HA5025 [INTERSIL]

Quad, 125MHz Video Current Feedback Amplifier; 四, 125MHz的视频电流反馈放大器
HA5025
型号: HA5025
厂家: Intersil    Intersil
描述:

Quad, 125MHz Video Current Feedback Amplifier
四, 125MHz的视频电流反馈放大器

放大器
文件: 总13页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA5025  
September 1998  
File Number 3591.4  
Quad, 125MHz Video  
Features  
Current Feedback Amplifier  
• Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . . 125MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475V/µs  
• Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 800µV  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Supply Current (per Amplifier) . . . . . . . . . . . . . . . . 7.5mA  
• ESD Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V  
• Guaranteed Specifications at ±5V Supplies  
The HA5025 is a wide bandwidth high slew rate quad  
amplifier optimized for video applications and gains between  
1 and 10. It is a current feedback amplifier and thus yields  
less bandwidth degradation at high closed loop gains than  
voltage feedback amplifiers.  
The low differential gain and phase, 0.1dB gain flatness, and  
ability to drive two back terminated 75cables, make this  
amplifier ideal for demanding video applications.  
The current feedback design allows the user to take  
advantage of the amplifier’s bandwidth dependency on the  
feedback resistor.  
Applications  
• Video Gain Block  
The performance of the HA5025 is very similar to the  
popular Intersil HA-5020.  
• Video Distribution Amplifier/RGB Amplifier  
• Flash A/D Driver  
Pinout  
• Current to Voltage Converter  
• Medical Imaging  
HA5025  
(PDIP, SOIC)  
TOP VIEW  
• Radar and Imaging Systems  
• Video Switching and Routing  
OUT1  
-IN1  
1
2
3
4
5
6
7
14 OUT4  
13 -IN4  
12 +IN4  
11 V-  
-
-
+
+
Ordering Information  
+IN1  
V+  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld PDIP  
14 Ld SOIC  
+IN2  
-IN2  
10 +IN3  
+
+
-
-
HA5025IP  
-40 to 85  
-40 to 85  
E14.3  
M14.15  
9
8
-IN3  
HA5025IB  
OUT2  
OUT3  
HA5025EVAL  
High Speed Op Amp DIP Evaluation Board  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HA5025  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 36V  
DC Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10V  
Output Current (Note 4) . . . . . . . . . . . . . . . . .Short Circuit Protected  
ESD Rating (Note 3)  
Thermal Resistance (Typical, Note 2)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
100  
120  
ο
Maximum Junction Temperature (Note 1) . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package, Note 1) . . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
o
o
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V  
o
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . ±4.5V to ±15V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
o
o
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175 C for die, and below 150 C  
for plastic packages. See Application Information section for safe operating area information.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
3. The non-inverting input of unused amplifiers must be connected to GND.  
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 15mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT CHARACTERISTICS  
Input Offset Voltage (V  
)
A
A
A
B
A
A
A
A
A
A
A
A
A
25  
Full  
Full  
Full  
25  
-
0.8  
3
mV  
mV  
mV  
IO  
-
-
-
1.2  
5
-
5
Delta V Between Channels  
IO  
3.5  
o
Average Input Offset Voltage Drift  
-
-
µV/ C  
V
V
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Note 5  
53  
50  
60  
55  
±2.5  
-
-
dB  
dB  
IO  
IO  
Full  
25  
-
-
-
±3.5V V ≤ ±6.5V  
-
dB  
S
Full  
Full  
25  
-
-
dB  
Input Common Mode Range  
Note 5  
Note 5  
-
-
V
Non-Inverting Input (+IN) Current  
3
-
8
µA  
Full  
25  
-
20  
0.15  
0.5  
µA  
+IN Common Mode Rejection  
1
-
-
µA/V  
µA/V  
(+I  
=
)
BCMR  
Full  
-
-
+R  
IN  
+IN Power Supply Rejection  
Inverting Input (-IN) Current  
Delta - IN BIAS Current Between Channels  
-IN Common Mode Rejection  
-IN Power Supply Rejection  
Input Noise Voltage  
±3.5V V ≤ ±6.5V  
A
A
A
A
A
A
A
A
A
A
B
25  
Full  
25, 85  
-40  
-
-
-
-
-
-
-
-
-
-
-
-
-
0.1  
0.3  
12  
30  
15  
30  
0.4  
1.0  
0.2  
0.5  
-
µA/V  
µA/V  
µA  
S
4
10  
6
µA  
25, 85  
-40  
µA  
10  
-
µA  
Note 5  
25  
µA/V  
µA/V  
µA/V  
µA/V  
nV/Hz  
Full  
25  
-
±3.5V V ≤ ±6.5V  
-
S
Full  
25  
-
f = 1kHz  
4.5  
2
HA5025  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
+Input Noise Current  
TEST CONDITIONS  
f = 1kHz  
MIN  
TYP  
2.5  
MAX  
UNITS  
pA/Hz  
pA/Hz  
B
B
25  
25  
-
-
-
-
-Input Noise Current  
f = 1kHz  
25.0  
TRANSFER CHARACTERISTICS  
Transimpedance  
Note 11  
A
A
A
A
A
A
25  
Full  
25  
1.0  
0.85  
70  
-
-
-
-
-
-
-
-
-
-
-
-
MΩ  
MΩ  
dB  
Open Loop DC Voltage Gain  
Open Loop DC Voltage Gain  
R
R
= 400, V  
= 100, V  
= ±2.5V  
= ±2.5V  
L
L
OUT  
Full  
25  
65  
dB  
50  
dB  
OUT  
Full  
45  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
R
= 150Ω  
= 150Ω  
A
A
B
A
25  
±2.5  
±2.5  
±16.6  
±40  
±3.0  
±3.0  
±20.0  
±60  
-
-
-
-
V
V
L
Full  
Full  
Full  
Output Current  
mA  
mA  
L
Output Current, Short Circuit  
POWER SUPPLY CHARACTERISTICS  
Supply Voltage Range  
V
= ±2.5V, V = 0V  
OUT  
IN  
A
A
25  
5
-
-
15  
10  
V
Quiescent Supply Current  
Full  
7.5  
mA/Op Amp  
AC CHARACTERISTICS (A = +1)  
V
Slew Rate  
Note 6  
Note 7  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
275  
350  
28  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
22  
-
Fall Time  
-
6
ns  
Propagation Delay  
Overshoot  
-
6
ns  
-
4.5  
125  
50  
75  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
-
ns  
AC CHARACTERISTICS (A = +2, R = 681)  
V
F
Slew Rate  
Note 6  
Note 7  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
475  
26  
-
-
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
6
Fall Time  
6
ns  
Propagation Delay  
Overshoot  
6
ns  
12  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
Gain Flatness  
V
= 100mV  
95  
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
5MHz  
50  
100  
0.02  
0.07  
ns  
dB  
dB  
20MHz  
AC CHARACTERISTICS (A = +10, R = 383)  
V
F
Slew Rate  
Note 6  
Note 7  
B
B
25  
25  
350  
28  
475  
38  
-
-
V/µs  
Full Power Bandwidth  
MHz  
3
HA5025  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
Rise Time  
TEST CONDITIONS  
MIN  
TYP  
8
MAX  
UNITS  
ns  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Fall Time  
9
ns  
Propagation Delay  
Overshoot  
9
ns  
1.8  
65  
75  
130  
%
-3dB Bandwidth  
V
= 100mV  
MHz  
ns  
OUT  
Settling Time to 1%  
Settling Time to 0.1%  
VIDEO CHARACTERISTICS  
Differential Gain (Note 10)  
Differential Phase (Note 10)  
2V Output Step  
2V Output Step  
ns  
R
R
= 150Ω  
= 150Ω  
B
B
25  
25  
-
-
0.03  
0.03  
-
-
%
L
L
Degrees  
NOTES:  
o
= ±2.5V. At -40 C Product is tested at V  
5. V  
6. V  
= ±2.25V because Short Test Duration does not allow self heating.  
CM  
CM  
switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.  
OUT  
Slew Rate  
7.  
.
= 2V  
----------------------------  
FPBW =  
; V  
PEAK  
2πV  
PEAK  
8. R = 100, V  
OUT  
= 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.  
L
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.  
10. Measured with a VM700A video tester using an NTC-7 composite VITS.  
o
11. V  
= ±2.5V. At -40 C Product is tested at V  
= ±2.25V because Short Test Duration does not allow self heating.  
OUT  
OUT  
Test Circuits and Waveforms  
+
-
DUT  
50  
HP4195  
NETWORK  
ANALYZER  
50Ω  
FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS  
(NOTE 12)  
100Ω  
(NOTE 12)  
100Ω  
DUT  
V
+
-
IN  
DUT  
V
OUT  
V
+
-
IN  
V
OUT  
50Ω  
R
L
400Ω  
50Ω  
R
100Ω  
L
R , 681Ω  
F
R
681Ω  
I
R , 1kΩ  
F
FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT  
NOTE:  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT  
12. A series input resistor of 100is recommended to limit input currents in case input signals are present abefore the HA5025 is powered up.  
4
HA5025  
Test Circuits and Waveforms (Continued)  
Vertical Scale: V = 100mV/Div., V  
= 100mV/Div.  
Horizontal Scale: 20ns/Div.  
Vertical Scale: V = 1V/Div., V  
IN OUT  
= 1V/Div.  
IN OUT  
Horizontal Scale: 50ns/Div.  
FIGURE 4. SMALL SIGNAL RESPONSE  
FIGURE 5. LARGE SIGNAL RESPONSE  
Schematic Diagram (One Amplifier of Four)  
V+  
R
800  
R
2.5K  
R
2
5
10  
820  
R
R
R
15  
400  
19  
400  
29  
9.5  
Q
Q
P8  
P9  
R
27  
200  
Q
P19  
Q
Q
P14  
P11  
R
5
Q
31  
Q
P1  
P5  
R
11  
1K  
R
R
18  
17  
280 280  
R
24  
Q
N5  
140  
Q
Q
P20  
P16  
Q
P10  
R
20  
140  
Q
N12  
P12  
Q
P15  
C
1.4pF  
1
Q
R
20  
N8  
Q
28  
R
60K  
1
Q
P2  
Q
P6  
Q
-IN  
N6  
P4  
Q
Q
R
N1  
P17  
12  
280  
Q
Q
Q
N13  
P13  
N17  
Q
R
3
6K  
+IN  
R
25  
C
2
1.4pF  
20  
Q
N15  
R
21  
140  
Q
N2  
Q
Q
R
N10  
N21  
R
R
14  
280  
22  
280  
R
D
1
Q
R
25  
140  
P7  
Q
N4  
32  
5
Q
N18  
R
13  
1K  
Q
Q
N14  
N19  
Q
Q
Q
N3  
N7  
N16  
R
7
30  
R
R
R
16  
400  
23  
400  
26  
200  
R
800  
R
4
33  
800  
9
Q
820  
Q
N11  
N9  
OUT  
V-  
5
HA5025  
-IN, and that connections to -IN be kept as short as possible to  
minimize the capacitance from this node to ground.  
Application Information  
Optimum Feedback Resistor  
The plots of inverting and non-inverting frequency response,  
see Figure 8 and Figure 9 in the typical performance section,  
illustrate the performance of the HA5025 in various closed  
loop gain configurations. Although the bandwidth dependency  
on closed loop gain isn’t as severe as that of a voltage  
feedback amplifier, there can be an appreciable decrease in  
bandwidth at higher gains. This decrease may be minimized  
by taking advantage of the current feedback amplifier’s unique  
Driving Capacitive Loads  
Capacitive loads will degrade the amplifier’s phase margin  
resulting in frequency response peaking and possible  
oscillations. In most cases the oscillation can be avoided by  
placing an isolation resistor (R) in series with the output as  
shown in Figure 6.  
100Ω  
R
V
+
-
IN  
relationship between bandwidth and R . All current feedback  
V
F
OUT  
amplifiers require a feedback resistor, even for unity gain  
C
L
R
T
applications, and R , in conjunction with the internal  
F
R
F
R
I
compensation capacitor, sets the dominant pole of the  
frequency response. Thus, the amplifier’s bandwidth is  
inversely proportional to R . The HA5025 design is optimized  
F
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION  
RESISTOR, R  
for a 1000R at a gain of +1. Decreasing R in a unity gain  
F
F
application decreases stability, resulting in excessive peaking  
and overshoot. At higher gains the amplifier is more stable, so  
The selection criteria for the isolation resistor is highly  
dependent on the load, but 27has been determined to be  
a good starting value.  
R can be decreased in a trade-off of stability for bandwidth.  
F
The following table lists recommended R values for various  
F
gains, and the expected bandwidth.  
Power Dissipation Considerations  
GAIN  
(A  
BANDWIDTH  
(MHz)  
Due to the high supply current inherent in quad amplifiers,  
care must be taken to insure that the maximum junction  
)
R ()  
F
CL  
temperature (T , see Absolute Maximum Ratings) is not  
exceeded. Figure 7 shows the maximum ambient temperature  
versus supply voltage for the available package styles (PDIP,  
-1  
+1  
750  
1000  
681  
100  
125  
95  
J
+2  
SOIC). At V = ±5V quiescent operation both package styles  
S
o
may be operated over the full industrial range of -40 C to  
85 C. It is recommended that thermal calculations, which take  
+5  
1000  
383  
52  
o
+10  
-10  
65  
into account output power, be performed by the designer.  
750  
22  
130  
120  
110  
PC Board Layout  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip resistors  
and chip capacitors is strongly recommended. If leaded  
components are used the leads must be kept short  
especially for the power supply decoupling components and  
those components connected to the inverting input.  
100  
PDIP  
90  
80  
70  
SOIC  
60  
50  
40  
30  
20  
10  
Attention must be given to decoupling the power supplies. A  
large value (10µF) tantalum or electrolytic capacitor in  
parallel with a small value (0.1µF) chip capacitor works well  
in most cases.  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
A ground plane is strongly recommended to control noise.  
Care must also be taken to minimize the capacitance to  
ground seen by the amplifier’s inverting input (-IN). The larger  
this capacitance, the worse the gain peaking, resulting in  
pulse overshoot and possible instability. It is recommended  
that the ground plane be removed under traces connected to  
FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE  
vs SUPPLY VOLTAGE  
6
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified  
V F L A  
SUPPLY  
5
4
3
5
V
C
R
= 0.2V  
P-P  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
OUT  
= 10pF  
A
= +1, R = 1kΩ  
V
F
4
3
L
L
= 750Ω  
F
A
= 2, R = 681Ω  
V
F
A
= -1  
= -2  
V
2
1
A
= 5, R = 1kΩ  
2
V
F
1
A
V
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
A
= -10  
V
A
= 10, R = 383Ω  
V
F
A
= -5  
V
-5  
2
10  
FREQUENCY (MHz)  
100  
200  
2
10  
FREQUENCY (MHz)  
100  
200  
FIGURE 8. NON-INVERTING FREQUENCY RESPONSE  
FIGURE 9. INVERTING FREQUENCY RESPONSE  
140  
130  
120  
V
= 0.2V  
P-P  
OUT  
= 10pF  
180  
135  
90  
0
-45  
A
= +1, R = 1kΩ  
F
V
C
L
A
= +1  
V
-90  
A
= -1, R = 750Ω  
F
V
45  
0
-135  
-100  
-225  
A
= +10, R = 383Ω  
F
V
10  
-3dB BANDWIDTH  
-45  
-90  
-270  
A
= -10, R = 750Ω  
F
5
0
V
-135  
-180  
-315  
-360  
V
= 0.2V  
P-P  
OUT  
= 10pF  
GAIN PEAKING  
700  
C
L
500  
900  
1100  
1300  
1500  
2
10  
FREQUENCY (MHz)  
100  
200  
FEEDBACK RESISTOR ()  
FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 10. PHASE RESPONSE AS A FUNCTION OF  
FREQUENCY  
130  
100  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
L
A
= +2  
V
120  
95  
90  
-3dB BANDWIDTH  
110  
100  
6
-3dB BANDWIDTH  
10  
4
2
0
5
0
V
= 0.2V  
P-P  
= 10pF  
= +1  
90  
80  
OUT  
GAIN PEAKING  
400  
C
A
L
GAIN PEAKING  
V
0
200  
600  
800  
1000  
350  
500  
650  
800  
950  
1100  
LOAD RESISTOR ()  
FEEDBACK RESISTOR ()  
FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
7
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
16  
80  
V
C
= 0.1V  
= 10pF  
OUT  
P-P  
V
= 0.2V  
= 10pF  
= +10  
OUT  
P-P  
L
C
A
L
V
= ±5V, A = +2  
V
V
SUPPLY  
60  
12  
40  
20  
0
6
V
= ±15V, A = +2  
V
SUPPLY  
V
= ±5V, A = +1  
SUPPLY  
V
V
= ±15V, A = +1  
V
SUPPLY  
0
200  
350  
500  
650  
800  
950  
0
200  
400  
600  
800  
1000  
FEEDBACK RESISTOR ()  
LOAD RESISTANCE ()  
FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE  
0.10  
FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE  
0.08  
FREQUENCY = 3.58MHz  
FREQUENCY = 3.58MHz  
0.08  
0.06  
0.04  
R
= 75Ω  
L
0.06  
0.04  
R
L
= 150Ω  
R
= 150Ω  
L
R
= 75Ω  
L
0.02  
0.00  
0.02  
0.00  
R
= 1kΩ  
L
R
= 1kΩ  
L
3
5
7
9
11  
13  
15  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE  
FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE  
-40  
A
= +1  
V
V
C
= 2.0V  
0
-10  
-20  
-30  
OUT  
= 30pF  
P-P  
L
-50  
-60  
HD2  
-40  
-50  
3RD ORDER IMD  
CMRR  
-70  
HD2  
HD3  
-60  
-70  
-80  
NEGATIVE PSRR  
-80  
-90  
POSITIVE PSRR  
0.1  
HD3  
0.001  
0.01  
1
10  
30  
0.3  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 19. REJECTION RATIOS vs FREQUENCY  
FIGURE 18. DISTORTION vs FREQUENCY  
8
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
V F L A  
SUPPLY  
12  
10  
8
8.0  
R
V
= 100Ω  
R
= 100Ω  
L
LOAD  
= 1.0V  
= 1.0V  
= +1  
V
OUT  
P-P  
OUT  
P-P  
A
V
7.5  
A
= +10, R = 383Ω  
F
V
7.0  
6.5  
6.0  
A
= +2, R = 681Ω  
F
V
6
A
= +1, R = 1kΩ  
F
V
4
3
5
7
9
11  
13  
15  
-50  
-25  
0
25  
50  
75  
100  
125  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 20. PROPAGATION DELAY vs TEMPERATURE  
500  
FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE  
0.8  
V
= 2V  
OUT  
P-P  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
0.6  
0.4  
0.2  
0
450  
400  
350  
300  
250  
L
+ SLEW RATE  
A = +2, R = 681Ω  
V
F
- SLEW RATE  
-0.2  
-0.4  
-0.6  
A = +5, R = 1kΩ  
V
F
200  
150  
100  
A
= +1, R = 1kΩ  
F
V
-0.8  
-1.0  
-1.2  
A
= +10, R = 383Ω  
V
F
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
25  
30  
o
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 22. SLEW RATE vs TEMPERATURE  
FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY  
0.8  
0.6  
0.4  
0.2  
0
100  
80  
1000  
800  
V
C
R
= 0.2V  
P-P  
OUT  
L
F
A
= +10, R = 383Ω  
F
V
= 10pF  
= 750Ω  
-INPUT NOISE CURRENT  
A
= -1  
= -5  
V
600  
60  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
+INPUT NOISE CURRENT  
400  
40  
A
V
INPUT NOISE VOLTAGE  
200  
0
20  
0
A
= -2  
V
A
= -10  
V
5
10  
15  
20  
25  
30  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 25. INPUT NOISE CHARACTERISTICS  
9
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
1.5  
2
0
1.0  
0.5  
0.0  
-2  
-4  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE  
4000  
FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE  
22  
3000  
20  
2000  
1000  
18  
16  
-60 -40 -20  
0
20  
40  
60  
o
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
o
80  
100 120 140  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE  
74  
25  
+PSRR  
-PSRR  
o
72  
70  
68  
66  
64  
62  
60  
58  
125 C  
o
20  
15  
55 C  
10  
5
o
25 C  
CMRR  
3
4
5
6
7
8
9
10 11 12  
13 14 15  
-100  
-50  
0
50  
100  
150  
200  
250  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 31. REJECTION RATIO vs TEMPERATURE  
FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE  
10  
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
V F L A  
SUPPLY  
4.0  
40  
+10V  
+15V  
30  
20  
+5V  
3.8  
10  
0
3.6  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
DISABLE INPUT VOLTAGE (V)  
TEMPERATURE ( C)  
FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE  
30  
FIGURE 33. OUTPUT SWING vs TEMPERATURE  
1.2  
1.1  
V
= ±15V  
S
20  
10  
V
= ±10V  
S
1.0  
0.9  
0.8  
V
= ±4.5V  
S
0
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
0.01  
0.10  
1.00  
10.00  
o
LOAD RESISTANCE (k)  
TEMPERATURE ( C)  
FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE  
-30  
1.5  
A
= +1  
= 2V  
V
V
OUT  
P-P  
-40  
-50  
-60  
-70  
-80  
1.0  
0.5  
0.0  
-60 -40 -20  
20  
40  
60  
o
80 100 120 140  
0
0.1  
1
10  
30  
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 37. CHANNEL SEPARATION vs FREQUENCY  
11  
HA5025  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
V F L A  
SUPPLY  
10  
1
DISABLE = 0V  
0
R
= 100Ω  
L
V
= 5V  
P-P  
IN  
R
= 750Ω  
F
-10  
-20  
-30  
0.1  
0.01  
180  
135  
90  
45  
0
0.001  
-40  
-50  
-60  
-70  
-80  
-45  
-90  
-135  
0.1  
1
10  
20  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY  
FIGURE 39. TRANSIMPEDANCE vs FREQUENCY  
10  
1
R
= 400Ω  
L
0.1  
180  
135  
0.01  
0.001  
90  
45  
0
-45  
-90  
-135  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FIGURE 40. TRANSIMPEDANCE vs FREQUENCY  
12  
HA5025  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
2010µm x 3130µm x 483µm  
Type: Nitride  
Thickness: 4kÅ ±0.4kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AlCu (1%)  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
248  
Metal 2: AlCu (1%)  
Metal 2: 16kÅ ±0.8kÅ  
PROCESS:  
High Frequency Bipolar Dielectric Isolation  
SUBSTRATE POTENTIAL (Powered Up):  
V-  
Metallization Mask Layout  
HA5025  
+IN1  
+IN4  
V+  
V-  
+IN2  
+IN3  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY