HFA1115IP [INTERSIL]

225MHz, Low Power, Output Limiting, Closed Loop Buffer Amplifier; 225MHz ,低功耗,输出限制,闭环缓冲放大器
HFA1115IP
型号: HFA1115IP
厂家: Intersil    Intersil
描述:

225MHz, Low Power, Output Limiting, Closed Loop Buffer Amplifier
225MHz ,低功耗,输出限制,闭环缓冲放大器

缓冲放大器
文件: 总14页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1115  
September 1998  
File Number 3606.4  
225MHz, Low Power, Output  
Features  
Limiting, Closed Loop Buffer Amplifier  
• User Programmable Output Voltage Limiting  
The HFA1115 is a high speed closed loop Buffer featuring both  
user programmable gain and output limiting. Manufactured on  
Intersil’s proprietary complementary bipolar UHF-1 process, the  
HFA1115 also offers a wide -3dB bandwidth of 225MHz, very  
fast slew rate, excellent gain flatness and high output current.  
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1MΩ  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Wide -3dB Bandwidth (A = +2). . . . . . . . . . . . . .225MHz  
V
This buffer is the ideal choice for high frequency applications  
requiring output limiting, especially those needing ultra fast  
overload recovery times. The limiting function allows the  
designer to set the maximum positive and negative output  
levels, thereby protecting later stages from damage or input  
saturation. The HFA1115 also allows for voltage gains of +2,  
+1, and -1, without the use of external resistors. Gain  
selection is accomplished via connections to the inputs, as  
described in the “Application Information” text. The result is a  
more flexible product, fewer part types in inventory, and more  
efficient use of board space.  
• Very Fast Slew Rate (A = -1) . . . . . . . . . . . . . . 1135V/µs  
V
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 7.1mA  
• High Output Current . . . . . . . . . . . . . . . . . . . . . . . . .60mA  
• Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V  
• User Programmable For Closed-Loop Gains of +1, -1 or  
+2 Without Use of External Resistors  
• Fast Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . <1ns  
• Standard Operational Amplifier Pinout  
Compatibility with existing op amp pinouts provides flexibility  
to upgrade low gain amplifiers, while decreasing component  
count. Unlike most buffers, the standard pinout provides an  
upgrade path, should a higher closed loop gain be needed at  
a future date. For Military product, refer to the HFA1115/883  
data sheet.  
Applications  
• Flash A/D Drivers  
• Video Cable Drivers  
• High Resolution Monitors  
• Professional Video Processing  
• Medical Imaging  
Pinout  
HFA1115  
(PDIP, SOIC)  
TOP VIEW  
• Video Digitizing Boards/Systems  
• Battery Powered Communications  
350  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
V
H
Ordering Information  
350  
_
+
V+  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
PACKAGE  
8 Ld PDIP  
8 Ld SOIC  
OUT  
HFA1115IP  
-40 to 85  
E8.3  
M8.15  
V
L
HFA1115IB  
(H1115I)  
-40 to 85  
Pin Descriptions  
HFA11XXEVAL  
High Speed Op Amp DIP Evaluation Board  
NAME  
PIN NUMBER  
DESCRIPTION  
NC  
1
2
3
4
5
6
7
8
No Connection  
Inverting Input  
Non-Inverting Input  
Negative Supply  
Lower Output Limit  
Output  
-IN  
+IN  
V-  
V
L
OUT  
V+  
Positive Supply  
Upper Output Limit  
V
H
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HFA1115  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Output Current (Note 2) . . . . . . . . . . . . . . . . Short Circuit Protected  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
170  
o
ESD Rating  
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Packages) . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . .600V  
o
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . . . . 5V to 10V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 30mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified  
SUPPLY V L  
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
Output Offset Voltage  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
C
C
A
A
B
B
25  
Full  
Full  
25  
-
-
2
3
10  
mV  
mV  
15  
o
Average Output Offset Voltage Drift  
Common-Mode Rejection Ratio  
-
22  
45  
44  
45  
49  
48  
48  
1
70  
µV/ C  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
42  
40  
40  
45  
43  
43  
-
-
dB  
dB  
dB  
dB  
dB  
dB  
µA  
µA  
CM  
CM  
CM  
85  
-
-40  
25  
-
Power Supply Rejection Ratio  
Non-Inverting Input Bias Current  
V = ±1.8V  
PS  
-
V = ±1.8V  
PS  
85  
-
V = ±1.2V  
PS  
-40  
25  
-
15  
25  
80  
1
Full  
Full  
25  
-
3
o
Non-Inverting Input Bias Current Drift  
-
30  
0.5  
-
nA/ C  
Non-Inverting Input Bias Current Power  
Supply Sensitivity  
V = ±1.25V  
PS  
-
µA/V  
µA/V  
MΩ  
Full  
25  
-
3
Non-Inverting Input Resistance  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
0.8  
0.5  
0.5  
280  
-
1.1  
1.4  
1.3  
350  
1.6  
±2.4  
±1.7  
7
-
CM  
CM  
CM  
85  
-
MΩ  
-40  
25  
-
MΩ  
Inverting Input Resistance  
Input Capacitance  
420  
-
25  
pF  
Input Voltage Common Mode Range  
(Implied by V CMRR and +R Tests)  
IO IN  
25, 85  
-40  
25  
±1.8  
±1.2  
-
-
V
-
V
Input Noise Voltage Density (Note 4)  
f = 100kHz  
f = 100kHz  
-
nV/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density  
(Note 4)  
25  
-
3.6  
-
2
HFA1115  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
L
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
TRANSFER CHARACTERISTICS  
Gain  
MIN  
TYP  
MAX  
UNITS  
A
= -1  
A
A
A
A
A
A
25  
Full  
25  
-0.98  
-0.975  
0.98  
-0.996  
-1.000  
0.992  
0.993  
1.988  
1.990  
-1.02  
-1.025  
1.02  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V
A
= +1  
= +2  
V
Full  
25  
0.975  
1.96  
1.025  
2.04  
A
V
Full  
1.95  
2.05  
AC CHARACTERISTICS  
-3dB Bandwidth  
A
= -1  
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
225  
200  
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
(V  
OUT  
= 0.2V  
, Note 4)  
P-P  
A
= +1, +R = 620Ω  
V
S
A
= +2  
= -1  
225  
V
Full Power Bandwidth  
(V = 5V at A = +2/-1,  
A
157  
V
OUT  
4V  
P-P  
V
A
= +1, +R = 620Ω  
140  
V
S
at A = +1, Note 4)  
P-P  
V
A
= +2  
125  
V
Gain Flatness  
(to 25MHz, V  
A
= +1, +R = 620Ω  
±0.1  
±0.04  
±0.25  
±0.1  
V
S
= 0.2V  
= 0.2V  
, Note 4)  
, Note 4)  
OUT  
P-P  
A
= +2  
dB  
V
Gain Flatness  
(to 50MHz, V  
A
= +1, +R = 620Ω  
dB  
V
S
OUT  
P-P  
A
= +2  
dB  
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing (Note 4)  
A
= -1, R = 100Ω  
A
A
A
A
B
B
B
B
B
B
25  
Full  
25, 85  
-40  
25  
±3.0  
±3.2  
±3.0  
55  
-
-
-
-
-
-
-
-
-
-
V
V
L
±2.8  
V
Output Current (Note 4)  
A
= -1, R = 50Ω  
50  
28  
-
mA  
mA  
mA  
V
L
42  
Output Short Circuit Current  
Output Resistance (Note 4)  
Second Harmonic Distortion  
90  
DC, A = +2  
V
25  
-
0.07  
-50  
-45  
-50  
-45  
10MHz  
20MHz  
10MHz  
20MHz  
25  
-
dBc  
dBc  
dBc  
dBc  
(A = +2, V  
= 2V )  
P-P  
V
OUT  
25  
-
Third Harmonic Distortion  
(A = +2, V = 2V  
25  
-
)
P-P  
V
OUT  
25  
-
TRANSIENT RESPONSE A = +2, Unless Otherwise Specified  
V
Rise and Fall Times  
(V = 0.5V , Note 4)  
Rise Time  
Fall Time  
+OS  
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
1.7  
1.9  
-
-
-
-
-
-
-
-
ns  
ns  
OUT P-P  
Overshoot  
(V = 0.5V  
0
%
, V = 2.5ns)  
t
OUT  
P-P IN RISE  
-OS  
0
%
Slew Rate  
(V = 5V  
+SR  
1660  
1135  
1125  
800  
V/µs  
V/µs  
V/µs  
V/µs  
, A = -1)  
OUT  
P-P  
P-P  
V
-SR (Note 5)  
+SR  
Slew Rate  
(V = 4V  
, A = +1, +R = 620)  
OUT  
V
S
-SR (Note 5)  
3
HFA1115  
Electrical Specifications  
V
= ±5V, A = +1, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
L
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
MIN  
TYP  
1265  
870  
23  
MAX  
UNITS  
V/µs  
V/µs  
ns  
Slew Rate  
+SR  
B
B
B
B
B
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
(V  
= 5V , A = +2)  
P-P V  
OUT  
-SR (Note 5)  
To 0.1%  
Settling Time  
(V = +2V to 0V step, Note 4)  
OUT  
To 0.05%  
To 0.02%  
33  
ns  
45  
ns  
VIDEO CHARACTERISTICS  
Differential Gain  
f = 3.58MHz, A = +2,  
B
B
25  
25  
-
-
0.02  
0.03  
-
-
%
V
R
= 150Ω  
L
Differential Phase  
f = 3.58MHz, A = +2,  
Degrees  
V
R
= 150Ω  
L
OUTPUT LIMITING CHARACTERISTICS A = +2, V = +1V, V = -1V, Unless Otherwise Specified  
V
H
L
Limit Accuracy (Note 4)  
V
V
= ±1.6V, A = -1  
A
B
B
B
A
C
Full  
25  
-125  
-
-70  
0.8  
125  
-
mV  
ns  
IN  
IN  
V
Overdrive Recovery Time (Note 4)  
Negative Limit Range  
= ±1V  
25  
-5.0 to +2.5  
-2.5 to +5.0  
85  
V
Positive Limit Range  
25  
V
Limit Input Bias Current  
Full  
25  
-
-
200  
-
µA  
MHz  
Limit Input Bandwidth  
100  
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
4.5  
6.6  
-
-
5.5  
7.1  
7.3  
±V  
mA  
mA  
Power Supply Current (Note 4)  
6.9  
7.1  
Full  
NOTE:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. See Typical Performance Curves for more information.  
5. Slew rates are asymmetrical if the output swings below GND (e.g., a bipolar signal). Positive unipolar output signals have symmetric positive and  
negative slew rates comparable to the +SR specification. See the “Application Information” section, and the pulse response graphs for details.  
Application Information  
the two gain setting resistors, which frees up board space for  
termination resistors.  
Relevant Application Notes  
The following Application Notes pertain to the HFA1115:  
Like most newer high performance amplifiers, the HFA1115  
is a current feedback amplifier (CFA). CFAs offer high  
bandwidth and slew rate at low supply currents, but can be  
difficult to use because of their sensitivity to feedback  
capacitance and parasitics on the inverting input (summing  
node). The HFA1115 eliminates these concerns by bringing  
the gain setting resistors on-chip. This yields the optimum  
placement and value of the feedback resistor, while  
minimizing feedback and summing node parasitics. Because  
there is no access to the summing node, the PCB parasitics  
do not impact performance at gains of +2 or -1 (see “Unity  
Gain Considerations” for discussion of parasitic impact on  
unity gain performance).  
• AN9653-Use and Application of Output Limiting  
Amplifiers  
• AN9752-Sync Stripper and Sync Inserter for  
Composite Video  
These publications may be obtained from Intersil’s web site  
(http://www.intersil.com) or via our AnswerFax system.  
HFA1115 Advantages  
The HFA1115 features a novel design which allows the user  
to select from three closed loop gains, without any external  
components. The result is a more flexible product, fewer part  
types in inventory, and more efficient use of board space.  
Implementing a gain of 2, cable driver with this IC eliminates  
4
HFA1115  
The HFA1115’s closed loop gain implementation provides  
better gain accuracy, lower offset and output impedance,  
and better distortion compared with open loop buffers.  
frequencies, which prevents the increased output offset  
voltage but delivers less gain flatness.  
Another straightforward approach is to add a 620resistor  
in series with the positive input. This resistor and the  
HFA1115 input capacitance form a low pass filter which rolls  
off the signal bandwidth before gain peaking occurs. This  
configuration was employed to obtain the datasheet AC and  
transient parameters for a gain of +1.  
Closed Loop Gain Selection  
This “buffer” operates in closed loop gains of -1, +1, or +2, and  
gain selection is accomplished via connections to the ±inputs.  
Applying the input signal to +IN and floating -IN selects a gain  
of +1 (see next section for layout caveats), while grounding -IN  
selects a gain of +2. A gain of -1 is obtained by applying the  
input signal to -IN with +IN grounded through a 50resistor.  
Non-inverting Input Source Impedance  
For best operation, the DC source impedance seen by the  
non-inverting input should be 50Ω. This is especially  
important in inverting gain configurations where the non-  
inverting input would normally be connected directly to GND.  
The table below summarizes these connections:  
CONNECTIONS  
GAIN  
(A )  
V
+INPUT (PIN 3)  
50to GND  
Input  
-INPUT (PIN 2)  
Pulse Undershoot and Asymmetrical Slew Rates  
-1  
+1  
+2  
Input  
The HFA1115 utilizes a quasi-complementary output stage to  
achieve high output current while minimizing quiescent supply  
current. In this approach, a composite device replaces the  
traditional PNP pulldown transistor. The composite device  
switches modes after crossing 0V, resulting in added  
distortion for signals swinging below ground, and an  
increased undershoot on the negative portion of the output  
waveform (see Figures 9, 13, and 17). This undershoot isn’t  
present for small bipolar signals, or large positive signals.  
Another artifact of the composite device is asymmetrical slew  
rates for output signals with a negative voltage component.  
The slew rate degrades as the output signal crosses through  
0V (see Figures 9, 13, and 17), resulting in a slower overall  
negative slew rate. Positive only signals have symmetrical  
slew rates as illustrated in the large signal positive pulse  
response graphs (see Figures 7, 11, and 15).  
NC (Floating)  
GND  
Input  
Unity Gain Considerations  
Unity gain selection is accomplished by floating the -Input of  
the HFA1115. Anything that tends to short the -Input to GND,  
such as stray capacitance at high frequencies, will cause the  
amplifier gain to increase toward a gain of +2. The result is  
excessive high frequency peaking, and possible instability.  
Even the minimal amount of capacitance associated with  
attaching the -Input lead to the PCB results in approximately  
3dB of gain peaking. At a minimum this requires due care to  
ensure the minimum capacitance at the -Input connection.  
.
TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS  
IMPLEMENTATIONS  
±0.1dB  
PEAK-  
ING  
(dB)  
GAIN  
FLATNESS  
(MHz)  
PC Board Layout  
BW  
(MHz)  
+SR/-SR  
(V/µs)  
APPROACH  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
Remove Pin 2  
2.5  
0.6  
0
400  
170  
165  
1200/850  
1125/800  
1050/775  
20  
25  
65  
+R = 620Ω  
S
+R = 620and  
S
Remove Pin 2  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
Short Pins 2, 3  
0
200  
190  
875/550  
900/550  
45  
19  
100pF cap. be-  
tween pins 2, 3  
0.2  
Terminated microstrip signal lines are recommended at the input  
and output of the device. Capacitance directly on the output  
must be minimized, or isolated as discussed in the next section.  
Table 1 lists five alternate methods for configuring the  
HFA1115 as a unity gain buffer, and the corresponding  
performance. The implementations vary in complexity and  
involve performance trade-offs. The easiest approach to  
implement is simply shorting the two input pins together, and  
applying the input signal to this common node. The amplifier  
bandwidth drops from 400MHz to 200MHz, but excellent  
gain flatness is the benefit. Another drawback to this  
approach is that the amplifier input noise voltage and input  
offset voltage terms see a gain of +2, resulting in higher  
noise and output offset voltages. Alternately, a 100pF  
capacitor between the inputs shorts them only at high  
For unity gain applications, care must also be taken to  
minimize the capacitance to ground at the amplifier’s  
inverting input. At higher frequencies this capacitance tends  
to short the -INPUT to GND, resulting in a closed loop gain  
which increases with frequency. This causes excessive high  
frequency peaking and potentially other problems as well.  
An example of a good high frequency layout is the  
Evaluation Board shown in Figure 2.  
5
HFA1115  
Driving Capacitive Loads  
BOARD SCHEMATIC (MODIFIED)  
= (A = +1) or 0(A = +2)  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line degrade the amplifier’s phase  
margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
R
1
V
V
V
H
R
1
1
2
3
4
8
7
6
5
0.1µF  
50Ω  
10µF  
+5V  
50Ω  
avoided by placing a resistor (R ) in series with the output  
S
IN  
OUT  
prior to the capacitance.  
V
L
Figure 1 details starting points for the selection of this  
resistor. The points on the curve indicate the R and C  
combinations for the optimum bandwidth, stability, and  
10µF  
0.1µF  
GND  
S
L
GND  
-5V  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
TOP LAYOUT  
V
H
1
R
and C form a low pass network at the output, thus  
L
S
limiting system bandwidth well below the amplifier bandwidth  
+IN  
of 200MHz (A = +1). By decreasing R as C increases (as  
V
S
L
OUT  
V-  
V+  
V
illustrated by the curves), the maximum bandwidth is  
obtained without sacrificing stability. In spite of this,  
bandwidth still decreases as the load capacitance increases.  
L
GND  
For example, at A = +1, R = 50, C = 22pF, the overall  
V
S
L
BOTTOM LAYOUT  
bandwidth is 185MHz, but the bandwidth drops to 50MHz at  
A = +1, R = 15, C = 330pF.  
V
S
L
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
= +1  
V
FIGURE 2. EVALUATION BOARD SCHEMATIC (AFTER  
MODIFICATION FOR BUFFER USE) AND LAYOUT  
A
= +2  
V
0
Limiting Operation  
General  
0
40  
80 120 160 200 240 280 320 360 400  
LOAD CAPACITANCE (pF)  
The HFA1115 features user programmable output clamps to  
limit output voltage excursions. Limiting action is obtained by  
FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD  
CAPACITANCE  
applying voltages to the V and V terminals (pins 8 and 5)  
H
L
of the amplifier. V sets the upper output limit, while V sets  
H
L
Evaluation Board  
The performance of the HFA1115 may be evaluated using  
the HFA11XX Evaluation Board, slightly modified as follows:  
the lower limit level. If the amplifier tries to drive the output  
above V , or below V , the clamp circuitry limits the output  
H
L
voltage at V or V (± the limit accuracy), respectively. The  
H
L
low input bias currents of the limit pins allow them to be  
driven by simple resistive divider circuits, or active elements  
such as amplifiers or DACs.  
1. 1. Remove the 510feedback resistor (R ), and leave the  
2
connection open.  
2. 2. a. For A = +1 evaluation, remove the 510gain setting  
V
resistor (R ), and leave pin 2 floating.  
Limit Circuitry  
1
b. For A = +2, replace the 510gain setting resistor with  
V
Figure 3 shows a simplified schematic of the HFA1115 input  
stage, and the high limit (V ) circuitry. As with all current  
feedback amplifiers, there is a unity gain buffer (Q - Q  
between the positive and negative inputs. This buffer forces  
-IN to track +IN, and sets up a slewing current of:  
a 0resistor to GND.  
H
The layout and modified schematic of the board are shown  
in Figure 2.  
)
X1 X2  
To order evaluation boards (Part Number HFA11XXEVAL),  
please contact your local sales office.  
I
= (V - V  
)/R + V /R  
-IN G  
SLEW  
-IN OUT  
F
6
HFA1115  
found in the device specifications. Limit accuracy is a  
V+  
function of the limiting conditions. Referring again to Figure  
3, it can be seen that one component of limit accuracy is the  
Q
Q
P4  
P3  
V
mismatch between the Q transistors, and the Q  
X6 X5  
BE  
transistors. If the transistors always ran at the same current  
Q
N2  
R
50kΩ  
1
level there would be no V mismatch, and no contribution  
BE  
Q
to the inaccuracy. The Q transistors are biased at a  
X6  
constant current, but as described earlier, the current  
P1  
V-  
V+  
Z
I
LIMIT  
+IN  
+1  
through Q is equivalent to I  
. V increases as I  
X5  
Limit BE LIMIT  
200Ω  
V
H
Q
increases, causing the limited output voltage to increase as  
well. I is a function of the overdrive level  
N1  
Q
N6  
Q
N5  
LIMIT  
((A x V - V  
Q
P2  
) / V  
), so limit accuracy degrades as  
Q
P6  
V
IN  
LIMIT LIMIT  
the overdrive increases (see Figures 28 and 29). For  
example, accuracy degrades from -20mV to +30mV when  
Q
P5  
Q
Q
N4  
N3  
the overdrive increases from 100% to 200% (A = +2,  
V
V
= 500mV).  
V
H
-IN  
V-  
R
= 350Ω  
Consideration must also be given to the fact that the limit  
voltages have an effect on amplifier linearity. The “Linearity  
Near Limit Voltage” curves, Figures 30 and 31, illustrate the  
impact of several limit levels on linearity.  
R
= 350Ω  
F
G
(INTERNAL)  
(INTERNAL)  
V
OUT  
-IN  
FIGURE 3. HFA1115 SIMPLIFIED V LIMIT CIRCUITRY  
H
Limit Range  
This current is mirrored onto the high impedance node (Z) by  
-Q , where it is converted to a voltage and fed to the  
Unlike some competitor devices, both V and V have  
Q
H
L
X3 X4  
usable ranges that cross 0V. While V must be more  
positive than V , both may be positive or negative, within  
L
output via another unity gain buffer. If no limiting is utilized,  
the high impedance node may swing within the limits defined  
H
the range restrictions indicated in the specifications. For  
example, the HFA1115 could be limited to ECL output  
levels by setting V = -0.8V and V = -1.8V. V and V may  
be connected to the same voltage (GND for instance) but  
the result won’t be a DC output voltage from an AC input  
signal. A 150mV - 200mV AC signal will still be present at  
the output.  
by Q and Q . Note that when the output reaches its  
quiescent value, the current flowing through -IN is reduced to  
P4 N4  
only that small current (-I  
the final voltage.  
) required to keep the output at  
H
L
H
L
BIAS  
Tracing the path from V to Z illustrates the effect of the limit  
H
voltage on the high impedance node. V decreases by 2V  
H
BE  
(Q and Q ) to set up the base voltage on Q . Q  
N6 P6 P5 P5  
Recovery from Overdrive  
begins to conduct whenever the high impedance node  
reaches a voltage equal to Q ’s base voltage + 2V (Q  
The output voltage remains at the limit level as long as the  
overdrive condition remains. When the input voltage drops  
P5  
BE  
P5  
and Q ). Thus, Q limits node Z whenever Z reaches V .  
N5 P5  
H
R provides a pull-up network to ensure functionality with the  
limit inputs floating. A similar description applies to the  
symmetrical low limit circuitry controlled by V .  
L
below the overdrive level (V  
/A ) the amplifier returns to  
1
LIMIT  
V
linear operation. A time delay, known as the Overdrive  
Recovery Time, is required for this resumption of linear  
operation. Overdrive recovery time is defined as the  
When the output is limited, the negative input continues to  
difference between the amplifier’s propagation delay exiting  
limiting and the amplifier’s normal propagation delay, and it is  
a strong function of the overdrive level. Figure 32 details the  
overdrive recovery time for various limit and overdrive levels  
source a slewing current (I  
output to the quiescent voltage defined by the input. Q  
must sink this current while limiting, because the -IN current  
is always mirrored onto the high impedance node. The  
limiting current is calculated as:  
) in an attempt to force the  
Limit  
P5  
Benefits of Output Limiting  
The plots of “Pulse Response Without Limiting” and “Pulse  
Response With Limiting” (Figures 4 and 5) highlight the  
advantages of output limiting. Besides the obvious benefit of  
constraining the output swing to a defined range, limiting the  
output excursions also keeps the output transistors from  
saturating, which prevents unwanted saturation artifacts  
from distorting the output signal. Output limiting also takes  
advantage of the HFA1115’s ultra-fast overdrive recovery  
time, reducing the recovery time from 2.5ns to 0.5ns, based  
on the amplifier’s normal propagation delay of 1.2ns.  
I
= (V - V  
)/R + V /R .  
-IN  
LIMIT  
-IN OUT LIMITED  
F
G
As an example, a unity gain circuit with V = 2V, and V = 1V,  
IN  
would have I  
because -IN is floated for unity gain applications). Note that I  
increases by I  
LIMIT  
H
= (2V - 1V)/350+ 2V/= 2.8mA (R = ∞  
LIMIT  
G
CC  
when the output is limited.  
Limit Accuracy  
The limited output voltage will not be exactly equal to the  
voltage applied to V or V . Offset errors, mostly due to V  
mismatches, necessitate a limit accuracy parameter which is  
H
L
BE  
7
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified  
SUPPLY  
A
L
A
= +2  
IN  
A
= +2  
V
V
4.0  
3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
IN  
OUT  
2.0  
1.0  
0
2.0  
1.0  
1.0  
0.5  
OUT  
0
0
-0.5  
-1.0  
-1.0  
-0.5  
-1.0  
-2.0  
-1.0  
V
= +2.0V, V = 0V  
L
H
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 4. PULSE RESPONSE WITHOUT LIMITING  
FIGURE 5. PULSE RESPONSE WITH LIMITING  
300  
3.0  
2.5  
A
= +2  
A
= +2  
V
V
250  
200  
150  
2.0  
1.5  
100  
1.0  
50  
0
0.5  
0
-50  
-0.5  
-1.0  
-100  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 6. SMALL SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE  
2.0  
200  
A
= +2  
A
= +2  
V
V
1.5  
150  
100  
50  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 8. SMALL SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 9. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
8
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
300  
3.0  
2.5  
A
= +1  
A
= +1  
V
V
250  
200  
150  
2.0  
1.5  
1.0  
0.5  
100  
50  
0
0
-0.5  
-1.0  
-50  
-100  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 10. SMALL SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 11. LARGE SIGNAL POSITIVE PULSE RESPONSE  
200  
2.0  
A
= +1  
V
A
= +1  
V
150  
1.5  
1.0  
0.5  
0
100  
50  
0
-50  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 12. SMALL SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 13. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
3.0  
300  
A
= -1  
A
= -1  
V
V
2.5  
2.0  
1.5  
1.0  
0.5  
0
250  
200  
150  
100  
50  
0
-50  
-0.5  
-1.0  
-100  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 14. SMALL SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 15. LARGE SIGNAL POSITIVE PULSE RESPONSE  
9
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
200  
2.0  
1.5  
A
= -1  
A = -1  
V
V
150  
100  
50  
1.0  
0.5  
0
0
-50  
-100  
-0.5  
-1.0  
-1.5  
-2.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 16. SMALL SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 17. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
A
= +1  
V
= 200mV  
A = +2  
V
V
OUT  
P-P  
V
= 1V  
P-P  
OUT  
3
0
3
0
GAIN  
GAIN  
-3  
-6  
-3  
-6  
V
= 2.5V  
P-P  
A
= +2  
OUT  
V
PHASE  
PHASE  
V
= 4V  
P-P  
A
= -1  
OUT  
V
0
0
90  
90  
V
= 4V  
P-P  
OUT  
A
= -1  
V
= 2.5V  
V
OUT  
P-P  
180  
270  
360  
180  
270  
360  
V
= 1V  
P-P  
OUT  
A
= +1  
V
A
= +2  
V
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 18. FREQUENCY RESPONSE  
FIGURE 19. FREQUENCY RESPONSE FOR VARIOUS OUTPUT  
VOLTAGES  
A
= +1  
V
= 1V  
A = -1  
V
V
OUT  
P-P  
V
= 1V  
P-P  
OUT  
3
0
3
GAIN  
GAIN  
0
-3  
-6  
V
= 2.5V  
= 4V  
OUT  
P-P  
-3  
-6  
V
V
= 2.5V  
P-P  
OUT  
P-P  
OUT  
PHASE  
PHASE  
V
= 4V  
OUT  
P-P  
0
0
90  
90  
V
= 4V  
= 2.5V  
V
= 4V  
P-P  
OUT  
P-P  
P-P  
OUT  
V
V
= 2.5V  
OUT  
OUT  
P-P  
= 1V  
180  
270  
360  
180  
270  
360  
V
= 1V  
V
OUT  
P-P  
OUT  
P-P  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 20. FREQUENCY RESPONSE FOR VARIOUS OUTPUT  
VOLTAGES  
FIGURE 21. FREQUENCY RESPONSE FOR VARIOUS OUTPUT  
VOLTAGES  
10  
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
A
= +1, V  
OUT  
= 4V  
P-P  
V
A
= -1  
V
3
0
A
= +2  
V
-3  
-6  
-9  
A
= +2, V  
OUT  
= 5V  
P-P  
A
= +1  
V
V
A
= -1, V  
OUT  
= 5V  
P-P  
V
-75  
-50  
-25  
0
25  
50  
o
75  
100  
125  
1
10  
100  
1000  
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 22. FULL POWER BANDWIDTH  
FIGURE 23. -3dB BANDWIDTH vs TEMPERATURE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 200mV  
P-P  
OUT  
0.4  
0.3  
0.2  
0.1  
0
A
= -1  
V
A
= +1  
V
A
= -1  
V
A
= +2  
-0.1  
-0.2  
-0.3  
-0.4  
V
A
= +1  
V
A
= +2  
V
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FIGURE 24. GAIN FLATNESS  
FIGURE 25. REVERSE ISOLATION (S  
)
12  
A
= +2  
V
0.1  
1K  
100  
10  
0.05  
0.025  
0
1
-0.025  
-0.05  
0.1  
0.01  
-0.1  
0.3  
1
10  
100  
1000  
3
13 23  
33 43  
53  
63  
73  
83  
93 103  
FREQUENCY (MHz)  
TIME (ns)  
FIGURE 26. OUTPUT RESISTANCE  
FIGURE 27. SETTLING TIME RESPONSE  
11  
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
150  
100  
50  
150  
A
= +2  
A
= +2  
V
V
V
= -500mV  
L
100  
50  
V
= +500mV  
H
V
= -1.0V  
L
V
= +1V  
H
0
-50  
0
V
= -2.0V  
L
-50  
-100  
-150  
V
= +2.0V  
H
-100  
-150  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OVERDRIVE (% OF V )  
H
OVERDRIVE (% OF V )  
L
FIGURE 28. V LIMIT ACCURACY vs OVERDRIVE  
FIGURE 29. V LIMIT ACCURACY vs OVERDRIVE  
L
H
2.0  
1.8  
1.6  
1.4  
1.2  
2.0  
A
= +1  
A
= +2  
V
V
1.8  
1.6  
1.4  
V
= -2V  
V
= +2V  
V = +2V  
H
L
V
= -2V  
H
L
1.2  
V
L
= -1V  
V
L
= -1V  
V = +1V  
H
V
= +1V  
H
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= -500mV  
V = +500mV  
H
L
V
= -500mV  
V
= +500mV  
L
H
0
-2.0  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
2.0  
-2.0  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
2.0  
-1.5  
A
x V (V)  
A
x V (V)  
V
IN  
V IN  
FIGURE 30. LINEARITY NEAR LIMIT VOLTAGE  
FIGURE 31. LINEARITY NEAR LIMIT VOLTAGE  
4.0  
3.6  
A
= -1  
A
= +2  
|-V  
OUT  
| (R = 100)  
L
V
V
V
= -2V  
L
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+V  
OUT  
(R = 100)  
L
V
= +2V  
H
3.4  
3.3  
3.2  
3.1  
|-V  
OUT  
| (R = 50)  
L
V
= -1V  
L
+V  
OUT  
(R = 50)  
L
V
= -3V  
L
3.0  
2.9  
V
= +1V  
H
2.8  
2.7  
2.6  
V
= +3V  
H
0
100  
200  
300  
400  
-50  
-25  
0
25  
50  
75  
100  
125  
OVERDRIVE (% OF V OR V )  
o
H
L
TEMPERATURE ( C)  
FIGURE 32. OVERDRIVE RECOVERY TIME vs OVERDRIVE  
FIGURE 33. OUTPUT VOLTAGE vs TEMPERATURE  
12  
HFA1115  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
7.1  
7.0  
6.9  
6.8  
6.7  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
V
= 500mV  
P-P  
OUT  
A
= +2  
V
FALL TIMES  
RISE TIMES  
A
= -1  
V
A
= +1  
V
A
= +2  
V
A
= -1  
V
A
= +1  
V
A
= +2  
V
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
-75  
-50  
-25  
0
25  
50  
o
75  
100  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 34. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 35. RISE AND FALL TIMES vs TEMPERATURE  
100  
100  
E
NI  
10  
10  
I
NI  
1
100  
1
0.1  
1
10  
FREQUENCY (kHz)  
FIGURE 36. INPUT NOISE CHARACTERISTICS  
13  
HFA1115  
Die Characteristics  
DIE DIMENSIONS:  
SUBSTRATE POTENTIAL (Powered Up):  
59 mils x 58.2 mils x 19 mils  
Floating (Recommend Connection to V-)  
1500µm x 1480µm x 483µm  
PASSIVATION:  
METALLIZATION:  
Type: Nitride  
Type: Metal 1: AICu(2%)/TiW  
Thickness: 4kÅ ±0.5kÅ  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
TRANSISTOR COUNT:  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
89  
Metallization Mask Layout  
HFA1115  
-IN  
V
H
V+  
OUT  
+IN  
V-  
V
L
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
14  

相关型号:

HFA1115MJ/883

High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier
INTERSIL

HFA1115_04

225MHz, Low Power, Output Limiting, Closed Loop Buffer Amplifier
INTERSIL

HFA1118IB

Logic IC
ETC

HFA1118IP

Logic IC
ETC

HFA1119IB

Logic IC
ETC

HFA1119IP

Logic IC
ETC

HFA1120

850MHz Current Feedback Amplifier with Offset Adjust
INTERSIL

HFA1120/883

850MHz Current Feedback Amplifier with Offset Adjust
INTERSIL

HFA1120EVAL

850MHz, Low Distortion Current Feedback Operational Amplifiers
INTERSIL

HFA1120IB

850MHz, Low Distortion Current Feedback Operational Amplifiers
INTERSIL

HFA1120IJ

IC,OP-AMP,SINGLE,BIPOLAR,DIP,8PIN,CERAMIC
RENESAS

HFA1120MJ/883

850MHz Current Feedback Amplifier with Offset Adjust
INTERSIL