HA3-5320-5 [INTERSIL]

1 Microsecond Precision Sample and Hold Amplifier; 1微秒级精度采样保持放大器
HA3-5320-5
型号: HA3-5320-5
厂家: Intersil    Intersil
描述:

1 Microsecond Precision Sample and Hold Amplifier
1微秒级精度采样保持放大器

放大器
文件: 总7页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-5320  
Data Sheet  
April 1999  
File Number 2857.4  
1 Microsecond Precision Sample and  
Hold Amplifier  
Features  
6
• Gain, DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 x 10 V/V  
The HA-5320 was designed for use in precision, high speed  
data acquisition systems.  
• Acquisition Time. . . . . . . . . . . . . . . . . . . . . 1.0µs (0.01%)  
o
• Droop Rate. . . . . . . . . . . . . . . . . . . . . . 0.08µV/µs (25 C)  
The circuit consists of an input transconductance amplifier  
capable of providing large amounts of charging current, a low  
leakage analog switch, and an output integrating amplifier. The  
analog switch sees virtual ground as its load; therefore, charge  
injection on the hold capacitor is constant over the entire  
input/output voltage range. The pedestal voltage resulting from  
this charge injection can be adjusted to zero by use of the offset  
adjust inputs. The device includes a hold capacitor. However, if  
improved droop rate is required at the expense of acquisition  
time, additional hold capacitance may be added externally.  
17µV/µs (Full Temperature)  
• Aperture Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25ns  
• Hold Step Error (See Glossary) . . . . . . . . . . . . . . . . . 5mV  
• Internal Hold Capacitor  
• Fully Differential Input  
• TTL Compatible  
Applications  
This monolithic device is manufactured using the Intersil  
Dielectric Isolation Process, minimizing stray capacitance  
and eliminating SCRs. This allows higher speed and latch-  
free operation. For further information, please see  
Application Note AN538.  
• Precision Data Acquisition Systems  
• Digital to Analog Converter Deglitcher  
• Auto Zero Circuits  
• Peak Detector  
Pinouts  
Ordering Information  
HA-5320  
(PDIP, CERDIP)  
TOP VIEW  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld CERDIP  
14 Ld CERDIP  
14 Ld PDIP  
HA1-5320-2  
HA1-5320-5  
HA3-5320-5  
HA9P5320-5  
HA9P5320-9  
-55 to 25  
0 to 75  
F14.3  
-INPUT  
+INPUT  
1
2
3
4
5
6
7
14 S/H CONTROL  
13 SUPPLY GND  
12 NC  
F14.3  
E14.3  
M16.3  
M16.3  
0 to 75  
OFFSET ADJUST  
OFFSET ADJUST  
V-  
0 to 75  
16 Ld SOIC  
11  
C
EXT  
-40 to 85  
16 Ld SOIC  
10 NC  
Functional Diagram  
SIG. GND  
9
8
V+  
INTEGRATOR  
BANDWIDTH  
OFFSET  
ADJUST  
OUTPUT  
V+  
9
3
4
HA-5320  
(SOIC)  
TOP VIEW  
100pF  
HA-5320  
1
2
-INPUT  
+INPUT  
-
7
OUTPUT  
-INPUT  
+INPUT  
1
16 S/H CONTROL  
15 SUPPLY GND  
14 NC  
+
2
3
4
5
6
7
8
OFFSET ADJUST  
OFFSET ADJUST  
V-  
C
13  
EXT  
S/H  
CONTROL  
14  
12 NC  
11 V+  
SIG. GND  
OUTPUT  
INTEGRATOR  
INTEGRATOR  
BANDWIDTH  
10  
9
5
6
8
13  
BANDWIDTH  
SUPPLY  
GND  
V-  
SIG.  
GND  
NC  
NC  
11  
C
EXT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HA-5320  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24V  
Digital Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8V, -15V  
Output Current, Continuous (Note 1). . . . . . . . . . . . . . . . . . . ±20mA  
Thermal Resistance (Typical, Note 3)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CERDIP Package. . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
70  
75  
90  
18  
N/A  
N/A  
o
Maximum Junction Temperature (Ceramic Package) . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
Operating Conditions  
o
o
Temperature Range  
HA-5320-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to 125 C  
HA-5320-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 75 C  
HA-5320-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
o
(SOIC - Lead Tips Only)  
o
o
o
o
Supply Voltage Range (Typical, Note 2) . . . . . . . . . ±13.5V to ±20V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Internal Power Dissipation may limit Output Current below 20mA.  
2. Specification based on a one time characterization. This parameter is not guaranteed.  
3. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±5.0V; C = Internal; Digital Input: V = +0.8V (Sample), V = +2.0V (Hold),  
IL IH  
SUPPLY  
H
Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified  
HA-5320-2/-9  
HA-5320-5  
TYP  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
Full  
25  
±10  
-
5
-
-
±10  
-
5
-
-
V
MΩ  
pF  
mV  
mV  
nA  
nA  
nA  
nA  
V
1
1
Input Capacitance  
25  
-
-
5
-
-
5
Offset Voltage  
25  
-
0.2  
-
-
-
0.5  
-
-
Full  
25  
-
2.0  
200  
200  
100  
100  
-
-
1.5  
300  
300  
300  
300  
-
Bias Current  
-
70  
-
-
100  
-
Full  
25  
-
-
-
-
Offset Current  
30  
-
30  
-
Full  
Full  
25  
-
-
Common Mode Range  
CMRR  
±10  
80  
-
-
±10  
72  
-
-
V
= ±5V  
90  
5
-
90  
5
-
dB  
CM  
o
Offset Voltage Temperature Coefficient  
TRANSFER CHARACTERISTICS  
Gain  
Full  
15  
20  
µV/ C  
6
6
5
6
DC, (Note 12)  
25  
25  
25  
10  
2 x 10  
-
-
-
3 x 10  
2 x 10  
-
-
-
V/V  
MHz  
MHz  
Gain Bandwidth Product  
(A = +1, Note 5)  
V
C
C
= 100pF  
-
-
2.0  
-
-
2.0  
H
H
= 1000pF  
0.18  
0.18  
OUTPUT CHARACTERISTICS  
Output Voltage  
Full  
25  
25  
25  
25  
25  
±10  
-
-
±10  
-
-
V
mA  
kHz  
Output Current  
±10  
-
-
-
±10  
-
-
-
Full Power Bandwidth  
Output Resistance  
Note 4  
-
-
-
-
600  
1.0  
125  
125  
-
-
-
-
600  
1.0  
125  
125  
Hold Mode  
Sample  
Hold  
-
-
Total Output Noise (DC to 10MHz)  
200  
200  
200  
200  
µV  
µV  
RMS  
RMS  
2
HA-5320  
Electrical Specifications  
V
= ±5.0V; C = Internal; Digital Input: V = +0.8V (Sample), V = +2.0V (Hold),  
SUPPLY  
H
IL  
IH  
Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified (Continued)  
HA-5320-2/-9  
TYP  
HA-5320-5  
TYP  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
TRANSIENT RESPONSE  
Rise Time  
MIN  
MAX  
MIN  
MAX  
UNITS  
Note 5  
25  
25  
25  
-
-
-
100  
15  
-
-
-
-
-
-
100  
15  
-
-
-
ns  
%
Overshoot  
Note 5  
Note 6  
Slew Rate  
45  
45  
V/µs  
DIGITAL INPUT CHARACTERISTICS  
Input Voltage  
V
V
V
Full  
Full  
25  
2.0  
-
-
-
-
-
-
2.0  
-
-
-
-
-
-
V
IH  
IL  
IL  
-
-
-
-
0.8  
4
-
-
-
-
0.8  
4
V
Input Current  
= 0V  
µA  
µA  
µA  
Full  
Full  
10  
0.1  
10  
0.1  
V
= +5V  
IH  
SAMPLE AND HOLD CHARACTERISTICS  
Acquisition Time (Note 7)  
To 0.1%  
To 0.01%  
25  
25  
-
0.8  
1.0  
25  
1.2  
1.5  
-
-
0.8  
1.0  
25  
1.2  
1.5  
-
µs  
µs  
-
-
Aperture Time (Note 8)  
Effective Aperture Delay Time  
Aperture Uncertainty  
Droop Rate  
25  
-
-
ns  
25  
-50  
-25  
0.3  
0.08  
17  
0
-50  
-25  
0.3  
0.08  
1.2  
8
0
ns  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
25  
0.5  
100  
50  
10  
1.1  
11  
350  
-
0.5  
100  
50  
10  
1.1  
11  
350  
-
µV/µs  
µV/µs  
pA  
Full  
25  
Drift Current  
Note 9  
8
Full  
25  
1.7  
0.5  
5
0.12  
0.5  
5
nA  
Charge Transfer  
Note 9  
pC  
Hold Step Error  
Note 9  
25  
mV  
ns  
Hold Mode Settling Time  
Hold Mode Feedthrough  
POWER SUPPLY CHARACTERISTICS  
Positive Supply Current  
Negative Supply Current  
Supply Voltage Range  
Power Supply Rejection  
To 0.01%  
Full  
Full  
165  
2
165  
2
10V  
P-P  
, 100kHz  
mV  
Note 10  
25  
25  
-
-
11  
-11  
13  
-13  
±20  
-
-
-
11  
13  
-13  
±20  
-
mA  
mA  
V
Note 10  
-11  
Note 2  
±13.5  
80  
±13.5  
80  
-
-
-
V+, Note 11  
V-, Note 11  
Full  
Full  
-
dB  
dB  
65  
-
-
65  
-
NOTES:  
4. V = 20V  
; R = 2k; C = 50pF; unattenuated output.  
P-P  
O
L
L
5. V = 200mV  
; R = 2k; C = 50pF.  
P-P  
O
L
L
6. V = 20V Step; R = 2k; C = 50pF.  
O
L
L
7. V = 10V Step; R = 2k; C = 50pF.  
O
L
L
8. Derived from computer simulation only; not tested.  
9. V = 0V, V = +3.5V, t < 20ns (V to V ).  
IN IH IL IH  
R
10. Specified for a zero differential input voltage between +IN and -IN. Supply current will increase with differential input (as may occur in the Hold  
mode) to approximately ±46mA at 20V.  
11. Based on a 1V delta in each supply, i.e. 15V ±0.5V  
.
DC  
12. R = 1k, C = 30pF.  
L
L
3
HA-5320  
Test Circuits and Waveforms  
1
2
7
-INPUT  
+INPUT  
V
OUTPUT  
O
8
NC  
NC  
S/H  
14  
11  
S/H CONTROL  
CONTROL  
INPUT  
HA-5320  
(C = 100pF)  
H
FIGURE 1. CHARGE TRANSFER AND DRIFT CURRENT  
HOLD (+3.5V)  
SAMPLE (0V)  
HOLD (+3.5V)  
S/H CONTROL  
SAMPLE (0V)  
S/H CONTROL  
V
O
V  
V
O
O
t  
V
P
NOTES:  
NOTES:  
13. Observe the “hold step” voltage V .  
15. Observe the voltage “droop”, V /t.  
O
P
16. Measure the slope of the output during hold, V /t, and  
O
14. Compute charge transfer: Q = V C .  
P
H
compute drift current: I = C V /t.  
D
H
O
FIGURE 2. CHARGE TRANSFER TEST  
FIGURE 3. DRIFT CURRENT TEST  
V+  
V-  
HA-5320  
ANALOG  
MUX OR  
SWITCH  
NOTE:  
V
9
5
IN  
Feedthrough in  
1
2
-IN  
V
OUT  
V
10V  
100kHz  
SINE WAVE  
OUT  
P-P  
7
--------------  
+IN  
dB = 20log  
where:  
OUT  
V
IN  
S/H CONTROL  
SUPPLY  
GND  
13  
14  
A
IN  
REF  
COM COMP.  
INT.  
V
= V , Hold Mode, V = V  
P-P IN  
.
P-P  
OUT  
C
EXT  
S/H CONTROL  
INPUT  
11  
NC  
6
8
TO  
TO  
SIGNAL  
GND  
NC  
SUPPLY  
COMMON  
FIGURE 4. HOLD MODE FEEDTHROUGH ATTENUATION  
Hold Capacitor  
Application Information  
The HA-5320 includes a 100pF MOS hold capacitor,  
sufficient for most high speed applications (the Electrical  
Specifications section is based on this internal capacitor).  
The HA-5320 has the uncommitted differential inputs of an  
op amp, allowing the Sample and Hold function to be  
combined with many conventional op amp circuits. See the  
Intersil Application Note AN517 for a collection of circuit  
ideas.  
Additional capacitance may be added between pins 7 and  
11. This external hold capacitance will reduce droop rate at  
the expense of acquisition time, and provide other trade-offs  
as shown in the Performance Curves.  
Layout  
A printed circuit board with ground plane is recommended  
for best performance. Bypass capacitors (0.01µF to 0.1µF,  
ceramic) should be provided from each power supply  
terminal to the Supply Ground terminal on pin 13.  
If an external hold capacitor C  
EXT  
bandwidth capacitor of value 0.1C  
is used, then a noise  
should be connected  
EXT  
from pin 8 to ground. Exact value and type are not critical.  
The ideal ground connections are pin 6 (SIG. Ground)  
directly to the system Signal Ground, and pin 13 (Supply  
Ground) directly to the system Supply Common.  
The hold capacitor C should have high insulation  
resistance and low dielectric absorption, to minimize droop  
EXT  
errors. Polystyrene dielectric is a good choice for operating  
o
temperatures up to 85 C. Teflon® and glass dielectrics offer  
o
good performance to 125 C and above.  
®Teflon is a registered Trademark of Dupont Corporation.  
4
HA-5320  
The hold capacitor terminal (pin 11) remains at virtual  
ground potential. Any PC connection to this terminal should  
be kept short and “guarded” by the ground plane, since  
nearby signal lines or power supply voltages will introduce  
errors due to drift current.  
Aperture Time  
The time required for the sample-and-hold switch to open,  
independent of delays through the switch driver and input  
amplifier circuitry. The switch opening time is the interval  
between the conditions of 10% open and 90% open.  
Typical Application  
Hold Step Error  
Figure 5 shows the HA-5320 connected as a unity gain  
noninverting amplifier - its most widely used configuration.  
As an input device for a fast successive - approximation A/D  
converter, it offers very high throughput rate for a monolithic  
IC sample/hold amplifier. Also, the HA-5320’s hold step error  
is adjustable to zero using the Offset Adjust potentiometer,  
to deliver a 12-bit accurate output from the converter.  
Hold Step Error is the output error due to Charge Transfer (see  
above). It may be calculated from the specified parameter,  
Charge Transfer, using the following relationship:  
Charge Transfer (pC)  
Hold Step (V) = -----------------------------------------------------------  
Hold Capacitance (pF)  
See Performance Curves.  
The application may call for an external hold capacitor C  
shown. As mentioned earlier, 0.1C  
EXT  
pin 8 to reduce output noise in the Hold mode.  
as  
is then recommended at  
EXT  
Effective Aperture Delay Time (EADT)  
The difference between the digital delay time from the Hold  
command to the opening of the S/H switch, and the  
propagation time from the analog input to the switch.  
The HA-5320 output circuit does not include short circuit  
protection, and consequently its output impedance remains  
low at high frequencies. Thus, the step changes in load  
current which occur during an A/D conversion are absorbed  
at the S/H output with minimum voltage error. A momentary  
short circuit to ground is permissible, but the output is not  
designed to tolerate a short of indefinite duration.  
EADT may be positive, negative or zero. If zero, the S/H  
amplifier will output a voltage equal to V at the instant the  
IN  
Hold command was received. For negative EADT, the output in  
Hold (exclusive of pedestal and droop errors) will correspond to  
a value of V that occurred before the Hold command.  
IN  
Aperture Uncertainty  
Glossary of Terms  
The range of variation in Effective Aperture Delay Time.  
Aperture Uncertainty (also called Aperture Delay Uncertainty,  
Aperture Time Jitter, etc.) sets a limit on the accuracy with  
which a waveform can be reconstructed from sample data.  
Acquisition Time  
The time required following a “sample” command, for the  
output to reach its final value within ±0.1% or ±0.01%. This is  
the minimum sample time required to obtain a given accuracy,  
and includes switch delay time, slewing time and settling time.  
Drift Current  
The net leakage current from the hold capacitor during the  
hold mode. Drift current can be calculated from the droop  
rate using the formula:  
Charge Transfer  
The small charge transferred to the holding capacitor from  
the inter-electrode capacitance of the switch when the unit is  
switched to the HOLD mode. Charge transfer is directly  
proportional to sample-to-hold offset pedestal error, where:  
V  
t  
-------  
(V/s)  
I
(pA) = C (pF) ×  
D
H
Charge Transfer (pC) = C (pF) x Hold Step Error (V)  
H
10kΩ  
-15V +15V  
OFFSET  
ADJUST  
±15mV  
HI-574A  
3
4
5
9
11  
C
EXT  
1
2
100pF  
+
-
-
13  
7
V
IN  
INPUT  
DIGITAL  
OUTPUT  
+
14  
S/H CONTROL  
CONVERT  
HA-5320  
H
S
5
9
13  
6
8
R/C  
0.1C  
EXT  
ANALOG  
COMMON  
NOTE: Pin Numbers Refer to  
DIP Package Only.  
SYSTEM POWER  
GROUND  
SYSTEM SIGNAL  
GROUND  
FIGURE 5. TYPICAL HA-5320 CONNECTIONS; NONINVERTING UNITY GAIN MODE  
5
HA-5320  
Typical Performance Curves  
C
= 100pF, INTERNAL  
H
10  
ACQUISITION TIME FOR  
5
10V STEP TO +0.01% (µs)  
1000  
100  
10  
1
VOLTAGE DROOP DURING  
HOLD MODE, (mV/100ms)  
1.0  
0.5  
0.1  
SAMPLE-TO-HOLD OFFSET  
(HOLD STEP) ERROR, (mV)  
0.05  
0.01  
0
100  
1000  
10K  
100K  
-25  
0
25  
50  
75  
100  
125  
o
C
VALUE (pF)  
TEMPERATURE ( C)  
H
FIGURE 6. TYPICAL SAMPLE AND HOLD PERFORMANCE  
AS A FUNCTION OF HOLD CAPACITOR  
FIGURE 7. DRIFT CURRENT vs TEMPERATURE  
120  
100  
80  
0
45  
PHASE  
90  
60  
(C = 100pF)  
H
GAIN  
GAIN  
40  
135  
180  
(C = 1100pF)  
H
20  
0
0
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 8. OPEN LOOP GAIN AND PHASE RESPONSE  
C
= 100pF  
H
o
75 C  
HOLD STEP VOLTAGE (mV)  
o
T
= 25 C  
A
5.0  
0.5  
C
C
C
= 100pF  
= 1000pF  
= 0.01µF  
H
o
H
H
25 C  
0.05  
-10  
-8  
-6  
-4  
-2  
2
4
6
8
10  
2
3
4
5
DC INPUT (V)  
LOGIC LEVEL HIGH (V)  
FIGURE 9A. HOLD STEP vs INPUT VOLTAGE  
FIGURE 9B. HOLD STEP vs LOGIC (V ) VOLTAGE  
IH  
FIGURE 9. TYPICAL SAMPLE-TO-HOLD OFFSET (HOLD STEP) ERROR  
6
HA-5320  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
Type: Nitride (Si N ) over Silox (SiO , 5% Phos)  
92 mils x 152 mils x 19 mils  
3
4
2
Silox Thickness: 12kÅ ±2kÅ  
METALLIZATION:  
Nitride Thickness: 3.5kÅ ±1.5kÅ  
Type: Al, 1% Cu  
Thickness: 16kÅ ±2kÅ  
TRANSISTOR COUNT:  
184  
SUBSTRATE POTENTIAL:  
V-  
Metallization Mask Layout  
HA-5320  
C
SUPPLY GND  
(13)  
V+  
(9)  
EXT  
(11)  
S/H CTRL (14)  
-INPUT (1)  
(8) INT BW  
(7) OUTPUT  
(6) SIG GND  
+INPUT (2)  
(3)  
ADJ  
(4)  
ADJ  
(5)  
V-  
V
V
IO  
IO  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
7

相关型号:

HA3-5330-5

650ns Precision Sample and Hold Amplifier
INTERSIL

HA3-5340-5

700ns, Low Distortion, Precision Sample and Hold Amplifier
INTERSIL

HA3-7712A-5

Voltage-Feedback Operational Amplifier
ETC

HA3-7712A-9

Voltage-Feedback Operational Amplifier
ETC

HA3-7712B-5

Voltage-Feedback Operational Amplifier
ETC

HA3-7712B-9

Voltage-Feedback Operational Amplifier
ETC

HA3-7713A-5

Voltage-Feedback Operational Amplifier
ETC

HA3-7713A-9

Voltage-Feedback Operational Amplifier
ETC

HA3-7713B-5

Voltage-Feedback Operational Amplifier
ETC

HA3-7713B-9

Voltage-Feedback Operational Amplifier
ETC

HA3-BO-24-450-1B1-DC

Circuit Breaker
Carling Techn
RENESAS