUS AM DETECTION  
HA-2556  
VX+  
VOUT  
A
+
A
W
-
X
Y
VX-  
+
HA-2556  
VX+  
1kΩ  
RF  
1/5V  
ACos(ωτ)  
VOUT  
-
+
A
VY+  
VY-  
W
VZ+  
VZ-  
-
Z
X
B
+
-
+
-
VX-  
+
R
250Ω  
RG  
1/5V  
F
ExternalGain = ------ + 1  
-
VY+  
VY-  
VZ+  
VZ-  
ACos(ωτ+φ)  
R
G
Y
Z
+
-
+
-
FIGURE 9. EXTERNAL GAIN OF 5  
One caveat is that the output bandwidth will also drop by this  
factor of 5. The multiplier equation then becomes:  
2
A
-----  
W =  
(Cos (φ) + Cos (2ωτ + φ) )  
10  
5AB  
W = -------- = A × B  
DC COMPONENT IS PROPORTIONAL TO Cos(f).  
5
FIGURE 8. PHASE DETECTION  
Spec Number 511063-883  
8-20  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Current Output  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
Another useful circuit for low voltage applications allows the  
user to convert the voltage output of the HA2556 to an out-  
put current. The HA-2557 is a current output version offering  
100MHz of bandwidth, but its scale factor is fixed and does  
not have an output amplifier for additional scaling. Fortu-  
nately the circuit in Figure 10 provides an output current that  
can be scaled with the value of RCONVERT and provides an  
output impedance of typically 1M. The equation for IOUT  
becomes:  
REF  
NC  
NC  
NC  
VX+  
VMIX  
(0V to 5V)  
+
CH A  
CH B  
VY+  
VY-  
-
+
-
+15V  
VZ-  
+
Σ
-15V  
-
-
+
VZ+  
A × B  
1
VOUT  
----------- --------------------------  
I
=
×
OUT  
5
R
CONVERT  
50Ω  
FIGURE 11. VIDEO FADER  
HA-2556  
HA-2556  
VX+  
VX-  
VOUT RCONVERT  
A
A
B
VX+  
VX-  
W = 5(A2-B2)  
+
A
IOUT  
-
+
-
X
Y
A
X
+
1/5V  
+
5K  
5K  
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
-
Z
VY+  
VY-  
VZ+  
VZ-  
B
+
-
+
-
Y
Z
+
-
+
-
5K  
5K  
FIGURE 10. CURRENT OUTPUT  
Video Fader  
FIGURE 12. DIFFERENCE OF SQUARES  
The Video Fader circuit provides a unique function. Here Ch  
B is applied to the minus Z input in addition to the minus Y  
input. In this way, the function in Figure 11 is generated. VMIX  
will control the percentage of Ch A and Ch B that are mixed  
together to produce a resulting video image or other signal.  
95K R2  
HA-2556  
A - B  
A
R1  
5K  
VX-  
VOUT W = 100  
+
A
-
X
VX+  
+
The Balance equation looks like:  
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
A
Y
Z
(VMIX) × (ChA ChB) = 5 (VOUT ChB)  
B
+
-
+
-
Which simplifies to:  
V
-----------  
MIX  
5
V
= ChB +  
(ChA ChB)  
R1 and R2 set scale to 1V/%, other scale factors possible  
for A 0V.  
OUT  
FIGURE 13. PERCENTAGE DEVIATION  
When VMIX is 0V the equation becomes VOUT = Ch B and  
Ch A is removed, conversely when VMIX is 5V the equation  
becomes VOUT = Ch A eliminating Ch B. For VMIX values 0V  
VMIX 5V the output is a blend of Ch A and Ch B.  
HA-2556  
A - B  
VX-  
VOUT  
W = 10  
B + A  
+
A
-
X
Y
VX+  
+
1/5V  
-
VY+  
VY-  
VZ+  
VZ-  
Z
B
A
+
-
+
-
5K  
5K  
FIGURE 14. DIFFERENCE DIVIDED BY SUM (FOR A + B 0V)  
Spec Number 511063-883  
8-21  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Other Applications  
HA-2556  
As shown above, a function may contain several different  
1
2
3
4
5
6
7
8
16 NC  
operators at the same time and use only one HA-2556.  
Some other possible multi-operator functions are shown in  
Figure 12, Figure 13 and Figure 14.  
REF  
15 NC  
NC  
NC  
NC  
14 NC  
13 VX+ (VGAIN  
)
Of course the HA-2556 is also well suited to standard multi-  
plier applications such as Automatic Gain Control and Volt-  
age Controlled Amplifier.  
X
Z
12  
Y
11  
10  
9
+ V  
Automatic Gain Control  
+
Σ
-V  
-
Figure 15 shows the HA-2556 configured in an Automatic  
Gain Control or AGC application. The HA-5127 low noise  
amplifier provides the gain control signal to the X input. This  
control signal sets the peak output voltage of the multiplier to  
match the preset reference level. The feedback network  
around the HA-5127 provides a response time adjustment.  
High frequency changes in the peak are rejected as noise or  
the desired signal to be transmitted. These signals do not  
indicate a change in the average peak value and therefore  
no gain adjustment is needed. Lower frequency changes in  
the peak value are given a gain of -1 for feedback to the  
control input. At DC the circuit is an integrator automatically  
compensating for Offset and other constant error terms.  
5kΩ  
500Ω  
VIN  
-
+
VOUT  
HFA0002  
FIGURE 16. VOLTAGE CONTROLLED AMPLIFIER  
Voltage Controlled Amplifier  
A wide range of gain adjustment is available with the Voltage  
Controlled Amplifier configuration shown in Figure 16. Here  
the gain of the HFA0002 can be swept from 20V/V to a gain  
of almost 1000V/V with a DC voltage from 0 to 5V.  
This multiplier has the advantage over other AGC circuits, in  
that the signal bandwidth is not affected by the control signal  
gain adjustment.  
HA-2556  
Wave Shaping Circuits  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
Wave shaping or curve fitting is another class of application  
for the analog multiplier. For example, where a non-linear  
sensor requires corrective curve fitting to improve linearity  
the HA-2556 can provide nonintegral powers in the range 1  
to 2 or nonintegral roots in the range 0.5 to 1.0 (refer to Fur-  
ther Reading). This effect is displayed in Figure 17.  
REF  
NC  
NC  
NC  
X
Z
VY+  
Y
+V  
1
+
Σ
-V  
-
X0.5  
0.8  
VOUT  
X0.7  
50Ω  
0.6  
10kΩ  
0.1µF  
0.4  
1N914  
X1.5  
10kΩ  
+15V  
0.01µF  
X2  
0.2  
-
+
5kΩ  
HA-5127  
0
5.6V  
20kΩ  
0
0.2  
0.4  
0.6  
0.8  
1
INPUT (V)  
0.1µF  
FIGURE 17. EFFECT OF NONINTEGRAL POWERS / ROOTS  
FIGURE 15. AUTOMATIC GAIN CONTROL  
Spec Number 511063-883  
8-22  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Well, OK a multiplier can’t do nonintegral roots “exactly” but  
we can get very close. We can approximate nonintegral  
roots with equations of the form:  
2
HA-2556  
V
= (1 α ) VIN + α V  
IN  
o
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
13  
REF  
V
= (1 α ) V1 2 + α V  
IN IN  
o
NC  
NC  
NC  
VIN  
+
0.7  
Figure 18 compares the function VOUT = VIN  
approximation VOUT = 0.5VIN0.5 + 0.5VIN.  
to the  
X
Z
+
12  
-
Y
11 +V  
10  
1
-
1-α  
+
+
Σ
-V  
-
α
9
0.8  
-
X0.7  
0.6  
0.5X0.5+ 0.5X  
1.0 M 2.0  
0V VIN 1V  
0.4  
VOUT  
-
+
HA-5127  
0.2  
X
FIGURE 20. NONINTEGRAL POWERS - ADJUSTABLE  
0
0
0.2  
0.4  
0.6  
0.8  
1
INPUT (V)  
HA-2556  
FIGURE 18. COMPARE APPROXIMATION TO NONINTEGRAL  
ROOT  
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
REF  
NC  
NC  
NC  
This function can be easily built using an HA-2556 and a  
potentiometer for easy adjustment as shown in Figures 19  
and 20. If a fixed nonintegral power is desired, the circuit  
14 NC  
13  
VIN  
R1  
+
X
Z
+
shown in Figure 21 eliminates the need for the output buffer  
12  
-
M
Y
amp. These circuits approximate the function  
is the desired nonintegral power or root.  
where M  
VIN  
11  
+V  
-
+
+
Σ
10  
9
-V  
-
VOUT  
HA-2556  
-
R2  
1
2
3
4
5
6
7
8
16  
NC  
REF  
NC  
NC  
NC  
15 NC  
14 NC  
13  
R3  
1.2 M 2.0  
0V VIN 1V  
R4  
+
X
Z
+
1
-
5
R2  
R3  
R3  
2
12  
----------------  
V
=
---- + 1  
V
+ ---- + 1  
V
-
Y
OUT  
IN  
IN  
R1 + R2  
R4  
R4  
11  
10  
9
+V  
-
+
Setting:  
+
Σ
VIN  
-V  
-
1
-
5
R2  
R3  
R3  
----------------  
1 α =  
---- + 1  
α = ---- + 1  
1-α  
-
R1 + R2  
R4  
R4  
α
FIGURE 21. NONINTEGRAL POWERS - FIXED  
VOUT  
0.5 M 1.0  
0V VIN 1V  
-
+
HA-5127  
FIGURE 19. NONINTEGRAL ROOTS - ADJUSTABLE  
Spec Number 511063-883  
8-23  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Values for α to give a desired M root or power are as follows:  
71.5K  
23.1K  
ROOTS - FIGURE 19  
POWERS - FIGURE 20  
X+  
X-  
M
α
M
α
VOUT  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
1
VOUT  
0.25  
0.50  
0.70  
0.85  
1
0.75  
0.5  
0.3  
0.15  
0
10K  
5.71K  
HA-2556  
Z+  
Z-  
Y+  
VIN  
X+  
X-  
Y-  
10K  
VOUT  
Sine Function Generators  
HA-2556  
Similar functions can be formulated to approximate a SINE  
function converter as shown in Figure 22. With a linearly  
changing (0 to 5V) input the output will follow 0o to 90o of a  
sine function (0 to 5V) output. This configuration is theoreti-  
cally capable of ±2.1% maximum error to full scale.  
Z+  
Z-  
Y+  
Y-  
By adding a second HA-2556 to the circuit an improved fit  
may be achieved with a theoretical maximum error of 0.5%  
as shown in Figure 23. Figure 23 has the added benefit that  
it will work for positive and negative input signals. This  
makes a convenient triangle (±5V input) to sine wave (±5V  
output) converter.  
3
5VIN 0.05494V  
V
IN  
π
2
IN  
----------------------------------------------------  
- -------  
5
V
=
5sin  
OUT  
2
IN  
3.18167 + 0.0177919V  
-5V VIN 5V  
max theoretical error = 0.5%FS  
FIGURE 23. BIPOLAR SINE-FUNCTION GENERATOR  
HA-2556  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
13  
Further Reading  
REF  
NC  
NC  
NC  
R2  
R6  
1. Pacifico Cofrancesco, “RF Mixers and ModulatorsMade  
with a Monolithic Four-Quadrant Multiplier” Microwave  
Journal, December 1991 pg. 58 - 70.  
470  
470  
+
VIN  
X
Z
+
12  
2. Richard Goller, “IC Generates Nonintegral Roots” Elec-  
tronic Design, December 3, 1992.  
-
Y
R1  
262  
11 +V  
10  
R5  
-
+
1410  
+
Σ
-V  
-
VOUT  
9
-
R4  
1K  
R3  
644  
(1 0.1284V )  
V
IN  
π
IN  
---------------------------------------  
5sin  
2
- ------  
V
= V  
5
IN (0.6082 0.05V )  
OUT  
IN  
for; 0V VIN 5V  
max theoretical error = 2.1%FS  
where:  
R4  
R2  
0.6082 = ----------------  
5 (0.1284) = ----------------  
;
R3 + R4  
R1 + R2  
R6  
5 (0.05) = ----------------  
R5 + R6  
FIGURE 22. SINE-FUNCTION GENERATOR  
Spec Number 511063-883  
8-24  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Device Tested at Supply Voltage = ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
F
SYMBOL  
ME  
L
L
PARAMETERS  
CONDITIONS  
TEMP  
TYP  
±1.5  
±3.0  
UNITS  
o
Multiplication Error  
V , V = ±5V  
+25 C  
%FS  
Y
X
o
o
+125 C, -55 C  
%FS  
o
o
o
Multiplication Error Drift  
Linearity Error  
V , V = ±5V  
+125 C, -55 C ±0.003 %FS/ C  
Y
X
o
LE3V  
LE4V  
LE5V  
DG  
V , V = ±3V  
+25 C  
±0.02  
±0.05  
±0.2  
0.1  
0.1  
5
%FS  
%FS  
%FS  
%
Y
X
o
V , V = ±4V  
+25 C  
Y
X
o
V , V = ±5V  
+25 C  
Y
X
o
Differential Gain  
Differential Phase  
Scale Factor  
f = 4.43MHz, V = 300mV , V = 5V  
+25 C  
Y
P-P  
X
o
DP  
f = 4.43MHz, V = 300mV , V = 5V  
+25 C  
Deg.  
V
Y
P-P  
X
o
SF  
+25 C  
o
Voltage Noise  
E
(1kHz)  
f = 1kHz, V = 0V, V = 0V  
+25 C  
150  
40  
nV/Hz  
nV/Hz  
dB  
N
X
Y
o
E
(100kHz) f = 100kHz, V = 0V, V = 0V  
+25 C  
N
X
Y
o
Positive Power Supply  
Rejection Ratio  
+PSRR  
V + = +12V to +15V, V - = -15V  
+25 C  
80  
S
S
o
o
+125 C, -55 C  
80  
dB  
o
Negative Power Supply  
Rejection Ratio  
-PSRR  
V - = -12V to -15V, V + = +15V  
+25 C  
55  
dB  
S
S
o
o
+125 C, -55 C  
55  
dB  
o
Supply Current  
I
V , V = 0V  
+25 C  
18  
mA  
CC  
X
Y
o
o
+125 C, -55 C  
18  
mA  
INPUT CHARACTERISTICS  
Input Offset Voltage  
o
V
V
= ±5V  
= ±5V  
+25 C  
±3  
±8  
mV  
mV  
IO  
Y
o
o
+125 C, -55 C  
o
o
o
Input Offset Voltage Drift  
Input Bias Current  
V
TC  
V
V
+125 C, -55 C  
±45  
±8  
µV/ C  
IO  
Y
X
o
I
= 0V, V = 5V  
+25 C  
µA  
µA  
µA  
µA  
V
B
Y
o
o
+125 C, -55 C  
±12  
±0.5  
±1.0  
±5  
o
Input Offset Current  
I
V
= 0V, V = 5V  
+25 C  
IO  
X
Y
o
o
+125 C, -55 C  
o
Differential Input Range  
+25 C  
o
Common Mode Range (V )  
CMR (V )  
+25 C  
±10  
+9, -10  
78  
V
X
X
o
Common Mode Range (V )  
CMR (V )  
+25 C  
V
Y
Y
o
Common Mode (V )  
CMRR (V )  
V CM = ±10V, V = 5V  
+25 C  
dB  
dB  
dB  
dB  
dB  
dB  
X
X
X
Y
Rejection Ratio  
o
o
+125 C, -55 C  
78  
o
Common Mode (V )  
CMRR (V )  
V CM = +9V, -10V, V = 5V  
+25 C  
78  
Y
Y
Y
X
Rejection Ratio  
o
o
+125 C, -55 C  
78  
o
Common Mode (V )  
CMRR (V )  
V CM = ±10V, V = 0V, V = 0V  
+25 C  
78  
Z
Z
Z
X
Y
Rejection Ratio  
o
o
+125 C, -55 C  
78  
V , V CHARACTERISTICS (Note 1)  
Y
Z
o
Bandwidth  
BW (V )  
-3dB, V = 5V, V 200mV  
P-P  
+25 C  
57  
5.0  
-65  
-50  
8
MHz  
MHz  
dB  
Y
X
Y
o
Gain Flatness  
AC Feedthrough  
GF (V )  
0.1dB, V = 5V, V 200mV  
P-P  
+25 C  
Y
X
Y
o
V
V
(1MHz)  
f
f
= 1MHz, V = 200mV , V = nulled (Note 2)  
+25 C  
ISO  
ISO  
O
O
Y
P-P  
X
o
(5MHz)  
= 5MHz, V = 200mV , V = nulled (Note 2)  
+25 C  
dB  
Y
P-P  
X
o
Rise and Fall Time  
T , T  
V
= 200mV step, V = 5V, 10% to 90% pts  
+25 C  
ns  
R
F
Y
X
o
o
+125 C, -55 C  
8
ns  
Spec Number 511063-883  
8-25  
HA2556  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Tested at Supply Voltage = ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified.  
F
SYMBOL  
+OS, -OS  
L
L
PARAMETERS  
Overshoot  
CONDITIONS  
= 200mV step, V = 5V  
TEMP  
TYP  
17  
UNITS  
%
o
V
V
V
+25 C  
Y
Y
Y
X
o
o
+125 C, -55 C  
17  
%
o
Slew Rate  
+SR, -SR  
= 10V step, V = 5V  
+25 C  
450  
450  
1
V/µs  
V/µs  
MΩ  
X
o
o
+125 C, -55 C  
o
Differential Input Resistance  
R
(V )  
= ±5V, V = 0V  
+25 C  
IN  
Y
X
V
CHARACTERISTICS  
X
o
Bandwidth  
BW (V )  
-3dB, V = 5V, V 200mV  
P-P  
+25 C  
52  
4.0  
-65  
-50  
8
MHz  
MHz  
dB  
X
Y
X
o
Gain Flatness  
AC Feedthrough  
GF (V )  
0.1dB, V = 5V, V 200mV  
P-P  
+25 C  
X
Y
X
o
V
V
(1MHz)  
f
f
= 1MHz, V = 200mV ,V = nulled (Note 2)  
+25 C  
ISO  
ISO  
O
O
X
P-P  
Y
o
(5MHz)  
= 5MHz, V = 200mV , V = nulled (Note 2)  
+25 C  
dB  
X
P-P  
Y
o
Rise & Fall Time  
Overshoot  
T , T  
V
V
V
V
= 200mV step, V = 5V, 10% to 90% pts  
+25 C  
ns  
R
F
X
X
X
X
Y
o
o
+125 C, -55 C  
8
ns  
o
+OS, -OS  
+SR, -SR  
= 200mV step, V = 5V  
+25 C  
17  
17  
450  
450  
1
%
Y
o
o
+125 C, -55 C  
%
o
Slew Rate  
= 10V step, V = 5V  
+25 C  
V/µs  
V/µs  
MΩ  
Y
o
o
+125 C, -55 C  
o
Differential Input Resistance  
OUTPUT CHARACTERISTICS  
Output Resistance  
R
(V )  
= ±5V, V = 0V  
+25 C  
IN  
X
Y
o
R
V
V
= ±5V, V = 5V, R = 1kto 250Ω  
+25 C  
0.7  
±45  
mA  
mA  
V
OUT  
Y
X
L
o
Output Current  
I
= 5V, R = 250Ω  
+25 C  
OUT  
OUT  
L
o
o
+125 C, -55 C  
±45  
o
Output Voltage Swing  
NOTES:  
+V  
R = 250Ω  
+25 C  
±6.05  
±6.05  
OUT  
L
o
o
+125 C, -55 C  
V
1. V AC characteristics may be implied from V due to the use of V as feedback in the test circuit.  
Z
Y
Z
2. Offset voltage applied to minimize feedthrough signal.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Spec Number 511063-883  
8-26  

相关型号:

HA2556/883

Wideband Four Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA2556883

Wideband Four Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA2557

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA2557/883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA2557883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA2600

Voltage-Feedback Operational Amplifier
ETC

HA2601

Peripheral IC
ETC

HA2602

Peripheral IC
ETC

HA2603

Peripheral IC
ETC

HA2604

Peripheral IC
ETC

HA2605

Peripheral IC
ETC

HA2607

Voltage-Feedback Operational Amplifier
ETC