HGT5A40N60A4D [INTERSIL]

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 600V ,开关电源系列N沟道IGBT与反并联二极管超高速
HGT5A40N60A4D
型号: HGT5A40N60A4D
厂家: Intersil    Intersil
描述:

600V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
600V ,开关电源系列N沟道IGBT与反并联二极管超高速

二极管 开关 双极性晶体管
文件: 总9页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGT5A40N60A4D  
Data Sheet  
February 2000  
File Number 4783.1  
600V, SMPS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diode  
Features  
• 100kHz Operation at 390V, 40A  
• 200kHz Operation at 390V, 20A  
• 600V Switching SOA Capability  
The HGT5A40N60A4D is a MOS gated high voltage  
switching device combining the best features of a MOSFET  
and a bipolar transistor. This device has the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
o
Typical Fall Time. . . . . . . . . . . . . . . . . . 55ns at T = 125  
J
• Low Conduction Loss  
o
o
drop varies only moderately between 25 C and 150 C. The  
IGBT used is the development type TA49347. The diode  
used in anti-parallel is the development type 49374.  
Packaging  
JEDEC STYLE STRETCH TO-247  
This IGBT is ideal for many high voltage switching  
applications operating at high frequencies where low  
conduction losses are essential. This device has been  
optimized for high frequency switch mode power supplies.  
E
C
G
Formerly Developmental Type TA49349.  
Ordering Information  
COLLECTOR  
(FLANGE)  
PART NUMBER  
PACKAGE  
BRAND  
40N60A4D  
HGT5A40N60A4D  
TO-247-ST  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
2-1  
HGT5A40N60A4D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGT5A40N60A4D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
75  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
63  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
300  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
±30  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
Switching Safe Operating Area at T = 150 C, Figure 2 . . . . . . . . . . . . . . . . . . . . . . .SSOA  
J
200A at 600V  
625  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C  
5
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
L
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
J
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= BV  
T = 25 C  
J
-
250  
3.0  
2.7  
2.0  
7
µA  
mA  
V
CES  
CE CES  
o
T = 125 C  
J
-
-
-
o
Collector to Emitter Saturation Voltage  
V
I
= 40A,  
T = 25 C  
J
1.7  
1.5  
5.6  
-
CE(SAT)  
C
V
= 15V  
GE  
o
T = 125 C  
-
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 2.2Ω, V  
= 15V  
200  
-
J
G
GE  
L = 100µH, V = 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 40A, V  
= 40A,  
= 0.5 BV  
CE CES  
-
-
-
-
-
-
-
-
-
-
8.5  
350  
450  
25  
-
V
GEP  
C
Q
V
= 15V  
405  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
g(ON)  
C
GE  
V
= 0.5 BV  
CES  
CE  
V
= 20V  
520  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
-
-
-
-
-
-
d(ON)I  
J
I
= 40A  
CE  
t
18  
rI  
V
V
= 0.65 BV  
=15V  
CE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
145  
35  
d(OFF)I  
R = 2.2Ω  
L = 200µH  
Test Circuit (Figure 24)  
G
t
fI  
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
E
E
E
400  
850  
370  
ON1  
ON2  
OFF  
2-2  
HGT5A40N60A4D  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified (Continued)  
J
PARAMETER  
Current Turn-On Delay Time  
Current Rise Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
27  
MAX  
-
UNITS  
ns  
o
t
IGBT and Diode at T = 125 C  
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
V
V
= 40A  
CE  
t
20  
-
ns  
rI  
d(OFF)I  
= 0.65 BV  
= 15V  
CE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
185  
55  
225  
95  
-
ns  
R = 2.2Ω  
L = 200µH  
Test Circuit (Figure 24)  
G
t
ns  
fI  
Turn-On Energy (Note 2)  
Turn-On Energy (Note 2)  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
E
E
400  
1220  
700  
2.25  
48  
µJ  
ON1  
ON2  
OFF  
1400  
800  
2.7  
55  
45  
0.2  
1
µJ  
µJ  
V
I
I
I
= 40A  
V
EC  
EC  
EC  
EC  
t
= 40A, dI /dt = 200A/µs  
EC  
ns  
rr  
= 1A, dI /dt = 200A/µs  
EC  
38  
ns  
o
Thermal Resistance Junction To Case  
NOTES:  
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
C/W  
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 24.  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
80  
225  
V
= 15V  
o
GE  
T
= 150 C, R = 2.2, V = 15V, L = 100µH  
GE  
J
G
70  
60  
50  
40  
30  
20  
10  
0
200  
175  
150  
125  
100  
75  
PACKAGE LIMITED  
50  
25  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
C
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
2-3  
HGT5A40N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
300  
12  
1200  
1000  
800  
o
T
V
V
= 390V, R = 2.2, T = 125 C  
C
o
GE  
15V  
200  
CE  
G
J
75 C  
10  
8
I
SC  
100  
f
f
= 0.05 / (t  
d(OFF)I  
+ t  
)
MAX1  
d(ON)I  
+ E  
= (P - P ) / (E  
)
MAX2  
D
C
ON2  
OFF  
P
= CONDUCTION DISSIPATION  
C
6
600  
(DUTY FACTOR = 50%)  
o
R
= 0.2 C/W, SEE NOTES  
ØJC  
t
SC  
4
400  
R
= 2.2, L = 200µH, V  
= 390V  
G
CE  
10  
2
10  
200  
16  
3
10  
40  
70  
11  
12  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
80  
80  
DUTY CYCLE < 0.5%, V  
= 12V  
PULSE DURATION = 250µs  
DUTY CYCLE < 0.5%, V  
GE  
= 15V  
GE  
PULSE DURATION = 250µs  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
o
T
= 125 C  
J
o
T
= 125 C  
J
o
T
= 25 C  
J
o
T
= 25 C  
J
o
= 150 C  
o
= 150 C  
T
T
J
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
, COLLECTOR TO EMITTER VOLTAGE (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
V
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
5500  
1800  
R
= 2.2, L = 200µH, V  
= 390V  
R
= 2.2, L = 200µH, V  
= 390V  
CE  
G
CE  
G
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
o
T
= 125 C, V  
= 12V, V  
= 15V  
J
GE  
GE  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
o
= 25 C, V  
T
= 12V OR 15V  
GE  
J
o
T
= 25 C, V  
= 12V, V = 15V  
GE  
J
GE  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
2-4  
HGT5A40N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
120  
100  
80  
60  
40  
20  
0
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
R
= 2.2, L = 200µH, V  
= 390V  
R
= 2.2, L = 200µH, V  
= 390V  
CE  
G
CE  
G
o
o
T
= 25 C, T = 125 C, V  
GE  
= 15V  
J
J
o
o
T
= 125 C, T = 25 C, V  
= 12V  
GE  
J
J
o
o
T
= 25 C, T = 125 C, V  
= 15V  
o
o
J
J
GE  
70  
, COLLECTOR TO EMITTER CURRENT (A)  
T
= 25 C, T = 125 C, V  
= 15V  
70  
J
J
GE  
0
10  
I
20  
30  
40  
50  
60  
80  
0
10  
20  
30  
40  
50  
60  
80  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
190  
70  
R
= 2.2, L = 200µH, V = 390V  
CE  
R
= 2.2, L = 200µH, V  
= 390V  
G
G
CE  
65  
60  
55  
50  
45  
40  
35  
30  
180  
170  
160  
150  
140  
130  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
o
V
= 12V, V  
GE  
= 15V, T = 125 C  
J
GE  
o
o
V
= 12V OR 15V, T = 25 C  
T
= 25 C, V = 12V OR 15V  
GE  
GE  
J
J
0
10  
I
20  
30  
40  
50  
60  
70  
80  
0
10  
I
20  
30  
40  
50  
60  
70  
80  
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
400  
o
I
= 1mA, R = 7.5, T = 25 C  
DUTY CYCLE < 0.5%, V  
= 10V  
PULSE DURATION = 250µs  
G(REF)  
L
C
CE  
14  
12  
10  
8
350  
300  
250  
200  
150  
100  
50  
V
= 600V  
CE  
V
= 400V  
CE  
o
o
T
= -55 C  
J
T
= 125 C  
J
V
= 200V  
CE  
6
o
T
= 25 C  
J
4
2
0
0
0
50  
100  
150  
200  
250  
300  
350  
400  
6
7
8
9
10  
11  
Q
, GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
2-5  
HGT5A40N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
6
5
4
3
2
1
0
100  
10  
1
o
o
T
V
= 125 C, L = 200µH  
J
T
= 125 C, L = 200µH, V  
CE  
= 390V, V = 15V  
GE  
J
= 390V, V  
= 15V  
+ E  
OFF  
CE  
GE  
E
= E  
+E  
ON2 OFF  
TOTAL  
E
= E  
TOTAL  
ON2  
I
= 80A  
CE  
I
I
= 80A  
= 40A  
CE  
CE  
I
= 40A  
CE  
I
= 20A  
CE  
I
= 20A  
CE  
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
500  
o
R
, GATE RESISTANCE ()  
T
, CASE TEMPERATURE ( C)  
G
C
FIGURE 15. TOTAL SWITCHING LOSS vs CASE  
TEMPERATURE  
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE  
14  
2.4  
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs, T = 25 C  
GE  
o
12  
10  
8
J
2.3  
2.2  
2.1  
2.0  
1.9  
C
IES  
I
I
= 80A  
= 40A  
CE  
CE  
6
4
2
0
C
OES  
I
= 20A  
14  
CE  
C
RES  
8
9
10  
11  
12  
13  
15  
16  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
vs GATE TO EMITTER VOLTAGE  
50  
120  
dI /dt = 200A/µs  
DUTY CYCLE < 0.5%,  
PULSE DURATION = 250µs  
EC  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
45  
o
40  
125 C t  
rr  
35  
o
= 125 C  
T
J
o
30  
25  
20  
15  
10  
5
125 C t  
b
o
125 C t  
a
o
25 C t  
rr  
o
T
= 25 C  
J
o
25 C t  
a
o
25 C t  
b
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0.5  
1.0  
1.5  
2.0  
2.5  
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 19. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 20. RECOVERY TIMES vs FORWARD CURRENT  
2-6  
HGT5A40N60A4D  
Typical Performance Curves Unless Otherwise Specified (Continued)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
2000  
V
= 390V  
CE  
I
= 40A, V = 390V  
CE  
EC  
1750  
1500  
o
125 C t  
o
a
125 C I  
= 40A  
EC  
o
1250  
1000  
750  
125 C I  
= 20A  
EC  
o
125 C t  
b
o
25 C I  
= 40A  
= 20A  
EC  
500  
o
25 C t  
a
b
o
25 C I  
250  
EC  
o
25 C t  
0
200  
10  
400  
600  
800  
1000  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
dI /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
dI /dt, RATE OF CHANGE OF CURRENT (A/µs)  
EC  
FIGURE 21. RECOVERY TIMES vs RATE OF CHANGE OF  
CURRENT  
FIGURE 22. STORED CHARGE vs RATE OF CHANGE OF  
CURRENT  
0
10  
0.50  
0.20  
0.10  
t
1
P
D
-1  
10  
t
2
0.05  
DUTY FACTOR, D = t / t  
1
2
0.02  
0.01  
PEAK T = (P X Z  
X R  
) + T  
J
D
θJC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
10  
-1  
10  
0
1
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
10  
10  
1
FIGURE 23. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
HGT5A40N60A4D  
90%  
OFF  
10%  
ON2  
V
GE  
E
E
L = 200µH  
V
CE  
R
= 2.2Ω  
G
90%  
10%  
d(OFF)I  
+
-
I
CE  
t
t
V
= 390V  
rI  
DD  
t
fI  
t
d(ON)I  
FIGURE 24. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 25. SWITCHING TEST WAVEFORMS  
2-7  
HGT5A40N60A4D  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t  
are defined in Figure 25.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
shown in Figure 25. E  
instantaneous power loss (I  
is the integral of the  
ON2  
x V ) during turn-on and  
CE  
CE  
is the integral of the instantaneous power loss  
E
OFF  
(I  
x V ) during turn-off. All tail losses are included in the  
CE  
CE  
calculation for E  
; i.e., the collector current equals zero  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
(I  
= 0).  
CE  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
2-8  
HGT5A40N60A4D  
Stretch-247  
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE  
A
INCHES  
MIN  
MILLIMETERS  
TERM. 4  
E
SYMBOL  
MAX  
0.190  
0.051  
0.070  
0.105  
0.026  
0.820  
0.625  
MIN  
4.58  
MAX  
4.82  
NOTES  
A
b
0.180  
0.046  
0.060  
0.095  
0.020  
0.800  
0.605  
-
Q
1.17  
1.29  
2, 3  
ØR  
b
b
1.53  
1.77  
1, 2  
1
2
D
2.42  
2.66  
1, 2  
c
0.51  
0.66  
1, 2, 3  
D
E
e
20.32  
15.37  
20.82  
15.87  
-
-
L
1
b1  
b2  
0.219 TYP  
0.438 BSC  
5.56 TYP  
11.12 BSC  
4
4
5
-
L
c
e
1
b
J
0.090  
0.105  
0.640  
0.155  
0.220  
0.205  
2.29  
2.66  
16.25  
3.93  
1
L
0.620  
0.145  
0.210  
0.195  
15.75  
3.69  
5.34  
4.96  
1
2
3
3
2
1
J
e
1
L
1
-
BACK VIEW  
1
Q
5.58  
e1  
ØR  
5.20  
-
NOTES:  
1. Lead dimension and finish uncontrolled in L .  
1
2. Lead dimension (without solder).  
3. Add typically 0.002 inches (0.05mm) for solder plating.  
4. Position of lead to be measured 0.250 inches (6.35mm) from bottom  
of dimension D.  
5. Position of lead to be measured 0.100 inches (2.54mm) from bottom  
of dimension D.  
6. Controlling dimension: Inch.  
7. Revision 1 dated 8-99.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
2-9  

相关型号:

HGTA32N60E2

32A, 600V N-Channel IGBT
INTERSIL

HGTB12N60D1C

TRANSISTOR,IGBT,N-CHAN,CURRENT SENSE,600V V(BR)CES,18A I(C),SIP
RENESAS

HGTB12N60D1C

18A, 600V, N-CHANNEL IGBT, TS-001AA
ROCHESTER

HGTD10N40F1

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N40F1S

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N40F1S9A

Insulated Gate Bipolar Transistor, 12A I(C), 400V V(BR)CES, N-Channel, TO-252AA
RENESAS

HGTD10N50F1

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N50F1S

10A, 400V and 500V N-Channel IGBTs
INTERSIL

HGTD10N50F1S9A

12A, 500V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD14N41G4VLS

24A, 430V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD14N41G4VLS9A

24A, 430V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD1N120BNS

5.3A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD