HFA1113EVAL [INTERSIL]

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier; 为850MHz ,低失真,输出限制,可编程增益缓冲放大器
HFA1113EVAL
型号: HFA1113EVAL
厂家: Intersil    Intersil
描述:

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
为850MHz ,低失真,输出限制,可编程增益缓冲放大器

缓冲放大器
文件: 总17页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1113  
Data Sheet  
February 1999  
File Number 1342.5  
850MHz, Low Distortion, Output Limiting,  
Programmable Gain, Buffer Amplifier  
Features  
• User Programmable Output Voltage Limiting  
The HFA1113 is a high speed Buffer featuring user  
• User Programmable For Closed-Loop Gains of +1, -1 or  
+2 Without Use of External Resistors  
programmable gain and output limiting coupled with ultra  
high speed performance. This buffer is the ideal choice for  
high frequency applications requiring output limiting,  
especially those needing ultra fast overload recovery times.  
The output limiting function allows the designer to set the  
maximum positive and negative output levels, thereby  
protecting later stages from damage or input saturation. The  
sub-nanosecond overdrive recovery time quickly returns the  
amplifier to linear operation following an overdrive condition.  
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . .850MHz  
• Excellent Gain Flatness (to 100MHz). . . . . . . . . . ±0.07dB  
• Low Differential Gain and Phase . . . 0.02%/0.04 Degrees  
• Low Distortion (HD3, 30MHz). . . . . . . . . . . . . . . . . -73dBc  
• Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . 2400V/µs  
• Fast Settling Time (0.1%). . . . . . . . . . . . . . . . . . . . . 13ns  
• High Output Current . . . . . . . . . . . . . . . . . . . . . . . . .60mA  
• Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V  
• Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . . <1ns  
• Standard Operational Amplifier Pinout  
A unique feature of the pinout allows the user to select a  
voltage gain of +1, -1, or +2, without the use of any external  
components, as described in the “Application Information”  
section. Compatibility with existing op amp pinouts provides  
flexibility to upgrade low gain amplifiers, while decreasing  
component count. Unlike most buffers, the standard pinout  
provides an upgrade path should a higher closed loop gain  
be needed at a future date.  
Applications  
Component and composite video systems will also benefit  
from this buffer’s performance, as indicated by the excellent  
gain flatness, and 0.02%/0.04 Degree Differential  
• RF/IF Processors  
• Driving Flash A/D Converters  
• High-Speed Communications  
• Impedance Transformation  
• Line Driving  
Gain/Phase specifications (R = 150).  
L
For Military product, refer to the HFA1113/883 data sheet.  
Ordering Information  
• Video Switching and Routing  
• Radar Systems  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
PACKAGE  
8 Ld SOIC  
• Medical Imaging Systems  
HFA1113IB  
(H1113I)  
-40 to 85  
M8.15  
Pin Descriptions  
HFA11XXEVAL  
DIP Evaluation Board For High Speed Op Amps  
PIN  
NAME  
NC  
NUMBER  
DESCRIPTION  
No Connection  
Pinout  
HFA1113  
(SOIC)  
TOP VIEW  
1
2
3
4
5
6
7
8
-IN  
Inverting Input  
Non-Inverting Input  
Negative Supply  
Lower Output Limit  
Output  
+IN  
V-  
300  
NC  
1
2
3
4
8
7
6
5
V
H
300  
-IN  
+IN  
V-  
V+  
V
L
-
+
OUT  
V+  
OUT  
Positive Supply  
Upper Output Limit  
V
L
V
H
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HFA1113  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
JA  
SUPPLY  
Voltage at V or V Terminal . . . . . . . . . . . . . . (V+) + 2V to (V-) - 2V  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
158  
o
H
L
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
o
o
Output Current (50% Duty Cycle) . . . . . . . . . . . . . . . . . . . . . . 60mA  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
Operating Conditions  
(SOIC - Lead Tips Only)  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified  
SUPPLY V L  
TEMP.  
o
PARAMETER  
INPUT CHARACTERISTICS  
Output Offset Voltage  
TEST CONDITIONS  
( C)  
MIN  
TYP  
MAX  
UNITS  
25  
Full  
Full  
25  
-
8
-
25  
mV  
mV  
-
35  
o
Output Offset Voltage Drift  
PSRR  
-
39  
35  
-
10  
45  
-
-
µV/ C  
-
dB  
dB  
Full  
25  
-
Input Noise Voltage (Note 3)  
+Input Noise Current (Note 3)  
Non-Inverting Input Bias Current  
100kHz  
100kHz  
9
-
-
nV/Hz  
pA/Hz  
µA  
25  
-
37  
25  
-
25  
-
40  
65  
-
Full  
25  
-
µA  
Non-Inverting Input Resistance  
25  
240  
-
50  
300  
2
kΩ  
Inverting Input Resistance (Note 2)  
Input Capacitance  
25  
360  
-
25  
pF  
Input Common Mode Range  
TRANSFER CHARACTERISTICS  
Gain  
Full  
±2.5  
±2.8  
-
V
A
= +1, V = +2V  
IN  
25  
Full  
25  
0.980  
0.975  
1.96  
1.95  
-
0.990  
-
1.020  
1.025  
2.04  
2.05  
-
V/V  
V/V  
V/V  
V/V  
%
V
A
= +2, V = +1V  
IN  
1.98  
-
V
Full  
25  
DC Non-Linearity (Note 3)  
OUTPUT CHARACTERISTICS  
Output Voltage (Note 3)  
A
= +2, ±2V Full Scale  
0.02  
V
A
= -1  
25  
Full  
±3.0  
±2.5  
50  
±3.3  
±3.0  
60  
-
-
-
-
-
V
V
V
Output Current (Note 3)  
R
= 50Ω  
25, 85  
-40  
mA  
mA  
L
35  
50  
Closed Loop Output Impedance  
DC, A = +2  
25  
-
0.3  
V
POWER SUPPLY CHARACTERISTICS  
Supply Voltage Range  
Full  
25  
±4.5  
-
21  
-
±5.5  
26  
V
Supply Current (Note 3)  
-
-
mA  
mA  
Full  
33  
2
HFA1113  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
L
TEMP.  
o
PARAMETER  
AC CHARACTERISTICS  
-3dB Bandwidth  
TEST CONDITIONS  
( C)  
MIN  
TYP  
MAX  
UNITS  
A
= -1  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
450  
800  
850  
-
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
MHz  
MHz  
MHz  
dB  
V
(V  
OUT  
= 0.2V  
, Notes 2, 3)  
P-P  
A
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
500  
-
V
A
350  
550  
-
V
Slew Rate  
(V = 5V  
A
1500  
2400  
1500  
1900  
300  
-
V
, Note 2)  
P-P  
OUT  
A
800  
-
V
A
1100  
-
V
Full Power Bandwidth  
(V = 5V , Note 3)  
A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
OUT P-P  
A
150  
-
V
A
220  
-
V
Gain Flatness  
(to 30MHz, Notes 2, 3)  
A
±0.02  
±0.1  
±0.015  
±0.05  
±0.2  
±0.036  
±0.10  
±0.07  
±0.13  
±0.83  
±0.05  
-52  
-
V
A
-
dB  
V
A
±0.04  
dB  
V
Gain Flatness  
(to 50MHz, Notes 2, 3)  
A
-
dB  
V
A
-
dB  
V
A
±0.08  
dB  
V
Gain Flatness  
(to 100MHz, Notes 2, 3)  
A
-
dB  
V
A
±0.22  
dB  
V
Linear Phase Deviation  
(to 100MHz, Note 3)  
A
-
Degrees  
Degrees  
Degrees  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
V
A
-
V
A
-
V
2nd Harmonic Distortion  
A
-
V
(30MHz, V  
OUT  
= 2V  
, Notes 2, 3)  
, Notes 2, 3)  
, Notes 2, 3)  
, Notes 2, 3)  
P-P  
A
-57  
-
V
A
-52  
-45  
V
3rd Harmonic Distortion  
(30MHz, V = 2V  
A
-71  
-
V
OUT  
P-P  
A
-73  
-
V
A
-72  
-65  
V
2nd Harmonic Distortion  
(50MHz, V = 2V  
A
-47  
-
V
OUT  
P-P  
A
-53  
-
V
A
-47  
-40  
V
3rd Harmonic Distortion  
(50MHz, V = 2V  
A
-63  
-
V
OUT  
P-P  
A
-68  
-
-55  
-
V
A
-65  
V
2nd Harmonic Distortion  
(100MHz, V = 2V , Notes 2, 3)  
A
-41  
V
OUT P-P  
A
-50  
-
V
A
-42  
-35  
-
V
3rd Harmonic Distortion  
(100MHz, V = 2V  
A
-55  
V
, Notes 2, 3)  
OUT P-P  
A
-49  
-
V
A
-62  
-45  
V
3
HFA1113  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
L
TEMP.  
o
PARAMETER  
TEST CONDITIONS  
100MHz  
( C)  
MIN  
TYP  
28  
MAX  
UNITS  
dBm  
dBm  
dBm  
dBm  
dB  
3rd Order Intercept  
(A = +2, Note 3)  
V
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
300MHz  
100MHz  
300MHz  
40MHz  
13  
1dB Compression  
(A = +2, Note 3)  
V
19  
12  
Reverse Isolation  
-70  
-60  
-32  
(S , Note 3)  
12  
100MHz  
600MHz  
dB  
dB  
TRANSIENT CHARACTERISTICS  
Rise Time  
A
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
500  
480  
700  
0.82  
1.06  
1.00  
12  
800  
ps  
V
(V  
OUT  
= 0.5V Step, Note 2)  
A
750  
ps  
V
A
1000  
ps  
V
Rise Time  
(V = 2V Step)  
A
-
-
ns  
V
OUT  
A
ns  
V
A
-
ns  
V
Overshoot  
(V = 0.5V Step,  
A
30  
65  
20  
20  
33  
-
%
V
OUT  
A
45  
%
V
Input t /t = 200ps, Notes 2, 3, 4)  
R F  
A
6
%
ns  
V
0.1% Settling Time (Note 3)  
0.05% Settling Time  
Differential Gain  
V
= 2V to 0V  
13  
OUT  
V
= 2V to 0V  
20  
ns  
OUT  
A
= +1, 3.58MHz, R = 150Ω  
0.03  
0.02  
0.05  
0.04  
%
V
L
A
= +2, 3.58MHz, R = 150Ω  
-
%
V
L
Differential Phase  
A
= +1, 3.58MHz, R = 150Ω  
-
Degrees  
Degrees  
V
L
A
= +2, 3.58MHz, R = 150Ω  
-
V
L
OUTPUT LIMITING CHARACTERISTICS  
A = +2, V = +1V, V = -1V, Unless Otherwise Specified  
V H L  
Clamp Accuracy (Note 3)  
V
= ±1.6V, A = -1  
25  
Full  
25  
-
-
-
-
-
±100  
±150  
mV  
mV  
%
IN  
V
-
7
±200  
Clamp Overshoot  
V
V
= ±1V, Input t /t = 500ps  
-
1.5  
-
IN  
IN  
R F  
Overdrive Recovery Time (Note 3)  
Negative Clamp Range  
= ±1V  
25  
0.75  
ns  
V
25  
-5.0 to  
+2.0  
Positive Clamp Range  
25  
-
-2.0 to  
+5.0  
-
V
Clamp Input Bias Current (Note 3)  
25  
Full  
25  
-
-
-
50  
-
200  
300  
-
µA  
µA  
Clamp Input Bandwidth (Note 3)  
NOTES:  
V
or V = 100mV  
P-P  
500  
MHz  
H
L
2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.  
3. See Typical Performance Curves for more information.  
4. Overshoot decreases as input transition times increase, especially for A = +1. Please refer to Typical Performance Curves.  
V
4
HFA1113  
avoided by placing a resistor (R ) in series with the output  
prior to the capacitance.  
Application Information  
S
Closed Loop Gain Selection  
Figure 1 details starting points for the selection of this  
The HFA1113 features a novel design which allows the user  
to select from three closed loop gains, without any external  
components. The result is a more flexible product, fewer part  
types in inventory, and more efficient use of board space.  
resistor. The points on the curve indicate the R and C  
S
L
combinations for the optimum bandwidth, stability, and  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
This “buffer” operates in closed loop gains of -1, +1, or +2,  
and gain selection is accomplished via connections to the  
±Inputs. Applying the input signal to +IN and floating -IN  
selects a gain of +1, while grounding -IN selects a gain of  
+2. A gain of -1 is obtained by applying the input signal to  
-IN with +IN grounded.  
R
and C form a low pass network at the output, thus  
L
S
limiting system bandwidth well below the amplifier bandwidth  
of 850MHz. By decreasing R as C increases (as illustrated  
S
L
in the curves), the maximum bandwidth is obtained without  
sacrificing stability. Even so, bandwidth does decrease as  
you move to the right along the curve. For example, at  
The table below summarizes these connections:  
CONNECTIONS  
A = +1, R = 50, C = 30pF, the overall bandwidth is  
V
S
L
limited to 300MHz, and bandwidth drops to 100MHz at  
+INPUT  
(PIN 3)  
-INPUT  
(PIN 2)  
GAIN (A  
)
A = +1, R = 5, C = 340pF.  
CL  
V
S
L
-1  
+1  
+2  
GND  
Input  
Input  
Input  
NC (Floating)  
GND  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
= +1  
V
PC Board Layout  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip  
resistors and chip capacitors is strongly recommended,  
while a solid ground plane is a must!  
A
= +2  
40  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
chip (0.1µF) capacitor works well in most cases.  
V
0
0
80 120 160 200 240 280 320 360 400  
LOAD CAPACITANCE (pF)  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD  
CAPACITANCE  
For unity gain applications, care must also be taken to  
minimize the capacitance to ground seen by the amplifier’s  
inverting input. At higher frequencies this capacitance will  
tend to short the -INPUT to GND, resulting in a closed loop  
gain which increases with frequency. This will cause  
excessive high frequency peaking and potentially other  
problems as well.  
Evaluation Board  
The performance of the HFA1113 may be evaluated using  
the HFA11XX Evaluation Board, slightly modified as follows:  
1. Remove the 500feedback resistor (R ), and leave the  
2
connection open.  
2. a. For A = +1 evaluation, remove the 500gain setting  
V
resistor (R ), and leave pin 2 floating.  
1
An example of a good high frequency layout is the  
Evaluation Board shown in Figure 3.  
b. For A = +2, replace the 500gain setting resistor with  
V
a 0resistor to GND.  
The modified schematic and layout of the board are shown  
in Figures 2 and 3.  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
To order evaluation boards (part number HFA11XXEVAL),  
please contact your local sales office.  
NOTE: The SOIC version may be evaluated in the DIP board by  
using a SOIC-to-DIP adapter such as Aries Electronics Part Number  
08-350000-10.  
5
HFA1113  
.
between the positive and negative inputs. This buffer forces  
-IN to track +IN, and sets up a slewing current of:  
(A = +1)  
V
OR 0(A = +2)  
V
V
H
(V - V  
)/R + V /R  
F G  
R
1
-IN OUT -IN  
1
2
3
4
8
7
6
5
This current is mirrored onto the high impedance node (Z) by  
-Q , where it is converted to a voltage and fed to the  
output via another unity gain buffer. If no clamping is utilized,  
the high impedance node may swing within the limits defined  
0.1µF  
50Ω  
10µF  
+5V  
50Ω  
Q
X3 X4  
IN  
OUT  
V
L
by Q and Q . Note that when the output reaches its  
P4 N4  
0µF  
0.1µF  
GND  
quiescent value, the current flowing through -IN is reduced to  
GND  
-5V  
only that small current (-I  
the final voltage.  
) required to keep the output at  
BIAS  
FIGURE 2. MODIFIED EVALUATION BOARD SCHEMATIC  
TOP LAYOUT  
Tracing the path from V to Z illustrates the effect of the  
H
clamp voltage on the high impedance node. V decreases  
H
by 2V (Q and Q ) to set up the base voltage on Q  
BE N6 P6  
.
P5  
V+  
V
H
50K  
(30K  
FOR V )  
Q
Q
P3  
P4  
Z
1
L
+IN  
Q
N2  
R
1
OUT  
V-  
V+  
V
L
Q
P1  
V-  
V+  
I
CLAMP  
GND  
+IN  
+1  
200Ω  
V
H
Q
N1  
Q
N6  
Q
N5  
BOTTOM LAYOUT  
Q
P2  
Q
P6  
Q
P5  
Q
Q
N4  
N3  
V
-IN  
V-  
300Ω  
R
= 300Ω  
R
F
G
(INTERNAL)  
(INTERNAL)  
V
OUT  
-IN  
FIGURE 4. HFA1113 SIMPLIFIED V CLAMP CIRCUITRY  
H
Q
begins to conduct whenever the high impedance node  
FIGURE 3. EVALUATION BOARD LAYOUT  
P5  
reaches a voltage equal to Q ’s base voltage + 2V (Q  
P5 BE  
P5  
Limiting Operation  
and Q ). Thus, Q clamps node Z whenever Z reaches  
N5 P5  
V . R provides a pull-up network to ensure functionality  
H
1
General  
with the clamp inputs floating. A similar description applies to  
The HFA1113 features user programmable output clamps to  
limit output voltage excursions. Clamping action is obtained  
the symmetrical low clamp circuitry controlled by V .  
L
When the output is clamped, the negative input continues to  
by applying voltages to the V and V terminals (pins 8 and  
H
L
source a slewing current (I  
) in an attempt to force the  
CLAMP  
5) of the amplifier. V sets the upper output limit, while V  
H
L
output to the quiescent voltage defined by the input. Q  
must sink this current while clamping, because the -IN  
current is always mirrored onto the high impedance node.  
The clamping current is calculated as:  
P5  
sets the lower clamp level. If the amplifier tries to drive the  
output above V , or below V , the clamp circuitry limits the  
H
L
output voltage at V or V (± the clamp accuracy),  
H
L
respectively. The low input bias currents of the clamp pins  
allow them to be driven by simple resistive divider circuits, or  
active elements such as amplifiers or DACs.  
I
= (V - V  
)/300+ V /R .  
-IN  
CLAMP  
-IN OUT CLAMPED  
G
As an example, a unity gain circuit with V = 2V, and V = 1V,  
IN  
H
Clamp Circuitry  
would have I  
= (2V - 1V)/300+ 2V/= 3.33mA  
CLAMP  
(R = because -IN is floated for unity gain applications).  
Figure 4 shows a simplified schematic of the HFA1113 input  
G
stage, and the high clamp (V ) circuitry. As with all current  
Note that I  
will increase by I  
when the output is  
CLAMP  
H
CC  
clamp limited.  
feedback amplifiers, there is a unity gain buffer (Q - Q  
X1  
)
X2  
6
HFA1113  
restrictions indicated in the specifications. For example, the  
HFA1113 could be limited to ECL output levels by setting  
= -0.8V and V = -1.8V. V and V may be connected to  
the same voltage (GND for instance) but the result won’t be  
in a DC output voltage from an AC input signal. A  
Clamp Accuracy  
The clamped output voltage will not be exactly equal to the  
V
H
L
H
L
voltage applied to V or V . Offset errors, mostly due to V  
H
L
BE  
mismatches, necessitate a clamp accuracy parameter which  
is found in the device specifications. Clamp accuracy is a  
function of the clamping conditions. Referring again to  
Figure 4, it can be seen that one component of clamp  
accuracy is the VBE mismatch between the Q transistors,  
and the Q transistors. If the transistors always ran at the  
X5  
150mV - 200mV AC signal will still be present at the output.  
Recovery from Overdrive  
X6  
The output voltage remains at the clamp level as long as the  
overdrive condition remains. When the input voltage drops  
same current level there would be no V mismatch, and no  
contribution to the inaccuracy. The Q transistors are  
X6  
BE  
below the overdrive level (V ) the amplifier will  
/A  
CLAMP VCL  
return to linear operation. A time delay, known as the  
Overdrive Recovery Time, is required for this resumption of  
linear operation. The plots of “Unclamped Performance” and  
“Clamped Performance” (Figures 41 and 42) highlight the  
HFA1113’s subnanosecond recovery time. The difference  
between the unclamped and clamped propagation delays is  
the overdrive recovery time. The appropriate propagation  
delays are 8.0ns for the unclamped pulse, and 8.8ns for the  
clamped (2X overdrive) pulse yielding an overdrive recovery  
time of 800ps. The measurement uses the 90% point of the  
output transition to ensure that linear operation has  
biased at a constant current, but as described earlier, the  
current through Q is equivalent to I  
. V increases  
increases, causing the clamped output voltage to  
X5 CLAMP BE  
as I  
CLAMP  
increase as well. I  
is a function of the overdrive level  
CLAMP  
(A  
x V - V  
), so clamp accuracy  
VCL  
IN  
OUT CLAMPED  
degrades as the overdrive increases. As an example, the  
specified accuracy of ±100mV (A = -1, V = 1V) for a 1.6X  
V
H
overdrive degrades to ±240mV for a 3X (200%) overdrive, as  
shown in Figure 43.  
Consideration must also be given to the fact that the clamp  
voltages have an affect on amplifier linearity. The  
resumed. Note: The propagation delay illustrated is  
“Nonlinearity Near Clamp Voltage” curve, Figure 48,  
illustrates the impact of several clamp levels on linearity.  
dominated by the fixturing. The delta shown is accurate, but  
the true HFA1113 propagation delay is 500ps.  
Overdrive recovery time is also a function of the overdrive  
level. Figure 47 details the overdrive recovery time for  
various clamp and overdrive levels.  
Clamp Range  
Unlike some competitor devices, both V and V have  
usable ranges that cross 0V. While V must be more positive  
H
L
H
than V , both may be positive or negative, within the range  
L
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified  
SUPPLY A L  
200  
2.0  
1.5  
1.0  
0.5  
0
A
= +2  
A = +2  
V
V
150  
100  
50  
0
-50  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 5. SMALL SIGNAL PULSE RESPONSE  
FIGURE 6. LARGE SIGNAL PULSE RESPONSE  
7
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
200  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A
= +1  
V
V
150  
100  
50  
0
-50  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 7. SMALL SIGNAL PULSE RESPONSE  
FIGURE 8. LARGE SIGNAL PULSE RESPONSE  
200  
2.0  
1.5  
1.0  
0.5  
0
A
= -1  
A
= -1  
V
V
150  
100  
50  
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 9. SMALL SIGNAL PULSE RESPONSE  
FIGURE 10. LARGE SIGNAL PULSE RESPONSE  
6
3
V
= 200mV  
A
= +2, V = 200mV  
OUT P-P  
OUT  
P-P  
V
A
= +1  
V
9
GAIN  
GAIN  
0
6
3
0
A
A
= -1  
V
-3  
-6  
-9  
= +2  
R
R
R
= 50Ω  
= 100Ω  
= 1kΩ  
V
L
L
L
PHASE  
0
-90  
A
= +2  
= -1  
V
PHASE  
A
V
-180  
-270  
-360  
0
A
= +1  
V
-90  
R
R
R
= 100Ω  
= 50Ω  
= 1kΩ  
L
L
L
-180  
-270  
-360  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FIGURE 11. FREQUENCY RESPONSE  
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
8
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
6
6
3
A
= +1, V = 200mV  
OUT P-P  
A
= -1, V = 200mV  
OUT P-P  
V
R
= 1kΩ  
V
L
3
0
GAIN  
GAIN  
0
R
R
= 100Ω  
= 50Ω  
R
= 1kΩ  
L
L
L
-3  
-6  
-9  
-3  
-6  
-9  
R
= 100Ω  
L
R
= 50Ω  
L
PHASE  
PHASE  
R
= 100Ω  
L
180  
90  
0
-90  
R
= 100Ω  
= 50Ω  
= 1kΩ  
100  
L
L
L
0
-180  
-270  
-360  
R
R
= 50Ω  
= 1kΩ  
R
R
L
-90  
-180  
L
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.3  
1
10  
1000  
FREQUENCY (MHz)  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
12  
6
A
= +2  
A
= +1  
V
V
1V  
3
0
9
6
3
0
P-P  
GAIN  
GAIN  
V
= 4V  
P-P  
OUT  
4.0V  
P-P  
2.5V  
-3  
-6  
V
= 2.5V  
P-P  
OUT  
P-P  
V
= 1V  
P-P  
OUT  
PHASE  
PHASE  
0
0
-90  
-90  
V
= 4V  
OUT  
P-P  
-180  
-270  
-360  
4.0V  
-180  
-270  
-360  
P-P  
P-P  
P-P  
V
= 2.5V  
OUT  
P-P  
2.5V  
1V  
V
= 1V  
P-P  
OUT  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FIGURE15. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
FIGURE16. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
15  
6
V = 5V  
OUT P-P  
A
= -1  
V
= 2.5V  
= 4V  
V
OUT  
P-P  
12  
9
3
0
V
GAIN  
OUT  
P-P  
V
= 1V  
P-P  
OUT  
-3  
-6  
6
3
PHASE  
180  
90  
0
A
= -1  
= +2  
= +1  
V
-3  
-6  
A
V
V
= 4V  
P-P  
OUT  
0
A
V
= 2.5V  
P-P  
V
OUT  
-9  
-12  
-15  
-90  
-180  
V
= 1V  
P-P  
OUT  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FIGURE17. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
FIGURE 18. FULL POWER BANDWIDTH  
9
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
900  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
A
= +1  
V
850  
800  
750  
700  
650  
600  
550  
500  
A
= -1  
V
A
= -1  
A
= +1  
V
V
0
-0.05  
-0.10  
-0.15  
A
= +2  
V
A
= +2  
V
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
o
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 19. -3dB BANDWIDTH vs TEMPERATURE  
FIGURE 20. GAIN FLATNESS  
4
3
A
= +2, V = 2V  
OUT  
V
0.6  
0.4  
2
1
A
= -1  
V
0.2  
0.1  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
A
= +2  
V
-0.2  
A
= +1  
V
-0.4  
-0.6  
-2  
3
8
13  
18  
23  
28 33  
38  
43  
48  
0
15  
30  
45  
60  
75  
90  
105 120 135 150  
FREQUENCY (MHz)  
TIME (ns)  
FIGURE 21. DEVIATION FROM LINEAR PHASE  
FIGURE 22. SETTLING RESPONSE  
235  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
180  
90  
45  
0
A
= +1  
PHASE  
GAIN  
V
A
= +1  
V
A
= -1  
V
-24  
-30  
-36  
-42  
-48  
-54  
-60  
A
= +2  
V
A
= +2  
V
A
= +2  
= -1  
A
= -1  
A
V
V
V
A
= -1  
V
A
= +2  
20  
A
= -1  
V
V
40 60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
100 190 280 370 460 550 640 730 820 910 1000  
FREQUENCY (MHz)  
FIGURE 23. LOW FREQUENCY REVERSE ISOLATION (S  
)
FIGURE 24. HIGH FREQUENCY REVERSE ISOLATION (S )  
12  
12  
10  
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
30  
20  
10  
0
20  
18  
2 - TONE  
A
= -1  
V
16  
14  
12  
10  
8
A
= -1  
V
A = +2  
V
A
= +2  
V
A
= +1  
V
A
= +1  
6
V
4
2
0
100  
200  
300  
400  
100  
200  
300  
FREQUENCY (MHz)  
400  
500  
FREQUENCY (MHz)  
FIGURE 25. 1dB GAIN COMPRESSION vs FREQUENCY  
FIGURE 26. THIRD ORDER INTERMODULATION INTERCEPT  
vs FREQUENCY  
-20  
-20  
A
= +2  
A
= +2  
V
V
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
30MHz  
50MHz  
100MHz  
30MHz  
50MHz  
6
100MHz  
3
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
9
12  
15  
18  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 27. SECOND HARMONIC DISTORTION vs P  
FIGURE 28. THIRD HARMONIC DISTORTION vs P  
OUT  
OUT  
-20  
-30  
-40  
-20  
A
= +1  
A
= +1  
V
V
-30  
-40  
-50  
-60  
-70  
-80  
-50  
-60  
-70  
-80  
30MHz  
50MHz  
100MHz  
100MHz  
30MHz  
6
50MHz  
3
-90  
-90  
-100  
-100  
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 29. SECOND HARMONIC DISTORTION vs P  
FIGURE 30. THIRD HARMONIC DISTORTION vs P  
OUT  
OUT  
11  
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
-20  
-20  
-30  
-40  
A
= -1  
A
= -1  
V
V
-30  
-40  
-50  
-60  
-50  
-60  
30MHz  
-70  
-70  
50MHz  
100MHz  
-80  
-80  
30MHz  
50MHz  
100MHz  
0
-90  
-90  
-100  
-100  
-6  
-3  
3
6
9
12  
15  
-6  
-3  
0
3
6
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 31. SECOND HARMONIC DISTORTION vs P  
FIGURE 32. THIRD HARMONIC DISTORTION vs P  
OUT  
OUT  
0.04  
0.02  
0
60  
V
= 0.5V  
OUT  
50  
40  
30  
20  
A
= +1  
V
-0.02  
-0.04  
A
= -1  
V
10  
0
A
= +2  
V
100  
300  
500  
700  
900  
1100  
1300  
-3.0  
-2.0  
-1.0  
0
1.0  
2.0  
3.0  
INPUT VOLTAGE (V)  
INPUT RISE TIME (ps)  
FIGURE 33. INTEGRAL LINEARITY ERROR  
FIGURE 34. OVERSHOOT vs INPUT RISE TIME  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
10  
0
V
= 1V  
OUT  
V
= 2V  
OUT  
A
= +1  
V
A
= +1  
= -1  
V
A
V
A
= +2  
V
A
= -1  
V
10  
0
A
= +2  
V
100  
300  
500  
700  
900  
1100  
1300  
100  
300  
500  
700  
900  
1100  
1300  
INPUT RISE TIME (ps)  
INPUT RISE TIME (ps)  
FIGURE 35. OVERSHOOT vs INPUT RISE TIME  
FIGURE 36. OVERSHOOT vs INPUT RISE TIME  
12  
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
8
7
6
5
5
6
7
8
9
10  
-50  
-25  
0
25  
50  
75  
100 125  
TOTAL SUPPLY VOLTAGE (V+ - V-, V)  
o
TEMPERATURE ( C)  
FIGURE 37. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 38. SUPPLY CURRENT vs TEMPERATURE  
3.6  
50  
40  
30  
20  
10  
0
130  
A
= -1  
V
3.5  
3.4  
3.3  
3.2  
3.1  
+V  
OUT  
(R = 50Ω)  
L
110  
90  
70  
50  
30  
+V  
OUT  
(R = 100Ω)  
L
|-V  
OUT  
| (R = 100Ω)  
L
3.0  
2.9  
E
NI  
2.8  
2.7  
2.6  
|-V  
OUT  
| (R = 50Ω)  
L
I
NI  
-50  
-25  
0
25  
50  
o
75  
100  
125  
0.1  
1
10  
100  
TEMPERATURE ( C)  
FREQUENCY (kHz)  
FIGURE 39. OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 40. INPUT NOISE CHARACTERISTICS  
A
= +2  
V
IN  
0V TO  
0.5V  
IN  
0V TO  
1V  
A
= +2  
V
OUT  
0V TO  
1V  
OUT  
0V TO  
1V  
TIME (20ns/DIV.)  
TIME (20ns/DIV.)  
FIGURE 41. UNCLAMPED PERFORMANCE  
FIGURE 42. CLAMPED PERFORMANCE  
13  
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
350  
250  
200  
150  
100  
50  
A
= ±1  
A = ±1  
V
V
V
= -500mV  
L
300  
250  
200  
150  
100  
50  
V
= 500mV  
H
V
= -1V  
L
V
V
= 1V  
= 2V  
H
V
= -2V  
H
L
V
= 100mV  
H
V
= -100mV  
L
0
0
100  
200  
300  
400  
500  
0
0
100  
200  
300  
400  
500  
OVERDRIVE (% OF V )  
OVERDRIVE (% OF V )  
H
L
FIGURE 43. V CLAMP ACCURACY vs OVERDRIVE  
FIGURE 44. V CLAMP ACCURACY vs OVERDRIVE  
L
H
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
A
= ±2  
V
A
= +2  
V
= -1V  
V
L
V
= 1V  
H
V
= -500mV  
L
V
= 2V  
H
V
= -2V  
L
V
= 500mV  
H
V
= 100mV  
H
V
= -100mV  
L
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OVERDRIVE (% OF V )  
OVERDRIVE (% OF V )  
H
L
FIGURE 45. V CLAMP ACCURACY vs OVERDRIVE  
FIGURE 46. V CLAMP ACCURACY vs OVERDRIVE  
L
H
3500  
20  
A
= -1  
V
15  
10  
5
3000  
2500  
2000  
1500  
1000  
500  
V
= -3V  
V
= -2V  
V = -1V  
L
L
L
V
= 2V  
H
0
-5  
V
= 1V  
H
V
= 2V  
V = 3V  
H
V
H
= 1V  
H
-10  
-15  
-20  
V
= 0.5V  
H
V
= 0.1V  
H
0
100  
-3  
-2  
-1  
0
1
2
3
200  
300  
400  
500  
A
x V (V)  
IN  
OVERDRIVE LEVEL (% OF CLAMP LEVEL)  
V
FIGURE 47. OVERDRIVE RECOVERY vs OVERDRIVE  
FIGURE 48. NON-LINEARITY NEAR CLAMP VOLTAGE  
14  
HFA1113  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
140  
130  
120  
110  
100  
90  
V
= 1V, V = -1V  
L
H
A
= -1, V = ±1.6V  
= 1V, V = -1V  
L
V
IN  
V
130  
120  
110  
100  
90  
H
V
H
V
L
80  
70  
60  
V
H
V
L
50  
80  
40  
70  
60  
30  
20  
-75  
-25  
75  
125  
-50  
0
25  
50  
100  
150  
-75  
-25  
75  
125  
-50  
0
25  
50  
100  
150  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 49. CLAMP ACCURACY vs TEMPERATURE  
FIGURE 50. CLAMP BIAS CURRENT vs TEMPERATURE  
6
6
V
= 300mV  
P-P  
L
V
= 300mV  
P-P  
H
3
0
3
0
-3  
-3  
-6  
-6  
V
V
= 600mV  
L
L
P-P  
V
= 600mV  
H
P-P  
P-P  
-9  
-9  
= 1.2V  
P-P  
V
= 1.2V  
H
-12  
-12  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
FIGURE 52. V CLAMP INPUT BANDWIDTH  
FIGURE 51. V CLAMP INPUT BANDWIDTH  
H
L
15  
HFA1113  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
63 mils x 44 mils x 19 mils  
Type: Nitride  
1600µm x 1130µm x 483µm  
Thickness: 4kÅ ±0.5kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AICu(2%)  
52  
SUBSTRATE POTENTIAL (POWERED UP):  
Floating (Recommend Connection to V-)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Metallization Mask Layout  
HFA1113  
NC  
+IN  
V-  
V
L
-IN  
V
H
NC  
V+  
OUT  
16  
HFA1113  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC  
PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
E
INCHES  
MILLIMETERS  
-B-  
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
1
2
3
L
-
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
o
h x 45  
D
3
4
-C-  
α
0.050 BSC  
1.27 BSC  
-
e
A1  
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
C
B
0.10(0.004)  
5
0.25(0.010) M  
C
A M B S  
L
6
N
α
8
8
7
NOTES:  
o
o
o
o
0
8
0
8
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 0 12/93  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
17  

相关型号:

HFA1113IB

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
INTERSIL

HFA1113IB

BUFFER AMPLIFIER, PDSO8
ROCHESTER

HFA1113IBZ

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
INTERSIL

HFA1113IBZ96

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
INTERSIL

HFA1113IJ

Buffer Amplifier, 1 Func, BIPolar, CDIP8
RENESAS

HFA1113IP

BUFFER AMPLIFIER, PDIP8
ROCHESTER

HFA1113IP

IC,VOLT FOLLOWER,SINGLE,BIPOLAR,DIP,8PIN,PLASTIC
RENESAS

HFA1113MJ/883

Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier
INTERSIL

HFA1113MJ/883

BUFFER AMPLIFIER, CDIP8
ROCHESTER

HFA1113ML/883

Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier
INTERSIL

HFA1113_05

850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
INTERSIL

HFA1114

850MHz Video Cable Driving Buffer
INTERSIL