HFA1113MJ/883 [INTERSIL]

Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier; 输出限制,超高速可编程增益缓冲放大器
HFA1113MJ/883
型号: HFA1113MJ/883
厂家: Intersil    Intersil
描述:

Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier
输出限制,超高速可编程增益缓冲放大器

缓冲放大器
文件: 总22页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
HFA1113/883  
Output Limiting, Ultra High Speed  
Programmable Gain, Buffer Amplifier  
July 1994  
Features  
Description  
• This Circuit is Processed in Accordance to MIL-STD- The HFA1113/883 is a closed loop buffer featuring a high  
883 and is Fully Conformant Under the Provisions of degree of gain accuracy, wide bandwidth, low distortion, and  
Paragraph 1.2.1.  
programmable output limiting. This buffer is the ideal choice  
for high frequency applications requiring output limiting,  
especially those needing ultra fast overdrive recovery times.  
The output limiting function allows the designer to set the  
maximum positive and negative output levels, thereby pro-  
tecting later stages from damage or input saturation. The  
sub-nanosecond overdrive recovery time quickly returns the  
amplifier to linear operation following an overdrive condition.  
• User Programmable Output Voltage Limiting  
• User Programmable For Closed-Loop Gains of +1, -1  
or +2 Without Use of External Resistors  
• Low Differential Gain and Phase . . . . .0.02%/0.04 Deg.  
• Low Distortion (HD3, 30MHz) . . . . . . . . . . -73dBc (Typ)  
• Wide -3dB Bandwidth . . . . . . . . . . . . . . . 850MHz (Typ)  
• Very High Slew Rate . . . . . . . . . . . . . . . 2400V/µs (Typ)  
• Fast Settling (0.1%) . . . . . . . . . . . . . . . . . . . . 13ns (Typ)  
• Excellent Gain Flatness (to 100MHz) . . . . 0.07dB (Typ)  
• Excellent Gain Accuracy. . . . . . . . . . . . . . 0.99V/V (Typ)  
• High Output Current . . . . . . . . . . . . . . . . . . 60mA (Typ)  
• Fast Overdrive Recovery . . . . . . . . . . . . . . . <1ns (Typ)  
Component and composite video systems will also benefit  
from this buffer’s performance, as indicated by the excellent  
gain flatness, and 0.02%/0.04 Deg. Differential Gain/Phase  
specifications (R = 150).  
L
A unique feature of the pinout allows the user to select a  
voltage gain of +1, -1, or +2, without the use of any external  
components, as described in the “Design Information” sec-  
tion. Compatibility with existing op amp pinouts provides  
flexibility to upgrade low gain amplifiers, while decreasing  
component count. Unlike most buffers, the standard pinout  
provides an upgrade path should a higher closed loop gain  
be needed at a future date.  
Applications  
This amplifier is available without output limiting as the  
HFA1112/883. For applications requiring a standard buffer  
pinout, please refer to the HFA1110/883 datasheet.  
• Video Switching and Routing  
• Pulse and Video Amplifiers  
• Wideband Amplifiers  
• RF/IF Signal Processing  
• Flash A/D Driver  
Ordering Information  
TEMPERATURE  
PART NUMBER  
HFA1113MJ/883  
HFA1113ML/883  
RANGE  
PACKAGE  
• Medical Imaging Systems  
-55oC to +125oC 8 Lead CerDIP  
-55oC to +125oC 20 Lead Ceramic LCC  
Pinouts  
HFA1113/883  
(CERDIP)  
HFA1113/883  
(CLCC)  
TOP VIEW  
TOP VIEW  
300  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
VH  
3
2
1
20 19  
300  
V+  
VH  
V+  
300  
18  
17  
16  
15  
14  
NC  
-IN  
4
5
6
7
8
-
+
300  
OUT  
VL  
-
NC  
+IN  
NC  
NC  
+
OUT  
NC  
13  
10 11 12  
9
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc.  
Spec Number 511106-883  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
189  
FN3618.1  
Specifications HFA1113/883  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V  
Voltage at Either Input Terminal. . . . . . . . . . . . . . . . . . . . . . V+ to V-  
Voltage at VH or VL Terminal . . . . . . . . . . . . . (V+) + 2V to (V-) - 2V  
Output Current (50% Duty Cycle) . . . . . . . . . . . . . . . . . . . . . . . .±55mA  
Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC  
ESD Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .< 2000V  
Storage Temperature Range . . . . . . . . . . . . . .-65oC TA +150oC  
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +300oC  
Thermal Resistance  
θJA  
θJC  
CerDIP Package . . . . . . . . . . . . . . . . . 115oC/W  
Ceramic LCC Package . . . . . . . . . . . . 75oC/W  
Maximum Package Power Dissipation at +75oC  
30oC/W  
23oC/W  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.87W  
Ceramic LCC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.33W  
Package Power Dissipation Derating Factor above +75oC  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.7mW/oC  
Ceramic LCC Package . . . . . . . . . . . . . . . . . . . . . . . . 13.3mW/oC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
Operating Supply Voltage (±VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5V  
Operating Temperature Range. . . . . . . . . . . . .-55oC TA +125oC  
RL Š50Ω  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Device Tested at: VSUPPLY = ±5V, RSOURCE = 0, RL = 100, VOUT = 0V, Unless Otherwise Specified.  
LIMITS  
GROUP A  
PARAMETERS  
SYMBOL  
CONDITIONS  
VCM = 0V  
SUBGROUPS  
TEMPERATURE  
+25oC  
+125oC, -55oC  
+25oC  
MIN  
MAX  
UNITS  
mV  
Output Offset Voltage  
VOS  
1
-25  
-40  
39  
25  
40  
-
2, 3  
1
mV  
Power Supply  
Rejection Ratio  
PSRRP  
PSRRN  
VSUPPLY = ±1.25V,  
V+ = 6.25V, V- = -5V,  
V+ = 3.75V, V- = -5V  
dB  
2, 3  
+125oC, -55oC  
35  
-
dB  
VSUPPLY = ±1.25V,  
V+ = 5V, V- = -6.25V,  
V+ = 5V, V- = -3.75V  
1
+25oC  
+125oC, -55oC  
39  
35  
-
-
dB  
dB  
2, 3  
Non-Inverting Input (+IN)  
Current  
IBSP  
VCM = 0V  
1
+25oC  
+125oC, -55oC  
+25oC  
-40  
-65  
-
40  
65  
40  
50  
µA  
µA  
2, 3  
1
+IN Common  
Mode Rejection  
CMSIBP  
VCM = ±2V,  
V+ = 3V, V- = -7V,  
V+ = 7V, V- = -3V  
µA/V  
µA/V  
2, 3  
+125oC, -55oC  
-
+IN Resistance  
+RIN  
AVP1  
Note 1  
1
2, 3  
1
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
25  
-
kΩ  
kΩ  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V
20  
-
Gain (VOUT = 2VP-P  
Gain (VOUT = 2VP-P  
Gain (VOUT = 4VP-P  
)
)
)
AV = +1,  
0.980  
0.975  
0.980  
0.975  
1.960  
1.950  
3
1.020  
1.025  
1.020  
1.025  
2.040  
2.050  
-
VIN = -1V to +1V  
2, 3  
1
AVM1  
AV = -1,  
IN = -1V to +1V  
V
2, 3  
1
AVP2  
AV = +2,  
IN = -1V to +1V  
V
2, 3  
1
Output Voltage  
Swing  
VOP100  
AV = -1  
RL = 100Ω  
VIN = -3.2V  
VIN = -  
2.7V  
2, 3  
+125oC, -55oC  
2.5  
-
V
VON100  
AV = -1  
RL = 100Ω  
VIN = +3.2V  
VIN = +2.7V  
VIN = -2.7V  
1
+25oC  
+125oC, -55oC  
+25oC, +125oC  
-55oC  
-
-3  
V
V
V
V
2, 3  
1, 2  
3
-
-2.5  
Output Voltage  
Swing  
VOP50  
AV = -1  
RL = 50Ω  
2.5  
1.5  
-
-
VIN = -  
2.25V  
VON50  
AV = -1  
RL = 50Ω  
VIN = +2.7V  
VIN =+2.25V  
1, 2  
3
+25oC, +125oC  
-55oC  
-
-
-2.5  
-1.5  
V
V
Spec Number 511106-883  
190  
Specifications HFA1113/883  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Tested at: VSUPPLY = ±5V, RSOURCE = 0, RL = 100, VOUT = 0V, Unless Otherwise Specified.  
LIMITS  
GROUP A  
PARAMETERS  
Output Current  
SYMBOL  
CONDITIONS  
Note 2  
SUBGROUPS  
TEMPERATURE  
+25oC, +125oC  
-55oC  
+25oC, +125oC  
-55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
+125oC, -55oC  
+25oC  
MIN  
MAX  
-
UNITS  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mV  
mV  
mV  
mV  
µA  
+IOUT  
1, 2  
3
50  
30  
-
-IOUT  
Note 2  
1, 2  
3
-
-50  
-30  
26  
33  
-14  
-
-
Quiescent Power  
Supply Current  
ICC  
RL = 100Ω  
1
14  
2, 3  
1
-
IEE  
RL = 100Ω  
-26  
-33  
-150  
-200  
-150  
-200  
-
2, 3  
1
Limiting Accuracy  
VH or VL Input Current  
NOTES:  
VHCLMP  
VLCLMP  
VHBIAS  
VLBIAS  
AV = -1, VIN = -1.6V,  
150  
200  
150  
200  
200  
300  
-
VH = 1V  
2, 3  
1
AV = -1, VIN = +1.6V,  
VL = -1V  
2, 3  
1
VH = 1V  
2, 3  
1
-
µA  
VL = -1V  
-200  
-300  
µA  
2, 3  
+125oC, -55oC  
-
µA  
1. Guaranteed from +IN Common Mode Rejection Test, by: +RIN = 1/CMSIBP  
.
2. Guaranteed from VOUT Test with RL = 50, by: IOUT = VOUT/50Ω.  
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS  
Table 2 Intentionally Left Blank.  
Device Characterized at: VSUPPLY = ±5V, RL = 100Ω, Unless Otherwise Specified.  
LIMITS  
PARAMETERS  
-3dB Bandwidth  
SYMBOL  
BW(-1)  
BW(+1)  
BW(+2)  
GF30  
CONDITIONS  
AV = -1, VOUT = 200mVP-P  
AV = +1, VOUT = 200mVP-P  
AV = +2, VOUT = 200mVP-P  
AV = +2, f 30MHz,  
NOTES  
TEMPERATURE  
+25oC  
MIN  
450  
500  
350  
-
MAX  
UNITS  
MHz  
MHz  
MHz  
dB  
1
1
1
1
-
+25oC  
-
-
+25oC  
Gain Flatness  
+25oC  
±0.04  
VOUT = 200mVP-P  
GF50  
A
V
V = +2, f 50MHz,  
OUT = 200mVP-P  
1
1
+25oC  
+25oC  
-
-
±0.08  
±0.22  
dB  
dB  
GF100  
A
V
V = +2, f 100MHz,  
OUT = 200mVP-P  
Slew Rate  
+SR(-1)  
-SR(-1)  
+SR(+1)  
-SR(+1)  
+SR(+2)  
-SR(+2)  
A
V = -1, VOUT = 5VP-P  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
1500  
1800  
900  
-
-
-
-
-
-
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
AV = -1, VOUT = 5VP-P  
AV = +1, VOUT = 5VP-P  
AV = +1, VOUT = 5VP-P  
AV = +2, VOUT = 5VP-P  
AV = +2, VOUT = 5VP-P  
800  
1200  
1100  
Spec Number 511106-883  
191  
Specifications HFA1113/883  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Characterized at: VSUPPLY = ±5V, RL = 100Ω, Unless Otherwise Specified.  
LIMITS  
MIN  
PARAMETERS  
SYMBOL  
TR(-1)  
CONDITIONS  
AV = -1, VOUT = 0.5VP-P  
AV = -1, VOUT = 0.5VP-P  
AV = +1, VOUT = 0.5VP-P  
AV = +1, VOUT = 0.5VP-P  
AV = +2, VOUT = 0.5VP-P  
AV = +2, VOUT = 0.5VP-P  
NOTES  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
1
TEMPERATURE  
+25oC  
MAX  
750  
800  
750  
750  
1000  
1000  
30  
UNITS  
ps  
ps  
ps  
ps  
ps  
ps  
%
Rise and Fall Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
TF(-1)  
+25oC  
TR(+1)  
+25oC  
TF(+1)  
+25oC  
TR(+2)  
+25oC  
TF(+2)  
+25oC  
Overshoot  
+OS(-1)  
-OS(-1)  
+OS(+1)  
-OS(+1)  
+OS(+2)  
-OS(+2)  
TS(0.1)  
A
V = -1, VOUT = 0.5VP-P  
AV = -1, VOUT = 0.5VP-P  
V = +1, VOUT = 0.5VP-P  
+25oC  
+25oC  
25  
%
A
+25oC  
65  
%
AV = +1, VOUT = 0.5VP-P  
AV = +2, VOUT = 0.5VP-P  
AV = +2, VOUT = 0.5VP-P  
+25oC  
60  
%
+25oC  
20  
%
+25oC  
20  
%
Settling Time  
AV = +2, to 0.1%, VOUT = 2V to  
+25oC  
20  
ns  
0V  
TS(0.05)  
HD2(30)  
HD2(50)  
HD2(100)  
HD3(30)  
HD3(50)  
HD3(100)  
A
V = +2, to 0.05%,  
1
1
1
1
1
1
1
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
-
-
-
-
-
-
-
33  
-45  
-40  
-35  
-65  
-55  
-45  
ns  
VOUT = 2V to 0V  
2nd Harmonic Distortion  
A
V = +2, f = 30MHz,  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
VOUT = 2VP-P  
A
V = +2, f = 50MHz,  
VOUT = 2VP-P  
A
V = +2, f = 100MHz,  
VOUT = 2VP-P  
3rd Harmonic Distortion  
AV = +2, f = 30MHz,  
VOUT = 2VP-P  
A
V = +2, f = 50MHz,  
VOUT = 2VP-P  
A
V = +2, f = 100MHz,  
VOUT = 2VP-P  
NOTES:  
1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These param-  
eters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization  
based upon data from multiple production runs which reflect lot-to-lot and within lot variation.  
2. Measured between 10% and 90% points.  
3. For 200ps input transition times. Overshoot decreases as input transition times increase, especially for AV = +1. Please refer to  
Performance Curves.  
TABLE 4. ELECTRICAL TEST REQUIREMENTS  
MIL-STD-883 TEST REQUIREMENTS  
Interim Electrical Parameters (Pre Burn-In)  
Final Electrical Test Parameters  
Group A Test Requirements  
SUBGROUPS (SEE TABLE 1)  
1
1 (Note 1), 2, 3  
1, 2, 3  
Groups C and D Endpoints  
1
NOTE:  
1. PDA applies to Subgroup 1 only.  
Spec Number 511106-883  
192  
HFA1113/883  
Die Characteristics  
DIE DIMENSIONS:  
63 x 44 x 19 mils ± 1 mils  
1600 x 1130 x 483µm ± 25.4µm  
METALLIZATION:  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ± 0.4kÅ  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ± 0.8kÅ  
GLASSIVATION:  
Type: Nitride  
Thickness: 4kÅ ± 0.5kÅ  
WORST CASE CURRENT DENSITY:  
5
2
2.0 x 10 A/cm at 47.5mA  
TRANSISTOR COUNT: 52  
SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)  
Metallization Mask Layout  
HFA1113/883  
NC  
+IN  
V-  
VL  
-IN  
VH  
NC  
V+  
OUT  
Spec Number 511106-883  
193  
HFA1113/883  
Test Circuit (Applies to Table 1)  
NC  
K3  
VL  
50  
0.1  
0.1  
VY  
V+  
+
Vos  
VY  
=
100  
10  
0.1  
ICC  
0.1  
+
-
470pF  
NC  
510  
x100  
510  
7
1
K2  
2
5
-
-VIN  
1K  
6
2
0.1  
VOUT  
DUT  
1
3
+
+VIN  
8
100  
100  
0.1  
K1  
2
4
50  
100K (0.01%)  
K3  
VZ  
+IBIAS  
=
0.1  
100K  
-
+
10  
0.1  
NC  
VZ  
+
0.1  
HA-5177  
K4  
NOTE:  
Terminal Numbers Refer to CerDIP Package  
All Resistors = ±1% ()  
IEE  
0.1  
All Capacitors = ±10% (µF)  
Unless Otherwise Noted  
Chip Components Recommended  
V-  
VH  
For AV = +1, K1 = Position 1, K2 = Position 1  
For AV = +2, K1 = Position 1, K2 = Position 2, -VIN = 0V  
For AV = -1, K1 = Position 1, K2 = Position 2, +VIN = 0V  
Test Waveforms  
SIMPLIFIED TEST CIRCUIT FOR LARGE AND SMALL SIGNAL PULSE RESPONSE (Applies to Table 3)  
AV = +1 or +2 TEST CIRCUIT  
AV = -1 TEST CIRCUIT  
V+  
V+  
7
7
2
3
6
+
-
VOUT  
2
VOUT  
2
6
-
VIN  
VIN  
2
3
+
RS  
50Ω  
RS  
50Ω  
50Ω  
50Ω  
4
4
50Ω  
50Ω  
RG  
V-  
V-  
NOTE:  
VS = ±5V, AV = -1  
NOTE:  
VS = ±5V, RG = 0for AV = +2, RG = for AV = +1  
F = Internal, RS = 50Ω  
RL = 100For Small and Large Signals  
Terminal Numbers Refer to CerDIP Package  
R
R
F = Internal  
S = 50Ω, RL = 100For Small and Large Signals  
R
Terminal Numbers Refer to CerDIP Package  
LARGE SIGNAL WAVEFORM  
SMALL SIGNAL WAVEFORM  
VOUT  
VOUT  
+2.5V  
+2.5V  
+250mV  
+250mV  
90%  
90%  
90%  
90%  
+SR  
-SR  
TR , +OS  
-250mV  
T
F , -OS  
10%  
10%  
10%  
10%  
-2.5V  
-2.5V  
-250mV  
Spec Number 511106-883  
194  
HFA1113/883  
Burn-In Circuits  
HFA1113MJ/883 CERAMIC DIP  
300  
1
2
3
4
8
7
6
5
D3  
C1  
300  
NC  
V+  
-
+
D1  
D4  
R1  
V-  
D2  
C2  
NOTES:  
R1 = 100, ±5% (Per Socket)  
C1 = C2 = 0.01µF (Per Socket) or 0.1µF (Per Row) Minimum  
D1 = D2 = 1N4002 or Equivalent (Per Board)  
D3 = D4 = 1N4002 or Equivalent (Per Socket)  
V+ = +5.5V ±0.5V  
V- = -5.5V ±0.5V  
HFA1113ML/883 CERAMIC LCC  
3
2
1 20 19  
18  
17  
16  
15  
14  
4
5
6
7
8
300  
D3  
300  
V+  
NC  
-
C1  
D1  
+
R1  
R2  
13  
10 11 12  
9
D4  
V-  
D2  
C2  
NOTES:  
R1 = 1k, ±5% (Per Socket)  
R2 = 100, ±5% (Per Socket)  
C1 = C2 = 0.01µF (Per Socket) or 0.1µF (Per Row) Minimum  
D1 = D2 = 1N4002 or Equivalent (Per Board)  
D3 = D4 = 1N4002 or Equivalent (Per Socket)  
V+ = +5.5V ±0.5V  
V- = -5.5V ±0.5V  
Spec Number 511106-883  
195  
HFA1113/883  
Ceramic Dual-In-Line Frit Seal Packages (CerDIP)  
c1 LEAD FINISH  
F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A)  
8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES MILLIMETERS  
MIN  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.405  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
10.29  
7.87  
NOTES  
b1  
A
b
-
-
M
M
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
(b)  
b1  
b2  
b3  
c
3
SECTION A-A  
S
S
S
D
bbb  
C A - B  
D
-
4
BASE  
PLANE  
Q
2
A
-C-  
SEATING  
PLANE  
c1  
D
3
L
α
5
S1  
b2  
eA  
A A  
E
0.220  
5.59  
5
e
b
C A - B  
eA/2  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
M
S
M
S
S
S
D
ccc  
D
aaa  
C A - B  
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.38  
6
S1  
α
0.005  
0.13  
7
90o  
105o  
0.015  
0.030  
0.010  
0.0015  
90o  
105o  
0.38  
0.76  
0.25  
0.038  
-
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
aaa  
bbb  
ccc  
M
-
-
-
-
-
-
-
-
-
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
8
8
Rev. 0 4/94  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
11. Materials: Compliant to MIL-I-38535.  
Spec Number 511106-883  
196  
HFA1113/883  
Ceramic Leadless Chip Carrier Packages (CLCC)  
J20.A MIL-STD-1835 CQCC1-N20 (C-2)  
20 PAD LEADLESS CERAMIC CHIP CARRIER  
0.010  
E H  
S
S
D
INCHES  
MIN  
MILLIMETERS  
D3  
SYMBOL  
A
MAX  
0.100  
0.088  
-
MIN  
1.52  
1.27  
-
MAX  
2.54  
2.23  
-
NOTES  
j x 45o  
0.060  
0.050  
-
6, 7  
A1  
B
-
-
B1  
B2  
B3  
D
0.022  
0.028  
0.56  
0.71  
2, 4  
E3  
E
0.072 REF  
1.83 REF  
-
B
0.006  
0.342  
0.022  
0.358  
0.15  
8.69  
0.56  
9.09  
-
-
D1  
D2  
D3  
E
0.200 BSC  
0.100 BSC  
5.08 BSC  
2.54 BSC  
-
-
h x 45o  
-
0.358  
0.358  
-
9.09  
9.09  
2
0.010  
E F  
S
S
0.342  
8.69  
-
A
A1  
E1  
E2  
E3  
e
0.200 BSC  
0.100 BSC  
0.358  
0.050 BSC  
0.015  
5.08 BSC  
2.54 BSC  
9.09  
1.27 BSC  
0.38  
1.02 REF  
0.51 REF  
-
-
PLANE 2  
PLANE 1  
-
-
2
-
-E-  
e1  
h
-
-
2
0.040 REF  
0.020 REF  
5
j
5
0.007  
E F  
H
S S  
M
L
0.045  
0.055  
0.055  
0.095  
0.015  
1.14  
1.14  
1.91  
0.08  
1.40  
1.40  
2.41  
0.38  
-
B1  
L1  
L2  
L3  
ND  
NE  
N
0.045  
0.075  
0.003  
-
e
L3  
L
-
-H-  
-
5
5
5
5
3
3
3
20  
20  
-F-  
Rev. 0 4/94  
B3  
E1  
NOTES:  
1. Metallized castellations shall be connected to plane 1 terminals  
and extend toward plane 2 across at least two layers of ceramic  
or completely across all of the ceramic layers to make electrical  
connection with the optional plane 2 terminals.  
L2  
E2  
B2  
2. Unless otherwise specified, a minimum clearance of 0.015 inch  
(0.38mm) shall be maintained between all metallized features  
(e.g., lid, castellations, terminals, thermal pads, etc.)  
L1  
D2  
3. Symbol “N” is the maximum number of terminals. Symbols “ND”  
and “NE” are the number of terminals along the sides of length  
“D” and “E”, respectively.  
e1  
D1  
4. The required plane 1 terminals and optional plane 2 terminals (if  
used) shall be electrically connected.  
5. The corner shape (square, notch, radius, etc.) may vary at the  
manufacturer’s option, from that shown on the drawing.  
6. Chip carriers shall be constructed of a minimum of two ceramic  
layers.  
7. Dimension “A” controls the overall package thickness. The maxi-  
mum “A” dimension is package height before being solder dipped.  
8. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
9. Controlling dimension: INCH.  
10. Materials: Compliant to MIL-I-38535.  
Spec Number 511106-883  
197  
TM  
HFA1113  
DESIGN INFORMATION  
February 2002  
Output Limiting, Ultra High Speed  
Programmable Gain Buffer Amplifier  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified  
SMALL SIGNAL PULSE RESPONSE  
LARGE SIGNAL PULSE RESPONSE  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
AV = +2  
AV = +2  
0
-50  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-150  
-200  
5ns/DIV  
5ns/DIV  
SMALL SIGNAL PULSE RESPONSE  
LARGE SIGNAL PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
150  
100  
50  
AV = +1  
AV = +1  
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
5ns/DIV  
5ns/DIV  
SMALL SIGNAL PULSE RESPONSE  
LARGE SIGNAL PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
150  
100  
50  
AV = -1  
AV = -1  
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
5ns/DIV  
5ns/DIV  
Spec Number 511106-883  
198  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
UNCLAMPED PERFORMANCE  
CLAMPED PERFORMANCE  
(AV = +2, VH = 2V, VL = -2V)  
(AV = +2, VH = 1V, VL = -1V, 2X Overdrive)  
AV = +2  
IN  
0V TO  
1V  
IN  
0V TO  
0.5V  
AV = +2  
OUT  
0V TO  
1V  
OUT  
0V TO  
1V  
20ns/DIV  
20ns/DIV  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS  
6
AV = +2, VOUT = 200mVP-P  
9
AV = +1  
VOUT = 200mVP-P  
3
0
6
GAIN  
GAIN  
AV = -1  
AV = +2  
3
-3  
RL = 50Ω  
RL = 100Ω  
RL = 1kΩ  
0
-6  
-9  
0
PHASE  
-90  
AV = +2  
AV = -1  
AV = +1  
0
-180  
-270  
-360  
PHASE  
-90  
RL = 100Ω  
RL = 50Ω  
RL = 1kΩ  
-180  
-270  
-360  
0.3  
1
10  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS  
6
FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS  
6
AV = -1, VOUT = 200mVP-P  
AV = +1, VOUT = 200mVP-P  
RL = 1kΩ  
3
3
RL = 1kΩ  
0
0
GAIN  
GAIN  
PHASE  
1
RL = 100Ω  
RL = 50Ω  
RL = 100Ω  
-3  
-3  
-6  
-9  
RL = 50Ω  
-6  
-9  
RL = 100Ω  
180  
0
PHASE  
90  
-90  
RL = 100Ω  
RL = 50Ω  
-180  
-270  
-360  
0
RL = 50Ω  
RL = 1kΩ  
-90  
RL = 1kΩ  
-180  
1000  
0.3  
10  
FREQUENCY (MHz)  
100  
1000  
0.3  
1
10  
100  
FREQUENCY (MHz)  
Spec Number 511106-883  
199  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES  
12  
FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES  
6
AV = +1  
1VP-P  
AV = +2  
9
3
0
6
GAIN  
VOUT = 4VP-P  
-3  
GAIN  
3
VOUT = 2.5VP-P  
4.0VP-P  
-6  
0
VOUT = 1VP-P  
2.5VP-P  
0
0
PHASE  
PHASE  
-90  
-90  
-180  
-180  
4.0VP-P  
VOUT = 4VP-P  
2.5VP-P  
1VP-P  
-270  
-360  
-270  
-360  
VOUT = 2.5VP-P  
VOUT = 1VP-P  
0.3  
1
10  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES  
6
FULL POWER BANDWIDTH  
15  
12  
9
AV = -1  
VOUT = 2.5VP-P  
VOUT = 4VP-P  
VOUT = 5VP-P  
3
0
GAIN  
VOUT = 1VP-P  
-3  
-6  
6
3
PHASE  
180  
90  
0
AV = -1  
AV = +2  
-3  
-6  
VOUT = 4VP-P  
0
AV = +1  
VOUT = 2.5VP-P  
VOUT = 1VP-P  
-90  
-180  
-9  
-12  
-15  
0.3  
1
10  
100  
1000  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
-3dB BANDWIDTH vs TEMPERATURE  
GAIN FLATNESS  
900  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
AV = +1  
AV = -1  
850  
800  
750  
700  
650  
600  
550  
500  
AV = -1  
AV = +1  
0
-0.05  
-0.10  
-0.15  
AV = +2  
AV = +2  
100  
1
10  
FREQUENCY (MHz)  
-50  
-25  
0
+25  
+50  
+75 +100 +125  
TEMPERATURE (oC)  
Spec Number 511106-883  
200  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
DEVIATION FROM LINEAR PHASE  
SETTLING RESPONSE  
4
3
AV = +2, VOUT = 2V  
0.6  
0.4  
2
1
AV = -1  
AV = +2  
0.2  
0.1  
0
-0.1  
-0.2  
0
-1  
-2  
-3  
-4  
-5  
-6  
AV = +1  
-0.4  
-0.6  
-2  
3
8
13  
18  
23  
28 33  
38  
43  
48  
0
15  
30  
45 60 75  
90 105 120 135 150  
TIME (ns)  
FREQUENCY (MHz)  
LOW FREQUENCY REVERSE ISOLATION (S12  
)
HIGH FREQUENCY REVERSE ISOLATION (S12)  
180  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
135  
90  
45  
0
PHASE  
AV = +1  
AV = +1  
AV = -1  
AV = +2  
GAIN  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
AV = +2  
AV = -1  
AV = +2  
AV = +1  
AV = -1  
AV = +2  
AV = -1  
100 190 280 370 460 550 640 730 820 910 1000  
20  
40 60  
80 100 120 140 160 180 200  
FREQUENCY (MHz)  
0
FREQUENCY (MHz)  
1dB GAIN COMPRESSION vs FREQUENCY  
3rd ORDER INTERMODULATION INTERCEPT vs FREQUENCY  
20  
18  
16  
14  
12  
10  
8
30  
2 - TONE  
AV = -1  
AV = -1  
20  
AV = +2  
AV = +2  
AV = +1  
AV = +1  
10  
6
4
2
0
100  
0
100  
200  
300  
400  
200  
300  
400  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Spec Number 511106-883  
201  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
2nd HARMONIC DISTORTION vs POUT  
3rd HARMONIC DISTORTION vs POUT  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
AV = +2  
AV = +2  
30MHz  
50MHz  
100MHz  
30MHz  
50MHz  
100MHz  
-6  
-3  
0
3
6
9
12  
15  
18  
-6  
-3  
0
3
6
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
2nd HARMONIC DISTORTION vs POUT  
AV = +1  
3rd HARMONIC DISTORTION vs POUT  
AV = +1  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-50  
-60  
-70  
-80  
30MHz  
50MHz  
100MHz  
100MHz  
30MHz  
6
50MHz  
-90  
-90  
-100  
-100  
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
3
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
2nd HARMONIC DISTORTION vs POUT  
AV = -1  
3rd HARMONIC DISTORTION vs POUT  
AV = -1  
-20  
-30  
-40  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-50  
-60  
50MHz  
30MHz  
100MHz  
-70  
-80  
30MHz  
50MHz  
100MHz  
-90  
-90  
-100  
-100  
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
3
6
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Spec Number 511106-883  
202  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
INTEGRAL LINEARITY ERROR  
OVERSHOOT vs INPUT RISE TIME  
60  
50  
40  
30  
20  
+0.04  
+0.02  
0
VOUT = 0.5V  
AV = +1  
-0.02  
AV = -1  
10  
0
AV = +2  
300  
-0.04  
100  
500  
700  
900  
1100  
1300  
-3.0  
-2.0  
-1.0  
0
+1.0  
+2.0  
+3.0  
INPUT VOLTAGE (V)  
INPUT RISE TIME (ps)  
OVERSHOOT vs INPUT RISE TIME  
VOUT = 1V  
OVERSHOOT vs INPUT RISE TIME  
VOUT = 2V  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
AV = +1  
AV = +1  
AV = +2  
AV = -1  
10  
0
AV = -1  
AV = +2  
100  
300  
500  
700  
900  
1100  
1300  
100  
300  
500  
700  
900  
1100  
1300  
INPUT RISE TIME (ps)  
INPUT RISE TIME (ps)  
SUPPLY CURRENT vs SUPPLY VOLTAGE  
SUPPLY CURRENT vs TEMPERATURE  
25  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
8
7
6
5
-50  
-25  
0
+25  
+50  
+75  
+100 +125  
5
6
7
8
9
10  
TEMPERATURE (oC)  
TOTAL SUPPLY VOLTAGE (V+ - V-, V)  
Spec Number 511106-883  
203  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
OUTPUT VOLTAGE vs TEMPERATURE  
INPUT NOISE CHARACTERISTICS  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
50  
40  
30  
20  
10  
0
130  
110  
AV = -1  
+VOUT (RL = 50Ω)  
+VOUT (RL = 100Ω)  
|-VOUT| (RL = 100Ω)  
90  
70  
50  
30  
3.0  
2.9  
eni  
ini  
2.8  
2.7  
2.6  
|-VOUT| (RL = 50Ω)  
-50  
-25  
0
+25  
+50  
+75  
+100 +125  
0.1  
1
10  
100  
TEMPERATURE (oC)  
FREQUENCY (kHz)  
NON-LINEARITY NEAR CLAMP VOLTAGE  
VH CLAMP ACCURACY vs OVERDRIVE  
(AV = -1)  
20  
350  
300  
250  
200  
150  
100  
50  
AV = ±1  
15  
10  
5
VL = -2V  
VL = -3V  
VL = -1V  
VH = 500mV  
VH = 1V  
0
-5  
V
H = 2V  
VH = 2V  
VH = 1V  
VH = 3V  
-10  
-15  
-20  
VH = 100mV  
-3  
-2  
-1  
0
1
2
3
0
0
100  
200  
300  
400  
500  
A
V * VIN (V)  
OVERDRIVE (% OF VH)  
VL CLAMP ACCURACY vs OVERDRIVE  
VH CLAMP ACCURACY vs OVERDRIVE  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
AV = ±1  
AV = +2  
VL = 500mV  
VH = 1V  
VL = 1V  
V
H = 2V  
VH = 500mV  
VL = 2V  
VH = 100mV  
VL = 100mV  
400 500  
0
100  
200  
300  
0
0
100  
200  
300  
400  
500  
OVERDRIVE (% OF VL)  
OVERDRIVE (% OF VH)  
Spec Number 511106-883  
204  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves VSUPPLY = ±5V, RL = 100, TA = +25oC, Unless Otherwise Specified (Continued)  
VL CLAMP ACCURACY vs OVERDRIVE  
OVERDRIVE RECOVERY vs OVERDRIVE  
250  
200  
150  
100  
50  
3500  
3000  
2500  
2000  
1500  
AV = +2  
VL = 1V  
VL = 500mV  
VH = 2V  
V
L = 2V  
VH = 1V  
1000  
500  
0
V
H = 0.5V  
VL = 100mV  
400  
VH = 0.1V  
0
0
100  
200  
300  
500  
100  
200  
300  
400  
500  
OVERDRIVE (% OF VL)  
OVERDRIVE LEVEL (% OF CLAMP LEVEL)  
CLAMP ACCURACY vs TEMPERATURE  
CLAMP BIAS CURRENT vs TEMPERATURE  
VH = 1V, VL = -1V  
140  
130  
120  
110  
100  
130  
120  
110  
100  
90  
AV = -1, VIN = ±1.6V  
VH = 1V, VL = -1V  
VL  
VH  
80  
70  
90  
80  
60  
VH  
VL  
50  
40  
70  
60  
30  
20  
-75  
-75  
-25  
+75  
TEMPERATURE (°C)  
+125  
+100 +150  
-50  
0
+25 +50  
-25  
+25  
+75  
+125  
+100 +150  
-50  
0
+50  
TEMPERATURE (°C)  
VH CLAMP INPUT BANDWIDTH  
VL CLAMP INPUT BANDWIDTH  
6
3
0
6
VL = 300mVP-P  
VH = 300mVP-P  
3
0
-3  
-3  
-6  
-6  
VL = 600mVP-P  
VL = 1.2VP-P  
VH = 600mVP-P  
VH = 1.2VP-P  
-9  
-9  
-12  
-12  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
Spec Number 511106-883  
205  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Application Information  
Closed Loop Gain Selection  
The HFA1113 features a novel design which allows the user Figure 1 details starting points for the selection of this resis-  
to select from three closed loop gains, without any external tor. The points on the curve indicate the R and C combina-  
S
L
components. The result is a more flexible product, fewer part tions for the optimum bandwidth, stability, and settling time,  
types in inventory, and more efficient use of board space.  
but experimental fine tuning is recommended. Picking a  
point above or to the right of the curve yields an overdamped  
response, while points below or left of the curve indicate  
areas of underdamped performance.  
This “buffer” operates in closed loop gains of -1, +1, or +2, and  
gain selection is accomplished via connections to the ±Inputs.  
Applying the input signal to +IN and floating -IN selects a gain  
of +1, while grounding -IN selects a gain of +2. A gain of -1 is  
obtained by applying the input signal to -IN with +IN grounded.  
R and C form a low pass network at the output, thus lim-  
S
L
iting system bandwidth well below the amplifier bandwidth  
of 850MHz. By decreasing R as C increases (as illus-  
S
L
The table below summarizes these connections:  
trated in the curves), the maximum bandwidth is obtained  
without sacrificing stability. Even so, bandwidth does  
decrease as you move to the right along the curve. For  
CONNECTIONS  
GAIN  
(ACL  
)
+INPUT (PIN 3)  
-INPUT (PIN 2)  
example, at A = +1, R = 50, C = 30pF, the overall  
bandwidth is limited to 300MHz, and bandwidth drops to  
V
S
L
-1  
GND  
Input  
+1  
Input  
NC (Floating)  
GND  
100MHz at A = +1, R = 5, C = 340pF.  
V
S
L
+2  
Input  
PC Board Layout  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip resis-  
tors and chip capacitors is strongly recommended,  
while a solid ground plane is a must!  
AV = +1  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
AV = +2  
40  
0
0
80 120 160 200 240 280 320 360 400  
LOAD CAPACITANCE (pF)  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs.  
LOAD CAPACITANCE  
Evaluation Board  
For unity gain applications, care must also be taken to  
minimize the capacitance to ground seen by the amplifier’s  
inverting input. At higher frequencies this capacitance will  
tend to short the -INPUT to GND, resulting in a closed loop  
gain which increases with frequency. This will cause  
excessive high frequency peaking and potentially other  
problems as well.  
The performance of the HFA1113 may be evaluated using  
the HFA11XX Evaluation Board, slightly modified as follows:  
1. Remove the 500feedback resistor (R2), and leave the  
connection open.  
2. A. For A = +1 evaluation, remove the 500gain setting  
V
resistor (R1), and leave pin 2 floating.  
An example of a good high frequency layout is the Evalua-  
tion Board shown in Figure 2.  
B. For A = +2, replace the 500gain setting resistor  
V
with a 0resistor to GND.  
The layout and modified schematic of the board are shown  
in Figure 2.  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
To order evaluation boards, please contact your local sales  
office.  
avoided by placing a resistor (R ) in series with the output  
S
prior to the capacitance.  
Spec Number 511106-883  
206  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
V+  
BOTTOM LAYOUT  
TOP LAYOUT  
VH  
QP3  
QP4  
1
50K  
(30K  
QN2  
+IN  
R1  
FOR  
VL)  
OUT  
V+  
QP1  
V
L V-  
Z
ICLAMP  
GND  
+IN  
+1  
V-  
V+  
VH  
QN1  
QN6  
QP6  
QN5  
200Ω  
(AV = +1)  
or 0(AV = +2)  
QP2  
VH  
R1  
1
2
3
4
8
7
6
5
QP5  
0.1µF  
50Ω  
10µF  
+5V  
QN3  
QN4  
50Ω  
IN  
OUT  
VL  
V-IN  
RG  
V-  
300Ω  
RF = 300Ω  
GND  
0.1µF  
10µF  
(INTERNAL)  
(INTERNAL)  
GND  
-5V  
VOUT  
-IN  
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT  
FIGURE 3. HFA1113 SIMPLIFIED VH CLAMP CIRCUITRY  
QP5 begins to conduct whenever the high impedance node  
Clamp Operation  
reaches a voltage equal to QP5’s base voltage + 2V (QP5  
BE  
General  
and QN5). Thus, QP5 clamps node Z whenever Z reaches  
V . R1 provides a pull-up network to ensure functionality  
with the clamp inputs floating. A similar description applies to  
The HFA1113 features user programmable output clamps to  
limit output voltage excursions. Clamping action is obtained  
by applying voltages to the V and V terminals (DIP pins 8  
H
the symmetrical low clamp circuitry controlled by V .  
L
H
L
& 5) of the amplifier. V sets the upper output limit, while V  
H
L
When the output is clamped, the negative input continues to  
sets the lower clamp level. If the amplifier tries to drive the  
output above V , or below V , the clamp circuitry limits the  
source a slewing current (I  
) in an attempt to force the  
CLAMP  
H
L
output to the quiescent voltage defined by the input. QP5  
must sink this current while clamping, because the -IN cur-  
rent is always mirrored onto the high impedance node. The  
clamping current is calculated as:  
output voltage at V or V (± the clamp accuracy), respec-  
H
L
tively. The low input bias currents of the clamp pins allow  
them to be driven by simple resistive divider circuits, or  
active elements such as amplifiers or DACs.  
I
= (V - V  
) / 300+ V / R .  
CLAMP  
-IN  
OUT CLAMPED -IN G  
As an example, a unity gain circuit with V = 2V, and V  
=
H
Clamp Circuitry  
IN  
1V, would have I  
= (2V-1V) / 300+ 2V / = 3.33mA  
CLAMP  
Figure 3 shows a simplified schematic of the HFA1113 input  
(R = because -IN is floated for unity gain applications).  
G
stage, and the high clamp (V ) circuitry. As with all current  
H
Note that I  
will increase by I  
when the output is  
CC  
CLAMP  
feedback amplifiers, there is a unity gain buffer (QX1 - QX2)  
between the positive and negative inputs. This buffer forces  
-IN to track +IN, and sets up a slewing current of:  
clamp limited.  
Clamp Accuracy  
The clamped output voltage will not be exactly equal to the  
(V - V  
)/R + V / R .  
-IN  
OUT  
F -IN G  
This current is mirrored onto the high impedance node (Z) by  
QX3-QX4, where it is converted to a voltage and fed to the  
output via another unity gain buffer. If no clamping is utilized,  
the high impedance node may swing within the limits defined  
by QP4 and QN4. Note that when the output reaches it’s qui-  
escent value, the current flowing through -IN is reduced to  
voltage applied to V or V . Offset errors, mostly due to V  
H
L
BE  
mismatches, necessitate a clamp accuracy parameter which  
is found in the device specifications. Clamp accuracy is a  
function of the clamping conditions. Referring again to Figure  
3, it can be seen that one component of clamp accuracy is the  
V
mismatch between the QX6 transistors, and the QX5  
BE  
only that small current (-I  
the final voltage.  
) required to keep the output at  
BIAS  
transistors. If the transistors always ran at the same current  
level there would be no V mismatch, and no contribution to  
BE  
Tracing the path from V to Z illustrates the effect of the the inaccuracy. The QX6 transistors are biased at a constant  
H
clamp voltage on the high impedance node. V decreases current, but as described earlier, the current through QX5 is  
H
by 2V (QN6 and QP6) to set up the base voltage on QP5.  
equivalent to I  
. V  
increases as I  
increases,  
BE  
CLAMP  
BE  
CLAMP  
Spec Number 511106-883  
207  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Recovery from Overdrive  
causing the clamped output voltage to increase as well.  
is a function of the overdrive level (A x V - V  
OUT  
I
CLAMP  
VCL  
IN  
The output voltage remains at the clamp level as long as the  
overdrive condition remains. When the input voltage drops  
below the overdrive level (V  
return to linear operation. A time delay, known as the Over-  
drive Recovery Time, is required for this resumption of linear  
operation. The plots of “Unclamped Performance” and  
“Clamped Performance” highlight the HFA1113’s subnano-  
second recovery time. The difference between the  
unclamped and clamped propagation delays is the overdrive  
recovery time. The appropriate propagation delays are 8.0ns  
), so clamp accuracy degrades as the overdrive  
CLAMPED  
increases. As an example, the specified accuracy of ±100mV  
for a 1.6X overdrive degrades to ±240mV for a 3X overdrive.  
/ A  
) the amplifier will  
CLAMP  
VCL  
Consideration must also be given to the fact that the clamp  
voltages have an affect on amplifier linearity. The “Nonlin-  
earity Near Clamp Voltage” curve in the data sheet illus-  
trates the impact of several clamp levels on linearity.  
Clamp Range  
Unlike some competitor devices, both V and V have usable for the unclamped pulse, and 8.8ns for the clamped (2X  
H
L
ranges that cross 0V. While V must be more positive than overdrive) pulse yielding an overdrive recovery time of  
H
V , both may be positive or negative, within the range restric- 800ps. The measurement uses the 90% point of the output  
L
tions indicated in the specifications. For example, the transition to ensure that linear operation has resumed. Note:  
HFA1113 could be limited to ECL output levels by setting The propagation delay illustrated is dominated by the fixtur-  
V = -0.8V and V = -1.8V. V and V may be connected to ing. The delta shown is accurate, but the true HFA1113  
H
L
H
L
the same voltage (GND for instance) but the result won’t be a propagation delay is 500ps.  
DC output voltage from an AC input signal. A 150 - 200mV AC  
signal will still be present at the output.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Device Characterized at: VSUPPLY = ±5V, AV = +2V/V, RL = 100, Unless Otherwise Specified.  
PARAMETERS  
Output Offset Voltage  
CONDITIONS  
TEMPERATURE  
+25oC  
TYPICAL  
8
UNITS  
mV  
µV/oC  
µA  
A
V = +1, V  
= 0V  
CM  
Average Offset Voltage Drift  
+Input Current  
Versus Temperature  
AV = +1, V = 0V  
Full  
10  
+25oC  
25  
CM  
+Input Resistance  
-Input Resistance  
+Input Noise Voltage *  
+Input Noise Current *  
Input Common Mode Range  
Input Capacitance  
Gain  
AV = +1, V  
= 2V  
+25oC  
50  
kΩ  
CM  
+25oC  
300  
9
f = 100kHz  
f = 100kHz  
+25oC  
nV/Hz  
pA/Hz  
V
+25oC  
37  
Full  
±2.8  
2.2  
+25oC  
pF  
AV = +1, VIN = 2V  
+25oC  
0.99  
1.98  
0.02  
±3.3  
±3.0  
±60  
±50  
0.3  
V/V  
V/V  
%
Gain  
A
V
V = +2, VIN = 1V  
+25oC  
DC Non-Linearity *  
Output Voltage *  
OUT = ±2V Full Scale  
+25oC  
AV = -1, RL = 100Ω  
+25oC  
V
A
V = -1, RL = 100Ω  
V = -1, RL = 50Ω  
Full  
V
Output Current *  
A
+25oC to +125oC  
-55oC to 0oC  
+25oC  
mA  
mA  
AV = -1, RL = 50Ω  
DC Closed Loop Output Resistance  
Quiescent Supply Current *  
-3dB Bandwidth *  
RL = Open  
Full  
24  
mA  
MHz  
MHz  
MHz  
AV = -1, VOUT = 200mVP-P  
+25oC  
800  
850  
550  
AV = +1, VOUT = 200mVP-P  
+25oC  
AV = +2, VOUT = 200mVP-P  
+25oC  
Spec Number 511106-883  
208  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Characterized at: VSUPPLY = ±5V, AV = +2V/V, RL = 100, Unless Otherwise Specified.  
PARAMETERS  
CONDITIONS  
AV = -1, VOUT = 5VP-P  
V = +1, VOUT = 5VP-P  
TEMPERATURE  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
TYPICAL  
2400  
1500  
1900  
300  
UNITS  
V/µs  
V/µs  
V/µs  
MHz  
MHz  
MHz  
dB  
Slew Rate  
A
AV = +2, VOUT = 5VP-P  
AV = -1, VOUT = 5VP-P  
Full Power Bandwidth (Note 1)  
Gain Flatness (Note 1)  
AV = +1, VOUT = 5VP-P  
150  
AV = +2, VOUT = 5VP-P  
220  
To 30MHz, AV = -1  
±±0.02  
±±0.10  
±0.015  
±0.05  
±0.20  
±0.036  
±0.10  
±0.07  
±0.13  
±0.83  
±0.05  
-52  
To 30MHz, AV = +1  
dB  
To 30MHz, AV = +2  
dB  
Gain Flatness (Note 1)  
To 50MHz, AV = -1  
dB  
To 50MHz, AV = +1  
dB  
To 50MHz, AV = +2  
dB  
Gain Flatness (Note 1)  
To 100MHz, AV = -1  
dB  
To 100MHz, AV = +2  
dB  
Linear Phase Deviation (Note 1)  
To 100MHz, AV = -1  
Degrees  
Degrees  
Degrees  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
To 100MHz, AV = +1  
To 100MHz, AV = +2  
2nd Harmonic Distortion (Note 1)  
3rd Harmonic Distortion (Note 1)  
2nd Harmonic Distortion (Note 1)  
3rd Harmonic Distortion (Note 1)  
2nd Harmonic Distortion (Note 1)  
3rd Harmonic Distortion (Note 1)  
30MHz, AV = -1, VOUT = 2VP-P  
30MHz, AV = +1, VOUT = 2VP-P  
30MHz, AV = +2, VOUT = 2VP-P  
30MHz, AV = -1, VOUT = 2VP-P  
30MHz, AV = +1, VOUT = 2VP-P  
30MHz, AV = +2, VOUT = 2VP-P  
50MHz, AV = -1, VOUT = 2VP-P  
50MHz, AV = +1, VOUT = 2VP-P  
50MHz, AV = +2, VOUT = 2VP-P  
50MHz, AV = -1, VOUT = 2VP-P  
50MHz, AV = +1, VOUT = 2VP-P  
50MHz, AV = +2, VOUT = 2VP-P  
100MHz, AV = -1, VOUT = 2VP-P  
100MHz, AV = +1, VOUT = 2VP-P  
100MHz, AV = +2, VOUT = 2VP-P  
100MHz, AV = -1, VOUT = 2VP-P  
100MHz, AV = +1, VOUT = 2VP-P  
100MHz, AV = +2, VOUT = 2VP-P  
-57  
-52  
-71  
-73  
-72  
-47  
-53  
-47  
-63  
-68  
-65  
-41  
-50  
-42  
-55  
-49  
-62  
Spec Number 511106-883  
209  
HFA1113  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Device Characterized at: VSUPPLY = ±5V, AV = +2V/V, RL = 100, Unless Otherwise Specified.  
PARAMETERS  
CONDITIONS  
TEMPERATURE  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
+25oC  
TYPICAL  
28  
UNITS  
dBm  
dBm  
dBm  
dBm  
dB  
3rd Order Intercept (Note 1)  
100MHz  
300MHz  
100MHz  
300MHz  
40MHz  
13  
1dB Compression (Note 1)  
19  
12  
Reverse Isolation (S12) (Note 1)  
-70  
-60  
-32  
500  
480  
700  
12  
100MHz  
600MHz  
dB  
dB  
Rise and Fall Time  
Overshoot (Note 1)  
Settling Time (Note 1)  
A
V = -1, VOUT = 0.5VP-P  
ps  
A
V = +1, VOUT = 0.5VP-P  
ps  
AV = +2, VOUT = 0.5VP-P  
AV = -1, VOUT = 0.5VP-P  
ps  
%
A
V = +1, VOUT = 0.5VP-P  
45  
%
AV = +2, VOUT = 0.5VP-P  
6
%
AV = +2, to 0.1%, VOUT = 2V to 0V  
13  
ns  
A
V = +2, to 0.05%, VOUT = 2V to 0V  
20  
ns  
AV = +2, to 0.02%, VOUT = 2V to 0V  
36  
ns  
Differential Gain  
AV = +2, RL = 150, NTSC  
0.02  
0.04  
0.75  
±100  
%
Differential Phase  
A
V = +2, RL = 150, NTSC  
Degrees  
ns  
Overdrive Recovery Time, (2X Overdrive) VIN = ±1V, VH = +1V, VL = -1V  
Clamp Accuracy  
AV = -1, VIN = ±1.6V, VH = +1V,  
mV  
VL = -1V  
Clamped Overshoot  
VIN = ±1V, VH = +1V, VL = -1V,  
+25oC  
7
%
Input tR / tF = 2ns  
Negative Clamp Range (VL)  
Positive Clamp Range (VH)  
Clamp Input Bias Current  
Clamp Input Bandwidth  
NOTE:  
+25oC  
+25oC  
+25oC  
+25oC  
-5.0 to +2.0  
-2.0 to +5.0  
50  
V
V
VH = +1V, VL = -1V  
µA  
MHz  
VIN = ±100mV, VH or VL = 100mVP-P  
500  
1. See Typical Performance Curves for more information.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reli-  
able. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Spec Number 511106-883  
210  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY